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AVANT PROPOS

The Fourth in the Series of U. S. Stellarator Workshops was held

at the Fusion Engineering Design Center (FEDC) in Oak Ridge, Tennessee

on April 14 a nd 15, 1983- It wa3 sponsored jointly by the Courant

Institute of Mathematical Sciences of New York University and the

Fusion Energy Division of Oak Ridge National Laboratory.

Viewgraph materials provided by the speakers are reproduced in

these proceedings. The clear preponderance of discussion lay in the

areas of understanding the transport properties of stellarators,

including effects of electric fields and direct particle losses, of

determining the gains which might accrue by exploiting the freedom of

choosing a nonplanar (i.e., helical) magnetic axis as in the Keliac

idea, and of exploiting the substantial gains which have been made in

analyzing full 3-D systems.

In view of recent events in the U» S. Fusion Program, the charge

by DOE Office of Fusion Energy in 1981 to the sponsors and the Advisory

Board for the Workshops has been reconsidered. The original charge was

to cafine the needs of the U. S. Stellarator program and suggest a

program to accomplish them. The concensus of the first three workshops

was the need for a large stellarator experiment in the U. S. to study

(inter alia) beta limits and low collisionality transport, and for

stronger support for the U. S. Stellarator program. Since the previous

workshop in March 1982, there have been several significant events: the

Magnetic Fusion Advisory Committee meetings, approval of the ATF-1



torsatron proposal at Oak Ridge, and redefinition of the role of the

stellarator program within the U. S. Fusion program. The present DOE

view of the stellarator program role is: ( 1) in the near terra it must

contribute to better understanding of general toroidal systems; and (2)

in the longer term it must contribute to development of a superior

reactor concept.

A panel discussion reflecting these developments and beginning a

new phase of the workshops, was held, with the topic: "What information

is needed in the U. S. Fusion Program in addition to that from ATF and

IMS in the U. S. and the Heliotron/Wendel3tein/Livsn' devices abroad?"

The panel, representing diverse interests within the stellarator

community consisted of: H. Weitzner (NYU), H. Berk (U. Texas).

J. Callen (U. Wisconsin), R. Dory (OSNL), V. Dove (DOE), J. Johnson

(PPPL), and P. Politzer (MIT).

Among the noteworthy comments made by the Panel members, by

distinguished visitors from abroad (Prof. A. Schlueter of Germany and

Dr. K. V. Roberts of the UK), and by other workshop participants were :

• ORNL and the ATF program would welcome suggestions, ideas and

help from the community, as well as involvement in conduct of

the ATF-1 program: for specific studies to be made on ATF-1,

for possible new diagnostics, and for ways to increase and to

exploit the flexibility built into the coil and auxiliary

systems. In turn, ORNL would help where it can to provide

For the sake of rapid distribution of these proceedings, the comments
of panel members and the audience have been abstracted, paraphrased
and included without attribution, but with apologies.
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technical contributions, as well as programmatic support to

other groups in their efforts to advance the stellarator

program in the U. S. Fusion effort.

• The stellarator community has not yet made a completely

convincing case from its reactor studies for the viability of

stellarator reactors.

• The main physics themes and areas needing to be developed were

listed:

> Helical axis systems — full experimental tests are not

presentally provided in the U. S. program.

> RF heating options. Antennas. Propagation.

> Modular coil analysis and experiments.

> Divertor studies. Impurity control. Particle sources and

losses.

> Heactor systems analyses. Low aspect ratio is a key

opportunity.

> Diagnostics for 3-D and long pulse effects.

> Theories of flow, viscosity and rotation effects; parallel

currents.

> Simple physical pictures to enable understanding of complex

systems. For example, understanding t, shear, V" as key

physics properties rather than SL number or coil topology.

> The trade between t, shear, and V" needs further

experimental clarification.



At a meeting of the Executive Board, it was decided to continue

the workshops at reasonable intervals, vrith January 1984 as the next

occasion. ORNL has accepted responsibility for the workshops but the

location need not be at Oak Ridge. The next meeting of the Executive

Board will take place at the APS-DPP fall meeting, at which time a site

and program will be determined for the January 1984 Workshop.



On The Occasion of ATF-1 Approval

In nineteen hundred eighty one,

Designing tokamaks was still great fun.

But when folks from Oak Ridge proposed ISX-C,

It failed to amuse the DoE.

On that year's twentieth of May,

Soon to prove a fateful day,

A letter from Anne did then arrive,

"Dear Murray, that same old stuff just won't jive.

Shepherd John called in Tom and Jim.

The pow-wow session was indeed very grim.

"Propose something we must in tokamak's stead;

Our only hope is to forge ahead."

Midnight oil they did burn.

For sleepless nights they did churn.

Argued and debated even after they turned red.

Fell and tumbled as they did steadily tread.

In the end there was great elation.

Announce they did their revelation:

"Journeyed we have through the toroidal map;

Decided we have on a stellarator trap."



The war bugle sounded. '

The battle cry began.

Brad, Ben, Vicky, Jim, Jeff,

All took part in the plan.

Magnetic field lines they did trace

And soon conquered the X,,m,R,a, space.

Perfect they did the Chodura-Schi'uter code;

High and low they pursued every mode.

Stellarator expansions they did do,

Doubly proving each result to be true.

Flux coordinates they did use;

Not one particle could anomalously diffuse.

Equilibrium and stability they did explore;

Many a regime none had visited before.

First and second stability they did cement;

Out popped a beta of eight percent.

In DoE's court they put the ball back;

Erol knew who should review this non-tokamak.

A blue ribbon panel he did convene,

The best tokamak people one's ever seen.

To the panel they did go;

Received a report card all aglow.

Onward and upward they persuaded the DoE:

"\ better bargain there never could be.



Eighteen million is a large sum indeed,

But what you'll get Is what you'll need.

This device allows currentless research;

This device permits high beta search."

The buck finally stopped on John's home ground,

Who sighed at the outstretched hands all around.

"Which horse must I now give away,

To feed this one that does loudly neigh?"

The eighteenth of February of eighty three

Is a red letter day as we shall see.

With a single stroke of his feathered pen,

He approved the plan there and then.

There was jubilation throughout the land

For the go-ahead of a project so bold and so grand.

The long wait is over here in the U.S.;

Our own fusion stellarator we again possess.

So cheers to you, the hill billy chaps:

You put stellarators back in our fusion maps.

Good Luck, high hopes, and much success.

May your splendid effort progress.

T. K. Cbu
April 14, 1983
Princeton
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ATF-1 PROGRAM STATUS

J. F. LYON, ORNL
ATF-1 PHYSICS COORDINATOR

4TH US STELLARATOR WORKSHOP
OAK RIDGE, APRIL 14, 1983

Research sponsored by the Office of Fusion Energy, OER, U. S.
Department of Energy under contract W-7405-eng-26 with the Union
Carbide Corporation.



ORNL CONTRIBUTORS TO ATF-1 PROGRAM

CONFIGURATION DESIGN

R. A. Dory, D. Goodman, J. H. Harris, V. E. Lynch, B. F. Masden,
J. Sheffield

MHD EQUILIBRIUM AND STABILITY

B. A. Cameras, L. A. Charlton, W. A. Cooper, L. Garcia,
T. C, Hender, H, R, Hicks, S. P. Hirshman, J. A. Holmes

TRANSPORT

R. H. Fowler, W. A. Houlberg, J. F. Lyon, J. A. Rome,
K. C. Shaing

HEATING
A, C. England, D. J. Hoffman, S. Hokin

ENGINEERING DESIGN

R. L. Brown, W. D. Cain, K. K. Chipley, M. J. Cole, P. H. Edmonds,
W. A. Gabbard, T. C. Jernigan, R. L. Johnson, J. F. Monday,
G. H. Neil son, B. E. Nelson, P. B. Thompson
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TOPICS

DEVELOPMENTS SINCE PROPOSAL/APS

ATF-1 PROGRAM

CONFIGURATION FLEXIBILITY STUDIES

MHD EQUILIBRIUM AND STABILITY

TRANSPORT STUDIES

ATF-i DESIGN STATUS

- OVERALL DESIGN FEATURES
- COILS, VESSEL, STRUCTURE
- Sfr DULE
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ATF - 1 PROGRAMDEVELOPMENTS SINCE LAST OCTOBER

FAVORABLE REVIEW BY DOE TOKAMAK/STELLARATOR PANEL

CONCEPTUAL DESIGN IMPROVEMENTS

- VACUUM VESSEL, HELICAL COIL DESIGN

- TRANSPORT IMPROVEMENT WITH ELECTRIC FIELD

CONSTRUCTION APPROVAL BY DOE-OFE

- DOE TOROIDAL PROGRAM PLAN

INITIATE DETAILED DESIGN

- PROTOTYPE HELICAL COIL PROCUREMENT STARTED



12

ATP-1 PROGRAM OBJECTIVES

NEAR-TERM: CONTRIBUTE TO BETTER UNDERSTANDING OF

OVERALL TOROIDAL PHYSICS

LONG-TERM: CONTRIBUTE TO DEVELOPMENT OF A SUPERIOR

REACTOR CONCEPT

ACCOMPLISH THROUGH STUDIES OF:

- ACCESS TO SECOND STABILITY REGIME AND MHD BETA

LIMITS

- TRANSPORT IN LOW COLLISIONALITY REGIME

- CURRENT-FREE, LONG PULSE PHYSICS ISSUES

- IMPURITY BEHAVIOR AND CONTROL

- ROLE OF ELECTRIC FIELD, BOOTSTRAP CURRENT

- EFFECT OF HELICAL CONFIGURATION PARAMETERS AND

PLASMA CURRENT ON BETA LIMITS AND TRANSPORT

- TOKAMAK/STELLARATOR HYBRIDIZATION
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THE ATF-1 IS A MODERATE ASPECT RATIO TORSATRON WITH
HIGH BETA CAPABILITY AND THE FLEXIBILITY TO STUDY A WIDE
RANGE OF TOROIDAL CONFIGURATIONS

OUTER V F COIL
INNER V F COIL

H F COILS

R = 2,lm, o - 0,3 ID, R/a - 7, B - 2 T
LARGE SIDE (60 x 90 cm) AND TOP (50 cm DIAM) ACCESS PORTS
PIN = 4.5 MW NEUTRAL INJECTION (INITIALLY)

ECH A T 3 5 G H z
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ATF-1 WILL REPLACE ISX-B

BEAMLINE \
(CO-INJECTOR)

V
8EAMLINE
ICO-INJSCTOR)

THOMSON
SCATTE3JNG
«N PRESENT
LOCATION)

VACUUM
PUMPING

CHARGE W
EXCHANG
ASSAYS

BEAMUNE
(COUNTEH
INJECTOR)

IT WILL FIT IN THE PRESENT ISX-B EXPERIMENTAL
ENCLOSURE AND WILL USE THE ISX-B POWER SUPPLIES,
DIAGNOSTICS, CONTROL SYSTEM, AND UTILITIES.
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CONFIGURATION FLEXIBILITY STUDIES

OUTER VERTICAL
FIELD COIL-s^ /-INNER VERTICAL

FIELD COIL

•HELICAL FIELD
COILS

ATF-1 COIL SET ALLOWS FLEXIBILITY IN MAGNETIC CONFIGURATION
BY VARYING RELATIVE CURRENTS (A) IN INNER AND OUTER VF COILS
AND (B) IN TWO SEPARATE HELICAL WINDINGS

THIS FLEXIBILITY PERMITS

- WIDE RANGE IN ROTATIONAL TRANSFORM, SHEAR WELL DEPTH
AND PLASMA CROSS SECTION

- HELICAL OR PLANAR MAGNETIC AXIS

- ADDITION OF PLASMA CURRENT AND TF COILS FOR TOKAMAK/
STELLARATOR HYBRID STUDIES
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WIDE RANGE OF CONFIGURATIUN PARAMETERS AVAILABLE ON ATF-1,
ALLOWS TESTING OF BETA LIMITS FOR RANGE OF VALUES
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N = 1 LINEAR GROWTH RATE FOR VARIOUS
VERTICAL FIELDS

ORNL-DWG 83-2334A FED
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"DOUBLET" IN'VACUUM FIELD AND AT FINITE BETA

ORNt-DWG S3-232-4 FED
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EXAMPLE OF HELICAL AXIS CONFIGURATION PRODUCED WITH
CURRENT IN ONE HELIX REDUCED TO 16Z OF THAT IN OTHER HELIX

l») TOP VIEW

1.0

0.4

0.2

T T I I I 1 I
ROTATIONAL

TRANSFORM «

I I I 1 I
1 2 3 4 5 6 7 8 9 10

CONTOURS

• i i r
_ CO EDGE SURFACES

-0.2

-0.4 -
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1 0 -
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-0.4

r- i i l T
<*> FLUX SURFACES

_L
1.6 1.8 2.0 2.2

R(m)
2.4 2.6

CAN VARY CONTINUOUSLY FROM PLANAR TO HELICAL AXIS
BY VARYING RATIO OF HELICAL COIL CURRENTS
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MAGNETIC AXIS.
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SYMM5TR0M

FLUX SURFflCES
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ADDITION OF TF COILS (HERE B T F - BH) FURTHER

INCREASES CONFIGURATION FLEXIBILITY

FLUX SIJRFflCES
• - 0.00
t , • '.09. *•
IZ • 40B. ! •

MSIL -12
a • 0.091

fct.. - 0.00a T
—2.000 T

O

O

i-i tj u u «i 1.1 ZS

ROTHTIONRL TR

lZ - 100.
torn, -ir
r - C.O30,t->t.. - C.?
L —2.000 !

-1

Base Configuration (no TF)

Ip ~ HO kA (qQ = 1 limit)

Allows current drive/bootstraD current studies

Add TF coils (BTF - 5 kG)

reduce
Ip ~ 100-200 kA for hyorid studies
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HHD STUDIES

Coil Configurations

3-D Calculation

3-D
Equilibrium
Codes

Particle
Orbit
Studies

3-D
Stability
code
low n

Method of Averaging

Equilibrium
Code (2-D)

Reduced MHD
for Stability

ballooning
modes

Semi-analytical
Calculations
shift, well, ...

Localized
modes
Criteria
(high n)
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TRANSPORT -—- ELECTRIC FIELDS

• RAPIDLY DEVELOPING AREA

• MULTI-LEVEL APPROACH

- SINGLE ORBIT CONFINEMENT

- COLLISIONLESS CONFINEMENT OF
TEST DISTRIBUTIONS

- ANALYTICAL TRANSPORT COEFFICIENTS
USING MODEL FIELD

CORRELATION

- MONTE-CARLO CALCULATIONS
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TRANSPORT STUDIES

Coil Configurotions

\/

Particle Orbits
code

Monte Carlo
calculations

3-D Equilibrium

<r 4
Analytic
calculations
of x

' ^ -

S

1-D Transport
code

Self-consistent
E-field
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MODEST ELECTRIC FIELDS OF EITHER SIGN

DRAMATICALLY REDUCE DIRECT LOSSES
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CONFINEMENT IMPROVEMENT WITH ELECTRIC FIELD

MODERATE ELECTRIC FIELD MOVES TRANSITION TO FAVORABLE
SCALING (x * V INSTEAD OF x * V " 1 ) TO HIGHER COLLISIONALITY
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COMPARISON BETWEEN THE ANALYTICALLY CALCULATED
ION DIFFUSION COEFFICIENTS AND THE MONTE-CARLO

CALCULATIONS
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FEO/VU 83-65

SELF-CONSISTENT ELECTRIC FIELD

ATF EXAMPLE SHOWING THREE ROOTS FOR THE RADIAL ELECTRIC FIELD
WHICH LEAD TO AMBIPOLAR FLUXES. THE ROOT WITH THE LARGEST
RADIAL ELECTRIC FIELD LEADS TO MUCH REDUCED LOSSES.
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I 1 I
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I I I
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-8 -4

.-2-1/2u2n Ietch vDn J
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RESONANT TRANSPORT
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ATF-1 DESIGN STATUS - TOPICS

• OVERALL DESIGN FEATURES

• HELICAL FIELD COILS

• VERTICAL FIELD COILS

• VACUUM VESSEL

• STRUCTURAL SUPPORT

• SCHEDULE



Vertical Field Colls Toroidal Support Structure

Helical Field Colls Plasma Vacuum Vessel

ATF-l
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ATF-1 Design Changes Since Proposal (October 1982)

• Vacuum Vessel Expanded
•• Large Ports
•• Room for Divertor Hardware

• Structural Concept Modified
•• Radial Plate Structure Inadequate
•• Toroidal Shell Structure Substituted
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STRUCTURAL BOBBIN

SINGLE TURN.TYP 8 PER STACK

SECTION A - A

STRUCTURAL BOBBIN

COIL 1

COL 2

COIL SEQMENT
LEFT RIGHT

4 V
*- CONDUCTOR STACKS-*

(CONSISTING OF S TURNS EACH)

ATF HELICAL COIL SET SHOWING
COIL SEGMENT.BOBBIN AND

WINDING COMPONENTS



107.0 TO COIL CA^fc

46.<STO COPPLR

INNf ft VERTICAL

COIL

OUTER VERTICAL

FIELD COIL

~ MAIN SECTION

TRIM SECTION

8CHEMATIC SECTION THROUGH COIL SET
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TOP VIEW

J~VCHTtCAL POUTS

1.55 M

SIDE VIEW

VACUUM VESSEL



INNER INTERMEDIATE PANEL
(Typ. 12 Places)-

TORUS SEGMENT
(Typ. 24 Plages)

INSULATED FLANQE8
(Typ. 96 Places)

OUTER INTERMEDIATE PANEL
(Typ. 12 Places)

STRUCTURE SUPPORT SEGMENTED SHELL CONCEPT

09
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ATF-1 SCHEDULE

1985

• FEBRUARY - PROTOTYPE HELICAL COIL PROCUREMENT INITIATED

• MARCH - COMPLETION OF CONCEPTUAL DESIGN AND CONSTRUCTION
COST ESTIMATE

• OCTOBER - BEGIN ATF DIAGNOSTIC AND BEAM LINE LAYOUTS

1984

• JANUARY - HF COIL DEVELOPMENT FIXTURE COMPLETE
• MAY - COMPLETE HELICAL COIL TITLE II DESIGN

- DELIVER PROTOTYPE COIL PARTS

• JUNE - BEGIN ATF DIAGNOSTICS DESIGN

• OCTOBER - TITLE I DESIGN COMPLETE

1985

• JANUARY - ISX-B REMOVAL COMPLETED

• JULY - TITLE II DESIGN COMPLETE
- HELICAL COIL SEGMENTS DELIVERED

• SEPTEMBER - MACHINE DEVELOPMENT ACTIVITIES COMPLETE

1986

• APRIL - ALL COMPONENTS RECEIVED

. JULY - ASSEMBLY COMPLETE

. SEPTEMBER - PRE-OPERATIONAL TEST COMPLETE
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Research sponsored by the Office of Fusion Energy, OER, U. S. Department
of Energy under contract W-7405-enp-26 with the Union Carbide Corporation.
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MODEL FOR PARTICLE AND ENERGY FLUXES

The electron and ion particle and heat fluxes due to helical
trapping are given hy:

nJniA;Cx) = J. +J nj

T'
• (X-1.5U



TRANSPORT STUDIES
collaboration with K.C. Shaing and W.A. Houlberg

Ions in ATF are in the collisionless v regime for all reasonable
plasma parameters. Electrons are usually in the Mv regime and
may dominate the loss process.

Immediate goal is to test the analytic theories of Shaing and
Kovriznykh in the v regime to determine which is correct.

Calculations! difficulties:

• ' > T c r t t t a n d f < Tloss' Tnon-localization'

• Direct losses contaminate D.

• Quiet start essential.

• Statistics in tail of distribution function poor.
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METHOD

Determine loss region and % loss by following collisionless
particles for Tgg or r^^, whichever is smaller.

Use end locations of contained particles for quiet start.

For energy distributions, either:

— Use fixed v, no v scattering.

— Use 3T/2 and v scattering.

— Sample from fM with v scattering.

Rot ( $2 ) - ( >p ) 2 versus t and fit to C^ + C2t.

— C2 /2 with v scattering
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TODAY'S EXPLANATION

Why don't we see the neoclassical (non momentum-conserving)
diffusion due the bananas? It i: much bigger than the diffusion
calculated for the helically trapped ions.

• For <pl/V •* 0, all bananas are in the loss region. Since we
eliminate loss orbits from the Monte Carlo population, we can't
see the banana-driven terms.
• As y'A' increases, the loss region disappears. But, only a
small fraction of trapped particles are banana trapped and not
helically trapped:

fT 2 <eT t e H )
l / 2 - ( c H )

! / 2 = (.07 t .055)l/2-(.055)1/2 = .12

This reduced the effective i/^ diffusion.
• We are studying the dependence of the loss regions and the
fraction of banana-trapped ions on <p%/V.
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with support from
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STELLARATOR TRANSPORT CODE DEVELOPMENT

Incorporate self-consistent models for particle
and energy confinement in a transport code:

o assess the limitations and important
features of the models - both physical and
computational.

o develop the computational tools for
inclusion of the radial electric field
in direct and diffusive losses.

Coordinate work with the development of kinetic
models and benchmarking against Monte-Carlo
calculations.

Longer range development to include 3-D MHD
equilibria.

©ml



79

MODEL FOR PARTICLE AND ENERGY FLUXES

The electron and ion particle and heat fluxes due to helical
trapping are given by:

(X )

nj ey Tj
Aj(x) = ^ + J L . + ( x - l i U

J nj -TJ- TJ

eBF

T:
wVBj = ~ v d j £ h x = " eTBF £h
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SUMMARY OF STELLARATOR TRANSPORT ANALYSIS

Efforts thus far have concentrated on examining
features of the kinetic model:

o sensitivity to parameters,
o methods for calculating the self-consistent

radial electric field.

The most critical issue appears the transition
from the high collisionality, ion-loss regime to
low collisionality, electron—loss regime.

Further development and benchmarking of kinetic
and Monte-Carlo analyses is required.

ATF-1 and Heliotron-E can address the issue
experimentally at low magnetic fields.

oml
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WHERE ARE WE IN STELLARATOR TRANSPORT ANALYSIS?

J. D. Callen
University of Wisconsin
Madison, Wisconsin

FOURTH U . S . STELLARATOR WORKSHOP
OAK RIDGE, TENNESSEE
April Ul-15, 1333
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REVIEW OF HELICAL AXIS RESEARCH

A. Reiman
Princeton Plasma Physics Laboratory

Princeton University
Princeton. NJ

FOURTH U.S. STELLARATOR WORKSHOP
OAK RIDGE, TENNESSEE
April 14-15, 1933
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MODULAR HELIAC STELLARATOR+

L. P. MAI WESTINGHOUSE, AESD

G. GIBSON WESTINGHOUSE, AESD

T. K. CHU PRINCETON PLASMA PHYSICS LABORATORY

+THIS WORK IS IN PART SUPPORTED BY THE U.S. DEPARTMENT
OF ENERGY CONTRACT DE-AC02-76-CH0-3073.

THE FOURTH U.S. STELLARATOR WORKSHOP

APRIL 14-15, 1983
OAK RIDGE NATIONAL LABORATORY
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Modular Heliac Stellarator. L. P. MAI and
G. GIBSON, Westlnghouse Electric Corporation and
T. K. CHU, Princeton University—

The classical heliac confi^ ration is generated
by currents flowing in circular, planar TF coils whose
centers are on a helical line twisting around a
current-carrying, planar toroidal conductor. The
current in the toroidal conductor provides a poloidal
field. The TF coils act much like torsatron coils,
providing the toroidal field as well as part of the
poloidal field. One main engineering difficulty
associated with heliac reactors is the interlocking of
the TF and PF coils which makes their assembly and
disassembly for maintenance purposes difficult.

2
Theoretical and computational results show that

for a prescribed (outermost) heliac magnetic surface,
poloidally closed current loops on the surface can be
found to generate the prescribed magnetic surface,
without a toroidal current loop. These results
suggest that in realistic geometries, heliac
stellarator may be obtainable without a separate
poloidal-field coll, thus achieving modularisation
of the heliac stellarator.

We have obtained toroidal heliac stellarator
magnetic surfaces with a 1Z magnetic well, without a
toroidal current loop. This is accomplished by (1)
using Pacman-shaped, planar TF coils^ and (2) tilting
the TF colls away from the constant-* plane so that
the normal vector to the plane of the TF coils is
tangent to the local magnetic axis. These results
are similar to the recent analytical results of
straight heliac stellarators.4

This work is in part supported by the U.S.
Department of Energy Contract DE-ACO2-76-CHO-3O73.
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THE HELIAC EXPERIMENTAL MODELS CAN BE MADE FROM OLD TOKAMAK COILS.



PPPL ATC HELIAC (REFERENCE DESIGN) PARAMETERS

I, Toroidal Field Coils

Major Radius

Field Periods

Mean Coil Radius

Coil Oscillation Amplitude

Coil Current

Number of Coils

II. Poloidal Field Coil

Mean Radius

Coil Current

HI, Uniform Vertical Field

B = -0.025 Tesla

Ro= 1.25 m

m=

a-
d=

1=

V
V

0.

0.

2.

24
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2.

6485
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0 X
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m
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PPPL ATC REFERENCE HELIAC

1) Coil Configuration

2) Rotational Transform Profile

3) Magnetic Well Properties

t •>



Coii Geometry of the PPPL ATC Heliac
(Reference Design)
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MODULAR HELIAC WITH "PACMAN" TF COILS

1) Coil Configuration

2) Rotational Transform Profile

3) Magnetic Well Properties
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Coil Geometry of a Modular. Heliac
with "Pacman" TF Coils
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Rotational Transform Profile of a Modular Heliac with

"Pacman" Tp Coils, in the plane of a TP Coil
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MODULAR L=l STELLARATOR PARAMETERS
CIRCULAR TF COILS, NO PF COILS

MAJOR RADIUS RO = 2 M

HELICAL RADIUS AH = 0.5 M

MEAN COIL RADIUS A = 0.65 M

NUMBER OF COILS N = 32

TOROIDAL PERIODS M = 2
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COIL GEOMETRY OF AN L=l STELURATOR WITH HELICAL SPATIAL AXIS
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COIL GEOMETRY OF AN L-l STELLARATOR WITH HELICAL SPATIAL AXIS



COIL GEOMETRY OF AN L-I STELLARATOR WITH HELICAL SPATIAL AXIS



®AESD

• u

l.tl

I.It
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ROTATIONAL TRANSFORM AND J"^ FOR CIRCULAR COILS AND

HELICAL SPATIAL AXIS; NO PF COIL, Ro = 2.0 M; HELICAL
RADIUS = 0.5; M = 2
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PARAMETERS OF MODULAR HELIAC STELLARATOR
PACMAN-TYPE TF COILSJ No PF COILS

MAJOR RADIUS (M)

HELICAL RADIUS (M)

TOROIDAL PERIODS

NUMBER OF COILS

MEAN COIL RADIUS (M)

BASE

2

0.5

2

32

0.65

VARIATIONS
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COIL GEOMETRY OF A MODULAR HELIAC WITH HELICAL SPATIAL AXIS



COIL GEOMETRY OF A MODULAR HELIAC WITH HELICAL SPATIAL AXIS



COIL GEOMETRY OF A MODULAR HELIAC WITH HELICAL SPATIAL AXIS
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COIL GEOMETRY OF A MODULAR HELIAC WITH HELICAL SPATIAL AXIS (M=3)
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COIL GEOMETRY OF A MODULAR HELIAC WITH HELICAL SPATIAL AXIS (M=3)
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ROTATIONAL TRANSFORM AND J ^ FOR PACMAN TYPE COILS AND HELICAL
SPATIAL AXIS; NO PF COIL; Ro = 2.0; HELICAL RADIUS = 0.5; M = 3



154

CONCLUSIONS

• THE BASE CASE: WITH CIRCULAR COILS CENTERED ON A HELICAL AXIS
AND INTERLOCKING PF COIL A MAGNETIC WELL DEPTH OF 10% AND AN
EDGE TRANSFORM OF 0.73 (WITH SHEAR) HAVE BEEN OBTAINED.

• THE MODULAR HELIAC: WITH PACMAN-SHAPED COILS CENTERED ON A
HELICAL AXIS AND NON-INTERLOCKING PF COIL A MAGNETIC WELL DEPTH
OF 4% AND AN EDGE TRANSFORM OF 0.64 (WITH SHEAR) HAVE BEEN OB-
TAINED.

• L=l STELLARATOR: WITH CIRCULAR COILS CENTERED ON A HELICAL
AXIS AND NO PF COIL, NO MAGNETIC WELL AND AN EDGE TRANSFORM OF
0.16 (No SHEAR) HAVE BEEN OBTAINED.

t A NEW MODULAR HELIAC: WITH PACMAN COILS CENTERED ON A HELICAL
AXIS AND NO PF COIL, CLOSED MAGNETIC SURFACES, A WELL DEPTH OF
1%, AND A ROTATIONAL TRANSFORM OF 0.1 (No SHEAR) HAVE BEEN OB-
TAINED.

• RESULTS OF PARAMETER VARIATIONS FOR THE NEW MODULAR HELIAC:

1. IF THE MAJOR RADIUS IS INCREASED FROM 2 M TO 2.5 M

• THE WELL DEPTH DECREASES FROM 1% TO ABOUT 0.5%

DROPS FROM 0.2 TO 0.14

2. IF THE HELICAL RADIUS IS DECREASED FROM 0.5 M TO 0.4 M

• A MAGNETIC HILL RESULTS

• THE PLASMA VOLUME DECREASES

3. IF THE NUMBER OF TOROIDAL FIELD PERIODS IS INCREASED
FROM M=2 TO M=3

• THE WELL IS NEGLIGIBLY SMALL

INCREASES FROM 0,2 TO 0.6

• THE MAGNETIC RIPPLE INCREASES

• OPTIMIZATIONS OF THE VOLUME UTILIZATION, THE ROTATIONAL TRANS-
FORM, SHEAR AND WELL PROPERTIES ARE REQUIRED.
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CROSS SECTIONS flT V= .04 , -25 . . 54 . . 75 . QLZ/2«PI= 1.50

HftJOR RADIUS INFINITE MINOR RflOIUS= LOO

FIGURE 4. CROSS SECTIONS OF FLUX SURFACES.
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CROSS SECTIONS flT V= .C2 . -27 , .52 . .77 , l/(EP«QL2)= .HZ
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CROSS SECTIONS AT V= .00,.25,.50,.75. 1/(EP«GLZ)= 1.32
MAJOR RADIUS= 7.94 MINOR RADIUS= 1.00
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