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AN INTRODUCTION TO BEAMSTRAHLUNG AND DISRUPTION 

PBDJ CHEN 

Stanford linear Accelerator Center 
Stanford University, Stanford, California 94305 

1. INTRODUCTION 

To achieve enough luminosity for high energy physics experiments, it is inevitable to focus the 
colliding e + e~ beams down to miniscule dimensions at the interaction point in linear colliders. 
In the world's first of such accelerators, the Stanford Linear Collider (SLC), beam sise at the 
interaction point is designed to be e% = aw = 1.65 jun, and at = 1 mm [1]. For the next generation 
of linear colliders at the range of 1 TsV in center-of-mess energy the beam siie would be even 
smaller. The high density of charged relativistic particles would provide strong electromagnetic 
fields viewed by the particles of the oncoming beam, while the particles in the same bunch have 
no effect among each other because of the cancellation of Lorents forces between the electric and 
the magnetic components to the accuracy of the order of 1/7. The bending of particle trajectories 
under the influence of these EM fields provided by the oncoming beam is called disruption. During 
bending particles would radiate, causing an energy loss of the beam; this is called beamstrahlung. 
Both effects are important to the design of linear colliders [2,3|. • 

In this lecture we review the current understanding of the beam-beam interaction in e + e~ 
linear colliders. Strictly speaking, the two effects, disruption and beamstrahlung, during beam-
beam interaction are coupled. This is self-evident because without deflection there would be no 
radiation, and with radiation during bending the remaining trajectory of particles would not be 
the sains. Fortunately, in a large range of beam parameters the average disruption angles are 
rather small, and the emission of hard photons are relatively rare. For these reasons the two effects 
can be isolated from each other to the first degree of accuracy, and our study of the issue can be 
greatly simplified. This happens also to be the development historically. In sec. 2 we discuss the 
effects associated with disruption with negligible beamstrahlung. Here, an important parameter, 
the disruption parameter D, is introduced. We then discuss the in«rfaninii and rnu disruption 
angles. The analytic scaling laws for D "> 1 and D <. 1 are then compared with simulation 
results. Next we investigate the enhancement of luminosity due to disruption. Togetherwith the 
aspect ratio R = a%fa%, the two parameters define a scaling law for luminosity enhancement, i foi , 
due to the mutual pinching of the e + e~ bunches where the effective beam size axat is reduced. In 
addition to the luminosity enhancement arised from the overall reduction of the beam size, there 
is a second source for the enhancement that comes from.the extremely high particle density at 
the focal point inside the oncoming bunch. This second enhancement, Hot, becomes dominant 
over HD\ when D ^ 1, and is a function of the initial emittance which is characteriied by the 
parameter A = ff«//?*, where J3* is the ̂ -function at the interaction point. 
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Next we discuss beamstrahlung with negligible disruption in sec. 3, First we review the 
nature of beamstrahlung by describing the novel features of the problem. These specific features 
are then compared with the known radiation phenomena with emphasis on their similarities and 
differences. We argue that, in certain parameter range, the radiation mechanism of beamstrahlung 
is synchrotron radiation in nature. By this we mean the emission of a photon is induced by the 
interaction between the radiating particle and a collection of target particles via its macroscopic 
EM field. Again, an important parameter, the beamstrahlung parameter T, ta introduced. For the 
case T <Z 1, typical energy of the photons is much smaller than the initial energy of the radiating 
particle and this is catted the classical regime. On the contrary, when T » 1, photons tend to 
carry away a substantial fraction of the radiating particle energy; this is the quantum regime. For 
intermediate values of T, i.e., 0.1 £ T £ 100, the radiation is in the transition regime. We first 
derive the synchrotron radiation intensities from a semi-uniform field in the classical and quantum 
regimes. These expressions reproduce all the well-known formulas for a uniform field. We then 
review the concept of radiation formation length IR and argue that the effect of granularity of 
the target bunch is not observable in the quantum regime. Next we focus on the fact that in 
the problem of beamstrahlung the target field is longitudinally inhomogeueoue. To be correct it 
is necessary to include the effect due to the variation of the field when F & lftfot £ 1. In the 
extreme limit when F > 1, the radiation mechanism would depart from the characteristics of 
synchrotron radiation and transform into that of bremMtrahlung. 

The avenge fractional energy loss («) in beamstrahrang is then calculated explicitly. In 
the semi-uniform field approximation, one novel aspect in that m the nondaeaocsa Mgaue {<) is 
"reduced" from what the classical radiation formula would predict based on the aame value of 
T. The first beamstrahlung reduction factor BTI is introduced to describe tbia relative change. 
When the slope effect is included, we see a second beamstrahrang reduction effect, described by 
Eii- The quantum fluctuation due to finite number of radiated photons in various beamstrahlung 
quantities an listed as an appendix. 

The emphasis of this article is on the fundamental physics of the phenomena during beam-
beam interaction. We therefore linut the scope to single e+e~ btiiu&pauv with head<on collision. 
Many important issues, such as kink instability during multi-bunch crossings [4] and collision at 
an angle [S], are not discussed. Even within the scope of single bunch pair head-on collision, 
we have to regrettably limit ourselves to the approximation of decoupling disruption and beam­
strahlung. The real issues of beam-beam interaction concerning beamstrahlung with disruption, 
and disruption with beamstrahlung, an not covered in this lecture. The former hvjue has to do 
with finding a man realistic effective T that includes the pinching of the beam ana, while the 
latter issue relates to the maximum disruption angles bom particles that suffer seven radiation 
losses. With this grand picture in mind, our discussion in this paper should be regarded only as 
an introduction to the subject of linear collider beam-beam interaction which is very rich in new 
physics. Throughout this paper we adopt the convention e = ft = 1. 
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2. DISRUPTION WITH NEGLIGIBLE BEAMSTRAHLUNG 

Let ns recall that the nominal luminosity for head-on collision of two gaussian bunches is 

£ o 3 = 4 ^ o - ' ( U ) 

where JV is the number of particles per bunch and / , is the bunch collision rate. When including 
the disruption effect, the effective beam area is smaller, which in turn wihanrwt the luminosity. 
Thia can be parameterized by a pinch enhancement factor HJJ 

£ = HDLo . (2.2) 

In this section we review the effects of disruption during beam-beam interaction with negligible 
beaxnstrahlung energy loss. 

2.1 FOCUSING EFFECT AMD THE DISRUPTION PARAMETER 

When an electron bunch collides with a positron bunch, the collective fields from the particles 
in one oncoming bunch act like a lens to focus the particles in the other bunch toward the axis. 
The space charge force from the like particles in the same bunch is negligible to the accuracy of 
the order of l/-j, where t is the Lorentx factor of the relativistie bunch in the e+e~ center-of-mass 
frame. On the contrary, the electric and the magnetic components of the Lorentc force provided 
by the oncoming bunch contribute equally, also up to the accuracy of the order of 1/T, to the 
focusing force that pinches the test bunch. 

Let the density distribution of a bunch be decoupled for longitudinal and transverse c'irections: 

n(r,z)=nt(z)nT[r) , (2.3) 

where 

[round gaussisn) 

(uniform cylinder) , !

_1— e - jr* /*»S _ „ < * < 00 (rou! 

{ -Le~*V**» , 0 < r < 00 (round gaussian) 

5 U , 0 < r < 2o> (uniform cylinder) . 
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The normalization coefficients are chosen such that fnt{g)dg = 1 and fnr(r)rdr = 1. The 
equation of motion for the test charge in a bunch at coordinate (r, z) is [6] 

where 
r 

/ M - i / n r t r V ' d r ' , 

r« = 2.818 x 10~ I S cm is the claaskal electron radius and * = 0 when the centraida of the 
two colliding bunches intercept. Figure 1 ia a aehematic diagram that show* definition of the 
coordinates. Consider, for example, uniform cylinder bunches. The above equation becomes 

The solution k aimplv 

* - — [ ( B E R T H • <"> 
where m ia the impact parameter of the test particle upon entering the target bunch and 

The deflection angle ia therefore 

_ (•&r.Naa\ 

i=-(i^r*[(wifefH • 
MO 

i 
• • • I S»0 I M W I 

Fig.1. Schematic diagram that defines the various coordinates of the two bunches 
during collision. For a test particle in bunch 1 at si = «, the relative coordinate 
with respect to the center of bunch 2 ia a* m —2* — *. 
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For a weak deflecting force, at the end of collision t = iJZot we have 

When the two transverse dimensions have different distributiona, i.e., ax ?£ af, this expression 
can be generalized to 

* 2 r ' N 

(2.9) 
dy 2r,N 
* ~ iv^. + o,,)W * 

From ray optica the coefficients of eqs. (2,8) and (2.9) can be regarded aa the inverse of the focal 
lengths. 

We now define a dimensionless, Lorentx invariant parameter, called disruption parameter 
D [7], as a measure of the inverse of focal length in the units of bunch length ot in each of the 
transverse dimensions. The terminology dervived from the fact that during pinching, the beam 
eminences are severely disrupted. Explicitly, 

• 2r.lv<7, 
**» — Tff»(»i + «f) ' 

(2.10) 
D - 2r*No* 

' 1W,(«*+»f) 

Let us further introduce the aspect ratio R = Os/og J; 1, and call 

Thus, Dt = D/R. Ear round beams (JZ = 1)1?, = Dt, and in the asymptotic limit for flat beams 
{R > 1)D« <s 0 and D v 2re JVo,/̂ OaO>. 

For D <H 1, the focusing force is weak enough that each bunch only converges to the axis after 
traversing the oncoming bunch-, whereas far D > 1, the focal point lies well inside the oncoming 
bunch. Particles experiencing largs values of D would then execute betatron osculations during 
the course of collision. 

To end this discussion we comment that in the regime where D jfc 1, the pinching of the 
bunches would causally affect the disruption for the remainder of the collision. One would there­
fore naturally think that the parameter D loses its meaning in the quantitative sense. It is 
fortuitous that actually D as defined does provide simple scaling laws as if the entire bunch has 
a well-denned focal length. 
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2.2 DISRUPTION ANGLES 

One important information for linear collider design is the expected disruption angle. Knowl­
edge on the maximum disruption angle is essential to determine the aperture of the last element in 
a final focusing system such that it is able to avoid being showered by the debris from beam-beam 
collision. 

In terms of D, eq. (2.7) can be rewritten aa [B] 

§~2(^f-[(iS.r'H • 
For D 4C1 and at the time when the test particle edits "from the oncoming bunch 

13) 

For 17 > 1, at the time of exit from the oncoming bunch ~a tart particle would haw executed 
more than one cycle of betatron oscillation. Therefore, the sinusoidal function in eq. (2.12) is of 
order unity and 

The row disruption angle |J"" = y/{[dr/dt)*)ri 
be deduced from the above equations through y (to) and fq"**, respectively. It Is obvious that in 
doing H this way the generic functional behavior of •"" and •Jj*" axe the same, La., 

- fa+bD , 0 « 1 T 

where a, & and a an soir«nuinerieal coefficients which are different for •£** and •£"*» and <o a 
reference angle denned as 

vo = ~~~ 

As was dismssfd earlier, during the collision both beams are continuously deformed due to 
the mutual pinching. Thus, for reliable estimations of these coefficients computer simulations are 
indispensable. Figure 2 shows B0 and »™ as functions of D from computer simulations by 
Hollebeek and hamten (8,9] and Yokoya [10]. The two sets of data axe In reasonable agreement. 
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So 

1 1 i | i | 

• Hoileteefc-Minlen 
* Yokoyo 

Numerical Fit 

M7«o • 

• , | —I 1 

Fig. 2. The maximum and rm* disruption angles aa functions of 
D. The solid curves are from eqs. (2.16) and (2.17), and the dashed 
curve is from eq. (2.18). 

From these curves we find 

And 

«o 

gmu 

' 0.087 +1.57 B , 

{0.78 + 
0.67 
7D-

0.20 D, 

D<1 

J7>1 

J3>1 

(2.16) 

(2.17) 

These asymptotic behaviors are shown by solid cnrves in fig. 2. A different numerical fit which 
empericatty matches the 8a data for the entire range of 17 is given by Palmer [11]: 

1 
IT? (2.18) 

( I J H W M 0 - 0 6 ^ ) 
This function is plotted as a dashed curve in the figure. 

2.3 LUMINOSITY ENHANCEMENT FACTOR 

Since the bottom line of an accelerator design is the luminosity, the most important effect of 
disruption is the reduction of the effective cross sectional beam area, which causes enhancement 
of luminosity. As discussed above, this effect can be characterized by the luminosity enhancement 
factor ED = £/£o where the luminosity is defined as 

£— 2N'fT j dzdydzdt-n{x,y,z-t)-n{x,>j,-x-t) . (2.19) 

n(x,y,c-t) and n(x,yt— a — t) are the local densities of the two beams at position (x,y,a) at 
timet. 



To include the disruption effect we return to the equation of motion In eq. (2.4). The solution 
to the first order in D is [12] 

r ( M ) « r o - ^ / ( r o ) * ( t , s ) , (2.20) 

where 

Thus 

t it * 
g[t,m) = J * ! J dtt n t ( -2t - *) = J dti («-*!) nL(-X -m) . 

ro = r + ^ m9[t,M) . (2.21) 

For our purpose we like to know the radial distribution function n, at {*,«). This can be fouad 
by 

= Mn») [i + ̂  »('.*);£ ('/«)] 
(2-22) 

- [ • • « + * # ̂  /w »(M)] . { i + i ^ ,(«,„).„,(,)] 

With the above expression we can estimate the Immnusity from«fr (2 J.B), which: can also be 
expressed by the bunch coordinates introduced in fig, 1, 

Lacjrdr d*riM% n J a i K f e ) [rt,(r)]J 

(2.23) 

where the leading term corresponds to the nominal luminosity £<>• The integration over r eaa be 
carried oat, which gives - - • - • ' 

oo ' • s o 

/ , * , £(n7% : / W + B ' i ) •-• I / • • * • » * « " « 
o o 

Thai the luminosity enhancement factor for small i? is 

HD1S* t+*^L]M^\j dsids,M*l)Ml)(ff(*.-i)+^*»)) • ("5) 
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Since the' two colliding bnnchea are symmetric, g(t,zi) and g(t,zj) contribute equally to En, 
where 

I BO 

Blt.zA = I ati(t-fi) • * ( - * - * ) - \ [ rdrn^r + x,) . (2.26) 

Therefore 

(2.37) 

00 

S D I o, i + i i ^ J I l ^ ] j ^ . . W . , ] (z,) y r«fr»t(r + *,) 

™0O 0 

Now we introduce norinaliied coordinates p = r/©v and f = */««. Then 

CO OO 

Mm * i + J>[j£J£2*.J f dfj Tdrnti<) B6(r + f) . (2,28) 
o 

Plugging in diatrubntion function! from eq. (2.3), we obtain 

Em. « . 
l + s ^ - D+0{IP) , (nrand gauasian) , 

X>"Cl (2.29) 
l+^-D+0[D*) , (uniformcylinder) . 

So far the discussion has been limited to round beama. To extend the above expression to 
arbitrary values of JZ, it is more convenient to rewrite 3m aa an exponential function: 

Mm « e u ,/ sv y» , P « c l (round gansaian) . (2 JO) 

Recall that for different aspect ratios D scales aa 25/(1+ £) [cf., eq. (2.11)]. So naively one 
would tend to assume that Bm(R) varies aa tap (2A/(1+S)\, which b incorrect. 

•Notice that .flm essentially comes from the relative change m beam spot aisea, Le., 

where 4atHj3% is the effective, beam aiae. For round beams 

V^^sS = eB/>v^ , D < 1 . (2.31) 
Of 



Thus, for A > 1 we have [et, eq. (2.11)] 

Combining eqs. (2.32) and (2.30), we have 

Hi»(i*) = e ( 1 + , , W , ^ * , 2><1 . (2.33) 

Now we replace wcp[2D/3 /̂ir] by Hoi% then we obtain 

ffr.i(B) = flgihll,/rS • (*•»<) 

This expression was first introduced by AmaJdi [3], 

Beyond the D <.! limit, the disruption effect becomes very nonlinear and we lack analytic 
tools to derhre luminosity enhancement factor rigorously. Computer simulations of So with 
negligible besmstrahhmg have been studied by'sswaraT̂ YBthBsnr'Vhjiira 3'sluiws 2tj/ wsrrunctlun 
of £ for round ganasiaa beams. The solid curve represents the original work of Hollsbeek [T], 
where the initial beam emittance is aero. The dashed curve Is from a recent study by Fawhy 
and Lee [13] with e» = 6.7x10"* nuad. Notice that the two agree ate substantially dineraat, 
for D S* . While the Hollebeek data saturates at Up a 6, the Fawley-Lee result does not seem 
to saturate. Despite this disagreement, tiva euFterarep jsBebiyelaBe-tn^egh other for D<1? 
where our analytic formula in eq. (2^8) fits quite well. . 

10 

8 

6 

. 4 

2 
Q 
0.1 I 10 100 

• • •T ' 0 ,-•'' • • > ( * > 

Fig. 3. The hnnmosity enhancement factor Bp as a function of D. 
The data are taken from the simulstian remits of Hollebeek, and 

:•;. FawleyandLee.,..; 
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2.4 THE EFFECTS DUE TO INITIAL EMTTTANCE 

Effect on Luminosity Enhancement 

In order to have a better assessment of the phyaieal process that contributes to HD beyond 
the limit of small D, we investigate the time evolution of HD during beam-beam collision. For 
this purpose we single out the time dependence of £ in eq. (2.19) and write 

CO 

= J h{t)dt (2.3S) 

The function h(t) is thus the "differential" luminosity in time. A normalised k[t) (i.e., k[t)/£) 
was sumilationed by Chen and Yokoya {12]. The histograms for D < 1 are shown in fig. 4. 

«-»T 

Fig. 4. Computer simulations by Chen and Yokoya on the time evo­
lution of luminosity for different values of D. 
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From the figures we aee that when D ia very email, e.g., D 32 0.5, the histogram follows 
essentially aa the square of bunch-current distribution, which in our ease ia gaussian. In thia region 
of D the enhancement of luminosity occurs through the overall demagnification of the beam cross 
sections, aa discussed in the previous section, where Hp\ in eq. (2.30) agrees reasonably well with 
the values shown in the first four diagrams in fig. 4, aa it should. 

When D ~ 0.5, a second peak appears. This is explained to be caused by particles at certain 
radius (not the entire cross section) focused on beam axis within the oncoming bunch. At D = 0.5, 
this peak occurs at t = 1.5 a s . The peak grows aa D geta larger, and eventually becomes the 
dominant source for the luminosity enhancement by D ~ 1.0. Notice also that the location of the 
second peak shifts gradually to the left when D geta larger, where the stronger disruption induces 
the phenomena to occur earlier in time. The steepness of this peak suggests that tiny time steps 
are required in simulation. 

Since the second peak is believed to be caused by particles focused on axis, where very high 
density would occur within a tiny volume, we need to fine tune the radial mesh aises in order 
to avoid underestimating the luminosity at the focal point. Figure 5 shows Ho aa * function 
of cn(l/dr), where dr ia the radial mesh size in units of Of m each of tfasxomputerrmvi' The 
simulation was done [12] by assuming aero initial emittance for D =»1 and 4. It is seen that Ho 
scales roughly linearly aa £n(l/dr), which ia clearly divergent. This implies that the functional 
behavior of Ho with aero beam emittance is very subtle^ A-fiaite vglua^f-Ha. could be obtained 
by a randomly chosen mesh size (or the number of maeropartiele*} in a simulation with tero 
emittance, but the result would not be numerically etahte.-

The symptom for zero emittance beams arises because all particles enter the oncoming bunch 
in parallel, thus those with the same impact parameter would be focused to a single point. For 
beams with nonzero initial emittanee there would be a smearing effect that this singular behavior 

10 
8 

H o 6 

4 

2 

O 
10 50 100 500 

w i 1/dt n u 

Fig. 5. HQ as a function of the inverse of the radial mesh size, 1/«V, 
in computer simulations for D = 1 and 4. The initial emittance is 
zero. 
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can never occur. Let as introduce a Lorentz invariant, dimensionleaa parameter A that manifests 
the beam emittance for fixed a% and av; 

(2.36) 

where 0' is the 0-functton at the interaction point. Figure 6 ahowa So with three different 
values of A (A = 0.1, 0.2, and 0.4), the simulations use the computer code ABEL developed by 
Yokoya [14]. As expected, entailer A give* larger values of ED- Furthermore, from the figure we 
find that 

HD[A = .01) - BD{A - 0.2) =f HD(A = 0.2) - BD[A - 0.4) (2.3T) 

for a given value of X), but the separation inoeaies migMy quadraticaily. This niggests that the 
part of the himinoeity enhancement arising from the second peaks in fig. 4 scales as 

Bm oc 

From fig. 0 we deduce that 
war • 

BD s« Ai + A Jin f j ) l • B » * • 

(2.38) 

(2.30) 

BD> I 

where At sc 1.6 and A] a 0.43. 

Putting everything together, the overall luminosity enhancement is now 

HDi*l + sfcD , 0<DZ0.$ , 

JT*>i+*.»* I + ,$?*>+0.43 [in (£)]* , 0 . 5 5 B S 2 , (2.40) 

fl^"+JffMK 1.8 + 0.43 [ m ^ ) ] 1 , 2 £ l > £ l 0 0 , 

where At has been identified to be the saturation of Bm at D Jfe 2, at which value the pinching 
has induced roughly half a cycle of plasma oscillation [7]. Thenoneaturationof Ifa's in fig. 6 are 
characteristically different from that of Hollebeek in fig. 3, but show similar tendency as that of 
Fawley and Lee. 

20 

- IS 

9 

t • 1 Ml l | 1 I I I l l l l | | I 1 1 l l l l 

a A=0.li 
- "* A 

/ / 

/M - <s<x«-
l&S -

I ' I I I I I I I i i i mill • • 
O.I 10 100 

"•-*f 

Fig. 6. Luminosity enhancement factor BD with dif­
ferent values of A simulated 07 Chen and Yokoya. 
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Effects on Disruption Angles 

With the drastic impact on luminosity enhancement in mind, it is natural to ask whether 
the initial emittance also nukes large influence on the disruption angles described in sec 2.2. 
Simulations are done by Chen and Yokoya [12] in this respect. Figure 7 shows #^" and 9™* in 
the units of 0>/ffs. Again, A = 0.1,0.2, and 0.4 are used to find the sensitivity of the angles on A. 
The data in the figure evidently show that the disruption angles are asymptotically independent 
of A. Thus all the statements in sec. 2.2 remain unchanged. 

The feet that the disruption angles are independent of A can be understood as follows: While 
luminosity comes from multiplying local denstities of both colliding bunches, disruption angles 
depend oniy on the integrated density of the oncoming bunch (through Gauss's law). Under this 
light the sharp focus of the like particles on axis would hare no effect on disruption. Furthermore, 
the LorenU force provided by the oncoming bunch at any radios r > 0 would be the same around 
the focal point independent of whether the focus is sharp or blurry. 

10 

•J? ' 

0.1 
0.1 l 10 100 

«-•? D ttHAII 

Fig. 7. Disruption angles with different Tames of A «*""•'»*•* by 
Chen and Yokoya. 0 o's are in the units of o>/o>. 
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3. BEAMSTRAHLUNG WITH NEGLIGIBLE DISRUPTION 

In this section we first review the novel characters of beamstrahlung utraming no bunch 
deformations. This serves as an introduction to the more specific discussions following that. To 
discuss radiation, we take an iterative approach. First we examine the problem with semi-uniform 
field approximation that is suitable for long bunches, from which a beamstrahlung reduction factor 
En is obtained. Next we include the fact that the field strength in a bunch is actually varying 
along the trajectory of a radiating particle. This results in a second beamstrahlung reduction 
factor flxi when the bunch is short. 

With efforts in recent years, the understanding of the subject is rapidly maturing, though 
with a wide spectrum of appoaches to the problem. To be self-consistent in our treatment it is 
difficult, if not impossible, to review various different calculations in detail. Instead we will only 
mention each individual contribution in passing wherever is appropriate. 

3.1 THE NATURE OF BEAMSTRAHLUNG 

Collective Fields from Discrete Scattering Centers 

In the laboratory frame (also the center-of-mass frame in our case) of a linear collider, an. 
electron encountering a positron with an impact parameter 6 would have an effective interaction 
time Ati — 6/7 due to the fact that the fields associated with relativiatic particles span about 
an opening angle Aff ~ I/7. m turn, the correapondmg effective distance of Averse through the 
fields of the oncoming particle is 

4 = n ~ £ • (3.1) 

Consider an electron encountering the entire flux of the oncoming positron bunch. The flux 
is roughly 

£-i • <»> 
where 1% is the mean longitudinal separation of target particles. The target beam fa considered 
to be dense if l\Z> In. Taking a typical value of impact parameters to he one standard deviation 
in the transverse direction, Le., 6 ~ ev, the condition for a derse beam translates into 

70* 

In tins ease the background field provided by the particles in the oncoming bunch is con­
tinuous. (See .fig. 8.) For example, the Stanford linear Collider (SLC) beam parameters are 
7 = 1 x 10 s, number of particles per bunch N = 5 x 10 1 0, a, ~ 1 mm, o> ~ 1 jan at the 
interaction point. Thus NffT/foM ~ 500 :> 1, and the beam is dense. 

is 



Fig. 8. A schematic diagram for a "dense" beam. 

A beam is said to be dtfuie if £3 <C *i, or 

Nffr < 1 (3.4) 

In this case the background field becomes discrete and the test particle would see the granularity 
of the target bunch. (See fig. 9.) For example, in the conceptual accelerator of 5 TeV+5TeV 
discussed by Richter [IS], and refined by Himel and Siegreat [lo], 7 = 1 x 10T, N = 1.2 x 10s, 
a, — 0.4 pm and o> = 2A A, we hare JVo>/i«rs ~ OJXkTS < 1. The beam is therefore quite dtfuie. 

In one version of the CLIC parameters J17], whete «j = 2 x 108, JV = 5.4 x 109, «r. = 0.5 mm 
ando>s 65 mm. we find JVO>/TO« '** 0.35iS1. Inth a case the beam is only marginally dilute. 

':•'.• j ' • ...•'.•' • ; % i > : ' i : . . K ' v . '• • 

i l i i l j ' " V.tBV... affviV -j.: ' i : 
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"FSJ&ftU' A schematic diagram fbraY "dilute" 



The length scales l\ and tj introduced above arise from kinematic origins. Now we introduce 
one more length scale, the radiation formation length IR, which arises from dynamic origin. 
The radiation formation length is the length which an electron (or a positron) must travel for a 
photon to be emitted within an open cone with angle ~ 1/7. (More detailed discussion on IR 
is given in sec. 3.2.2.) Together with the bunch length a», the four length scales comprise eight 
possible situations! where ij , /a < 0, by definition. Among the eight arrangements, the cases 
lR<l\<t* < o»i l&< li<l\< o» and ii < IR < lj < at assume a chain of close encounters 
between the test electron and the positrons where each defiection causes a bending angle of more 
than ~ 1/-7, which is very unlikely. The remaining five cases can be categorized into the following: 

a. In < CJJ < t\ < a,: The bunch is so dense that the test particle would be 
bent severely and quickly lose all its energy- This b a situation where the 
accelerator designers would definitely want to avoid. 

b. Is < £1 < IR < a, (dense beam) and <i < t* < IR < o, (dilute beam): m 
this regime the test electron Interacts with the macroscopic fields collected 
from positrons within the range of IR. For dense beams, the collective fields 
within IR are smooth. The radiation is this case is similar to the familiar 
"synchrotron radiation." 

For dilute beams, the interaction with the test particle la still collective, 
but the discrete fields would act somewhat like "undulators" with mean 
periodicity ~ £j. These "undulators" would then induce ripples onto a 
smooth trajectory associated with the mean charge distribution of (he target. 
Tais would potentially introduce extra radiation. We will discuss this point 
in more details later. 

It occurs that almost all linear collider beam parameters that people dis­
cussed are in this category. So the rest of this section will be devoted pri­
marily to this t 

e. it < cj <a, < IR and Is < £1 < o> < eg: This corresponds to the condition 
when the bunch is ultrashort. In this regime the whole target bunch acts 
like a "positron nucleus," and the radiation of the teat particle Is more like 
that in bremsstrahlung. 

It has been recently pointed out [18] that this b a desirable beam parameter 
regime where beamstrahlung would be greatly suppressed. Bat h is unclear 
^ M V r m - \ bfimi p*nwTif*T» %r* twi^i—% fl^»ip»t»^ **>$ whttiitr th«y 
will conflict with other stringent physical requirements in a linear collider. 
We therefore view it as an interesting option which requires further studies. 
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Presence of Both Electric and Magnetic Fields 

Unlike a permanent magnet, in beamstrahlung the target buneh presents both electric and 
magnetic fields in the e+e~ center-of-mass frame, whereas in the rest frame of the target bunch 
there is only E-field. m fact, in our case (\E\a - \M\2)/\E\9 ~ I /7 3 tt, 0, and one can never find a 
frame where there is only B-field. 

Facing this fact, two different approaches have been taken. One can either work in the rest 
frame of the target bunch, which is what Blankenbecler and Drell [19] and Jacob and Wu [20] did, 
or work in the center-of-mass frame and assume the Lorenti force due to E and £ to be equal. 
This second approach has been taken by Himel and Siegrest [16], Noble [21], Yokoya [14,22] and 
Chen [23]. 

Quantum mechanically, In principle, an electron interacts with £ xadB very differently. For 
example, while an electron would execute a circular orbit in a transverse uniform magnetic field, it 
would instead have an open orbit when traversing a transverse uniform electric field. (See fig. 10.) 
This difference is the genesis of the well-known historical issue called Klein paradox [24] where 
spontaneous e +e~ pair creation is possible when the electron is accelerated in a strong jE-field. 

e' 

i< <§)? 

S-BT ~ * * S i ^ _ SSSSA1S 

Fig. 10. dosed and open trajectories of an electron under B and E 
fields, respectively. For |B| = \E\ the two trajectories largely overlap 
around the turning point. 

However, it is shown by Chen and Noble [25] that beamstrahlung actually occurs within a 
very short distance ~ eM around the taming point, where there iano essential distinction between 
the two possible trajectories. (See the overlapping section in fig. 10 indicated by «-,.) More 
specifically, when the electron momentum which is transverse to J? is much larger than the rest 
mass, Le., pj. 3* m, and when e\E\/m <: 1, the radiation rates are the same from M and B given 
equivalent strengths. We will base the rest of our discussion of beamstrahmngon this argument. 

< 
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Finite Extents of the Fields 

Unlike the bona fide synchrotron radiation where the entire closed orbit of an electron is em­
bedded in a uniform magnetic field, in beamstrahlung the field has finite extents. The Btrength 
of the EM field is proportional to the bunch current, which typically varies as a gausaian func­
tion. Very often an equivalent uniform distribution with total length L = 2y/3aK are invoked 
[cf., eq. (2.3)] for the sake of mathematical simplicity. A schematic drawing is shown in fig. 11. 
In the transverse direction, the local field strength also varies. 

Umgitudinat 
y 

"Round" Bunch 
• • IT 

Plot Bunch 
S H I U M 

Fig. 11. Schematic diagrams of charge distributions in longitudinal 
and transverse directions. 

For a round beam (i.e., R = 1) with a bi*gaussian charge distribution 

n (r M\ » } c-fh*,-*!*! 
" — l ' * ' (2*)*/»o*»/ * 

the corresponding field strength is 

(3.5) 

(3.6) 

where B to in the radial direction and M is in the ashnnthal direction. In the more general case 
of aD^beam(Le., £ < 1 ) whhatri-gansaianchargedktribution 

»-<—' = M ^ - - " * 8 « - " - ! ' - ' ' W • (3.7) 

the &neld is generally not pointing to the radial direction. The field strength is [26] 
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I ^ - I B W ^ P ^ (3.8) 

where »(?)*« axe complex error functions. 

From eqs. (3.6) and (3.8) it is clear that the fields in a bunch extend only within a finite space 
with strengths varying from point to point. We like to stress, however, that their longitudinal 
variation follows exactly the distribution of the buaeh charge. 

3.2 SYNCHROTRON RADIATION IN A SEMI-UNIFORU FIELD 

Baicr-Katkov Approach 

Our starting point is the Baier-Katkov method of radiation calculation [27]. A similar method 
had been used earlier by Schwinger [28]. The method is based on the realisation that when the 
radiating particle is ultrarelatmstic, its radiation in a magnetic field is a quasi-classical problem. 
By that we mean the motion of an electron becomes more and more "classical" as Its energy 
increases that it makes sense to describe the particle by its trajectory. The radiation is therefore 
viewed as induced by the bending of the trajectory. The only role that quantum physics plays 
is the nonconunutatrrity between the electron field and the photon field, and the conservation of 
initial and final energies in a discrete manner. Th>- general expression of radiation intensity (in 
the Coulomb gauge) is 

where a = 1/137 is the fine structure constant, (w, fc) the fom-mnmentnm of the photon, (t|, {f\ 
the initial and final states of election, leapettivcry, and Af the transition matrix. To the accuracy 
of the order of l / i , Baier and Katkov show that the phase factor from Jf*Af 

^ ^ 0 = ^ . ^ (3.WJ) 

where T = t% ~- ti and t = ti + tj, commotes with both the Hamiltonian X and the electron 
momentum p~. After summing c^er the spins cftlie finale 

. and averaging over the initial electron spins, the radiation intensity can be written as 



f = ^ s / ^ * / * e ( e - ( M . ? ( « a ) ) « p { ' - [ w r + i 7 (S-«*i>-rt«i»-wr)]} , 
—00 

(3.11) 
where £ and £' are the initial and final energies of the electron and 

i-i[K)"« <?(*(*,), *(*,)) = i | ( i + ^ ) (*<*,). * & ) -1 ) 
(3.12) 

+ (£)'(*W-W-i+$)] -
From now on we will simplify the notations by designating Si and ej for tfjti) and ffftj), respec­
tively. Similar notations apply for f[t). It is observed that the dominant contribution of the 
r integration in eq. (3.11) comes from the value at vr ~ 1/T- This corresponds to the situa­
tion where the electron position vector has swept through an angle 1/7, or correspondingly the 
outcoming photon lies within an open cone of angle 1/7. We shall call this period of time the 
radiation formation time r, and the corresponding distance of travel by the electron the radiation 
formation length, £R. Since 1/7-CI we can Taylor expand t& and rj in terms of vt and ft: 

«i-flj=«k- ^ + eir + - « i r 3 + -o*ir s + .-.j , 
(3J3) 

£-(r»-?i) = J . [ e i r + | e i r » + Jlir« + ...j . 

In their paper [27] Baier and Katkov truncated the expansion at uif*» thna the assumption was 

Since Bee* in a magnetic field, and v* = constant, we have v - 7 = 0 . Taking time derivatives 
successively, we have 

«. £*=-?•« , v-l?=-3i?-ff , etc; (3>1S) 

Using these relations the assumption can be translated into BrfB <. 1. Now we define a dimen-
slonlnw, Lorentx invariant parameter T: 

^ T-^f-£ ' (316) 

where B c = nrV/eA = 4.4 x 10 1 3 Gauss is the Schwinger critical field strength [28]. The radiation 
intensity for electrons in a semi-uniform field satisfying Br.fB <C 1 can then be obtained in terms 
ofT: 
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| a m a T , ( l - 5 ^ T + 48TJ + ...) , T < 1 . 
(3.17) 

^r ( | )am*(3T) 3 / 3 + . . . , T > 1 . 

La the above equation the expression for T < J, is the well-known formula for classical 
synchrotron radiation, including the leading quantum correction first derived by Schwlnger [28], 
and independently by Sokolov, Klspikov and Ternov [29], and higher terms in T. The expression 
for T » 1 corresponds to the synchrotron radiation in the extreme quantum limit studied by 
many people, but in this article we will simply call it Sokolov-Ternov formula, [30]. The fact that 
Baier and Katkov reproduce these formulas in a straightforward manner and generalise them 
from strictly uniform fields to semi-uniform fields suggests the power of this method. 

Formation Length and Granularity 

Let us now digreaaJrom the above results. The radiation intensity in eq. (3.17) is the total 
intensify from aQ possible frequencies. If we look for the power.spectrum P(w), defined as 

e 
§ = f PW** , (3.18) 

it is known tkat.in. the classical limit it wales like 

W&fife 

The critical frequency <JC is defined such that the total radiation intensity contributed from u <w e 

is equal to that from u> > u e . Notice, however, that higher frequency photons weighted more m 
terms of intensity. Therefore, the spectrum beyond we does not cover aa large an area as that 
below wB. In fact P(w) djffiinfrli*" exponentially beyond u«. For a uniform magnetic field, an 
electron would execute a dosed orbit with radius p. The critical frequency is related to p by 

w* = f 7 , (3JO) 

where two powea of i cornea from Soppier shift due to fha fact that the relativistic radiating 
particle co-movea with the emitted photon. The naa opening angle of emitted photons at this 
frequency la ~ 1/7. For frequendes above or below wc, the openrngang^varieaaa 

i f C u e • 
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We shall therefore call the corresponding distance of travel of the electron the radiation formation 
length IR(U) 

The parameter T defined in eq. (3.16) can now be related to wc (and therefore IR). From 
Lerents force \F\ =c\B\- tm/p, we have 

T ~nTe ~ ~ ~IT • ( 3 ^ 
where *e = ft/mc as 3.8 X 10~ u cm is the Comptoa wavelength. When T <L 1; we find ure < £. 
In this limit the typical energy of photons is much smaller than the electron energy and the entire 
power spectrum of eq. (3.19) is observable. On the other hand, when T :> 1, or £ < u C l the 
spectrum beyond w = e" is kmemetiealiy forbidden. So in the quantum limit, only the infrared 
region of the assumed classical spectrum is observable, which scales as P(u) ~ en1'4 up to w =; € 
and ue is certainly not to be seen. 

Panofsky [31] argued that in a dilute beam, the possible ripples that superposed to the smooth 
trajectory would induce additional radiation, analogous to the undulator effect. This radiation 
introduces a broad spike with mean frequency associated with the mean particle separation £», 

* « ^ V . • (3.24) 

Since we — 2JTT3/CJJ, and IR > l*t we have w* >wc» It is thus dear that this possible granularity 
effect is observable only when T < L Beyond the classical regime ut, as well aa u e , is kine-
m&ticaUy forbidden. This means that even though die fields are physically discrete in a dilute 
beam, the radiating particle only responds to the mean of the field variation. This argument has 
been explicitly confirmed by Blankenbecler and Drell [I9j, la their calculation, the electrostatic 
potential of each individual target particle (in therest frame) was summed up and the fluctuation 
is shown to be logarithmically unimportant. 

There is, however, an additional radiation effect due to the corpuscular nature of the tar­
get which is independent of whether the beam w dilate or .dense.... This corresponds to the 
bremsstrahlung from tiie mdiyldual scattering between the test electron and the positrons (and 
vice versa) recently calculated by Baier, Katkov and Strakhovenko (32). The difference between 
this effect and the normal bremsstrahhmg is that the former ia strongly influenced by the nwcro-
scopic background field that we have been discussing so for. This subject, however, lies beyond 
the scope of our article, which deals with the radiation from a particle interacting with.the bulk 
part of the target field only. 
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3 .3 SYNCHROTRON RADIATION IN A VARYING FIELD 

Head-Tail Symmetry and Gaussian Correction 

Consider a magnetic field that points to the direction transverse to the axis where an electron 
enters, and its strength that varies along the axis. Let t = 0 when the ieetron passes the 
geometric center of the field. We are interested in the case where the field variation is such that 
B(t) is an even function in t, which is also called head-tail symmetric. Since from Lorentx force 
v oc B[i), we see that v <x B(t) is an odd function in t. Therefor*!, in the study of radiation bam 
a head-tail symmetric inhomogeneous magnetic field, the terms linear in v would vanish when 
integrating over i. This means the leading correction term is of the order v*. We should thus 
retain the Taylor expansion in the integrand G up to the term vi-wV 4 where the recurrence 
relation 

v'3 = -3f-ff-Av-'v , (3.25) 

which is obtained from one more derivative on eq. (3.15), links the term with ?• v and ?. t? where 
both are even functions in time. 

As for the phase,-retaining terms up to v *w we have 

e ^ j t ^ r + i y f - f i i - r i J - w r ^ J ^ e x p f - i t f t o + wi)) , . (3J8) 

when 

•o = i i £ r | l - A - » - i f t - « ' r + | v , - f f 1 | , 

and u s uf£1

% A s */«, is the phase angle that gives rise to eq. (3.17) in the yiwlwii 
and 

ia'the additional phase that we retain. Notice that in * i and the bat term m tto we had made 
the approximation of replacing n by o. 

We farther assume that *i < 1, which is usually satisfied if only u / ^ l , or the final energy of 
the electron e*'>m. This does not introduce extra assumption since the Baier-Katkov method 
has already atnmed relativiatic electron before and after emitting the photon. Therefore we 
make the Mowing approximation: 

exp{-»(wo+«i)}«( l - i« i )exp{-»#o} - pJI) 

Retaining terms to the same order in the integrand G, and combining with eq. (357), we find the 
integrand to be 
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G = Go + Gi+G, , (3.28) 

when 

ia the part that reproduces the SokoJov-TernoT formula, (?i oc BrfB m an odd function in time 
and would give aero contribution for head-tail trmmetric fieldi, and Gj is 

+»̂  

+»̂  

Li the above expreaeion the vector prodncte «*• v and ?• 7 have been replaced by BB and Bfl. 
Thia ia became the only componenta that 5" and 5s contribcta an proportional toSxM and vxB, 
respectively. 

Following the mathematical techniquea used by Baier aiid Ibtkov {27], we introduce angles v 
and p, where $ ia the eagle between the unit vector A of photon propagation end the plane (*", 
»), and ip the angle between the projection of ft on (o, 5) andff.Le^ 

ft-v = vcospcaal , A-ffavcmpcos* . (3.30) 

Taking into account the fact that up to terma of Mghert order in 1 / T 1 the principal contribution 
i from small• and.p, and by abjfting the origin of r to r+p/o , the phaMcaabe written at 

«o=«£ [ ( l - f l . « ) r - i 8 . o * r » + | « , r a ] 

(SJ1) 

HSl-fcafiaiX+f , 

and 

X = -==B> and » = - = w 
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With the definition of X in eq, (3.16) the coefficients in the phase can be symbolised by 

. 3 a , , .a/J 

The radiation intensity awoeiated with head-tail symmetric inhomogeneou* field is then 

CO 0 0 

= ^ f / f c 'dfcda in« |Jd . j 'dyGi««p | -a («+ |x» + v i - | » » ) } . (3.32) dh 
dt 

0 0 

Recall that » = w/£ '« w/(£ - w), and tfdfc = u*du, w find that 

rs-lA. 

The intargrations over x and y give Beasal {unctions of fractional order Jfi/a(i?) and JCj/sOl). For 
the evaluation of the integral over «t it la convenient to featroduea the rapiawnHHuii [82j 

A+fao 

(! + «)"» 2JT$ J r(m) ' v ' 
i-to 

where 1—m< A<0. After this transformation the integration over a tarns the Bessel f-xactioni 
into gamma functions, multiplied by a factor (<T*j»)-*£f+»)/* among other things. We can then 
carry out integration over taat» 9 by the following formula: 

/for*****- J*+M^*^*T{%+fr?Zm2) • t"5* 

All integrations in eq. (3.32) are straightforward, though tedicu. The result before carrying 
out the final integration overs is 
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X+ia dh _ ** i / . . . , . - . r(s./2+i) rr(.+4) rjj+^i r(-.) 
~dT ~ Ifil* 2» / X V ' r{3*/2 + 3/2) I T(4) * T(2) J T(# + 3) 

A—ioa 

«{-(!§••§) ['G+SMMMMMH) 

• 'G*TMM)'G + IK*I)] " 

•(5H^t)[¥K5'T)'(HMH)r(H) 
•?'(i+?MMMH)r(H) 
-^G+SMhSMi^MM) 
.™ ( . + J ) r(f + |) r(| + |)r(£ + |)r(£ + |)]} . 

where—1 < A <0 . The above exprewloniaclttdw only contributions from the ^ r 4 and vVterrns 
in eq. (3.29) because it can be ahown that the contribution from the 6Br* tenn ia significantly 
smaller, end thus negligible. 

The integral over a can be evaluated by closing the contour of integration either to the right 
for T < 1, or to the left for T » 1 . For T < 1, we have 

4 £ = 0 , T « l , (3.37) 

identically. For T » l we have, to the leading order in T, 

*--*©'(j)a(5S-s)w^ • -»' • <-• 
This result la valid for any head>tail symmetric inhomogeneona magnetic field which satisfies the 
assumptions given previously." 

Now we apply eq. (3.38) to the field from a relativistlc gaussian bunch with standard deviation 

when die time of flight of the test electron traversing the oncoming bunch ia t = a/2. Then we 
get 
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dt ~ 243 w{sjfv[-"®,-H} •* > 1 , (3.40) 

where F = IR/OM is the formation length parameter associated with 4jt(w) in the quantum limit 
for photon frequency w= £: 

**•-«-¥»)*-© (3.41) 

Combining eqs. (3.37) sad (3.40) with eq. (3.17), we obtain 

|oim»T»(l + ^ T + 48T» + . . .) , T « l , 

S ^ ^ p T ^ j l - ^ F * ^ ^ ) ' - ^ ] } , T > 1 . 
tit dt dt 

(3.43) 

Short Magnets and Radiation Redaction 

Our result can be appreciated by the following physical arguments: Consider a long uniform 
magnet with length IS > IR. The differential radiation intensity P(w) is given by eq. (3.19) 
and shown by the solid carve in fig. 12. As is introduced m eq. (3.23), classical limit T < 1 
corresponds to the situation die < e", meaning the typical frequency off radiated photons is much 
less than the kinetic energy of the radiating particles, *hus the entire spectrum of eq. (3.10) is 
observable. On thecontrary, the extreme qtianttim]iiritT>lec^ 
the spectrum beyond the electron energy Is kinematicaily forbidden, and the observable spectrum 
scales roughly as w 1' 8 as discussed earlier. This cutoff is shown by the vertical dashed lire in the 
figure. 

4P(<») 

Jitu 

Fig. 12. Radiation spectrum in the two asymptotic limits. For long 
magnets, h* > IR, we have the well-known spectrum in the solid 
curve, u the opposite limit V •« IR, the spectrum approaches a 
constant. In quantum limit we observe only the low frequency regime. 



. In the case of nonuniform fields the spectrum differs from that of uniform fields. For the clas­
sical limit the problem haa been studied by Coisaon [33], and independently by Bagrov, Fedosov 
and Ternov [34]. It is found that for a short magnet which is comparable in length with £R, the 
radiation spectrum is modified in such a, way that the low-frequency regime is suppressed in favor 
of high frequencies beyond uc. The total intensity, however, remains the same. The prediction 
was confirmed by Bossart et al. [35] with observations in SPS at CERN. We can extrapolate this 
fact by suggesting that when the magnet length L* <L IR, the spectrum would be a constant 
independent of w up to a maximum frequency w* ~ «e(ifl/L*) (sea the horizontal dashed curve 
in fig. 12). Our result for the classical limit shows that the total intensity dl/dt is the same for 
uniform and gaussiaa fields. This is a confirmation of the previous studies. 

The situation for short magnets is different in the quantum limit. Again, spectrum beyond 
e* is energetically forbidden. But now that the low frequency regime is suppressed, the overall 
intensity is reduced. This explains why our d/j/dc is opposite in sign from dl0/dt. Fromeq. (3.42) 
it can be seen that when eg < ot, or when the bunch is very long, dJi/dt -* 0, and we have 
vanishing correction to the Sokolov-Ternov formula. A pronounced effect occurs when 4# is not 
much smaller than at. 

3.4 REDUCTION OF QUANTUM BEAMSTRAHLING 

First BeamatrahlnnK Reduction Factor 

With the radiation intensities derived in previous sections, we are now ready to estimate the 
average energy loss during beam-beam collision. Individual e+e~ scatterings are neglected, and 
fhe target bunch acts only to provide a macroscopic field. For the sake of arguments, we will in 
this section assume a hybrid "cylindrical gausaian" bunch, Le., 

'^ik?-*** • —<•<-
(3.43) 

0<r<2oy . >"£ 
ft to straightforward to show that the local field strength in this case to 

The above expression to identical to eq. (3.8) when the approximation of r <L o> is taken. We 
now mtroducenoxrnalised coordinates as in sec. 2.3,' 

/> = - ! , f = i - , (3.45) 
Or Of 

then we can define a local beanstrahtong parameter 



TfoxHTo/*-*8/* , (3.46) 

when 

T 0 = 
r,*cTlT 
V2Jro>0* 

is the reference Deamstrahlung parameter corresponding to twice the field strength at (a,c) a 
(1,0) in the target bunch. 

Let us first calculate the average energy Ices in a semi-uniform field approximation, i.e., d/o/rfr 
in eq. (3.17). The validity of this assumption for a gaussian current distribution is that the bunch 
is very long; hence, the field strength changes mildly, i.e., Br/B < 1. Equrnlently, if a uniform 
cylinder bunch is invoked, this implies that the end effects are neglected. 

Let 
£-£' 

e = ' (3.47) 

be the fractional energy Ices of an electron having impsrt parameter p. Then the averagerraetional 
energy loss of the entire bunch is 

Iffy (3.48) 

Replacing dt by (g,/2)/de, since both hunches mow toward carho^m-wrm the sptul of Bght 
(e s l) , and define 

we find fOT the classical limit 

-«•>.£* | (P« • /« -*•* t T o < l , 

where the classical mean radius is 

(3.49) 

(3.50) 

* $ # - - • 

On the other hand, for the quantum limit 

M-^^g(3To)V».[ l# . /e^J . T„»l , 

where the quantum mean radius is 

(3.51) 
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Mm-(i) »/» , - * 3/1 
si 1.30 

Notice that the geometric form factors in the two limits are surprisingly dose: 

6 0 CO 

\W£' J <+«-<&<*&&*• f *+1**alMtft . (3.52) 
- O B - 0 0 

Assuming from now on the same geometric form factor -ft in both limits, we then have extremely 
simple scaling laws for the average fractional energy loss in beamstrahiung: 

(*>' 
2^£TS , - T0<1 , 

(3.63) 
3 V | r p / 3 ) ^ ( 3 T B ) » / « , T o > l . 

IF one would naively calculate (e) with a given Tbyusing the classical formnlafor the quantum 
regime, he would obtain meaninglessly large results before using the correct quantum formula. A 
beamstrahlong "reduction" factor S-n is thus introduced to account for the chance, which is the 
ratio of the bottom expression to the top expression in eq. (3.53): 

Hm ffn(T0) = 

while (3.54) 
JtoJTTi(To) = l -
To-tO 

It is remarkable that tins beamstrahhmg reduction factor b exactly what one would get by 
taking the ratio of synchrotron radiation "intensities" in eq. (3.17) far mildly inhomogeneous 
fields, with To as an effective beamstrahlang parameter representing the entire bunch. This b 
the case only because the geometric form factor does not vary too much in the two limits. It can 
be shown that this is true even far the transition regime (hi & To & 100, where we lack a simple 
analytic scaling law. A numerical plot far the entire range of T given by Wilson [2] is shown in 
fig-13-

In the literature [21, 2] there b as effective beamstrahhmg parameter Y denned based on 
computer simulation with gaossiaa bunches, 
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Fig. 13. The beamstrahlung reduction factor Bti and the product 
"CBxi aa a function of the acaling parameter T, plotted by P, B. 
Wilson. 

where in the round beast caae (Jt = 1) , i t roinifi very does to our To far a. cylindrical geussian 
bunch, 

Our anatyaiam. thfa subsection therefore serves an a theoretkal es^laaaitai. for the ffeviouBly 
known facta. Notice, however, that our expressions in eq. (3.53) liave conceptually simplified the 
description: N o effective radiation time (2] is necessary, and To is defined-in- a straightforward 
way without extra numerical factors [21]. 

Second Beamatrahlung Redaction Factor 

As discussed in the earlier mctinnB, the Sokolov-Ternov fonnula. does not include the effect 
due to the fast variation of the field strength along the particle's trajectory. The correction term 
derived in s e c 3.3 [ d , eq. (3.42)] indicates that there is an additional beamstrahhtng reduction. 

To include the correction term we should realise that our perturbation breaks down before 
dlb/dt and d l j /d t becomes equal in magnitude at some point c = & from the centroid of the 
bunch, beyond which the total intensity would turn negative and be certianly unphyaical. Since 
we lack the knowledge on the behavior of higher order terms, we can only estimate the upper 
bound of the reduction effect by extending dl^/dt all the way to & and assuming total suppression 
beyond that point, as shown schematically in fig. 14. Fromeq. (3.42) this threshold occurs at-

^ ^ P " 4 / 8 « » s ? ' J , ( l 2 9 9 7 f ? - 1 8 0 4 ) = l , (3.57) 
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Fig. 14. Badiation intensities as function of longitudinal target bunch coordinate f. 
The dash-dot curve is the Sokolov-Ternov radiation. The dash curve is the negative 
of our gaussian slope correction. The net intensity is represented by the solid curve 
Beyond the point fc where dij/dt and - dla/dt meet, we assume a total suppression. 

where 

*n (3.58) 

is the reference radiation formation length parameter aiwocistwd with To, and is related to F by 

Fip,s)=r0p-'"S" (3.59) 

Fromeq. (3.57) it is obvious that the cut-off fc is radial dependent. For the sake of simplicity in 
our discussion, we make a further approximation by evaluating & at the mean impact parameter 
(p)t = 1.30. Thus the mean radiation loss is suppressed to 

<«>t. = {«>)*. + (tt)(. , (3.80) 

when 

and 

(*)*.= _ 3»r(g/a) 
343 L -6 J 

(«a>f. 
• 32T(2/3) 

243 r7(3To)'/S fi^^W^'/^tiMws*-^)*] 
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Let us define the second beamstrahlung redaction factor Bra as the ratio of eq. (3.60) to the 
quantum formula in eq. (3.51): 

jjba^ifeaiTo,Fa) = Erf (^\ - ^ | ^ 6 ) f g J ^{ISBn? - 1804)<ff , (3,61) 
-f. 

where Erf is the error function and 

Km JTTI{TD, Jb) = lim JIWTQ.FQ) = 1 . (3.62) 
To-»0 /o-^» ' 

With this lengthy expression, it is hard to appreciate the importance of the reduction. As a 
numerical example, let us take the beam parameters discussed by HImel and Siegrest [16], namely, 
the Le-rents factor for 5 TeV beams i = 1 x 10T, number of particles per bunch If = 1,3 x 10*, 
bunch size <rt = QAftm. and o> = 2.5 A. With these parameters we find 

T o = v5*W = 5 0 9 4 > 1 ' ( 3 , e 3 ) 

and the reference formation length parameter 

(3 \ x ' 8 *«T 0.015 am s ) - i £ - = » T =00375 . (3.64) 
V T3 / a a , 0.4 (im v ' 

The cut-off & at the mean impact parameter (p)t = 1,30 turns out to be 

ft = 1.49 . (3.65) 

Plugging in numbers we get 

(•D)» = 0.78(«o)oo = 11.858 (3.66) 

and 

(€j) r . = - 0 . 1 1 ( ^ ) 0 0 = - 1 . 6 % . (3.67) 

Thus the corrected quantum beamstrabJung average fractional energy loss is 

{t) 2 (*}(. = 102% . (3.68) 

This is substantially different from the previous results. The second reduction factor in this case 
is 

flxa=7^r = 0.67 , (3.69) 

or reduced from the semi-uniform field approximation by a rector of ~ 2/3. 
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Although our discussion on H-n has been limited to the extreme quantum limit, it is reason­
able to assume that thia reduction effect ocean to the trantition regime as well. Based oa the 
arguments given in sec. 3.3.2, the effect of a ahort bunch is to auppiesa the spectrum below we 

and stretch it to frequencies beyond wt. By definition T = 2u>c/3€, so for T aa small aa « 1 the 
kinetic energy already lies below we and we should expect to see the second reduction. 

to conclude, we showed that the average fractional energy loss can be related to the classical 
synchrotron radiation formula with the reference beamstrahlung parameter T 0 as an effective 
parameter and 

to = ? * [ ™ T o - • * « • • * « • (3.TO) 
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APPENDIX 
QUANTUM FLUCTUATIONS IN BEAMSTRAHLUNG 

In this Appendix we list various beamstrahlung quantities of interest to high energy physics 
and accelerator design. The fluctuation in these quantities arises from the fact that typical number 
of radiated photons per electron during beam-beam interaction is small in the quantum regime, 
and not very large (of order several) even in the classical regime like the ease of SLC. 

Analytic formulas have been derived by Yokoya [22] on the average number of photons radi­
ated per electron (JV7), the average fractional energy loss {t) defined in eq. (3.48), the standard 
deviation of e: 

<r« = {«")-<*)» . (A.1) 

the average fractional reduction of the center-of-mass energy W = S*l% — 2(4* ft)1/' of two 
particles in beam 1 and beam 2 at some space-time point: 

«°> = ( ^ > • W 
and the standard deviation of w: 

• . = <*•>-<«>' . (A.3) 

Following the same spirit. Noble [21] has investigated, in addition to the above quantities, also 
the average fractional center-of-mass energy squared reduction: 

« = (^ £) M 
and its standard deviation: 

• » - < • * > - « ? , (A5) 

in computer simulations. Furthermore the average photon energy is introduced as 

Table 1 fists the formulas obtained by the two authors, where 

Of Ofttm Q&tQw A, 
(A.7) 

and 

The ranctions ft(T) and j(T) are listed in Table 2 for various values of T, and the coefficients 04, 
«i, 6, di, da, dj for (e) £ 0.1 are listed in Table 3. In all cases no disruption is assumed. 
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Table 1 
Formnlu for quantum fluctuation an 'various physical quantities derived by Yokoya 
analytically, and deduced by Noble through computer simulation. 

Yokoya Noble 
T « C l T » l A11T 

1.0597A 1.554Q1/3 

2v5r v J 

s ^ Am 

Of 

0.2164B 

•—»(,tS)'* 
0.395Q1/* SfK«) ^ 

(»> 0.4094(f) 

— HE) 
w 
o> * 

Table 3 
Representative values of the function jff) and &(¥) in 
therangelO- 8<T<10». 

T *(T) »m 
l ( T a 9.94 X 10~ T 0.99 X I0-* 
io-> S.4S x 10"' 9.91 x 1 0 _ s 

1CT1 6JSSX10- 3 9.30 X10T 1 

1 1.82 x 10~ l 7.16 x 10" 1 . 
10 1.84 4.24 
10* 1.11 X 10* 2.13 X 10 l 

10* 5.56x10* 1.01 x 10* 

Tables 
Behavior of the energy lo™ coemctenta a,-, 6 and «V •* 
a function of the beam radiation parameter T when 
<c)S0.1. 

T «1 St ft * d> ds 
Sio-» 0.41 30 0.42 0.32 10 10 
ion 0.38 30 0.43 0*1 10 10 

1 0.31 33. 0.44 0.27 14 10 
10 0.25 43 0.45 0.24 18 11 
10* 0L22 53 0.46 032 22 12 

J&10» 0.20 63 0.47 0.21 26 13 
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7 is defined in eq. (3.55) u 

~ 1 2 <r.o» V 1 + 1 V 

The symbol T i« related to our To [eq. (3.40)1 by 

16 a* v * 

i*., the geometric form factor ^ has been absorbed into T. 

More recently, Amaldi [36] introduces simple scaling lam that reasonably reproduce the 

formulas in Table 1: 

«-(i)V( i + , " + i T r • (Al l ) 

and 

>.=iw(»^-^)[^"' + ^r* i '] w • <̂ > 

DISCLAIMER 

Ta» report was prepared as an account of wait sponsored by an agency of Uie United States 
Government. Neither the Uiiitcd States Government nor any agency thereof, nor any of their 
employee*, makes any warranty, express or implied, or assumes any legal natality or responsi­
bility ror the accuracy, completeness, or usefulness of any infoimatkM, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights, Refer­
ence herein to any specific commercial product, process, or scrrice by trade name, tradanark, 
manufacturer, or otherwise decs not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
(Jailed States Government or any agency thereof. 
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