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ABSTRACT DE91 004932

Similarities between fluidization and sedimentation have been
recognized for decades, and it is even common practice to estimate the
solids holdup in the particulate regions of the fluidization beds using
expressions developed for describing rates of particulate sedimentation.
The most frequently used expression is that of Richardson and Zaki.
This equation has a simple form and #redicts for suspensions of uniform
particles sedimentation rates that are proportional to the Stokes
settling velocities at infinite dilution and proportional to the void
fraction raised to an exponent between 2 and 5. The value of the
exponent depends upon the Reynold’'s number for the settling particles.
However, recent measurements have shown that this relation does not
always give an accurate description of the slip velocities or the solid
holdup in particulate fluidized beds. The Richardson and Zaki equation
predicts slip velocities between the fluid and the particles that are
usually too high; this means that the predicted solids holdup is often

lower than those measured experimentally.

This paper incorporates concepts of unimodal and bimodal
sedimentation to develop a model that accurately predicts bed expansion
during particulate fluidization. During bed expansion a particle is
considered to be fluidized not by the pure fluid, but by a slurry
consisting of the pure fluid and other surrounding particles. The

contributions of the other surrounding particles to the additional
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buoyant and drag forces are accounted for with the use of effective
fluid or slurry properties, density and viscosity.
proceeds, influences of the surrounding particles decrease; therefore,
of the suspension.

As bed expansion
" these effective properties are functions of the changing void fraction

Furthermore, the expansion index, which empirically
represents the degree to which viscous and inertial forces are present,

is traditionally a function of a constant terminal Reynold’s number.

Because the effective fluid properties are considered to be changing as

a local or intermediate Reynold's number.

fluidization proceeds, the degree to which viscous and iner:ial forces
also changes; therefore, the expansion index is written as a function of

These concepts are further
in the fluidization of the large or heavy particles.

extended to bimodal fluidization in which small or light particles aid

Eowl (i

The results
indicate that the proposed model more accurately predicts particulate
models,

bed expansion for a wider range of systems (gas - liquid, low Reynold's

number - high Reynold’s number) than other analytical or empirical

iii
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GENERAL
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Subscripts (Continued).

s slip
t terminal
FLUIDIZATION
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a constant used in the Al-Dibouni correlation
m parameter in Zhang Fan correlation
n expansion index
U velocity
g’ bimodal fluidization step one velocity
Subscripts

eff effective
L large particle
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p density

m viscosity
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CHAPTER I

INTRODUCTION

Charles E. Robinson pioneered the technique of fluidization and

1 Researchers in petroleum

sedimentation more than a century ago.
refining, waste water treatment, chemical separations, mineral ore
mining.‘etc. have elaborated on his efforts. Fluidizing technology has
been used on a large scale since 1942. Early applications were applied
to the catalytic cracking of high boiling petroleum fractioms.
Currently, fluidization and sedimentation technologies are being applied
to an increasing number of new application; however, process design is
based on past experience and a limited understanding of the fundamental
relationships.? This study investigates one promising path to a better

unified understanding of fluidization and sedimentation phenomena which

are very important in much of the same process industries.

Fluidization and sedimentation both involve drag and gravitational
forces acting on particles within a suspension. buring fluidization of
a suspension ﬁith a constant fluid flow, particles exhibit a random
motion with a net vertical velocity of zero. Particles produce an
additional drag on other particles and result in an apparent viscosity
of the suspension greater than the viscosity of the fluid. Conversely,

during sedimentation of a unimodal (uniform particle size) suspension



with no applied fluid flow, the downward movement of particles has been
observed to be uniform and constant.® Particle - particle interactions
are thus limited to restrictions in flow between particles, drag effects
are not influenced by direct particle - particle interactions, and the
apparent viscosity affecting particles of the suspension is that of the
fluid. For a multimodal suspension, this does not appear to be true.?®
Particle - partiéle interactions do occur as larger particles settle
past the slower settling smaller particles and thus the smaller
particles contribute to the apparent slurry viscosity as "seen" by the
larger particles. As in fluidization, these particle interactions
produce an additional drag and result in an apparent viscosity affecting

particles of the suspension greater than the viscosity of the fluid.

Although fluidization and sedimentation have some differences,

‘they can be described by similar relationships. Investigators in the
past have developed models that apply to both fluidization and
sedimentation; how>ver, these models usually ignored sowe differences
between the two phenomena. Attempts have been made by Richardson and
Zaki,* Zhang Fan,” Steinour,® Foscolo’ and others to model fluidized bed
expansion an. settling; however, their models have limited applications
and are subject to errcr. Much of the errors exist due to a failure to

account for the difference between sedimentation and fluidization.

Problems associated with the previously developed models are
indicated when they under-predict fluidization velocities for liquid -

solid systems® and over-predict fluidization velocities for gas - solid

N



systems®

at given void fractions.

Number) .

Although thes¢ models may be accurate
for select cases, they do not apply over a range of systems (gas -
solid, liquid - solid) and a large range of flow regimes (Reynold's

The goal of this study was to extend a sedimentation model for
application te fluvidization.

A theoretical model for sedimentation of
bimodal suspensions developed by Show and Watson
foundation of the research.

3 is used as the

The Shor and Watson relationship accounts
for the previously mentioned apparent fluid properties and accurately

predicts sedimentation velocities for bimodal suspensions.

In this
paper, the Shor and Watson relationship is altered to describe
fluidization of unimodal suspensions.

The relationship is then extended
to describe fluidization of bimodal suspensions.
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CHAPTEK I

LITERATURE REVIEW

This study investigates both fluidization and sedimentation, and
literature for both topics is reviewed. Some relationships for
predicting voidages and velocities have been defived by the
incorporation of effective fluid / particle properties into traditional
fluidization or sedimentation equations. Others models have been
derived by strictly empirical means. Both sedimentation and
fluidization relationships, empirical and analytical, have cpg;tibuted
to the development of models that predict voidage and fluidization

velocities in unimodal, as well as multimodal, beds.

"Terminal velocity” is the rate at which a single particle will
settle in a large body of quiescent fluid. A particle allowed to free
fall will accelerate and reach its terminal velocity when the drag
forces exerted on the particle by the fluid (gas or liquid) are balanced

by the gravitational/buoyant forces.



effective ‘ drag +
gravitational - buoyancy

force forces

Settling of a single particle can be categorized by three regions:
Stokes (or creeping flow), intefnediate (or transition), and inertial.
The region which best describes a particle’s settling phenomena depends
on the Reynold’s number, the ratio of the inertial to the viscous
forces. Particles in the Stokes region are characterized by relatively
low or creeping flow conditions. Inertial effects from the fluid
accelerating around the particle are not significant and viscous forces
predominate. Particles in the inertial region are characterized by
relatively high settling rates and large particle diameters. In this
region the fluid accelerates rapidly around the particle’s ocuter surface
contributing to inertial effects. Viscous forces are less significant.
Particles in the intermediate region, as expected, exhibit both inertial
and viscous effects, characterizing the transition between the Stokes
and inertial region. A plot of drag coefficient versus Reynold’s number
shows that the Stokes region exists below a Reynold's number of 0.3, the
intermediate region exists between Reynold’'s numbers of 0.3 and 1000,

and the inertial region exists above a Reynold’s number of 1000.°

Because different fluid dynamic forces are more important in
certain regions than in others, there must exist threez separate
relationships to describe the terminal velocity. These three

relationships have been developed to describe settling in the separate

[
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l
regions in terms of the drag coefficient for spherical pa;ticles.g

by
H

V, = [4gDp(pp-pe)/(3p4Cp) 112 (1)
where

gravitational acceleration

| =]
o]
1 1

particle diameter
Pp = particle density

fluid density

©
"
1

(9]
o
1

drag coefficient
The drag coefficient for the Stokes region is given by
Cp = 24/Re, : (2)

Substituting equation 2 into 1 results in the terminal velocity for a

particle in the Stokes region.

Ve = D2(pp-pe)e/ (184g) 3
where

#g = fluid viscosity

Similarly, for the intermediate region, the drag coefficient is

approximately

Cp = 18.5/Re,’® (4)



Substitution of equation 4 into 1 yields the terminal settling velocity -

for a single particle in the intermediate or transition region. -
vt. - (0.07218Dp1.5(pp_pt)/(“to.ﬁpto.i))0.7153 . (5)

Finally, the drag coefficient for the inertial region remains

approximately constant at 0.44. As a result the terminal velocity in ' -

this region is defined as -

Vy = 1.74(gDy(pp-pe) /o (6)

Sedimentation is characterized by the downward movement of
particles of a suspension relative to a stationary container. In dilute
systems, the settling rate will approach the terminal velocit&.

Settling rates in more concentrated systems will be slowed by the
presence of other particles; this is often called "hindered settling."
The "hindering” in concentrated systems results from two effects.

First, the drag is increased because near-by particles constrict the
flow field around a particle and increase the velocity gradient. -
Second, the settling particles displace fluid, and there is a net upward -
fluid velocity equivalent to the volumetric downward flow of the

settling particles. Unimodal suspensions appear to settle with little

particle - particle contact.® The settling particles are affected by -



the upward fluid flow, the density of the suspension, and the hindered
flow between particles. In most difficult sedimentation cases inertial
éffects are more likely to be negligible and viscous effects are more
likely to be predominate. During sedimentation of bimodal suspension,
the faster settling particles descend past other slower settling
particles as well as displace fluid. As a result, these faster settling

particles are affected by both the fluid and the presence of the smaller

particles.

Unimoda edimentation

Robinson,‘in 1926, investigated séttling velocities of suspensioné
of very small particles in a viscous fluid.!® He modified Stoke's Law!!

to predict the settling rate, V,, of fine uniformly sized particles.

Vo = DK (Pp-Pous) 8/Hpus (7)
where
K = constant

Pgus = average density of suspension

MBeus = Viscosity of suspension
This equation yields a settling rate as a function of the suspension
viscosity and density. He assumed that the settling particles are
affected more by a slurry of particles than by the pure fluid;

therefore, the driving force for settling is not the difference between



the particle and fluid specific gravity, but the difference between the

particle and slurry specific gravity.

Steinour, in 1944, adapted the equation for the effgctive
gravitational force of a single particle in an infinite medium to

compensate for the effects of concentration in a suspension.s

Fy = "D, (Pp-Paus) BHC/6 | (8)
where
€ -‘void fraction

¢ = sphericity

Phi (¢) was inserted into the equation to account for the geometry and

size of the spaces available for fluid flow. Inserting this relation

[ J“

into Stoke’s Law yields the following slip velocity, or, the velocity of

the particle relative to the fluid.

v. - Dpz(pp'p.\u)gét/(la“l) (9

Since the free space available for flow is ¢, the fluid velocity around

the particles relative to the wall is:

Vo(l-¢) /¢
V, = V4V, (1-c) /e = V /¢ (10)
Pp-Paus = Pp-pp(Ll-2)+pee) = £(p,-pyg) (11)

10



Steinour performed experiments with tapioca in oil, applied the above

relationships, and arrived at the following conclusion.

Therefore,

*t - 10'1.82(1'&)

Vv, - ézDPz(Pp"Pg)510-1‘32(1-”/(18#1)

where

Ve =

superficial settling velocity

(12)

(13)

Although Steinour's approach has logic, his expression for ¢e is largely:

empirical. 1t applies only to sedimentation and is limited to unimodal

suspensions.

In 1954 Richardson and Zuki derived a relationship for superficial

fluid velocity which has been applied to both fluidization and

sedimentation.*

where .

Vo - vttn

= terminal settling velocity
= 4.65+19.5d4/D Re,

= (4.35+17.5d/D)Re, % 0.2 < Re,

= (4.45+18d/D)Re, 0} 1.0 < Re,
- 4.45Re, ™0} 200 < Re,
- 2.39 500 < Re,

11

< 0.2
<1l.0
< 200

< 500

(14)

(15)
(16)
(17)
(18)

(19)



This equation can be easily manipulated and substituted into material
balance relations to yield various other useful forms of the Richurdson
and Zaki model. Slip velocity is defined as the velocity of the.
particle relative to‘the fluid. Therefore, if the particle's net
movement is zero, then the slip velocity is the sum of the superficial

inlet fluid velocity (V,) and the displaced fluid velocity (Vy).
VY, = V4V, | (20)

Substituting the Richardson and Zaki equation into equation 20 yields

the following.
V, = V.V, - (21)
Solving a material balance on a finite section of a fluidization column,

Vae = (1-€)V, (22)

Vg = (1-€)V,/¢ (23)

Substituting the original form Richardson and Zaki equation into

equation 18,

Vg = (l-e)e™, /¢ (24)

Finally, substituting equation 24 into equation 21, and rearranging

results in an equation for slip velocity as a function of void fraction

12



and terminal settling velocity.

V, = V™V, c™(1-c) /¢ (25)

V, = V,e®(1+(1l-¢)/¢) (26)
V,/V, = e*(1/¢c) ‘ (27)
V,/Vy = PLi Y - (28)

Equations 14 and 28 are very effective for predicting settling rates in
unimodal liquid systems. Furthermore, when combined with equations 15 -
19, equations 14 and 28 yield reasonably good predictions for a number
of different unimodal systems. However, the model does not accurately
predict séttling velocities for bimodal systems. This is beéause the
model was developed based on particle behavior in the presence of a pure
fluid. 1In unimodal sedimentation, the settling particles appear to
descend uniformly and without significant particle - particle
interactions; therefore, the drag associated with a settling particle
results from the fluid - particle contact. Significant interactions
with other surrounding particles would greatly influence the drag on a

suspended particle,

Bimodal Sedimentatjon

In 1979, Mirza and Richardson applied the Richardson and Zaki
equation to bimodal suspensions and developed an equation to predict the

settling velocity of the larger particles as thsy descend and displace

13




smaller particles.?!?

Vou = Vea(£" 1) (1-C) - Vpp(e™ 1) (Cp) (29)
vhere

settling velocity of large particles

<
o
M

1

terminal valocity of large particles

<
«
[ ]
[

Vep, = terminal velocity of small particles
= s0lid concentration of large particles

C, = solid concentration of small particles

Thié relaﬁioﬁship is a result of a material balance between the settiing
parCicleé and the‘displaced fiuid. Although this was an improvement
since it took into account, by a material balance, the displaced fluid
as well as the displaced smaller particles, there appear to be other
factors which influence the settling rate of the larger particles. The

equation tended to over-predict settling rates for the larger particles.

During sedimentation of bimodal suspensions, the settling
particles appear to be influenced by their movement relative to the
other particles. The drag on a settling particle is due, not only to
the displaced fluid, but to the displaced particles. Consequently. the.
Richardson and Zaki equation applied to bimodal systems over-predicts
settling velocities. That is, the Richardson and Zaki model does not
account for particles - particle interaction or hinderance during.

settling.

14
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In 1983, Selim modified the Mirza and Richardson equation by
incorporating an effective density of a slurry to account for hindered
settling.?® The fluid density ié redefined to reflect its effect on the
larger settling particles; therefare. the effective density is written

as a weighted volume average concentration of the fluid and the smaller

particles as if the larger particles were not present.

Pegz = (PrCptpee)/(1-C,) | (30)
where

pp = density of small particles

The density of the fluid in the Stokes equation becomes the density of a

| slurry.

Vy = D2(pp-Pars) 8/ (18k¢) (3L)
where
pp = density of the settling particle

Pezr = effective density of the settling slurry

This is a notable improvement to the original Mirza and Richardson
equation and gives excellent prediction of available bimodal settling
data, but its unequal account for buoyant force contributions by all the
particles doesn’t look theoretically sound. The pressure gradient
across a suspension is equivalent to the effective density and all
particles contribute to the effective pressure. In other words, all

particles contribute to the effective buoyant force which oppose the

15



gravitational force. In addition, Selim’s relationship is inaccurate
for bimodal suspension of closely sized particles. It does not

quantitatively account for the difference in particle density or size;

therefore, it treats bimodal systems with larger differences in particle

sizes the same way it treats systems small differences in particle
sizes. Consequently, application of the Selim relationship to a

suspension of a continuous distribution would yield inaccurate results.

In 1990, Shor and Watson proposed to modify the Mirza and

Richardson model in a different manner by incorporating an effective

3 This was done

viscosity into the terminal settling velocity equation.
as an altérnative to the density correction proposed by Selim in order
to account for the hindered settling of bimodal suspensions. They
assumed that the effective density came’from all particles and its

effects were already incorporated in the Richardson and Zaki equation

for unimodal systems. The resulting terminal velocity may be written as

Vea = D2(pa- 4B/ (18pges) (32)

where
pa = density of large particle

begr = effective viscosity of slurry

In 1911 Einstein derived a equation for the viscosity of a
suspension as a function of the fluid viscosity and the solids
fraction.! Unfortunately, this relationship holds only for dilute

stages of sedimentation.

16
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Heze ™ “2(1"'2.50) (33)

where

C = volume fraction of solids

At large void fractions (0.9 < £ < 1.0), the solids concentration is
approximately zero and the effective viscosity of the suspension
approaches the actual fluid viscosity. However, this equation indicates
that the effective viscosity depandence on solids concentration is
linear over the entire solid concentrations range. This is not the case
for void fractions approaching minimum fluidization and ultimately at
static bed conditions. At void fraction nearing the static bed voidage,
the slurry appears more rigid and the viscosity should approach

infinity.

Ting and Luebbers in 1957 developed a similar relationship for

viscosity accurate over a much wider range of sclid fractions.?®

Megr = Me(0.464+C.21C)/(0.464-0.78C) (34)

In dilute sedimentation there is little difference between this and the
Einstein relationship. Both equations appear linear with a slope of
2.5. The distinction between the two relationships arises at large
solid fraction. As the solid concentration approaches a value of 0.595,
an approximate solids concentration for a settled bed of spheres, the
denominator of the Ting and Luebbers equation approaches zero and

effective viscosity approaches infinity. The resvlt is a semiemperical

17
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equation that accurately describes the effective slurry viscosity over a

much broader range of solid fractioms.

Shor and Watson chose to incorporated the Ting and Luebbers
correlation to represent the effective viscosity of the suspension. The
large particles are expected to have little effect on the slurry
viscosity, but the smaller particles are expected to have significant
effects on the slurry viscosity. As a result, Shor and Watson proposed
that the contribution of each size fractioﬂ is a function of the
relative motion between the large and small particles. The solids
concentration is thus defined to account for the relative contributions
of the different size particles to the slurry viscosity; therefore, the
solids concentration for use in the Ting and Luebbers equations is

written as follows.

Gy = Cp(1-Vep/V,,) (35)

Shor and Watson incorporated the Ting and Luebbers correlation with the
effective solids concentration into the equation for terminal velocity
in the Stokes region to arrive at a slight modification of the Mirza and

Richardson relationship.

Vou = Vea(He/boge) (€271)(1-C,) - Vpp(™1)Cy (36)

Comparison with experimental results indicated that this equation was

accurate for sedimentation of suspensions having pariicles of different

18
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densities, as well as differeat diameters. Upon analyzing new data, it
was found that the terminal velocities of the large particles at
infinite dilution corresponded to Reynold’s numrbers of approximately 30,
a value well within the intermediate or transition region. Under those
conditions, inertial f§rces are significant and the viscosity has less
of an influence in the transition region (0.3 < Re < 1000) than in the
Stokes or creeping flow region (Re < 0.3). Therefore, the dependency of
the fluid properties on the terminal settling velocity was determined by

expanding equation 5.

vt. - o.1528g0.7163Dp1.1428(p‘_pt)o.7143/(“’:0.#285,,:0.2357) (37)

This relationship was applied tv the Mirza and Richardson equation and

resulted in an equation for settling in the intermediate region.

Vou - V‘n(en-1.7143) (l'C.) (Pz/l‘.zt)o"z“(ﬂt/l’.u)o'”” (38)

((Pa’l’.zr)/(P.'P:))o'n“ - vt.b(cn_l.n‘”(cb)

The density ratio factor accounts for the effective density of the
slurry accelerating around the settling particle’s outer surface.
Because the larger settling particles descend and displace the fluid and
the smaller particles, the effective density is equivalent to the
weighted volume average concentration of the suspension as if the larger
particles were not present. That is, the density of the fluidizing
media has properties of a slurry containing the pure fluid and the

smaller particles. This is identical to the effective density proposed
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by Selim, but it is used in the inertial cerﬁ.
Peze = (PrCptpee)/(1-Cp) (30)

The ratio of the density differences accounts for the effective buoyancy
forces of the slurty oﬁ a particle of the suspension. As described
previously, the pressure gradient is equivalent to the density
difference. Furthermore, all particles cohtribute to the effective
pressure gradient across the suspension, and the settling particles are
opposed by the effect pressure gradient; therefore, the buoyancy‘forces
should include contributions from all particles of the suspension,
regardless of size. Consequently, the effective density to be used in
the density difference ratio is a weight volume average concentration of

all the components (fluid and particles) of the suspension.

P’ = Copy + Cpopt+ £pg (39)

The final Shor and Watson equation, incorporating the effective fluid
properties for the buoyancy, the viscosity, and the accelerating fluid,
accurately predicts settling rates of bimodal suspension as larger
particles descend and displace fluid, as well as smaller particles, in

both the Stokes and transition regions.
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VOID FRACTION IN PARTICULATE FLUIDIZATION

Fluidization involves the suspension of particles‘by a fluid
flowing upward. As the superficial inlet fluid velocity, U,, is
increased above the velocity reéuired for minimum fluidization, Umf,‘the
particles begin a random motion, colliding witﬁ other surrounding
particles and, for most gas - solid systems, bubbling occurs. At a
constant superficial inlet velocity, all particles are fluidized in a
suspension at a constant voidage. In addition, the net vertical
velocity of a single particle is zero. At this point the buoyancy
forces acting on the all particles of the suspension are balanced with
the effective gravitational and drag forces. A continued increase in
flow rate results in bed expansion. Further increases cause the bed
expansion to reach a point of minimum bubbling, U,=U, , and the void
fraction, ¢, remains relatively constant. Finally, beyond the region of
constant voidage, bubbling continues, but the void fraction, ¢,

increases.

Systems which have a relatively large ratio of particle demsity to
fluid density (like gases - solids systems) tend to exhibit an early
onset of bubbling. This bubbling results when the particles are
arranged in such a manner that a large proportion of the flow exceeding
that required for minimum fluidization rises through the bed in region
of large voidages (bubbles).® A typical bubbling system would consist
of a gas flowing through a bed of dense particles (air - steel

bearings). An example of this bubbling phenomena is presented in the
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Jacob and Weimer data consisting of fine carbon powders fluilized by a
high pressure gas.® This study was directed at cases when fluid flows

are uniform over the width of the suspension with no bubbling.

Although most gas fiuidized beds are prone to bubbling, liquid
systems are less likely to bubble and can be more easily modelled.
Fluidization withou: bubbles is called particulate fluidization. This
type of fluidization, characteristic of many liquid systems, is the
simplest of all fluidization in that no bubbling cccurs and bed
expansion is uniform. Iﬁcreases in the superficial inlet fluid velocity
produce increases in bed expansion. Ultimately, bed expansion reaches a
point at which the particles are suspended by the fluid with no
particles interaction and the superficial inlet fluid velocity is

equivalent to the suspended particle’s terminal velocity.

ELUIDIZATION / SEDIMENTATION COMPARISON

Fluidization and sedimentation have similarities which suggest that
a single descriptive model can be derivéd for both processes
incorporating parameters such as voidage, Reynold’'s number, particle
diameter, etc. Each phenomena involves the suspension of particles by a
fluid and can be modelled by force balances which account for suitable
drag, buoyancy, and effective gravitational forces. In addition,
starting points for modelling either process may be Stokes Law, the drag

coefficient relationships for the transition region, and/or the
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Richardson and Zaki equation.

Current relationships for fluidization do not always apply to
sedimentation. This can be partially attributed to the different
conditions under which each phenomena most often appears. Most
fluidization occurs in the transition region where both viscous and
inertial effects are important. However, most iﬁportant sedimentation
cases are in the Stokes region where particle inertial forces become

insignificant (viscous forces predominate).

PARTICULATE FLUIDIZATICN

Bed expansion relationships for particulate fluidization are
essential for the design of both liquid and bubbling gaseous systems.
For 1iduid systems, an accurate model of bed voidage as a function of
fluid flow and physical properties of the fluid and particles would be
useful in determining a bed height and reactor volume. For a bﬁbbling
gaseous system, such a relationship would be useful in determining a
reactor residence time of reiatively small particles, and possibly the

gas density in the particulate phase.?’
The linear log - log relationship between settling velocity and

bed voidage proposed by Richardson and Zaki (see Equation 9) has been

used to proiilct voidage during fluidization as well as sedimentation.‘

23



Re = Re.c"® (40)

Although this equation is accurate for predicting settling velocities of
unimodal suspensions, it needs modifications to‘predict fluidization
velocitieé in both gas and liquid systems. The model predicts slightly
lower fluidization velocities. than those observed for liquid systems;
however, it predicts significantly higher fluidization velocities than
thosé‘observed for higﬁ pressure gas systems.>® The Richardson and
Zaki exponent or expansion index, n, is a function of only the parcicle
diameter to column diameter ratio and the particle's terminal Reynold’'s
number at infinite dilution; therefore, the expansion index remains
constant for a given particle and fluid, regardless of the superficial
inlet fluid flow or the void fraction. These conditions would give a
constant slope of the Iog (U,/U,) vs. log(e) plot. It is apparent from
datA of several investigators that the Richardson and Zaki exponent does

not remain constant for a given particle and fluid.®

In 1977 Garside and Al-Dibouni analyzed fluidization and
sedimentation data for redefining the Richardson and Zaki equation.3®
They plotted data in the form of the superficial velocity / terminal
velocity ratio vs. the terminal Reynold’'s number. They concluded that
the shape of this plot represented a logistic curve and the Richardson
and Zaki exponent should take the form of a logistic equation. The
result was a new correlation for the expansion index to be used in the

Richardson and Zaki equation.
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(ngg-n)/(n-ngg) = algy,” (41)

where

=]
1

Richardson and Zaki expansion index.

asymptotic value of n in the turbulent region.

-]
1

asymptotic value of n in the laminar region.

=
b
1

®
[ ]

constant determined by slope if logistic curve.

' The general shape of the curve appears to logistic; however, at the

region of inflection the model does not conform to the experimental
results. In addition, the model tends to become less accurate in

modeling behavior at high void fractionms.

Foscolo et al in 1983 derived a model which predicts bed expansion
for a wider flow range and all void fractions. This equation applies to

flow conditions with terminal Reynold’s numbers between 0.2 and 500.
Uo/U, = ([0.0777Re,(1+40.0194Re,)e*-®+1]%-5-1)/(0.0388Re,) (42)

Under the same conditions (particle size and pressure drop) as
Richardson and Zaki, the results are substantially improved (see Figures
4 and 5). Foscolo’'s equation was derived from an analytical model. His
equation originates_from the Ergun equation for pressure drop in a
packed bed and, thus, incorporates the Hagen-Poiseuille eéuation for
pressure drop through straight tubes. As expected, because the voidage
is not made up of straight tubes, this alone did not model the true

characteristics of fluidizatiomn. As a result, a factor to correct for
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the various fluid paths was add.u and the equation took the form of the
Blake-Kozeny equation. It was then assumed that this correction factor
could be replaced with a constant tortuosity factor. The results were

substantially improved; however, the tortuosity factor was largely

enpirical.

Zhang Fan in 1985 graphically presented data on twelve unimodal
suspensions and illustrated that there are instances in which the
log(Re) vs. log(e) relationship exhibits nonlinearity at void fractions
over 0.430.5 At a void fraction of 1, the experimental terminal
velocity, U,', is theoretically equal to U,; however, experimental data
yield slightly lower results. A plét of Log(Re) versus Log(void
fraction) indicates a distinct inflection at void fractions near 0.9.
Fan et al attempted to model this change in slope by making use of the
classical Richardson and Zaki‘equation. They determined that entire
curve could be modeled by two linear equations. The first equation
would hold for the portion of the curve below the inflection and the
second for the portion above the inflection. Therefore, through an
empirical regression analysis, Fan determined the point of inflection
and the relationships to be used for the new exponents of the Richardson

and Zaki equation.

n, = 1.90 + 5.46 Log(Ar) - 2.96 Log?(Ar) Ar < 21 (43)
n; = 5.72 - 1,70 Log(Ar) - 0.27 Log?(Ar) Ar >= 21 (44)

n, = 4.92 Ar < 7.2 (45)
n, = 5.11 - 0.11 Log(Ar) - 0.12 Log?*(Ar) AT >= 7.2 (46)
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Rey; = Regye.” (47)

Rey, = 0.0517 Ap1-096-0,068 Log(Ar) (48)

m= 3.02 - 5,46 Log(Ar) + 2.96 Log?(Ar) 2 <Ar < 7.2 (49)
m=3.21 - 5.57 Log(Aé) + 2.84 Log?(Ar) 7.2 <= Ar < 21 (50)
m = 1.59 Log(Ar¥) - 0.39 Log?(Ar) - 0.61 21 <= Ar < 1600  (51)
Re, = 0.0616 Art:000-0.048 Log(ar) (52)

t, = 0.853 - 0.076 Log(Ar) + 0.009 Log?(Ar) | (53)

Values of n, and n, are the expansion indexes or exponents to be used in
the Richardson and Zaici type equation for predicting the velocity vs.
voidage relationship below and above the curve inflection point,
respectively. Each Richardson and Zaki equation remains linzar due to a

constant expansion index over a range of void fractioms.
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CHAPTER III

THEORETICAL

Numerous mode1§ have been developed to describe the relationship
between slip velocity and suspension voidage; unfortunatély, most models
lack the ability to incorporate both observed sediﬁentation and
fluidization phenomena into the correlations. Restated, the goal of
this investigation was to expand a model that would be applicable to
bhoth sedimeﬁtation and particulate fluidization. Because fluidization
and sedimentation both involve similar fundamental fluid dynamic
relationships, it is likely that a single model can explain both
phenomena, but the model will also have to address the differences in
the phenomena. The most common fundamental relationship to fluidization
and sedimentation analysis is the Richardson and Zaki equation. This
relationship accurately accounts for fluid - particle dynamics of
unimodal sedimentation; however, as previously described, during
fluidization and bimodal sedimentation, there are other factors that
influence the particle behavior in a suspension, namely other particles.
Regardless of whether the suspension is unimodal or multimodal, the
apparent viscosity that affects particle behavior is not likely to be
that of the fluid, but of a slurry. Therefore, the slip velocity, V,,
can be assumed a function of the physical properties of the fluid /

particle combination. Consequently, other surrounding particles
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contribute to additional dtag forces and can be’mwaounced for in

numerous ways. Mirza and Richardson described bimodal settling by
performing a material balance over a finite section of a suspension.

This accounted for observea displacement of the smaller particles as

well as the fluid. Shor and Watson expanded the Mirza and Richardson
equation and took into account the particle - particle interaction
contributing to a higher effective viscosity, a characteristic very
likely to be ipportant in fluidization. Therefore; it is appropriate to
examine the Shor and Watson correlation when developing a unified model |

for predicting sedimentation rates as well as fluidization velocities.

APPLICATION TO SHOR AND WATSON EQUATION

As mentioned previously, the Shor and Watson equatioﬁ contains
contributions from Richardson and Zaki, Mirza and Richardson, Ting and
Luebbers, and others. Therefore, it is approptiate to reanalyze the
make-up of this model before expanding it for application to

fluidization,

vo. - vt.(cn’l.les) (1_0.) (“t/“.zt)0.6236(pl/p.£:)9.2057 (38)

((Pn'pctt)/(Pn'P:))o'nu - V,_,,(c““-““)(cb)

The Shor and Watson equation above incorporates the two terms as
. described by Mirza and Richardson for the displaced fluid and smaller

particles. The first term of accounts for the downward movement of the
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large particles. The second term accounts for the displacement of the
smaller particles. The presence of these two terms suggests that

segregation occurs as settling proceeds.

To modify this equation to account for fluidization of uniformly
sized spheres, the settling velocity in this equation can be interpreted
as the velocity of the fluid required to suspend the particles. A
necessary assumption in the modification of this equation is that the
fluidized portion of the bed is well mixed. That is, there is
negligible segregation, and the entire bed is homogeneous. Therefore,
the second term of equation 38 can be eliminated. In addition, the
large particle concentration, C,, represents the fractiqn of solids
affected by the surroun&ing smaller particles. Consequently, because
the modification describes unimodal systems, this term can be
incorporated into the exponent of the void fraction. As a result, the

modified equation can be written as follows.

Uo - Ut(tn'.7163) (“t/“.tz)0‘.6285(pt/p.!t)0.2857( (pa'plfl)/(pn'pf) )0.7163 | (54)
where
U, = superficial inlet fluid velocity

U, = terminal velocity of single particle in dilute fluid

What remains to be determined are the values to be used for the
effective fluid properties. Unlike bimodal sedimentation in which only
the smaller particles contribute to the effective fluid viscosity,

during fluidization all particles could contribute to any effective
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fluid propercy.

The effective viscosity of the fluidizing or settling media
depends primarily tec the extent to which particles are present in the
shear fields. Shor and Watson observed that particle collision are
negligible during sedimentation of unimcdal suspensions; therefore, the
effective viscosity of the fluidizing media is the viscosity of the pure
fluid. Shor and Watson further stated that during sedimentation of

bimodal suspension, the effective viscosity of the £fluid media as "seen"

by the larger particles depends on the solids concentration of the small

particle fraction. Consequently, during unimodal fluidization in which
interactions of all particles are random and additional shear fields are
created, the effective viscosity is a contribution of the total solids

concentration and eq' ation 35 can be written as follows.

Mogr = pe(0.464-0.78(1-2))/(0.464+0.21(1-¢)) (55)

The ratio of the density difference in the Shor and Watson
equation accounts for the buoyancy affects of the slurry realized by a
particle in a suspension. As described by Shor and Watson, the pressure
gradient across the suspension results from a contribution of all
particles, and a settling particle is opposed by the effective pressure
gradient of the suspension; therefore, because the effective density is
equivalent to the effective pressure gradient, all particles should
contribute to the effective buoyancy forces of the suspension.

Consequently, the effective density of this difference ratio should be a
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function of the total solids concentration of the suspension and may be

written in terms of a weighted volume average density.
Pagz = (l-€)py, + €pg (56)

The ratio of densities in the Shor eand Watson equation accounts
for the effective density of fluid or slurry accelerating around a
particle of the suspension. For bimodal sedimentation, the settling
larger particles descend through a slurry consisting of the pure fluid
and the smaller particles. Consequently, the effective density of this
accelerating fluid as "seen" by the larger particles is a function of
the fluid density and concentration, as well as the small particle
density and concentration. However, during unimodal fluidization, all
particles are in a random motion and particles interactions are
frequent. Consequently, the density of the accelerating fluid as "seen"
by a suspended particle is, again, that of a slurry consisting of both
the fluid and other surrounding particles. Furthermore, because all
particles have the same potential for frequency of interactions, the
slurry accelerating around a single particle of the suspension has the
density equivalent to the weighted volume average density of all the
components (fluid and particles) of the suspension. Therefore, the
effective density used in this ratio is the same as that used in the

density difference ratio (see equation 56).

The resulting equation for fluidization accounts for the

fundamental fluid dynamics as described by Richardson and Zaki as well
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as the effective fluid properties of the fluidizing media as described
by Shor and Watson.‘ Additional inertial and viscous forces are
accounted for by the use of effective fluid properties such as density
and viscosity. Furthermore, the equation is of a form that allows
observed fluidization phenomena of different systems to be easily
incorporated. That is, in bimodal or multimodal systems, it can be
altered to account for the various extents to which smaller particles

contribute to the fluidization of the larger particles.
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CHAPTER IV

RESULTS AND DISCUSSION

Data used to evaluate the proposed model encompass a wide range of
fluidization properties and flow regimes. Data were selected for
accuracy, reliability, and coverage of a wide range of fluid and

particle properties. The study was limited to particulate fluidization

but sought diversity of fluid and particle properties. In addition,

data sets were also selected based on negligible wall effects. That is,
the particle diameter to éolumn diameter ratio was considered small
enough to neglect additional wall drag. Data from Zhang Fan,?®

Loeffler and Ruth,® and Richardson and Zaki‘ are presented to cover a
range of liquid fluidization systems in the creeping flow and‘transition
regions, while recent data from Jacob and Weimer represent high pressure

gas fluidization systems in the transition region.

The data were analyzed to evaluate the observed fluidization
expansion model of both gas and liquid systems over a wide range of flow
regimes and fluid / particle properties. Parameters for previously
developed relationships are discussed and used to arrive at a proposed
new modified approach to describe particulate fluidization. The
proposed model is compared with existing data and with previous models

of other investigators. Finally, the concepts used in the proposed

(&%)
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model are expanded to describe fluidization of bimodal suspensions.

Richardson and Zaki presented liquid - solid particulate
fluidization data which account for fluidization in the creeping flow
and early transition regions. These data were used to develop the
classical Richardson and Zaki fluidization relationship and are
presented in Figures 1 and 2. A slight curvature in the log(Re) vs.
log(e) is worth noting. Their data were for divinyl benzene particles
fluidized in water at ambient temperatures. The same fluid and
particles were used in each run; however, the difference between the two
runs is the column diameter. Figure 1 represents fluidization data in a
column of diameter 2.44 inches. Figure 2 represents fluidization data
in a column of diameter 1.5 inches. As stated previously, the particle
diameter to column diameter is considered negligible; therefore, the two
runs serve as a measure of the consistency of the data and thé proposed

model.

In 1985 Zhang Fan presented data on twelve unimodal suspensions
encompassing all three flow regimes (creeping flow region, transition
region, and inertial region). Spherical particles with diameters
ranging from 53.6 to 1180 microns and densities ranging from 1.045 to
2.43 g/cn® were fluidized with water at or near ambient temperatures.

Fluidization was assumed to be particulate, and the bed expansion was
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assumed to be uniform. The particle diameter to column diameter ratio
is assumed to be negligible; therefore, wall effects are not considered

significant. A summary of the data is listed in Table 1. Figures 3, 4,
#nd 5 illustrate the data in the form of log(U,/U;) vs. log(e).

Additional Zhang Fan data are presented in the appendix. As previously
mentioned, 1ﬁvestigations by Richardson and Zaki lead to the development
of the classical fluidization equation in which this log - log

dependence is considered linear; however, as evident from the Zhang Fan

data, the dependence of log(U,/U;) vs. log(c) appears to be slightly,
but consistently, nonlinear.

Liquid fluidization data from loeffler and Ruth are presented to

account for fluidization in the transition and inertial regions and are
illustrated in Figure 6.

Particles of diameter 0.06586 cm and density
2.63 g/cm® were fluidized by water at ambient temperatures. Their data

exhibit bed expansion; however, the nonlinearity is more evident than in
either the Zhang Fan or the Richardson and Zaki data.

Jacob and Weimer provided new data and expanded the data base into

new conditions, fluidization by high pressure gases. Their study
focused on minimum bubbling characteristics in which fine carbon powders
with diameters of 44 and 112 microns and densities of 850 kg/m® were

fluidized by a CO,/H, gas at pressures ranging from 2070 to 12420 kPa.

The data from flow rates below bubble formation offer an unustal

opportunity to study particulate fluidization.

At high pressure, the
gas densities are moderately high, and the initiation of bubbling is
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Table 1. Fan run data.

Terminal
Material Run No. Diameter Density Velocity
(microns) (cm) (cm/s)
1 53.6 +/- 1.4 2.38 0.252
4 82.3 +/- 2.8 2.38 0.498
Glass Spheres 5 103 +/- 3.2 2.38 1.17
‘ 9 326 2.27 3.75
10 500 2.43 7.28
Polystyrene 11 535 1.045 0.449
Spheres 13 1020 1.045 1.085
Heavy Polystyrene 14 350 - +/- 6.5 1.16 0.657
Spheres 16 -~ 488 +/- 7 1.16 1.12
Cation Exchange 17 551 +/- 17 1.295 2.16
Resins
Anion Exchange 20 1180 +/- 59 1.095 2.61
Resins
Heavy Exchange 23 745 +/- 43 1.195 2.57
Resins
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delayed to flow rates significantly above minimum fluidization rates.

As illustrated in Figure 7 -’18, at relatively low void fractions, the
bed expansion resembles particulate fluidization; however, as
fluidization proceeds, the bed expansion slows and stops indicating that
bubbling has begun. As stated previously, data to be used for the
verification of the proposed model are assumed to be in the particulate
regime; therefore, bnly values at relatively low void fractions are used
in this study. Because only a small portion of Jacob and Weimer data
are in the particulate fegime, the exact limits of the particulate
fluidization are not always certain; however, the extended range of
conditions makes the Jacob and Weimer data especially useful for testing

the valigdity of the proposed models and correlations.

CLASSICAL EXPANSION INDEX

A common characteristic of the Zhang Fan, Ruth, and Richardson and
Zaki liquid fluidization data in the transition region is the
nonlinearity of the log(U,)/log(U,) plot. This nonlinearity indicates
that the relationship between the fluidization velocity and the voidage
is not purely exponential; that is, the velocity vs. voidage
relationship can not be accurately modeled by an exponential equation
with a constant expansion index or exponent as suggested by Richardson

and Zaki and by several succeeding investigators.

Fluidization expansion indexes most commonly used by investigators
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Figure 16. Jacocb and Weimer data - carbon powdét in gas,

P = 6210 kPa, D, = 112 microns.

55

07



0.2

...................................................

semisssnsveserasasesstersavens

Legend
u Dotn

Superficlal Inle! Veloclly / Terminal Veloclly (Uo/Ut)

S essvavsetsscesersrsoINIIIe a—— Ga—

Al=Diboun|

sseassveance:

froposed

0.04 - —_
04 0S8 0.8 0.7
Yold Fraction

Figure 17. Jacob and Weimer data - carbon powder in gas,

P = 4140 kPa, D, = 112 microns.
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are those developed by Richardson and Zaki. Richardson and Zaki
performéd sedimentation experimeﬁts and observed that the log(U,/U;) vs.
log(e) relationship was linear. As previously stated, most
sedimentation data exist in the creepinglflow or viscous region. Upon
investigation of fluidization systems, they observed the same linearity;
‘ howevér, the fluidization systems investigated were all in thé creeping
flow and early transition regimes. Richardson and Zaki therefore
concluded that the velocity relationship should be linear for
fluidization as well as sedimentation. Consequently, the expansion
index, n, should remain constant for any given system and that it should

be a function of the terminal Reynold's number.

Richardson and Zaki, assuming that the exponent should remain
constant for a given set of fluidization conditionﬁ, sought to determine
an expression for defining the exponent. They determined the best value
of the.exponent that would satisfy the relationship for several
individual data sets. As a result, one value of the expansion index
represents the entire‘fluidization range for a given system, hence, a
linear log - log relationship for each data set. This was a reasonably
accurate assumption for the Richardson an& Zaki data. The best value of
the exponent for each data set was plotted against terminal Reynold's

number. Equations 15 - 19 accurately represent the data.

An attempt was made in this study to determine the accuracy of the
assumption that the expansion index should remain constant for a given

flow regihe and set of test conditions. Since the exponent selected by
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Richardson and Zaki or those determined‘by Garside and Al-Dibouni may
not be the optimum values over the entire range of conditions studied,
the data from each set were examined to determine the exponent for each
data point. Fluidization data collected for all three regions (creeping
flow region, transition region, and inertial region) was applied to Ehe

classical Richardson and Zaki equation to calculate the exponent.
n = log(U,/U,)/log(c) (57)

Values of the exponent were determined from this relationship for all

data points. These exponents are plotted against terminal Reynold’s

number in Figure 19. Note the vertical alignment of data from each

fiuid particle system. This means that for a cohstant terminal
Reynold’s number (or given set of test conditions) the values of the
exponent vary; however, tﬁe variation is not erratic. There is a
tendency for the expansion index to decrease as the fluid velocity is
increased. This indicates that the exponent is a function of the
changing properties of the suspension and that the viscous and inertial
forces are not constant for a given flow regime and set of test

conditions.

(0) 4 0

It is apparent from the data presented in the classical format

that a single expansion index is not arlequate for predicting
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fluidization velocities. Therefore, it is proposed .o develop a

separate relationship for the exponent as a function of the changing

characteristics of the suspension.

In order to characterize the suspension at incremental stages of
fluidization, it is proposed to treat ;he exponent as being a function
of the intermediate Reynold’s number rather than the terminal Reynold’'s
number. As a result, the Reynold’s numbers may more realistically
represent the viscous and inertial force contributions of the effective
fluidizing media suspending the particles at each stage of fluidization.
This becomes possible when the slurry viscosity and other slurry
properties are used in the Reynold’'s number. The intermediate Reynold's
number can therefore be defined as a function of the effective fluid
density and viscosity and the effective terminal velocity of a particle
falling through a slurry represented by these effective fluid

properties.

Re = DpU;oﬂP.!l/#oiﬁ (58)

Most fluidization occurs in the transition region, and the
terminal velocity used in the Reynold’s number in this region should be
corrected to account for the inertial and viscous effects in this
region. Combining the drag coefficient equation for the transition
region with the equation for terminal velocity for a single particle
results in a relationship to describe the free falling velocity of a

particle in the transition region (see equation 37). The
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proportionality of the fluid properties to the terminal velocity as

indicated in this equation can be used to make this correction.
Utz = U;(#:/IJ.::)o"zas(P:/P.gf)o'zu?( (Pp°P.:f)/(Pp'Pr>)°'7u3 (59)

As with the Richardson and Zaki model, the expansion index in the
proposed model was calculated to determine the values of the exponent
that would yield accurate results for fluidization velocity dependence
‘on voidage. Rearranging equation 59 and solving for the exponent gives

the following expression for the expansion coefficient.

i

N = 108((Be/bBage) 02 (01/Pate) O 2% ((pp-Pate) /(pp-pe)) O 71 (60)

(U,/U) /iog(e)) + 0.7143

Values of log(n) are plotted against log(Re) as defined by equations 58

and 60 and are shown in Figure 20. Note that the expansion indexes |

within each data set, as well as expansion indexes cf other data sets -
can be represented by a single relationship for each flow regime. Each

data set is spread ocut over a common curve resulting in less deviation

than with the classical Richardson and Zaki approach. 1In addition, “he

entire curve seems to have three distinct regions. At Reynold’s numbers

below 0.11 and above 10 the exponent remains constant. At Reynold's -
numbers between 0.11 and 10, the exponent changes; however, the

dependence of log(n) appears linear with respect to log(Re). These

three linear regions can be represented by the following equations.
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ne=375 Re < 0.11 (61) -
n = 2.856Re™®1% 0,11 < Re < 10 (62)

ne=2.15 10 < Re (63)

These distinct regions of the cﬁrve are not unexpected; data on the drag _
coefficient at various Reynold's numbers also show three similar flow -

regimes and approximately the same region boundaries.

Richardson and Zaki developed relationships for the expansion
index based on sedimentation cata in the creeping flow regime and _

fluidization data in the creeping flow and early transition regimes. As

1]

previously stated, the expansion index is a measure of the extent to
which inertial and viscous forces predominate; therefore, it can be
expected that at very low Reynold’'s numbers, were viscous forces
dominate, the exponent shéuld approach a constant value. Similarly, at
very high Reynold’'s number, where inertial forces dominate, the exponent -
should approach another limit. Consequently, because the Richardson and _
Zaki data fall in the viscous region, the exponent is justifiably

constant for an entire data set. A single bed expansion data set may

exhibit characteristics of both the viscous regime and inertial regime;

hence a transition regime. Because the exponent is dependent on the -
extent to which viscous and inertial forces are present, it can be

assumed that the exponent should be a function of the changing

characteristics of the suspension. This would indicate that the

e#ponent is not constant and would account for the nonlinearity

exnibited by fluidization data in the transition flow regime.
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Values of the expansion index shown in Figure 20 for the three
regions are consistent with the exception of one batch of the Jacob and
Weimer high pressure gas data, the data from 44 micron particles. There
are several reasons why Jacob and Weimer data may not be as accurate as
other presented data. ‘As mentioned previously, gas - solid fluidization -
systems are prone to exhibit bubbiing characteristics. Figure 21
illustrates the transition between uniform bed eipansion and minimum
bubbling. This is due primarily to the large ratio of particlc density
to fluid density. An attempt was made to avoid use of data when bubbles
were forming, but there could be errors in the selection. Another
factor contributing to the inaccuracy of gas fluidization are the
presence of fines., Weimer indicated that the 44 micron particles
contained a significant numbef of fines which aid in the fluidization of
the larger particles.?’ Consequently, for a given fluidization
velocity, predictions of bed voidage are consisfencly lower than
actually observed. Therefore, the deviation of the Jacob and Weimer
high pressure gas data can be attributed to the presence of bubbles
and/or fines. If there were a significant fraction of fine particles
among the nominal 44 micron particles, that alone could account for the

higher expansion indexes observed with that material.

COMPAR]ISON OF PROPOSED MODEL WITH PREVIOUS MODELS

The proposed definition of the expansion index as illustrated in

Figure 20 suggests that this approach is superior to the classical

N
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definition proposed by Richardson and Zaki. Because expansion indexes
within # data set, and over a significant range of data sets, can be
well represented by a common relationship, it is reasonable to assume
that a resulting fluidization modél incorporating tﬁis'relationship for
the index would also reflect this good agreement. Consequentiy, it is
desired to compare the results of the proposed fluidization model with
both relationships that can be placed in the Richardson and Zaki form

and models that can only be expressed in other forms.

The proposed model is compared with relations deveioped by
Al-Dibouni, Foscolo, and Kichardson and Zaki. Although the previous
investigators' models are accurate for a select collection of data, the
proposed model results in a noticeable improvement over a much wider
range of fluidization systems (gases and liquids), particularly in the
transition region. Appliéation of the three previous models to the
liquid data of Zhang Fan, Rutﬁ and Richardson and Zakibresults in
consistently low predictions of fluidization velocities for a given void
fraction, while predictions of the proposed model yield improved
results. This is primarily because the three previous models do not
adequately account for the changing viscous and inertial forces during

bed expansion.

The Foscolo relationship, as explained previously, was derived
from the Ergun equation and expanded for flow through tubes of a
constant tortuosity. Although this model accurately accounts for the

tendency of the log(U,/U,) vs. log(e) to be nonlinear, it does not
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‘adequately account for the different viscous and inertial effects
e#hibited by gas and liquid fluidization systems. This is evident as a
results of the under-predictions of fluidization velocities for liquid
systems and the over-prediction of fluidizétion velocities for gas
systems required for given void fractions (see Figures 4, 5, 7, and 8).
Thét is, it does not adeéuately describe the changing effective

properties of the suspension as fluidization proceeds and the fluid bed

expands,

The Richardson and Zaki equation, based on experimental data in
the creeping flow and early transition regimes, accurately describes the
fluid - partigle dynamics in the viscous region. Consequently, these
- regions can be modeled with a straight forward linear expression.
Unfortunately, most flﬁidization data exists in the transition region
where inertial forces become significant. As a result, the Richardson
and Zaki model breaks down and fluidization velocities are not
accurately represented. As with the Foscolo model, gas fluidization
velocities are over-predicted, while liquid fluidization‘velocities are
under-predicted (see Figures 4, 5, 7, and 8). This again, is primarily
due to failure to’account for particle - particle interactions that
contribute to the changing effective suspension properties such as
viscosity and density. As discussed previously, the‘expansion index
appears to be a function of these changing properties. Consequently,
the constant exponent proposed by Richardson and Zaki is inconsistent
with observation. This inconsistency was illustrated in Figure 19 by

the tendency for the exponent to decrease as fluidization proceeds.
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The Al-Dibouni equation originated from a predefined logistic
equation for the expansion index in‘which parameters of the model
correspond to limits of the logistic curve and is empirical. This model
takes the form of the Richardson and Zaki equation with only a
modification in the expansion index. Unfortunately, this modified
expansion index is a function of only tbe terminal Reynold’s number;
therefore, it remains constant for a given fluidization system yielding
a linear log(U,/U,) vs. log(c) relationship. Again, this is

inconsistent with observations in the transition flow regime. Like the

~ Foscolo and Richardson and Zaki relationships, fluidization velocities

are under-predicted for liquid systems and over-predicted for gas

systems (see Figures 4, 5, 7, and 8).

Although Richardson and zaki and Garside and Al-Dibouni were able
to predict bed expansions in the viscous region, they had to resort to
empirical expressions for the expansion index as a function of Reymold's
number. Note that when the slurry properties are used to correct the
"terminal velocity" to slurry conditions (as in the proposed model), the

expansion index becomes essentially a constant in the viscous region.

The proposed new model is derived to account for varying degrees
of particle - particle interactions as fluidization proceeds. Suspended
particles appear to be affected by an effective fluid in their
environment, and the fluid changes with incremental variations in bed
voidage. Therefore, the model describes the fluidizing media as a

slurry with viscous properties that vary with fluid rate. This approach
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compensates for the changing vigcous forces as fluidization proceeds and
the fluid bed expands. The result is a relationship which adequately
describes the tendency for the expansion index to be function of the
changing suspension properties, and which accounts for the effective
buoyancy and gravitational force contributions from the other
surrounding particles. Consequent, this model more accurately predicts
the fluidization velocities for a wider range of fluidization systemé.
To compare quantitatively the agreement of the correlations with the
experimental results, the sum of the differences in predicted and
observed void fractions sqqared (sum-of -the-squares), as well as the
standard deviation was analyzed. Because the Fan data appeared to be
the most reliable over a wide range of Reynold's number, they were used
for the analysié. There were 152 data points and 12 different fluid /
particle combinations to be analyzed. A summary of this quantitative
comparison is iisted in Table 2. The results indicate that the proposed
model yields the best results. An overall sum-of-the-squares and
standard deviation for the proposed model and the observed data are
0.0147 and 0.0098, respectively. This is significantly better than the
values of 0.0712 and 0.0217 for the néxt bést model, that of Richardson

and Zaki,

APPLICATION OF MODEL TO BIMODAL FLUIDIZED BEDS

The proposed model predicts bed expansion of unimodal particles

very well, and it is worthwhile to consider if it provides insight that
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is helpful in exploring other related problems. Particulate
fluidization of different size and/or density particles will be
considered next. Although the arguments can be expanded to describe any
number of different particles, the current discussion will be 1imitea to
bimodal systems (two different particles). The model for unimodal
suspensions suggests that in bimodal fluidization the small particles
contribute to the'fluidization of the large particles. ‘ansequently,
because the small particles influence the lgrge particles to different
extents during bed expansion, bimodal systems will be described by
considering incremental increases in fluid velocity. At low superficial
inlet velocities, neither large particles nor small particles would be
fluidized. As the vélocity is increased, the pressure gradient would
increase as with any packﬁd bed. When the velocity within the voidages
between the large particles exceeds the minimum fluidization velocity of
the small particles, the small particles would become fluidized. Within
the volume of the unfluidized larger particles, however, wall effects
are severe; in many cases the small particles would not be free to move
and thus not be fluidized., At a somewhat higher velocity, the
superficial velocity is high enough to fluidize the smaller particles
(above the mixture), but not high enough to fluidize the larger
particles. At this point some of the smaller particles may be "blown"
through the bed of the larger particles and be fluidized at the top of
the bed. Larger particles may be mixed (or dispersed) with the smaller
pafticles, but they would not be stably fluidized. There would then be
a profile of larger particles from the dispersion / settling in the

fluidized bed, but the concentration of the large particles would
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approach zero at the top of the bed, and the concentration of fluidized
small particles would be expected to approach zero at the bottom of the

bed, which would contain settled large particles.

At a higher veleccity, the larger particles would be fluidized by a
fluid with a composition of the slufry of the fluidized smaller |
particles, not by pure fluid alone, At this velocity there could be two
homogeneous regions of the bed. In the upper region, there will be only
smaller particles fluidized. 1In the lower region, there will bg a
mixture of large and smallvparticles. The larger particles can not
necessarily reach the top of the fluidized smaller particles. The
height of the region with large particies would depend upon the number
of large particles present. This is primarily because the bed expansion
of these larger particles is governed by the extent to which the slurry
of smaller particles can fluidize the large particles. The size of each
region will depend upon the initial mixture. There can be a transition
between the two homogeneous regions because of the dispersion of the

larger particles.

As the fluid velocity is increased further, the height of the
lower fluidized bed region will increase as the bed height for the
larger particles fluidized in the slurry of small particles increases.
There can also be an expansion of the small particles on the top of the
bimodal portion of the bed. Eventually, at very high velocities, both
particles could be fiuidized independently with a transition region

between the two,.
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All of the above descriptions have assumed that the particles were
initially arranged with both particles fractions well mixed. If the
particles fractions were initiaily segregated, there may be no way fpr
the small particles at the top of the bed to aid in the fluidization of
the large p: ‘ticles at the bottom. Consequently, if the velocity were
increased as described above and then decreased, different conditions
would exist at the same flow rate because the particles would become

segregated prior to decreasing the velocity.

The proposed model for unimodal fluidized b.ds was developed
assuning no axial property variations; therefore, it is applicable for
suspensions, or portions of suspension, that are homogeneous.
Consequently, the region of a bimodal suspension for which the proposed
model will apply is the lower portion where both small and large
particles are present. In this region the large particles are fluidized

by a slurry of smaller particles.

Dutta®! presented data on fluidization of glass and chalcopyrite
with water. His data exhibit distinct concentration rofiles as the
small particles migrate to the top of the suspension and the large
particles to the bottow of the suspension. Figures 22 and 23 illustrate
the concentration profiles. At low column helghts, it is worth n-cing
that the concentration of the smaller particles does not appear to
approach zero at the bottom of the column, and complete segregation does
not occur. Therefore, nea: the bottom of the column the larger

particles appear to be suspended by & slurry of smaller particles.
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Then, according to ;he proposed model, this slurry has properties of a
unimodal suspension of small particles. fhat'is, the viscosity
influencing the suspension of the large particles is the effective
viscosity as determined by a unimodal suspension of the small particlés.
Similarly, the density influencing the suspension of the larger
par;iéles is the density as determined by a unimodal suspension of the
small particles. As a result, the superficial inlet velocity is
noticeably above the minimum fluidization velocity of the large

particles in a suspension of small particles.

This phenomena can be analytically described by application of the
proposed model. All particles and fluid properties, as well as the
superficial inlet liquid velocity, are known; therefore, the solids
concentration of the small particles can be calculated. Figure 24
indicates the solids concentrations and the effective slurry properties
as "seen” by the larger particles. These effective fluid properties may
further be used to determine the minimum fluidization velocity required
to suspend the large particle with the slurry of small particles.
Applying the following equation to the data of Figure 24 yields these
minimum fluidization velocities, and the results are listed in Figure

25.

1.75/€>(dpUnep/u)? + 150(1-cue)/ens® (A Unsp/n) = %0 (py-p)B/M:  (64)
where
Ups = minimum fluidization velocity

£ps = Binimum void fraction
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Because the minimum fluldization velocities are greater than the
superficial inlet superficial velocities reported in Figure 24, the

analysis above is consistent with observations.

The proposed model can also be applied to estimate the actual
solids concentrations of both large and small particle fractions of a
suspension; however, the model only predicts bed expansion for
hdmogeneous suspension. For segregated beds, the model is applicable
for the lower most region where both small and large particles are
Present. As previously described, this region is the most likely
portion of a segregated suspension to have a homogeneous mixture of both
the large and small particles. The unimodal expansion in the upper
region can then be described by the proposed unimodal model. For well
mixed bimodal systems, where no segregation is apparent, the model is

applicable over the entire bed height.

To predict the expansiQn in a homogeneous bimodal region it is
necessary to analyze the fluidization in two steps. The fit#t step of
‘the analysis considers the fluidization of the smaller particles as if
the larger particles are not present. This step determines the
effective properties of the fluid suspending the large particles. The
second step involves fluidization of the larger particles by the slurry

with properties determined in the first step.

For the first step, fluidization of the smaller particles, it is

reasonable to assume that the smaller particles "see" the viscosity of a
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slurry as the fluidizing media consisting of the pure fluid and other

smaller particles, The large particles have little direct influence.
Consequently, it is proposed that only the small particles contribute to
the effective viscosity of the slurry. That is, only the small
particles are assumed to be present in the shear fields surrounding
other small particles. As a result, the Ting and Luebbers equation for

effective viscosity can be altered to account for the solids

concentration of the smaller particles in the absence of the larger

particles.

boge = (0.464+0,21¢e,/(1-£,)/(0.664-0.78¢,/(1-¢,)) (65)

As stated previously, the density of the fluidizing media cdntributes to
the viscous and inertial affects due to the fluid accelerating around
the particles, as well as the buoyant forces acting on the particles.

It is proposed that the éffective fluid accelerating around the
suspended smaller particles consists of the pure fluid and other smaller
particles. Consequently, the effective density is a function of the
pure fluid density and void fraction and the smaller particle density
and solids concentration in the absence of the larger particles.
Consequently, the relationship to be used in the density ratio of the

proposed model to acccunt for the affects of the accelerating fluid is

as follows.

p.zf. - (tpf'.’cnp-)/(l-cl,) (66)
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Because the pressure drop across a suspension is directly influenced by
the total solids concentration §f the systgs, and the buoyant forces are
directly influenced by the pressure drop, it can be concluded that the
buoyant forces should be a function of the total solids concentration of
the system. Consequently, as in unimodal fluidization, all particles of
the suspension, large aﬁd small, contribute to the buoyant forces of
the suspension. Therefore, the density to be used in the density

difference ratio must incorporate the total solids volume concentration.
po!tl = E4Ps + €LPL + £p¢ (67)

With the exception of the density difference ratio, the effective
properties of the suspension are functions of a corrected solids
conéentration based on the absence of the larger particles.
Consequently, the void fraction must also be corrected for the absence

of the larger particles.
£ = (l-gq-¢1)/(1-gp) (68)

Similarly, the superfici... inlet velocity must be corrected for the

absence of the larger particles.
U, = Uy,/(l-¢;) (69)

Incorporating the above effective fluid properties into the form of the

proposed model results in the following relationship for fluidization of
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the small particle fraction.

Uy /U = € 0710 /p e 104288 (5 /page 102857 ((oyPage )/ (Pa-pg)) 0724 (70)

The terminal velocity of the small particles, U,,, is determined based

on the particle falling through a media having properties of the pure

fluid.
Upy = (0.0721gDy, % (pg-pe)/ (g% fp 0 4))0 7143 - (71)

The’second step of the bimodal analysis involves the fluidization
of the larger particles by a slurry of the fluid and the smaller
particles. This steﬁ may be treated the same as unimodﬁl fluidization.
fhat is, the fluid phase may be considered to have properties of the
slurry calsvlated in the first step and the total solids concentration
may be considered to be the solids concentration of the large particles.
Therefore, the effective viscosity of the slurry to be used for
fluidization of the large particles is a function of the large particle
solids concentration (total solids concentration for unimodal systems)
and the slurry viscosity as calculated in the first step (pure fluid

viscosity for unimodal systems).

Begs = ((0.46440.21€,)/(0.464-0.78¢1))p,: L (72)

The effective fluid accelerating around the larger particles is proposed

to consist of the pure fluid, ;he smaller particles, and other larger
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particles. Therefore, the effective density to be used to describe the
properties of the fluid accelerating around the suspended larger

particles is a function of the total volume average concentration of all

particles in the system.
Pate = EaPs * 1Py + Py (73)

As in the first step of the analysis, all particles are proposed to
contribute to the effective buoyant forces during fluidization of the
larger particles. Consequently, the effective density to be used in the
density difference ratio is a function of the total solids concentration

of the system suspension.
Pett = €4Py + £LPL + Epg ' (73)

Because the total solids concentration is considered to be the large
particle solids concentration, the void fraction to be used in the modél
is the volume occupied by the pure fluid and the smaller particles.

Therefore, the void fraction is simply written as follows.
e" = (l-gp) (74)

Substituting the effective fluid properties calculated from the first
step for the pure fluid properties of the proposed model, and
incorporating the effective fluid properties as described in the second

step results in the following relationship for fluidization of the large
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particles.

Uy /Uy, = ¢ (070:7343) (#.:r"/l‘ou" ) 0’”“(#.15 /Pags ) 287 (75)

((P.'P.u")/(f’-'hu‘ ) )0‘7“3

The terminal velocity of the large particlés, Uy, 18 determined based
on the settling of a particle through a media having properties of the

slurry calculated in the first step of the analysis.
Uy, = (0.0721gD, 8 (pL-page’ )/ (Bagr O CPage ° )0 7142 (76)

~ Data presented by Duijn®’ for bimodal studies of glass beads and
ilmenite in water are applied to this two step process. Duijn reported
results in the form of average‘void f;action at distances above the
distributer.plate. The total solids concentration axial profiles for
the column appear relatively flat; therefore, it is assumed that the
individual component solids concentration axial profiles are also flat.
That is, the #olids concentrations for the 1ndiv1dua1’patt1c1e fractions
are relatively constant from the bottom to the top of the column. All
fluid and particle properties are known with the exception of the
individual solid fractions. Therefore, because the two step process
involves two equations and two unknowns, the relationship éan be solved

by trial and error. A summary of the results is listed in Table 3.

This method can be further applied to the segregated bed

fluidization data of Dutta. As previously mentioned, his data exhibit
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Table 3. Duijn bimodal data.

Superficial
Inlet —calculated reported %

Velocity €p €, £g £s difference
0.0062 0.13 0.23 0.64 0.68 6.06
0.0032 0.10 0.33 0.57 0.60 4.60
0.0116 0.11 0.13 0.76 0.76 0.00
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distinct concentration profiles for both the small and large particle
fractions. Application of the two step analysis to this data yields
individual solids fractions representative of the suspension near the
bottom of the column. The two step method applies to homogeneous
suspensions or portions of suspension; therefore, the results can be
interpreted as the fraction of the individual components at the lower,
homogeneous region of the suspension where both large and small
particles are present. This portion of the suspension corresponds to
the left most data of figures 22 and 23. The results may also be
interpreted as the fraction of the individual components required to
make the entire suspension homogeneous. A summary of the results for

the model is listed in Table 4.

Because the proposed fluidization analysis of bimodal segregated
suspension is new, existing data required to asses the merits and
generalities of the model are difficult to obtain. Du.ta presented data
consisting of a fixed number of large and small particles. His data
would have been more useful for testing the model if he had varied the
number of large and small particles present. This would have provided
additional insight into the various extents to which the small particles
contribute to the fluidization of the larger particles as a function of

axial position.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Although there are similarities in predictions between the
proposed model and those developed by Richardson and Zaki, Foscolo, and
Al-Dibouni for certain systems, the new model is more accurate over a
wider range of flow regimes and systems types. In addition, the
proposed relationship resultcd from a more analytical approach to actual

observed sedimentation and particulate fluidization phenomena.

Richardson and Zaki developed a linear log - log model based on
data in rhe crzeping flow and early transition regions. Because the
data of the creeping flow region do not exhibit curvature, the linear
model is adequate. Unfortunately, most fluidization data exists in the
transition region where curvature is more evident and viscous as well as
inertial forces are sigrificant. Consequently, the Richardson and Zaki
model is not accurate over a wide range of flow regimes and systems.
The Al-Dibouni model uses different values for the expansion index but
has the same problems outside the viscous region since it also assumes
that the index is constant. The Foscolo et al relationship was
developed from the Ergun equation for flow through packed beds. They
accounted for tortuosity by incorporating a constant factor. The

pressure drop then took the form of the Blake-Kozeny equation. Although
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their relationship accounts for the curvature during fluidization, it
consistently under-predicts fluidization velocities for solid - liquid

systems and over-predicts fluidization velocities for solid - gas

systems.

One weakness of all previous models is their failure to account
for the changing fluidization media as the bed expands. Suspended
particles "see" a different fluid or slurry at incremental stages of bed
expansion. Inclusion of these effects is the principal merit of the
proposed new model. The effective properties of the proposed model
appear to adequately correct for these changing slurry properties. In
addition, the expansion index used in the model is a function of the
intermediate Reynold’'s number, which in turn is a function of the
chengiﬁg fluid properties of the suspension; consequently, the curvature
of the transition region, and the linearity of the creeping flow and
inertial regions are well represented for a wide range of flow regines

and system types.

From this study the need for additional data, both unimodal and
bimodal, has become more evident. Future work would involve extending
the proposed model to various and different regions of segregated and
mixed fluidized suspensions to describe the changing contributions of
the smaller particles on the suspension of the larger particles at
differont coiunn heights. As previously described, the proposed model
suggests that a segregated bimodal suspension can have a homogeneous

upper region of swmall particles and a homogeneous lower region of large
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and small particles with a transition region between the two. Further
analysis of this type data would be useful in determining how the
proposed model can be applied to the entire segregated suspension rather
than only the lower homogeneous region. Hold-ups at various axial
positions in the column would be predicted as a funétion of effective
suspension properties and column height. Different scenarios of
fluidization such as initial unfluidized packed bed conditions could be
analyzed to determine how segregation prcceeds. Three initial condition
scenarios.could be: (1) a lower packed region of large particle with an
upper packed region of small particles; (2) a lower packed region‘of
small particles with an upper packed region of larger‘particles; and (3)
a well mixed region of large and small particle. Eventually, it would
be useful to analyze the applicability of the model to multimodal

systems.

Because gas fluidization data are difficult to obtain without the
presence of bubbles, few data of this type are available for particulate
fluid bed expansion. Consequently, efforts to obtain and apply gas
particulate data, particularly high pressure gas data, would be useful
for providing a better understanding of the differences in fluidization
phenomena between gas and liquid systems. Because gas systems tend to
be in the inertial region, additional gas data would be useful to extend

the proposed model over a much wider range of flow regimes.

Finally, data analyzed in this study were selected based, in part,

on negligible wall effects. Only small particle diameter to column
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diameters were used. It was obvious during the course of collecting the
data that wall effects are significant for relatively small columns.
Additional drag forces are imposed on the fluidized slurry from the
walls of the container and velocity profiles are severely altered. As a
result, bed expansion is a function of this diameter ratio.
Consequently, liquid and gas fluidization data collected from various
diameter columns would be useful for providing additional insight to a

more encompassing bed expansion relationship.
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