



Rockwell International  
Atomics International Division

## SUPPORTING DOCUMENT

### PROGRAM TITLE

Intermediate- Size Inducer Pump

### DOCUMENT TITLE

Recirculating Flow Analyses of Intermediate  
Size Inducer Pump (ISIP)

### PREPARED BY/DATE

R. K. Hoshide

*R. K. Hoshide 4/20/78*

DEPT

MAIL ADDR

731

JB05

### IR&D PROGRAM? YES

NO

IF YES, ENTER TPA NO. \_\_\_\_\_

### APPROVALS

L. Stabinsky

*L. Stabinsky*

DATE

*4/20/78*

T. J. Boardman

*T. J. Boardman*

4/20/78

NUMBER

N266 TI000003

REV LTR/CHG NO.

SEE SUMMARY OF CHG

DOCUMENT TYPE

Technical Information

KEY NOUNS

Inducer Pump

**MASTER**

ORIGINAL ISSUE DATE

April 20, 1978

GO NO.

S/A NO.

PAGE 1 OF

TOTAL PAGES 17

09280

23000

REL. DATE

*4-21-78 RK*

SECURITY CLASSIFICATION

(CHECK ONE BOX ONLY)

ERDA DOD

RESTRICTED

UNCL

DATA

CONF.

DEFENSE

SECRET

INFO.

AUTHORIZED  
CLASSIFIER

DATE

### DISTRIBUTION

### ABSTRACT

*DOE/SF 176026 -- T25*

Enclosed is a report which documents the recirculation flow analyses for the Intermediate-Size Inducer Pump (ISIP), from which the primary flowrates through the pump were obtained. The front and rear impeller labyrinth seals, which incorporate stepped pockets with slanted and rounded ribs were checked. These seal design features should minimize the impeller labyrinth seal leakages and also provide excellent shutoff head characteristics.

**DISCLAIMER**

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

*ATC3-76SF76024*

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

*Enclosed to be dated 4/21/78*

RESERVED FOR PROPRIETARY/LEGAL NOTICES

**THIS REPORT MAY NOT BE PUBLISHED WITHOUT THE APPROVAL OF THE PATENT BRANCH, ERDA**

This report was prepared as an account of work sponsored by the United States Government. Neither the U. S. Government, nor any of its employees nor any of its contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

\* COMPLETE DOCUMENT

NO ASTERISK, TITLE PAGE/SUMMARY  
OF CHANGE PAGE ONLY

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## Recirculating Flow Analyses of Intermediate Size Inducer Pump (ISIP)

Refs:

- (1) AI Drawing, "Intermediate-Size Inducer Pump Layout, ISIP," Drawing N266R000015, Issue 1, March 16, 1978
- (2) Allen, H. G., "Hydraulics Design Report FFTF Primary Pump," Engr. Memo 4476, Westinghouse Electric Corporation, Electro-Mechanical Div., Cheswick, Pennsylvania, January 15, 1973
- (3) Crane, "Flow of Fluids Through Valves, Fittings, and Pipe," Technical Paper 410, Crane Company, New York, N.Y., 1976
- (4) Internal Letter, "Pump Impeller Labyrinth Seal Study," DDR-712-3012, Isaacson, J., Rocketdyne Division, Rockwell International, Canoga Park, California, December 4, 1957
- (5) Crewdson, E., "Water-Ring Self-Primary Pumps," Vol. 170, No. 13, Institution of Mechanical Engineers, Westminster, South Wales, 1956

### INTRODUCTION

Recirculating flows of the ISIP were analyzed, and the calculations are shown in Appendix A. Secondary flow paths were first obtained before the primary flow rates through the pump were obtained. Analyses were also conducted to check the impeller labyrinth seal design and the drain and vent hole leakages.

### SUMMARY

Recirculation flow rates were obtained and are shown in Figures 1 and 2. From these recirculation flows, the primary flow rates through the pump were obtained and are also shown in Figures 1 and 2.

The impeller labyrinth seal design incorporates good design features which are stepped pockets with slanted and rounded ribs. These features are especially helpful in minimizing the leakage flows for this large clearance seal application.

DISCUSSION

The ISIP layout drawing (Reference 1) was used to determine the various recirculation flow paths through the pump. Recirculation flows which remained the same from the previous pump design were obtained from Reference 2 and are shown in Figure 1.

Secondary flow paths were first obtained and are summarized below:

1.  $Q_1$ , leakage between suction nozzle outlet cone and inlet to suction elbow = 160 gpm.
2.  $Q_2$ , leakage through inlet static seal = 85 gpm.
3.  $Q_3$ , flow through drive shaft = 50 gpm.
4.  $Q_4$ , leakage through front impeller labyrinth seal = 648 gpm.
5.  $Q_5$ , leakage through rear impeller labyrinth seal = 569 gpm.
6.  $Q_6$ , flow through hydrostatic bearing = 200 gpm.
7.  $Q_7$ , leakage through the diffuser and radial bearing housing = 131 gpm.
8.  $Q_8$ , leakage through discharge bellows static seal = 10 gpm.
9.  $Q_9$ , leakage through impeller return holes = 669 gpm.

These recirculation flow calculations are shown in the appendix, and the flows are shown in Figures 1 and 2. Friction factors used were obtained from Crane (Reference 3).

Impeller labyrinth seal leakage rates were checked using previous Rocketdyne empirical data (Reference 4) and results obtained from E. Jackson (addendum to Reference 5). The seal flow coefficient obtained for both front and rear labyrinth seals was 0.428 which is realistic for the present design. These labyrinth seal designs incorporate the step configuration from Reference 4 and the slanted rounded backs of the ribs from Reference 5. These features should minimize these leakages and also provide excellent shutoff head characteristics.

The shaft extension does not affect the flow rate through the drive shaft. Only a small decrease (less than 1/2 gpm), which includes the vent/drain holes contribution, is realized and was neglected for this analysis.

From this recirculation flow analysis, the following primary flow rates through the pump were obtained:

1. Q disch., discharge flow rate = 14,500 gpm.
2. Q inlet, inlet flow rate = 14,500 gpm.
3. Q suct. el., suction elbow flow rate = 14,660 gpm.
4. Q ind., flow through inducer = 14,695 gpm.
5. Q imp., flow through impeller = 15,997 gpm.
6. Q trans. diff., flow through transition diffuser = 14,780 gpm.
7. Q exist. diff., flow through existing diffuser = 14,841 gpm.

PREPARED BY:

RKH



Rockwell International

Atomics International Division

PAGE NO. 5 OF

CHECKED BY:

DATE: 3-22-78

REPORT NO. N266TI000003

MODEL NO.

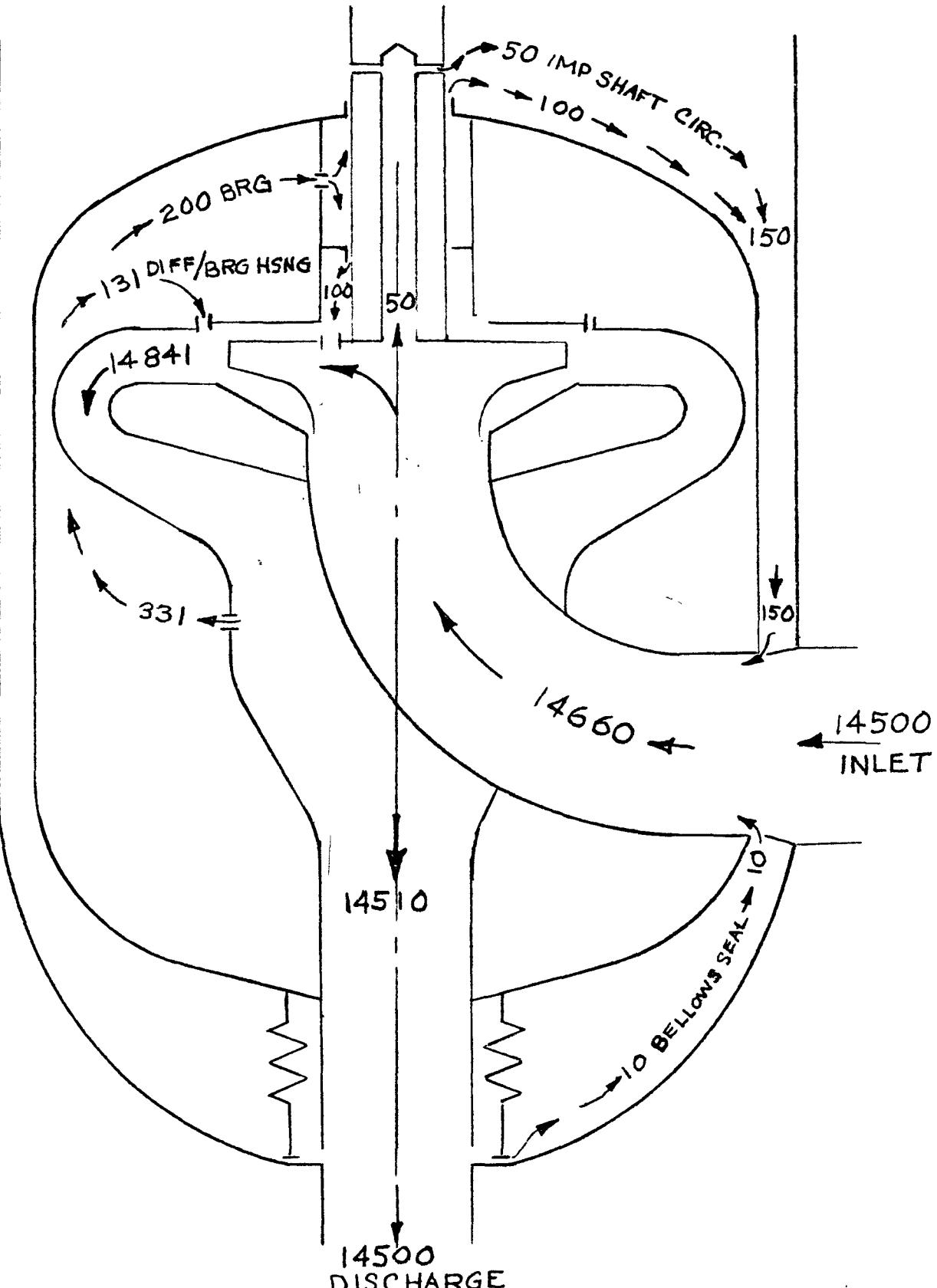
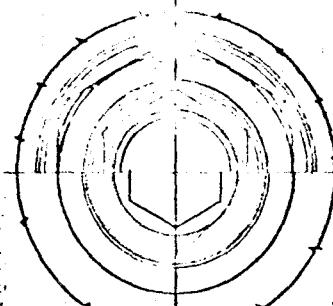
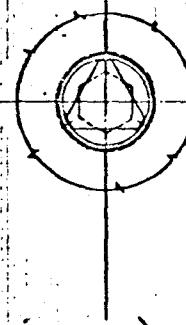




FIG. 1 WEMD RECIRCULATION FLOWS




14841  
EXIST. DIFF.

$Q_6 = 200$  BRG

$Q_7 = 131$  DIFF/BRG  
HSNG

FIG 2 ISIP RECIRCULATION FLOWS



14610

$Q_2 = 85$

14695 INDUCER

15997/IMPELLER

$Q_9 = 669$

633

2

9

678

569

569

$Q_3 = 50$

54

50

3.8

3.8

4

4

4

2

9

678

569

633

15997/IMPELLER

569

569

15997/IMPELLER

$Q_9 = 669$

633

2

9

678

569

569

633

15997/IMPELLER

569

569

15997/IMPELLER

$Q_9 = 669$

633

2

9

678

569

569

633

15997/IMPELLER

569

569

PREPARED BY: RKN



Rockwell International

Atomics International Division

CHECKED BY:

DATE: 3-22-78

PAGE NO. 7 OF

REPORT NO. N266TI000003

MODEL NO.

## APPENDIX A - FLOW ANALYSES

I. THIS FLOW ANALYSES INCLUDES: 1) SECONDARY & PRIMARY FLOWS, 2) LABYRINTH SEAL, DRAIN, & VENT HOLE FLOWS.

A. THE SECONDARY FLOW PATHS ARE DEFINED AS FOLLOWS:

1.  $Q_1$  LEAKAGE BETWEEN SUCTION NOZZLE OUTLET CONE AND INLET TO SUCTION ELBOW.
2.  $Q_2$  LEAKAGE THROUGH INLET STATIC SEAL.
3.  $Q_3$  FLOW THROUGH DRIVE SHAFT.
4.  $Q_4$  LEAKAGE THROUGH FRONT IMPELLER LABYRINTH SEAL.
5.  $Q_5$  LEAKAGE THROUGH REAR IMPELLER LABYRINTH SEAL.
6.  $Q_6$  FLOW THROUGH HYDROSTATIC BEARING.
7.  $Q_7$  LEAKAGE THROUGH THE DIFFUSER AND RADIAL BEARING HOUSING.
8.  $Q_8$  LEAKAGE THROUGH DISCHARGE BELLows STATIC SEAL.
9.  $Q_9$  LEAKAGE THROUGH IMPELLER RETURN HOLES.

B. FROM THESE DEFINITIONS, THE FOLLOWING PRIMARY FLOWRATES ARE OBTAINED:

1.  $Q_{DISCH.} = \text{DISCHARGE FLOWRATE}$   
 $= 14,500 \text{ GPM}$
2.  $Q_{INLET} = \text{SUCTION NOZZLE FLOWRATE}$   
 $= Q_{DISCH.} = 14,500 \text{ GPM}$
3.  $Q_{SUCT. EL.} = \text{SUCTION ELBOW FLOWRATE}$   
 $= Q_{INLET} + Q_1$   
 $= Q_{INLET} + Q_3 + \frac{1}{2} Q_6 + Q_8$
4.  $Q_{IND.} = \text{FLOW THROUGH INDUCER}$   
 $= Q_{SUCT. EL.} + Q_2 - Q_3$
5.  $Q_{IMP.} = \text{FLOW THROUGH IMPELLER}$   
 $= Q_{IND.} + Q_9 + Q_4 - 15 \text{ GPM}$

PREPARED BY: RKH  
 CHECKED BY:  
 DATE: 3-22-78



Rockwell International

Atomics International Division

PAGE NO. 8 OF

REPORT NO. N266TI000003

MODEL NO.

6.  $Q_{\text{TRANS. DIFF.}} = \text{FLOW THROUGH TRANSITION DIFFUSSER}$

$$= Q_{\text{IMP}} - Q_4 - Q_5$$

7.  $Q_{\text{EXIST. DIFF.}} = \text{FLOW THROUGH EXISTING DIFFUSSER}$   
 $= Q_{\text{TRANS. DIFF.}} + Q_7 - Q_2 + 15 \text{ GPM}$

8.  $Q_{\text{DISCH.}} = Q_{\text{EXIST. DIFF.}} - Q_6 - Q_7 - Q_8$   
 $= 14,500 \text{ GPM.}$

C. THIS SECONDARY FLOW ANALYSES ARE AS FOLLOWS:

1.  $Q_6$  HYDROSTATIC BEARING

SAME AS WEMD REPORT (REF. 2 )

$$Q_6 = \underline{200 \text{ GPM}} \leftarrow$$

2.  $Q_7$  DIFFUSER AND RADIAL BEARING HOUSING

SAME AS WEMD REPORT (REF. 2 )

$$Q_7 = \underline{131 \text{ GPM}} \leftarrow$$

3.  $Q_8$  DISCHARGE BELLows STATIC SEAL

SAME AS WEMD REPORT (REF. 2 )

$$Q_8 = \underline{10 \text{ GPM}} \leftarrow$$

4.  $Q_4$  FRONT IMPELLER LABYRINTH SEAL

FROM ROCKETDYNE DIV., ROCKWELL INT.  
 6633 CANOGA AVE, CANOGA PK., CA.

$$Q_4 = \underline{648 \text{ GPM}} \leftarrow$$

5.  $Q_5$  REAR IMPELLER LABYRINTH SEAL

FROM ROCKETDYNE DIV., ROCKWELL INT.  
 6633 CANOGA AVE, CANOGA PK, CA.

$$Q_5 = \underline{569 \text{ GPM}} \leftarrow$$

6.  $Q_2$  INLET STATIC SEAL

GIVEN: MEAN SEAL DIA. = 23.2 IN.

$$\text{FACE WIDTH} = \frac{1}{8} \text{ IN}$$

CLEARANCE = 0 TO 3 MILS, SAY 1.5 MILS

PER SEAL:

$$\text{AREA} = \pi (\text{MEAN DIA}) \text{ CLEARANCE}$$

$$= \pi (23.2) (.0015) = 0.109 \text{ IN}^2$$

PREPARED BY: RX21



Rockwell International

Atomics International Division

PAGE NO. 9 OF

CHECKED BY:

DATE: 3-22-78

REPORT NO. N266TI000003

MODEL NO.

LET: HEAD LOSS ( $H_2$ ) THROUGH GAP EQUAL TO:

$$H_2 = 1.5 \frac{V^2}{2g} + f \frac{L}{D} \frac{V^2}{2g}$$

WHERE:  $V$  = VEL THROUGH GAP $f$  = FRICTION FACTOR= 0.037 FOR VERY SMALL  
CLEARANCES $L$  = LENGTH=  $\frac{1}{8}$  IN. $D$  = EQUIVALENT DIA

= TWICE THE CLEARANCE

=  $2(0.0015) = 0.003$  IN. $g$  = ACCELERATION DUE TO GRAVITY  
= 32.174 FT/SEC

SUBSTITUTING:

$$H_2 = 1.5 \frac{V^2}{2g} + 0.037 \left( \frac{1}{8} \right) \frac{V^2}{0.003}$$

SOLVING FOR  $V$ :

$$V = \left( \frac{2g H_2}{3.04} \right)^{\frac{1}{2}}$$

LET:  $H_2 = 500$  FT (MAX.)

$$V = \left( \frac{2g 500}{3.04} \right)^{\frac{1}{2}} = 103 \text{ FT/SEC}$$

$$V = \frac{Q}{A} = \frac{144}{448.83}$$

WHERE:

 $Q$  = FLOWRATE THROUGH SEAL $A$  = AVE. LEAKAGE AREA =  $0.109 \text{ IN.}^2$ 

$$\therefore Q = V A = \frac{103}{144} (0.109) 448.83 = 35 \text{ GPM}$$

FOR BOTH FACES:

$$Q = 2(35) = 70 \text{ GPM}$$

ADDITIONAL LEAKAGE THROUGH THE 2 EA  $\frac{1}{4}$  IN.  
DRAIN HOLES MUST BE ACCOUNTED FOR

|                   |                                                                                                                                           |                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PREPARED BY: RKJN |  Rockwell International<br>Atomics International Division | PAGE NO. 10 OF          |
| CHECKED BY:       |                                                                                                                                           | REPORT NO. N266TI000003 |
| DATE: 3-22-78     |                                                                                                                                           | MODEL NO.               |

$$\Delta P = 35.8 - 15.1 = 20.7 \text{ PSID}$$

$$A = \frac{2\pi}{4(144)} \left(\frac{1}{4}\right)^2 = 0.000682 \text{ FT}^2$$

$$\text{HEAD LOSS} = 1.5 \frac{V^2}{2g} + f \frac{L}{D} \frac{V^2}{2g}$$

$$\text{LET: } f = 0.037$$

$$\therefore V = \left( \frac{2g \Delta H}{1.587} \right)^{\frac{1}{2}} = \left( \frac{2g (20.7)}{1.587} \frac{144}{\rho} \right)^{\frac{1}{2}}$$

$$\text{WHERE: } \rho = \text{DENSITY} \\ = 50.971 \text{ LB/FT}^3$$

$$\therefore V = 48.7 \text{ FT/SEC}$$

$$\text{AND } Q = VA 488.83 = 48.7(0.000682)448.83 \\ = 14.9 \text{ GPM, SAY } 15 \text{ GPM}$$

∴ TOTAL INLET STATIC SEAL LEAKAGE IS:

$$Q_2 = 70 + 15 = 85 \text{ GPM}$$

CHECK ON REYNOLD'S NO. (Re)

$$Re = \frac{\rho V d}{\mu}$$

$$\text{WHERE: } d = \text{DIA., FT} \\ \mu = \text{VISCOSITY} \\ = 0.5221 \text{ LB/FT HR}$$

SUBSTITUTING:

$$Re = \frac{50.971(48.7) \cdot 2.5}{0.5221} (3600) = 3.5 \times 10^5$$

$$\text{LET: } \frac{e}{d} = \frac{0.0001}{\frac{1}{4}} = 0.0004$$

FROM CRANE (REF. 3)

$$f = 0.0173$$

$$\therefore \Delta H = 1.5 \frac{V^2}{2g} + (0.0173) \frac{59}{4} \frac{V^2}{2g}$$

$$V = \left( \frac{2g \Delta H}{1.54} \right)^{\frac{1}{2}} = \left( \frac{2g (20.7)}{1.54} \frac{144}{50.971} \right)^{\frac{1}{2}} = 49.4 \text{ FT/SEC}$$

$$Q = 49.4(0.000682)448.83 = 15 \text{ GPM}$$

$$\therefore Q_2 = 70 + 15 = \underline{\underline{85 \text{ GPM}}}$$

|                  |  |
|------------------|--|
| PREPARED BY: RXN |  |
| CHECKED BY:      |  |
| DATE: 3-22-78    |  |



Rockwell International

Atomics International Division

PAGE NO. 11 OF

REPORT NO. N266T1000003

MODEL NO.

### 7. $Q_3$ DRIVE SHAFT

FROM THE WEMD REPORT (REF. 2)

$$Q_3 = 49.8 \text{ GPM}$$

BECAUSE THE ISIP DESIGN HAS AN ADDITIONAL SHAFT EXTENSION, THE ADDITIONAL PRESSURE LOSS AND ACCOMPANYING DECREASE IN FLOW-RATE WAS CHECKED AS FOLLOWS:

LET:  $d = 1.95 \text{ IN.}$  (DISTANCE ACROSS FLATS)

$$\text{so } A = \frac{\pi}{4} (1.95)^2 = 0.0207 \text{ FT}^2$$

LET:  $Q = 49.8 \text{ GPM}$

$$\text{so } V = \frac{Q}{A} = \frac{49.8}{0.0207} = 2414 \text{ FT/SEC}$$

$$Re = \frac{50.971 (5.36)}{0.5221} \frac{1.95}{12} (3600)$$

$$= 3.07 \times 10^5$$

$$\frac{e}{d} = \frac{0.001}{1.95} = 0.0005$$

FROM CRANE

$$f = 0.0182$$

$$\Delta H = 1.5 \frac{(5.36)^2}{2g} + \frac{0.0182 (13.9) (5.36)^2}{1.95 (2g)}$$

$$= 0.73 \text{ FT}$$

$$Q = K \sqrt{\Delta H}, \text{ OR: } K = \frac{Q}{\sqrt{\Delta H}}$$

FROM WEMD (REF. 2)

$$K = \frac{49.8}{\sqrt{49.84}} = 7.054$$

$$\therefore Q_3 = 7.054 \sqrt{49.84 - 0.73} = 49.44 \text{ GPM}$$

$$\text{DECREASE IN FLOW} = 49.8 - 49.44$$

$$= 0.36 \text{ GPM (NEGIGIBLE)}$$

$$\therefore \text{LET } Q_3 = \underline{50 \text{ GPM}}$$

|                         |                                                                                                                                            |                         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PREPARED BY: <i>RKR</i> |  Rockwell International<br>Atomics International Division | PAGE NO. 12 OF          |
| CHECKED BY:             |                                                                                                                                            | REPORT NO. N266TI000003 |
| DATE: 3-22-78           |                                                                                                                                            | MODEL NO.               |

8.  $Q_1$  SUCTION NOZZLE OUTLET CONE AND INLET TO SUCTION ELBOW

$$\begin{aligned}
 Q_1 &= Q_3 + \frac{1}{2} Q_6 + Q_8 \\
 &= 50 + \frac{1}{2} (200) + 10 \\
 &= \underline{\underline{160 \text{ GPM}}} \leftarrow
 \end{aligned}$$

9.  $Q_9$  IMPELLER RETURN HOLES

$$\begin{aligned}
 Q_9 &= Q_5 + \frac{1}{2} Q_6 \\
 &= 569 + \frac{1}{2} (200) \\
 &= \underline{\underline{669 \text{ GPM}}} \leftarrow
 \end{aligned}$$

D. IMPELLER LABYRINTH SEAL CHECK

FROM ROCKETDYNE DIV., ROCKWELL INT.

$$Q_4 = 648 \text{ GPM}$$

$$Q_5 = 569 \text{ GPM}$$

$\Delta P_4$  = DELTA PRESSURE (STATIC) ACROSS FRONT LABYRINTH SEAL

$$= 129.7 - 35.8 = 93.8 \text{ PSID}$$

$\Delta P_5$  = DELTA PRESSURE (STATIC) ACROSS REAR LABYRINTH SEAL

$$= 126.9 - 39.7 = 87.2 \text{ PSID.}$$

FRONT SEAL AVE. DIA. = 22.5 IN.

REAR SEAL AVE. DIA. = 20.45 IN.

DIAMETRAL CL. = 0.100 TO 0.110 IN.

AVE. DIAMETRAL CL = 0.105 IN.

FRONT CASING DIA. =  $22.5 + 0.105 = 22.605$  IN.

REAR CASING DIA. =  $20.45 + 0.105 = 20.555$  IN.

$$\begin{aligned}
 \text{FRONT SEAL CL. AREA} &= (22.605^2 - 22.5^2) \frac{\pi}{4} (144) \\
 &= 0.02583 \text{ FT}^2
 \end{aligned}$$

$$\begin{aligned}
 \text{REAR SEAL CL. AREA} &= (20.555^2 - 20.45^2) \frac{\pi}{4} (144) \\
 &= 0.02348 \text{ FT}^2
 \end{aligned}$$

PREPARED BY: RZN



Rockwell International

Atomics International Division

PAGE NO. 13 OF

CHECKED BY:

REPORT NO. N266TI000003

DATE: 3-22-78

MODEL NO.

$$\text{FLOW IN FT}^3/\text{SEC} = KA (2g \Delta H)^{1/2}$$

$$\text{OR } K = \frac{Q}{A (2g \Delta H)^{1/2}} \frac{1}{448.83}$$

$$\Delta H = \Delta P \left( \frac{144}{50.971} \right)$$

WHERE:  $K$  = SEAL FLOW COEFFICIENT

$$\therefore K \text{ FOR FRONT SEAL} = \frac{648}{0.02583(2g(93.9)\frac{144}{50.971})^{1/2}} \frac{1}{448.83}$$

$$= 0.428$$

$$K \text{ FOR REAR SEAL} = \frac{569}{0.02348(2g(87.2)\frac{144}{50.971})^{1/2}} \frac{1}{448.83}$$

$$= 0.428$$

$$Re = \frac{d_h V \rho}{\mu}$$

WHERE:  $d_h = \frac{4 \text{ (CL AREA)}}{\text{WETTED PERIMETER}}$ , FT

$$V = \frac{Q_L}{A(448.83)}, \text{ FT/SEC}$$

 $\mu$  = VISCOSITY

$$= 0.5221 \text{ LB/FT HR}$$

$$\text{FRONT SEAL WETTED PERIMETER} = \frac{\pi(22.605 + 22.5)}{12}$$

$$= 11.81 \text{ FT}$$

$$\text{REAR SEAL WETTED PERIMETER} = \frac{\pi(20.555 + 20.45)}{12}$$

$$= 10.74 \text{ FT}$$

$$\therefore \text{FRONT SEAL } Re = \frac{4(0.02583) 648}{11.81 (0.02583) 448.83} \frac{(50.971)}{0.5221 \frac{1}{3600}}$$

$$= 1.72 \times 10^5$$

$$\text{REAR SEAL } Re = \frac{4(569)(50.971)(3600)}{10.74 (448.83)(0.5221)} = 1.66 \times 10^5$$

THE  $K$  VALUES FOR BOTH SEALS ARE OF REALISTIC  
 VALUES BASED ON PREVIOUS ROCKETDYNE DATA (REF. 4) AND  
 FROM THE RESULTS OF EA. JACKSON (ADDENDUM OF REF. 5).

|              |                                                                                                                                            |                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PREPARED BY: |  Rockwell International<br>Atomics International Division | PAGE NO. 14 OF          |
| CHECKED BY:  |                                                                                                                                            | REPORT NO. N266TI000003 |
| DATE:        |                                                                                                                                            | MODEL NO.               |

THE LABYRINTH SEAL CONFIGURATION INCORPORATES FEATURES FROM BOTH REFERENCES, NAMELY :

1. STEP CONFIGURATION FROM REF. 4.

2. ROUNDED BACKS OF SLOPED RIBS FROM REF. 5

THE STEP CONFIGURATION RESULTS IN LOW LEAKAGE FLOWS COMPARED TO NON-STEPPED CONFIGURATIONS (REF 4).

THE ROUNDED BACK ALSO RESULTS IN LOW LEAKAGE FLOWS, ESPECIALLY FOR SEALS WITH LARGE CLEARANCES (AS IN OUR DESIGN). THIS ROUNDED BACK DESIGN ALSO PROVIDES FOR EXCELLENT SHUT-OFF HEAD CHARACTERISTICS WHERE HIGH PUMP HEAD IS MAINTAINED, (REF. 5 ).

#### E. DRAIN AND VENT HOLE CHECK

VARIOUS DRAIN AND VENT HOLES LOCATED MAY ALLOW LEAKAGE FLOWS WITHIN THE PUMP. THESE HOLES ARE IDENTIFIED BY CIRCLED NUMBERS (SEE FIG. 2 )

(1) INDUCER AND IMPELLER (FRONT SHROUD) HOUSING DRAIN HOLES = 15 GPM (SEE PG A4 )

(2) IMPELLER DRAIN HOLES (2 EA,  $\frac{1}{4}$  IN DIA.)

$$\Delta H = \frac{U_2^2 - U_1^2}{2g}$$

$$U_2 = \frac{\pi D_2 N}{720} = \frac{\pi (13.8)}{720} 1110 = 66.8 \text{ FT/SEC}$$

$$U_1 = \frac{\pi D_1 N}{720} = \frac{\pi (11.2)}{720} 1110 = 54.2 \text{ FT/SEC}$$

$$\Delta H = \frac{66.8^2 - 54.2^2}{2g} = 23.6 \text{ FT}$$

$$\Delta H = \frac{1.5 V^2}{2g} + f \frac{L}{D} \frac{V^2}{2g}$$

$$= \frac{1.5 V^2}{2g} + 0.0173 \left( \frac{4.8}{0.25} \right) \frac{V^2}{2g}$$

$$V = \left( \frac{2g \Delta H}{1.83} \right)^{\frac{1}{2}} = \left( \frac{2g (23.6)}{1.83} \right)^{\frac{1}{2}} = 28.8 \text{ FT/SEC}$$

$$Q = V A = 28.8 (0.000682) 448.83 = 9 \text{ GPM.}$$

PREPARED BY:

RK71



Rockwell International

Atomics International Division

PAGE NO. 15 OF

CHECKED BY:

DATE: 3-22-78

REPORT NO. N266TI000003

MODEL NO.

(3) DRAIN HOLES IN SHAFT EXTENSION (2 EA.,  $\frac{1}{4}$  IN. DIA.)

$$U_2 = \frac{\pi}{720} (3.6) 1110 = 17.4 \text{ FT/SEC}$$

$$U_1 = \frac{\pi}{720} (2.4) 1110 = 11.6 \text{ FT/SEC}$$

$$\Delta H = \frac{17.4^2 - 11.6^2}{2g} = 2.6 \text{ FT}$$

(4) VENT HOLES IN SHAFT EXTENSION (2 EA.,  $\frac{1}{4}$  IN. DIA.)

$$U_2 = \frac{\pi}{720} (6.6) 1110 = 32 \text{ FT/SEC}$$

$$U_1 = \frac{\pi}{720} (5.0) 1110 = 24.2 \text{ FT/SEC}$$

$$\Delta H = \frac{32^2 - 24.2^2}{2g} = 6.8 \text{ FT}$$

(5) DRAIN HOLES IN IMPELLER HUB (2 EA.,  $\frac{1}{4}$  IN. DIA.)

$$U_2 = \frac{\pi}{720} (5.3) 1110 = 25.8 \text{ FT/SEC}$$

$$U_1 = \frac{\pi}{720} (3.7) 1110 = 17.9 \text{ FT/SEC}$$

$$\Delta H = \frac{25.8^2 - 17.9^2}{2g} = 5.4 \text{ FT}$$

(6) VENT HOLES IN IMPELLER HUB (2 EA.,  $\frac{1}{4}$  IN. DIA.)

$$U_2 = \frac{\pi}{720} (8.2) 1110 = 39.7 \text{ FT/SEC}$$

$$U_1 = \frac{\pi}{720} (6.5) 1110 = 31.5 \text{ FT/SEC}$$

$$\Delta H = \frac{39.7^2 - 31.5^2}{2g} = 9.1 \text{ FT}$$

REFERING TO FIG. 2  $\Delta H$  (3) IS ACTING AGAINST  $\Delta H$  (4) AND  $\Delta H$  (5) IS ACTING AGAINST  $\Delta H$  (6).

$$\therefore \Delta H (4) - \Delta H (3) = 6.8 - 2.6 = 4.2 \text{ FT}$$

$$\Delta H (6) - \Delta H (5) = 9.1 - 5.4 = 3.7 \text{ FT}$$

$$\text{AND } \Delta H (4) = 1.5 \frac{V^2}{2g} + 0.0173 \left( \frac{75}{25} \right) \frac{V^2}{2g} = 4.2 \text{ FT}$$

$$V (4) = \left( \frac{2g(4.2)}{1.55} \right)^{\frac{1}{2}} = 13.2 \text{ FT/SEC}$$

$$Q (4) = 13.2 (0.000682) 448.83 = 4 \text{ GPM}$$

|              |         |
|--------------|---------|
| PREPARED BY: | RKH     |
| CHECKED BY:  |         |
| DATE:        | 3-22-78 |



Rockwell International

Atomics International Division

PAGE NO. 16 OF

REPORT NO. N266TI000003

MODEL NO.

$$\Delta H_6 = 1.5 \frac{V^2}{2g} + 0.0173 \frac{(.98)}{.25} \frac{V^2}{2g} = 3.7 \text{ FT}$$

$$V_6 = \left( \frac{2g(3.7)}{1.568} \right)^{\frac{1}{2}} = 12.3 \text{ FT/SEC}$$

$$Q_6 = 12.3(0.000682)448.83 = 3.8 \text{ GPM}$$

∴ RECIRCULATION FLOWS ARE:

$$Q_3 = 4 \text{ GPM}$$

$$Q_4 = 4 \text{ GPM}$$

$$Q_5 = 3.8 \text{ GPM}$$

$$Q_6 = 3.8 \text{ GPM}$$

SEE FIG. 2 FOR FLOW DIRECTION

BECAUSE AN ADDITIONAL 4 GPM FLOWS THROUGH THE SHAFT EXTENSION,  $Q_3$  FLOWRATE IS CHECKED.

#### F. CHECK OF $Q_3$ FLOW THROUGH DRIVE SHAFT

$$\text{LET: } Q' = 49.8 + 4 = 53.8 \text{ GPM}$$

$$V' = \frac{53.8}{0.0207(448.83)} = 5.79 \text{ FT/SEC}$$

$$Re = \frac{50.971(5.79) \frac{1.95}{12} (3600)}{0.5221} = 3.3 \times 10^5$$

$$\Delta H = 1.5 \frac{(5.79)^2}{2g} + 0.0182 \frac{(1.95)(5.79)^2}{1.95(2g)} \\ = 0.85 \text{ FT}$$

$$K = 7.054 \text{ (SEE PG. A5)}$$

$$\therefore Q = 7.054 \sqrt{49.84 - .85} = 49.37 \text{ GPM}$$

$$\text{DECREASE IN FLOW} = 49.84 - 49.37 \\ = 0.47 \text{ GPM (NEGIGIBLE)}$$

$$\therefore \text{LET: } Q_3 = \underline{\underline{50 \text{ GPM}}} \leftarrow$$

PREPARED BY: RZH



Rockwell International

Atomics International Division

PAGE NO. 17 OF

REPORT NO N266TI000003

CHECKED BY:

DATE: 3-22-78

MODEL NO.

### G. PRIMARY FLOWRATES THROUGH PUMP

FROM PARA B, PAGES A1 AND A2, THE FOLLOWING FLOWRATES ARE OBTAINED:

$$1. Q_{DISCH} = \underline{14,500 \text{ GPM}} \leftarrow$$

$$2. Q_{INLET} = \underline{14,500 \text{ GPM}} \leftarrow$$

$$3. Q_{SUCT. EL.} = Q_{INLET} + Q_1 \\ = 14,500 + 160 = \underline{14,660 \text{ GPM}} \leftarrow$$

$$4. Q_{IND.} = Q_{SUCT. EL.} + Q_2 - Q_3 \\ = 14,660 + 85 - 50 \\ = \underline{14,695 \text{ GPM}} \leftarrow$$

$$5. Q_{IMP.} = Q_{IND.} + Q_9 + Q_4 - 15 \\ = 14,695 + 669 + 648 - 15 \\ = \underline{15,997 \text{ GPM}} \leftarrow$$

$$6. Q_{TRANS DIFF.} = Q_{IMP.} - Q_4 - Q_5 \\ = 15,997 - 648 - 569 \\ = \underline{14,780 \text{ GPM}} \leftarrow$$

$$7. Q_{EXIST. DIFF.} = Q_{TRANS DIFF.} + Q_7 - Q_2 + 15 \\ = 14,780 + 131 - 85 + 15 \\ = \underline{14,841 \text{ GPM}} \leftarrow$$

$$8. Q_{DISCH} = Q_{EXIST. DIFF.} - Q_6 - Q_7 - Q_8 \\ = 14,841 - 200 - 131 - 10 \\ = \underline{14,500 \text{ GPM}} \leftarrow$$