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Abstract

A large iune-spread due o space charge and strong random
eddy current sextupoles exists at injection in the AGS-Booster. As a
result, particles in the beam may cross several imperfection reso-
nances that can be caused by random magnet errors. The correction
scheme proposed deals with four half-integer stopband resonances,
four third-order sextupole induced resonances and both the sum and
difference linear coupling resonances. All of these resonances can
have a chance to be swept through by the beam during injection,
bunching and the early stage of acceleration. A system of correctors
involving skew quadrupoles, trim quadrupoles and sextupoles is
described with the capability of correcting all the major resonances
involved, simultaneously. Also a closed orbit correction scheme is
described which requires, to be effective, a cascade of local 3-
magnel bumps. Several magnet imperfections and survey misalign-
ment errors are invesiigated.

Orbit Correction

An accelerator lattice cannot be expected o be perfect and as
an immediate consequence the same will be true for the closed
orbit. Since more or less reliable assumptions can be made about
realistic lattice errors, it is important to see how they translate into
expected closed orbit distortions, and if the !atter exceed acceplable
levels 10 see how 10 correct them.

Among many possible sources of closed orbit distortions, we
have selected four major types of lattice errors. They are the error
in the integrated dipole field strength A(Bl) / BI, the axial tilt of the
dipole A8, and the lateral displacements of the quadrupole along the
two (ransverse directions.

The RMS values of the lattice errors we have used are the
following ones:

A(BD) /Bl = 0.3x 107, 48 = 0.3 x 10°* radians,
Lateral quad displacements AgX = AqY = 0.3 X 107 m.

A 2.50 cut was imposed on all distributions of random errors.
Sextupoles were modeled as thin lenses, but in all other aspects
they were assumed perfect. Higher order multipole errors have not
been included yet. Orbit correctors were assumed to be thin lenses.
Both beam position monitors and correctors were assumed ideal,
i.e. perfectly aligned with the axis going through an ideally placed
quadrupole and monitors were assumed to have a perfect sensitivi-
ty.

The tracking/analysis code PATRIS was used to handle the
simulation and analysis of closed orbit distortions and furthermore
to correct them.

For a realistic closed orbit modeling, it is desirable to have a
better scheme than that of a simple representation of lattice error
effects by kicks. Moreover, one would like to see what happens
with closed orbit distortions once a certain well-defined sort of
correction is implemented. Both goals have been attained in PA-
TRIS, which on the one hand has the capabilities of simulating the
lattice errors by incorporating them realistically into its 7 x 7
transfer matrix, and which on the other hand can correct the orbit
by engaging the Fermilab correcting scheme, based on the so-called
three bump method. The details of this scheme can be found
cisewhere'=? and will not be repeated here. Ome thing we will
emphasize nere are placements of correctors. They are assumed to
be BPM's at the same time and they have ‘been placed beside

*Work performed under the auspices of the U.S. Department of Energy

MAS

focusing quadrupoles where the relevant beta function is large.
Another thing we would like to mention is that the scheme evalu-
ates the strengths of the corrective kicks on the basis of observed
(or simulated) on-momentum closed orbit displacements at three
successive monitors (with nonlinearities included) and the transfer
malrix in the absence of nonlinearities. As a result of the correction
evaluated in this manner the scheme supplies kick strengths which
(in the absence of nonlinearities) reduce orbit distortions to zero at
all mogitors, a fact fully confirmed by PATRIS, and which in the
presence of nonlinearities reduce the orbit distortions by an order of
magnitude or better. Finally, we would like to emphasize that the
scheme avoids any need to invert mairices and is therefore fast and
economical.

We performed calculations with 11 different sequences of
random errors. Initially, we atlempted to handle the problem at
103 level of RMS lattice error values, but il was too much and we
reduced values to the presently accepted 0.3 x 107>, In all of these
11 cases, the corrected closed orbit, in the presence of chromaticity
correcling sextupoles, fell within one millimeter. To examine the
sensitivity of our result lo a change of the input RMS lattice error
values, we increased the latter for the case of the worst random
error sequence that we had encountered. While this comparatively
rather bad distribution yielded a corrected closed orbit that fell
within one millimeter for the 0.3 x 107 errors, it reached 1.36 mm
at one location for the 0.4 x 10~ errors and it barely passed 2
millimeters at four (out of 48) monitors for the 0.5 x 10~ errors.

These facts have given us the necessary confidence to claim
that if a 0.3 x 107 level of RMS values is attained in a real
machine, the Fermilab correcting scheme alone will be able to
successfully handle the closed orbit distortions arising from the
four types of errors we have discussed. The results of the run over
the worst encountered disiribution of random errors are shown in
Figures #1 and #2. These figures represent the uncorrected and
corrected closed orbit for the two planes. The reader will undoubt-
edly notice that the uncorrected closed orbit behaves in the horizon-
tal plane much worse than in the vertical one. This is obviously a
consequence of the particular set of random errors. We have in-
spected the results of all of the eleven runs and have found the
closed orbit distortions bigger in the horizontal plane in four cases.
It was just the opposite in another group of four cases, whereas in
the remaining three runs the distortions were about equal in the two
planes.

As far as the four types of magnet errors that we have
discussed are concerned, our conclusion is clear: one should strive
to achieve the 0.3 x 107 level of RMS values and this is very likely
sufficient for the Fermilab correcting scheme 10 work well. Con-
vinced by our analysis, we definitely support its implementation on
the Booster. The implementation will require installing a beam
position monitor, followed by a dipole corrector, beside each qua-
drupole. The maximum integrated kick strengih for such a bump
corrector, 10 be able to correct the orbit at the top magnetic rigidity
of 18 T.m, is predicted to be about 55 Gauss. meters. This estima-
tion may have to be somewhat changed in the future, once other
relevant factors are brought in for analysis. But the esseatials of the
correcting scheme should remain unchanged.

Resonance Correction

To reduce beam loss, we will include a resonance correction
system. The large space charge wune spread [4] at injection can
cause particles in the beam to cross imperfection resonances. Fur-
thermore, because the AGS-Booster is fast cycling, the dipoles will
have large eddy current sextupoles™ giving rise to third integer res-
onances thal must be correcled.
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The AGS-Booster consist of six superperiods and :ach
superperiod contains €1ght correction trim coil assemblies of which
four of these assemblies will contain the skew quadrupole correc-
tors. Furthermore, each of the Boosters 48 quadrupoles contain trim
coils for half integer stop-bandwidth correction and the 48
sextupoles contain trim coils for third integer resonance correction.
Using these correctors we want lo generate resonances that cancels
those resonances excited by the errors.

The resonances that are important can be deduced from the
tune diagram for the Booster shown in Fig. 3. The presence of the
large tune spread is due lo space charge effects.” We propose 2
scheme for correcting imperfection resonances up to third order
(excluding skew sextupole resonances). The sextupoles are ex-
pected to be important due to the eddy current effects in the dipole
magaets [5). This leads to three classes of resomances:

(1) Quadrupole 2v, =9, 2vy =9

(2) Skew Quadrupole v, + v, =9, v, - v, =0

3) Sextupole I, =14, v, + 2y, = l4 v, = 13,
v, + 7v 13

We need to relate the corrector strength with the resonance
strength {1,6,7}). To do this, we definc the following functions
related 10 the phase advance:

(s)_f dt Zﬂ:vs © J" dt zfvs
Ky = ﬁl(l) c " l»ly S By([) ¢V

where B (s) and B (s) are the betatron functions, v, and v, are the
tunes and C is thc circumference.

Due 10 the periodicity of the P and p functions, the sums to
find the resonance strengths can be simplified. First, we define

b * =1y

then
tmstq+(p- /6

which represents the position of the q'th corrector in the p'th
superperiod.
We introduce the coefficients £ in which

O)p (0 IV (]
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Spq = fp 50 + 1198y

Kpq = KD, My =

are the strengths of the correctors (i.e. quadrupoles, skew quadru-
poles and sextupoles respectively) so that the sum over the
Ferperiods. p. can be separated. Additionally, by choosing
= ¢os [ar(p — 1)/ 3]. the different harmonic numbers, n, in
each of the classes are orthogonal.
We can now write the resonance strengths in terms of "normal-
ized” corrector strengths K, M, and Sq as

(i) 2v, = 9
i if2p,(1) + 18m, /C
Ay = g )gx‘”ﬁ (e ™ 1)

(i) 2v, = 9
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(iv) v, + v, = 9
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(vi) vy + 2v, = m
8
F, = "—'ﬂ ™ m SR8 (1 o lB) * 2y + me‘,'c‘]'
(6 m) 3 SRR

where m is either {3 or 14 and

6
N, n) = 3 FeE - 073,
p=l

Since the resonance streugths A, B, C, D, E and F are complex
quantities, then we have 4 conditions for the quadrupole and skew
quadrupole resonances and 8 conditions for the sextupole reso-
nances. The unknown variables are K for q = 1,2,....8, M and
MY for q = 1,2,3,4 and S{* and S{!*) for @ = 1.2,....8, This i is twice
lhe number of unknowns for the available conditions. Thus, we
impose the additional constraints:

KO =K, MO = M

We can now set up systems of equations to solve for the corrector
strengths given the resonance strengths.

Preliminary simulations show that the corrector strengths re-
quired for the quadrupole and skew quadrupole correctors are less
than 1% of the main quadrupole strengths and the strength of the
sextupole correctors are less than 2% of the main sextupole
strengths. Additionally, this system of correctors are orthogonal
which means the tunes and chromaticities are not affected. Further-
more, simplified connections with a reduced number of power
supplies is feasible.

and S}n) Sf"l‘
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Fig. 3. The tune diagram with the expected tune spread due to space

charge.

Fig. 1. Horizontal incorreted (+) and corrected (A) closed orbis for realis-

tic error distribution.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Gov
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employees, makes any warranty, cxpress or implied, or assumes any legal liability or responsi.

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thercof, The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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