

CONF. 790638--4

PRELIMINARY CHARACTERIZATION OF TASE BIOMASS TECHNOLOGIES

by

J.P. Harper, S.W. Ballou, L.J. Habegger,
A.A. Sobek and A.A. Antonopoulos

MASTER

Prepared for

3rd Annual Biomass Energy Systems Conference

Golden, Colorado

June 5-7, 1979

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the

U. S. DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Cop

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

PRELIMINARY CHARACTERIZATION OF TASE BIOMASS TECHNOLOGIES

J. P. Harper, S. W. Ballou, L. J. Habegger,
A. A. Sobek, and A. A. Antonopoulos
Energy and Environmental Systems Division
Argonne National Laboratory

ABSTRACT

In 1978, the U.S. Department of Energy initiated the TASE (Technology Assessment of Solar Energy) Program to assess the environmental consequences of increased utilization of solar energy. An overview of the TASE Program and a discussion of the biomass technologies characterized in Phase I will be presented in this paper. Appropriate biomass conversion technologies were selected for various biomass feedstocks (i.e., agricultural and forestry residues, municipal wastes, manures, and agricultural and forestry energy crops). The technology characterization process involved: description of a model system; input/output analysis of material and energy flows into the system; estimation of the amount of residuals (e.g., particulates, SO_x , etc.) generated during conversion; and estimation of capital and operating and maintenance costs for each system. Results were computed on a per Quad (10^{15} Btu) basis and coded for input into the SEAS (Strategic Environmental Assessment System) model. This discussion of the TASE biomass technology characterizations focuses on agricultural residues, forestry industry residues, and livestock wastes.

INTRODUCTION

Solar energy technologies have recently become a focus of intense research and development not only because of their potential for replacing conventional nonrenewable energy resources but also because they are generally perceived to be relatively benign in terms of environmental and

socioeconomic impacts. However, the use of solar technologies is not without externalities, especially when construction, material supply, employment requirements, and other secondary or indirect impacts are considered. The potential environmental and socioeconomic impacts, both positive and negative, resulting from a widespread application of solar energy technologies have not been adequately addressed in the past. Accordingly, the Office of the Assistant Secretary for Environment of the Department of Energy has initiated the Technology Assessment of Solar Energy (TASE) Program.

The purposes of the TASE Program are to examine on a national, regional, and community level the nature of the environmental and socioeconomic impacts likely to result from widespread use of solar energy technologies; to identify the potential for substituting solar technologies for conventional sources as a strategy for mitigating energy-related environmental and socioeconomic problems; to identify physical, environmental, and institutional factors that may limit the substitution of solar energy for energy from conventional sources; and to identify regional variations that may facilitate development and use of particular combinations of solar technologies.

The TASE Program has two phases. Phase I provides a preliminary evaluation of the generic environmental impacts of solar energy technologies. Phase II of the TASE Program will draw upon the results and analysis of the Phase I effort to assess the environmental consequences

of a national deployment of solar energy technologies.

One primary objective of the Phase I activity is to evaluate, on a per Quad (10^{15} Btu) basis, the amount of environmental residuals and the costs (capital, operating, and maintenance) of each solar technology system, from raw material extraction to end use. Results of these evaluations are the subject of this paper.

Additional objectives of the Phase I program are to determine, by means of an input/output analysis of selected solar demand scenarios, the raw materials and resources needed to manufacture and operate the solar and any ancillary systems; to examine the ability of communities to assimilate into their physical, social, and institutional structures increasing quantities of solar-derived energy; to assess the environmental and institutional impacts of solar energy use on spatially constrained communities; and to examine the environmental and institutional character of a community, under varying solar growth assumptions.

These objectives provide a basis for moving from generic assessment of impacts to the Phase II assessment that considers specifics of national and regional resource usage, cumulative environmental impacts, socioeconomic impacts, and institutional uncertainties. As a basis for the Phase II analysis, two national scenarios for level of solar deployment in the year 2000 are specified: a scenario with a high level of solar penetration similar to the Domestic Policy Review "maximum practical" scenario and a second scenario with lower penetration, assuming a general continuation of current energy policies. The Phase II assessments are being conducted jointly by the DOE and the Argonne, Brookhaven, Lawrence Berkeley, Los Alamos, Oak Ridge, and Pacific Northwest/Battelle Laboratories, with support from DOE's Division of Technology Assessment and MITRE Corporation.

TASE Phase I Approach

The broad scope of Phase I of the TASE Program necessitated a division of the tasks required to effect the study. Eight technologies were selected for study, including some non-solar decentralized types. Los Alamos was primarily responsible for heating and cooling, agricultural and process heat, photovoltaics, and wind technologies. SERI, MITRE Corporation, and Lawrence Berkeley Laboratory also developed characterizations for these solar technologies. Argonne and Oak Ridge were assigned biomass technologies. Lawrence Berkeley was responsible for cogeneration and waste combustion. Oak Ridge was additionally responsible for district heating. The biomass technology was divided on the basis of resources; Argonne was to identify appropriate applications for crop and forestry residues, livestock wastes, and sewage while Oak Ridge was to define terrestrial energy crop applications.

Thus, Argonne's assignment for biomass technologies during Phase I was to identify end-use energy applications for various biomass resources. Upon selection of a biomass conversion application, the following tasks had to be performed to characterize the chosen system:

A technical description of the model system and the amount of end-use energy supplied;

An input/output analysis of material and energy requirements of the model system per Quad of end-use energy;

An assessment of the system's capital costs and operating and maintenance costs per Quad of end-use energy; and

An assessment of operating residuals (e.g., pollutants) generated by the system per Quad of end-use energy.

The capital and operating costs were identified for each industrial sector in which expenditures were made. This allowed inferences as to the basic raw material requirements for the application.

The integrating factor in the study is SEAS (Strategic Environmental Assessment System) (House, 1977). This model permitted the integration of the technology characterization data being developed at the various national laboratories and other institutions, so that the national, regional, environmental, material, energy, and economic objectives are achievable.

SEAS is an extremely intricate system. Basically, SEAS is a set of interrelated computer programs that can model energy flows in the U.S., model the U.S. economy, calculate environmental pollutants, and provide these energy, economic, and environmental forecasts at the national and various regional levels. Thus, in TASE Phase I the microlevel work on solar energy systems is melded via SEAS into macrolevel forecasts.

The remainder of this paper will be on selected biomass technology applications studied at Argonne National Laboratory. This will provide a representative perspective on the microlevel input for biomass technologies into the SEAS model. Because of space limitations, an adequate definition of all the assumptions and perspectives of our work is not possible and the readers are referred to forthcoming project reports; one deals with agricultural and forestry residue applications (Harper et al., 1979) and the other with livestock wastes and sewage (Ballou et al., 1979). These biomass technology applications will be presented for agricultural residues, livestock wastes, and forest industry residues in this paper.

AGRICULTURAL RESIDUE APPLICATIONS

General Soil Effects

Perhaps one of the most significant environmental effects of using agricultural residues

for energy is the deterioration of the soil by the erosive forces of water and wind. It has been reported that runoff almost doubles when crop residues were removed (Brady, 1974). The raindrop effect destroys surface soil structure, causing puddling, decreased water infiltration, increased runoff, reduced porosity, increased soil compaction, and a loss of organic matter and plant nutrients. In the semiarid wheat and cotton growing areas, the wind sorts the dry surface soil material by blowing away the fines, leaving only the semi-sterile skeletal matter (Lyles, 1975). This fine soil material contains a high portion of nutrients that are readily available to plants, and some experiments have shown eroded sediment to contain five times more organic matter and nutrients than the original soil.

Another major loss of soil nutrients is in removal of the residues themselves. Table 1 lists the amounts of major soil nutrients (nitrogen, phosphorus, and potassium) removed with corn, wheat, and cotton residues.

Table 1. Major Soil Nutrients Removed With Crop Residues

Crop	Nitrogen (lb/ton residue)	Phosphorus (lb/ton residue)	Potassium (lb/ton residue)
Corn Residue	22.2	3.6	26.8
Wheat Residue	6.0	0.5	8.9
Cotton Residue	34.8	4.5	29.4

Thus, the nutrients are often removed in excess of those applied, and the difference comes from the reserve previously built up in the soil. These nutrients must be maintained. Therefore, the total nutrients removed in the residue should be accounted for in the amount of fertilizer applied with the next corn crop to mitigate the adverse consequences of soil deterioration. In the analyses of technologies, the land areas temporarily affected by residue removal and the additional fertilizer requirement have been incorporated into the analysis of the various crop residue systems.

Combustion of Cotton Ginning Residue

Ginning of cotton produced in the U.S. gives rise to three distinct products: lint (cotton fibers), cottonseed, and ginning residues which consist of leaves, sticks, stems, hulls, soil, and motes (Griffin, 1976)(Oursbourn et al., 1978). Residue production per bale ranges from 98 lb for spindle-harvested mid-south cotton to approximately 750 lb for Texas stripper-harvested cotton (Griffin, 1977).

The seed cotton at the plant must be dried before it can be ginned. Typically 430,000 Btu per bale (Holder and McCaskill, 1963) are required for drying. Recently, drying systems have been developed that use cotton ginning residue as a fuel instead of natural gas for drying the seed cotton. The mean dry-basis fuel value of cotton gin residues is 7032 Btu/lb. The designs of systems for recovering gin residue and incinerating it to provide energy for drying have been reported by several authors (Lalor et al., 1976) (McCaskill and Wesley, 1976) (McCaskill et al., 1977). Researchers at the U.S. Cotton Ginning Research Laboratory have developed a system with 30% heat exchanger efficiency (McCaskill and Wesley, 1976). This system provided sufficient heat recovery for processing rates from 6 to 30 bales per hour, which spans production capacities for most cotton gins in the U.S.

For this study, the model system proposed for seed cotton drying proposed is simple: it consists of three basic operations, separation, combustion, and heat transfer. The model system does not have a gas scrubber on the incinerator so that a worst-case residual estimate is used to evaluate the conversion technology. The capacity of the system is 20,000 bales per year.

Based upon one-Quad output of useful process heat from the system (i.e., replacing natural gas), the major capital costs are identified in Table 2. The operating and maintenance costs

for this application are approximately \$3.1 billion (1972 dollars).

Table 2. Capital Costs Per Quad for Cotton Residue/Combustion System

Industrial Category	Billions of 1972 \$/Quad
Industrial Patterns	7.4
Plumbing & Heating Equipment	7.4
Transportation	1.1
New Construction	2.3
Total Capital Cost	18.2

The major operating residuals for the application are found in Table 3. An environmental effect not noted in the table is the waste heat dissipated into the atmosphere. The amount of heat wasted by the system is many times the useful heat produced and accounts for the relatively high capital cost per Quad.

Table 3. Major Operating Residuals Per Quad for Cotton Residue/Combustion System

Residual Category	Estimated Residuals Per Quad (10 ³ tons)
Particulates	9,150
SO ₂	850
NO _x	1,750
CO	16,150
Hydrocarbons	1,700
Solid Waste/Ash	104,640

Hydrolysis of Corn Residue

Furfural is an aldehyde with the -CHO group in the α position. Its production was commercialized by Quaker Oats in 1922 (Quaker Oats Co., 1974) and it is obtained from pentosan-containing agricultural residues. Furfural serves primarily as a chemical intermediate for the production of furfuryl alcohol, tetrahydrofurfuryl alcohol, furan, tetrahydrofuran, polytetramethylene ether glycol, or as a precursor

of pyrrole, pyrrolidine, pyridine, piperidine, lysine methylfuran, and many other compounds. It is considered in this study as a biomass-derived chemical that can serve as a substitute for a petroleum-derived chemical, thereby potentially sparing oil resources.

The extraction of furfural from agricultural residues involves acid digestion under steam pressure followed by a series of distillations to separate and purify the furfural and other by-products of the hydrolysis (Faith et al., 1957; Paturau, 1969). The material remaining after digestion is then separated into a solid and a liquid fraction by a screw press. The solid residue is granular and composed principally of modified cellulose, lignin and resins (Quaker Oats Co., 1972). The liquid fraction contains the dissolved carbohydrates and spent acid.

The furfural is recovered from the vapor by passing it through a distillation column; the overhead is condensed and a furfural layer and a water layer separated by decanting (Faith et al., 1957). The water layer in the decanter yields highly volatile by-products, namely, methyl alcohol, methyl acetate, and acetic acid. The production of methyl alcohol and methyl acetate equals roughly one-sixteenth of furfural production at the plant while that of acetic acid equals the production of furfural (Lipinsky et al., 1977).

The model system for this study is a large hypothetical facility for furfural production. The processing rate is 135 tons/day of furfural requiring 1588 tons/day corn residue (Lipinsky et al., 1977). Major energy and material inputs into the system are steam (40,000 lb/ton furfural), water (11,000 ft³/ ton furfural), electricity (250 kwh/ton furfural), and sulfuric acid (50 lb conc./ton residue). The capital costs per Quad of input energy are given in Table 4. The estimated operating and maintenance costs are approximately \$21 billion (1972 \$) per Quad of end-use energy in the form of furfural.

Table 4. Capital Costs Per Quad for Corn Residue/Furfural System

Industrial Category	1972 \$ Per Quad (10 ⁹ \$)
Special Industry Machinery	0.71
Fabricated Metal Products	6.15
Fabricated Plate Products	1.92
Plumbing & Heating Equipment	0.44
Structural Metal Products	3.06
Pipes, Valves, & Fittings	3.76
Trucking	1.21
New Construction	<u>13.85</u>
Total Capital Cost	31.10

The major operating residuals are presented in Table 5. It is assumed that the major high energy by-products of the process (e.g., methanol, methyl acetate, and acetic acid) are recovered and sold. This recovery would bolster the overall energy production by the system because these chemicals contain as much energy as the primary product (furfural). The major environmental contaminants are found in the air, water, and land media. A significant temporary land usage is also required to supply the residue.

Table 5. Major Operating Residuals Per Quad for Corn Residue/Furfural System

Residual Category	Estimated Residuals Per Quad (10 ³ Tons)
Hydrocarbon	1,012
H ₂ SO ₄ (Vapor)	140
BOD	26,880
H ₂ SO ₄ (Acidity)	2,800
Solid Waste	392,240
Land, Permanent	321 (10 ³ acres)
Land, Temporary	140,000 (10 ³ acres)

Gasification of Corn and Wheat Residues

The pyrolytic conversion approach - gasification - is examined in this application for the production

of a low-Btu gas from corn and wheat residues which can replace natural gas. Gasification is actually a two-stage process. Part of the biomass in the gasifier is combusted with a limited air supply, to provide heat to raise the temperature in the gasifier unit above 1600° F. Under these conditions, the biomass fuel in other parts of the gasifier is pyrolyzed. However, a highly carbonized solid residue, called char, and liquids with high tar contents are also generated. Resultant quantities of these materials depend greatly upon gasifier design and operation.

A commercial unit in operation at Diamond/Sunsweet, Inc., Stockton, California (Goss, 1978) served as a model for this application. The unit has a capacity of 28.6 tons per day and produces enough energy to sustain a steam production rate of 8500 lb/h (15 psi) at a fuel rate of one ton mulled walnut shells per hour. A natural gas pilot flame is required. A laboratory-scale testing model similar to the unit has been built at the University of California at Davis (Williams and Horsfield, 1977). In the model system, there are only three unit operations: storage, handling, and gasification. Eighty percent of the input fuel is gasified and the principal by-product is a low-Btu gas (150 Btu/ft³) with a char residue (20% of input material) as a by-product. The major energy flow into the system is natural gas for start-up or occasionally sustaining the process. Table 6 identifies the major capital expenditures for the gasifier system. These costs apply whether corn or wheat residues are utilized. The operating and maintenance costs for the system is \$3.6 billion (1972 \$) per Quad end-use energy.

The range of operating residuals which has been estimated for this application is given in Table 7. The temporary land use requirement for corn is significantly less than for wheat because of higher per acre yields. If the char from the process could be used as an energy resource, a significant improvement in overall energy generation by the system would result.

Table 6. Capital Costs Per Quad for Wheat-Corn Residue/Gasification System

Industrial Category	1972 \$ Per Quad (10 ⁹ \$)
Fabricated Metal Products	0.81
Plumbing and Heating Equipment	0.35
Materials and Handling Equipment	0.02
Transportation	0.09
New Construction	<u>0.25</u>
Total Capital Costs	1.52

Table 7. Major Operating Residuals Per Quad for Wheat-Corn Residue/Gasification System

Residual Category	Residuals Per Quad End-Use Energy (10 ³ tons)
Particulates	36-38
SO ₂	3- 4
NO _x	52-53.7
Combustible Solid Waste	18,000 - 21,099
Land Use, Permanent	3.3 (10 ³ acres)
Land Use/Year	49,000 - 56,000 (10 ³ acres)

Fermentation of Sugar Processing Residues

Molasses is obtained as a by-product of sugar processing (both cane and beet sugars). U.S.D.A.'s Agricultural Statistics 1977 estimates that 133,676,000 gallons of molasses were produced from mainland cane and 191,700,000 gallons were produced from domestic beet sugars. Cane molasses is preferred by distillers because of the higher invert sugar concentration, although both types of molasses will support fermentation.

This model process developed for the production of ethanol from molasses is similar to other processes for industrial ethanol production in the United States and overseas (Lowenheim and Moran, 1975; Yang et al., 1977; Paturau, 1969;

Lipinsky et al., 1977; Klostermann et al., 1977; Wilke et al., 1978). The system has a production capacity approaching 200,000 gallons of ethanol per day and uses approximately 3000 tons/day of molasses. This system is scaled after the large Battelle system for sugarcane juice (Lipinsky et al., 1977). The capital costs are summarized in Table 8. The operating and maintenance costs are approximately \$13.3 billion per Quad of ethanol energy produced. Table 9 lists the major operating residuals for the system. Air pollution (from distillation and storage) and water contamination are the major problems. However, it is assumed that by-products of the process (e.g., stillage) are marketable.

Table 8. Capital Costs Per Quad For Sugar Processing Residue/Fermentation System

Industrial Category	1972 \$ Per Quad (10 ⁹ \$)
Plumbing & Heating	0.75
Fabricated Metal Products	1.87
Pumps, Compressors & Blowers	0.002
Engineering & Scientific Equipment	0.01
Special Industry Machinery	0.07
Structural Metal Products	0.10
Metal Plate	0.09
Pipes, Valves & Fittings	1.17
Buildings & Auxiliaries	0.90
Transportation	0.37
New Construction	<u>4.29</u>
Total Capital Costs	<u>9.622</u>

Table 9. Major Operating Residuals Per Quad for Sugar Processing/Fermentation System

Residual Component	Residuals Per Quad End-Use Energy (10 ³ tons)
Ethanol (Vapor)	391
Benzene (Vapor)	16
BOD	58
Land Use, Permanent	54.8 (10 ³ acres)

LIVESTOCK WASTE APPLICATION

Anaerobic Digestion of Manure

Anaerobic digestion of animal residues has been used in India for many years. Sanghi and Day (1972) report that in 1972 there were about 2,500 anaerobic digesters in rural India producing biogas from cattle dung without destroying the value of the solids as fertilizer. Essentially, only carbon is metabolized into biogas with a heating value of 600 Btu/ft³. Most nutrients, especially nitrogen, pass through and are discharged in the digested residue.

In the United States, extensive investigations are underway to evaluate process requirements for biogas recovery from beef cattle, dairy cows, swine, poultry, and other animal wastes (Tennessee State University, 1977; Biogas of Colorado, Inc., 1978). One area where anaerobic digestion is close to full-scale production is the Four Corners region of Arizona, Colorado, New Mexico, and Utah, where there are many large beef feedlots.

The process characteristics reported here are based on a model plant designed to process the waste from 25,000 beef cattle. Beef cattle at an average weight of 1,000 lb produce 60 lb of raw manure per head per day, containing 6.9 lbs of total solids, of which 5.9 lbs is volatile solids.

The assumed design of an anaerobic digestion plant for feedlot manure has a process rate of 0.2 lb/day of volatile solids per cubic foot of digester capacity. At 5.9 lb of volatile solids per day per animal, 25,000 head of cattle will produce 147,500 lb of volatile solids, which will require 737,500 ft³ of digester capacity. This capacity is supplied by three primary digesters 100 ft in diameter by 31 ft high. Three secondary digesters of the same size, with gas-holding covers, are also needed.

The digested sludge (42.5 tons of dry solids per day) is dewatered by 110-hp centrifuges, two on line and one in reserve. The extracted water goes to a controlled algae pond and later is returned to mix with raw manure entering the plant. The algae is harvested and dried as an animal feed supplement; the dewatered, digested residue is used as a fertilizer additive or solar-dried for animal feed.

Assuming a biogas production of 8.5 ft³/lb of volatile solids, this digestion plant would produce a gross yield of 1.25×10^6 ft³ of gas per day (Loehr, 1977). The digester gas is purified in an amine absorption step to remove 35% of the CO₂ and all of the ammonia and hydrogen sulfide, resulting in gas with 710 Btu/ft³.

The capital costs for the process are summarized on a per Quad basis in Table 10.

Table 11 presents the major operating residuals generated on a per Quad basis. The major impact is solid waste from the digesters. This should not be a serious environmental problem if sound land application practices are employed.

Table 10. Capital Costs Per Quad for Manure/Anaerobic Digestion System

Industrial Category	1972 \$ Per Quad End-Use Energy (10 ⁹ \$)
Cement Cover	2.08
Oil Field Machinery	2.68
Buildings	0.14
Transportation	0.20
New Construction	<u>6.71</u>
Total Capital Costs	11.81

Table 11. Major Operating Residuals Per Quad for Manure/Anaerobic Digestion System

Residual Category	Residuals Per Quad End-Use Energy (10 ³ tons)
SO ₂	2,570
NO _x	90
Solid Waste	103,700

FOREST INDUSTRY RESIDUE APPLICATION

Cogeneration from Pulp/Paper Residues

The pulp and paper industry is the fourth largest industrial consumer of fuels and electricity in the United States. Paper and allied products industries purchase more than 385 billion kWh equivalent of fuels and electricity per year (Little, Inc., 1976), and consumed (in 1970) 1.5 Quads (Sittig, 1977).

Pulp and/or paper operations are either larger integrated systems (producing both pulp and paper) or smaller nonintegrated systems (producing either pulp or paper). Most of the U.S. paper is manufactured by integrated mills.

The pulping process most prevalent in the United States and selected as the basis of our model forestry residue conversion system is known as the Kraft process. In the Kraft process, under high temperatures (350°F) and pressures (100 psi), the wood chips are cooked for 2-4 hours in an alkaline solution of sodium sulfate and sulfite in order to separate the cellulose fibers from the lignin and other materials (Hall et al., 1977) (Sittig, 1977). The spent cooking liquor, known as black liquor, contains the lignin and the chemicals utilized in the process. The liquor passes through a recovery system, and most of the original chemicals are extended and reused, while the remaining lignin plus other combustible materials are concentrated (55-65% solids). Thereafter, the concentrated liquor is conveyed to the furnaces/boilers and burned to generate heat, steam, and electricity.

It has been estimated that the production of a dry ton of Kraft pulp requires 325 kWh of electric energy as well as 8500 lb of steam at about 80 psi (equivalent to 10.67×10^6 Btu), and that one ton of spent liquor solids burned in the recovery furnace releases 13.2×10^6 Btu (Sittig, 1977).

The model plant studied has one power boiler burning bark and wood residues and two main recovery boilers burning the organic matter of the black liquor. In addition, a turbogenerator unit is employed for electricity generation. This unit is envisioned for a plant which annually processes 200,000 tons pulp and produces 36,000 tons black liquor per year. The major capital costs on a per Quad basis are given in Table 12. The operating and maintenance costs for the system are \$0.13 billion per Quad.

Table 12. Capital Costs Per Quad for Pulp-Paper Residue/Cogeneration System

Industrial Category	1972 \$ Per Quad End-Use Energy (10 ⁹ \$)
Metal Plate	1.41
Engines & Turbines	0.31
Pulp Mills	0.07
Special Industry Machinery	0.20
Transportation	0.15
New Construction	<u>1.43</u>
Total Capital Cost	3.57

Table 13 gives the major operating residuals per Quad. Air and land are the two resources most affected by this technology.

Table 13. Major Operating Residuals Per Quad for Pulp-Paper Residue/Cogeneration System

Residual Category	Residuals Per Quad End-Use Energy (10 ³ tons)
Particulates	3,145
SO _x	105
NO _x	699
CO	2,097
Hydrocarbons	2,446
Solid Waste (Ash)	2,897

CONCLUDING REMARKS

The aforementioned biomass technology applications cover the range of conversion options available from combustion to anaerobic digestion. Typically, the capital costs and operating and maintenance costs for thermal conversion (e.g., combustion and gasification) are significantly less than for biological or chemical conversion (e.g., fermentation or hydrolysis).

Depending upon the technology, impacts to air and water can arise from the use of biomass conversion approaches. However, if by-products of some of the approaches are not utilized these impacts could be more significant.

Developing the right technological mix is also an important factor in assessing the large-scale utilization of biomass. No one application will be able to satisfy the future demand. Thus, identification of the appropriate technology mix is necessary.

The micro-scale analyses provide energy information on a per Quad basis, economic data, and residual data in an interrelated fashion. These data are now being processed through the SEAS model to ascertain the consequences of the large scale application of solar technologies.

REFERENCES

Ballou, S. W., L. Dale, R. Johnson, W. Chambers, and H. Mittelhauser, (Unpublished Information), Energy and Environmental Systems Division, Argonne National Laboratory (1979).

Biogas of Colorado Inc., Arova, Colorado -- Written communication (1978).

Brady, N. C., "The Nature and Properties of Soils," Macmillan, Inc., New York, 639 pp. (1974).

Faith, W. L., D. B. Keyes, and R. L. Clark, "Industrial Chemicals," John Wiley and Sons, New York (1957).

Goss, J. R., "Food Forest Wastes -- Low-BTU Fuel," Agricultural Engineering (January, 1978).

Griffin, A. C. Jr., "Fuel Value and Ash Content of Ginning Wastes," Transactions of the ASAE, pp. 156 (1976).

Griffin, A. C., "Fuel Value of Gin Wastes," in Cotton Ginners Handbook, Agriculture Handbook No. 53 (1977).

Hall, E. H., W. T. Hanna, L. D. Reed, J. Varga, D. N. Williams, K. E. Wilkes, B. E. Johnson, W. J. Mueller, E. J. Bradbury, and W. J. Frederick, "Final Report on Evaluation of the Theoretical Potential for Energy Conservation in Seven Basic Industries," Battelle Columbus Laboratories, Report PB-244, 772, Federal Energy Administration (1975).

Harper, J. P., A. A. Sobek, and A. A. Antonopoulos (Unpublished Information), Energy and Environmental Systems Division, Argonne National Laboratory (1979).

Holder, S. H., and O. L. McCaskill, "Costs of Electric Power and Fuel for Driers in Cotton Gins, Arkansas and Missouri," U.S.D.A.-ERS-138 (1963).

House, P. W., "Trading Off Environment, Economics and Energy - EPA's Strategic Environmental Assessment System," Lexington Book, Lexington, Massachusetts 137 pp (1977).

Klostermann, H. J., O. J. Banasik, M. L. Buchanan, F. R. Taylor and R. L. Harrold, "Production and Use of Grain Alcohol As A Motor Fuel -- An Evaluation," North Dakota Farm Research 35 (2): 3-9 (1977).

Lalor, W. F., J. K. Jones, and G. A. Slater, "Performance Test of Heat-Recovering Gin-Waste Incinerator," Cotton Incorporated, Agro-Industrial Report 3(2), Raleigh, North Carolina (1976).

Lipinsky, E. S., W. J. Sheppard, J. L. Otis, E. W. Helper, T. A. McClure, and D. A. Scantland, "System Study of Fuels from Sugarcane, Sweet Sorghum, Sugar Beets, and Corn," Volumes I-V, Comprehensive Evaluation of Corn, Battelle Columbus Laboratories (1977).

Little, Arthur D., Inc., "Environmental Considerations of Selected Energy Conserving Manufacturing Process Options," V, Pulp and Paper Industry Report, Cincinnati, Ohio, Report EPA-600/7-76-034e, US/EPA (1976).

Loehr, R. C., "Pollution Control for Agriculture," Academic Press, Inc., New York (1977).

Lowenheim, F. A., and M. K. Moran, "Industrial Chemicals," 4th Edition, John Wiley & Sons, New York (1975).

Lyles, L., "Possible Effects of Wind Erosion on Soil Productivity," Journal of Soil and Water Conservation, 30(6):279-283 (1975).

McCaskill, O. L., and R. A. Wesley, "Energy from Cotton Gin Waste," Ginner's Journal and Yearbook (1976).

McCaskill, O. L., R. V. Baker, and R. A. Wesley, "Collection and Disposal of Gin Waste," in Cotton Ginners Handbook, Agriculture Handbook No. 53 (1977).

Oursbourn, C. D., W. A. LePori, R. D. Lacewell, K. Y. Lam, and O. B. Schacht, "Energy Potential of Texas Crops and Agricultural Residues," Texas Agricultural Experiment Station, College Station, Texas, 82 pp. (Feb. 1978).

Paturau, J. M., "By-Products of the Cane Sugar Industry," Elsevier Publishing Co., Amsterdam (1969).

Quaker Oats Co., "Furfural By-Products Technical Data," Chemical Division, Technical Bulletin No. 164, Chicago (1972).

Quaker Oats Co., "Quaker Oats Furfural - General Information - Properties - Handling - Applications," Chemical Division, Technical Bulletin 203C, Chicago (1974). Sanghi, A. K., and D. Day, "A Cost-Benefit Analysis of Biogas Production in Rural India: Some Policy Issues," Washington University, St. Louis, Mo. (1972).

Sittig, M., "Pulp and Paper Manufacture: Energy Conservation and Pollution Prevention," Noyes Data Corporation, Park Ridge, New Jersey, (1977).

Tennessee State University, "A Complete Disposal-Recycle Scheme for Agricultural Solid Wastes," EPA/600/2-77-089 (1977).

USDA, Statistical Reporting Service, "Agricultural Statistics 1977," Washington, D.C., 614 pp. (1977).

Wilke, C. R., R. D Yang, A. S. Sciamana and R. P. Freitas, "Raw Materials Evaluation and Process Development Studied for Conversion of Biomass to Sugars and Ethanol," 2nd Annual Fuels from the Biomass Conference, Troy, N.Y. (1978).

Williams, R. O., and B. Horsfield, "Generation of Low-BTU Fuel Gas From Agricultural Residues with a Laboratory Scale Gas Producer," in Food, Fertilizer, and Agricultural Residues, Ann Arbor, Science, Ann Arbor, Michigan (1977).

Yang, V., W. N. Milfont, A. Scigliano, C. O. Massa, S. Sresnewsky, and S. C. Trinado, "Cassava Fuel Alcohol in Brazil," Proceedings of 12th Intersociety Energy Conversion Engineering Conference, Washington, D.C. (1977).