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Tapering a free-electron laser (FEL) amplifier to improve extraction
after gain saturation can be accomplished by varying both the wiggler
period and the wiggler field. This paper considers specific FEL designs
and demonstrates the improvement in extraction efficiency that can be
achieved by utilizing both variations. Fabrication considerations make a
continuously varying wiggler period impractical for long wigglers, and so
this technique entails discontinuous steps in the wiggler period. Such
steps in wiggler period must be introduced in a manner such that they do
not induce steering in the electron beam for reasonable ranges of
transverse velocities and energies nor induce a large spread in phase

shifts. We discuss such techniques.
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l. Introduction

In this paper, we discuss one dilemma that we confront when tuning
a free-electron laser (FEL) amplifier: the fact that the optimal-choice
wiggler period for trapped particle deceleration may result in poor
trapping efficiency. We also examine one possible solution: simultaneous
tapering in both the wiggler period and field. This tapering scheme was
suggested previously in Refs. [1, 2, and 3]. Here,. we consider the detailed
implementation required for a high-efficiency FEL. We show that
simultaneous wiggler tapering together with corrective beam steering
offset a variety of FEL degradation mechanisms.

Several mechanisms can degrade FEL performance (e.g., low-electron
beam brightness, random wiggler field errors, jitter or slew in electron
beam energy, jitter in electron beam position at the entrance to the
wiggler, and instantaneous energy spread). In this paper, we focus on the
first two mechanisms listed. (Reference [4] contains a more detailed
discussion of all these mechanisms and presents alternative methods for
mitigating their effects.)

To illustrate the effects of degradation and the compensation for
these effects afforded by simultaneous tapering, we selected a numerical
example that has marginal performance caused by a combination of three
degradation mechanisms: low electron-beam brightness, low beam energy,
and wiggler errors. The nominal operating conditions for all the examples
cited in this paper are shown in Fig. 1. We used the computer code FR3D
(the 3D version of FRED [5]) for these numerical simulations. This code

has a fully three-dimensional, Monte Carlo treatment of electron betatron



motion and follows the first five (m = 0, 1, and £2) azimuthal modes of

the laser light.
Il. Discussion

To illustrate the fundamental reason why simultaneous tapering
enhances extraction efficiency, we resort to using a simple model in
which the extraction efficiency is the product of the electron capture
efficiency into the ponderomotive well and the subsequent efficiency of

deceleration of those captured electrons:

Nx =Nc Nd.

A simplified view of trapping suggests that the capture efficiency varies
as the overlap of the electron initial phase-space distribution and the
ponderomotive bucket. Using the expression for the bucket area from KMR

(11,

Adsdw
A ~ 8 V —_— ,
bucket Yr 1.a2

and taking the spread in y to result exclusively from the betatron B,

%z 8Nkwaw
N 1+ ag

we find that, for a spread in v) large compared with the height of the

ponderomotive bucket and for ay slightly greater than one,



1/4
Ne = Abucket . 273 Ashw yas 4/ <

s LA

2r dy) (273 A - lw)1 14 |

Here, J is the electron beam brightness, I is the beam current, Ag is the
laser wavelength, Aw is the wiggler period, yo is initial electron beam

gamma, Apucket is the area of the ponderomotive bucket in phase space, and

3y|| is the width of the electron beam distribution in

Y| =7 = ,——Y
‘I"i-aw2-l-as2 -
In the extreme case of large magnetic scalar potential,

2Y0%\s

aw= )\,w 1 ,

the capture fraction becomes

Ne~Aw ij— .

Likewise, we have derived a simple 1D model from the KMR period
averaged equations [1]. For an amplifier tapered to maintain no change in

the phase angle yg, we can obtain an equation for the laser's electric-field

strength as a function of distance along the FEL, z. For large z, well into



the tapered regime, the growth of the deceleration efficiency ng can then

be found to be

3/2
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where J¢ is the captured current density. For an electron beam well

matched to the acceptance of the wiggler,
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We then have
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and, for
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Likewise, we know from the resonance condition that the maximum
deceleration efficiency, attained when the wiggler field has been tapered

nearly to zero, is
=1 - A [ Aw .
Nd o ('Yo 2 2 )

Whereas the capture efficiency would prompt the use of a long wiggler
period, the deceleration efficiency would favor instead a short wiggler
period.

This exceedingly simplistic model qualitatively reflects the results
of our computer calculations. FRED simulations, conducted with a range of
wiggler periods (the constant Aw curve in Fig. 2), illustrate that the
extraction efficiency falls to zero for both the long and short wiggler
periods as either the deceleration or capture efficiency, respectively,
vanishes. For this laser wavelength and electron energy, the critical
wiggler period value (the value for which the magnetic field vanishes,

w = 27 7“8) is 15 cm, as indicated. In these calculations, as the energy
of a designated tuning particle diminishes, the magnetic field is tuned
along the length of the wiggler to preserve a constant y for this particle,
as shown by the solid line in Fig. 3a.

An alternative tapering scheme is to vary both the wiggler field and
period. We have placed the wholly arbitrary constraint of the Ay varying
linearly along the length of the wiggler with the magnetic field, assuming
whatever value that is needed to preserve constant y for the tuning
particle. In the simulations labeled in Fig. 2 as "tapered Aw," we

constrained the wiggler period to the value of the abscissa at the



beginning of the wiggler and to 2 cm at the end of the wiggler. Although
the trapped particle fraction is typically lower than the comparable
constant period FEL (Fig. 3c), this loss is greatly offset by the increase in
extraction efficiency (Fig. 3b). Effectively, the smaller period at the end
of the wiggler permits the wiggler vector potential to remain large for a
far greater length than is possible for a constant period FEL as shown in
Fig. 3a.

In these FEL simulations, we assumed that Ay is continuously
varying, a condition that is scarcely practicable. The condition that a
sequence of poles would have a non-steering pattern of excitation would
be far harder to realize than with the cohstant Aw that employ binomial
patterns of excitation [6]. Each coil would have to be custom wound with
the concomitant increase in cost and in the likelihood of fabrication
errors. Finally, once wiggler errors were detected, the procedures for
eliminating them would be much more complicated.

One alternative to a continuously tapered wiggler period is to have
the wiggler period changed in steps--that is, constant for some distance
and then jumped to a lower value. FRED simulations indicate that a large
number of steps, fifteen or more, are required to approximate a
continuously tapered iAy. A few of the steps have large jumps between
successive values of Aw, and these jumps produce detrapping of the
captured electrons. The problem of tapering Aw can, in principle, be
reduced to the question of finding ways of producing jumps which, for any
reasonable value of yor B8, will advance the phase angle y by a small
multiple of 2r and will be non-steering. Figure 4 illustrates the pole
excitations both for the case having a field free "drift space” between the

two wiggler sections and for the case with the transitional region having
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poles spaced with graded intervals. In the case with a drift space, the
entrance and exit patterns on the wiggler sections should have the usual
binomial excitation pattern to satisfy the non-steering condition and
should have the length of the drift space tuned to meet the n(2x)
conditions on the phase angle jump.

A straightforward derivation based on the KMR equations [1]

indicates the change in phase expected in traversing such a drift space. In

d
the KMR equation for d_“z’ we set the terms with ay approximately to zero
| | d
in the drift space and also neglect the small ag2 and dq; terms:

d
—d—\ZE = kW —i—[‘l + aW + ’Y2B_LB 2awaasCOSW + as] = _k_s_[1 + 72[5_1. BJ

If the last pole of the A1 pattern before the drift space has its center at
z1 and the first pole of the new A2 pattern has its center at z2, then the

phase of an electron at arriving at z may be expressed in terms of its

phase at z1:

Wz2) = w(z1)+Az( —[1+72m])+8w,

where Az is the width of the drift space, z2-z1. The term &y arises
because of the need to shift the definition of y from the A4 pattern to the

A2 pattern and is just

Sy = -kw,(Az - ny),



where n is the largest integer such that Az 2 nA¢y, Since differences in y of

multiples are not relevant, we find

Ay =y(zo) - z1) = constant - Az 2k:2 (1 + P B'is).

This result is independent of which end of the drift space is used as the
reference point for y.

For the case of the transitional poles, there is an infinite set of pole
spacings and associated pole excitations that will produce a non-steering
pattern. In the example displayed in Fig. 4, the pole spacing varies
linearly between Aw1/2 and Aw2/2. With this choice of pole spacing, there
is a unique pattern of relative pole excitation that will not steer the
electron beam; the jump in the phase angle y is tuned by scaling the
entire excitation pattern. In a derivation similar to the one for the drift

space, we can show that

Z2
2 >
Ay ~ constant - Az Ks_ (1 + P B?L,B) _ks Buax | By 4,
2 y? 2y k2,

where Bmax is magnetic scaling factor for the transitional pattern.

In order to elucidate the statements made above, we examined the
field patterns of each case and the trajectories and phase space evolution
of traversing electrons. To simplify this exercise, without weakening the
conclusions, we considered a 2D system translationally invariant in x. We
used the 2D computer code POISSON to solve for the By and B; fields in the

yz plane (Bx = 0) for each of these two cases. The motion of the electrons



was studied with the 3D Monte Carlo (MC) trajectory code FRET. Unlike
FRED, FRET solves for the detailed wiggle motion (5th order Runge-Kutta
solver for accuracy), but it does not follow the laser beam and so it has no
ponderomotive forces acting on the electrons. In these cases, because the
fields were taken from 2D POISSON, FRET was used with the wiggle
motion in the xz plane and with the betatron motion only in yz plane. In
these simulations, we have assumed that the average electron in the beam
is initially in resonance in the first wiggler section and that its
emittance is properly matched to the wiggler acceptance.

Figure 5 depicts the By along the axis of the wiggler both for the
drift space of Fig. 4 and for the transitional region. In wiggler sections on
either side, the magnetic field is tuned to be in resonance for 30 MeV.
Also to either side, the excitation patterns of the poles have a non-
steering 4:3:1 pattern. It is clear from Fig. 5b that the field of the
transitional section adds to the fringing fields of the wiggler sections to
either side. The magnitude of the field in this transitional section is
varied to tune the Ay jump, as indicated by the solid and dashed lines for
the field in the transitional region. The FRET calculations of electron
trajectories in these two fields are shown in Fig. 6a and b. The
consequence of not using a binomial pattern in entrance and exit sections
is illustrated in Fig. 6¢c, where the electron trajectory is severely steered
in traversing the gap.

We used FRET to verify the statements made above concerning the
tuning of the Ay across each of these transitional gaps. Figure 7a and b
depicts the jump in phase angle averaged over a collection of MC particles
for each of these two for a sequence of tuning conditions. In Fig. 7a, the

width of the drift space Az is varied, and the result expected from the
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simple expression above is obtained. Likewise, for the "transitional"
section, the maximum magnetic field is used in tuning, again with the
expected result.

A spread in the longitudinal energy, arising either from a spread in
the energy or from betatron amplitude, results in a spread in the jump
imparted in phase in traversing either kind of interface between wiggler
sections with different periods. Figure 8 shows the MC results from FRET
for the "transitional" section example. Here, the intrinsic energy spread
dy/y is relatively small and most of the dispersion in phase angle results
from the spread in betatron amplitude. Since rp is proportional to the
invariant betatron transverse velocity for each electron, and since the
expression for Ay includes a B,2 term, the dispersion in Ay is quadratic in
M.

This unavoidable dispersion in Ay results in particles leaking from
the ponderomotive bucket each time the wiggler period is changed. As
shown in Table 1, the extraction efficiency realized with variable Ay with
dispersive sections between Ay sections, 11.3%, is poorer than with
idealized interfaces, 14.6%. In this example, selected to emphasize the
improvement possible with simultaneous tapering, the improvement
estimated from these more realistic models is distinctly poorer than that

estimated from the simple model of continuous Ay variation.
IlI.  Conclusions

In this paper, we have examined the technique of simultaneously
tapering the wiggler in magnetic field and period as a possible solution to

offset such performance-degrading mechanisms as random wiggler field
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errors. We found that successful application of this technique
necessitates the use of many distinct wiggler sections of different
periods separated by tunable transitional regions. Even with perfect
tuning of the transitional regions, some inescapable detrapping of the

captured electrons occurs at the interface between wiggler sections.
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Table 1. Extraction efficiency for several tapering schemes.

Case Extraction efficiency
Constant Ay = 12 cm 5.2%
Smoothly tapered Aw

(12 to 2 cm) : <14.6%
Aw tapered with steps <12.2%

Aw tapered with steps having

dispersive coupling between
Aw sections <11.3%
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List of Figures

1. Extraction efficiency is plotted versus electron brightness for low
electron beam energy. The parameters of the FR3D simulations appear
to the right of the graph.

2. Extraction efficiency is plotted versus initial wiggler period. Two sets
of simulations are shown: one in which the wiggler period remains
constant at the initial value and only the magnetic field is tapered, and
one in which the wiggler period is linearly tapered from the initial
value to 2 cm at the end of the wiggler while the field is varied
simultaneously to maintain the resonance condition. All other FEL
parameters are the "nominal conditions" shown in Fig. 1.

3. These graphs illustrate the contrast in FELs with tapering in magnetic
field only or in both period and field. Plot (a) depicts the normalized
vector potential as a function of distance along the length of the
wiggler; (b) , the variation of the capture fraction; (c) , the extraction
efficiency.

4. This figure shows the relative field excitation to the poles at the
interface between a wiggler section with period 10 cm and one with
9cm. Each section has second-order steering free-excitations: one
power supply excites four poles with a ratio of turns of 1:3:3:1. The
poles between the two sections are spaced in a manner which varies
smoothly from 5 to 4 cm. One possible set of non-steering excitations
for these poles is shown: 1:3.035:3.025:1. When this interface is
treated as a drift space, the power supply for these transitional poles
would be turned off.

5. These plots show the y component of the magnetic field for (a) a

"drift" space and (b) a "transitional” region. Note that the magnetic
field in the transitional region is the sum of the fields from the

15



sections on either side and from the poles in the transitional space.
This later field is tuned for the condition on Awy.

. These are the trajectories for an electron with initial X' =y = y' =0
crossing the interface between two wiggler sections. The trajectory
(a) corresponds to the drift or dispersion section of Fig. 5a; trajectory
(b), to the transitional section of Fig. 5b. The consequence of not
having non-steering patterns on the exit and entrance of the wiggler
sections is illustrated in (c).

. These plots depict Ay, averaged over a random distribution of
electrons, as a function of the length of the drift space for a dispersion

section, (a), or as a function of the peak magnetic field in transitional
section, (b).

. The graph shows Ay for a collection of electrons as a function of their

betatron amplitude. A random variation in energy, 8y, also contributes
to a variation in longitudinal velocity and, hence, to a spread in Ay.
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