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AVANT PROPOS

The Fourth in the Series of U. S. Stellarator Workshops was held
at the Pugion Engineering Design Center (FEDC) in Oak Ridge, Tennessee
on April 14 and 15, 1983. It was sponsored jointly by the Courant
Institute of Mathematical Sciences of New York University and the
Fusion Energy Division of Oak Ridge National Laboratory.

Viewgraph materials provided by the speakers are reproduced in
these proceedings. The clear preponderance of discussion lay in the
areas of understanding the transport properties of stellarators,
including effects of electric fields and direct particle losses, of
determining the gains which might acerue by exploiting the freedom of
choosing a nonplanar (i.e., helical) magnetic axis as in the Heliac
idea, and of exploiting the substantial gains which have been made in
analyzing full 3-D systems.

In view of recent events in the U. S. Fusion Program, the charge
by DOE Office of Fusion Energy in 1981 to the sponsors and the Advisory
Board for the Workshops has been reconsidered. The original charge was
to Jefine the needs of the U. S. Stellarator program and suggest a
program to accomplish them. The concensus of the first three workshops
was the need for a large stellarator experiment in the U. S. to study
(inter alia) beta limits and low collisionality transport, and for
stronger support for the U. S. Stellarator program. Since the previous
workshop in March 1982, there have been several significant events: the

Magnetic Fusion Advisory Committee meetings, approval of the ATF-1



torsatron proposal at Oak Ridge, and redefinition of the role of the
stellarator program within the U. S. Fusion program. The present DOE
view of the stellarator program role is: (1) in the near term it must
contribute to better understanding of gemeral toroidal systems; and (2)
in the longer term it must contribute to development of a superior
reactor concept.

A panel discussion reflecting these developments and beginning a
new phase of the workshops, was held, with the topic: "What information
is needed in the U. S. Fusion Program in addition to that from ATF and
IMS in the U. S. and the Heliotron/Wendelstein/Liven' devices abroad?"
The panel, representing diverse interests within the stellarator
community consisted of: H. Weitzner (NYU), H. Berk (U. Texas).
J. Callen (U. Wisconsin), R. Dory (ORNL), W. Dove (DOE), J. Johason
(PPPL), and P. Politzer (MIT).

Among the noteworthy comments made by the Panel members, by
distinguished visitors from abroad (Prof. A. Schlueter of Germany and
Dr. K. V. Roberts of the UK), and by other workshop participants were*:

« ORNL and the ATF program would welcome suggestions, ideas and

help from the community, as well as involvement in conduct of
the ATF-1 program: for specific studies to be made on ATF-1,
for possible new diagnostics, and for ways to increase and to
exploit the flexibility built into the coil and auxiliary

systems. In turn, ORNL would help where it can to provide

*
For the sake of rapid distribution of these proceedings, the comments
of panel members and the audience have been abstracted, paraphrased
and included without attribution, but with apologies.



technical contributions, as well as programmatic support to

other groups in their efforts to advance the stellarator

program in the U. S. Fusion effort.

The stellarator community has not yet made a completely

convincing case from its reactor studies for the viabil_ty of

stellarator reactors.

The main physics themes and areas needing to be developed were

listed:

> Helical axis systems -~ full experimental tests are not
presentally provided in the U. S. progranm.

> RF heating options. Antennas. Propagation.

> Modular coil analysis and experiments.

> Divertor studies. Impurity control. Particle sources and
losses.

> Reactor systems analyses. Low aspect ratio is a key
opportunity.

> Diagnostics for 3-D and long pulse effects.

> Theories of flow, viscosity and rotation effects; parallel
currents.

> Simple physical pictures to enable understanding »f complex
systems. TFor example, understanding t, shear, V" as key
physics properties rather than £ number or coil topology.

> The trade between t, shear, and V" needs further

experimental clarification.



&

At a meeting of the Executive Board, it was decided to continue
the workshops at reasonable intervals, with January 1984 as the next
occasion. ORNL has accepted responsibility for the workshops but the
location need not be at Oak Ridge. The next meeting of the Executive
Board will take place at the APS-DPP fall meeting, at which time a site

and program will be determined for the January 1984 Workshop.



On The Occasion of ATF-1 Approval

In nineteen hundred eighty one,
Designing tokamaks was still great fun.
But when folks from Oak Ridge proposed ISX-C,

It failed to amuse the DoE.

On that year's twentieth of May,
Soon to prove a fateful day,
A letter from Anne did then arrive,

"Dear Murray, that same old stuff just won't jive."

Shepherd John called in Tom and Jim.
The pow-wow session was indeed very grim.
"Propose something we must in tokamak's stead;

Our only hope is to forze ahead.”

Midnight 0il they did burn.
For sleepless nights they did churn.
Argued and debated even after they turned red.

Fell and tumbled as they did steadily tread.

In the end there was great elation.
Announce they did their revelation:
“Journeyed we have through the toroidal map;

Decided we have on a stellarator trap."



Tha war bugle sounded.
The battle cry began.
Brad, Ben, Vicky, Jim, Jeff,

All took part in the plan.

Magnetic field lines they did trace
And soon conquered the %,m,R,a, space.
Perfect they did the Chodura-3chliiter code;

High and low they pursued every mode.

Stellarator expansions they did do,
Doubly proving each result to be true.

Flux coordinates they did use;

Not one particle could anomalously diffuse.

Equilibrium and stability they did explore;
Many a regime none had visited before.
First and second stability they did cement;

Qut popped a beta of eight percent.

In DoE's court they put tte ball back;
Erol knew who should review this non-tokamak.
A blue ribbon panel he did convene,

The best tokamak people one's ever seen.

To the panel they did go;
Received a report card all aglow.
Onward and upward they persuaded the DoE:

"L better bargain there never could be.



Eighteen million is a large sum indeed,
But what you'll get is what you'll need.
This device allows currentless research;

This device pérmits high beta search."

The buck finally stopped on John's home ground,
Who sighed at the outstretched hands all around.
"Which horse must I now give away,

To feed this one that does loudly neigh?"

The eighteenth of February of eighty three
Is a red letter day as we shall see.
With a3 single stroke of his feathered pen,

He approved the plan there and then.

There was jubilation throughout the land
For tiwe go-ahead of a project so bold and so grand.
The long wait is over here in the U.S.:;

Our own fusion stellarator we again possess.

So cheers to you, the hill billy chaps:
You put stellarators back in our fusion maps.
Good Luck, high hopes, and much success.

May your splendid effort progress.

T. K. Chu
April 14, 1983
Princeton
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TOPICS

DEVELOPMENTS SINCE PROPOSAL/APS
ATF-1 PROGRAM

CONFIGURATION FLEXIBILITY STUDIES
MHD EQUILIBRIUM AND STABILITY
TRANSPORT STUDIES

ATF-i DLESIGN STATUS

— OVERALL DESIGN FEATURES
— COILS, VESSEL, STRUCTURE
-~ SC+ DULE
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ATF - 1 PROGRAM DEVELOPMENTS SINCE LAST OCTOBER

FAVORABLE REVIEW BY DOE TOKAMAK/STELLARATOR PANEL
CONCEPTUAL DESIGN IMPROVEMENTS

— VACUUM VESSEL, HELICAL COIL DESIGN

— TRANSPORT IMPROVEMENT WITH ELECTRIC FIELD
CONSTRUCTION APPROVAL BY DOE-OFE

~ DOE TOROIDAL PROGRAM PLAN

INITIATE DETAILED DESIGN

— PROTOTYPE HELICAL COIL PROCUREMENT STARTED
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ATF-] PROGRAM OBJECTIV

NEAR-TERM: CONTRIBUTE TO BETTER UNDERSTANDING OF
OVERALL TOROIDAL PHYSICS

LONG-TERM: CONTRIBUTE TO DEVELOPMENT OF A SUPERIOR
REACTOR CONCEPT

ACCCMPLISH THROUGH STUDIES OF:

— ACCESS TO SECOND STABILITY REGIME AND MHD BETA
LIMITS

— TRANSPORT IN LOW COLLISIONALITY REGIME

— CURRENT-FREE, LONG PULSE PHYSICS ISSUES
— IMPURITY BEHAVIOR AND CONTROL

-~ ROLE OF ELECTRIC FIELD, BOOTSTRAP CURRENT

— EFFECT OF HELICAL CONFIGURATION PARAMETERS AND
PLASHMA CURRENT ON BETA LIMITS AND TRANSPORT

—~ TOKAMAK/STELLARATOR HYBRIDIZATION



13

THE ATF-1 IS A MODERATE ASPECT RATIO TORSATRON WITH
HIGH BETA CAPABILITY AND THE FLEXIBILITY TO STUDY A WIDE
RANGE OF TOROIDAL CONFIGURATIONS

OUTER V F COIL
\ /— INNER V F COIL.

3\ J &

] l

Va4 PR Y

i/ V1

HFcous—Jzé///

R=2.1m, G-0.3m  RGZ7, BZ2T

LARGE SIDE (60 x 80 cm) AND TOP (50 cm DIAM) ACCESS PORTS
Py = 4.5 MW NEUTRAL INJECTION (INITIALLY)

Pecy = 0.3 MW AT 35 GHz
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ATF-1 WILL REPLACE ISX-B

BEANHJNE
(CO-INECTOR) /-~ /. e
BEAMLINE \ .
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. //
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:;' 3 ry - N
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SCATTERING
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LOCATION}

CHARGE
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ARRAYS =:
PELLET K
B INJECTOR
= =
3 L
SPECTROSCOPY ‘BEAMLINE
- ~ (COUNTER
“ tNJECTOR)
..‘:-‘o-.é op u- -.}
;-..l‘ 3 .: - - /

IT WILL FIT IN THE PRESENT ISX-B EXPERIMENTAL

ENCLOSURE AND WILL USE THE ISX-B POWER SUPPLIES,
DIAGNOSTICS, CONTROL SYSTEM, AND UTILITIES.
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CONFIGURATION FLEXIBILITY STUDIES

OUTER VERTICAL ‘
FIELD COIL INNER VERTICAL
FIELD coIL

HELICAL FIELD
COILS

"ATF-1 COIL SET ALLOWS FLEXIEBILITY IN MAGNETIC CONFIGURATION
BY VARYING RELATIVE CURRENTS (A) IN INNER AND OUTER VF COILS
AND (B) IN TWO SEPARATE HELICAL WINDINGS

THIS FLEXIBILITY PERMITS

— WIDE RANGE IN ROTATIONAL TRANSFORM, SHEAR WELL DEPTH
AND PLASMA CROSS SECTION

— HELICAL OR PLANAR MAGNETIC AXIS

— ADDITION OF PLASMA CURRENT AND TF COILS FOR TOKAMAK/
STELLARATOR HYBRID STUDIES
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WIDE RANGE OF CONFIGURATIUN PARAMETERS AVAILABLE ON ATF-1,
ALLOWS TESTING GOF BETA LIMITS FOR RANGE OF VALUES
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N =1 LINEAR GROWTH RATE FOR VARIOUS
VERTICAL FIELDS
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EXAMPLE OF HELICAL AXIS CONFIGURATION PRODUCED WITH
CURRENT IN ONE HELIX REDUCED TO 16% OF THAT IN OTHER HELIX
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ADDITION OF TF COILS (HERE Byg = By) FURTHER
INCREASES CONFIGURATION FLEXIBILITY

FLUX SURFACES

oy
N
\

by

LS
‘\
~

L2
e
-~

[101]
¢ 2 80 4000001 01 03w e

[
i
'y
o
s
O
. H ,| l‘
b [ Y
1y 4
1Y
Y
\
b [N \ ~
. )
T o
Riel
ROTATIONAL TRANSFORM
2 - 400. be
%2
KOIL ~12

——— e e
. ‘-.‘—

)

-»>

B

J

(R )

oS
~.
2
8.
)

4
6e 0 el [ B ) [ X ] [N ] ae [N [ X (X1
S
| \\\\ _

-
[
-
-
-
-
~
[
-

. Base Confiquration (no TF)
- ID ~ 40 kA'(qG =1 limit)
- Allows current drive/bootstrap current studies

. Add TF coils (BTF ~ 5 kG)
- reduce
- ID ~ 100-200 kA for hvorid studies



24

MHD STUDIES

Coil Confiaqurations

T TN

3-D Calculation

3-D

Equilibrium [€¢ — = — —

Codes
Particle 3-D
Orbit Stability
Studies code

low n

[hethod of Averaging

T

/
Equilibrium Semi-analytical
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shift, well, ...
\V4
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e RAPIDLY DEVELOPING AREA
e MULTI-LEVEL APPROACH

= SINGLE ORBIT CONFINEMENT

= COLLISIONLESS CONFINEMENT OF
TEST DISTRIBUTIONS

- ANALYTICAL TRANSPORT COEFFICIENTS
USING MODEL FIELD
CORRELATION
- MoNTE-CARLO CALCULATIONS
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TRANSPORT STUDIES

Coil Configurations

Particle Orbits
code

NV

Monte Carlo
calculations

N

3-D Equilibrium

Analytic

Model Fields

Self-consistent’

calculations
of X

1-D Transport

code

N
e

E=fleld i
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o MODEST ELECTRIC FIELDS OF EITHER SIGN

DRAMATICALLY REDUCE DIRECT LOSSES
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» MODERATE ELECTRIC FIELD MOVES TRANSITION TO FAVORABLE
SCALING (x ~ v* INSTEAD OF x ~ v*~1) TO HIGHER COLLISIONALITY

HEAT CONDUCTIVITIES
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COMPARISON BETWEEN THE ANALYTICALLY CALCULATED
ION DIFFUSION COEFFICIENTS AND THE MONTE-CARLO
CALCULATIONS
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SELF-CONSISTENT ELECTRIC FIELD

® ATF EXAMPLE SHOWING THREE ROOTS FOR THE RADIAL ELECTRIC FIELD
WHICH LEAD TO AMBIPOLAR FLUXES. THE ROOT WITH THE LARGEST
RADIAL ELECTRIC FIELD LEADS TO MUCH REDUCED LOSSES.
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OTHER ATE-RELATED Stupies
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ATE- S - TOP

OVERALL DESIGN FEATURES
HELICAL FIELD COILS
VERTICAL FIELD COILS
VACUUM VESSEL
STRUCTURAL SUPPORT

SCHEDULE



Vertical Fleld Colls. , Toroldal Support Structure

Helical Field Colls Plasma Yacuum Vessel

ATP-1
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ATF-1 Design Changes Since Proposal (October 1982)

e Vacuum Vessel Expanded
ee Large Ports
ee Room for Divertor Hardware

e Structural Concept Modified
ee Radial Plate Structure Inadequate
ee Toroidal Shell Structure Substituted
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SIDE VIEW

VACUUM VESSEL



‘TORUS SEGMENT
/ (Typ. 24 Places)
INNER INTERMEDIATE PANEL

(Typ. 12 Places)- VA

INSULATED FLANGES
(Typ. 96 Places)

8¢
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(Typ. 12 Places)

STRUCTURE SUPPORT SEGMENTED SHELL CONCEPT
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ATF-1 SCHEDULE
1983

FEBRUARY - PROTOTYPE HELICAL COIL PROCUREMENT INITIATED

MARCH - COMPLETION OF CONCEPTUAL DESIGN AND CONSTRUCTION
COST ESTIMATE

OCTOBER - BEGIN ATF DIAGNOSTIC AND BEAM LINE LAYOUTS

1984

JANUARY - HF COIL DEVELOPMENT FIXTURE COMPLETE

MAY - COMPLETE HELICAL COIL TITLE II DESIGN
- DELIVER PROTOTYPE COIL PARTS

JUNE - BEGIN ATF DIAGNOSTICS DESIGN
OCTOBER - TITLE I DESIGN COMPLETE

985

JANUARY - ISX-B REMOVAL COMPLETED -

JULY - TITLE II DESIGN COMPLETE
- HELICAL COIL SEGMENTS DELIVERED

SEPTEMBER - MACHINE DEVELOPMENT ACTIVITIES COMPLETE

1986

APRIL ~ ALL COMPONENTS RECEIVED
JULY - ASSEMBLY COMPLETE
SEPTEMBER - PRE-OPERATIONAL TEST COMPLETE
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covening the article,

Monte CaRio TRANSPORT
N

AT F

James A Rome

Rorald H. Fowler
James F. Lyon

Wagne A. h‘ou/bery
Ker Chu wg Shamng

IT U.S. Stellarator lorkshop
April 14, 1983
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Porpose: To validate ana{y’hc
transport coefficients in
collisionless regimes .

E-Fiewp ErFecTS®
o lowers "Mr. RippLe™
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MODEL FOR PARTICLE AND ENERGY- FLUXES
e lo Shamg- Hou“urg

The electron and ion particle and heat fluxes due to helical
trapping are given by: |

L J )

rht = - D" For
MONTE CRRLD
D COPDE CHELK
2/ .2 /2 -5 S j X |
Q}jlt = - et\/shvdjanj fx /2¢-X4y uj(.\:) :;z(_g
_0 L s
AJ(\) = _J -T— (x 1.5)1?
- v.(x) Vi
vi(x) = = __
i ¢h £hx‘3/d
X = TE_

2
2oy = Ttey e 2 (tt,1/2rYVBj ~ 1/h\3/27) .~
G0 = {167 Copragg )+ () e Blogg 17 (50 13+3%(0)

\ non resmvfr W« Pkl‘m‘( CO”JSIOM/
W = ¢ ~y W ~ 4
E~ eBr

resonant franspert”

O)VBJ = - VdjEt.IX = - qB? EI‘IX




TRANSPORT STUDIES
collaboration with K.C. Shaing and W.A. Houlberg

lons in. ATF are in the collisionless v regime for all reasonable

plasma parameters. Electrons are usually in the 1/» regime and
may dominate the loss process.

Immediate goal is to test the analytic theories of Shaing and
Kovriznykh in the v regime to determine which is correct.

Calculational difficulties:

t > Topip@Nd t < Tyeq. Tnon—ocakization:
e Direct losses contaminate D.

¢ Quiet start essential.

* Statistics in tail of distribution function poor.

89
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METHOD -

Determine loss region and % loss by following collisionless
particles for 7gq OF 7., Whichever is smaller.

Use end locations of contained particles for quiet start.
For energy distributions, either:

— Use fixed v, no v scattering.

— Use 3T/2 and v scattering.

— Sample from f,, with v scattering.
Plot (y2) — (¥ ) 2versus t and fit to C; + C,t.
D lT.\lzj = (,/2 with v scattering

D {m«j = [1 /n] _[sivy] fM[v]dav.

0L



f(ty)

ou.U

tw
te
t=
ta
t=
tw
i=
=
=
i=

UV

LIVAV]
|
¢xXB40X+4000

IVEY)

0.0 0.2 0.4 0.6 o8

Mente Ceario Run
03/1%/83 08:47:2%

, f(t.m)

1%
174
2.34
2.94

4.4
4.74
524
5.94

1.0

T T L T
-10 -0.5 0.0 an
I’ et Canter Hine

[ T R L1 B B

71

-

i

TC°2 0G4 006% 07 06:7
' A i

L.

9706 0038 027
A

0 000.302 0C04

| (¥r-<vt

DISFERSION

T T

20 30 «0 s0
TIME (MS)

Monte Certo Run
03/17/83 08:47:25

1
8.0

3

2
]

)

0.23

AVERAGE OF v

pJ Bl B )

2.0 30 40
TIME (MS)
Mente Carle Mun
03/ Y8S 08:47:25

|
6.0



WS LILIO Ml dmayw
{ #+C ix0is EWW

SEa0n TE/GIANO
Uuny OJD) I JUol

(SW) 3NIL

Op Oy 0@ ou o8 oy oy of oo
°
) . m
3
m
2{A> - dehD - m _
SAWIHIG HNILIYLG ANFIFIAT 40 NOSIAEdWOD



e . . ‘ S : l :
. . )

ComPArISoN OF MoNTE Cante Cope To SHAING'S TwEOAY
TIKEV) = 2.0

EFFECTIVE D I, E Ny S-one”

2.0

} = 15.0
210.0
0.90

- 0.22
30.0

/Tf = 1.0

—l0.0 7.5 -5.0 -25 00 25 50 7.5 10.0
PHI PRIME OVER T PRIME

/DLNT 1.0%10°

MopeL B: B= B,, [1- & & cos -, 22(2) cos(lo-mp)]

L 5
+8,s5T

e L : N oo +tese W ‘

. ..... ........................ : <+ t‘b 'O‘L'

5 e AR

C’PI

+ 49 0 ik
&Y Jo7

o



TODAY'S EXPLANATION

Why don't we see the neoclassical (non momenium-conserving)
diffusion due the bananas? It iz much bigper than the diffusion
cajculated for the helically trapped ions.

» For ¢'/T' » 0, all bananas are in the loss region. Since we -

eliminate loss orbits from Lh: Monte Carlo population, we can't
see the banana-driven terms. |

e As ¢'/T' increases, the loss region disappears. DBut, only a

small fraction of trapped particles are banana trapped and not

helically trapped: '

fp® Cep + e ™% - ("% = (07 + .055)"/3-(. oss)‘/2 12

INCRENSING By LOWERS ASYMPTOTES ““;saz:

This reduced the effective Vii diffusion.

o We are studying the dependence of the loss rcgzons and the
fraction of banana-trapped ions on ¢'/T'.

\ZA
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STELLARATOR TRANSPORT CODE DEVELOPMENT

Incorporate self-consistent models for particle
and energy confinement in a transport code:

o assess the limitations and important
features of the models — both physical and
computational.

¢ develop the computational tools for
inclusion of the radial electric field
in direct and diffusive losses.

Coordinate work with the development of kinetic
models and benchmarking against Monte—Carlo
calculations.

Longer range d«velopment to include 3-D MHD
equilibria.



79

MODEL FOR PARTICLE AND ENERGY FLUXES

The electron and ion particle and heat fluxes due to helical
trapping are given by:

A;(x)
Bt = - &Ve v 5/2 e 3dx v, (x)
) thdJJr —z'(x—>.
A;(x)

Qht = | e3/e v2.n:T: [(x7/ 2 Xdx ¥, (x) '1r"‘
} thd”]‘r 4 w(x)

1 e
A = L TP el
i j
vi(x) = h = T
J £h €hx3/z
ok

2
tt,1/27“VBj ~ 1/%h\3/27) . o~2
o 2(x) = hél 67w +UVBJ) +( i ['7f"+'6:UVBj:Vj](EI> ]Z+3Vj(x)

L ||
y
“E = ¢' ' wns
FBF Supw banar.a PSRN } P‘Ohﬂ.ﬂ
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SUMMARY OF STELLARATOR TRANSPORT ANALYSIS

Efforts thus far have concentrated on examining
features of the kinetic model:

o sensitivity to parameters.
o methods for calculating the self-consistent
radial electric field.

The most critical issue appears the transition
from the high collisionality, ion—loss regime to
low collisionality, electron—loss regime.

Further development and benchmarking of kinetic
and Monte—-Carlo analyses is required.

ATF-1 and Heliotron—E can address the issue : —
experimentally at low magnetic fields.
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WHERE ARE WE IN STELLARATOR TRANSPORT ANALYSIS?

J. D. Callen
University of Wisconsin
Madison, Wisconsin

FOURTH U. S. STELLARATOR WORKSHOP
Q0AK RIDGE, TENNESSEE
April li-15, 1933
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EFFECTS DETERMINING RADIAL ELECTRIC FIELD
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TRANSPORT EQUATIONS WCIUDING DIRECT LOSSES
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REVIEW OF HELICAL AXIS RESEARCH

A. Reiman
Princeton Plasma Physics Laboratory
Princeton University
Princeton, NJ

FOURTH U. S. STELLARATOR WORKSHOP
OAK RIDGE, TENNESSEE
April 14-15, 1983
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Modular Heliac Stellarator.* L. P. MAI and
G. GIBSON, Westinghouse Electric Corporation and
T. K. CHU, Princeton University—

The classical heliac ccnfigvratidnl is generated
by currents flowing in circular, planar TF coils whose
centers are on a helical line twisting around a
current-carrying, planar toroidal conductor. The
current in the toroidal conductor provides a poloidal
field. The TF coils act much like torsatron coils,
providing the toroidal field as well as part of the
poloidal field. One main engineering difficulty
asgociated with heliac reactors is the interlocking of
the TF and PF coils vhich makes their assembly and
disassembly for maintenance purposes difficult.

Theoretical and computational relultaz show that

for a prescribed (outermost) heliac magnetic surface,
poloidally closed current loops on the surface can be
found to generate the prescribed magnetic surface,
without a toroidal current loop. These results
suggest that in realistic geometries, heliac
stellarator may be obtainable without a separate
poloidal-field coil, thus achieving modularization
of the heliac stellarator.

We have obtained toroidal heliac stellarator
magnetic surfaces with a 12 magnetic well, without a
toroidal current loop. This is accomplished by (1)
using Pacman-shaped, planar TF coils3d and (2) tilting
the TF coils away from the constant-¢ plane so that
the normal vector to the plane of the TF ccils is
tangent to the local magnetic axis. These results
are similar to the recent analytical results of
straight heliac stellarators.4

+This work is in part supported by the U.S.
Department of Energy Contract DE-AC02-76~CHO-3073.
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THe HELIAC EXPERIMENTAL MODELS CAN BE MADE FROM OLD TOKAMAK COLLS.



PPPL ATC HELIAC (REFERENCE DESIGN) PARAMETERS

[, Toroidal Field Coils

Major Radius Ro= 1.25 m

Field Periods m= 2

Mean Coil Radius a= 0.6485 m

Cecil Oscillation Amplitude  d= 0.3125 m

Coil Current I= 2.0 x 105 Amp/coil
Number of Coils N= 24

[I. Poloidal Field Coil
Mean Radius a=1.25 m
Coil Current Ip= 2.96 x 105 Amp

I1I., Uniform vertical Field
Bz= -0.025 Tesla

Z1



PPPL ATC REFERENCE HELIAC
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3)

Coil Configuration
Rotational Transform Profile

Magnetic Well Properties
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Coii Geometry of the PPPL ATC Heliac

(Reference Design)
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MODULAR HELTAC WITH “PACMAN“ TF COILS

1) Coil Configuration
2) Rotational Transform Profile

3) Magnetic Well Properties
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Coil Geometry of a Modular Heliac

with "Pacman” TF Coils
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MobutAR L=1 STELLARATOR PARAMETERS
CircuLAar TF CoiLs, No PF CoiLs

MaJor RaDIuUS Ro=2M
HeLicaL Rapius Ay =0.5M
Mean CoiL Rapius A=0,65m
NuMBER oF CoILs N =32

ToroIDAL PERIODS M=2
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PARAMETERS OF MopULAR HELIAC STELLARATOR
PacMan-Type TF Coirs; No PF CoiLrs

MaJorR Rapius (M)
HeLicaL Rabpius (M)
ToroIDAL PERIODS
NumBer oF ColLs

Mean CoiL Raprus (M)

Base
2
0.5
2
32

0.65

VARIATIONS

2.5
0.4
3
32
0.65
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CoNCLUSIONS

o THE Base Case: WiTH Circurar CoiLs CENTERED oN A HELicaL AXIS
AND INTERLOCKING PF CoiL A MasneTic WeLL DepTH oF 103 AND AN
Epce TRANsFORM oF 0.73 (W1TH SHEAR) HAVE Been OBTAINED.

o THE MopbuLAR HeLIAc: WiTH PAcMAN-SHAPED ColLs CENTERED ON A
HeLicaL Axis AND Non-INTERLockING PF CoiL A MagneTic WeLL DepTH
oF 47 AND AN EDGE TrRANSFORM oF 0.64 (WiTH SHear) HAVE Been OB-
TAINED,

o |=1 SteLLARATOR: WITH CircuLArR CoiLs CENTERED oN A HELICAL
Axis aND No PF CoiL, No MaGNETIC WELL AND AN EDGE TRANSFORM OF
0.16 (No SHEAR) HAve Been OBTAINED.

o A New Mopurar HerLiac: WiTH Pacman Coirs CENTERED ON A HELICAL
Axrs AND No PF CoiL, CLoseDp MaGneTic SURFACES, A WeLL DEPTH oF
17, AND A RoTaTioNAL TRANSFORM OF 0.1 (No SHearR) HAve Been Os-

TAINED.

o ResuLTs oF PARAMETER VARIATIONS FOR THE New MobDuLAR HELIAC:

1. IF THE MaJor RADIUS 1S INCREASED FROM 2 M TO 2.5 M
o THE WerLL DepTH Decreases From 1% T10 ABOuT 0,57
) f Drops From 0.2 10 0.14

2. Ir THE HELicaL Rapius 1s DeEcreAseD From 0,5 M 10 0.4 M
o A MaeneTIic HiLL RESULTS
® THE PLASMA YoLUME DECREASES

3. Ir THE Numer oF ToRoIDAL F1ELD PERIODS IS INCREASED
FrRom M=2 10 M=3
® THE WELL Is NEGLIGIBLY SMALL
o t IncrReases From 0.2 T0 0.6
® THE MAGNETIC RIPPLE INCREASES

o OPTIMIZATIONS OF THE VOLUME UTILIZATION, THE ROTATIONAL TRANS-
FORM, SHEAR AND WELL PROPERTIES ARE REQUIRED.
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FREE BOUNDARY FINITE BETA HELIAC EQUILIBRIA

0. Betancourt
Courant Inst. for Math. Sci.
New York University
New York, NY

FOURTH U, S. STELLARATOR WORKSHOP

OAK RIDGE, TENNESSEE
April 14-15, 1983



BT

v i o asmeny e B

156

WAILTONIM  © E, - E, = MINIMM

JSREE  BOUNDARY CONDITION

e aR 2T LER LY -8
lll. 121. _Ro+xZO+G(R2+ 122 Ro 'xZn)
o 1 2. 1.2 . '

nl@i,su,gv "% tPoRy t o

%‘"*“‘”ﬁuﬂu*"s,,ﬂv’

NINDING LAW _iz -n

‘ oy CSINU
- SIN U +
§ = CUECSINULCTAN — Ty

o v IASSIH“
R2+.1.ZZ=E[£FI+A(1+A2COSU)E | ]

oIL
$-§ = const



~ CROSS SECTIGNS AT V= .04,.25..54..75. OLZ/2xPi= 1.50
MAJOR RADIUS INFINITE MINOR RADIUS= 1.00
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“CROSS SECTIONS AT Ve .02..27..52..77. QLZ/2%Pl= 1.50
MAJOR RADIUS INFINITE MINGR RADIUS= 1.00
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CRUSS SECTIUNS HT V= 0020 0270 -52. -77. l/(EP'OLE): -qz
MAJOR RADIUS= §.00 MINCR RROIUS= 1.00
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CROSS SECTIONS AT V= .00,.25,.50,.75, 1/(EP+QLZ)= 1.32
MAJOR RADIUS= 7.94 - MINOR RADIUS= 1.00
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CROSS SECTIONS AT v= .00,.25,.50,.75, QLZ/2+PI= 1.32
MAJOR RADIUS INFINITE - MINOR RADIUS= 1.00
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TRANSPORT ANALYSIS OF THE PROPOSED HELIAC DEVICE HXI

G. Kuo-Petravic and A. Boozer
Plasma Physics Laboratory
Princeton University
Princeton, NJ

FOURTH U. S. STELLARATOR WORKSHOP
OAK RIDGE, TENNESSEE

April 14-15, 1983
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~ TRANSPORT ANALYSIS OF THE
PROPOSED HEL!AC DEVICE HXi

Kuo - Petravic and Boozer

Nula LQD 0} P ’SOJJ 3

Field 10AG
Major Radius 1.5 m
Shovt miner radius 0.22 mnm
long minan readiues 0.72

Tr‘»hl fd Ym ('.*Ht l‘nav) ~/. €
Do.si,h T | kev
Desrgn m 10" Zew?

Dc:i,u F 870
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MONTE CARLO METHOD

DUsed Hamiltomian expression For

drifé motion in lna,nefo'c coordinate,

2} Fidd Jfrcu,t‘\ defined in Fourics
YJQQthOJcJ Form u.n'n, VaAacUuu

Ficld From wive Filaments
B(¥6,9)=RBo [+ ‘}‘:;_a..... cos(mep -am 6)]

J’)Havc bot‘! ’ift‘\ ‘h,'c anJ thr”

J(qf*tVin,.

‘”Iha)iuQ ’,a;lm‘ VO'u-n. fo/fcd
with uniform density and

temperature plasrma,

:)Rttorn' Lime /¢ takes -!: of ¢Y
perticlias |aunched deep in ¢he

plasma to leave,
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with diffuvion
e'ua'h'ou allows D ¢teo be

calecnlat ed From ¢ 4o

IMs _ 3““0 e Me o
3-&."'3-:»-[ rd 7 S50 1

M‘ s¢e The test ’QD* oc's éehdity.

¢)Com Pavrison

NIF one CJJ:nu:
De¢m,T) = S.“oa’(g) £, d3v
then Oone can obdtain X(ﬂ, 7T) From D

qt‘:(%.&,&T*e!‘)r‘ ty
i--—(‘& D) MJT
Z(n,'l‘):,‘._,‘b

Ay 22 1.8
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Tue Interwor oF Tae HELAC s
THE TOROIDAL DOHAIN SWEPT owl
BY THE CROSS-SECTION Y, AS 1T 1%
WOUND ABOUT THE CIRCLE WITH

RADIUS 0. BY THE WINDING LAW B(d).
(see FiG 1),

Flauve 2 swows A Heuae witw A

SMALL ASPELT RATID e‘ 2 MEL\CAL
PER\ODS PER TOROIDAL TRANMS\T
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THE NUMERICAL METHOD DESCRIBED
n Rer (11 1s uses to soLve V4 =0
INSIDE THE HWELIAL. (HE POTENTIAL
\\ \$ MULTIPLE VRLUED IN @, THE

TORDIDAL ANGLE, Y (X(g+2r))- Y(F()=1.
Fuetnermoee, 9%hn=0. e VACUUM

FIELD , B= VY 1S GENERATED BY
SURFACE CURRENTS. MESE CAN BE
SHOWN TO COIMGDE WITH CONTOUR
Lmes of & on tne mDRY. Flaure 3Q3

SHOWS THESE <SULFACE CULREMTS
DISCRE TIEED INTO RINGS.

{. Svestaewv ey, Proc. 10T Nuw. S Puss. - Saw Dieso, Ca.'83
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The NuMeeraly evatbated Y s aiven
T A FELD Lne \wtearATor , Rer [21,

TWS PROGRAM PLOTS TWE MAGNETIC
sukFaces | cwrutes (0L/p % TME TRANSFORM

ON €ACH <SuRFACE.

2. O'weie 2 Mirw, Tuae | L\DR\S Ans, P8I, MFECC.
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|N TME <EACLH FOR CONFIGURATIONS
WITH FAVOURABLE wALNeTic WELLS (e,

gdU& MYNO TOMLCALLY DECREASING OUTWARD

FROW THE MAGNETIC AYIS) WE VARY:
c—ﬁtzta(s)

| TWE CROSS SECTION %(3):

2. THE MWAI0OR D.Amu.s,a..

3. THE WINDING RADWUS, .

4. THE WINDING LAW, B{p).

Typicaly, qls)= \+0,LnT+0, 023+ 0
old): ke +esmled

WHERE K= INTEGER \S THE NO. OF
HELICAL PERIODS N THE TORUS, & E

MORE
MODULATES NOW MUCHATIME \S SPENMT

outsiDE (£<D) OR \NSIDE (€20) TME
MAIDR RADILS.

-
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Resuwrs

T\ sossizLe TO censteuct Neciacs
WATH ~\9, weELLS  UsiNG ONLY POLoiDAL

CURCENT LOOPS. IHE cRUSS SECTion
INFLUEMCES THE WELL peptH. OTuer

WAYS TD CREATE OR DEEPEN A WELL
ARE 10:

\. \NnCREASE O, MATOR RADIUS,
2. \wcrease f y WINDING RADAUS,

3. Vaey ©(8) , TME wWindinG LAW,

\e ocp)= kP + Esmukd TS
DETVTER 1TO:
0. DECREASE kK
b. seT £<o , (Tve LARuER
\el Tue BeTTER).
IN o, THe EFFELT 1 TO WAVE FEWER
HELCAL PERIODS. N 3k | Tue RNELAC SPENDS
MORE TIME OWUTSIDE THE MATOR RADIUS
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WE PRESENT THE FOLLOWING CASES ¢
THEIR  WELL DEPTWH

V1A X5 gls)= |- 093 em S 31650
+.1143 wo 3%

. 0.=9Q ,\‘3:\.2,6“’\: 3 - 1S sy ¢
~.51% weLL
Q:0=08, P=1L3 00) =30 -.25 su3p

~ 227 weLL

S:a=8, p=\2,0(¢)e 2 - 255m2¢

~ .26 % weLL

V23 Xs; %(3\ = | =125 un3d -3625en 2y
+.180S wn dS
V: a:=Q P 1.3 ,e($) =3¢ - 25sm ¢
~.BG6 Yo WELL

W:o:Q K p=12,08(é)= 2P -255m 29

~\\4 % wew



[y ]

185

SEaChi‘+
QTN SIG' -
congra-| = ()b

NQUWIAS-Y  BIA

‘G 2anv

¥




'NQILYUANDINGDY T Hh| A\ 30 MMA AVMYINY
CSG 3IAND

'SIOLINGNOGD 10N 32V ARn) "AING 39N3U243)Y
04 32V SIAY AVIMIVID ANV AOLYW M|

'SANOLN0) (INIAAM 3IN3H) VILN3L0d  2AJY
SNACL WL INIIAINI SOINY  A3$07D 3}

'S3IINY  1YQAI10U0L ANV V310704
LNVLSNGD SCGRS 3WAANS  3WL NG WS3IW W)

'ARAVANNGE IVII3W 3n L S\ 37Va¥NS vaelonol

186

\

‘NOLNANTIANGT VPIA 30 SMIA AYMY LD § 301S° o)

S'w'edg $aN9\ 4



187

3Q3%




188

AN AN

3Q4



11

W)

189

3QS



150

WLV




PHI

191

-

1

1

-1.0

-1.2

(-]

Y

1l

it

1l

‘0l

01

‘ot

0l

‘0l



AT

BR+BPH I

192

Y T R 1 T T T T ' T T
m*
P PR
B et it e X
P e s\x\:::::\
Pl ad - —_—
Pl NNNY
PLALd N
/4
-
L
1 1
1
&
&
4
1
&
1
»7
AN . AL,
\\::\\\ Pdddads
\\\\\\\\ AAAA S
NN N N S A A AN P
N N e ey Rl ol P o P P
e e e ol oot o P
N~~~
1 1 ) L 1 [N 1 N . R ,
o 0 - o~ (-] o~ - o © .
- ' ' [ ) s
]
=
- b
—
- Z = -
Y - 3 2
CQ < <
S B
v VI W
5 9= o
= 2 b o
L = O w

0t

0L-



PHI

193

L

2
0
.8
6
4

1
1.

AN

0°6



194

ShlA

o o] [« ~ ~ ~ ~ - [
o o o o o -~ N o o
T T ./ T T T T T
-
8
L
]
(i}
3
]
EU1)
umuu._ wu 4
4
-
999,
%
9
9 -
0;
@u% \
\ i
\
/ -
#?
ke ,__
a@. 7
[} — g ,;
uu\w 8
g —
|
y .
A 1 i 1 ] 1

00+39640/6° 1



195

VALY
%
(790 ¢ fdl/ " &-qu\d,,mﬁ.
T+ -L *
(+80 c—;o.k / E
‘\\o\ ' + -L50
{370 1 TNe_ O :
4 \.\o\ - -5
760 t AN
Al \'\\O\O }-1.58
01 e axis I Y
ﬂl' 1 +- $ -+ - + .L&
o2 1oa 104 105 106 107 108 109
R
WELL DEPTH: 137, r~=-L5
v14Q
(320 + 4
7o )} T -2.18
1318 .\\\ 4/§ /PD -
SM/ .\\ + —Z-ZZ ’éh) l‘P\L
E) i5|G \\o '{T
b -2.2¢ w@hﬁ’“”
(314 o~ Wohabioad
\/ } -2%0 fowe.
1312
b -2.34
MAG. AKIS D
1108 X SS— ——— Y
03 104 105 w6 10F 108 103 1.0
WELL DEPTH: ~F37, , 4~ -2.16 .

A%N 670




t

PHI

Flauee vz
FleLp L\WE
TraNG

(Y]

-1,

a1
a1
H
"1
"0l
"0l
01
0t

01



197

Futuee Directions:

THE NUHERICAL PROGRAM HAS BEEN
MODIFIED TDO ALLOW THE STUDY OF CRDSS-
SECTIONS REQUIRING MANY HARMONICS

\ ! \

]
E.G. ¢ ® oR KiD NEY

THE EFFECTS  TWAT THESE HAVE ON £
¢ (de/n wt se sTusies

Concrusion

Reausiie conFlGURATIENG WiTH ~ 3-57.
WELLS SWouLD BE ATTAINASLE . HOwevey,
IT SEEWS UNLIKELY THAT THESE WILL
MIGH SWEAY WHEN CONSTRUCTED WATH
OMLY CLOSED  POLDIDAL CUBRENT LOOPS.
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BALLOONING MODE CODE IN STELLARATORS

H. L. Berk,
M. N. Rosenbluth
INSTITUTE FOR FUSION STUDIES
Austin, Texas

and

L. Shohet
Univ. of Wisconsin
Madison, WI

FOURTH U. S. STELLARATOR WORKSHOP
Oagk Ridge, Tennessee
April 14-15, 1983
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SUMMARy
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MoMenTs MoTivaTiON

e MOMENTS ARE THe FooemieR AMPLITUDES
OF THE SPATIAL COORDINATES
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Groa. oF Moments

MeTroD

e PeRriopleiTy OF TORUS > MoMenT ExpawsioN

1‘?30,3) - tﬂmlf) ei(ﬂ.-ﬂ“)
24,8,) = T Zaa(p) eiMmE-"T)
DererMinE (qurs) SET oFf MoMENTS

(Rmn, Zwn) SO MHD EGuILIBRIUM 1S
sansriep { MProxMaTELY) 3

= i
r = vp-JxB =0
PR
v.3 =0 —
[ ] ¥ )
® THIS IS AN JiNvees®  SoLuTioN

(%, ¢,2) - (¢, &,3)
dependent | indepondant
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MacweTic Figep Repsgsentamion § THE

Neep ForR ANGLE _RENORMALIATION

e Iv 2-D |
B = 9Ixv)} + Fov3Y
g

iy
B &

o« TN 3-D : CLeescH (CoNTRAVARIANT )

®}
"

vY¥xeY + v xy B’
(5,8%) = straight Fidd lmes:

g = F.o6' = ‘1'/{.'3 > _if‘:&(f)
- 83
B9y = 6'/(3 -

o In 2-D, & Assent (expucitLy ) ; REQUIREMENT

of CenveRaent Series For R,2 (v 8,3 )

CoNFLICTS WITH  STRAIGHT FieLp Limves;

& = & + Al 8,Y)
) \ aad -

MAGNENC. GeEoMETRIC.

o
g

—

PERIONC.
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ENERGY PRINGPLE IN  INVERSE

CoOORDIVATES ¢  INTRODULCING

THE MoMenT ExpansioN

e KrusxkaL - KuLseup ProveED

W = j‘[_;jb_;o + _YE:I]JV

IS STATIONARY FoR FLUX ANVD MASS

-l
CONSERVING VARIATIONS OF

B Awp P
JE ‘= Vx-ixg
Sj’ = -v-?f
| = A = §N=0 >
r Y Mup =0

SCALAR INVARIANKE oF w

Cav  EvAwATE W DmmecTLy IN FLux CeolD/INATES

AND THEN PerFoRM VARIATION —» INVERSE EQuILISRIVM

X= (R,¢,2) = X(p,6,7)

X s depundent
(9,8,3) is indepundent
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VA‘RlATlorJ oF W IN  INVERSE '

CooroinaTES

l
f
i
l
I

N, = N\ } dddsd J‘

wm ‘ 7—/40 —§-_ g _
where * |

Plp) = N(r)Q!')-Y (adia batic law)

v = [{dnd3/g (diHerontiol volume)

. o® 1 .

Bl = 4B + %y B ("'"‘“: of B)

313 = R;R; +2 E) + 1&3 Credvic lowents
| fn I=¢)

. = R ‘.
T g
Fg’ = R7™T™ ; QAo &ub’mw)

T = Q;Zg - Re 2o (2D Tawbiam )

* lkt TRip3) = R(g,0,3;¢) ; teke

dW = AW dR 4 W dZ2 LW 4\ -
at T O RE N &
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CALCULATION OF INVERSE
EauiLIBRIVM ForceES

o %\_:'_ = _S(F‘ﬁ%‘ +F‘%;F)‘%)

+ Surface tarms

eThe forces FJ  compaste to XI =(2,2,)) :
are co-variant cmlmuts of MHD residuat |
Force ? g

FR= 3*.F = g v xvi

Fe= 3V .F et= L vRxv¢
-(le\‘) Fr = 20.F W= f')'x'r
| ~ fl'.-vy

® SuasmTuTE MoMenT ExPAsions foek
R, 2 AuD A WTO W T OSTAN

COMTVGATE FoRCES IN Fourigl SPACE
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dw
&

+ im (F&n\*]

F,E‘,. ARE TRANSFoRMS of fFJ ¢
< . a. ‘) [ ]
rlo= ((dodr ™" F

o IN EaviLiBRILM , W=0 =

Y

Excerr FoR p = M
d
Fern  CALCULATED HGRE

BHATTAHARTEE'S ResuLrs

AND

AGREE

~fap U R GAY v B (B2

WiTH
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APPLICATIONS OF VarRiaTioNAL

PrwnciorLte

e TRunCATION OF FimiTE Stmies EXPANSION

IN  NATURAL , MoST ConverG.anT WAY (RIT2 Memiod)

o Yieeps Forces FY IN- A ConSERVATIVE

Foam Besrt For NoMericaL DifFeRENCING ¢

F 2(Rz,P) ,5% e2) + 5 be )
2% « 7 -68]
r" ?1' 31/&/"

o Enercy Pamurte (WSO for ¥51)
SutESTS DESCENT ALGoR THM  FoR

SewiNG LARGE Nos. oF FJ  smucraveousty -

Cean'r USE SX Prmauar Here)

‘Dudscr (J‘numﬁn lnvccscw) TECHNIQUES
BeEcoME  INAPPROPRIATE FoR  LARGE NOS. OF MestS -
vy 3D
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Descent ALGORITHM

* Choose PATH"” v PHASE SPACE OF (Rmn,Zme )
ALonG Witk W DECREASES MonoTONICALLY :

Ren « N dTe <

at at
_d_}."‘ e Fv}n
ae
THewn : . , .
dw = - (ag LIRAE + 160" v 1en["]
¢ O
> W o=o iff Fan =0 Yomu,j

¢ Teaumear Note (Rer B,B,QG-)
In PRAccE, MusT AccelehRATE  ComveRGaNcE

BY Purrine I Crimcarly DaMPEd WAVES :

R +1 R = ¢t

|
" T L)
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AvaLvTic ExAMPLE

W 2AD: Sowvey EQuitisRwH

"o Tweusrrare Nesd For Ancis RGHWALI.!A_TION (A #0)

Sowv'ev SowuTion ¢

¢ = p, [ER + Lo (#-R2)]
5 o

where : ,
| T =2%

= Ry (- 4p47) [Br=1]

F. = Qo‘\-")

In w= Rz, 2 CooRDINATES , THIS IS AN ELLIPSE ¢

w = Ry (1 -~ p cwb) k
2= X ¢ su®
- 8

Greowderic
- Selution

e e (8/‘3.,)“'
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U

cot)

lov'ew- &

= w(4-%

$

Sum &

prrvedote o o

2= R ¢

FLUX SURFACES

3.75 4.25 4.75

3.25

0°¢

s

01

S0

00" ¥e 9y
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‘o Cam avaluate Jocobian
i3 E $upz’ - u'zp) |
= %oz}t ~ ¢
LN AN

¢ Obvigusly, in this representation , the negleet of

N s incoreeed | Since

Jog =0 = r} .gi =0
W0 vy
bt
3~ P : not independent o B
= ‘l-{.w&

* Paradov nwwdd
J-or=0 = Q-&P% (1+7\ﬂ]=o

- ’A. - . - ;)l;; _ 4

4—§u&
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e Tn TWis Reregsuntarion, CAn  CeMpuTE '

~

Fourice Exeansid  CoCfFACIENTS of BouNdARY

Anaumeany ¢
zb = EL.Q. Stm & (Q°=4; P. = ‘!"
25 )
‘.AO. Ebﬂ - & S"

°?

x

Re = + §. 401-tend)*

- 3 (2 =

- £[2E@) =34
R * L
I So Gemnd (- Leo®) 3
R, = =-1.0259
Rz -6.g00 -
Rg.'—'- -9.0% '0-3

note erpmestial drop- of L
Ry= -152 ©°
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e Mawnw Comerusion®

RartD CowvercEncE of GreoMeETRIC Semes W &

Is GeneraL INCOMPATIBLE  WwiTH  STRMGRT MAGNETIC

Fietd ULwNES

® In DEscEnT ArGomirHM, A 1S NECESSARY

" ” .
70 Awow OF Lives To suP” AT Boownaey :

»
Reg,8*) = Rputp) enn &'
s R = ‘.l:lp wnn®  + R A
=0 QI'BJ\’ gcw #b
(doesn't clange

"_‘ﬂ- of bl\’)
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YUC

heam.

Gud

T\'_-'-l-
Neg=

3&%3

™D <p>

Ry = 3.605 - co® +.55c020

Zo T (35w B - . s 26

FLUX SURFACES

W
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o
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wn
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o

~

n

o

o
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W e Med
3171:7, Can3 m=3,n =0

‘v v

B LE O Y

> DL

‘SAuE No. oF R,2 'modeS;

A=0 :BC. voT WEL - POSED
FLUX SURFACES  (eomectiy )

-200

L} T ) !
2.5 2.75 3.5 3.75 1.5 41.75
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ATF Tesr Case

+ %ft (Exterwal .trmbrw\)

® ATF i 2,"'2’”1 =12 cal deice

 For our test, used Np=2  (not the some pifc'\)

* Quter 'Bownda.rg :

Rotating Ellipse.  + Fived By Shape

-

- P

W

helical park tonidal port

R = 2.05 - 0.025w028 - 0.235=(B~dy)
+0.035 oo (B +4,) + 0.0125 [c02/B-4,) q.w‘ua#')}.

Zy = -0.0175 5w 28+ 0.3155% /8 -4))) +
6.065 2: (D +¢,) + 0.00675 [3- 270 -4,) +Sn2BeéN)]
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OMNL. OWG 62-3048 F60

uulmvreon.-\ /—musavreon.

A 4

V4

i/

H F COILS

Fig. 1.2.1. The ATF-1 coil sec, showing the last closed flux
surface inside the HF coils.

m:i:'_‘l
N=1

. ‘RUN Toeore 160 sec. | on m\l
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FLUX SURFACES
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FLUX SURFACES
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Concrusions

3D Mouents CooE uvNDER DevELOPMENT
SHowS PROMISING INDICATIONS OF A SIGNIACAVT
REpLCTION IN RUNNING TINE COMPARED WimH

€RIDDED Co2&S

FuTuee TrewDS
ConvsioerinG Sowvive N ganv. BY MATRIX

INVERSI1ON AT EReH RAciaL Poinr (emc.ooﬂ.&b)
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FED DESIGN CENTER OAK RIDGE

AGENDA
THURSDAY APRIL 14 1983
0900-0910 R. A. DORY MEETING ARRANGEMENTS
0910-0320 J. SHEFFLELD WELCOME
0920-0930 T. K. CHU SPECIAL PRESENTATION
0930-1010 J. F. LYON ATF-1 STATUS
1010-1030 DISCUSSION AND COFFEE BREAK
1030-1100 K. C. SHAING NEOCLASSICAL TRANSPORT IN A
MULTIPLE HELICITY TORUS
1100-1130 d. A. ROME MONTE-CARLO TRANSPORT IN ATF
1130-1200 W. A. HOULBERG TRANSPORT MODELING - TOWARD SELF-CONSISTENT
DETERMINATION OF THE RADIAL ELECTRICAL FIELD
1200-1230 J. D. CALLEN STATUS OF IRAN?PORT ANALYSHS
1230-200 LUNCH
200-240 A. REIMAN REVIEW OF HELICAL AXIS RESEARCH
240-300 DISCUSSION AND COFFEE
300-330 L. P. MAl MODULAR HELICAL STELLARATOR
330-400 0. BETANCOURT FREE BOUNDARY FINITE BETA HELIAC EQUILIBRIA
400-430 A. BOOZER TRANSPORT ANALYSIS OF A SMALL HELIAC STELLARATOR
430-500 A. |. SHESTAKOV SEARCHING FOR MODULAR COYLS IN HELIAC
630-800 RECEPTION AT DESIGN CENTER

FRIDAY APRIL 15 1983

0900-1000 PANEL DISCUSSION OF STELLARATOR PROGRAM

1000-10t5 COrFEE

1015-1045 H. L. BERK BALLOONING NODE CALCULATIONS IN STELLARATOR
1045-1115 W. A. COOPER BALLOONING STABILITY OF 3D STELLARATOR EQUILIBRIA
1115-1145 J. H. HARRIS COMPACT STELLARATORS (?)

1145-1215 S. P. HIRSHMAN 30 EQUILIBRIA USING A STEEPEST DESCINT MOMENTS METHOD

1215-1230 ANYONE CLOSING REMARKS
1230 AD JOURNMENT
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