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1 .0  HYCSO S PROGRAM 

The Argonne National  Laboratory (ANL) HYCSOS Metal Hydride Chemical 

H e a t  Pump Program a c t i v i t i e s  f o r  FY 1979 involve  t h e  ANL Chemistry and Energy 

and Envi roninental systems (EES) Divisions.  The Chemistry Divis ion is  i n v e s t i -  

ga t ing  hydride m a t e r i a l s  by evaluat ing t h e  chemical thermodynamics of va r ious  

hydrides i n  t h e i r  labora tory ,  and a l s o  hea t  exchanger evaluat ions .  The ac t iv -  

i t i e s  of t h e  EES Divis ion include program planning and manageme*t, engineering 

systems a n a l y s i s ,  hydride heat  t r a n s f e r  s t u d i e s ,  and hydride hea t  exchanger 

evaluat ions .  .. . 

The funding l e v e l  f o r  HYCSOS during FY79 is $240K wi th  a l l o c a t i o n s  of 

approximately $165K f o r  t h e  Chemistry Divis ion,  and $75K t o  support t h e  EES 

Division systems engineering a c t i v i t i e s .  F igure  1 shows t h e  cur ren t  HYCSOS 

program a c t i v i t i e s  together  wi th  t h e  scheduling and c o s t  of each a c t i v i t y .  

I n  regard t o  accomplishments, t h e  p roof .o f  t h e  HYCSOS concept has  been 

demonstrated and t h e  v i a b i l i t y  of a  r e s i d e n t i a l - s i z e  u n i t  es tabl ished.  I n  

add i t ion ,  an engineering development phase is  now underway. The o b j e c t i v e  of 

t h e  program is t o  develop a r e s i d e n t i a l - s i z e  HYCSOS chemical hea t  pump f o r  

space heat ing and cooling. So la r  energy o r  waste hea t  w i l l  b e  used t o  opera te  

t h e  pump and thus e l imina te  o r  reduce f o s s i l  f u e l  requirements. To meet t h e  

program ob jec t ives ,  a d r a f t  program plan w a s  prepared which i d e n t i f i e s  t h e  work 

t a sks ,  subtasks,  manpower, budget and schedule . .  (.See Appendix A . )  

I n  support of t h e  HYCSOS program a management plan f o r  FY 1979 and a 

WPAS f o r  FY 1980 were prepared and submitted t o  DOE. 

2.0 SYSTFMS ENGINEERING 

I n  a 1978 HYCSOS hydride hea t  pump study f o r  Argonne, TRW Energy Sys- 

tems Group developed a computer program t o  a fd  %n t he  design and performance 

ana lys i s  of a  r es iden t i a l - s i zed  hydride hea t  pump. The program is designed t o  

s i z e  some of t h e  components, e s t ima te  t h e  c o s t ,  and determine t h e  performance 

of t h e  system. The b a s i c  design process i s  t o  i t e r a t e  t h e  performance and cos t  

c a l c u l a t i o n s ,  changing syctem parameters in order  t o  d e f i n e  a system with near 

optimum cos t  and performance. The computer program c a l c u l a t e s  some of t h e  

system s i z i n g  and t h e  c o s t  and performance f o r  each set of system parameters. 
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The parameters are inpu t s  t o  t h e  program and a r e  changed by t h e  opera tor  i n  

an i n t e r a c t i v e  mode. The optimum system depends on t h e  cos t  and performance 

-of t h e  s o l a r  c o l l e c t o r s  supplying t h e  input  h e a t ,  and t h e  d e s i g d a n a l y s i s  of 

t h e  s o l a r  c o l l e c t o r  subsystem was not  wi th in  t h e  scope of t h i s  s tudy.  A s  

such, t h i s  a n a l y s i s  does no t  at tempt t o  d e f i n e  t h e  "true" optimum system. 

The TRM program was converted from a CDC ve r s ion  t o  one compatible 

wi th  t h e  ANL computer system. During program checkout, s e v e r a l  smal l  opera- 

t i o n a l  problems were found and correc ted .  The intended u s e  f o r  t h e  TRW 

program is t o  i n v e s t i g a t e  t h e  c o s t  and performance of hydr ide  hea t  pumps a s  

a func t ion  of va r ious  parameters. S p e c i f i c a l l y  t h e s e  a re :  

Cycle and regenera t ion time ' 

,Hydride bed composition 

Solar  input  temperature 

Heat t r a n s f e r  f l u i d  

Heat t r a n s f e r  assumptions used i n  analyzing t h e  hydride heat  
exchanger 

Other types of hydride hea t  exchangers 

A number of computer runs were made wf th  t h i s  program and some prelim- 

inary  conclusions are :  

.. . System cos t  and c o e f f i c i e n t  of performance (COP) inc rease  
with cyc le  time f o r  cyc le  times l a r g e r  than about 1 minute. 

A minimum system c o s t  occurs a t  a c y c l e  time s l i g h t l y  l e s s  
than 1 minute. 

System c o s t s  inc rease  s l i g h t l y  wi th  regenera t ion time, where- 
as The COP is rc lo t$ve ly  i n s e n s i t i v e  t o  regenera t ion t i m e .  

System c o s t s  decrease  wi th  hea t  f l u x  whi le  COP inc reases  
wi th  hea t  f lux .  

Cooling and heat ing COPS a r e  d i r e c t l y  r e l a t e d .  

There is no c l e a r  conclusion as t o  t h e  e f f e c t  of a l l o y  com- 
p o s i t i o n  on cos t  o r  performance. 

2.1 CONCEPTUAL HYCSOS DESIGNS 

The schematic i n  Figure  2' is one conceptual HYCSOS design being con- 

sidered.  This concept of a hydride hea t  pump system is capable of heat ing and 

cooling a bu i ld ing  and is shown in t h e  bu i ld ing  heat ing mode i n  t h e  diagram. 

The system provides two h e a t  pumps. The main u n i t  is f o r  heat ing and cooling 
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t h e  bu i ld ing  wi th  energy s t o r e d  from a s o l a r  c o l l e c t o r .  A secondary hea t  pump 

is provided f o r  opera t ion wi th  gas hea t .  The output  from t h i s  secondary u n i t  

is del ivered d i r e c t l y  t o  t h e  high-temperature s i d e  of t h e  main hea t  pump. 

Two ho t  water s t o r a g e  tanks a r e  provided and t h e s e  a r e  designed f o r  

minimum mixing and e f f i c i e n t  thermal g rad ien t  r e t e n t i o n .  The water  s t o r e d  

i n  t h e s e  tanks is both  t h e  hea t  t r a n s f e r  medium f o r  t h e  s o l a r  c o l l e c t o r  and 

t h e  opera t ing f l u i d  f o r  t h e  main hea t  pump. It must con ta in  a n t i f r e e z e ,  

because it would b e  i n  d i r e c t  contact  wi th  t h e  s o l a r  c o l l e c t o r  dur ing t h e  

winter .  This l a r g e  amount of a n t i f r e e z e  w i l l  inc rease  t h e  c o s t ' a n d ,  there-  

f o r e ,  t h e  s to rage  tank s i z e s  must b e  minimized. 

The house is heated and cooled wi th  a i r  passing over a l a r g e  hea t  

exchanger i n  a plenum leading t o  t h e  a i r  d i s t r i b u t i o n  system i n  t h e  house. 

The hea t  exchanger ' i s  heated and cooled by water  c i r c u l a t e d . f r o m  t h e  main 

hea t  pump o r  d i r e c t l y  from t h e  high-temperature s t o r a g e  tank. The s e l e c t i o n  

of t h e  most advantageous mode of opera t ion is done by a microcomputer a s  d is -  

cussed b elow. 

The use  of water  a s  a  hea t  t r a n s f e r  medium in t h e  hea t  pumps r e q u i r e s  

c a r e f u l  design of those  systems i n  order  t o  achieve acceptably high coef f i -  

c i e n t s  of performance. An a l t e r n a t i v e  coolant  which might be  considered is  

a f reon  r e f r i g e r a n t .  However, t h a t  would r e q u i r e  a complete redesign of t h e  

system and is a n  a l t e r n a t i v e  t o  t h e  system described here.  Such a l t e r n a t i v e s  

w i l l  b e  considered t o  determine t h e  most f e a s i b l e  system f o r  development. 

2.1.1 Order of Preference f o r  Energy Sources 

A s  a  s tudy of Figure  2 w i l l  r evea l ,  t h e r e  a r e  s e v e r a l  ways i n  which 

t h e  bui ld ing can b e  heated and cooled by means of t h e  proposed system. The 

method of opera t ion  w i l l  depend on the e x t e r i o r  temperature, t h e  a v a i l a b i l i t y  

of s o l a r  hea t ,  and t h e  temperature of t h e  s t o r a g e  tanks. A microcomputer w i l l  

cansirier t h e s e  f a c t o r s  and s e l e c t  t h e  method of opera t ion  which c o n t r o l s  t h e  

bui ld ing temperature a t  t h e  des i red  l e v e l  wi th  minimum c o s t  and, a s  a  secondary 

considera t ion,  maximum energy e f f i c iency  i n  order  t o  conserve s to red  energy. 

The order  of preference  of t h e  energy sources f o r  each of t h e  major components 

of t h e  system a r e  shown in Table 1. For heat ing t h e  bui ld ing,  lowest cos t  and 

highes t  energy e f f i c iency  a r e  achieved by method one, which would u t i l i z e  t h e  

main heat  pump wi th  hea t  supplied from t h e  high-temperature s t o r a g e  tank and 



TABLE I 
ORDER OF PREFERENCE FOR ENERGY SOURCES 

Order o f  Heat Pump Sources 
Preference Energy Sources High Temp. Mid. Ternp. Lou Temp. (Heatinq) (Cool ino) (Heatin41 Requirements 

BUILDING -- HEATING EODE 

1. , Main Heat Pump HT Store Bui lding I Ambient HT Store >180°F, 
Ambient A i r  >30°F 

HT Store Bui lding LT Store . IiT Store >180°F 
LT Store ~50°F 

3. High-Temp. Storage Tank - - - HT Store >lOO°F 

4. Natural Gas Burner wi th  both: 

Secondary heat pump Gas flame Main heat pump Ambient or  
LT Store 1 None 

blain heat pump Secondary Bui lding Ambient 
heat pump 

BUILDING -- COOLING MODE 

1. Main Heat Pump HT Store Ambient Buj l d i ng  HT Store >180°F 
Amblent <lOO°F 

2. Natural Gas Burner w i th  both: 

Secondary heat pump Gas flame Mainheatpump Malnheat 
U P  None 

Ma1 n heat pump Secondary Ambient Bui lding 
heat pump 

HIGH-TEMPERATURE STORAGE TANK 

1. Solar Col lector (only source) - - - - Col lector ou t l e t  >220°F 

LOW-TEMPERATURE STORAGE TANK 

1. Under f low from HT Store (LT Store + Solar Col lector + HT Store + .LT Store) Col lector ou t l e t  >220°F 

2. Solar Col lector Col lector ou t l e t  *HT 
store temp. 



an ambient temperature h e a t e r .  This would r e q u i r e  a temperature i n  t h e  high- 

temperature s t o r a g e  tank of a t  l e a s t  180°F and an ambient a i r  temperature of 

a t  l e a s t  30°F. I f  t h e  ambient temperature a i r  is less than 30°F, t h e  second 

method shown i n  Table 1 can be  used f o r  heat ing t h e  bu i ld ing  by using t h e  

main hea t  pump and t h e  low-temperature s t o r a g e  tank a s  t h e  low-temperature 

hea t  source. I f  t h e  temperature of t h e  high-temperature s t o r a g e  tank is less 

than 180°F but  g r e a t e r  than 100°F, t h e  hea t  pump cannot be  operated,  but  t h e  

bu i ld ing  could b e  heated d i r e c t l y  from t h e  high-temperature s t o r a g e  tank 

(method t h r e e  i n  Table 1) .  
I 

I f  t h e r e  is no s t o r e d  energy, t h e  bu i ld ing  may be heated by method f o u r  

which uses  n a t u r a l  gas a s  a hea t  input  t o  t h e  secondary hea t  pump i n  a cascade 

arrangement wi th  t h e  main hea t  pump. It is 'proposed t h a t  both t h e  secondary 

hea t  pump and t h e  main hea t  pump u s e  ambient a i r  a s  t h e  low-temperature hea t  

source. With t h i s  arrangement t h e  t h e o r e t i c a l  COP would b e  4.0. I n  p r a c t i c e  

it might be p o s s i b l e  t o  achieve a COP of between 1.5 and 2.0. This high COP 

when opera t ing wi th  t h e  gas backup system reduces t h e  cos t  penalty f o r  ex- 

haust ing t h e  s to rage  capacity.  Therefore,  small  s t o r a g e  tanks might be  eco- 

nomically optimal.  

Building cooling would b e  c a r r i e d  ou t  i n  much t h e  same way a s  bu i ld ing  

.. . heat ing,  except t h a t  f o r  cooling t h e  low-temperature hea t  source  f o r  t h e  hea t  
pump would b e  t h e  bu i ld ing  a i r  and t h e  medium temperature hea t  would b e  d is-  

charged t o  t h e  ambient a i r .  It is est imated t h a t  t h e  main hea t  pump could b e  

operated wi th  heat  input  from t h e  s t o r a g e  tanks a t  water  temperatures down 

t o  160°F i f  t h e  ambient temperature is 80°F. When t h e  usable  energy i n  both  

water  tanks is exhausted, t h e  bu i ld ing  would b e  cooled with n a t u r a l  gas h e a t  

input  and u s e  of t h e  secondary hea t  pump ,in cascade conf igura t ion wi th  t h e  
. . 

main h e a t  pump. ' W i t h  both  hea t  pumps i n  opera t ion,  t h e  t h e o r e t i c a l  COP would 

b e  about 2.0 and t h e  a c t u a l  ob ta inab le  COP would be  about 1.0. 

It should b e  noted t h a t  t h e  high-temperature s t o r a g e  tank would b e  

heated only by t h e  solar c o l l e c t o r  and no t  by t h e  n a t u r a l  gas burner.  The 

preferred  method f o r  heat ing t h e  low-temperature s t o r a g e  tank would b e  by 

underflow from t h e  high-temperature s t o r a g e  taxik when t h e  tank w a s  being 

heated from t h e  s o l a r  c o l l e c t o r .  When t h e  s o l a r  c o l l e c t o r  is i n  opera t ion,  

t h e  water  t o  the s o l a r  c o l l e c t o r  would b e  d i r e c t e d  from t h e  low-temperature 

s t o r a g e  tank. The r e t u r n  from t h e  s o l a r  c o l l e c t o r  would b e  d i r e c t e d  t o  t h e  



top of t h e  high-temperature s t o r a g e  tank,  and t h e  underflow would feed  t h e  

low-temperature s t o r a g e  tank. A second method of t r a n s f e r r i n g  energy t o  t h e  

low-temperature s t o r a g e  tank is by d i r e c t  t r a n s f e r  from t h e  s o l a r  c o l l e c t o r  

when t h e  c o l l e c t o r  o u t l e t  temperature w a s  less than t h e  temperature a t  t h e  

top  of t h e  high-temperature s t o r a g e  tank. This  would b e  expected t o  occur i f  

t h e  s o l a r  c o l l e c t o r  is dra ined when s o l a r  i n s o l a t i o n  is i n t e r r u p t e d  by cloud 

cover. 

2.1.2 Estimated Operating Temperatures I 

Operating temperatures can b e  est imated by ( I )  s e l e c t i n g  s t o r a g e  tank 

temperatures and ambient temperatures,  (2) e s t ima t ing  temperature d i f f e r e n t i a l s  

between t h e  var ious  h e a t  exchange f l u i d s ,  and (3) c a l c u l a t i n g  t h e  medium tem-  

pe ra tu res  i n  t h e  hea t  pumps by assuming t h a t  they w i l l  b e  approximately t h e  

geometric mean of t h e  low-temperature and high-temperature zones. Three sample 

cases  f o r  bu i ld ing  hea t ing  a r e  l i s t e d  i n  Table 2.  I n  Case I it is assumed 

t h a t  t h e  high-temperature s t o r a g e  tank was opera t ing  a t  220°F and t h e  ambient 

temperature was 30°F. Water from t h e  high-temperature s t o r a g e  tank a t  220°F 

is de l ive red  t o  t h e  high-temperature zone of t h e  hea t  pump and r e s u l t s  i n  a 

maximum hydr ide  bed temperature of 210°F. The ambient temperature of 30°F 

r e s u l t s  i n  a temperature of 20°F i n  t h e  water  r e t u r n i n g  from an outdoor h e a t  

exchanger. This water ,  then  pumped t o  t h e  low-temperature zone of  t h e  hea t  

pump, would r e s u l t  i n  a temperature i n  t h e  hydr ide  bed of 10°F. -The hydr ide  

bed temperature i n  t h e  medium temperature zone of t h e  h e a t  pump was est imated 

t o  be  about 105"F, Water c i r c u l a t e d  through t h e  medium temperature zone 

would reach a temperature of 95°F and when c i r c u l a t e d  t o  a hea t ing  u n i t  i n  

t h e  a i r  duct  of t h e  b u i l d i n g  v e n t i l a t i o n  system, would r e s u l t  i n  an a i r  tem-  

p e r a t u r e  of 85°F. 

Various o t h e r  high-temperature s t o r a g e  tank temperatures and ambient 

a i r  temperatures were assumed i n  Case 11, and Case 111. of Table 2 arid it was 

demonstrated t h a t  reasonable  temperatures could b e  ca lcu la ted .  It should b e  

noted t h a t  t h e  temperature between h e a t  exchange f l u i d s  w a s  assumed t o  b e  

10°F i n  a l l  cases.  Fur the r  c a l c u l a t i o n s  a r e  r equ i red  t o  demonstrate whether 

such smal l  temprature d i f f e r e n c e s  a r e  p r a c t i c a l .  

A HYCSOS concept t h a t  is being evaluated is a tubu la r  v e r s i o n  which 

is shown i n  Figure  3 .  This  concept c o n s i s t s  of s e a l e d  tubes w i t h  an  enhanced 



Table 2. Operat ion of.Main Heat Pump f o r  Building Heating 

HT ~ m b  t e n t  
S t o t e  A i r  

Heat Pump Zones 

Temp., OF Temp., OF High Temp. Med Temp. Low Temp. 

CASE I 220 3 0 

Hydride Bed Temp., PF 

Water Temp., OF 

A i r  Temp., OF 

CASE I1 19 0 50 

Hydride Bed Temp., OF 

Water Temp., OF 

A i r  Temp., OF 

CASE I11 

Hydride Bed Temp., OF 

Water Temp. , OF 

A i r  Temp., OF 

a 
. Temperature of a i r  e x i t i n g  heat ing  c o i l s  i n  plenum leading t o  ho t  a i r  ducts .  

b ~ e m p e r a t u r e  of a i r  providing hea t  t o  water  pumped t o  low-temperature zone of 
hea t  pump. 

C 
A t  ambient temperatures below 30°F, hea t  is provided t o  t h e  l o w  temperature 
zone of t h e  hea t  pump by means of water  from t h e  low-temperature s t o r a g e  
tank,  which was assumed t o  b e  a t  60°F i n  Case 111. 

i n t e r n a l  surface .  D i f f e r e n t  hydr ide  m a t e r i a l  is loca ted  a t  each end of t h e  

tube  and separa ted  by a t r a n s i t i o n  sec t ion .  The i n d i v i d u a l  tubes a r e  assem- 

b led  i n t o  an  enclosed element bundle t o  permit c i r c u l a t i o n  of a h e a t  t r a n s f e r  

f l u i d  around t h e  elements. The element bundles a r e  then assembled i n t o  a 

power u n i t  whose s i z e  depends upon t h e  requi red  hea t ing  o r  cool ing  load.  

Continuous opera t ion  w i l l  b e  p o s s i b l e  because i n  t h e  power u n i t  some of t h e  

element bundles w i l l  b e  desorbing hydrogen, some absorbing hydrogen, and some 

undergofng regenera t ion .  Some advantages of t h l s  concept are: 

~ l e x i b i l i t ~  i n  design 

Eliminates hydrogen valves  

Minimizes l o s s  of hydrogen due t o  l e a k s  



Figure 3 .  Schematic od HYCSOS Power Unit  

COMPONENT ---- CROSS SECTION ,- ---- SIDE 7 VJEW 

A1 u111i nun1 

Bed E l  enlent 

F i  1 t e r  paper 
and 

per fora ted tube tligh-tetnp. T rans i t i on  Low- temp. 
Section Section Sect i on 

1 9 
-----_.- - -  - -- -. -- - - -4-  ---- ----- 1: -- --T- --- - -- - - 4 

I -60 cn ------l-30 crn -1- 60 cni --- I 

,Hot f l u i d  i n  Cold f l u i d  i n \  

Heat Transfer 
F l u i d  

El ement Bundl e Bed Element ( 7 )  

I 

HYCSOS Power 
U n i t  

Element Bundle (24 

F l u i d  Mu l t i po r t  

I -80 cm -I\ Cool i ng 

------.-. - I 

P 
0 

sheets 

Hot Side Cold Side 



U t i l i z e s  temperature g rad ien t s  i n  heat  t r a n s f e r  f l u i d  

Simpler t o  f a b r i c a t e  

A s i n g l e  tube  vers ion,  Figure  4 ,  of t h i s  concept was designed and is 

under const ruct ion.  Basica l ly  i t  c o n s i s t s  of t h r e e  (3) concentr ic  tubes.  The 

o u t e r  tube is t h e  containment f o r  t h e  hea t  t r a n s f e r  f l u i d .  The middle tube  is  

i n t e r n a l l y  f inned and provides t h e  enhanced surface .  The inner  tube  is 

s i n t e r e d  s t a i n l e s s  steel and a c t s  a s  a f i l t e r .  The metal hydride is i n  t h e  

annulus formed by t h e  f inned and s i n t e r e d  tubing. The u n i t  w a s  designed t o  

u t i l i z e  a v a i l a b l e  material, t o  s impl i fy  f a b r i c a t i o n ,  and t o  permit i n s t a l l a -  
I 

t i o n  i n  t h e  Chemistry Division l abora to ry  f a c i l i t y .  Assembly of t h i s  u n i t  is 

await ing de l ive ry  of t h e  f inned tubing.  

3.0 HYDRIDE HEAT TRANSFER AND HEAT EXCHANGER STUDIES 

Hydride hea t  t r a n s f e r  and t h e  design of a s u i t a b l e  hea t  exchanger are 

key elements f o r  t h e  success fu l  development of a metal  hydride chemical hea t  

pump. I n  order  t o  ob ta in  b a s i c  hea t  t r a n s f e r  da ta ,  a smal l  s c a l e  test program 

was i n i t i a t e d  and a s ing le - tube  test f a c i l i t y  w a s  designed. This f a c i l i t y  is 

shown schematical ly i n  Figure 5. Heat t r a n s f e r  su r faces  up t o  2 i n .  i n  diam- 

e t e r  and 6 f t  long can b e  accommodated i n s i d e  t h e  hydrogen p ressure  vesse l .  

Hydride mate r i a l  of varying th ickness  w i l l  b e  contained between a f i l t e r  ele-  

ment and t h e  h e a t  t r a n s f e r  surface .  Conditioned water  w i l l  b e  c i r c u l a t e d  

through t h e  h e a t  t r a n s f e r  s u r f a c e  t o  desorb hydrogen from t h e  metal  hydride. 

Pressure,  temperature and flow measurements w i l l  b e  taken by a computer based 

d a t a  a c q u i s i t i o n  system. A computer program has  been w r i t t e n  t o  analyze t h e  

d a t a  t o  determine t h e  heat  t r a n s f e r  r a t e ,  response time, and amount of hydro- 

gen desorbed. The test f a c i l i t y  is  near ing completion and checkout should b e  

s t a r t e d  i n  ea r ly  Ju ly .  

The hea t  exchangers i n  t h e  Chemistry Divis ion labora tory  f a c i l i t y  con- 

sist of c o i l e d  tubing i n s i d e  and o u t s i d e  a heavy-wall s t a i n l e s s  steel v e s s e l .  

These exchangers w e r e  f ab r ica ted  f o r  hydrides wi th  high hydrogen desorpt ion 

pressures  t o  demonstrate proof of t h e  HYCSOS concept. These u n i t s  a r e  inade- 

quate,  and a hea t  exchanger which conta ins  t h e - a l l o y  powder i n  i n t e r s t i c e s  of 

an open-cell aluminum foam w a s  ordered from Energy Research and Generation 

(ERG) Inc.  i n  1978. The p ressure  v e s s e l  conta iner  f o r  t h i s  u n i t  was received 

bu t  t h e  aluminum-foam s e c t i o n  has no t  been del ivered.  The manufacturer keeps 
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Figure 4. Prototype Metal Hydride Heat Exchanger Element 
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promising de l ive ry  and c i t e s  a  backlog i n  braz ing and o t h e r  h igh p r i o r i t y  Depart- 

ment of Defense work a s  reasons f o r  t h e  delay.  

I n  January, 1979, a  search  was s t a r t e d  f o r  compact p l a t e - f i n  type hea t  

exchangers manufacturers t h a t  have t h e  fol lowing c a p a b i l i t i e s :  

1. Engineering e x p e r t i s e  and experience i n  t h e  des ign and anal- 
y s i s  of e f f f c i e n t ,  l i gh twe igh t ,  compact h e a t  exchangers. 

. 2: Manufacturing f a c i l i t i e s  t h a t  included vacuum furnaces  f o r  
aluminum brazing.  

3; A wi l l ingness  t o  explore  t h e  p o s s i b i l i t y  of adapting t h e i r  
s tandard  h e a t  exchanger des igns  t o  t h e  d i f f i c u l t  prsblem 
of h e a t  t r a n s f e r  between a  l i q u i d  and f i n e l y  d iv ided meta l  
hydr ide  powders. 

I n  t h e  Chicago a r e a  t h e r e  a r e  f i rms  t h a t  de.aluminurn d i p  braz ing b u t  none t h a t  

s p e c i a l i z e  i n  hea t  exchangers f a b r i c a t e d  by vacuum brazing.  Three p o t e n t i a l  

f i rms  i n  t h e  New York City a r e a  t h a t  were contac ted  a r e  Hughes-Treitler Manu- 

f a c t u r i n g  Corp., Limco Manufacturing Corp. and P r e c i s e  Metal Products  Corp. 

From ca ta log  information and d i scuss ions  w i t h  t h e s e  f i rms ,  it was determined 

t h a t  Hughes-Treitler and Limco had t h e  q u a l i f i c a t i o n s  and s u f f i c i e n t  i n t e r e s t  

i n  f a b r i c a t i o n  of a  hydr ide  hea t  exchanger. 

A s e t  of s p e c i f i c a t i o n s  f o r  t h e  hydr ide  hea t  exchanger was prepared 

and submitted t o  t h e s e  f i rms  i n  March, wi th  t h e  r eques t  t h a t  they u t i l i z e  
... . 

t h e i r  s tandard  corrugated f i n  s t a c k  h e a t  exchanger design.  Both f i rms  sub- 

mi t t ed  prel iminary sketches  and proposals  f o r  t h e  hea t  exchanger. Af te r  d i s -  

cussing t h e  des igns  and reviewing t h e i r  manufacturing c a p a b i l i t i e s ,  i t  was 

concluded t h a t  Hughes-Treitler was t h e  p re fe r red  company. Hughes-Treitler 

have a larger and more experienced engineering department, and t h e i r  manuf ac- 

t u r i n g  and vacuum brazing f a c i l i t i e s  a r e  more ex tens ive  than those  of Limco. 

I n  add i t ion ,  they a l s o  have a  s o p h i s t i c a t e d  h e a t  exchanger design computer 

program t h a t  was developed f o r  NASA, and t h e i r  proposed design s a t i s f i e s  most of 

t h e  requirements of t h e  HYCSOS experimental program. This des ign provides a  

hydr ide  s i d e  s u r f a c e  a r e a  t h a t  is an  o rde r  of magn i tude . l a rge r  than t h e  p resen t  

hea t  exchangers. I n  add i t ion ,  the des ign has s h o r t  hydrogen paths  and l a r g e  

f i l t e r  a r e a s  f o r  low pressure  drop, t h e  c a p a b i u t y  f o r  easy loading o r  removal 

of hydr ide  powders, and f i t s  d i r e c t l y  i n t o  t h e  l abora to ry  f a c i l i t y  wi th  very 

l i t t l e  modif ica t ion  of t h e  piping system. 



I n  May, Hughes-Treitler submitted a quota t ion and s e n t  a computer gen- 

e r a l i z e d  design a n a l y s i s  w i t h  core  geometry s p e c i f i c a t i o n s ,  h e a t  t r a n s f e r  

parameters, p ressure  drop and mass c a l c u l a t i o n s .  Procurement of 2 t o  4 of 

these  heat  exchangers is i n  process. Hughes-Treitler has a l a r g e  backlog of 

work, bu t  have promised de l ive ry  of two u n i t s  by t h e  end of September. 

410 MATERUL STUDIES 

The hea t  of r e a c t i o n  f o r  t h e  absorpt ion,  AHabs, and t h e  desorpt ion,  

dRdes, of hydrogen on LaNi was measured c a l o r i m e t r i c a l l y .  I n  a s i n g l e  deter -  
5 

mination, s was 5.49 kcallmole H2 and w a s  7.68 kcallmdle H The 2 ' 
genera l ly  accepted values ,  ca lcu la ted  from van ' t  Hoff p l o t s  f o r  a n  a l l o y  for-  

mulation no t  necessa r i ly  t h e  same a s  i n  t h e  HYCSOS system, a r e  7.2 kcal/mole 

f o r  desorpt ion and approximately 6 kcal/mole f o r  absorpt ion.  

A small  prototype of t h e  aluminum foam hea t  exchangers t h a t  Energy 

Research and Generation (ERG) Inc. is f a b r i c a t i n g  was used t o  measure k i n e t i c s  

of hydriding reac t ions  wi th  LaNi5. Hydrogen q u a n t i t i e s  l a r g e  enough t o  fol low 

pressure  changes bu t  smal l  enough no t  t o  produce l a r g e  temperature changes, a r e  

i so thermal ly  absorbed on t h e  a l l o y .  Prel iminary r e s u l t s  show a complicated 

r e l a t i o n  f o r  absorpt ion,  which may i n d i c a t e  a mult iple-step reac t ion .  

Kinet ic  measurements were run on t h e  hydriding r e a c t i o n  of CaNi hydride 
5 

and LaNi5 hydride. Small amounts of hydrogen, between 0.3 moles and 0.06 

moles were absorbed on o r  desorbed from t h e  a l l o y  hydrides contained i n  t h e  

c o i l e d  tube  hea t  exchangers and t h e  LaNi5 loaded aluminum foam test u n i t .  

The course  of t h e  r e a c t i o n  w a s  followed by changes i n  hydrogen pressure  above 

t h e  a l loy .  Complete reac t ion  would cause a 5-10 p s i  change. A r ap id  i n i t i a l  

r eac t ion ,  perhaps i n d i c a t i v e  of t h e  t r u e  r e a c t i o n  k i n e t i c s ,  occurred i n  t h e  

f i r s t  second o r  less. A longer time t o  complete r e a c t i o n ,  extending t o  about 

f i v e  minutes o r  longer i n  t h e  case  of t h e  aluminum foam u n i t ,  is probably due 

t o  a hea t  t r a n s f e r  l i m i t a t i o n .  Table 3 shows r e a c t i o n  time and f r a c t i o n  re- 

acted.  The l a s t  column shows t h e  temperature change expected from t h e  amount 

of hydrogen t r ans fe r red .  The r e a c t i o n  r a t e s  seem r e l a t e d  t o  t h e  expected 

temperature change and imply a heat  t r a n s f e r  e f f k c t  even i n  t h e  i n i t i a l  r ap id  

r a t e .  Use of hea t  t r a n s f e r  f l u i d  d i d  not  a f f e c t  t h e  r e a c t i o n  in  t h e  room 

temperature experiments. 



Table 3. Kinet ics  of Hydride Reactions 

System 

Reaction Temperature 

% t ime (sec)  Change (OC) 
- - 

C a N i 5  (desorb. a t  84OC) 75 0.2 0.12 

90 1.0 

LaNi5 (desorb. at  22OC) 50 0.2 0.18 

75 1.8 

LaNi5 (absorb. a t  22OC) 50 0.2 

LaNi5 i n  A 1  foam 

(desorb. a t  22OC) 50 4 .O 0.73 

(desorb. a t  22°C) 50 >10 1.38 

To study t h e  k i n e t i c s  of t h e  rap id  i n i t i a l  hydride reac t ion ,  t h e  pres- 

s u r e  change during desorpt ion was monitored wi th  a cathode ray osc i l loscope .  

Based on f r a c t i o n  of hydrogen desorbed from LaNi hydride a t  i n t e r v a l s  during 5 
t h e  f i r s t  112 second, t h e  desorpt ion r e a c t i o n  is second order  i n  t h e  c o i l e d  

- tube hea t  exchanger and zero order  i n  t h e  aluminum foam u n i t .  The r e a c t i o n  

order  f o r  CaNi hydride desorpt ion w a s  indeterminate.  
. 5  

A seven l i ter  s tandard  volume was incorporated i n t o  t h e  hydrogen f i l l i n g  

manifold of t h e  HYCSOS labora tory  system t o  f a c i l i t a t e  measurement of t h e  l a r g e  

amount of hydrogen .required t o  ac.t.i.vate t h e  a l loys .  

Thermal conduct iv i ty  is an important c h a r a c t e r i s t i c  determining hea t  

t r a n s f e r  of powder beds. Using d a t a  from t h e  t r a n s f e r  of 5.74 moles of hydro- 

gen from CaNi5 t o  LaNi5, t h e  thermal conduct iv i ty  of t h e s e  m a t e r i a l s  were cal- 

cula ted  and a r e  shown in Table 4. These r e s u l t s  a r e  based on a mean f l u i d  

temperature i n  t h e  ' co i l s ,  a  bed th ickness  of 0.32cm, a f i l l i n g  f a c t o r  based on 

a l i g h t l y  poured LaNi power dens i ty  of 4 glml, and a heat  of r e a c t i o n  6f 7.5 5 
kcal/mole f o r  C a N i  and 7.2 kcal/mole f o r  LaNi): Although t h e s e  r e s u l t s  a r e ,  

5 
a t  b e s t ,  approximate, t h e  r e l a t i v e  consistency of t h e  va lues  i n d i c a t e s  t h e  

importance of f a c t o r s  o t h e r  than composition o r  f i l l i n g  f a c t o r ,  e.g., bed dis-  

rup t ion  during hydrogen mass t r a n s p o r t ,  on t h e  e f f e c t i v e  conduct iv i ty  of powder 

beds i n  these  hea t  exchangers. 



Table 4. Thermal Conductivity of C a N i  Hydride and LaNi5 Hydride 
5 

Conductivity 
Heat A t  Surface F i l l i n g  Cal 

(kcal )  ("C) ( m 2 )  Factor  Comp. Range OC*cm*sec 

I 

*5 minutes hea t  t r a n s f e r  t i m e .  

5.0 EXPERIMENTAL STUDIES LTD OPERATIONS 

To eva lua te  t h e  thermodynamic opera t ion  of t h e  HYCSOS system and reduce 

t h e  e f f e c t  of t h e  p ip ing and h e a t  t r a n s f e r  f l u i d  i n  t h e  system beyond t h e  hy- 

d r i d e  heat  exchangers (HHE) i n  lowering system e f f i c i e n c y ,  t h e  h e a t  capaci ty  

of t h e  HHE including t h e  contained a l l o y  and hea t  t r a n s f e r  f l u i d  was determined. 

I n  a c a l o r i m e t r i c  measurement t h e  temperature rise caused by t h e  absorp- 

t i o n  in t h e  cen te r  of t h e  p la teau region of approximately 5 moles of hydrogen 

on t h e  a l l o y ,  i.e., 30-40 kca l ,  was measured. This d a t a  was used t o  c a l c u l a t e  

t h e  heat  capaci ty  of t h e  hea t  exchangers conta in ing LaNi5 and CaNi5 and these  

r e s u l t s  a r e  shown i n  Table 5. 

Table 5. 

Heat 
MOLES H2 Alloy Comp. Temp. O C  Capacity 

HHE* Added Range I n i t i a l  F i n a l  

*Hydride Heat Exchanger 

For comparison, a va lue  f o r  t h e  hea t  capaci ty  was ca lcu la ted  from t h e  

b l u e p r i n t  dimensions f o r  t h e  volume of water  and t h e  mass of metal  i n  t h e  hea t  

exchanger. A Dulong and P e t i t  value of 6.2 cal/"C was used f o r  t h e  atomic 

hea t  capaci ty  of t h e  metal. A hea t  capaci ty  37.02 ca l /deg mole w a s  used f o r  



LaNi and f o r  C a N i 5  a v a l u e  of 37.16 ca l /d ,egmole  was ca lcu la ted  from its 
5 

atomic h e a t  of 6.2 cal/deg. A hea t  capac i ty  of 1.88 kcal/deg was ca lcu la ted  

f o r  HHD3 and 2.08 kcal/deg f o r  HHE-2. 

The ,p ro to type  u n i t  of a LaNi loaded aluminum foam hea t  exchanger was 
5 

r e a d i l y  hydrided and dehydrided t h r e e  times. No d i f f i c u l t i e s  were encountered 

even though no hea t  t r a n s f e r  f l u i d  was used t o  remove hea t  of absorption.  A 

ho t  ' a i r  blower was used t o  speed desorption.  I n  a s i n g l e  a d i a b a t i c  experiment, 

1.74 moles H2 were desorbed from t h e  a c t i v a t e d  bed. The subsequent r a p i d  adi- 

a b a t i c  absorpt ion of 1.07 moles H was followed by recording p ressure  changes 2 
on magnetic t a p e  at  t h r e e  second i n t e r v a l s .  Equilibrium absorpt ion p ressure  

w a s  reached i n  approximately 30 seconds showing t h e  temperature of t h e  u n i t  t o  
.. . 

b e  uniform. Since t h e  hea t  capaci ty  of t h e  LaNi5 is est imated t o  b e  approxi- 

mately 30% of t h e  e n t i r e  u n i t ,  bed temperature d r i f t  toward equi l ibr tum would 

b e  observable. A s l i g h t  pressure  rise a f t e r  10 minutes was due t o  absorpt ion 

of ambient hea t  and temperature rise of t h e  u n i t .  Although a s i m i l a r  experi- 

ment was n o t  done wi th  a c u r r e n t  tank, t h e  rap id  achievement of equi l ibr ium 

pressure  i n d i c a t e s  s i g n i f i c a n t l y  b e t t e r  hea t  t r a n s f e r  i n  t h e  aluminum foam 

u n i t  than i n  t h e  cur ren t  c o i l e d  tube  design. 

Radiographs taken a f t e r  hydrogen cycl ing show s o m e  r i p p l i n g  i n  t h e  

s t e e l  endplate.  Since t h e  radiograph and photographs taken be fore  cycl ing 

a l s o  show r i p p l i n g ,  t h i s  e f f e c t  is probably no t  due t o  t h e  reac t ion ,  b u t  

poss ib le  t o  thermal e f f e c t s  when t h e  f i l t e r s  were beam welded t o  t h e  u n i t .  

The u n i t  was disassembled i n  a n i t rogen  box. Approximately 6-7 gm of 

powder was found ou t s ide  t h e  f i l t e r  i n  t h e  annular  H2 space. A microscopic 

examination showed over 90% of the  p a r t i c l e s  t o  6.e g r e a t e r  than 5 micron wi th  

most over 1 5  t o  30 micron. Since t h e  f i l t e r  has  a 1 micron nominal pore s i z e ,  

t h e  powder l i k e l y  came through d e f e c t s  i n  t h e  brazing o r  welding. 

The performance of "old" hydride beds cycled a t  least 70 t i m e s  was 

compared wi th  t h a t  of "new" beds which had been hydrided and dehydrided 

about 10 t i m e s  including t h e  i n i t i a l  a c t i v a t i o n  of t h r e e  cycles .  With an  

i n i t i a l  composition near t h e  cen te r  of t h e  p la teau in both "old" and "new" 

a l l o y  beds, approximately 5 moles of hydrogen were t r a n s f e r r e d  from LaNi5 t o  

C a N i 5  and then back. The hydrogen pressure  behavior of t h e  "old" and "new" 

beds a r e  s i m i l a r  which i n d i c a t e s  no d e t e r i o r a t i o n  of t h e  "old" beds. 



I n  order  t o  o b t a i n  b a s e l i n e  hea t  exchanger d a t a ,  a test was conducted 

on t h e  labora tory  f a c i l i t y  coiled-tubing hea t  exchangers. Steady flow condi- 

t i o n s  of hydrogen and h e a t  t r a n s f e r  f l u i d  were e s t a b l i s h e d  and d a t a  taken a t  

12-second i n t e r v a l s  f o r  a period of 6.2 minutes, dur ing which 12.08 moles of 

hydrogen were t rans fe r red .  The r e s u l t s  of t h i s  test a r e  given in Table 6. 

Table 6. Basel ine  Data on Coil-Tube Heat Exchangers 

Parameter 
Average of 31 , Average of 

12-sec d a t a  i n t e r v a l s  6.2 min period 

H e a t  r a t e  from H flow and h e a t  of 
r eac t ion ,  W 

2 
1020 

  eat r a t e  based on hea t  t r a n s f e r  
f l u i d  flow and temperature d i f fe rence ,  
W 

Bed temperature based on H pressure ,  
O C 

2 
61.4 

Log mean temperature d i f fe rence ,  "C 40.0 40.9 

Overal l  hea t  t r a n s f e r  coef f i c i ~ n t  
based on H hea t  rate, w/m2 O C  

2 
87.2 80.2 

Overal l  hea t  t r a n s f e r  c o e f f i c i e n t  
based on hea t  t r a n s f e r  f l u i d  r a t e ,  
w/m2 O C  64.9 62.8 

Number of t r a n s f e r  u n i t s  0.060 0.058 

Effect iveness  0.058 0.056 

From these  da ta ,  i t  is evident  t h a t  t h e  performance of t h e  coi l - type  

heat  exchangers is poor. Addit ional  tests w i l l  b e  conducted t o  f u l l y  charac- 

t e r i z e  t h e s e  exchangers. 

Software development f o r  HYCSOS manual mode opera t ion has been com- 

p le ted .  Routines t o  handle d a t a  a c q u i s i t i o n ,  logging,  compression, correc- 

t i o n ,  and p l o t t i n g ,  using t h e  new Tektronix 4907 f l e x i b l e  d i s k  d a t a  s t o r a g e  

system provide a more rap id  and v e r s a t i l e  means of present ing HYCSOS d a t a  f o r  

analys is. 

The design of i n t e r f a c e  and c o n t r o l  c i r c u i t r y  f o r  t h e  automatic c o n t r o l  

mode of HYCSOS opera t ion has been completed. This design w i l l  enable  t h e  

Tektronix 4051 Graphic System computer, a c t i n g  a s  systems c o n t r o l l e r ,  t o  

communicate wi th  and i s s u e  c o n t r o l  commands t o  HYCSOS. A l l  remote operated 



hydrogen and h e a t  t r a n s f e r  f l u i d  valves ,  i n t e g r a t o r  resets, pump and hea te r  

on/off r e l a y s  a n d h e a t e r  temperature can b e  computer con t ro l l ed .  Designed-in 

v a r i a b l e  delay a c t i v a t i o n  of penumatically ac tuated  va lve  p a i r s  w i l l  prevent 

cross-feeding of f l u i d s  between i s o l a t e d  loops. Provis ion has been made f o r  

later add i t ions  of con t ro l l ed  devices when required .  

Logic c i r c u i t s  f o r  automatic systems opera t ion  were completed and 

t e s ted .  Cabling and sof tware  t a sks  r e q u i r e  a d d i t i o n a l  work. 

6.0 MEETINGS, PUBLICATIONS, PRESENTATIONS, AND DISCUSSIONS 

6.1 PUBLICATIONS AND PRESENTATIONS 

"Performance C h a r a c t e r i s t i c s  of HYCSOS," D. M. Gruen, I. Shef t ,  G. 
Lamich, and M. Mendelsohn. Presented a t  Chemical Heat Pump Workshop, Sandia 
Laborator ies ,  Dublin, CA, Nov 7-8, 1978. 

"New AB Hydride and Their  Applicat ion i n  Chemical Heat Pump Systems," 5 D. M. Gruen, M. Mendelsohn, and I. Shef t ,  Proc. of Symp. on So la r  Energy Con- 
ve r s ion  and Storage, 1978 ACS Southeastern Regional Meeting, Savannah, GA, 
Nov. 9 ,  1978. 

ANL personnel presented t h e  HYCSOS concept, m a t e r i a l  development, engi- 
neering aspec t s ,  and program plans  t o  T. Bramlette and R. Car l ing  from Sandia 
Livermore Laboratory during t h e i r  v i s i t  t o  ANL on March 7. 

"Status Report on t h e  HYCSOS Chemical Heat Pump and Energy Conversion .' 

System," D. Ff. Gruen, M. Mendelsohn, I. Shef t ,  and G. Lamich, Proc. of DOE 
..Chemical Hydrogen Energy Systems Contractor  Review, Washington, D.C.,  Nov. 27- 
30, 1978, p. 307. 

I. Shef t  presented t h e  paper "HYCSOS Chemical Heat Pump and Energy Con- 
ve r s ion  System" a t  t h e  4 th  Annual Heat Pump Technology conference held  a t  
Oklahoma S t a t e  Univers i ty ,  Apr i l  8-11, 1979. 

On May 25, C.A. Blomquist presented t h e  HYCSOS program t o  t h e  Argonne 
U n i v e r s i t i e s  Associat ion Review Committee f o r  t h e  Energy and Environmental 
Systems Division.  

. . An a b s t r a c t  of a paper "Engineering Development of a HYCSOS Chemical 
Heat Pump" was accepted f o r  p resen ta t ion  a t  t h e  2nd M i a m i  I n t e r n a t i o n a l  Con- 
fe rence  on Al te rna t ive  Energy Sources, Dec. 10-12, 1979. 

A r e p o r t  "HYCSOS: A Chemical Heat Pump and Energy Conversion System 
based on Metal Hydrides-1979 S t a t u s  Report," I. Shef t ,  D.M. Gruen, and G.  
Lamich, ANL-79-8 is i n  prepara t ion.  

6.2 MEETINGS AND DISCUSSIONS 

On March 12,  Carl Hiller from Sandia Livermore.Laboratory v i s i t e d  
ANL f o r  d iscuss ions  on HYCSOS pr imar i ly  r e l a t e d  t o  t h e  engineering a s p e c t s  
and proposed prog~am. 



R. Giese made a p resen ta t ion  on HYCSOS a t  t h e  Heat Pump Technology 
Information Exchange Meeting on March 7, 1979 at  t h e  National  Bureau of 
Standards i n  Gaithesburg, Maryland. 

J . M .  Nixon v i s i t e d  G. Benson a t  Energy Research and Development, Inc. 
on March 14 t o  d i scuss  t h e i r  f a b r i c a t i o n  and de l ive ry  of a  foam heat  exchanger. 

J .M.  Nixon and I. Shef t  v i s i t e d  Limco Manufacturing Co., Glen Cove, 
N.Y. and Hughes-Treitler Manufacturing Co., Garden Ci ty ,  New York on March 28  
and 29, r e spec t ive ly ,  t o  d i scuss  t h e  s u i t a b i l i t y  of t h e i r  compact p l a t e - f i n  
h e a t  exchangers f o r  use  as HYCSOS hydride hea t  exchangers. 

J.M. Nixon and I. Shef t  v i s i t e d  I n t e r n a t i o n a l  Nickel Co., Suffern ,  
N.Y. f o r  d iscuss ions  on hydride materials and hydride hea t  exchangers. 

I. Shef t  and J . M .  Nixon v i s i t e d  Matt Rosso a t    rook haven National  
Laboratory on March 29 f o r  information on iron-t i tanium hydride and thermal 
conduct iv i ty  measurements of powder. 

I. Shef t  and J . M .  Nixon v i s i t e d  Roger Thomas a t  Exxon Corp., Linden, 
N . J .  on March 30, f o r  d i scuss ions  on a l t e r n a t i v e  chemical hea t  pumps and t h e i r  
a g n e s i u m  chloride-methanol chemical hea t  pump experimental system and program. 

P i e r r e  T u r i l l o n ,  Marketing Manager, I n t e r n a t i o n a l  Nickel Company, 
Suffern,  N . J .  v i s i t e d  ANL on A p r i l  4 ,  f o r  d iscuss ions  on HYCSOS with  t h e  
Chemistry Divis ion Personnel.  

Discussions on HYCSOS w e r e  held on May 25 wi th  D r .  Jim Drewry, 
Manager, Res iden t i a l  and Commercial U t i l i z a t i o n ,  from t h e  Gas Research I n s t i -  
t u t e ,  Chicago, I l l i n o i s .  



APPENDIX A 
HYCSOS PROGRAM PLAN 

1.1 Heat Transfer  Fluid  Evaluation 

There a r e  s e v e r a l  h e a t . t r a n s f e r  f l u i d s  than can b e  used w i t h  a .HYCSOS 

chemical h e a t  pump. Their  p r o p e r t i e s ,  advantages, disadvantages,  s t o r a g e  re- 

q u i ~ e m e n t s ,  quan t i ty ,  c o s t s ,  e t c . ,  w i l l  b e  evaluated  t o  select t h e  f l u i d  f o r  

system design and operat ion.  

1.2 Conceptual Analysis  I 

Thermal and hydrau l i c  analyses  w i l l  b e  conducted on s e v e r a l  d i f f e r e n t  

HYCSOS chemical hea t  pumps t o  eva lua te  t h e  e f f e c t s  of hea t  source temperature,  

ambient temperatures,  s to rage ,  u n i t  s i z e ,  a i d  component- and system performance. 

1 .3  Heat Source 

Heat sources s u i t a b l e  f o r  a HYCSOS chemical hea t  pump w i l l  be  iden t i -  

f i e d  and assessed t o  determine t h e i r  performance, s t o r a g e  requirements,  and 

cos t .  Primary emphasis w i l l  b e  placed on a s o l a r  hea t  source. A s i m i l a r  

assessment w i l l  b e  conducted f o r  backup h e a t  sources.  A s o l a r  c o l l e c t o r  and 

appropr ia te  s t o r a g e  u n i t  w i l l  b e  designed and f a b r i c a t e d  a s  t h e  primary h e a t  

source. A backup heat  source  w i l l  b e  s e l e c t e d  and s i z e d  f o r  a r e s i d e n t i a l  

e .HYCSOS heat  pump. 

1.4 R e s i d e n t i a l  P i l o t  Uni t  Design and Fabr ica t ion  

U t i l i z i n g  t h e  r e s u l t s  of t h e  h e a t  source and hea t - t r ans fe r  f l u i d  

evaluat ion,  system s t u d i e s ,  and l abora to ry  opera t ing  experience,  a r e s i d e n t i a l -  

s i z e  HYCSOS chemical h e a t  pump w i l l  b e  designed,  f a b r i c a t = d ,  and i n s t a l l e d .  

1.5 Data Evaluation 

Data from t h e  l abora to ry  u n i t  w i l l  b e  continuously evaluated t o  de- 

termine hea t  l o s s e s ,  p ressure  l o s s e s ,  c o e f f i c i e n t  of performance, thermal 

response t i m e ,  hea t  t r a n s f e r ,  hydrogen flow r a t e s ,  and component performance. 

1.6 Advanced Concepts 

Studies  w i l l  b e  conducted on a system c o n s i s t i n g  of s e v e r a l  a l l o y  

hydrides arranged t o  e f f e c t i v e l y  u t i l i z e  temperature g rad ien t s .  The concept 

of using ind iv idua l ly  sea led  hydr ide  p a i r s  without  a hydrogen va lve  w i l l  b e  

inves t iga ted .  The f e a s i b i l i t y  of us ing automobile waste h e a t  t o  provide a i r -  

condi t ioning w i t h  a HYCSOS chemical hea t  pump w i l l  be evaluated.  The concept 

of us ing two o r  more s t a g e s  t o  form a cascade system w i l l  be s tud ied .  



1.7 System Analysis  

Perform d e t a i l e d  analyses  on systems and t h e i r  components necessary 

t o  suppor t  t h e  experimental program and commercialization e f f o r t s .  

2. HYDRIDE HEAT EXCHANGER 

2.1 ERG Unit Tes t ing 

Energy Research and Generation, Inc.  is designing and f a b r i c a t i n g  a 

hydr ide  h e a t  exchanger which con ta ins  t h e  a l l o y  powder i n  i n t e r s t i c e s  of an  

open-cell aluminum foam. Prel iminary tests on a smal l  u n i t  indfcated  good 

h e a t  t r a n s f e r .  c h a r a c t e r i s t i c s .  When t h e  f u l l - s c a l e  u n i t  i s . d e l i v e r e d ,  i ts  

thermal performance w i l l  b e  evaluated.  .. . 

2.2 Heat Exchanger A l t e r n a t i v e s  

The poor thermal conduct iv i ty  of t h e  meta l  hydr ides  and t h e  need 

f o r  r ap id  thermal cycl ing poses s t r i n g e n t  requirements f o r  t h e  hydride-bed 

h e a t  exchangers. A d e t a i l e d  sea rch  f o r  commercially a v a i l a b l e  o r  adaptable  

h e a t  exchangers w i l l  b e  conducted. S u i t a b l e  equipment w i l l  b e  obtained and 

t e s t e d .  The e f f e c t i v e  thermal conduct iv i ty  of meta l  hydride h e a t  t r a n s f e r  

s u r f a c e s  w i l l  be. inves t iga ted .  Small-scale hea t  exchangers w i l l  b e  f a b r i -  

ca ted  and t e s t e d  t o  determine hea t - t r ans fe r  c o e f f i c i e n t s ,  p ressure  l o s s e s ,  

thermal response, and hydride-bed s t a b i l i t y .  The r e s u l t s  of these  s t u d i e s  

w i l l  b e  used t o  design and f a b r i c a t e  l a r g e r  u n i t s  f o r  p i l o t  t e s t i n g .  An in- 

v e s t i g a t i o n  of s u i t a b l e  f i l t e r  m a t e r i a l  f o r  hydride r e t e n t i o n  w i l l  a l s o  b e  

undertaken. 

3. COMPONENT DEVELOPMENT 

. . - Stud ies  w i l l  be conducted on hea t  exchangers, va lves ,  pumps, blowers, 

and c o n t r o l s  t o  determine t h e  appropr ia te  type,  s , ize ,  c o s t ,  and performance 

of t h e s e  components. P a r t i c u l a r  emphasis w i l l  be  placed on valves .  Elimina- 

t i o n  of t h e  hydrogen valves  is highly d e s i r a b l e .  Due t o  t h e  rap id  cycl ing 

of t h e  hea t - t r ans fe r  f l u i d ,  m i n b i z a t i o n  of t h e  number of t h e s e  va lves  is 

required.  The use  of s ingle-act ing o r  m u l t i - p o ~ t  valves  w i l l  b e  inves t iga ted .  

The arrangement of these  components t o  o b t a i n  an optimum system w i l l  be  under- 

taken. 
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4. POWER GENERATION 

4.1 Expander-Generator 

Obtain and rev iey  d a t a  on commercially a v a i l a b l e  expanders. Pur- 

chase and test any s u i t a b l e  u n i t s  t o  determine opera t ing c h a r a c t e r i s t i c s .  I f  

a s u i t a b l e  expander is  not  a v a i l a b l e ,  i n i t i a t e  a c o n t r a c t  t o  design one. Eval- 

u a t e  t h i s  design and i f  s u i t a b l e ,  f a b r i c a t e  and test  a prototype.  Obtain and 

review d a t a  on a v a i l a b l e  genera tors  f o r  u s e  wi th  t h e  expander. Purchase a 

s u i t a b l e  genera tor  and couple it t o  t h e  expander f o r  t e s t i n g .  

4.2 System I n t e g r a t i o n  , 

Assess t h e  i n t e g r a t i o n  of t h e  expander-generator i n  t h e  HYCSOS sys- 

t e m  t o  determine a v a i l a b l e  genera t ion t i m e  and o p e r a t i o n a l  requirements and 

condi t ions .  Define e l e c t r i c a l  c i r c u i t  and c b n t r o l  requirements f o r  u t i l i z a -  

t i o n  of t h e  power generated.  

5. EXPERIMENTAL STUDIES 

5.1 Laboratory 

5.1.1. Kinet ics  and Cycling E f f e c t s  

The k i n e t i c s  of absorpt ion and desorpt ion of metal hydr ides  

w i l l  be  s tud ied  i n  .a continuing e f f o r t  t o  c l a s s i f y  m a t e r i a l s  s u i t a b l e  f o r  a 

chemical h e a t  pump. Beds w i l l  be  cycled t o  measure hydrogen t r a n s f e r  r a t e s  

and t o  determine changes i n  bed performance and c h a r a c t e r i s t i c s  which may 

a f f e c t  long-term performance. 

5.1.2 Operating Data 

The labora tory-scale  f a c i l l i t y  w i l l  b e  operated t o  o b t a i n  

mate r i a l ,  system, and component performance data .  

5.1.3 Automatic Operat ion 

The labora tory-scale  f a c i l i t y  w i l l  b e  modified f o r  automatic 

opera t ion,  c o n t r o l ,  and d a t a  a c q u i s i t i o n .  

5.2 R e s i d e n t i a l  P i l o t  Unit 

. 
5.2.1 Performance Data 

A p i l o t  HYCSOS chemical hea t  pump w i l l  be  operated wi th  a 

simulated h e a t  source  t o  o b t a i n  performance d a t a  and o p e r a t i o n a l  character -  

istics. 



5.2.2 Heat Source and Sink I n t e g r a t i o n  

I f  acceptable  hea t  pump labora to ry  test r e s u l t s  a r e  obta ined,  

an appropr ia te  h e a t  source  w i l l  b e  coupled t o  t h e  h e a t  pump f o r  f u r t h e r  system 

evaluat ion.  

5.2.3 Power Generation 

Af te r  success fu l  completion of t h e  expander-generator tests, 

t h i s  u n i t  w i l l  be  added t o  t h e  chemical h e a t  pump t o  demonstrate i t s  f e a s i -  

b i l i t y  f o r  power generat ion.  

5.2.4 Cascade System 
I 

I f  p r i o r  system s t u d i e s  show t h a t  a Cascade system is a t t r a c -  

t i v e ,  a d d i t i o n a l  equipment w i l l  be  designed, f a b r i c a t e d ,  and added t o  t h e  p i l o t  

u n i t  f o r  f u r t h e r  t e s t i n g  and evaluat ion.  

6. MATERIAL STUDIES 

6.1 Advanced Mate r ia l s  

Development of improved hydride m a t e r i a l s  w i l l  continue.  The addi- 

t i o n  of aluminum t o  lanthanum-nickel a l l o y s  has  t h e  b e n e f i c i a l  e f f e c t  of re- 

ducing h y s t e r e s i s  wi thout  reduct ion of hydrogen capaci ty .  The use  of mishmetal 

a l l o y s  is a l s o  promising and could r e s u l t  i n  s u b s t a n t i a l  m a t e r i a l  c o s t  reduc- 

t ion .  The u s e  of compactions of a l l o y  powder wi th  meta ls ,  e.g.,  Cu, N i ,  o r  A l ,  .. . 

t o  inc rease  t h e  a l l o y  thermal conduct iv i ty  w i l l  be  inves t iga ted .  

6.2 Property Data 

Thermodynamic and phys ica l  p r o p e r t i e s  of promising a l l o y  m a t e r i a l s  

w i l l  b e  determined. 

7. COMMERCIALIZATION 

7.1 Market Analysis  

An a n a l y s i s  of t h e  use r s ,  s u p p l i e r s ,  and regions  s u i t a b l e  f o r  using 

a HYCSOS chemical h e a t  pump w i l l  be  undertaken. 

7.2 ~ a n u f  s c t u t c r  

I n d u s t r i a l  f i rms w i l l  be  contacted and.informed about t h e  HYCSOS 

chemical h e a t  pump. Input  from these  f i rms  w i l l  b e  s o l i c i t e d  on t h e  fabr ica-  

t i o n  and marketing of ' these  u n i t s .  



7.3 Pro t o  type 

A manufacturer w i l l  b e  s e l e c t e d  t o  des ign and f a b r i c a t e  a ,  prototype 

commercial u n i t  f o r  ANL eva lua t ion  and t e s t i n g .  

8. PROGRAM MANAGEMENT 

The An HYCSOS chemical h e a t  pump program w i l l  b e  developed and 

mariaged. Ass is tance  w i l l  b e  provided t o  DOE on mat te r s  r e l a t e d  t o  t h e  

n a t i o n a l  chemical h e a t  pump program. Subcontracts  f o r  r equ i red  t e c h n i c a l  

and economic d a t a  o r  equipment design w i l l  b e  i n i t i a t e d  and managed. 
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Table LA 
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72 
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3 
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TASK 

2.  SYSTPiS ENGINEERING 

1.~1 Beat Transfe r  F lu id  Evaluat ion 
1.2 Conceptual Analysis  
1.3 Heat Source 
1.4 Res iden t i a l  P i l o t  Uni t  

-1.5 Data Evaluat ion 
1.6 Advanced Concepts 
1.7 Systems Analysis  

2. HYDRIDE HEAT EXCHANGER 

2.1 ERG Unit  Tes t ing  
2.2 A l t e r n a t i v e s  

3. COWON EtiT DEVELOPMEtT 

3.1 Pumps, Blowers, e t c .  
3.2 Valves 
3.3 Heat Exchangers ( 
3.4 Controls  

4. POWER GEVERATIOX 

4.1 Expander-Generator 
4.2 System I n t e g r a t i o n  

5 . EXPERIMRXAL STUDIES 

5.1 Laboratory 
5.1.1 K ine t i c s  C Cycling E f f e c t s  
5.1.2 Operating Data 
5.1.3 Automatic Operation 

5.2 Res iden t i a l  P i l o t  Uni t  
5.2.1 Performance Data 
5.2.2 Heat Source 
5.2.3 Power Generation 
5.2.4 Cascade System 

6. HATERLAL STUDIES 

6.1 Advanced Ma te r i a l s  
6.2 Proper ty  Data . 

7. COHHERCULIZATION 

7.1 Harket  Analysis  . 
7.2 Manufacturer 
7.3 Pro to type  

8. PROGRAM MNAGPIEKT 

TOTAL 

FY79 

1 .  
3 
1 

2 

2 
2 

6 
4 
6 

3 
3 

- 1 

2 

36 



Table 2A. 
PROJECT COST 

Thousands of Dollars 

Operating Cost 

Effort Related 
Materials and Service 
Maj or Procurements 

Equipment Cps t 

TOTAL COST 

N 8 3  

375 
175 
250 

100 

FY79 

179 
21 
2 0 

20 

240 

M80 

375 
150 

7 5 

50 

. 650 , 
1 

R 8 1  

400 
175 

75 

150 

800 

N 8 2  

400 
200 
150 

I 

200 



Figure 1A. Project Schedule 



Figure-  2A. P r o j e c t  Schedule 

TASK FY 1979 FY 1980 FY 1981 FY 1982 FY 1983 

5. EXPERIMENTAL STUDIES 

5.1 Laboratory 

5.1.1 Kine t i c s  & Cycling E f f e c t s  

5.1.2 Operat ing Data 

5.1.3 Automatic Operating 

5.2 R e s i d e n t i a l  P i l o t  Unit  

5.2.1 Performance Data 

5.2.2 Heat Source 

5.2.3 Power Generat ion 

5.2.4 Cascade System 

6, MATERIAL STUDIES 

6.1 Advanced Mate r i a l s  

6.2 Proper ty  Data 

7. COMMERCIALIZATION 

7 .1  Market Analys is  

7.2 Manufacturer 

7.3 Pro to type  

8. PROGRAM MANAGEMENT 




