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AN INTRODUCTION TO BEAMSTRAHLUNG AND DISRUPTION

PISIN CHEN

_Stanford Lincar Accelerator Center
Stanford University, Stanford, California 94305

1. INTRODUCTION

‘To achieve enough luminosity for high energy physics experiments, it is inevitable to focus the
colliding e*e™ beams down to miniscule dimensions at the interaction point in linear colliders.
In the world’s first of such accelerators, the Stanford Linear Collider (SLC), beam size at the
interaction point is designed to be &z = oy = 1.65 um, and o; = 1 mm [1]. For the next generation
of linear colliders at the range of 1 T2V in center-of-mess energy the beam size would be even
smaller. The high density of charged relativistic particles would provide strong electromagnetic
fields viewed by the particles of the oncoming beam, while the particles in the same bunch have
no effect among each other because of the cancellation of Lorentx forces between the electric and
the magnetic components to the accuracy of the order of 1 /. The bending of particle trajectories
under the influence of these EM fields provided by the oncoming beam is called diaraption. During
bending particles would radiate, causing an energy loss of the beam; this is called beamstrahlung.
Both effects are important to the design of linear colliders (2, 3. .

In this lecture we review the current understanding of the beam-beam interaction in ete™
linear colliders. Strictly apeaking, the two effects, disruption and beamstrahjung, during beam-
beam interaction are coupled. This is self-ev'id't because without deflection there would be no
radiation, and with radiation during bending the remaining trajectory of particles would not be
the sams. Fortunately, in a large range of beam parameters the average disrnption angles are
rather small, and the emission of hard photons are relatively rare. For these reasons the two effects
can be isolated from each other to the firat degree of accuracy, and our study of the issue can be
greatly simplified. This happens also to be the development historically. In gec. 2 we discuss the
effects associated with disruption with negligible beamstrahlung. Here, an impottant parameter,
the disruption parameter D,is introduced. We then discuss the maximum and rms disruption
angles. The analytic scaling laws for D > 1 and D < 1 are then compared with simulation
" results. Next we investigate the enhancement of luminosity due to disruption. Together with the
aspect ratio R = g; /0y, the two parimetm‘deﬁne a scaling law for luminosity enhancement, Hp;,
due to the mutual pinching of the e*e~ bunches where the eﬂ'ectm; beam size 750y is reduced. In
. addition to the Juminoeity enhancement arised from the overall reduction of the beam size, there

- . is a second source for the enhancement that comes from the extremely high particle density at
" the foca.l point mnde the oncoming bnnch. Thm gecond enhancemen + Hp3, becomes dominant

" aover Hp: when D Z1l,andisa fnnctmn of the initial emittance which is characterized by the
parmeter A= v.[B‘ where ﬁ‘ is thz ﬂ-fum:tlon at the interaction point.




Next we discuss beamstrahlung with negligible disruption in sec. 3. First we review the
nature of beamatrahlung by describing the novel features of the problem. These specific features
are then compared with the known radiation phenomena with emphasia on their similarities and
differences. We argue that, in certain parameter range, the radiation mechanism of beamstrahlung
is synchrotzon radiation in nature, By this we mean the emission of a photon is induced by the
interaction between the radiating particle and a collection of target particles vis ita macroscopic
EM field. Again, an important parameter, the beamstrahlung parameter T, ia introduced. For the
case T < 1, typical energy of the photons is much smaller than the initial energy of the radiating
particle and this is called the classical regime. On the contrary, when T > 1, photons tend to
carry away a substantial fraction of the radiating particle energy; this is the quantum regime. For
intermediate values of T, i.e,, 0.1 5 T S 100, the radiation is in the transition regime. We first
derive the synchrotron radiation intensities from a semi-mniform field in the elassical and quantom
regimes. These expressions reproduce all the well-known formulas for a uniform field. We then
review the concept of radiation formation length £z and argue that the effect of granularity of
the target bunch is not observable in the quantum regime. Next we focus on the fact that in
‘the problem of beamstrahlung the target field is longitudinally inhomogeneous. To be correct it
is necessary to include the effect due to the variation of the field when F = {g/o; S 1. In the
extreme limit where F > 1, the radiation mechanism would depart from the characteristics of
synchrotron radistion and transform into that of bremsstrahlung.

The average fractional energy loss (¢) in beamstrahlung is then caleulated explicitly. In
the semi-uniform field approximation, one novel aspect in that in the nocclassics] segimee () is
“reduced” from what the classical radiation formuls would predict based on the same vatue of
T. The first beamatrahlung reduction factor Hy) is introduced to describa this relative change.
When the slope effect is included, we see a second beamatrahlung reduction effect, dsseribed by
Hta. The quantum fluctuation due to finite number of radiated photons in various beaﬁstru.hlung
quantities are Jisted as an appendbe.

The emphasis of this article is on the fundamental physics of the phenomena during beam-
beam interaction. We therefore limit the scope to single e*e~ bunch peirs with head-on collision.
Many important isxues, such as kink instability during multi-banch crossings [4] and esllision at
an angle [5], are not discussed. Even within the scope of single bunch pair head-on collision,
we have to regretiably limit ourselves to the approximation of decoupling disruption and beam-
strahlung. The real isues of beam-beam interaction concerning beamatrahlung with disruption,
and disruption with beamstrahlung, are not covered in this lecture. The former issue has to do
with finding a mare realistic effective T that includes the pinching of the beam area, while the
latter issue relates to the maximum disruption angles from particles that suffer severe radiation
loases. With this grand picture in mind, our discussion in this paper should be regarded only as
an introduction to the subject of lima_r_collider beam-beam interaction which is very rich in new
physics. Throughout this paper we adopt the conventione=A=1.



2. DISRUPTION WITH NEGLIGIBLE BEAMSTRAHLUNG

Let us recall that tke nominal luminasity for head-on collision of two gaussian bunches ia

£o = -& . (2_1)

dxo,0y
where N is the number of particles per bunch and f, is the bunch ¢ollision rate, When including
the disruption effect, the effective beam srea is smaller, which in turn enhances the lnminosity.
This can be parameterized by a pinch enhuncement factor Hp i

L=Hplo . (2.2) -

In this section we review the effects of disruption during beam-beam interaction with negligible
beamstrahlung energy losa.

2.1 FOOUSING EFFECT AND THE DISRUPTION PARAMETER

When an electron bunch collidea with a positron bunch, the collective fields from the particles
in one oncoming bunch act like a lens to focus the particles in the other buach toward the axis.
The space charge force from the like particles in the same bunch is negligible to the accuracy of
the order of 1/+, where i the Lorents factor of the relativistic bynch in the e*e™ center-of-mass
frame. On the contrary, the electric and the meagnetic components of the Lorents force provided

by the oncoming bunch contribute equally, alsonptothemmyuftheorderofll‘l',wthe
focusing force that pinches the test bunch.

Let the density distribution of & bunch ba decoupled for longitudinal and transverse Cirections:

.7

n{r,z) =n.(z) n,(r) , (2.3)

where

ny(s) = {7:'17.""”" , —w <2< (round guusstan)

T ! I <a< (uniform cylinder) ,
;l,e-"hv? . 0<r<m  (round gaussian)
ﬂ,(') = 'y 1 . . -

. 0<r < 2, (uniform cylinder) .




The normalization coefficients are chosen such that [n (e)dz = 1 and [n.{r)rdr = 1. The
equation of motion for the test charge in a bunch at coordinate (r, z} is [6]

g 2 fte) mfm-a) (2.4)

where
s =1 [nlr) e,
0

rs = 2.818 x 10~12 ¢m is the classical electron radius and ¢ = 0 when the centroids of the
two colliding bunches intercept. Figure 1 is a schematic diagram that shows definition of the
coordinates. Conaider, for example, uniform cylinder bunches. The above equation becomes

-di reN r

m =0 . (2.5)
The solution is simply
"
r(t) = rocos [(m%) i+ d] . (2.9)

where ry in the itapact parameter of the test particle upon entering the target bunch and

o= \ﬁ'n"'s w
T\ 2

The deflection angle is therefare
reN s ( r.N 1
‘+ Ly
"(zfqa’a.) ! [ Varda) tHY aa
1.0
Pt =t —f
—————alo -
,’ ,’ [} e-v— ~
~ 12'5\ :l‘:lxl'a s
\5-_-:_ --_-’/
-y - 50 " [T TTY

,,l_?ig.l; _mﬁcﬁmMWMWWMdmambw
during callision. For a test particle in bunch 1 at 53 = 3, the relative coordinate
with respect to the center of bunch 2ia sy = -2t — 8.
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For a weak deflecting force, at the end of collision ¢ = /30, we have

dr reN
F~=gr - (2.8)

03
When the two transverse dimensions have different distributions, i.e., a; # o, this expression
can be generalized to
E ~ - 2r.N
dt ‘I'U;(Ug + ay)

(2.9)
dy 2r.N

@ " oy(ox + o) W
From ray optiea the coeflicients of eqs. (2.8) and (2.9) can be regarded as the inverse of the facal
lengths.

We now define a dimensionless, Lorents invariant parameter, called disruption parameter
D [1], as » measure of the inverse of focal length in the unita of bunch length oy in each of the
transverse dimensions. The terminology dervived from the fact that during pinching, the beam
emittances are severely disrupted. Explicitly,

- 2r,No,

Dy = 270
b ',ﬂ;(ﬂ‘. + a")

2ruNos (2.10)

= 205(0s +ay)

Let us further introduce the aspect ratio R = 0a/oy > 1, and call

- '.N Oy 2R ’
D=Dy= _'—-0;; (H‘_R) . (2.11)

Thus, D, = D/.R. For round beams s (R =1)D, —D,.mdmthauymphtwhnmfotﬂnbmm
(R> 1)Dy = 0 and D & 2r.No, [410:0y.

For D « 1, the focusing force is weak enough that each bunch only converges to the axis after
traversing the oncoming bunch; whereas for D > 1, the focal point lies well inside the oncoming
bunch. PmmlsexpmmmghrrvdwofDmuldthmmtebetatmnumﬂntmduﬂng

the course of collision. ) _
Tomdthindheﬁs!onwewmﬁntﬁatinthenﬁmnwlmeDﬂ 1, the pinching of the
bunches would causally affect the dllruptmn for the remainder of the collision. One would there-

fore natura.llythmkthat the pmemD loses its meaning in the quantitstive sense. It ix-

. L fommonst.hntmﬂlyDudeﬁneddoepmndemleudmghmuiftheenﬁnbmchhn
: a well-defined focal length."
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2.2 DISRUPTION ANGLES

Ons important information for linear collider design is the expected disruption angle. Knowl-
edge on the maximum disruption angle is essential to determine the aperture of the last element in
s final focusing system such that it is able to avoid being showered by the debris from beam-bearn
collision.

In terms of D, eq. (2.7) can be rewritten as [6]

dr [ D IIS. D xll‘
%=2() "“[(m) ;:H] : (213)

For D < 1 and at the time when the test particle exists from the oncoming bunch

LA ] (z \/_)u3 [ 2\/5D)m + % (21/'30)"' +] , D€1 . (213)

For D > 1, at the time of exit from the oncoming bunchw test particle would have executed
more than one cycle of betatron oacillation. Therefore, the sinusoidal function in eq. (2.12) is of
order unity and

1/2

= : J_) D»1 . (2.14)

The rma disruption angleﬂ:" = \/li¢7aiis,uammwm:“.m
hddudhm&ndmﬁuthmw‘/(fg)mdr:“.w.ltllobﬂnuthntin
doh;itthhmthamuicfmctiondbehlviordl':'mdirmthmia..

o™
]

e+bD , D« ,
{733 . D>1 , . (2.18)

whuec.bmdemmmmemalweﬂuuﬂnwhmbmdﬂfeuﬂul’"mdl“ and foa
reference angle defined as

TN
h= 70, °
As was discussed earlier, during the collision hoth beams are continuously deformed due to
the mhnl pinching. Thus; for reliable estimations of these coefficients computer simulations are
indispensable.” Figure 2 shows 87 and 8] as functions of D fram computer simulations by
Hotlebeek and Minten [8, 9] and Yokoya [10]. The two sets of data are in reasonable agreement.
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L e Hoilebeek-Minten
x  Yokoyo
— — Numerical Fit

Fig. 2. The maximum and rms disruption angles as functiona of
D. The solid curves are from egs. (2.16) md(zl't),mdtheduhed
curve is from eq. (2.18).

From these curves we find
0.087T+157TD, D<l ,

= .%, D>»1 . (2.0

=%

0.78+0.20 D, D1 ,

Ll
bo {“7%. D>1

‘These asymptotic behaviors are shown by solid curves in fig. 2. A different numerical fit which

(2a7)

" emperically matches the 6] data for the entire range of D is given by Palmer [11);

H = - 1 T - (2.18)

(7o) + o0+ o)
Thhfundionilphmdnlduhedcmeintheﬁgure.

2.3 LuMINOSITY ENEANCMN'I‘ FACTOR

Smuﬂubottamﬂneofmueelmtmdammthzhmnonty,th:mtmpoﬂmteﬂe:tof
distuption is the redncﬁcnoftheeﬂ‘ectmmmnonalbeamma,whlch causes enhancement

. of lumncsity As dm:uned above, tlns effect can be characterized by the lummoaity enhancement
h fn:tor Hp=_L/Lla where the lummoalty is defined as

£‘=2N’I,fd.tdydzdt-u(z,y,z—t)-n(:,y,—‘:-"t]. (2.19)

n(:, y,: - t) and n(z, y—2—1¢) are the local densities of the two beams at position (z,y,2) at

" time .

=
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To include the disruption effect we return to the equation of motion in eq. (2.4). The solution
to the first order in D is [12]

r(t,5) = ro — — f{ro) gtu3) (2.20)
where
¢ [
g(t.z) = [ dity / diyn (~2t—-3)= [ dy (t—t) n(~2—32) .
Thus
roir+ 2 gie) gftya) (21)

Foronrpmmwelikehhowtheradialdntn'bntmfnmthnn,nt(t,x). This can be found
by .

Reltss) = nglro) %‘,’,—"'%

4'."

= natr) [+ 2% gte0) 12 (0]

(2.22)
(r) 4r.N

[t + 2250 2 1) g, )] - [1.+ 2% gt 01me )]

()

With the above expression we can estimate the luminosity from-eq. {2.19); which can also be
expressed by the bunch coordinates introduced in fig. 1,

Lo ] rdr dndy o, (n)n, () ln,(r)l’
(2.39)

x [1+";§' (1 dos po) +,.,) (a(c.n)+a(c.n))]

where the leading term comsponds to the nominal lummoalty Lo. The integntxon over r ean be
carried out, which gives -- :

]rdm,(—i‘*—r(r)n,) = -]rdrn: : (zui

. nummmtymmmmmnh

- 1+M ‘f%':_dr_] f deider n;(s)ng(n) (a(t.n)ﬂ(t-sz)) (2.25)

T TR oY



Since the two colliding bunches are symmetric, g(?,2:) and g{t, 2;3) contribute equally to Hp,
where

i [
ot =_£ dey(¢— 1) my(~2—m) = ] [ rdrn (r+n) . (2.26)

Q

Therefore

Hpy = 147N fr'j:,] [ nda n(an,) (=) [ rdr (¢ + 2)

R
[

(2.27)
reN [ [ rdend

1+— - rdrn’] j dzj rdr n (2) n (r+3) .

Now we introduce norialised coordinates p = r/o, and ¢ = 2/05. Then

Hp = 14D T_J] f d ] rdr Q) nylr+) - (228)

Plugging in distrubntion functions from eq. (2.3), we obtain

1+# D+o(D3) , (round gaussian)
Hpy = D<1 (2.20)
' 1+5$ D+O(D?) , _ (uniform cylinder) .

So far the discussion has been limited to round beams. To extend the above expression to
arbitrary values of R, it is more convenient to rewrite Hp, as an exponential function:

m-.}.'e’pi"ﬁ , D<1 '(:ﬁund'gmnim) . (2.30)

. Recall that for different aspect ration D scales as 2R/(1+ ) [cf., eq. (2.11)]. So naively ane
mldtendtomathnﬂm(k)mmnap[ﬂ[(l-hﬂ)l.whi:hlninconect.
Notieeth.th mﬁﬂymmmmmhb@w,m.

) ﬂ.ﬂ',
=%% 2.30
Hn =35 (2.30)
"7 whiere 4x2,3, is the effective béim sizs. Far found beamis -
VEp = ¥'= PIF | Del . (2.31)
r .




Thus, for R > 1 we have [cf., eq. (2.11)]

;!.=.Dl'ﬁ ; %’-:J’W“ , De€1 . (2.32)
[ s

Combining eqa. (2.32) and {2.30), we have
Hpi(R) = LHHRIDAAR  pey (z.és)
Now we replace =xp[2D/3,/x] by Hp), then we obtain

Hp\(R) = H{ B8 | (2.34)

This expression wan first introduced by Amaldi [3].

Beyond the D <« 1 limit, the disraption effect becomes very nonlinear and we lack analytic
tools to derive luminosity enhancement factor rigorously. Computer simulations of Hp with
negligible heamstrahiung have been studied by seversi-suthorne:-Figore 3 shows Hyp ar a foretion
of D for round ganmsian beams. The solid cerve represants the original work of Hollabeek {7],

where the initinl beam emittance is sero. The dashed curve is from a recent study by Fawley
1 and Lea [13] with ¢, = 6.7 x 10~* m.rad. Notice that the two curves are substantially different,
for D 2 5. While the Hollebeek data saturates at Hp = 6, the Fawley-Lea resnlt does not seem
to saturste, Despite this disagreement, tis2 curven-are ¢ - jonably elane-to-ench other for D < 17
where onr analytic formula in eq. (2.28) fits quite well. . -

i 10 ™ T
i -~
I 8 -
8 >
: Y
. 4 N
! - R B
. e i
: } 100
v ) e sar LU
";:, Fig. 3. Thnlminmitrenhmmmthcmﬂnnlfmctnnofb
- gmd.nmummmemﬂaﬁmmﬂuofmmm
P s PR _Fawleyudhn.
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2.4 THE EFfFECTS DUE TO INITIAL EMITTANCE

Effect on Luminceity Enhancement

In arder to have & better assessment of the physical process that contributes to Hp beyond
the fimit of amall D, we investigate the time evolution of Hp during beam-beam collision. For
this purpose we singla out the time dependence of £ in eq. (2.19) and write

L= j My &t . (2.38)

The fanction A(t) is thus the *differential® luminosity in time. A normalised A(t) (i.e., A{t)/L)
was simulationed by Chen and Yokoya [12]. The histograms for D < 1 are shown in fig. 4.

0.6
0.4
10
0,2
0
0.8 |-
06 |-
0.4
04
q(t).
0.2 0.2
0
0.4 o8
alt)
.2 04
0
]
0.4 0k
oft)
0.2 0.5
0 ° :
_ 2 o 2
way Ve . . . Yo:  seanae

Fig.ll. Computndmuhhmby Chen and Yokoya on the time evo-~
lution of lummulty for different values of D.
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From the figures we see that when D is very small, e.g., D S 0.5, the histogram follows
essentially as the square of bunch-current distribution, which in our case is gaussian. In thie region
of D the enhancement of lumincsity occum through the overall demagnification of the beam cross
sections, as discussed in the previous section, where Hp; in eq, (2.30) agrees reasonably well with
the values shown in the first four diagrams in fig. 4, as it should.

When D ~ 0.5, a second peak appears. This is explained to be caused by particles at certain
radius (not the entire cross section) focused on beam axis within the oncoming bunch. At D =05,
this peak occurs at ¢ = 1.50;. The peak grows as D gets larger, and eventually becomes the
dominant source for the luminosity enhancement by D ~ 1.0. Natice also that the location of the
second peak shifts gradually to the left when D gets larger, where the stronger disruption induces
the phenomena to occur earlier in time. The steepness of this peak suggests that tiny time steps
are required in simulation, :

Bince the second pesk is believed to be caused by particles focused on axis, where very high
dmityw&uldmurwithhltinyvolmn,wenudtoﬂu tune the radial mesh sizes Inonle-r
to avoid utiderestimating the lumincsity at the focal peint. Figure 5 shows Hp as a function
of £n(1/dr), where dr is the radial mesh size in units of o in each of the computer runs: - The
simulation was doge [12] by assuming sero initial emittance for D =1 and 4. I in seen that Hp
scales roughly finearly as £n(1/dr), which is clearly divergent, This implies that the functional
behavior of Hp with sero beam emittance is very subtle- A-finite walua of Hp could be obtained
by a randomly chosen mesh size (or the number of macroparticies) in a simulation with gero
emittance, dut the result would not be numerically-stable.-

The symptom for sero emittance beams azises because all particles enter the oncoming bunch
in parallel, thus those with the same impact parameter would be focused to a single point. For
beams with nonzero initial emittance there would be a smearing effect that this singular behavior

10 T rrree
8 _ -
Mo © 7
4 4
. z - -
o 13 lr(ri wal L1
10 50 100 500
L i7/av [TV

Fig.5. Hp as a function of the inverse of the radial mesh glze, 1/dr,
in computer simulations for D = 1 and 4. The initial emittance is
sero.
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can never occur. Let us introduce a Lorentz invariant, dimensionless parameter A that manifests
the beam emittance for fixed o5 and oy

oy eyD
A= F = I’.—N , (2.36)

where 4* is the f-function at the interaction point. Figure 8 shows Hp with three different
values of 4 (4 = 0.1, 0.2, and 0.4), the simulations use the computer code ABEL developed by

Yokoya [14]. As expected, smaller A gives larger values of Hp. Furthermors, from the figure we
find that

Hp(A = .01) = Hp(A = 0.2) ~ Hp{A =0.2) - Hp(A = 0.4) , (2.37)

for a given value of D, but the sepayation increases roughly quadratically. This suggests that the
part of the luminosity enhancement arising from the second peaks in fig. 4 scales as

_ e 3] -

1
Hp = M+h [ln (g)] , D31 , (2.39)
where A1 = 1.6 and Ay = 0.43. |
Putting everything together, the overall luminceity enhancement is now

Hm=1+#;p . ‘ 0<DSo0s8 ,
Hp={Hn+E;=1+5:D+03[n(B))' , 055DS2 , (2.40)
Hp +Hpy=16+043[m(R)]" , 25D5100 ,

where Ay has been identified to be the saturation of Hp; at D 2 2, at which value the pinching
has induced roughly half 8 cycle of plamma oscillation [7]. The nonsaturation of Hp’s in fig. 6 are
characteristically different from that of Hollebeek in fig. 3, but show similar tendency as that of
Fawley and Lee.

25‘—l—rl'rrrrr|—l—r1'nrrr|—1—|'rnmr
o - a% Ao
. Ly
Yo
15 Ry
3 . {I.O'O.
r - P
= = .
10 ‘,.‘"/ 0.4
’ 51 »..,?,_.r' -
o : I‘If}:lll 11 Illlll § ¢ 4 10l0)
0.l B 10 100
T 0D saaan

" Fig. 6. Luminoeity enhancement factor Hp with dif-
fmtvdwdd'limulm;l‘by.(lhmmd?m



Effects an Disruption Angles

With the drastic impact on luminosity enhancement in mind, it is natural to ask whether
the initial emittance a!so makes large influence on the disruption angles described in sec. 2.2.
Simulations are done by Chen and Yokoya [12] in this respect. Figure 7 shows 83 wnd 67 in
the unita of o /cs. Again, 4 = 0.1, 0.2, and 0.4 are used to find the sennitivity of the angles on A.
The data in the figure evidently show that the disruption angies are asymptotically independent
of A. Thus all the atatements in sec. 2.2 remain unchanged.

The fzct that the disruption angles are independent of A can be understood as follows: While
luminosity comes from multiplying local denstities of both colliding bunches, disruption angles
depend oniy on the integrated density of the oncoming bunch (through Ganm’s Jaw), Under this
light the sharp focus of the like particles on axis would have no éffect on disruption. Furthermore,
the Lorents force provided by the oncoming bunch at any radius » > 0 would be the same around
the focal point independent of whether the focus is sharp or blurry.

8p lor/mg)

Fig. T. Disruption angles with different values of A simulated by
Chen and Yokoya. #,,’s are in the units of oy /0.



3. BEAMSTRAHLUNG WITH NEGLIGIBLE DISRUPTION

In this section we first review the novel characters of beamstrahlung assuming no bunch
deformations. This serves as an introduction to the more specific discussions following that. To
discuss radiation, we take an iterative approach. First we examine the problem with semi-uniform
field approximation that is suitable for long bunches, from which a beamstrahlung reduction factor
Hry, is obtained. Next we include the fact that the field strength in a bunch is actually varying

slong the trajectory of a radiating patticle, This results in a second beamstrahlung reduction
factor Hy; when the bunch is short.

With efforts in recent years, the understanding of the subject is rapidly maturing, though
with a wide spectrum of appoaches to the problemn. To be self-connistent in our treatment it is
difficult, if not impossible, to review various different calculations in detail. Instead we will only
mention euch individua! contsribution in passing wherever is appropriate,

3.1 THE NATURE OF BEAMSTRAHLUNG

Collective Fields from Discrete Scattering Centers

In the laboratory frame (also the center-of-mass frame in our case) of a linear collider, an_
electron encountering & positron with an impact parameter b would have an effective interaction
time Aty ~ b/4 dus to the fact that the flelds associated with relativistic particles span about
an opening angle Af ~ 1/4. In turn, the corresponding effective dintance of +~wverse through the
flelds of the oncoming particle in

b
=ty ~—= . 3.
1=t~ (3.1)

Conslder an electron encountering the entire flux of the oncoming positron bunch. The flux
is roughly
1
?" ’ . (33)
where {3 is the mean longitudinal separation of target particles. The target beam is considered
to be dense if £; > £;. Taking a typical value of impact parameters to be one standard deviation
in the transverse direction, Le., b ~ o, the condition for a derse beam translates Into

N
Og

No,

o >! - (3.3)

In this case the background field provided by the particles in the oncoming bunch is con-
tinuous. (See fig. 8.) For example, the Stanford Linear Collider (SLC) beam paramsters are
7= 1 x 10°, pumber of particles per bunch N = 5 x 10%, 0, ~ 1 mm, oy ~ 1 pm at the
interaction point. Thus Noy /7o, ~ 500 3 1, and the beam is dense.
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Fig. 8. A schematic diagram for & *dense” beam.
A beuam is maid to be difute if {5 < £, or

No,
os

<1 . (3.4)

In this cass the background field becomas discrete and the test particle would see the granularity
of the target bunch. {See Bg. 9.) For exsmple, in the conceptual accelerstor of 5 TeV+5TeV
discussed by Richter [15], and refined by Himel and Siegrest {18], v = 1 x 107, N = 1.2 x 10%,
o, =0.4 pm and o, = 2.5 A,mhnveNa,/qc.-n.wrsc: 1. The beam is therefore quite difute.

InmvmmnofthuCI.lemetmll'I],whueq 2x10° N=54x10° 0, =0.5mm
mdc,:&mm.mﬁndh'c,/qc.~035$1.Inth-muthnbmnunnlynnﬁnﬂlydihu.

o1 oo aresag e

" Fig9:: A schemiatic diagtam for & *dilute® béam.
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The length scales £, and ¢; introduced above arise from kinematic origins. Now we introduce
_ one more length scale, the radiation formation length £p, which arises from dynamic origin.
" The radiation formation length is the length which an electron (or & positron) must travel for a
photon to be emitted within an open cone with angle ~ 1/, (More detailed discussion on Zz
is given in sec. 3.2.2.) Together with the bunch length o,, the four length scales comprise eight
possible situations, where &, £3 < g; by definition. Among the eight arrangements, the cases
bp<i <l <o ln<ly<ly <ogsand ) <ip <l <o, sssime & chain of closs encounters
between the test electron and the poeitrons where each deflection causes a bending angle of more
than ~ 1/-, which is very unlikely. The remaining five canes can be categorized into the following:

¢. &3 < &g < &4 < 05 The bunch is 8o dense that the test particle would be

bent severely and quickily lose all its enevgy. This is & situation where the
accelerator designers would definitely want to avoid.

b, L3 < &4 < &R < oy {dense beam) and & < &y < £g < o, (dilute beam): In

this regime the test electron interacis with the macroscopic fields collected
from poaitrons within the range of £n. For dense beams, tha collective fields
within Zp are smooth. The radiation in this case is similar to the familiar
*synchrotron radiation.”
For dilute beams, the interaction with the test particle is still collective,
but the discrete fields wounld act zomewhat like *undulators” with mean
periodicity ~ &4. These “undulators® wouid then induce ripples anto a
smooth trajectory associated with the mean charge distribution of the target.
This would potentially introduce extra radiation. We will discuss this point
in more details Inter. '

It occurs that almost all linear collider beam parameters that people dis-

cussed are in this category. So the rest of this section will be devoted pri-
marily to this case. )

e. & <l <05 <ipnnd fy < & < s < p: This corresponds to the condition
where the bunch is ultrashort. In thia regime the whole target bunch acts
like & “positron nucleus,” and the radiation of the test particle Is more like
that in bremaytrahlung.

It has been recantly pointed out (18] that this is a desirable beam parameter
regime where beamstrahlung would be greatly suppressed. But it is unclear
whether such beam parameters are technically attainable and whether they
wiil canflict with other stringent physical requirements in a linear collider.
Wa therefore view it as an interesting option which requires further studies.
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Presence of Both Electric and Magnetic Fields

Unlike a permanent magnet, in beamstrahlung the target bunch presents both electric and
magnetic fields in the e*e™ center-of-mass frame, whereas in the rest frame of the target bunch
there in only E-field. In fact, in our case (|E® — |B{?)/|E[? ~ 1/7® R 0, and one can never find a
frame where there is only B-feld.

Facing this fact, two different approaches have been taken. One ean either work in the reat
frame of the target bunch, which is what Blankenbecler and Drell [19] and Jacob and Wu [20] did,
or work in the center-of-mass frame and assume the Lorents force due to £ and 5 to be equal.
This second approach has been taken by Himel and Siegrest {16], Noble [21], Yokoya [14, 22] and
Chen [23].

Quantum mechanically, in principle, an electron interacts with Band§ very differently. For
example, while an electron would execute a circular orbit in & transverse uniform magnetic field, it
would instead have an apen orbit when traversing a transverse uniform electric field. (See fig. 10.)
This difference in the genesis of the well-known historical issue called Klein paradox [24] where
spontaneous ete™ pair <reation is possible when the electron is accelerated in a strong E-field.

a-a7 5838A12

Fig- 10.. Closed and open trajectories of an electron under 5 and £
fields, respectively. For|B| = | 5| the two trajectories largely overlap
around the turning point.

However, it is shown by Chen and Noble [25] that beamstrahlung actually occurs within a
very short distance ~ g, around che turning point, where there is-no essential distinction between
the two possible trajectories. (See the overlapping section in ﬂg..lo indicated by 0,.) More
specifically, when the electron momentum which is transverse to £ is much larger than the rest
mam; i.e., p) 2> m, and when ¢}E|/m < 1, the radiation rates are the same from F and B given
equivalent strengths. We will base the rest of our discussion of beamstrahlung on this argument.
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Finite Extents of the Fleld

Unlike the donc fide synchrotron rudiation where the entire closed orbit of an electron is em-
bedded in a uniform magnetic field, in beamstrahlung the field has finite extents. The strength
of the EM field is proportional to the bunch current, which typically varies as a gaussian func-
tion. Very often an equivalent uniform disiribution with total length L = 2v/30, are invoked
[cf., eq. (2.3)] for the sake of mathematical simplicity. A schematic drawing is shown in fig. 11,
In the transversze direction, the local field atrength also varies.

Longitudinai:
¥y y
/ \ L=/Roy
. A [ 4 ¢ 4
L L3 L2 L2
Goussion Uniferm Cylinder
Transversa:
y Woe,
N . A
\ / 2ar \.-/20':

“Round” Bunch “Flar™ Bunch
S-ar SE3%A14
Fig. 11. Schematic diagrams of charge distributions in longitudinsl
and transverse directions.

For a round beam (i.e., R = 1) with a bi-gruasian charge distribution

Ry (s 2) = W},—@;’ﬂ'ﬂ’" Lo G (3.5)
the corresponding field strength is
|Blgur = |Blp=y = E—- .= [1 = M] - . (3.8)

where £ s In the radial direction and 5 is in the asimuthal direction. In the more general case
of a flat beam (i.e., R < 1) with a tri-gaussian charge distribution

R, (70, 2) = m;"’f’dg-l’lﬁc-fﬂﬂ ‘. . @)

the E-field is generally not pointing to the radial direction, The field strength is [26]




—s/202
::: :/H’— (3.9)

() =t sl ()|

where w(c)’s are complex error functions.

|Elr>1 = |Blrsa

From eqs. (3.6) and (3.8) it is clear that tha fields in & bunch extend only within a finite space
with strengths varying from point to point. We like to stress, however, that their longitudinal
variation follows exactly the distribution of the buxch charge.

3.2 SYNCHROTRON RADIATION IN A SEMI-UNIFORM FIELD

Baler-Katkov Approach

Our starting point is the Baier-Katkov method of radiation calenlation [27]. A similar method
had been used earlier by Schwinger {28]. The method is based on the realization that when the
radiating particle is ultrarelativistic, its radiation in a magnetic fleld is a quasi-classical problem.
By that we mean the motion of an electron becomes more and more “classical” as its energy
increases that it makes sense to describe the particle by its trajectory. The radiation is therefore
viewed as induéed by the bending of the trajectory. The only role that quantun phyzics plays
is the noncommutativity between the electron fleld and the photon field, and the conservation of

initial and final energies in & discrete manner. Tl:&gmaa!upmioﬁofndhtionhtmlty(in
the Coulomb gauge) i ~

I=a j {2x)? e j d5 j dty e“""“"ll' M@ . (s.9)

whmc-l/lﬁntheﬁnasmtmmmt (nv,i)thnﬁuubmmtumdﬂu photan, (3], {f|
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.erm-).m) —u:y{ [nn'+— (., (1:.) ﬂh» -w)]} (320)
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sionless, Lorents invariant parameter T:

. -::‘ ' ! T = "

%’:m—zﬁfﬂfdra(am),a(:,))ap{ [wr+—( ('It:)-i‘(tz))—wf)]} '

(3.11)
where £ and £’ are the initial and final energies of the electron and
2
G(F(),7(t)) = % [(1 + %) (7{ts) - 5(t1) - 2)
(312)

+ %)' (i(t,) ) -1+ _’3,-)]

From now on we will simplify the notations by designating &) and & for #{t;) and ©(t3), respec-
tively. Similar notations apply for #(t). It is observed that the dominunt contribution of the
+ integration in eq. (3.11) comes from the value at ér ~ 1/. This corresponds to the situs-
tion where the electron position vector has swept through an angle f/q. or correspondingly the
outcoming photon lies within an apen cone of angle 1/. We shall call this period of time the
radiation formation time r, and the corresponding distance of travel by the electron the radiation
formation length, £p. Since 1/ <« 1 we can Taylor expand #: and 73 in terms of 77 and fi:

5'1-3,=i'1-[ﬁ+§;r+;5‘1r’+%?1f’+...] .
: (313)

Fta-m)=F[ar+ o+ o]

In their paper {27] Baier and Katkov truncated the expansion at 7172, thius the assumption was

{1/6)%s)r*
———(1 AR <1 . {3.14)

Sineefc:éinnmsnetieﬁdd,mdi’=mmt,wahvef-;7=o. Takingtimndumﬁvu
llgcemivaly,wehm . '

=—¢"F , @

=-355 , ete: (-1-15) :

ap

i'.

Using these relations the assumption can be translated into Br/B < 1. Now we define a dimen-

2 .
=+ . , (3.16)
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T>1

(3.17)

In the above equation the expression for T « J is the well-known formula for classical
gynchrotron radiation, including the leading quantum correction first derived by Schwinger [28],
and independently by Sokolov, Klepikov and Ternov {29], and higher terms in T. The expression
for T > 1 corresponds to the synchrotron radiation in the extreme quantum limit studied by
many people, but in this article we will simply call it Sokolov-Ternov formula [30]. The fact that
Baier and Katkov reproduce these formulas in a straighiforward manner and generalise them

from strictly uniform fields to semi-uniform flelds suggests the power of this method.

Formation Length and Granglarity

Let us now digreas from the above results. The radiation Intensity in eq. {3.17) is tha total

intensity from all possible frequencies, If we look for the power spectrum Plw), definud as

a
at

£
=[p@m,

it is known that in the classical limit it zcalen like

Plw) ~ {
Wa

ﬁll’s »* GSHg Y

W ~wfee | gRw, .

(3.18)

(s.19) -

The critical frequency w, is defined such that the total radiation intensity contributed from w < w,
is equel to that from w > w,. Notice, however, that higher frequency photons weighted more in
terms of intensity. Therefore, the spectrum beyond w, doea not cover as Jarge an arex as that
below w.. In fact P{w) diminishes exponentially beyond w,, For a uniform magnetic fisld, an
electron would execute & closed orbit with radius p. The critical frequency is related to p by

3+
25 °

We =

(3-20)

whmtwopawmofqmms&omnoppluah!ﬂ&uhthfutthutthemmndmm
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ﬁaqunqh-vl[q. For frequencies above or below w,, the Gpening angle varies as
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We _uhall therefore call the corresponding distance of travel of the electron the radiation formation
length 2p(w)

E‘_lll w
ca(u)E{%(W) . (:22)

%(%ﬁ)"’ y WRw .

The parameter T defined in sq. (3.18) can now be related to w. {(and therefore 2p). From
Lorents force |F| = ¢ |B| = ym/p, we have

=D T 20
T-—'TB‘— =37 (3’23)

where X, = A/me = 3.8 x 10~!! cm is the Compton wavelength, When T « 1, we find w, « £.
In this limit the typical energy of photons is much smaller than the electron energy and the entire
power spectrum of eq. (3.19) is observable. On the other hand, when T > 1, or £ < w,, the
spectrum beyond w = £ is kinematically forbidden. So in the quantum limit, only the infrared
region of the assumed classical spectram is observable, which scales as P(w) ~w!/® uptow =~ &
and w, is certainly not to be seen. -

Panofsky {31] argued that in a dilute beam, the poesible ripples that superposed to the smoath
trajectory would induce additional radiation analogous to the undulator effect. This radiation
introduces a broad spike with mean frequency associated with the mean particle separation £;,

Wy = % . (3.24)

Sinceu;~2‘r1’[¢u,and¢a>ls.wehvew¢>wg It in thus clear that this pessible granularity
eﬁectmobsuvubleunlywhm'f(l. Beyond the classical regime wy, 83 well as w,, is kine-
matically forbidden. Thnmmthtmthcugh:heﬂddumphynaﬂydhcnhmndﬂuu
bmhraﬁaﬁngwﬂdembmpmﬂnhﬂnmdﬁeﬁdﬂmthmﬂhmm&hu
bexphnﬁlymﬁrmdbyﬂhnkenbeelermdnnﬂ[m] In their calculation, the electrostatic
potmhﬂofeuhmdlﬂduﬂhrgﬁpuhnle(‘mthemﬂrmgjwusumedupmdtheﬂu:tnnmn
mahmuhelogarhhmluﬂympoﬁmt.

Thmu,howuvu,mlddlhonﬂndnhme&ctdutothammulunﬂmoﬂhem
getwhxchmmdepmdentofwhetherthebumn .:lutemdunu. ..This corresponds to the
bmhﬂmﬁmhm&ﬂdwwtmghmmmdeﬁemlm(mﬂ
mvm)mmtlyeduﬂltedbyﬂm KntbvudStra‘khomko[a] The difference between
thmeﬁedmdthcnmﬂbmhﬂmn&ﬂthefwmuuwmﬂmmdbythgm

snopncbackgmundﬁnldthltwuhmbemdmmgmhr This subject, however, lies beyond

thempeafmuhde,whchdeahwiththeudinmn&omamhmmtinamthmm
part of the target field only.
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3.3 SYNCHROTRON RADIATION IN¥ A VARYING FIELD

Head-Tail Symmetry and Gauasian Correction

Consider a magnetic field that points to the direction transveree to the axis where an electron
enters, and its stzength that varies along the axis. Let ¢t = J when the lectron passes the
geometric center of the fleld. We are interested in the case where the field variation is such that
R(t) is an even function in 2, which is also called head-tail symmetric. Since from Lorents force
i oc B(t), we see that & o B(t) is an odd function in t. Therefore, in the study of radiation from
3 hend-tail symmetric inhomogeneous magnetic field, the terms livear in ¥ would vanish when
integrating over ¢. This means the leading correction term is of the order 3. We should thas
retain the Taylor expansion in the integrand G up to the term - 717 where the recurrence
relation

§-T=-30-7-4-7 , (3.25)

which is obtained from cne more derivative on eq. (3.15), links the term with &+ 5 and &+ & where
both are even functions in time,

As for the phase, retaining terms up to 7« we have
apfifor+ £ (=R -ur)|} o (-imorany . G2
where
=uar[1—n-a-;n-%r+%&-i#] ,

and « = w/&' A = E/uw, ia the phase angle that gives rise to eq. (3.17) in the previous section,

and
ll—ntf[]" 'u’r’+ (—"—+ 3 ?)i‘r‘]

is"the additional phase that we retain. Natice that in @; and the last term in @9 we had made
thenpi:roﬁm:ﬁmdupheingﬁbyi‘.

. We further assume that & < 1, which is usually satisfied if cnly w 1, or the final energy of
the electron &’ 3> m. This does not introduce extra assumption since the Baier-Katkov mathod
mmmmmmmmmmm Therefore we
mnhthefollwlngwprﬁm&m.

exp {~i (@0 + #)} = (1 - Br)exp {~is} - (8.27)

Retaining terms to the same order in the integrand G, mdcombmmaw:theq (3.27), we find the
mt:gnndtoba .




G=Go+G1+Gy , (3.28)
where

Go—-—(1+|)-—(1+|+ ) oir?

is the part that reproduces the Sckolov-Ternov formula, G) « Br/B is an odd fanction in time
and wogld give sero contribution for head-tail symmetric fields, and G3 is

15 18
G = (1+ + )(s 7te 3,) rt
+i;2% (-‘—_':;2) (33: +4:‘) i (3.29)'

+:— 1+u+ )(0%:-4-1%)5’1' .

Inth;bmexprmthevuﬁwpmdma' «Fand ¥+ 3hmbeenmphudby.8§ and BB.
This is because the only componeats that & and & euntrﬂ;uhmnmpcrtwnﬂtoi’ximdvxﬂ
respectively.

Following the mathematical techniques used by Baier and Katkov {27], we introduce angles #
ndp.,wﬁm!h&mﬁbmhﬂwﬂdpm”mmd&ephm(ﬁ
), and p the angle between the projection of 4 on (7, #) and &, La.,

ﬂ.-i‘=v§que¢l , A-Fmisinpcost . (3.30)

_ Tuking into accout the fact that up to terma of highest order in 1/+* the principal contribution
", comes from emall # and p, and by shifting the arigin of 7 t0 1+ /3, the phave can be written as

%o=uf [tl-ﬂ'ﬂr-ia-&é+§€‘a]

=% =.+,§.=’ﬂ+§v_’)_ .
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With the definition of T in eq. (3.16) the coefficients in the phase can he symboliged by

The radiation intensity associsted with head-tail symmetric inhomogeneous field is then

'%=-(;Ta;fh’dkdlhl%fd=fdycgcp{-ib :+-;-=’+y+%v')} . (332

Recall that 4 = w/&' = w/(€ —w), and k2dk = wdw, we find that

Kldk = Tsl:i% . (3.33)

The intergrations over £ and y give Bessal functions of fractional order Ky/s(n) and Ky/3(n). For
the evaluation of the integral over u it Is canvenient to intreduce the vepresentation [83]

Ao . )
1 1 [ r(-aT(m+a) ,
a+um = -2?5‘ _.L T(m) Letds (3:3¢)

where l-ﬁ_i<A<0. thmdmhnthehwsﬂonmnmthﬂﬁudfmﬁm
into gamma functions, multiplied by a factor (y24)~3*+)/3 among other things, We can then
.carry out integration over sin @ = @ by the following formula:

" f (P agap < j (1 + 430%)Se4ltgp = ﬁr(s;g' 4 (:ua;lxz))la; R

" - All integrations in eq. (3.32) m-tru;htfurward.thnu.hhdm Thal-nltbdoueumn‘
‘out the final integration over s is '
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where —1 < A < 0. The above expression includes only contributions from the i4r¢ and 4717 terms
in eq. (3.20) because it can be shown that the contribution from the %% term is significantly
smaller, and thus negligible.

'l'hehtepdm:nnbeaﬂuudbydmthemwdmugntmﬂthnhthan;ht
for T <« 1, or to the left for T > 1. Far T « 1, we hava

%’-=o , T<1 , (s.37)
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% = _%Elmz(ar)m {%.(}Lf:)_p’ 12997 (%)’ - 1304)] } . T>1 , (340)

where F = £g /o, in the formation length parameter lnocnted with £p(w) in the quantum limit
for photon frequency w = &:

trlw =) = 31 (¥ ( - )"a = (i)m%.,._ . (3.41)

Combining egs. (3.37) and (3.40) with eq. (3.17), we obtaln

L fomTs (14 BT +asT0+..) rel: ,

a ﬁl,'gﬂ'lm’(sr)ﬂ'{1 -l [mn'r (&) - 1304]} , T .

&
]
&|E:

(3.43)

- Short Magnets and Radistion Reduction

Our result can be sppreciated by the following physical arguments: Coniider a long uniform
magnet with length L* > ¢z, The differential radiation intensity P(w) is given by eq. (3.19)
and shown by the solid curve in fig. 12. As is introduced in eq. (3.23), classical limit T < 1
corresponds to the situation w, < £, meaning the typical frequency of radiated photons is much
less than the kinetic enargy of the radiating particles. Zhus the entire spectrum of eq. (3.19) s
observable. On the contrary, the extreme quantum Emit T > 1 corresponds to £ < w,, therefore
the spectrum beyond the electron energy is kinematically forbidden, and the obaervable spectrum
scales roughly as w*/? as discussed eatlier. This cut-off is shown by the vertical dashed lire in the
figure.

4
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Fig.12. Radiation spectrum in the two asymptotie limits, For long
magnets, L' > {p, we have the well-known spectrum . in the solid
- curve, In the opposite limit L* < fg, the spectrum approaches a
constant. In quantum limit we observe only the low frequency regime.
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. In the case of nonuniform fields the spectrum differs from that of uniform fields. For the clas-
sical limit the problem has been studied by Coisson [33], and independently by Bagrov, Fedosav
and Ternov [34]. It is found that for a short magnet which is comparable in length with £p, the
radiation spectrum is modified in such & way that the low-frequency regime is suppressed in favor
of high frequencies beyond w.. The total intensity, however, remains the same. The prediction
was confirmed by Bossart et al. [35] with observations in SPS at CERN. We can extrapolate this
fact by suggesting that when the magnet length L* « £, the spectrum wonld be a constant
independent of w up to 2 maximum frequency w* ~ w:(fr/L*) (ses the horizontal dashed curve
in fig. 12). Our result for the classical limit shows that the total intensity dI/dt is the same for
uniform and gaussian fields. This is a confirmation of the previous studies.

The situation for short magnets is different in the quantum limit. Aguain, spectrum beyond
£ is energetically forbidden. But now that the low frequency regime Is suppressed, the overall
intensity is reduced. This explains why our dI; /d¢ is opposité in sign from dfp/d¢. Fromeq. (3.42)
it can be seen that when {p € g,, or When the bunch is very long, dfa/dt — 0, and we have
vanishing correction to the Sskolov=Ternov formula. A pronounced effect occurs when £p is not
much smaller than o,.

3.4 REDUCTION OF QUANTUM BEAMSTRAHLING

First Reduction Factor

wm;mmmmm&;mmmm,ummmdym-tmm
average energy loss during beam-beam collision. Individual ete™ acatterings are neglected, and
the target bunch acts only to provide a macroscopic field. Forthenhofugnmu,mwillm
this section assume a hybrid “cylindrical gaussian™ bunch, i.e.,

3 “’M -—
n, #ﬂ—'¢ . w<s<®

(3.43)
= ' 0<r<20 . )
ny é r r
It is straightforward to ahow that the local fleld strength in this case is
Iflx-n=Wrm' vl 0<r<3e, . (3.44)
5 2 ". 7 Y o' -
The above expression is identical to eq. {3.8) when the approximation of r < o, Is taken. We
now introduce normalized coordinates as in sec. 2.3,
r =2
P—; » “‘a' ’ (3-“)

then we can define a local beamstrahiung parameter

= IR T v b



T(p,5) = Tope™?/2 | (3.46)
where

Te *ng
V’z—'ﬂ vOs

is the reference beamstrahlung parameter corresponding to twice the fleld atrength at {p,¢) =
{1,0) in the target bunch.

To=

Let ua first calculate the average energy loes in a semi-uniform field appraximation, i.e., dfo/dt
in eq. (3.17). The validity of this assumption for a gaussian current distribution is that the bunch
is very long; hence, the feld strength changes mildly, i.e., Br/B < 1. Equivalently, if & uniform
cylinder bunch is invoked, this implies that the end effecis aze neglected,

Let

-
= —E-—- (3-‘7)

bathaﬁuﬂondmuyluuofuehctmnhmmputmnmdnp. ‘Then the average fraztional

energy loas of the entire buneh is
() = (‘mﬂm . (3.48)

Replacing dt by (0,/2)/ds, since both bunches move toward each other with the speed of hight
(¢ =1), and define

I‘osq—*‘: ’ (3-49)
we find for the classical Emit
(sn)= To[z(ﬂ) ] e-f'd;] yTol , - (3.50)
ﬁ‘v;;i:rptetha_elminlmndini-

Réw |
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Notice that the geometric form factors in the two limits are surprisingly close:

30 [ Pdem Va2l [ r08vE (352

Asmnming from now on the same geometric form factor +/x in both limits, we then have extremely
simple scaling laws for the average fractional energy loss in beamstrahlung:

WEem - To€1l ,

(eo) = ’ (3.53)

BATEL) g (sxeph |, o1 .

If one would natvely calcnlate (¢) with a given T by using the classical formnula for the quantum
regime, he wonld obtain meaninglessly Inrge results before using the correct quantum formula. A
beamstrahlung "reduction” factor Hy; is thus introduced to account for the change, which is the
ratio of the bottom expreasion to the top expression in eq, (3.53):

o 160(2/3) oy /3
T?E- E“ (To) __81 ro = 0.556'!'0 ’

while (3.54)
Tll.:_% Hri(To) =1 .

It is remarikable that this beamstrahlung reduction factor is exactly what one would get by
mmmdmmw:’mm(&lﬂhmﬂdbmm
mmronndmmmmmwﬁn;&ammm This is
theuuonlybeuuuthegmﬁ:formfuhrdoanﬂmtuom:hmmmhm. It can
be shown that this is true even for the transition regime 0.1 5 To 5 100, where we lack a simple
ana!ytu:nulm;hw Anmmcdplotfwtheenhnmnofrmbywmun[%]nshmm
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Fig, 13, The beamstrahlung reduction factor Hy; and the product

THy; as s fonction of the scaling paramster T, plotted by P, B,
Wilson.

where in the round bean: case (R = 1), it eoﬁelmd_hml‘ofur:qﬁndﬂulm
bunch,

5/ 12
To T (3.56)
Our analysis in this subsection therefore serves as a thearetical explanation for the previouly
known facts. Natice, however, that our expressions in eq. (3.53) have conceptually simplified the
description: No effective radiation time [2] is nacessary, and Ty in defined in s straightforward
way without extra numerical facton {21].

- As discussed in the earlier sections, the Sokolov-Ternov formula does not include the effect
dutothsfuthri&tionoﬂheﬁaldnrengthdmthmde trajectory. The ‘correction term
deﬁvedmn:.ﬂ.a[d..eq (Sﬂ)lm&ntsthnthmnmlddmondbamtnhhngrednm

. nmmmmmmmmuummnmpmbmmamm
dhl&mdﬂ.[&bm@hmmdenmmt;—gmmmddm
‘ hnneh,beyundwhlehtbew mmntywoﬂdtmnmﬁmmdb:mﬁnlymph-ml. Since
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o bmdofthereduchonaﬂ'ect by extending dIg[dullthewu.yhfe mdmumlnuoh.l suppression
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Fig. 14. Radiation intensities as function of longitudinal target bunch coardinate ¢.
The dash-dot curve is the Sckolov—Ternov radiation. The dash curve is the negative
of our gaussian slope carrection. The net intensity is represented by the solid curve.
Beyond the point ¢ where dlp/dt and - dI;/di meet, we assume a total suppression.

where

¢ 3\ %
n=2-() A% .

htharefmradhﬁonfom;ﬁmlmxthpmmodlbdvﬁth To, and is related to F by
Flpg) = Fop %2’ . (3.59)

From eq. (3.57) it in obvions that the cut-off ¢ is radial dependent. For the sake of simplicity in
- our discussion, we make a further approximation by evaluating ¢. at the mean invpact parameter
- {p}q = 1.30. Thus the mean n.dintionlon inn‘pptes_aedto

(‘):. (ﬁo)f.'!'(‘!)c. ’ (3.60)
{e= %@f‘””: = (o )"’[ o [ e‘f"?cc] .
and
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Let us define the second beamstrahlung reduction factor Hys as the ratio of eq. {3.60) to the
quantum formula in eq. (3.51):

[
A, Hra(Yo, Fo) = Erf (%) = [:g%ig f €'B120073 —1804)ds ,  (3.61)
—t

where Erf is the error function and
'I!i.l_l;oxrz{'rn.po) '= ’ﬁ.ll;oﬂ'n('ro,.ﬁ) =1 . (3.62)

With this lengthy expression, it is hard to appreciate the importance of the reduction. Asa
numerical example, let us take the beam parameters discussed by Himel and Siegrest [16], namely,
the Lorents factor for 5 TeV beams 4 = 1 x 107, number of particles per buneh N = 1.2 x 10°,
bunch size oy = 0.4pm and o, = 2.5 A. With these parameters we find

= ———— =50l , i
Ta J— o > (3 63)

and the reference formation length parameter

B (3)‘/’ Xy _ 0015 um _
o -_

3) TR, = ol =0.03T6 . (3.64)

The cut-off ¢. at the mean impact parameter (p)q = 1.30 turns out to be

=140 . (3.85)
Plugging in numbers we get
(o). = O.TB{ed)eo = 1085  (2.60)
and '
(ea}p = =0.11{e0}0 = —1.6% . {3.67)

Thus the corrected quaitum beamstrahlung average fractional energy loas in

{9 2 (e =102% . (3.68)

“This is substantially different from the previous results. The second reduction factor in this case

is
or reduced from the semi-uniform field approximation by a factor of ~ 2/3.

A

B £



Although our discussion on Hyy has been limited to the extreme quantum limit, it is reason-
able to assume that this reduction effect occurs to the transition regime as well. Based on the
arguments given in sec. 3.3.2, the effect of a short bunch is to suppress the spectrum below w,
znd stretch it to frequencies beyond we. By definition T = 2w, /3£, 50 for T aa small as = 1 the
kinetic energy already lies below w. and we should expect to see the second reduction.

To conclude, wa showed that the average fractionsl energy loss can be related to the classical
synchrotron radiastion formula with the reference beamsirahlung parameter Ty as an effective
parameter and

{9 = 2‘/- LS. T’ -Hr1-Hrs . (3.10)
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APPENDIX
QUANTUM FLUCTUATIONS IN BEAMSTRAHLUNG

In this Appendix we liat various beamstrahlung quantities of interest to high energy physica
and accelerator design. The fluctuation in these quantities arises from the fact that typical number
of radiated photons per electron during beam-beam interaction is small in the quantum regime,
and not very large (of order several) even in the classical regime like the case of SLC.

Analytic formulas have been derived by Yokoya (22] on the average number of photons radi-

ated per electron (IV,), the average fractional energy loss (¢) defined in eq. (3.48), the standard
deviation of e

oo={) - {&* . (A1)

the average fractional reduction of the center-of-mass energy W = S%/3 = 2(£ 5)1/2 of two
particles in beam 1 and beam 2 at some space-time point:

w =(T=") |

7 (4-2)
and the standard devirtion of w:
0y = (w¥) — {w)?® . (4.3)

Following the same spirit, Neble [21] has investigated, in addition to the above quantities, also
the average fractional center-of-mass energy squared reduction:

= {2z7) (44)
and its standard deviation:
o ={")—{)?® , (4.5)
incomputeruimnhtim!\mhumm‘thmphﬂmmhhmdudu
o) = (%) . ‘ (A8)
Table 1 lists the formulas obtained by the two anthars, where ;
,_arN . Ny . AN B ,
===, Bt oL, (A7)
and
_a‘f.N’ﬂg
Q——_-,ag— . (A'B)

The fanctions 4(T) and g(T) are listed in Table 2 for various values of T, and the coefficients a,
a3, b, di, da, ds for {¢) < 0.1 are listed in Table 3. In all cases no disruption is assumed.



Table 1

Formulas for quantum fluctuation on various physical quantities derived by Yokoya
analytically, and deduced by Noble through computer simulation.

Yokoya Noble
T<1 T>1 All T
(N 1.05974 1.554Q1/3 2 f r k(T)
) Lh
5+/3 h(T)
(@ 0.21648 0.395QY/ i%gm
3130\?| 6480\ o \!
o: |0.4048(¢) Q + A 0.193{¢) (l i(-ﬁT ay{e) (1 + N
{w) 0.4094 (e} - 0.458(¢) " be)(1 4 (M) y
10.04 13.20 dy
oy |O. 3146(!) 1455+ ) 0.205(¢) ( E—N A) dy (e} (l-l- ™
(a) 2b{e}
) 1
O 21;(!) (1+ (N ))
Table 3
Representative values of the fanction g(T) and 4(T) in
the range 10~ < T < 10°.
T g(M) K(T)
1073 9.04 x 10~7 9.90 x 10™*
102 0.45x 1075 9.01 x 10~3
10! 6.55 x 10~ 9.30 x 1072
1 1.82 x 101 716 x 1071
10 1.84 424
102 1.11 x 108 2.13 x 10!
10% 5.56 x 10t 1.01 % 10%
Table 8

Behtﬁudthemeukneoeﬁdmhq.budd‘u
afnnchondthebumnduhnnpmtwhm

{9 So1. _
T e e b 1 |ds]ds
51072 | 041.| 30| 042 j 032 |10 | 20
1-10 |03 |30 jo043 |031|10]| 10
1 631 { 33 | 044 | 027 | 14 | 20
10 625 | 43 {045 |02¢ |28 | 11
20* | o022 |53 | 046 |022] 22| 12
.210° | o020 |63 |04e7|on 26|13
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¥ is defined in eq. (3.55) as

T- SM(M ) T, . (49)

12 oy \I+R
The symbol T is related to our I'o [eq. (3.49)] by
r=2%.1r, (410)

i.e.,thsmctﬁcfomhcmﬁhubemahorbedintol‘.

More recently, Amaldi [36] introduces simple scaling lawa that ressonably reproduce the
formulas in Table 1:

&= (%)’z%‘f’ (1 . e (411)
) =309 1 +TP+ AT T (A12)
() == ;T@ +T1 4+ vAT) (A13)
and "
Ou = % () (z +¢7Th) [1 ks Ji(l;'(';o? + 1)] . {A.14)
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