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Generating Alignments of Genetic
Sequences

Ralph Butler, Tracye Butler, Ian Foster,

Nicholas Karonis, Robert Olson, Ross Overbeek,
Nathan Pfluger, Morgan Price, Steve Tuecke

Abstract

Molecular biologists have recently developed the technology re-
quired to determine the genetic information of complete organisms.
They are now faced with a number of interesting computational prob-
lems as they attempt to process this data.

We are interested in developing a software environment to support
molecular biologists. As their computational problems are frequently
complex and computation-intensive, we believe that such an environ-
ment must both support rapid prototyping of new algorithms and
allow high performance execution on a variety of multiprocessor con-
figurations. We believe that this can be achieved using a bilingual
approach, in which the upper levels of programs are coded in a con-
current logic programming language and the lower levels in C. The
concurrent logic language provides ease of parallel programming and
portability over a range of parallel computers; C provides efficient
implementation of low-level algorithms.

To explore the suitability of this approach, we have investigated its
use in attacking a prototypical computational problem, the problem of
aligning a set of sequences of genetic material. This report introduces
the algorithm used to generate alignments, outlines the techniques
used to develop the bilingual program, and describes initial experi-
ments in parallel execution of this program.
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1 Introduction

The incredibly rapid progress in molecular biology is now making headlines in major
newspapers. Advances are reported on a weekly basis. The growing interest in
molecular biology will inevitably make it one of the more important application
areas in computer science. Currently, computers play a secondary role but projected
demands for computation are enormous. Let us give a few examples.

1. Genbank (one of the most widely distributed databases containing known se-
quences) contains just over 20,000 entries. This number has been doubling
about every 15 months, which might well seem like rapid growth. However, in
order to take on a project like sequencing the genetic material for an advanced
organism such as a human, the database will have to grow (fairly rapidly) to
the point where it can absorb over a million new sequences each day.

2. Most of the information that one wishes to include in such a database is cur-
rently either uncertain or unknown. For example, the 3-dimensional structure
of proteins (information that is critical for many applications) is known for
only an extremely small fraction of the sequenced proteins. This means that
as data is added to the database, one would like to attempt to infer speculative
data concerning closely related sequences. Specifically, if the structure of one
sequence were discovered, it would become possible to make intelligent guesses
concerning corresponding sequences in closely related organisms.

3. Since one is interested in sequences that are closely related, a common query
involves searching the database for sequences that are genetically similar. Cur-
rently, such a search requires a modest amount of computing resources (a single
search frequently takes on the order of 2 hours of VAX time). When one con-
siders the issues involved with scaling up both the size of the database and the
rate of requests by as much as 5 orders of magnitude, the problems become
challenging.

It seems possible that the computational aspects of molecular biology will be so
interesting and so intense that much of the basic research in this area will be com-
pletely dependent on the construction and maintenance of an integrated database.

One of our goals is to aid in creating such a database, along with the tools which
would allow effective access to the stored information. We are working to establish
a software environment and an actual database that satisfy the following objectives.

1. The implementation must be efficient in the sense that it must support loads
of the sort projected above.

2. It must be easy to extract data from the database and to experiment with
algorithms to utilize the data in unpredictable ways.
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3. We should be able to easily exploit advances in hardware environments that
would allow substantial improvements in basic capabilities. In particular, it
seems likely that we will wish to exploit a range of multiprocessing configura-
tions, as such systems are introduced into the commercial marketplace.

Given these objectives, a technology based on the use of concurrent logic program-
ming, with some of the major computationally-intensive program components writ-
ten in C, seemed appropriate. Concurrent logic programming languages provide
ease of parallel programming and portability over a range of parallel computers; C
provides efficient implementation of low-level algorithms.

To explore the suitability of such an approach, we have investigated its use in
attacking a prototypical computational problem, the problem of aligning a set of
sequences of genetic material. The concurrent logic programming system Strand!
was used as the implementation vehicle. This system provides explicit support for
bilingual programming; in addition, good-quality implementations are available on
a variety of parallel machines.

This report introduces the algorithm used to generate alignments, outlines the
techniques used to develop the bilingual Strand-C program, and describes initial
experiments in parallel execution of this program. The latter sections of the report
assume some familiarity with concurrent logic programming, as might be gained

from [3].

2 The Problem

For the purposes of this discussion, a sequence of genetic material may be thought of
as a string of characters from some fairly small alphabet. In particular, we will take
our examples from sequences of RNA, which amount to strings from the alphabet
{a,c,g,u}. For example, the following are typical short sequences of RNA.

augcgagucuauggcuucggccauggeggacggeucauu
augcgagucuaugguuucggcecauggeggacggcucauu
augcgagucuauggacuucgguccauggcggacggeucagu
augcgagucaaggggcucccuucggggagcaccggegeacggeucagu

The reader should note that these sequences are similar, but not quite identical.
In fact, they represent corresponding pieces of genetic material from four distinct
(but closely related) organisms. There is a great deal that can be learned from
such related pieces of genetic material. One critical operation in extracting this
information involves aligning the sequences. An alignment is created by lining up
the sequences with corresponding sections directly above one another. To make

1Strand is a trademark of Artificial Intelligence Limited.



corresponding sections line up, dashes are inserted into the sequences. These dashes
are called indel characters, since they represent areas in which insertions or deletions
of characters are required to match up the corresponding sections of the sequences.
For example, the following is an alignment of the four sequences given above:

augcgagucuauggc------ uucg----gccauggcggacggeucauu
augcgagucuauggu------ uucg----gccauggcggacggeucauu
augcgagucuauggac----- uucg---guccauggeggacggeucagu

augcgaguc-aaggggcucccuucggggageaccggegeacggeucagu

The application discussed in this report uses a concurrent logic program to automat-
ically generate such alignments. The sets that we align will normally contain 2-50
sequences; the individual sequences will contain between 10 and 2000 characters.
Although we will restrict ourselves to fairly short sequences when giving illustra-
tions, the reader should remember that our algorithms are intended for much longer
sequences.

2.1 Why Create Alignments?

A great deal can be learned by studying similarities and differences in sets of se-
quences. In the case of the alignments that we have generated, the sequences being
aligned are known to come from corresponding genetic material in individuals from
closely related species. Once such a set of sequences is aligned, it is possible to ex-
tract a fairly accurate guess about how the organisms relate in the tree of evolution.
That is, it is likely that by studying the differences between such similar sequences
that we can make accurate guesses about the progress of evolution. This in itself is
of substantial interest to some biologists. One of the recent advances in understand-
ing the evolution of early life forms was based on a carefully prepared alignment of
RNA from bacteria ribosomes. See Chapter 28 of Watson et al. [7] for a discussion
of the discovery of the relationships between eubacteria and archaebacteria.

Suppose that the sequences come from individual members of the same species
(rather than from a variety of species). One may wish to search for genetic differ-
ences that relate to observable differences in the individuals. This can allow the
differences that cause certain diseases (or a propensity to contract certain diseases)
to be isolated. Again, aligning the sequences can reasonably be considered the first
step.

Finally, consider the case where a biologist has just produced a given sequence
in the laboratory, and hypothesizes that it represents genetic material that performs
some well-defined function; let us call it a “widget”. The biologist might well search
through a growing database of all known genetic sequences in the hope of finding
occurrences of similar widgets. Once a set of such sequences has been extracted, an
alignment might be used to illustrate the exact variations on what is believed to be
a common theme.



2.2 What Is a Correct Alignment?

Before describing an algorithm to generate alignments, let us consider the issue of
exactly how one might determine whether or not such an algorithm produces “good”
alignments. There are at least three reasonable positions that can be taken:

1. Sequences really represent molecules or pieces of molecules. These molecules
usually have a fairly well-defined three dimensional structure. That is, they
fold into a characteristic shape. This is certainly not true of all sequences,
but it is true of many that biologists consider. Suppose that we increased the
size of the molecules represented by a set of sequences until they were roughly
the size of pieces of furniture. Further, suppose that all of these molecules
had roughly the same shape. Then, it would make sense to carefully match
up the corresponding sections. It is true that some might have unique bumps,
and some might be missing sections altogether, but the essential structural
theme might be apparent enough to allow a meaningful assignment of corre-
spondence. In such cases, the notion of “correct alignment” might well be
based on a structural standard. While biologists do not have the luxury of
viewing molecules so directly, they do have access to a great deal of physical
data accumulated through years of experiments designed to reveal structural
information.

2. A second approach might be based on defining some notion of genetic distance.
One sequence can be transformed into another by changing individual charac-
ters, inserting characters, and deleting characters. While there are infinitely
many ways to perform such a transformation, it is possible to meaningfully
define the notion of a “minimal” set of operations. If one then hypothesizes
that evolution would most likely have occurred through such a minimal path,
then a “correct alignment” should depict just such a minimal set of operations.
We call such a view the genetic distance standard.

3. Finally, one can simply take alignments that have been carefully produced by
biologists (frequently taking several years) and call them “correct”. Clearly,
these alignments reflect the myriad of considerations that really are weighed
by the practicing biologist. This simplistic view does not allow one to make
any judgement at all about alignments produced automatically. However, it
can be generalized to say something like “any alignment that a competent
biologists asserts is correct should be viewed as correct”. We call this the
operational standard.

We have adopted the operational standard. This has obvious drawbacks, since
competent biologists do, in fact, argue over which of two alignments for the same
set of sequences is correct. In such cases, we are perfectly content to call both
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alignments “correct” and let them both stand (until further information leads the
community of biologists to rule one out).

Our goal was to write a program that would take as input a set of sequences
and produce as output a correct alignment. While not completely successful (our
alignments do differ somewhat from those produced by expert humans), the program
does produce alignments which (in the cases that we have studied) appear to be
significantly better than other automatically generated alignments.

3 An Algorithm for Producing an Alignment

A fair body of literature has been generated about how to align two sequences.
Most of it has been based on the genetic distance standard and is based on dynamic
programming algorithms. A readable introduction can be found in Sankoff and
Kruskal [6] (see, in particular, Chapter 2). A straightforward generalization of
these approaches to larger sets of sequences is computationally too expensive (for m
sequences of length n, the algorithm is O(m™)). Hence, a variety of other approaches
has been tried (for a summary, along with pointers to the relevant literature, see
von Heijne [4]). Our experience has been that these approaches are viewed as useful
to biologists, but that the results differ substantially from alignments produced
by biologists manually. Comments like “they fail to take secondary structure into
account” (a reference to structural information known to the biologists) are common.
The algorithm that we present has, on a very limited set of alignments, been judged
substantially superior by a competent biologist. It is too soon to claim that our
approach is actually better (it has not been evaluated on a large enough set of
alignments), but the techniques used to implement it are of interest in themselves.

Our algorithm is based on the notion of critical subsequences. A critical sub-
sequence (of a single sequence) is a short string of characters (say, 8 to 20 characters
in length) that occurs within a sequence and is “not at all similar to” any other
string that occurs within the same sequence. For the purposes of this discussion,
we will say that two strings are “similar” if they differ in less than 30% of their
characters, and a string is a critical subsequence if it is not similar to any other
string that occurs within the sequence.

Suppose that a string C is a critical subsequence of two sequences S1 and S2.
If we think of S1 and S2 as genetically related, it seems highly likely that the two
occurrences of C must line up exactly in the final alignment. Otherwise, there must
exist a Cl in S1 and a C2 in S2 such that C aligns with each of these sequences:

...C...Cl1...
...C2...C...

However, the genetic distance between these corresponding pieces of the alignment
are fairly large. While it is quite possible that a section of genetic material like C
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will be displaced during the process of evolution, it is quite rare. Hence, we view the
presence of identical critical subsequences as extremely important clues as to how
the final alignment should appear.

When a critical subsequence occurs in two or more sequences, we call the set
of occurrences a pin. Our algorithm will attempt to create an alignment in which
as many pins as possible align exactly. Indeed, our analysis shows that, for the
alignments produced by biologists, the strings in pins do (almost always) line up.
However, very occasionally incompatible pins are detected. In some cases, it appears
that a section of genetic material has been “moved” over a substantial distance. It
is important that such inconsistencies be detected and eliminated; we call such a
procedure “cleaning a set of pins”. If we consider two sequences as lines, and we
view pins as arcs connecting points on the lines, then inconsistent pins are detected
by looking for arcs that cross. By carefully removing a minimal number of arcs, we
produce a set of pins that form a consistent set of constraints.

3.1 Inserting a Sequence into an Existing Alignment

Before discussing the overall algorithm, let us consider the easier problem of insert-
ing a new sequence S into an existing alignment A. This is done by forming a clean
set of pins that connect subsequences in S to subsequences that occur in A. These
constraints are then used to partition the overall alignment problem into a set of
much smaller subproblems, aligning all of the subproblems using some other ap-
proach, and then concatenating the set of smaller alignments. This approach is far
different than the more usual approach of forming a “consensus” of the sequences in
A, and then using a dynamic programming algorithm to align S with the consensus.

Once the original insertion problem has been reduced to a set of smaller problems,
there remains the issue of exactly how to solve each of these (hopefully) much smaller
problems. Since these smaller problems have exactly the same structure as the
original problem, it might seem that recursion would be appropriate. Indeed, it
can be used (since subsequences may be critical in one of the small problems, while
not being critical in S). However, eventually we must face the issue of inserting
a sequence into an alignment under the condition that no pins exist between the
sequence and the sequences in the alignment. We have experimented with several
approaches. The one that seems to work best is as follows:

1. Strip the indels (dashes) from each of the sequences in the alignments. Then
use one of the dynamic programming algorithms to form pairwise alignments
between the sequence to be inserted and each of the stripped sequences from
the alignment. The object is to find the sequence in the alignment that is
genetically “closest” to the sequence to be inserted.

2. Once the closest sequence from the alignment has been determined, examine



the alignment between that sequence and the sequence to be inserted. Find
the longest chunk of the alignment that contains no indel characters, and form
a pin P between the corresponding characters in the two sequences.

3. Use P to force a constraint between the sequence to be inserted and the small
alignment. If the entire sequence is included in P, then the sequence can
be directly inserted. Otherwise, again partition the problem into a smaller
set of problems (to align the nonpinned sections of the sequence against the
correspondingly smaller sections of the small alignment), and solve the smaller
problems.

This rather strange little algorithm has performed surprisingly well on most of the
alignments that we have examined. We now illustrate it in detail, showing the type
of situation in which it fails to work optimally. Suppose that we start with the
following alignment of four sequences:

1 uwuu----ggcuaggg-ucgaaccuggguaacaagguagccguaggggaaccugcggeuggaucaccuce--
2 uuu----gguuaugg-ucgaaucuagguaacaagguagccguaggggaaccugcggeuggaucaccuceu-
3 uuc----ugcugugg-ucgaaucuggguaacaagguagccguaggggaaccugeggeuggaucaccuccu-

4 gcaaggaggcagcuaa-ccacgguagguaacaagguagccguaggggaaccugcggeuggaucaccuccuu
Now suppose that we wish to insert the following sequence into the alignment:
5 guucgcggaggggggcgccgaagguagggaacaagguagccguaccggaagguguggcuggaucaccuce

The algorithm first detects the regions of sequence 5 that can be constrained by
pins with sequences 1-4. This breaks the sequence into 5 pieces, two of which are
sections constrained by pins:

not determined pinned not determined pinned
b guucgcggaggggggegccgaagguagg uaacaag-guagecgua CCggaagguguggcu ggaucaccuce

Hence, the next step is to insert the unpinned sections into the corresponding sec-
tions of the original alignment. Let us begin with the leftmost section:

1 uuu----ggcuaggg-ucgaaccuggg
2 uuu----ggunaugg-ucgaaucuagg
3 uuc----ugcugugg-ucgaaucuggg
4 gcaaggaggcagcuaa-ccacgguagg

b guucgcggaggggggcgecgaagguagy

We begin by computing alignments between sequence 5 and the character strings
(stripped of indels) from the four shortened sequences. These alignments are as
follows:



1 uuu------ ggcuagggucgaaccuggg
5 guucgcggaggggggcgccgaagguagy

2 uuu-----~ ggunauggucgaaucuagg
b guucgcggaggggggcgccgaagguagy

3 uucugcugug--—-—-- gucgaaucuggg
§ guucgcggaggggggcgccgaagguagy

4 g--caaggaggcagcuaaccacgguagg
B guucgcggaggggggcgccgaagguagy

Here the closest match is between sequences 4 and 5. We then take the longest piece
of these alignment that contains no indels (i.e., all but the left three characters) and
force the corresponding characters to line up in the final alignment:

uu----ggcuaggg-ucgaaccuggg
uu----gguuaugg-ucgaaucuagg
uc----ugcugugg-ucgaaucuggg
caaggaggcagcuaa-ccacgguagg

w» W N -
[ T~ - -

5 guu cgcggagggggEcecCcgaagguagy

Now the short sections on the left must be aligned:

B W
[ =T - -

5 guu

Here, the process of aligning the sequences with the shortened section from sequence
5 produces equivalent alignments. Hence, we choose to use sequence 1 (arbitrarily),
giving

1 -—u
2 -—u
3 —-—u
4 —-g
5 guu

At this point, we have aligned the entire section before the first pin, giving the
following initial section of the final alignment:



-—uuu----ggcuaggg-ucgaaccuggg
--uuu----gguuaugg-ucgaaucuagg
-—uuc----ugcugugg-ucgaaucuggg
--gcaaggaggcagcuaa-ccacgguagg

W N -

5 guucgcggaggggggcgc-cgaagguagy
We now proceed to the other unpinned section:

1 ggggaaccugcggeu
2 ggggaaccugcggeu
3 ggggaaccugeggeu
4 ggggaaccugcggeu

5 ccggaagguguggcu

Since all of the pieces from the original alignment are identical, only one small
alignment must be computed:

4 ggggaaccugcggeu
b ccggaagguguggcu

By gluing all of the pieces together, we get the following final alignment:

1 -—uuu----ggcuaggg-ucgaaccuggguaacaagguagccguaggggaaccugeggeuggaucaccuce
2 --—uuu--—-gguuaugg-ucgaaucuagguaacaagguagccguaggggaaccugcggecuggaucaccuce
3 -—uuc----ugcugugg-ucgaaucuggguaacaagguagccguaggggaaccugcggcuggaucaccucc
4

--gcaaggaggcagcuaa—ccacgguagguaacaagguagccguaggggaaccugeggeuggaucaccuce
5 guucgcggaggggggcgc-cgaagguagggaacaagguagccguaccggaagguguggeuggaucaccuce

Unfortunately, the initial part of this alignment does not agree with the following
alignment, produced by a human biologist:

1 -uuu----- ggcuaggg-ucgaaccuggguaacaagguagccguaggggaaccugeggcuggaucaccuce
2 -~uuu----- gguuaugg-ucgaaucuagguaacaagguagccguaggggaaccugcggcuggaucaccuce
3 —uuc----- ugcugugg-ucgaaucuggguaacaagguagecguaggggaaccugeggeuggaucaccuce
4

-gcaa-ggaggcagcuaa-ccacgguagguaacaagguagecguaggggaaccugeggeuggaucaccuce
5 guucgcggagggegggcgc-cgaagguagggaacaagguagecguaccggaagguguggeuggaucaccuce

The fact that the alignments do not agree reflects an obvious problem in the algo-
rithm that we proposed. The reader may wish to propose an improvement to our
algorithm. The ability to formulate algorithms, rapidly implement them, look at
the results, and iterate until success is achieved is critical; the software environment
discussed below represents our attempt to provide these facilities.



3.2 The Complete Algorithm

Now we are in a position to describe our solution to the more difficult problem of
aligning a set of sequences. The overall algorithm is as follows:

1. Compute a set of clean pins for the sequences to be aligned. Locate the

“best pin”, which is a pin containing critical subsequences from the largest
number of input sequences (i.e., the pin fixes a position in the largest possible
number of input sequences). If several pins contain the same number of critical
subsequences, choose the one closest to the middle of the input sequences.

. Reorder the sequences so that all sequences connected by the best pin occur
above those that are unpinned. Now the pin may be thought of as dividing
the original set of sequences into three “regions” —~ the section of the pinned
sequences to the left of the pin, the section to the right of the pin, and the set
of unpinned sequences.

. Align the left section, align the right section, and then concatenate the align-
ments.

4. Integrate the unpinned sequences into the aligned upper section.

There are numerous unspecified aspects of the above approach. The major issues
relate to determining what is meant by the last step. We have experimented with
two approaches:

4a. Align the unpinned section. Then divide the upper alignment and
the lower alignment into a set of subproblems, using pins that connect
sequences in the two alignments. Align each of the subproblems (those
for which pins do not constrain positioning) by forming “consensus” se-
quences and using a dynamic programming algorithm to align the two
consensus lines. Finally, glue all of the pieces together.

4b. Integrate the unpinned sequences into the upper alignment one at a
time, using the algorithm we described above. It should be noted that the
order in which sequences are integrated can make a substantial difference.
It seems best to integrate them by choosing the one that is “closest” to
a sequence in the upper alignment and integrating it first (and perform
this operation repeatedly, until all of the unpinned sequences have been
added to the alignment).

We are not yet ready to report on the relative merits of these two approaches.
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4 Strand as an Implementation Vehicle

A variety of considerations influence our choice of implementation strategy. First,
there is the major choice of whether to use a relatively high level language (like
Strand or Lisp) or a lower-level language (such as C). The tradeoffs are well known
and hotly debated. High level languages offer the ability to rapidly alter algorithms
and experiment with variations; lower-level languages offer improved performance.

Early experiments convinced us that performance might well prove to be an
important issue. Versions of our algorithms (used on sets of 40-50 sequences,
each of which contained 1500-2000 characters) written in C consumed in excess
of 5 hours of processing time on a Sun 3/160 workstation. The computation of
critical subsequences, in particular, has been studied by other researchers [5]; it
is a computationally-intensive operation which can consume substantial processor
and /or memory resources. Although we cannot precisely quantify the relative costs
of doing such an operation in a higher-level language versus C, it seems likely that
the ratio of execution times would be in the range of 5-10 using existing implemen-
tations.

The advantages of using a higher-level language for ease of alteration and even-
tual exploitation of multiprocessors also became apparent. Because the number
of alternatives that all require evaluation seems quite large, the time between the
proposal of an algorithm and the completion of its implementation is of critical sig-
nificance. One wishes to be able to formulate conjectures and test them as rapidly
as possible.

Our decision to adopt a bilingual approach, with the upper levels in Strand and
a limited set of “kernels” in C, reflects our very subjective reaction to the above
constraints. It is not necessarily critical that we have optimal performance on a
program that computes alignments. After all, if the algorithm produces correct
output, it replaces weeks or months of human effort. However, the problem of
computing alignments is only one of a number of computational problems facing
biologists. Many of these other tasks (such as searching a fairly large set of sequences
for those that “are similar to” a given sequence) are both computationally intensive
and occur often. We anticipate a situation arising within a few years in which
thousands of such requests will have to be handled daily. In that environment,
performance will definitely be an issue.

The kernel operations that we implemented in C were fairly limited. By far the
most effort went into writing routines to compute critical subsequences, form pins,
and to implement a dynamic programming algorithm. The latter routine is used to
align two individual sequences in which no pins constrain the alignment.
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5 Developing the Bilingual Program

The bilingual alignment program represented a development of an earlier program
written entirely in C. In the process of developing the bilingual program, we refined
both the implementation of the low-level routines and the top level algorithm. This
refinement process was aided by the existence of a clear specification in a high level
language.

A major concern when designing a bilingual program is to achieve a clean sep-
aration between the two layers of code. A first step in this direction is to identify
additional abstract data types that must be implemented. In our case, a single data
type sequence was required. A sequence is thought of as a string of characters that
come from some specified organism and have an attached “location” number. For
example:

aagcgc from homo sapiens at 1437

This might be used to represent a short sequence of genetic material from a human.
If there are embedded indels, the location is thought of as applying to the first
non-indel that occurs in the sequence. For example:

-aa-gcge from homo sapiens at 1437

This might represent a sequence produced during an alignment; in this case, the
“location” 1437 applies to the first “a” that occurs in the sequence. With these
comments in mind, a sequence is composed of

1. An identifier.

2. A location that specifies the location in an input sequence of the first non-indel
character.

3. A length (the number of characters in the sequence).

4. A string of characters that make up the sequence.

We found it convenient to represent a sequence as a tuple, with the general form:
{Identifier, Location, Length,String}

This made it possible to define most basic operations on sequences, such as “retrieve
the length of a sequence”, as Strand processes. We also needed to provide a small
set of user-defined operations to perform other operations on sequences. These are
described here in full to emphasize how few operations were required. The following
set of user-defined operations performed basic manipulations.
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read_sequence_set( File,ListOfSequences) reads a set of sequences from a
file and constructs a list of sequences.

extract(String,Start,Length,SubString) assigns the substring of Stringspec-
ified by Start and Length to SubString.

char_in_sequence(String, Disp,Char) accesses a single character at a dis-
placement of Disp into String.

We also required the following more complex functions that manipulate and create
sequences:

combine_alignments(Align1, Align2, Alphabet, Output, Distance) produces an
QOutput alignment of two existing alignments, using a specified Alphabet;
also generates a measure of the Distance between the two alignments.

critical_points(Seq, CPs) determines the critical subsequences of a given
sequence. Segs specifies the input sequences, and CPs is assigned a list
of critical subsequences.

form_pins(CPList, PinList) constructs a set of pins from the critical sub-
sequences that occur in a set of sequences. CPList is a list, each element
of which is a list of critical subsequences from a single sequence (as pro-
duced by critical points). PinList is assigned a list of pins. Each pin is
a list of critical subsequences from distinct input sequences.

glue( ListOfAlignedChunks,ConcatenatedAlignment) concatenates a set
of alignments.

strip_indels(Sequence,Sequence WithoutIndels) removes indels from a se-
quence.

The implementation of these operations required about 2000 lines of C code. The
size of this code may have to be expanded slightly, and we may well implement
alternative versions of some of the critical operations. However, it appears likely
that the bulk of future development will be in the Strand code, which currently
consists of about 600-700 lines.
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6 Using Multiprocessors

The ability to implement a database (and the assorted tools required to effectively
utilize it) will hinge critically on exploitation of multiprocessors. Hence, we are
extremely interested in investigating the effectiveness of Strand as a vehicle for co-
ordinating a computation in a distributed environment.

Multiprocessors are likely to be important in genome projects in two ways. First,
they may be used to perform searches against databases of thousands or millions
of sequences. Second, they may be used to speed up particular time-consuming
computations involving a small number of sequences. We envisage that both appli-
cations will be important: in a typical scenario, a scientist will perform a simple
search against a large database to retrieve a small set of sequences and will then
perform more sophisticated analyses on these sequences.

It is a fairly simple exercise to reduce database search times using a multipro-
cessor. In the absence of appropriate indexes, this type of search currently involves
comparing a given sequence with each entry. Partitioning and distribution are hence
straightforward [2]. Effective parallel execution of a single computationally-intensive
program can be substantially more difficult. We may have little information about
how best to define and construct subtasks; in addition, irregularities in the prob-
lem may lead to subtasks varying widely in number and size. Data-dependencies
between tasks can also cause difficulties. We hence chose to investigate the use of
Strand as a tool for executing a program of this latter type: our alignment program.

6.1 The Strand Program

Program 1 presents a small fragment of the Strand alignment program. This program
implements the top level of the alignment algorithm presented in Section 2.2. User-
defined operations are labeled.

The align_chunk process aligns a set of sequences (a chunk) by attempting to
split the chunk using a pin. This splitting yields three chunks: left and right pinned
chunks and an unpinned chunk. These are aligned independently and the three
subalignments are combined to produce the complete alignment (R5). At each
recursive call the algorithm computes critical points for each sequence in the chunk
(R3,R4), forms a clean set of pins using form_pins and selects the best of these as
the best pin (R2).

As noted previously, the alignment problem is sufficiently computationally in-
tensive to benefit from parallel execution. For example, aligning a relatively small
test data file required about 50 minutes on a single processor of an Encore Mul-
timax. Furthermore, the divide-and-conquer strategy employed in our algorithm
is naturally suited for parallel evaluation: each sub-alignment that results when a
chunk is partitioned can potentially be performed on a different processor. How-

14



align_chunk(Chunk, AlignedChunk) :—
pins(Chunk, BestPin),
divide(Chunk, Best Pin, AlignedC hunk).

pins(Chunk, BestPin) :—
cps(Chunk,CpList),
form_pins(CpList, PinList),
choose_best_pin(Chunk, PinList, Best Pin).

cps([Seq | Sequences],CpList) :—
CpList := [CPs| CpListl],
critical_points(Seq,CPs),
cps(Sequences, CpListl).

eps([],CpList) :— CpList := [].

divide(Seqs, BestPin, Algnmnt) :—
BestPin # (]|

split(Seqs, BestPin, Left, Right, Un Pinned),

align_chunk(Left, L Algnd),

align_chunk(Right, RAlgnd),

align_chunk(UnPinned,UnPAlgnd),

combine(LAlgnd, BestPin, RAlgnd,UnPAlgnd, Algnmnt).
divide(Seqs, (], Algnmnt) :—

basic.align_chunk(Seqs, Algnmnt).

Program 1 Alignment program top level.

% R1

% R2

% User

% R3
% User
% R4

% R5

% R6
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ever, parallel execution is not straightforward because the alignment problem has
an irreqular structure. The number and size of processes created is totally data-
dependent, cannot easily be predicted from the input data, and varies considerably
from one problem to another.

We addressed these difficulties by implementing a scheduler that supports a
load balancing strategy. Schedulers are typically used in the following manner [3].
An application-independent scheduler is implemented in Strand; the application
program is then modified to permit it to execute in conjunction with the scheduler.
The techniques we used to achieve this modification have some attractive qualities.
We could have decided on a partitioning for our program and transformed it by
hand. However, initial experiments convinced us that it was important to be able to
rapidly express and evaluate a range of possible partitioning strategies. We hence
developed source-to-source transformation tools that could be applied to a program
to automatically generate a program that exploited a particular strategy. Two such
tools were developed. The first requires the programmer to specify which processes
are to be passed to the scheduler. The second determines this automatically using
compile-time analyses. The design and implementation of these tools is beyond the
scope of this report. However, the ease with which they could be developed is in
our opinion a significant advantage of Strand technology.

6.2 The Scheduler

The load-balancing strategy that we used is based on the manager-worker model
[1,3]. The scheduler consists of a central manager plus a set of workers. Each worker
repeatedly obtains a unit of work (or task) from the manager and executes this work
to completion; the manager allocates tasks to workers as required.

Our scheduler differs from other schedulers in two respects. First, it allows
workers to contribute to the task pool maintained by the manager. Second, it allows
for data dependencies between tasks. A data dependency exists between two tasks A
and B if B requires data produced by A. As our scheduler requires that each worker
execute only a single task at a time, deadlock can occur if data dependencies are
not taken into account. For example, consider what happens in a system containing
a single worker if task B is allocated to that worker before task A.

The process structure used to implement the scheduler is effectively a star with
a manager and filter at the center and workers at the spokes. Each worker has
a stream to the manager; the worker uses this to communicate requests for work.
Each worker also has a stream to a filter, to which it can append contributions to
the task pool. Finally, a stream links the filter and the manager.

Workers pass tasks to the filter in bundles. A bundle is a set of tasks, some of
which may be nominated as dependent on others. The function of the filter process
is to delay each task until other tasks on which it is dependent have completed
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execution. The manager hence only receives tasks that can be executed immediately.

Strand implementations provide portability over a variety of physical architec-
tures by supporting virtual machines such as ring and torus (3]. Mapping an-
notations permit the programmer to control the allocation of processes to nodes
in a virtual machine; Strand systems provide embeddings of the virtual machine on
particular physical architectures.

A manager-worker scheduler can naturally be executed on a ring virtual machine.
The mandger is created on the initial node; a worker is created on each successive
node using the mapping annotation @fwd. Each worker is given a stream to the
manager, thus creating the star topology. In outline:

—machine(ring).

scheduler(...) :—
manager(...),

filter(...),
workers(...)@fwd.

workers(...) :(—
worker(...),
workers(...)Qfwd.

workers(...).

The complete scheduler program is given as Program 2. It exports a single process
definition, scheduler. This has the form:

scheduler(Count, WorkerMod, First Task)

where Count is the number of workers to create, WorkerMod is the name of the
module that contains the worker definition and FirstTask is an initial task to be
placed in the task pool. The scheduler creates the filter and manager (R3) and
spawns N workers around a ring (R7,8). The manager simply matches requests for
work (R) with tasks (W), until no more work is available (R4-6).

The filter receives bundles of tasks from workers (R9). A bundle has the form:
{Tasks, DependentTask, Done}

The first component, Tasks, is a list of immediate tasks. These have no data de-
pendencies and can hence be passed to the manager for immediate allocation. The
second component, DependentTask, is a single dependent task: this is not be exe-
cuted until all Tasks have been completely processed. The third component, Done,
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~ezports([scheduler[3)).
—machine(ring).

scheduler(N,WMod, FirstTask) :—
filter(Wks,Wsl),merger(Wsl, Ws2),
manager([{ FirstTask,_} | Ws2], Rs),
merger(Rsl, Rs), merger(Wksl, Wks),
workers(N,WMod,Wksl, Rs1)Q fwd.

manager([W | Wk],[R | Rs]) :— R := W, manager(Wk, Rs).

manager([],[R | Rs]) :— R := halt,manager([], Rs).

manager(-,[}).

workers(N,WMod,Ws, Rs) :—
N>0|
NlisN -1,

Ws := [merge(W) | Wsl], Rs := [merge(R) | Rsl],

WMod: worker(W, R),
workers(N1,WMod, Wsl, Rs1)@ fwd.
workers(0,-,Ws,Rs,.) :— Ws:=[],Rs :=[].

filter(lwork(Wk, Dep, D) | In}, Ss) :—
Ss := [merge(S1), merge(S2) | Ssl],
forward(Wk,Vs, S1), await(Vs, Dep, D, S2),
filter(In, Ssl).

filter([],Ss) :— Ss:=].

forward([P | Wk],Vs, Ss) :—
Vs :=[Term | Vsl],Ss := [{ P,Term} | Ssl],
forward(Wk,Vsl, Ssl).

forward([],Vs,Ss) :— Vs:=1],Ss:=].

await([done|Vs], T, D, Ss) :— await(Vs,T, D, Ss).
await([},T,D,Ss) :— T # true | Ss := [{T, D}].
awart([], true, D, Ss) :— Ss :=].

Program 2: Manager-worker Scheduler.

% R1
% R2

% R3

% R4
% R5
% R6

% R7

% R8

% R9

% R10

% R11

% R12

% R13
% R14
% R15
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is a variable to be assigned a value when DependentTask, and hence Tasks, have
completed.

The filter process creates a forward process to pass each immediate task to the
manager. A task is passed as a tuple of the form {Task,Done}, where Done is
a variable to be assigned a value when the task is completed (R10,11). An await
process is also created: this waits until the Done variables associated with immediate
tasks are assigned values and then passes any dependent task to the manager (R13-
15).

This concludes the presentation of the scheduler. It is important to note that the
scheduler, although developed for the alignment program, is completely application-
independent. It can be used to execute any program that adheres to its protocols,
which can be summarized as follows.

1. A worker is defined by a process definition worker with two arguments, corre-
sponding to a request stream and a work stream.

2. A worker generates a stream of variables representing requests for work units
and accepts replies in the form { Unit,Done} or halt.

3. A worker either:

(a) executes Unit to completion and then assigns the value done to the task’s
Done variable; or

(b) executes part of the task and then links the task’s Done variable with (one
or more) bundles of new tasks, which it appends to the work stream.

6.3 The Transformation

A source-to-source transformation must be applied to the alignment program be-
fore it can be executed with our scheduler. The transformation takes the original
program and constructs a new program capable of both generating and processing
tasks. An important feature of this transformation is that it can easily be performed
automatically.

The essential aspects of this transformation are demonstrated using a simple
example. Consider this outline program:

p(...) ==

af...),
b(...),
o...),
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Let us assume that the process p will be given to the scheduler as an initial task. We
must decide which of the processes created by execution of p are to be dispatched for
remote execution. Either programmer-supplied information or automatic analysis
may be used to determine that after process a performs some initial computation,
processes b and c are able to execute independently, and that when these processes
terminate, d can execute. If b and ¢ are judged sufficiently substantial, then this
program is transformed to execute a locally and pass processes b, ¢ and d to the
scheduler. The process d is made dependent on b and c.

The result of transforming the example program is outlined in Program 3. The
worker process starts by requesting a task (R1). It then repeatedly requests and
processes tasks (R2,3) until told to halt (R4). A task is represented by a term of the
form {Process,Done}. Program 3 shows the workerl rules that process requests to
execute p and d tasks. For brevity, rules for b and ¢ are not shown; they are similar
to the d rule.

The process p is transformed to a process that executes the process a (R5) and
then passes a bundle of tasks, containing processes b, ¢ and d, to the scheduler (R§).
Recall that a bundle has the form: {Tasks, DependentTask,Done}.

The transformed p process is invoked by the worker! rule that deals with p
requests (R2). The variable Done associated with the p request is not assigned a
value at this point, as the task has not been completed: instead, this variable is
passed to the scheduler with the bundle. The scheduler will ensure that the Done
variable is assigned a value only after the dependent process d has completed (at
which point the other processes must also have completed).

The other processes, b, ¢ and d, are simply augmented with a short circuit and
executed directly. The short-circuit is used to detect termination and assign a value
to the associated Done variable.

To illustrate the application of this transformation to the alignment program,
we consider the following rule from Program 1:

divide(Ss, BP, Algmt) :— % R5
BP #][] |
split(Ss, BP,L,R,UP),
align_chunk(L, LA),
align_chunk(R, RA),
align_chunk(UP,UnPA),
combine(LA, BP,RA,UnP A, Algmt).

Assume that the three align_chunk processes are selected as likely-looking pieces of
work. Transformation of this rule then yields the following rules:
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worker(Rs,Ws) :—
Rs :=[R | Rsl],
workerl(done, Rs,Ws, R).

workerl(done, Rs, Ws, {p(...),D}) :—
Rs :=[R | Rsl],
p(...,D,N,Ws, Wsl),
workerl(N, Rsl, Wsl, R).

workerl(done, Rs,Ws,{d(...),D}) :—
Rs :=[R | Rsl],
d(...,done, D),
workerl(D, Rs1,Ws, R).
workerl(done, Rs,Ws, halt) :— Rs := [],Ws:=[].

p(-..,D,N,Ws,Wsl) :—
a(...,done,N),
pl(N,...,D,Ws, Wsl).

pl(done,...,D,Ws,Wsl) :—
Ws:=[{[b(...),c(...)],d(...),D} | Wsl].

a(...,D,D1) :— D1 := D.
b...,D,D1) :— D1:= D.
¢(...,D,D1) :— D1:=D.
d(...,D,D1) :— D1 := D.

Program 3: A Transformed Program

% R1

% R2

% R3

% R4

% R5

% R6

% R7
% R8
% R9
% R10
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divide(Ss, BP, Algmt, Rs, Rs1,D,N) :— % R5’
BP #[]|
split(Ss, BP,L,R,UP,N),
dividel(N, L, R,UP, BP, Algmt, Rs, Rs1, D).

dividel(done, L, R,UP, BP, Algmt, Rs, Rs1,D) :—
Rs := [{[align-chunk(L, LA),
align_chunk(R,RA),
align_chunk(U P,UnPA)),
combine(LA, BP,RA,UnPA, Algmt),D} | Rsl].

The original rule spawns processes to align the left, right and unpinned chunks and to
combine the aligned sections. In contrast, the transformed rules pass these processes
to the scheduler, hence making them available for execution by other workers. The
combine process is made dependent on the three align_chunk processes.

The transformation that we have developed also supports what we call condi-
tional dispatch. The divide and conquer strategy adopted by the alignment program
generates a large number of tasks. These rapidly become too small to be worthwhile
distributing to other processors. We hence allow the programmer to specify a min-
imum size for task data. Tasks with data smaller than this minimum are executed
locally.

In summary, the alignment program has to be transformed to take advantage
of the manager-worker scheduler. We defined and implemented a source-to-source
transformation that takes as input a a source program and either obtains from the
programmer or infers which processes are to be dispatched as tasks. The transfor-
mation generates a new program that is capable of both generating and executing
these tasks. Automation of the transformation process made it easy to experiment
with alternative partitioning and scheduling strategies.

6.4 Performance Studies

Preliminary performance studies of the bilingual alignment program were conducted
on an Encore Multimax. This machine consists of 20 National Semiconductor 32332
processors and 64 MBytes of shared memory, accessed using a high-speed bus. The
Strand implementation employed for these experiments used the shared-memory
simply to simulate message-passing. Hence the results of these performance studies
can also be expected to apply to message-passing machines. The studies involved a
single, relatively small test data file and two different transformations of the align-
ment program.

The test data file used for this investigation incorporated annotations provided
by a biologist. These annotations permit the initial align_chunk problem to be
immediately divided into a number of independent sub-alignment problems. Our
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first attempt at transforming the alignment program for parallel execution only
created a task for each such sub-alignment. Execution times on a varying number
of processors are listed in Table 1. Except for N = 1, N processors were used to
execute N — 1 workers and a single manager.

Table 1: Parallel Execution of the Alignment Program.

No. of Time
Computers | (secs)
1 3360
2 2878
6 1020
11 859

16 578

The transformed program was not found to execute appreciably slower than the
original program on a single processor. This is not surprising, as only a few addi-
tional process reductions are required to create and distribute work. However, the
transformed program shows a maximum of only 5.4 times speedup on 16 processors.

Monitoring of the program was able to explain this result. The largest task
generated was found to take 478 seconds to execute. In addition, the initial task
which splits the data into subsequences and the terminating task which combines
these subsequences take a total of 36 seconds. Hence the minimum execution time
possible is 478 + 36 = 514 seconds: not much less than the best time of 578 sec-
onds. These figures indicate that ramp-down (and to a lesser extent ramp-up) times
are significant: processors are idle while the big task and terminating tasks are
executing.

A second attempt at transformation sought to reduce task size by dispatching
align_chunk and combine processes generated by the divide-and-conquer algorithm
(Rule R5 in Program 1). This is essentially the transformation illustrated in Section
5.3. An initial experiment showed that dispatching all align_chunk tasks did not lead
to performance gains. This was attributed to the creation of too many small tasks.
Hence we chose to only dispatch tasks for which the size of the input chunk exceeded
a certain threshold. This threshold, expressed in terms of the number and size of
the sequences comprising the input chunk, was made a parameter of the program
so as to permit experimentation with different values. Results obtained for various
threshold values on 11 processors are summarized in Table 2. S is the number of
sequences to be aligned; L is the length of the first sequence.

Table 2 shows that the number of tasks increases as the threshold is progressively
decreased. The execution time first reduces and then increases as tasks become too
small.

Using 16 processors, a best time of 350 seconds was achieved with S=5, L=50.
This represents a speedup of 8.9: considerably better than that achieved using the
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first transformation. We expect to achieve even better results on larger problems
and using alternative transformations.

Table 2: Effect of Task Size on Run-time: 11 Processors.

S |L No. of | Mean Task | Total Time
Tasks | Time (secs) (secs)
5 |25 760 5.2 472
5 |50 269 10.7 394
10 | 50 177 16.9 405
20 | 50 137 22.0 414
10 | 100 71 37.9 486
20 | 100 65 41.8 464

In summary, the manager-worker scheduler allowed us to achieve a significant
reduction in execution time for a highly irregular problem. Two concepts helped us
to achieve good performance: the recognition of data dependencies between tasks
and the use of run-time tests on the size of input data to determine whether to
dispatch tasks for remote execution.

It would be interesting to compare the performance of the bilingual program and
an equivalent program written entirely in C. However, the Strand rewrite of the top
levels of the original C program led us to improve the algorithm used. This reduced
overall run-time and hence prevented comparison of the two programs.

7 Summary

It is our belief that computational problems from molecular biology may repre-
sent one of the most significant uses of computers during the coming decade. The
problems posed in this area are frequently computation-intensive, and parallel com-
putation may well prove to be required. Hence, we explored the potential use of
Strand as a vehicle for achieving both ease of programming and with effective use
of multiprocessing capabilities. By coding critical kernels in C, we achieved good
performance.

The programming experiment reported in this report involved the coding of a
novel sequence-alignment algorithm in Strand and C. The bilingual program was ex-
ecuted on a multiprocessor with encouraging results. A key feature of our approach
was the use of a manager-worker scheduler to handle an irregular problem. An-
other was the use of a source-to-source transformation of an original program that
generated tasks at compile-time. Our experience developing an effective parallel
implementation of the alignment program emphasized the importance of a software
environment that encourages exploratory programming.
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Our experience with Strand has been gratifying. It has been possible to write
bilingual programs that are clear, that perform well, and that can be executed on
a range of available multiprocessing environments. We intend to continue our work
by implementing a distributed database to support searches for genetic sequences
that display similarities to a given sequence. Strand offers an attractive tool for
implementing just such a system.
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