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Tapering a free-electron laser (FEL) amplifier to improve extraction 

after gain saturation can be accomplished by varying both the wiggler 

period and the wiggler field. This paper considers specific FEL designs 

and demonstrates the improvement in extraction efficiency that can be 

achieved by utilizing both variations. Fabrication considerations make a 

continuously varying wiggler period impractical for long wigglers, and so 

this technique entails discontinuous steps in the wiggler period. Such 

steps in wiggler period must be introduced in a manner such that they do 

not induce steering in the electron beam for reasonable ranges of 

transverse velocities and energies nor induce a large spread in phase 

shifts. We discuss such techniques.
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I. Introduction

In this paper, we discuss one dilemma that we confront when tuning 

a free-electron laser (FEL) amplifier: the fact that the optimal-choice 

wiggler period for trapped particle deceleration may result in poor 

trapping efficiency. We also examine one possible solution: simultaneous 

tapering in both the wiggler period and field. This tapering scheme was 

suggested previously in Refs. [1, 2, and 3]. Here, we consider the detailed 

implementation required for a high-efficiency FEL. We show that 

simultaneous wiggler tapering together with corrective beam steering 

offset a variety of FEL degradation mechanisms.

Several mechanisms can degrade FEL performance (e.g., low-electron 

beam brightness, random wiggler field errors, jitter or slew in electron 

beam energy, jitter in electron beam position at the entrance to the 

wiggler, and instantaneous energy spread). In this paper, we focus on the 

first two mechanisms listed. (Reference [4] contains a more detailed 

discussion of all these mechanisms and presents alternative methods for 

mitigating their effects.)

To illustrate the effects of degradation and the compensation for 

these effects afforded by simultaneous tapering, we selected a numerical 

example that has marginal performance caused by a combination of three 

degradation mechanisms: low electron-beam brightness, low beam energy, 

and wiggler errors. The nominal operating conditions for all the examples 

cited in this paper are shown in Fig. 1. We used the computer code FR3D 

(the 3D version of FRED [5]) for these numerical simulations. This code 

has a fully three-dimensional, Monte Carlo treatment of electron betatron
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motion and follows the first five (m = 0, ±1, and ±2) azimuthal modes of 

the laser light.

II. Discussion

To illustrate the fundamental reason why simultaneous tapering 

enhances extraction efficiency, we resort to using a simple model in 

which the extraction efficiency is the product of the electron capture 

efficiency into the ponderomotive well and the subsequent efficiency of 

deceleration of those captured electrons:

tlx = Tic TJd.

A simplified view of trapping suggests that the capture efficiency varies 

as the overlap of the electron initial phase-space distribution and the 

ponderomotive bucket. Using the expression for the bucket area from KMR

and taking the spread in y to result exclusively from the betatron Pi,

foil _ en kw aw 
^il 1 + a&

we find that, for a spread in y|| large compared with the height of the 

ponderomotive bucket and for aw slightly greater than one,
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r, _ Abucket tjc =
S'Yq 1 / 4 w

2,1 «>II (a^ xs - 41 /4
VaT

Here, J is the electron beam brightness, I is the beam current, Xs is the 

laser wavelength, X,w is the wiggler period, yo is initial electron beam 

gamma, Abucket is the area of the ponderomotive bucket in phase space, and 
8y|| is the width of the electron beam distribution in

, y
Yll - y/\i = 9 o- ■V1+aw2+as2

In the extreme case of large magnetic scalar potential,

, /2Y02^s ,
aw=V Xw -1'

the capture fraction becomes

Likewise, we have derived a simple 1D model from the KMR period 

averaged equations [1]. For an amplifier tapered to maintain no change in 

the phase angle \|/o, we can obtain an equation for the laser's electric-field 

strength as a function of distance along the FEL, z. For large z, well into
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the tapered regime, the growth of the deceleration efficiency rid can then 

be found to be

chid
dz

oc

where Jc is the captured current density. For an electron beam well 

matched to the acceptance of the wiggler,

Jc =~ “nd 2y30xj,2J Va7

51 rb XU* (2^>.s - Xw)il / 4

We then have

chid
dz

oc ■PoK xj
» 13/8 A.w

a^/4
(27o^s ■ ^w)1 /8 9

and, for

2yq2Xs
» 1 or aw » o,

chld
dz

* 23/8 

»1 3/8Aw

5



Likewise, we know from the resonance condition that the maximum 

deceleration efficiency, attained when the wiggler field has been tapered 

nearly to zero, is

Whereas the capture efficiency would prompt the use of a long wiggler 

period, the deceleration efficiency would favor instead a short wiggler 

period.

This exceedingly simplistic model qualitatively reflects the results 

of our computer calculations. FRED simulations, conducted with a range of 
wiggler periods (the constant curve in Fig. 2), illustrate that the 

extraction efficiency falls to zero for both the long and short wiggler 

periods as either the deceleration or capture efficiency, respectively, 

vanishes. For this laser wavelength and electron energy, the critical 

wiggler period value (the value for which the magnetic field vanishes,
A,w = 2 y2 A,S) js 15 crT1) as indicated. In these calculations, as the energy 

of a designated tuning particle diminishes, the magnetic field is tuned 
along the length of the wiggler to preserve a constant y for this particle, 

as shown by the solid line in Fig. 3a.

An alternative tapering scheme is to vary both the wiggler field and 
period. We have placed the wholly arbitrary constraint of the A,w varying 

linearly along the length of the wiggler with the magnetic field, assuming 

whatever value that is needed to preserve constant xj/ for the tuning 

particle. In the simulations labeled in Fig. 2 as "tapered Xw,” we 

constrained the wiggler period to the value of the abscissa at the
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beginning of the wiggler and to 2 cm at the end of the wiggler. Although 

the trapped particle fraction is typically lower than the comparable 

constant period FEL (Fig. 3c), this loss is greatly offset by the increase in 

extraction efficiency (Fig. 3b). Effectively, the smaller period at the end 

of the wiggler permits the wiggler vector potential to remain large for a 

far greater length than is possible for a constant period FEL as shown in 

Fig. 3a.

In these FEL simulations, we assumed that A,w is continuously 

varying, a condition that is scarcely practicable. The condition that a 

sequence of poles would have a non-steering pattern of excitation would 

be far harder to realize than with the constant Xw that employ binomial 

patterns of excitation [6]. Each coil would have to be custom wound with 

the concomitant increase in cost and in the likelihood of fabrication 

errors. Finally, once wiggler errors were detected, the procedures for 

eliminating them would be much more complicated.

One alternative to a continuously tapered wiggler period is to have 

the wiggler period changed in steps--that is, constant for some distance 

and then jumped to a lower value. FRED simulations indicate that a large 

number of steps, fifteen or more, are required to approximate a 

continuously tapered A,w. A few of the steps have large jumps between 

successive values of A,w, and these jumps produce detrapping of the 

captured electrons. The problem of tapering Xw can, in principle, be 

reduced to the question of finding ways of producing jumps which, for any 

reasonable value of y or pi, will advance the phase angle v by a small 

multiple of 2% and will be non-steering. Figure 4 illustrates the pole 

excitations both for the case having a field free "drift space" between the 

two wiggler sections and for the case with the transitional region having
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poles spaced with graded intervals. In the case with a drift space, the

entrance and exit patterns on the wiggler sections should have the usual

binomial excitation pattern to satisfy the non-steering condition and

should have the length of the drift space tuned to meet the n(27c)

conditions on the phase angle jump.

A straightforward derivation based on the KMR equations [1]

indicates the change in phase expected in traversing such a drift space. In
d\ir

the KMR equation for we set the terms with aw approximately to zero 

in the drift space and also neglect the small as2 and ^ terms:

d\y
dz

\w
—®-J 1 + a^ + 3 " 2awfBascos\y + a2
2y2 d; 'w 1 +

If the last pole of the A,i pattern before the drift space has its center at 

zi and the first pole of the new X,2 pattern has its center at Z2, then the 

phase of an electron at arriving at Z2 may be expressed in terms of its 

phase at zi:

\|/(Z2) = \|/(Zl) +Az ^Wi
2'y2

1 + T^lp + 8\|/

where Az is the width of the drift space, Z2-z-|. The term 8y arises 

because of the need to shift the definition of \|/ from the pattern to the 

X,2 pattern and is just

8\j/ = -kWl(Az - nXi),
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where n is the largest integer such that Az > nA,i. Since differences in \|/ of 

multiples are not relevant, we find

Ay = \|^z2) - • constant - Az (l + y2 pi,p).
2 y2

This result is independent of which end of the drift space is used as the 

reference point for y.

For the case of the transitional poles, there is an infinite set of pole 

spacings and associated pole excitations that will produce a non-steering 

pattern. In the example displayed in Fig. 4, the pole spacing varies 
linearly between Xw-\/2 and X.W2/2. With this choice of pole spacing, there 

is a unique pattern of relative pole excitation that will not steer the 
electron beam; the jump in the phase angle \|/ is tuned by scaling the 

entire excitation pattern. In a derivation similar to the one for the drift 

space, we can show that

2 P 2
Ay « constant - Az (l + y2 Pip) - ^MAX ^y_ ^

2 Y2 2 y2 kw
Jz'

where Bmax is magnetic scaling factor for the transitional pattern.

In order to elucidate the statements made above, we examined the 

field patterns of each case and the trajectories and phase space evolution 

of traversing electrons. To simplify this exercise, without weakening the 

conclusions, we considered a 2D system translationally invariant in x. We 

used the 2D computer code POISSON to solve for the By and Bz fields in the 

yz plane (Bx = 0) for each of these two cases. The motion of the electrons
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was studied with the 3D Monte Carlo (MC) trajectory code FRET. Unlike 

FRED, FRET solves for the detailed wiggle motion (5th order Runge-Kutta 

solver for accuracy), but it does not follow the laser beam and so it has no 

ponderomotive forces acting on the electrons. In these cases, because the 

fields were taken from 2D POISSON, FRET was used with the wiggle 

motion in the xz plane and with the betatron motion only in yz plane. In 

these simulations, we have assumed that the average electron in the beam 

is initially in resonance in the first wiggler section and that its 

emittance is properly matched to the wiggler acceptance.

Figure 5 depicts the By along the axis of the wiggler both for the 

drift space of Fig. 4 and for the transitional region. In wiggler sections on 

either side, the magnetic field is tuned to be in resonance for 30 MeV.

Also to either side, the excitation patterns of the poles have a non­

steering 4:3:1 pattern. It is clear from Fig. 5b that the field of the 

transitional section adds to the fringing fields of the wiggler sections to 

either side. The magnitude of the field in this transitional section is 

varied to tune the A\|/ jump, as indicated by the solid and dashed lines for 

the field in the transitional region. The FRET calculations of electron 

trajectories in these two fields are shown in Fig. 6a and b. The 

consequence of not using a binomial pattern in entrance and exit sections 

is illustrated in Fig. 6c, where the electron trajectory is severely steered 

in traversing the gap.

We used FRET to verify the statements made above concerning the 

tuning of the A\|/ across each of these transitional gaps. Figure 7a and b 

depicts the jump in phase angle averaged over a collection of MC particles 

for each of these two for a sequence of tuning conditions. In Fig. 7a, the 

width of the drift space Az is varied, and the result expected from the
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simple expression above is obtained. Likewise, for the "transitional" 

section, the maximum magnetic field is used in tuning, again with the 

expected result.

A spread in the longitudinal energy, arising either from a spread in 

the energy or from betatron amplitude, results in a spread in the jump 

imparted in phase in traversing either kind of interface between wiggler 

sections with different periods. Figure 8 shows the MC results from FRET 

for the "transitional" section example. Here, the intrinsic energy spread 

dy/y is relatively small and most of the dispersion in phase angle results 

from the spread in betatron amplitude. Since rb is proportional to the 

invariant betatron transverse velocity for each electron, and since the 
expression for Axy includes a pi2 term, the dispersion in Ay is quadratic in

rb-
This unavoidable dispersion in A\|/ results in particles leaking from 

the ponderomotive bucket each time the wiggler period is changed. As 
shown in Table 1, the extraction efficiency realized with variable X,w with 

dispersive sections between sections, 11.3%, is poorer than with 

idealized interfaces, 14.6%. In this example, selected to emphasize the 

improvement possible with simultaneous tapering, the improvement 

estimated from these more realistic models is distinctly poorer than that 
estimated from the simple model of continuous variation.

III. Conclusions

In this paper, we have examined the technique of simultaneously 

tapering the wiggler in magnetic field and period as a possible solution to 

offset such performance-degrading mechanisms as random wiggler field



errors. We found that successful application of this technique 

necessitates the use of many distinct wiggler sections of different 

periods separated by tunable transitional regions. Even with perfect 

tuning of the transitional regions, some inescapable detrapping of the 

captured electrons occurs at the interface between wiggler sections.
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Table 1. Extraction efficiency for several tapering schemes.

Case Extraction efficiency

Constant A,w = 12 cm 5.2%
Smoothly tapered

(12 to 2 cm) <14.6%

A.w tapered with steps <12.2%
kw tapered with steps having

dispersive coupling between
A,w sections <11.3%

14



List of Figures

1. Extraction efficiency is plotted versus electron brightness for low 
electron beam energy. The parameters of the FR3D simulations appear 
to the right of the graph.

2. Extraction efficiency is plotted versus initial wiggler period. Two sets 
of simulations are shown: one in which the wiggler period remains 
constant at the initial value and only the magnetic field is tapered, and 
one in which the wiggler period is linearly tapered from the initial 
value to 2 cm at the end of the wiggler while the field is varied 
simultaneously to maintain the resonance condition. All other FEL 
parameters are the "nominal conditions" shown in Fig. 1.

3. These graphs illustrate the contrast in FELs with tapering in magnetic 
field only or in both period and field. Plot (a) depicts the normalized 
vector potential as a function of distance along the length of the 
wiggler; (b) , the variation of the capture fraction; (c) , the extraction 
efficiency.

4. This figure shows the relative field excitation to the poles at the 
interface between a wiggler section with period 10 cm and one with 
9 cm. Each section has second-order steering free-excitations: one 
power supply excites four poles with a ratio of turns of 1:3:3:1. The 
poles between the two sections are spaced in a manner which varies 
smoothly from 5 to 4 cm. One possible set of non-steering excitations 
for these poles is shown: 1:3.035:3.025:1. When this interface is 
treated as a drift space, the power supply for these transitional poles 
would be turned off.

5. These plots show the y component of the magnetic field for (a) a 
"drift" space and (b) a "transitional" region. Note that the magnetic 
field in the transitional region is the sum of the fields from the
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sections on either side and from the poles in the transitional space. 
This later field is tuned for the condition on A\|/.

6. These are the trajectories for an electron with initial x' = y = y' = 0 
crossing the interface between two wiggler sections. The trajectory
(a) corresponds to the drift or dispersion section of Fig. 5a; trajectory
(b) , to the transitional section of Fig. 5b. The consequence of not 
having non-steering patterns on the exit and entrance of the wiggler 
sections is illustrated in (c).

7. These plots depict Ai)/, averaged over a random distribution of 
electrons, as a function of the length of the drift space for a dispersion 
section, (a), or as a function of the peak magnetic field in transitional 
section, (b).

8. The graph shows Ay for a collection of electrons as a function of their 
betatron amplitude. A random variation in energy, Sy, also contributes 
to a variation in longitudinal velocity and, hence, to a spread in Axy.
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