
Some Potential Material Supply Constraints in Solar Systems for Heating and Cooling of Buildings and Process Heat

**(A Preliminary Screening to Identify
Critical Materials)**

June 1979

**Prepared for the U.S. Department of Energy
under Contract EY-76-C-06-1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

The views, opinions and conclusions contained in this report are those of the contractor and do not necessarily represent those of the United States Government or the United States Department of Energy.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
Under Contract EY-76-C-06-1830

Printed in the United States of America
Available from
National Technical Information Service
United States Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$____*; Microfiche \$3.00

*Pages	NTIS Selling Price
001-025	\$4.00
026-050	\$4.50
051-075	\$5.25
076-100	\$6.00
101-125	\$6.50
126-150	\$7.25
151-175	\$8.00
176-200	\$9.00
201-225	\$9.25
226-250	\$9.50
251-275	\$10.75
276-300	\$11.00

PNL-2972
UC-59

3 3679 00053 1956

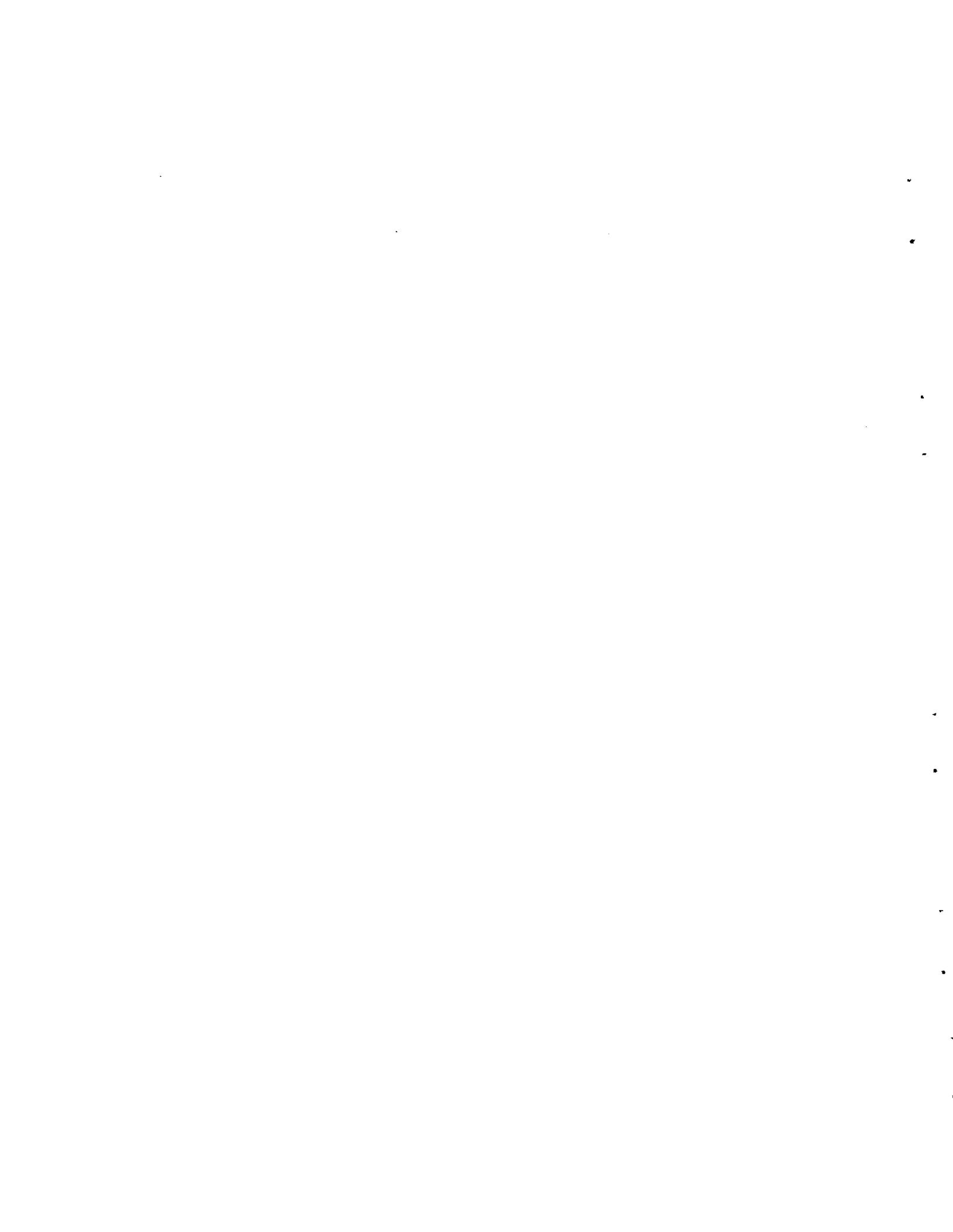
SOME POTENTIAL MATERIAL SUPPLY CONSTRAINTS
IN SOLAR SYSTEMS FOR HEATING AND COOLING
OF BUILDINGS AND PROCESS HEAT

(A Preliminary Screening to Identify
Critical Materials)

R. L. Watts
W. E. Gurwell
T. A. Nelson
S. A. Smith

June, 1979

Prepared for
the U.S. Department of Energy
under Contract EY-76-C-06-1830


Pacific Northwest Laboratory
Richland, Washington 99352

ACKNOWLEDGMENTS

In the conduct of this study, valuable contributions were made by a large number of people and organizations.

We are especially indebted to the organizations who patiently supplied information necessary to characterize the systems material requirements: Solaron Corporation, Sunworks, American Heliothermal Corporation, KTA Corporation, Ecosol Systems Inc., Clifford S. Nakata Associates, RayPak Inc., the University of Oregon, Lawrence Livermore Laboratory, Chamberlain Manufacturing Corporation and Honeywell Inc.

The following Battelle-Northwest Laboratories personell contributed:
C. H. Bloomster, N. E. Carter, T. B. Correy, D. K. Davis, D. E. Deonigi,
R. L. Egeland, C. M. Eliason, T. P. Harrington, J. N. Hartley, J. W. Litchfield,
S. D. Rosier, R. P. Smith and J. O. Vining.

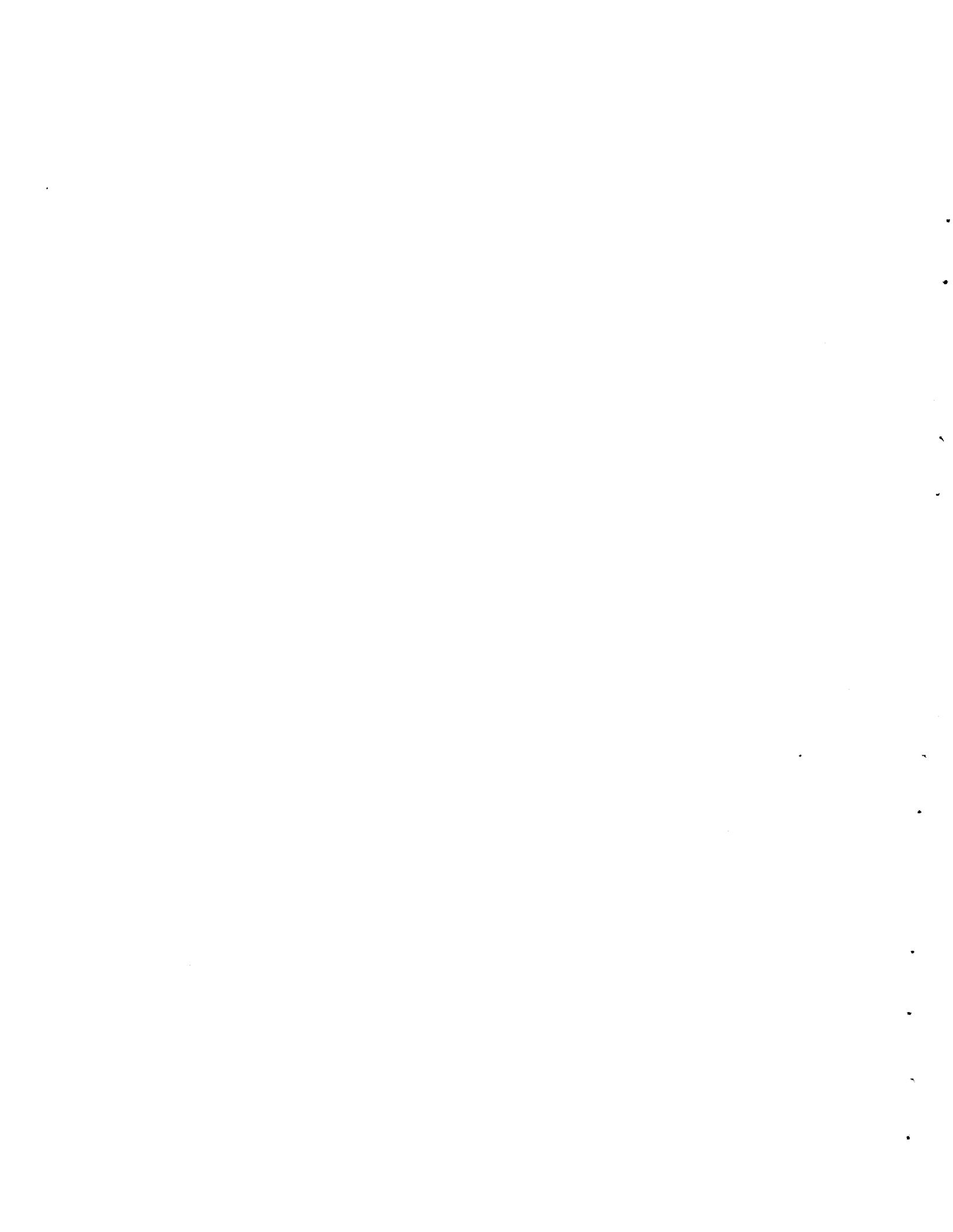
S.I. TO ENGLISH CONVERSIONS

S.I. units are used almost exclusively in this report. Some of the pertinent conversions are:

Metric Ton 1 MT = 2204.6 lbs

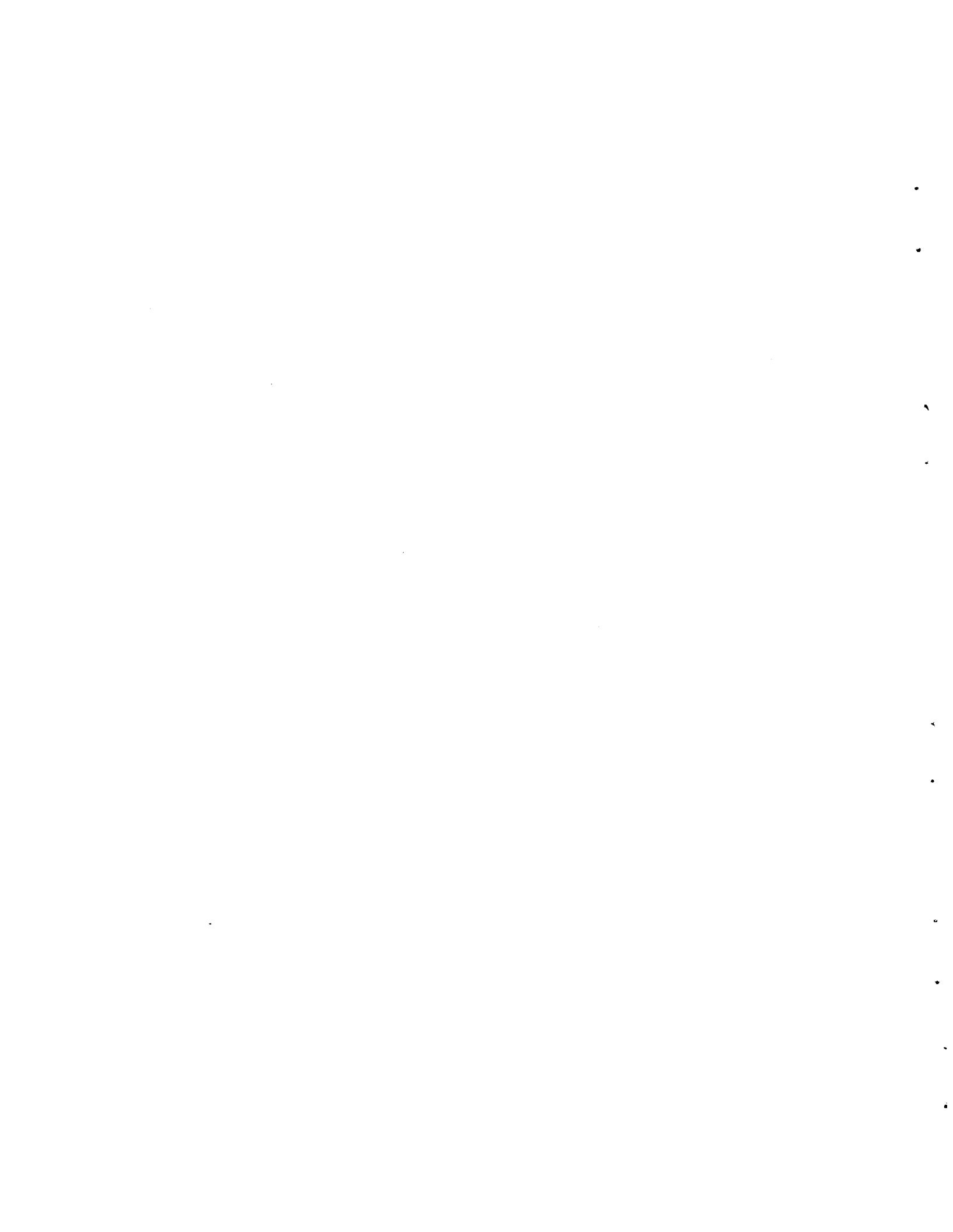
Square Meter 1 m² = 10.764 ft²

Joules 1054 J = 1 Btu


Megajoules 1054 MJ = 10⁶ Btu

Gigajoules 1.054 GJ = 10⁶ Btu

1.054 x 10⁹ GJ = 10¹⁵ Btu


= 1 Quad

Insolation 1 GJ/m²-yr = 88,143 Btu/ft²-yr

CONTENTS

SUMMARY OF RESULTS AND RECOMMENDATIONS	ix
INTRODUCTION	1
SHACOB AND AIPH DESIGN DESCRIPTIONS	3
DESIGN DESCRIPTIONS	3
REFERENCE DESIGNS METHODOLOGY	3
CHARACTERIZATION OF REFERENCE DESIGNS	10
MATERIALS REQUIREMENTS	13
METHODS, MODELS, AND ASSUMPTIONS USED TO IDENTIFY POTENTIAL MATERIALS	
CONSTRAINTS	19
THE EFFECT OF THE ASSUMPTIONS MADE IN THE STUDY	27
Bulk Material Criteria Threshold Levels	28
Raw Material Criteria Threshold Levels	31
RESULTS AND RECOMMENDATIONS	33
"A" MATERIALS IN SHACOB AND AIPH SYSTEMS	38
Iron, Steel	38
Soda Lime Glass and Polyvinyl Fluoride	40
"B" MATERIALS IN SHACOB AND AIPH SYSTEMS	41
REFERENCES	47
APPENDIX A - ACTUAL COMPUTER RUNS OF BULK AND RAW MATERIAL SCREENING	
FACTORS	A-1
APPENDIX B - SOLAR SYSTEMS DESIGN CHARACTERIZATION AND MATERIAL	
REQUIREMENTS	B-1



FIGURES

1. The Materials Cycle	19
2. Flow Chart of Materials Assessment Methodology	21
3. Interactive Screening System	22
4. Assessment of Potential Materials Problems	23
5. Exponential Growth Curve	28

TABLES

1. System Designs Characterized	4
2. Design Variations in Systems Characterized	5
3. Major Material Uses in SHACOB Systems Characterized	6
4. Major Material Uses in AIPH Systems Characterized	7
5. Material Categories by Functional Component for SHACOB and AIPH	9
6. Bulk Material Usage in SHACOB Systems	14
7. Raw Material Usage in SHACOB Systems	15
8. Bulk Material Usage in AIPH Systems	16
9. Raw Material Usage in AIPH Systems	17
10. Bulk Material Threshold Criteria	24
11. Raw Material Threshold Criteria	25
12. Problem Bulk Materials in SHACOB Systems	34
13. Problem Raw Materials in SHACOB Systems	35
14. Problem Bulk Materials in AIPH Systems	36
15. Problem Raw Materials in AIPH Systems	37
16. Screening Factors in Scenarios Where "A" Bulk Materials Were Found	39
17. Some Glazing Material Alternatives	42
18. Criteria Exceeded by "B" Bulk Materials in SHACOB and AIPH Systems	43
19. Criteria Exceeded by "B: Raw Materials in SHACOB and AIPH Systems	45

SUMMARY OF RESULTS AND RECOMMENDATIONS

Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use.

The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m^2 of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. The mixed design scenarios assumed 1) 500 $M\ m^2$ and 2) a billion m^2 of collector area installed by the year 2000.

To keep these scenarios in perspective, note that a billion m^2 containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year.

Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.

Iron and steel exceeded the threshold for the cost criteria ($\$15/m^2$) in two SHACOB systems, in one AIPH system, and in the AIPH mixed design scenarios. A cost of $\$15/m^2$ represents about 5% of the installed cost of a system. Increases in the price of steel in the future could offset anticipated cost reductions due to learning and mass production and prevent some AIPH and SHACOB systems from becoming economically competitive. If steel prices should rise to an unacceptable level in the future there are several viable alternatives:

- 1) direct substitution of less expensive materials
- 2) more efficient use of steel in existing designs
- 3) redesign of components or functions
- 4) elimination of certain components, such as storage vessels
- 5) minimizing the length of pipe and duct runs

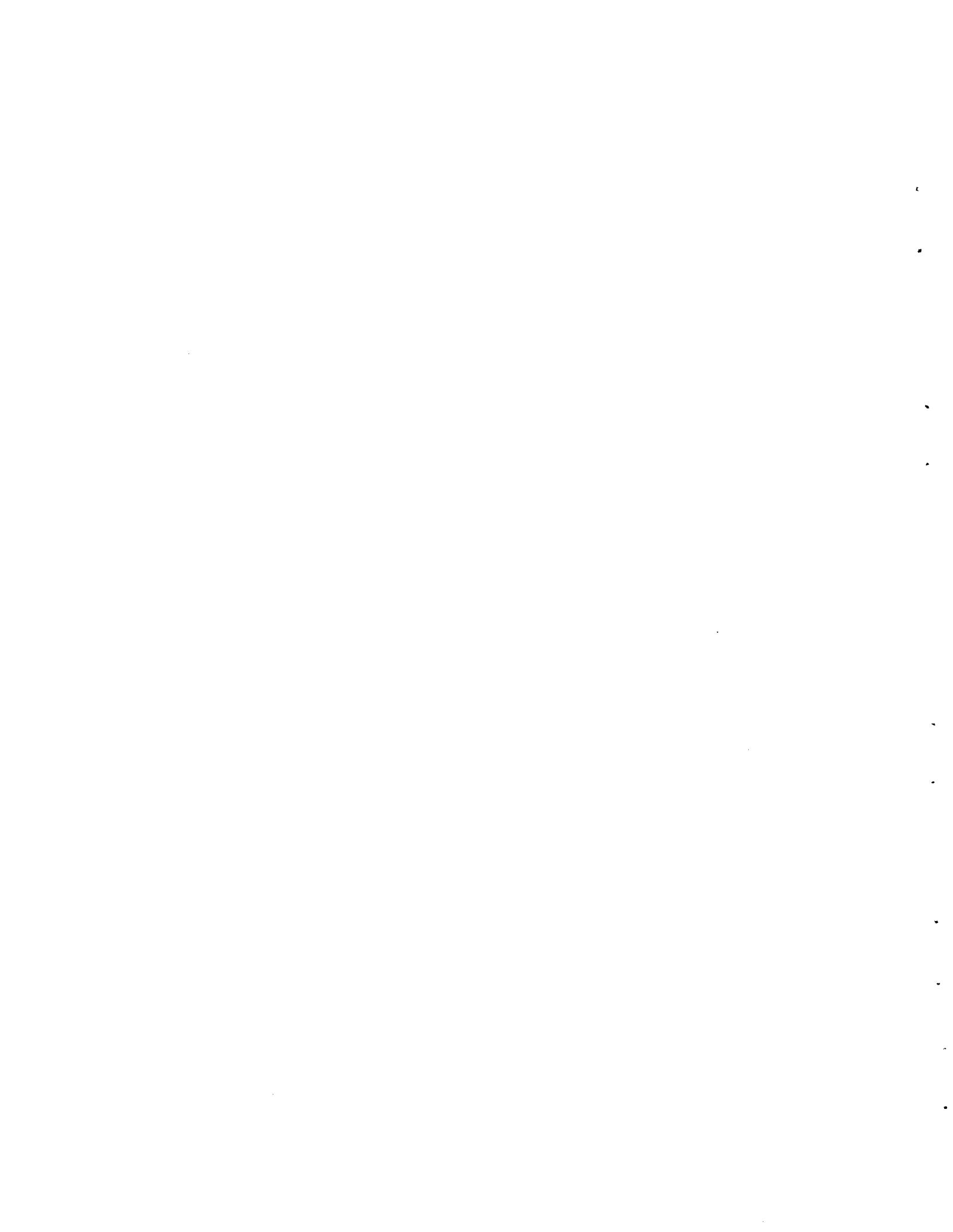
The general strategy for steel should be to minimize steel usage (and therefore price impact) and/or to have substitution alternatives available.

Glass consumption in the billion m^2 mixed SHACOB scenario exceeds 10% of the world consumption in the year 2000. The required growth rate in glass production of 3% per year should be easily attainable. Glass usage in the mixed design SHACOB scenario comes from 7 designs using double glazing, one design using single glazing and one design using evacuated tubes. There are other glazing alternatives, such as fiber reinforced polyester, polyvinyl fluoride (Tedlar*), FEP Teflon*, and polycarbonate from which over 6 billion m^2 of single glazing could be supplied without exceeding 10% of the year 2000 world consumption for any of the materials.

Polyvinyl fluoride consumption exceeds 18% of the world's consumption of fluorocarbons in the year 2000, when used as a single glazing material in 500 million m^2 of one system. Meeting this demand would require a growth rate of 8% per year, which is half that experienced by some other plastics in past ten year spans. Hence, ample production capacity should become available. In the mixed design scenarios, polyvinyl fluoride usage was not a problem since only one of the nine SHACOB systems uses it.

All three potential material problems could be managed by avoiding sudden surges in solar demand and by executing stable long term contracts for their supply.

*A trademark of E. I. DuPont


INTRODUCTION

The objectives of this study are to;

- Identify potential material supply constraints which could seriously impede the large scale future installation of SHACOB and AIPH systems.
- Provide a functional description of materials of construction of typical SHACOB and AIPH systems in computerized format suitable for interactive updating in workshops or future reviews.
- Provide a data base of statistics and production processes in machine accessible format for making this assessment and supporting future SHACOB and AIPH assessments.
- Show the sensitivity of potential shortages to the size of the SHACOB or AIPH implementation scenario.

The scope of the study includes flat plate and concentrating collector systems; generating hot water, hot water and space heating and hot water, space heating, and cooling in residences and public buildings, and in addition includes systems capable of supplying agricultural and industrial process heat.

Many additional systems could be studied, but the scope of systems studied would appear to have provided a reasonable first cut at identifying future potential material constraints.

SHACOB AND AIPH DESIGN DESCRIPTIONS

DESIGN DESCRIPTIONS

The system designs characterized for use in this study, are listed in Table 1. The designs were selected with the aid of DOE staff to be representative of plausible future systems. The design variations included in the systems characterized are shown in Table 2.

The material requirements for these systems were determined in detail and entered on the computer data base used in this study. Additional system designs may be added to the data base if desired. Also, design variations on existing systems can be studied by substituting data for a component (e.g., PVC pipe for copper pipe) or a subsystem (e.g., one collector type for another).

Detailed characterizations of each system, including material requirements, are in the Appendix. Some of the major material uses for each system are given in Table 3 for SHACOB systems and Table 4 for AIPH systems. There, the material uses are indicated for the principal parts of the system.

REFERENCE DESIGNS METHODOLOGY

It is important to draw a distinction between the reference system designs studied in this work and generic system designs. Generic systems are usually not representative of a real system, and may represent an "average" of several selected systems. Generic systems are often used in estimating material requirements for mature technologies, where the implementation scenario is well established and stable. If the technology changes, then the implementation scenarios changes, and the generic system no longer represents the "average" system. The complete material count must be done on a redefined generic system. A more-convenient method of updating material requirements is needed under changing

TABLE 1. System Designs Characterized

SHACOB DESIGNS

Space Heating - Solaron Corporation System using 273 ft² of steel flat plate collectors - air heat transport.

Space Heating and Domestic Hot Water - Solaron Corporation System using 273 ft² of steel flat plate collectors - air heat transport.

Domestic Hot Water - Sunworks copper flat plate collectors (74 ft²) - water and ethylene glycol heat transport.

Space Heating and Domestic Hot Water - American Heliothermal Corporation System using 268 ft² of steel flat plate collectors - water and propylene glycol heat transport.

Space Heating and Domestic Hot Water - Ecosol Systems Inc. heat pump system using 258 ft² of KTA Corporation evacuated tube collectors - water heat transport.

Space Heating and Cooling and Domestic Hot Water - Kirtland Air Force Base, Exchange Main store using absorption chillers for cooling and 8320 ft² of Raypak, Inc., flat plate collectors with aluminum plate and copper tubing - water and ethylene glycol heat transport.

Passive Space Heating - Concrete Trombe wall behind 510 ft² of glazing.

Passive Space Heating - Water tank trombe wall behind 510 ft² of glazing.

Passive Space Heating - Direct gain, masonry walls behind 256 ft² of glazing.

AIPH DESIGNS

Industrial Process Hot water from Solar Ponds - Accelerates chemical leaching of uranium ore at the Sohio mining and milling complex in Bibo, NM. System design by Lawrence Livermore Laboratory uses 100,000 ft² of shallow solar ponds - water heat transport.

Industrial Process Heat for Kiln Drying Lumber - Installed on a conventional hardwood drying kiln at the Linden Lumber Company, Linden, AL. System design by Lockheed-Huntsville Research and Engineering Center uses 2,520 ft² of Chamberlain Manufacturing Corporation steel flat plate collectors - water heat transport.

Process Steam for Drying of Textiles at the Westpoint Pepperell Mill in Fairfax, AL - System design by Honeywell, Incorporated uses 8,300 ft² of parabolic-trough, concentrating collectors - water and steam heat transport.

TABLE 2. Design Variations in Systems Characterized
(Quantity of each type listed)

<u>Collector</u>	<u>SHACOB</u>	<u>AIPH</u>
Flat Plate	5	1
Evacuated Tube	1	
Parabolic Trough		1
Solar Pond		1
Passive	3	
<u>Heat Transfer</u>		
Air	2	
Liquid	4	3
<u>Application</u>		
Residential	8	
Commercial	1	
Process Heat		3
<u>Energy Use</u>		
Direct	7	3
Heat Pump	1	
Absorption Chiller	1	

TABLE 3. Major Material Uses in SHACOB System Characterized

System	Collector	Pipe, Pumps, Valves	Storage	Heat Exchangers
Solaron-H	Glass C. Steel	C. Steel	Rock	
Solaron-H and HW	Glass C. Steel	C. Steel	Rock C. Steel	Copper
KTA and Ecosol-H and HW	Copper Aluminum	Copper Brass	C. Steel Concrete	C. Steel Copper
American Heliothermal H and HW	Glass C. Steel	C. Steel Prop. Glycol	C. Steel Glass Wool	Aluminum Copper
Sunworks HW	Copper Aluminum Glass Wool	Copper Ethylene Glycol	C. Steel Concrete Glass Wool	Copper
Kirtland AFB-BX H, C, and HW (non-residential)	Glass C. Steel Copper	C. Steel Glass Wool Ethylene Glycol Concrete	C. Steel Asphalt	C. Steel Copper
Passive - Direct Gain	Concrete Glass C. Steel			
Passive - Trombe Wall	Concrete Glass C. Steel			
Passive - Water Wall	Concrete Glass C. Steel			

Abbreviations: H = Space Heating
 HW = Domestic Hot Water
 C = Space Cooling
 C. Steel = Carbon (mild) steel
 Glass = Soda-lime sheet glass

TABLE 4. Major Material Uses in AIPH Systems Characterized

System	Energy Collection	Energy Transport	Energy Storage	Heat Exchangers
LMSC-Lumber Kiln	Carbon Steel Softwood Glass Glass Wool	Ethylene Glycol Urethane Copper PVC	Carbon Steel	Carbon Steel
LLL-Solar Pond	Concrete Sand Carbon Steel Foam Glass FRP Polyester	Transite Cast Iron Concrete	Sand Carbon Steel Urethane	
Honeywell-Textile	Carbon Steel Aluminum Copper Pitch	Carbon Steel Glass Wool Cast Iron Aluminum Neoprene		Carbon Steel Copper- Nickel, 10% Glass Wool

technology and scenarios, as is the case with solar energy. The reference system methodology facilitates updating.

For SHACOB and AIPH, a number of reference systems were established. They are real systems, with references to engineering drawings and specifications and with known performance. System components are compatible in size, performance, cost, corrosion resistance, etc. Where possible, actual system installations were selected as reference systems. A detailed list of material requirements was established for each system.

Total material requirements for any solar scenario can then be obtained simply by selecting the energy contribution by each technology and the mix of system designs for each technology.

SHACOB and AIPH designs were selected to cover the range of plausible future systems. Not all systems variations were included. Additional designs can be added in the future without disturbing the material requirements for the existing designs in the data base. They will merely supplement previous data already in place.

Most solar system designs will never wholly be replaced; but they will be modified, evolving as improvements are made in performance and cost. These improvements are likely to come at the component level. Updating of material requirements will be facilitated by having materials systematically accounted for, component by component, as is illustrated in Table 5. Each component is identified separately, according to general function. As components are significantly altered or eliminated by design, the data bank can be updated by simply removing the data for the old component and entering data for the new component. Hence, the effects of gradual changes of design on materials requirements can be monitored continuously with little effort.

In a similar manner, variations in a system design can be studied by substituting individual components (e.g., plastic pipe for copper pipe) or by substituting complete subsystems (e.g., one collector type for another).

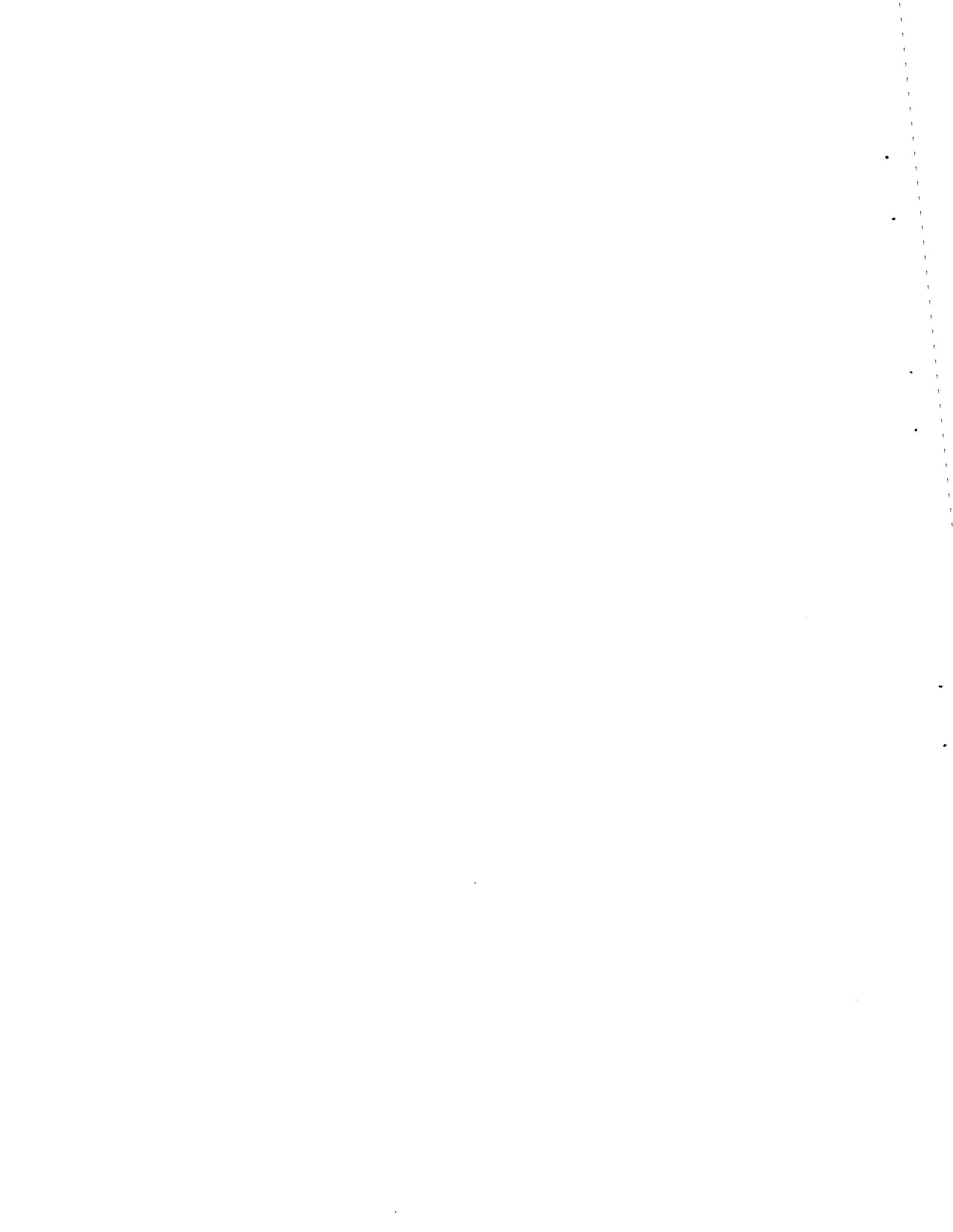
TABLE 5. Materials Categories by Functional Component for SHACOB and AIPH

12. (a) <u>Energy Collector</u>	14. <u>Energy Conversion</u>
12.01 Miscellaneous	14.01 Miscellaneous
12.02 Glazing	14.02 Heat Exchangers
12.03 Absorber	14.03 Supports
12.04 Energy Transport	14.04 Absorption Chiller
12.05 Insulation	14.05 Steam Generator
12.06 Reflector, Concentrator	15. <u>Energy Storage</u>
12.07 Frame	15.01 Miscellaneous
12.08 Seals	15.02 Primary Storage
12.09 Supports	15.03 Secondary Storage
13. <u>Energy Transport</u>	15.04 Supports
13.01 Miscellaneous	17. <u>Energy System Controller</u>
13.02 Pipe, Wire, or Duct	17.01 Miscellaneous
13.03 Insulation	17.02 Meters, Switches, Terminal Boards
13.04 Transport Fluid	17.03 Supports
13.05 Supports	22. <u>Plant Utilities</u>
13.06 Sealants	
13.07 Valves and Dampers	
13.08 Pumps and Fans	
13.09 Site Dependent	
13.10 Expansion Tanks	

(a) The numbering system here is taken from a larger list of functional components for solar technology. Numbers not appearing in this table represent functions that apply to solar technologies other than SHACOB and AIPH.

CHARACTERIZATION OF REFERENCE DESIGNS

Detailed characterizations of the reference SHACOB and AIPH designs are in Appendix B. Those characterizations are based upon either design documents and drawings (all three AIPH systems and the lone commercial size SHACOB system, Space Heating and Cooling and Domestic Hot Water - Ray Pak Collector, at Kirtland AFB) or published papers and rules of thumb for passive space heating, or manufacturers literature and drawings (all other SHACOB systems). For each system, a "component takeoff" was done first. Then each component was broken down into its materials of construction using drawings and bills of material from the component designer or manufacturer. In cases where drawings and bills of material were not available, schematics, component descriptions, sales literature, and verbal contact with the manufacturer substituted adequately for detailed design drawings. Accuracy of material quantities is generally within 10%. Exact engineering materials or alloys of construction are listed where available.


The engineering alloys are converted within the computer program into their bulk material components using a transformation matrix which contains the actual alloy composition. For example, 60-40 solder is composed of 63% tin and 37% lead.

Solar energy implementations scenarios are often expressed in terms of yearly energy contribution for certain years rather than in square meters of collector installed. For purposes of comparison, it was necessary to develop estimates of the yearly energy contribution for each system design. Energy contribution calculations were taken from the design documents for all three AIPH systems and the commercial size SHACOB system, Space Heating and Cooling

and Domestic Hot Water - Ray Pak Collector, at Kirtland AFB. For all the remaining active SHACOB systems, "f"- chart^(1,2,3,4) was used. Computer simulations published by Balcomb et. al.,⁽⁵⁾ were used to make estimates for the passive systems.

Location is an important factor in energy contribution. All three AIPH systems and the lone commercial size SHACOB system had been designed for specific locations.

Locations for the residential size SHACOB installations were based upon data given by Roach et al.,⁽⁶⁾ for the economic feasibility of SHACOB systems and the expected number of new houses through 1985. It was assumed that the solar installation rate was proportional to the number of new houses in states where solar was economically competitive without government sponsored incentives. The solar installation rate was used to weight the energy contribution from a solar heating system in the location where the SHACOB system is feasible. Hence, a weighted average yearly solar contribution was arrived at. For residential space heating and hot water, a Washington, DC location yields yearly energy contribution equal to the weighted average solar contribution. For residential hot water, the weighted average solar contribution is met by locating the system in Manhattan, Kansas. Details of the energy contribution calculations are given in Appendix B.

MATERIALS REQUIREMENTS

The utilization of solar energy will require large quantities of materials. Tables 6, 7, 8 and 9 list the bulk materials and raw materials required to construct systems totaling 500 million square meters collector area. Material requirements are listed for 500 million square meters of each system design, as well as for 500 million square meters composed of equal portions of each system.

The raw material requirements listed are those required to produce the bulk material requirements listed.

In terms of sheer quantities, the largest material requirements are for iron and steel, aluminum, copper, copper ore, soda lime glass, sand and gravel, lumber, and water. Those are also the most universally used materials in solar systems. Conversely, other materials are used in only one or two systems, and there are many examples that can be observed by scanning the tables.

The magnitude of use of a material is not important in itself. However, the relationship of material use to availability is important along with a host of other factors such as: cost, import pattern, production growth rate required to meet solar demand, and the extent of known reserves and resources. The object of this report is to address these factors and to access their influence on the orderly and timely construction of solar energy systems to meet our national energy goals.

The following sections discuss the specific approach used in addressing those questions and the results of the study.

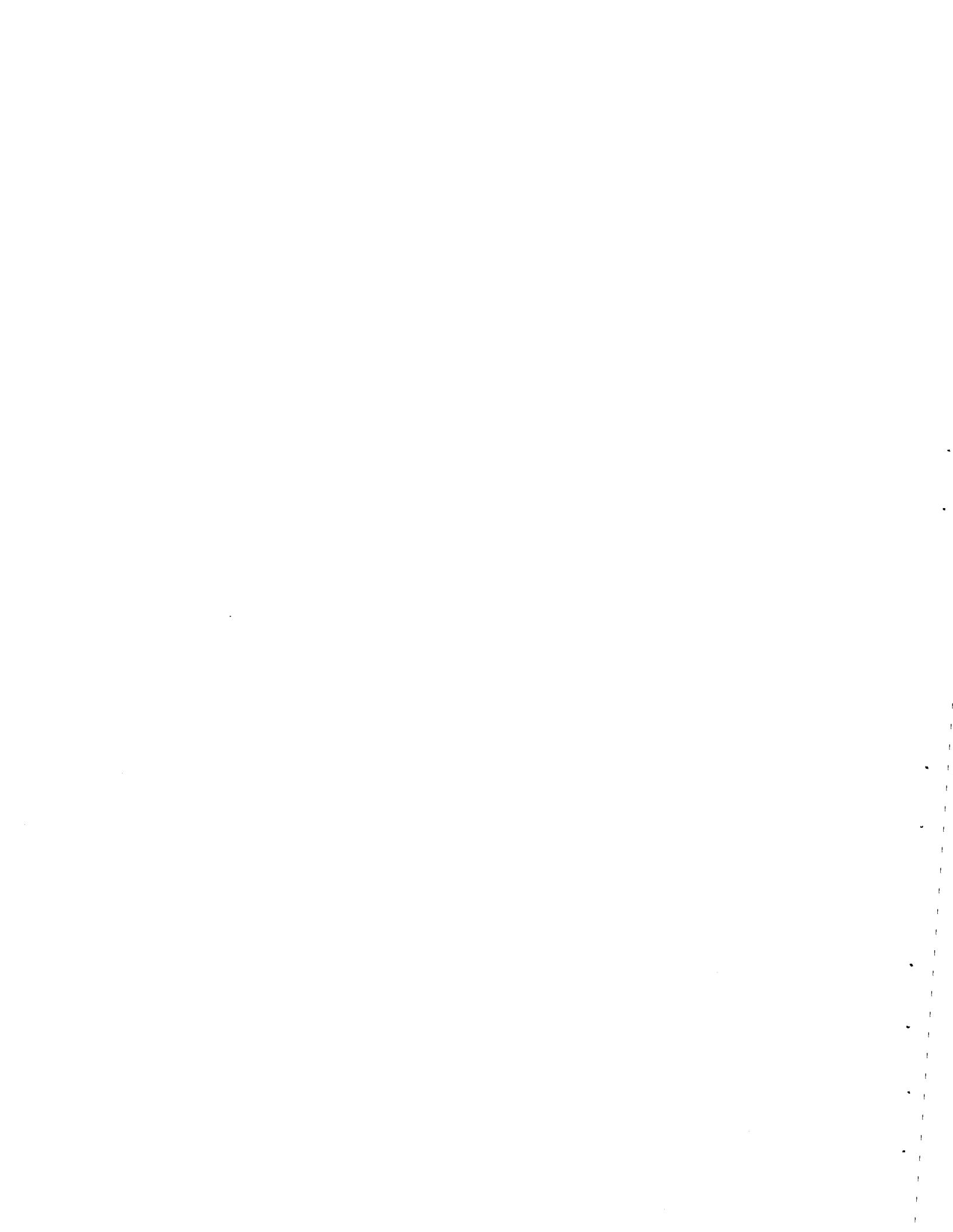
TABLE 6. Raw Material Requirements in Thousand Tons
 for SHACOB Systems at 500 Million Square Meters.
 Individual Systems at 500 m. sq. m. and Mixed
 System Scenario--All 9 Systems at 55.6 m. sq. m.
 each, Totaling 500 m. sq. m.

Materials	Raypak	TKA & Ecosol	Solaron R-HT	Solaron R-HT & HW	American Helio	Sunworks	Trombe W. Concrete	Trombe W. Water	Direct Ga.n W.	500 Million M ²	Mixed Scenarios
Antimony ore						184				20	
Asbestos	57		1	1						7	
Bauxite	8,372	24,864	1,002	1,228	5,648	23,554	7,739	7,775	7,760	9,779	
Borate	321		571	591	381	270				237	
Butane	160	9	140	149	3	70				59	
Chromite	28			11		43		84	17,981	19	
Clays	614	943	179	198	356	192	8,882	1,012		3,376	
Coal	66,344	30,780	23,722	25,555	42,289	17,658	18,176	29,295	25,861	31,100	
Coal Bit/Lig	12,328	379	18	18	43,718	47,250	18,228	18,342	18,585	17,666	
Copper ore	783,155	911,905	26,186	126,301	84,593	1,149,795				342,711	
Feldspar	82	58	1,022	1,023	536	9	726	726	727	628	
Fluorospar	522	776	135	150	371	378	151	266	166	325	
Gypsum	56	248				35	2,921	265	5,927	1,051	
Iron ore	296,553	100,212	95,332	104,011	189,549	39,807	31,554	112,843	41,545	112,468	
Lead ore	469	1,047	1,354	1,813	16	781				609	
Lithium ore	3,659									407	
Manganese ore	1,700	543	619	663	1,130	171	183	656	240	657	
Mercury	9									1	
Natural gas	2,917	2,818	482	736	786	2,913	4,089	659	8,235	2,628	
Nickel ore	395				142		980			169	
N ₂ fixed										0	
O ₂	16		16	22	286					38	
Petroleum	5,113	1,869	606	665	4,344	3,456	370	921	430	1,976	
Salt	13,889	16,538	9,443	9,582	8,343	15,966	10,477	10,704	10,493	11,724	
Sand & gravel	7,249	11,442	130,505	130,570	4,822	2,310	134,664	16,903	267,967	78,555	
Sodium Nitrate			5	5						1	
Stone	739	21,024				2,969	247,756	22,460	502,740	88,703	
Sulfur	443	1,430	48	61	285	1,178	382	395	383	512	
Tin ore	251,298	359,454		137,900		608,930				150,963	
Zinc ore	8,352	3,305	24,956	24,958	12,124	202				8,217	
Cotton	7									1	
Flax seed		153					171	171		55	
Milk byprod	2	1	1			5				1	
Lumber	1,955	2	6,832	6,832	424	3,810	1	2	1	2,208	
Sea water	1,557,522	4,610	41	55		24				173,723	
Soybean	78						87	87		28	
Tungnuts		104					116	116		37	
Water	165,668	108,898	148,839	151,166	74,583	140,000	3,863	78,844	6,557	97,680	
Wheat			21	21						5	
Misc	1,617	1,406	609	753	619	1,562	51	181	67	763	
Steam	103,499	140,354	27,221	30,070	66,104	123,678	44,890	61,356	47,019	71,634	
Limestone	42,072	29,414	19,337	20,332	28,394	17,604	95,983			51,586	
Coal Byprod	200,316	496,328	40,120	41,523	1,797	482,020	312,894			209,934	
Electricity	5,165,978	1,048,171	181,317	188,488	973,557	2,355,017				1,107,392	
Coal byprod 2	169,155	182,679				377,104				81,058	
Petroleum byprod	69,080									7,682	
TOTAL (a)	3,339,309	1,819,244	519,244	775,583	569,704	2,205,784	631,460	364,063	1,145,380	1,262,327	

a. Not including byproduct and electricity.

TABLE 7. Bulk Material Requirements in Metric Tons for SHACOB Systems at 500 Million Square Meters. Individual Systems at 500 m. sq. m. and Mixed Systems Scenario--All 9 Systems at 55.6 m. sq. m. Each, Totaling 500 m. sq. m.

Materials	Raypak	KTA & Ecosol	Solaron R-HT	Solaron R-HT & HW	American Helio	Sunworks	Trombe W. Concrete	Trombe W. Water	Direct Gain W.	500 Million M ² Mixed Scenarios
Aluminum	1,525,102	4,914,794		37,430	974,850	4,571,000	1,529,750	1,529,750	1,533,000	1,847,663
Antimony						1,750				195
Asbestos	56,276									6,258
Bromine	97,330									10,823
Cadmium	4,515									502
Carbon black		129,270					143,902	143,902		46,379
Cement	350,332	5,163,711				729,120	60,852,404	5,516,594	123,480,000	21,805,448
Chromium	116					7,000				791
Copper	3,550,798	4,145,022	115,245	570,315	384,513	5,225,500				1,555,843
Glass, Fiber	1,283,500		2,285,200	2,364,000	1,525,590	1,078,000				949,241
Glass, Sodalim	8,836,500	625,500	10,578,900	10,578,900	5,762,671	7,983,000	7,807,000	7,807,000	7,812,000	6,661,600
Gypsum	28,122									3,127
Iron & Steel	51,070,088	16,116,000	16,783,560	18,132,746	33,379,590	5,004,622	5,524,394	19,966,678	7,230,754	19,260,778
Lead	14,085	31,442		13,790		23,457				9,204
Lithium	8,450									940
Magnesium		6,349								706
Ferromanganese	307,879	97,586	101,309	109,453	201,486	31,178	33,346	120,523	43,646	116,361
Mercury	323						7,000			36
Nickel	453									829
Sand, Gravel	375,971	10,696,259	122,140,008	122,140,008		1,510,320	126,051,400	11,427,231	255,789,000	72,293,480
Stone	783,977	21,023,682				2,968,560	247,756,208	22,460,422	502,740,000	88,702,888
Silicon	5,899	7,172					11,200			2,699
Silver	194	6,255								717
Tin	25,130	35,945		13,790			60,893			15,096
Water	100,098,832	79,480,200				59,325,152	21,511,000		76,065,504	37,416,652
Zinc	418,383	184,106	1,401,852	1,401,852	681,149	11,200				455,758
Stainless Steel	43,667				17,730		35,000			10,719
Alkyd resin		27,105						30,173	30,173	9,725
Glue			73,284	73,284						16,298
Lumber	1,773,105			6,829,597	6,829,597	420,090	3,808,000			2,186,235
Phenolic Resin	9,353	47,955		9,850	9,850		161,000			26,466
PVC Plastic	225,105									25,032
Rubber	144,480		126,080	133,960			63,000			51,988
Silicones	299,925		126,080	126,080			28,000			64,505
Teflon	3,806				20,100		2,100			2,890
Nylon		10,425			4,020					1,606
Cotton Fibers	6,547									728
Kraft Fibers	2,806									312
Urethane	285,735	308,580				637,000				136,922
Asphalt	1,354,500									150,620
Neoprene	47,537				291,450	315,000	119,215	119,215	123,900	113,014
Ethylene glycol	1,457,700					763,000				246,942
Polyethylene	4,386									488
Polyvanyl Fluor.		75,060								8,347
EPDM Rubber	26,768									2,977
Paint thinner		52,125					58,025	58,025		18,701
NA Dichrom.								75,960		8,447
Polycarbonate			27,580	37,430	10,050					8,347
Propylene gly.					1,039,170					115,556
Vitreous Enamel			171,390	171,390	2,010		449,905,817	145,320,977	898,743,300	38,341
TOTAL	174,482,725	143,184,543	160,769,935	162,761,605	104,021,891	56,501,900	449,905,817	145,320,977	898,743,300	254,409,220


**TABLE 8. Raw Material Requirements in Thousands of Metric Tons
for AIPH Systems, Individual Systems at 500 m. sq. m.
and All 3 Systems Totaling 500 m. sq. m. in the Combined
Scenario.**

Materials	Chamberlain Lumber Kiln	LLL Solar Pond	Honeywell Concentrating	500 Million M ² Mixed Scenario
Asbestos	1	191	5	131
Bauxite	26,910	106	18,615	30,482
Borate	282	54	331	445
Chromite	621		121	496
Clays	914	7,518	155	5,736
Coal	112,533	9,621	23,654	97,400
Coal, Bitum.	43,999	2,338	220,873	178,496
Copper ore	289,563	15,381	166,585	314,982
Feldspar	940	120	14	717
Fluorspar	1,052	50	378	988
Gypsum		2,475		1,654
Iron ore	486,035	21,488	79,607	392,203
Lead ore	147	2	13	108
Lime			0	0
Manganese	2,845	127	462	2,293
Mercury			0	0
Molybdenum ore			480	321
Natural gas	2,037	4,183	611	4,563
Nickel ore			2,719	8,676
Nitrogen Fix.		0	0	0
Oxygen	141		0	94
Petroleum	5,504	235	879	4,421
Propane			197	131
Salt	32,420	1,123	14,771	32,274
Sand & Gravel	7,392	143,857	1,053	101,738
Silver ore	10,651	162		7,223
Stone		207,636		138,701
Sulfur	1,372	21	954	1,568
Tin ore	74,554	1,999	14,035	60,513
Zinc ore	13,376	733	3,415	11,706
Cotton	556			371
Milk byprod.	27	0	0	18
Lumber	38,490	129	5	25,801
Seawater	5	0	233	159
Water	874,551	56,665	7,347	626,960
Wheat		0		0
Misc.	1,520	94	416	1,356
Steam	239,973	5,648	109,136	236,978
Limestone	71,837	74,078	18,817	110,041
Coal byprod.	833,807	593,838	128,274	1,039,354
Electricity	4,274,689	253,503	198,225	3,157,247
Coal byprod. 2	370,329	24,531		263,766
TOTAL^(a)	2,340,748	556,034	685,881	2,399,744

a. Not including byproduct and electricity.

TABLE 9. Bulk Material Requirements in Metric Tons for AIPH Systems at 500 Million Square Meters.
Individual Systems at 500 m. sq. m. and Mixed Scenario--All 3 Systems at 167 m. sq. m. each, Totaling 500 m. sq. m.

Materials	Chamberlain Lumber Kiln	LLL Solar Pond	Honeywell Concentrating	500 Million M ² Mixed Scenario
Aluminum	5,192,320	1,267	3,569,043	2,926,719
Asbestos	2,562	190,338	2,000	64,441
Cadmium	207,095	172		913
Cement		51,571,012		17,224,718
Chromium			16,099	74,547
Copper	1,316,198	69,914	757,203	715,867
Glass fibers	1,127,280	214,500	1,325,346	890,820
Glass sodalime	10,103,247	1,287,000	154,800	3,856,046
Iron, Steel	85,477,352	3,723,924	13,718,863	34,375,328
Lead	4,407	67	392	1,625
Magnesium			323	108
Ferromanganese	516,352	23,257	83,382	208,079
Mercury			13	4
Molybdenum			640	214
Nickel	102,694		18,024	40,320
Porcelain		185	65	83
Sand & Gravel		139,926,624	56,115	46,754,236
Stone		207,635,520		69,350,264
Silicon	4,532	8,994	8,437	7,335
Silver	1,494	23	221	507
Sulfur				74
Tin	7,455	200	1,404	3,026
Water	41,632,500	52,975,000	1,059,090	31,952,642
Zinc	722,307	39,225	191,846	318,428
Stainless Steel			114,616	38,282
Acrylic			84,495	28,221
Epoxy resin			252,840	84,449
Glue		1,463		488
Lumber softwood	38,003,000			12,693,002
Phenolic resin	796,355		7,095	268,352
Pvc plastic	309,575	39,127	6,192	118,535
Teflon	1,494		9,804	3,774
Cotton fibers	555,954			185,689
Kraft fibers	238,266	64,350		101,074
Urethane	625,555	41,438		222,776
Neoprene		15,470	161,250	59,024
Pitch			702,405	234,603
Polyvinyl fluo.		19,175		6,404
EPDM rubber	239,120		65	79,888
Polyester resin		500,500		167,167
TOTAL	187,187,114	458,348,745	22,302,068	223,058,072

One usually thinks of the flow of materials proceeding from raw materials to the engineering materials (Figure 1). Take, for example, copper. Copper ore is mined and sent to a mill and smelter. The bulk material copper that leaves this process may be formed into an engineering material like brass. This brass may then be incorporated into a solar device. The tracking process used by the critical materials assessment model follows the opposition direction. First, the amount of brass in the solar device is characterized. Then this engineering material is translated into its bulk materials one of which is copper. At this point, the bulk material copper would be reviewed for possible capacity constraints. Next, the copper would be translated into its raw materials, copper ore, asbestos, clays, coal, fluorspar, etc. The copper ore and all of the other raw materials are then checked for potential capacity constraints and for availability of reserves and resources.

THE MATERIALS CYCLE

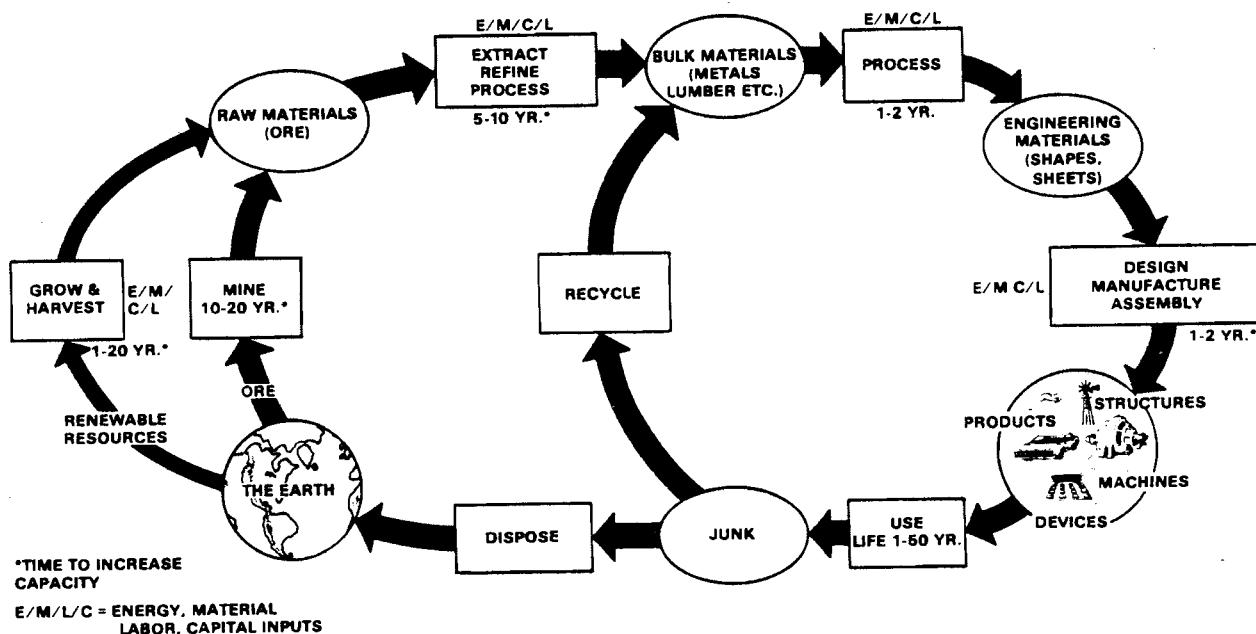


FIGURE 1. The Materials Cycle

This process of tracking the materials and examining their use for potential constraints involves large quantities of data and consequent arithmetic. Thus, much of the methodology was organized and placed on an interactive computer system.

That part of the methodology which was placed on the computer includes all of the steps down to and including those steps labeled screening in Figure 2. Figure 3 shows the flexibility which resulted from making the program interactive. The top blocks of user supplied input is all available to change at the terminal, while the cases are being examined. The bottom left block lists material which is entered by card deck. Of course, this material can also be updated periodically, but cannot be changed at the terminal.

The specific questions raised by the computer and answered from the stored data base are shown on Figure 4 which highlights the logic of the methodology. The questions raised by the computer are reviewed subsequently in a manual process where materials are classified as "A", "B", or "C" materials.

"A" materials are those materials regarded as causing possible constraints in the large scale implementation of particular solar designs and thus requiring further review. "B" materials are those that exceed some threshold levels, but also show by the printed data that they are not likely to present a serious constraint to future deployment. An example is antimony. It is largely imported and is derived as a byproduct, but it is used in such small quantities that it is unlikely to be a serious problem. Thus, it is classified as a "B" material. "A" materials on the other hand, require further study using data not supplied in the computer printout and may in fact require a mitigating strategy to avoid serious constraints in future solar systems construction schedules. "C" materials are those materials that do not exceed any of the threshold levels and are not expected to present future material constraints.

These threshold levels may be changed at any time from the computer terminal. The threshold values used for this study are shown in Table 10 for bulk materials and Table 11 for raw materials. Following the tables, the sensitivity of the study to the major assumptions is discussed.

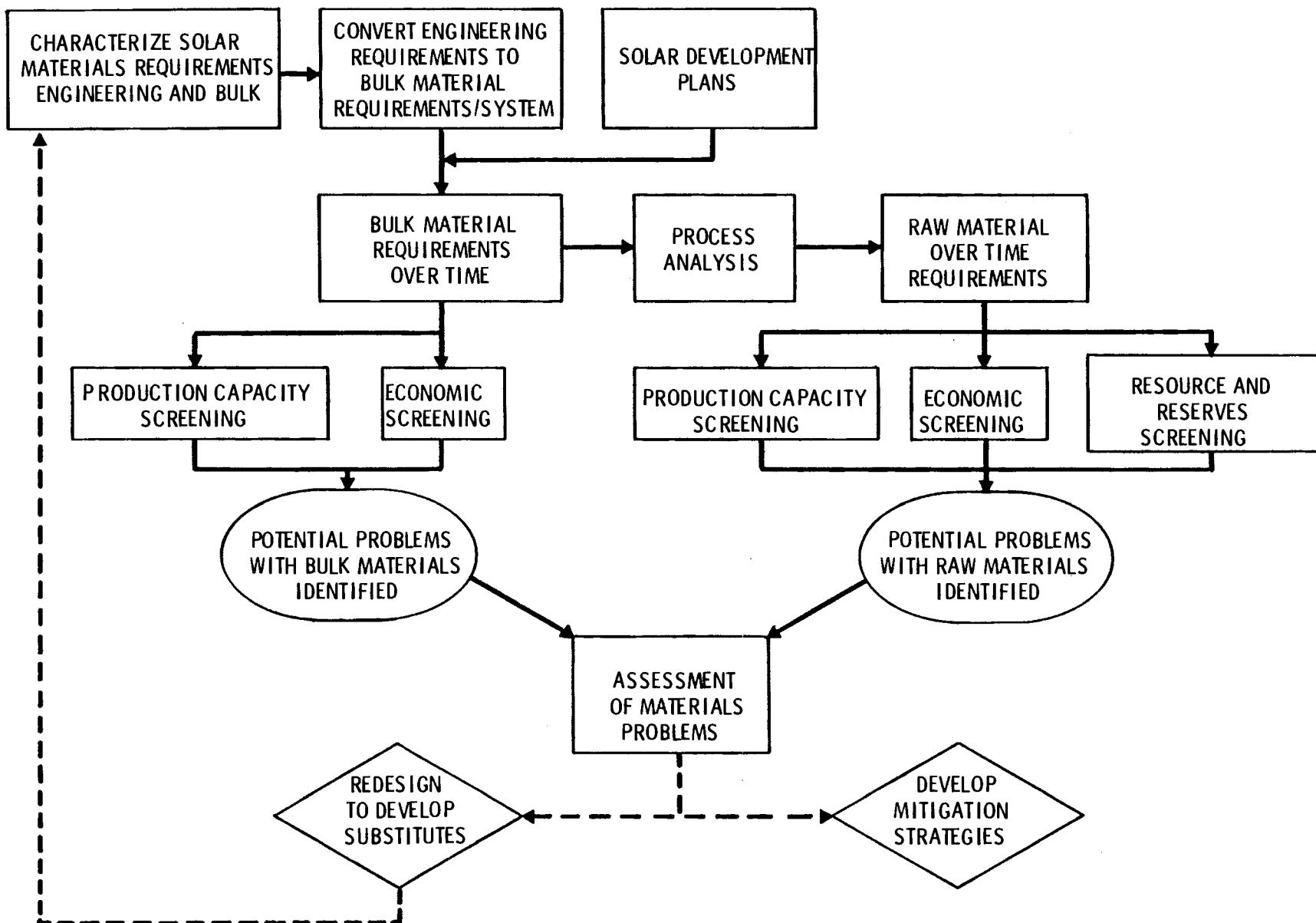


FIGURE 2. Flow Chart of Materials Assessment Methodology

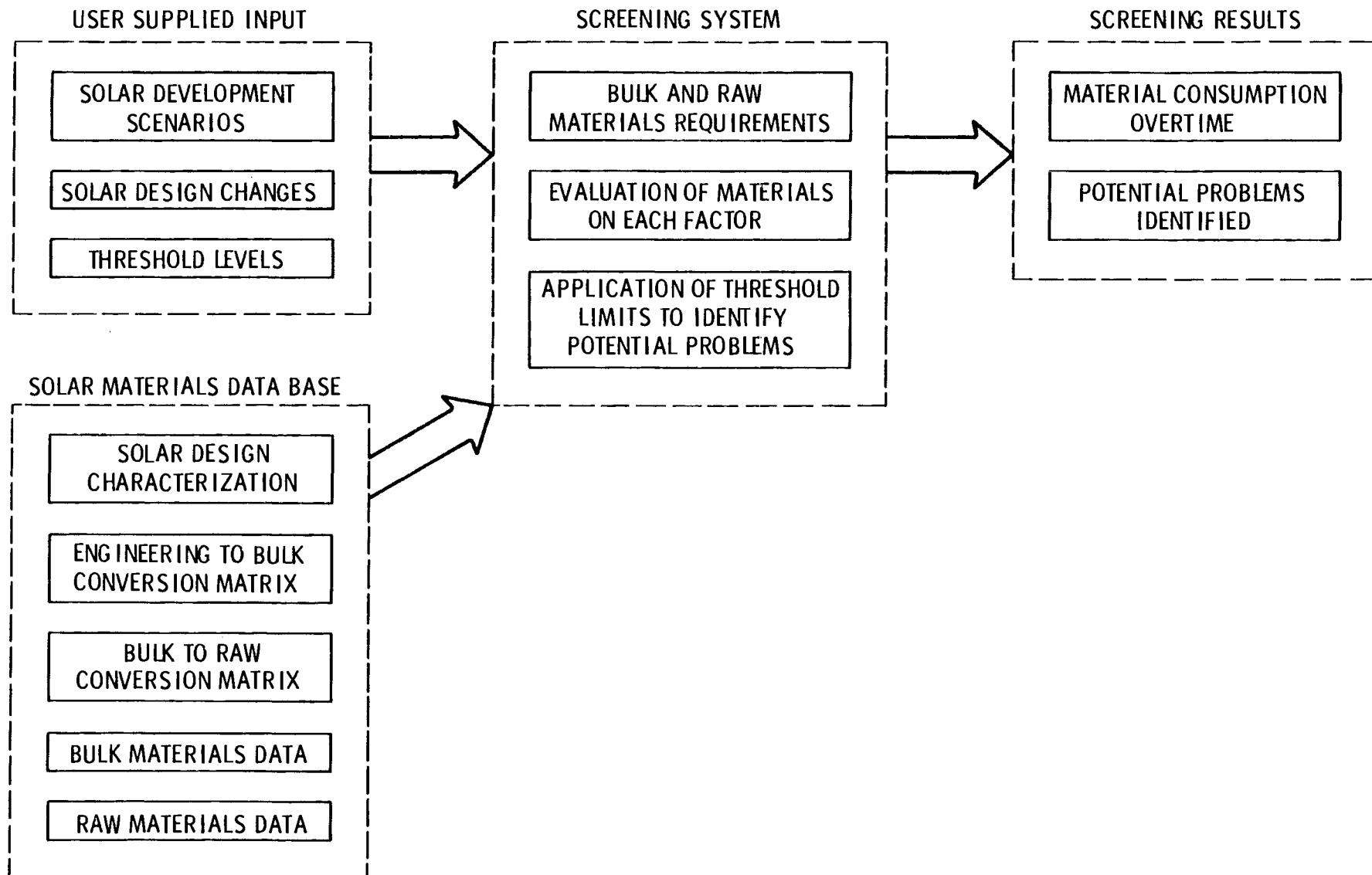


FIGURE 3. Interactive Screening System

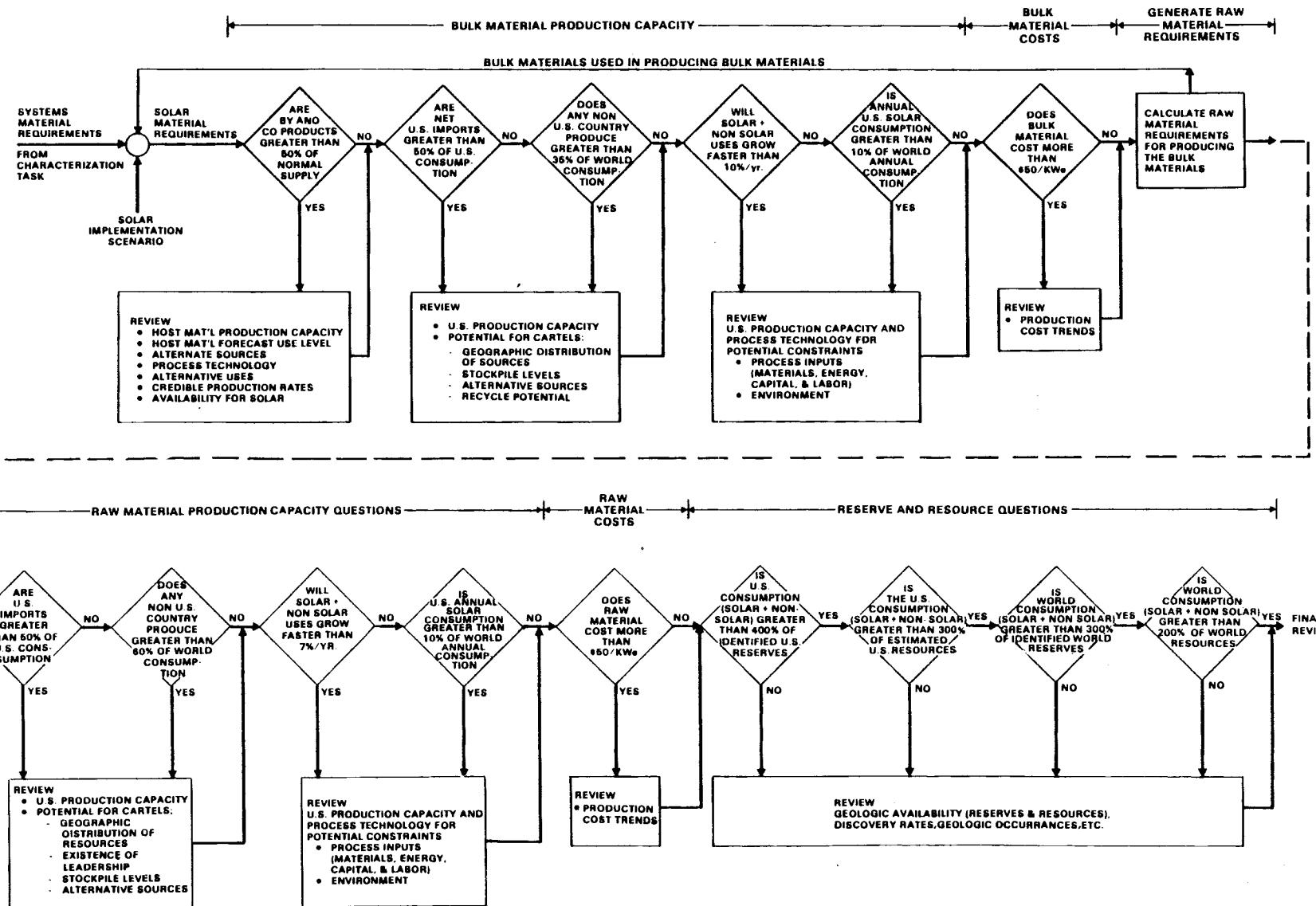


FIGURE 4. Assessment of Potential Materials Problems

TABLE 10. Bulk Material Threshold Criteria

Factor	Value Selected	Reason Selected
Percent supplied as a byproduct	50%	If a large percentage of normal supply is derived as a by-product, it may be extremely difficult to expand production. In our judgment, when 50% of normal supplies are dependent on the production of a primary material, ones ability to expand production significantly is uncertain.
Percent of current consumption that is imported	50%	When a large percentage of a material originates outside of the U.S., the uncertainty surrounding future materials prices and availability is increased. Fifty percent of current materials consumption resulting from imports may not represent a problem if all imports do not originate in a few countries. However, the 50% level was selected as a general level of concern.
Percent of world consumption supplied by the largest supplier country outside of the U.S.	35%	Price leadership and the possibilities of cartels and geopolitical problems are important when approximately 35% of current supply originates in a single non-U.S. supplier.
Production growth rate necessary to meet forecasted world consumption and solar requirements	10%	A sustained compound growth rate of 10% per year is unusual for most bulk material production processes and frequently puts severe pressures on capital, labor, and the environment.
The largest single year market share consumed by solar over the period of the development plan (solar's % of world's consumption)	10%	When a single consumer of a material represents 10% of world consumption, the possibility exists to significantly influence market prices.
The contributions to capital costs per unit of peak power	$15/M^2$	$\$15/M^2$ would represent about 5% of the selling price of a typical system.

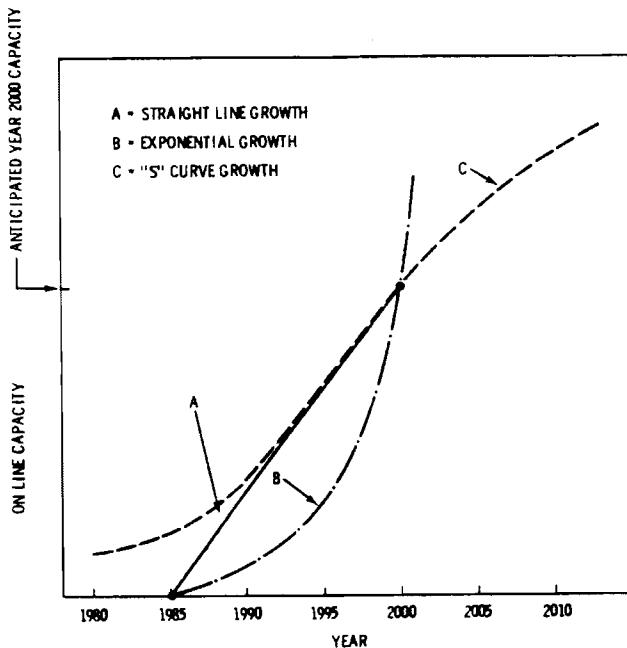
TABLE 11. Raw Material Threshold Criteria

Factor	Value Selected	Reason Selected
Percent of current consumption that is imported	50%	When a large percentage of a material originates outside of the U.S., the uncertainty surrounding future materials prices and availability is increased. Fifty percent of current materials consumption resulting from imports may not represent a problem if all imports do not originate in a few countries. However, the 50% level was selected as a general level of concern.
Percent of world consumption supplied by the largest supplier country outside of the U.S.	60%	Raw materials suppliers tend to be larger and, therefore, control a larger percentage of the market than bulk material suppliers. When a single supplier controls 60% of world consumption, raw materials availability is a potential problem.
Production growth rate necessary to meet forecasted world consumption and solar requirements	7%	The time required to develop raw material supplies is from 5-20 years and a 7% compound growth rate appears to be an appropriate level of concern.
Largest single year market share consumed by solar over the period of the solar development plan	10%	When a single consumer of a material represents 10% of world consumption, the possibility exists to significantly influence market prices.
Percent of the world reserves that will be consumed by the year 2000	300%	A frequently used rule of thumb for appropriate reserve margins is 10 years at current consumption. With respect to using world reserves, we anticipate possible problems if we wish to consume 3 times known reserves over the next 20 years. This represents planned consumption of 300% of known world reserves.
Percent of the U.S. reserves that will be consumed by the year 2000	400%	Because U.S. reserves are much more certain, extensive use of reserves, up to 4 times the currently known reserves, may not be a problem.

TABLE 11. (Continued)

Factor	Value Selected	Reason Selected
Percent of world resources that will be consumed by the year 2000	200%	The definition of resources includes presently uneconomic deposits and, therefore, consumption of a larger percentage may be a problem. A reasonable estimate appears to be in the range of 200%. Thus, if we plan on consumption of 2 times currently known resources we anticipate raw material availability problems.
Percent of U.S. resources that will be consumed by the year 2000	300%	U.S. resources have less uncertainty than do world resources. We estimate that up to 3 times currently known deposits can be consumed by 2000.
The contribution to capital costs of raw materials per unit of peak power	$\$15/M^2$	$\$15/M^2$ would represent about 5% of the selling price of a typical system.

THE EFFECT OF THE ASSUMPTIONS MADE IN THE STUDY


A major part of the study centers around the assumption that 500 million square meters of collectors will be installed for a given design by the year 2000. Both the total quantity and the rate at which installation occurs are important for specific criteria.

For SHACOB, a total installation of 500 million square meters of collector area will yield an annual solar contribution of nearly 0.7 Quads or will displace approximately 2.0 Quads of fossil fuel used in generating electricity. If the average SHACOB residential installation is 40 square meters ⁽⁹⁾ then 500 million square meters of collectors would represent nearly 13 million residential SHACOB installations.

For AIPH, a total installation of 500 million square meters of collectors will yield an annual solar contribution of one to two Quads depending upon the mix of types of AIPH systems installed.

The rates at which various technologies will be installed in the future is, of course, unknown; however, a number of studies have examined past technology diffusion rates and some things are foreseeable. Technologies are unlikely to be installed in a uniform manner (constant rate) for a sustained period. They are more likely to be described by a function which has been described as an "S" curve. This study assumes the year 2000 as the end point of the study and we felt that most solar technologies could better be described by an exponential growth curve which approximates the first part of an "S" curve (see Figure 5).

The maximum rate is about 15% of the total for the exponential curve chosen assuming a starting date of 1985. This is, of course, about 2 1/2 times the rate which would be encountered if a uniform rate of installation were assumed. We feel that the analysis resulting is properly more conservative than a uniform rate would entail and yet doesn't unduly penalize the technology. In practical terms you can't start a business at full speed instantly and on the other hand, we shouldn't assume a scenario which is so severe on a single year that this alone causes a shock to materials supply chains which could actually limit the solar installations to a more rational rate.

FIGURE 5. Growth Curves for Solar Systems Deployment.
Exponential growth assumed in this study.

The selection of levels for the screening criteria used in the computer model are very important in determining which materials are selected for further review. The following paragraphs will describe the values selected and give some of the rationale behind the selection and an indication of its sensitivity to putting materials into the "critical zone" for bulk and also for raw materials.

Bulk Material Criteria Threshold Levels

Percent Supplied as a Byproduct

This criteria has been set to respond at the 50% level. In effect, we have set the level to indicate if a material is primarily obtained as a byproduct. It is difficult to defend this exact value, but fortunately, the raising of this number to the 65%, or lowering it to 35%, would not add or subtract even one material from those triggered in this study.

Any material which has its "mode" of supply coming as a byproduct should be watched in the future since changes in the primary product process could totally eliminate the secondary material source. However, we have in this study, ruled that a material having more than 50% of its normal supply derived as a byproduct does not cause the material to become "critical" (i.e., an "A" material), unless solar's percent of consumption is also large or the world production growth rate is excessive or the cost per square meter for the system is excessive.

World Production Growth Rate

This particular indicator was set for this study to raise a flag at a 10%/yr. We realize that this level is easily exceeded for some materials but that for others it is difficult to reach. We set it at 10% and then review those materials for which the flag is raised to see if we should really consider it to be truly critical to the technology. A single value for this one doesn't fit every material.

Solar's Percent of World Consumption

We used 10% for this threshold level. This is the general range in which solar needs might start to drive the market. This could mean opportunities for reductions in cost (by purchasing materials in large quantities) or it could signal suppliers they have someone who "needs the product" and thus, forcing up the price of materials. In any case, suppliers will no longer consider solar just another little piece of the market. This one can be plus or minus depending on risk perceived by those supplying the solar market. It is considered to be an important indicator.

Percent From Largest Country Outside United States

We used 35% for the threshold level here. The level chosen is not critical for this study for two reasons. The first reason is that few materials would switch categories if you went to 40% or reduced to 30% and the second is that getting a flag on this one is enough to raise a material into the "B" category where you should watch it in the future, but we require heavy usage or a high dollar content to reinforce the potential impact on the construction of future system (i.e., become truly critical).

Cost Per Unit of Output

We have selected $\$15/M^2$ for this threshold level. This level is one at which future prices become very interesting. A doubling or tripling of prices in the future could jeopardize the "learning curve" reductions expected for the technology unless appropriate action is taken.

In other words, if bulk material costs add up to some significant cost level, this may form an uncomfortably high floor under expected cost in the future. This criteria alone is enough to indicate a need for a careful review of mitigating strategies and future price trends.

Net Percent Imported

We have selected 50% as the threshold level for this criteria. This again is a criteria which by itself is not highly critical to the construction of solar technologies unless large quantities of the material are used for solar or the material is an expensive part of the design. Changing the level to 75% or 25% will not affect the number of materials significantly which are designated as "A" materials, although it would substantially change the number of materials in the "B" plan (should be watched in the future).

Raw Material Criteria Threshold Levels

World Production Growth Rate

The 7% threshold selected for this criteria is heuristically selected. The consequences of increasing this level in this study would be negligible. Decreasing the threshold substantially would be hard to justify since many raw materials have had sustained growth rates in this range. Decreasing the level would add many materials to the "B" list of materials to be watched in the future. High production growth rates are primarily an indication of potential market pressures which could increase the costs. High growth rates are not necessarily terribly important to solar needs unless they are accompanied by high costs in solar or the high growth rate was occasioned by solar needs which would show up as a high "Solar Percent of World Production."

Maximum Percent for Solar

We selected 10% for this threshold level. This criteria is felt to be important, but it is difficult to justify selection of a specific level. We have examined the impact of changing the level and find that a change affects few materials in this study as many of the materials are also used in large quantities in the manufacturing industry and in construction activities.

U.S. Reserves and Resources Consumed by the Year 2000 and World Reserves and Resources Consumed by the Year 2000

The four threshold levels selected (400%, 300%, 300%, and 200%) cannot be defended in any precise way, but minor changes in these criteria do not really affect the outcome of the study. This is because most of those materials which exceed these threshold values in this study are used in small quantities and/or do not cost much per kWe in the system, or their use is so large that raising the limit wouldn't change the result anyway.

The Percentage From the Largest Non U.S. Country.

The selection of 50% for this threshold level is not critical. Raising it to 60% or lowering it to 40% would not change the status of a single "A" level material.

Present Costs in $$/M^2$

The selection of $15/M^2$ corresponds to roughly 5% of system cost. Intensive efforts will no doubt be applied by a manufacturer to decrease the usage or substitute for any material getting into this general range. But up to this level, in all probability, it would be possible to reduce costs by reducing other cost segments even if this one went up. Above the 5% level, somewhere a given material could place a highly resistant floor under the minimum of a learning curve. Costs in $$/M^2$ are regarded as a highly significant criteria.

Net Percentage Imported

This criteria by itself is not considered to be sufficient to cause a material to be a probable barrier to solar deployment unless it is accompanied by high usage rates in solar and/or a high $$/M^2$ for the study. Changing the level from the 50% chosen for the study to 60% or 40% will cause a number of materials to move into or out of the should be watched category; but won't cause many changes in the materials classified as real potential barriers to the deployment of solar.

RESULTS AND RECOMMENDATIONS

The nine SHACOB and three AIPH systems were screened by the computer and found to be relatively free of serious future material constraints. The screening was carried out in scenarios composed of one individual system design totaling 500 million m^2 of collector area installed by the year 2000. Also mixed design scenarios, containing equal portions of each system design, were carried out separately for SHACOB and AIPH at 500 million m^2 and a billion m^2 of collector area installed by the year 2000.

To keep these scenarios in perspective, note that a billion m^2 containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion m^2 of the mixed designs will yield about 2.8 Quads/year.

Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. Iron and steel exceeded the threshold for the cost criteria ($\$15/m^2$) in two SHACOB systems, in one AIPH system, and in the AIPH mixed design scenarios. Glass consumption in the billion m^2 mixed SHACOB scenario exceeds 10% of the world consumption. Polyvinyl fluoride consumption exceeds 18% of the world consumption for one SHACOB system. All three of these materials are bulk materials. No raw material constraints were found.

The complete results of the computer screening for all the scenarios are given in Appendix A. The screening results are summarized in Tables 12, 13, 14, and 15, where the problem materials are classified either "A" materials - needing further review as a possibly serious problem for future large scale use, or as "B" materials - not likely to present a serious constraint. Materials not

TABLE 12. Problem Bulk Materials in SHACOB Systems

Individual Systems at 500 Million Square Meters by the Year 2000.

Mixed Designs at 500 and 1000 Million Square Meters - Equal Portions of All Nine Designs.

Bulk Material	Sunworks	Solaron	Amer	KTA and	Ray Pak	Trombe	Trombe	Direct	Mixed	Mixed	
	Res HW	Res HT	Res	Ecosol		HT + Cool	HT + HW	Concrete	Gain	Designs	Designs
Antimony	B								B		B
Asbestos					B				B		B
Cadmium					B				B		B
Carbon Black				B		B	B	B	B		B
Chromium	B				B				B		B
Glass, Soda Lime											A
Iron, Steel				A		A					
Ferromanganese	B	B	B	B	B	B	B	B	B		B
Mercury					B				B		B
Nickel					B				B		B
Silver				B					B		B
Tin	B		B		B	B			B		B
Zinc	B	B	B	B	B				B		B
Polyvinylfluoride				A							

A = Significant Problem - Additional Assessment Necessary

B = Potential Problem - Supply Should be Monitored

TABLE 13. Problem Raw Materials in SHACOB Systems

Individual Systems at 500 Million Square Meters by the Year 2000.

Mixed Designs at 500 and 1000 Million Square Meters - Equal Portions of All Nine Designs.

Raw Material	Sunworks	Solaron	Amer	KTA and	Ray Pak	Trombe	Trombe	Direct	Mixed	Mixed
	Res HW	Res HT	Res HT	Helio	Ecosol Heat Pump Sys	HT + Cool + HW	Concrete	Wall Water	Designs 500 X 10 ⁶ M ²	Designs 1000 X 10 ⁶ M ²
Antimony Ore	B								B	B
Asbestos	B	B	B	B	B	B	B	B	B	B
Bauxite	B	B	B	B	B	B	B	B	B	B
Chromite	B		B			B		B	B	B
Copper Ore	B	B	B	B	B	B			B	B
Fluorspar	B	B	B	B	B	B	B	B	B	B
Lithium Ore						B			B	B
Manganese Ore	B	B	B	B	B	B	B	B	B	B
Mercury Ore						B			B	B
Nickel Ore	B		B			B			B	B
Petroleum	B	B	B	B	B	B	B	B	B	B
Tin Ore	B		B		B	B			B	B
Zinc Ore	B	B	B	B	B	B			B	B
Petroleum Byproduct						B			B	B

B = Potential Problem - Supply Should be Monitored

TABLE 14. PROBLEM BULK MATERIALS IN AIPH SYSTEMS

INDIVIDUAL SYSTEMS AT 500 MILLION SQUARE METERS BY THE YEAR 2000
MIXED DESIGNS AT 500 AND 1000 MILLION SQUARE METERS EQUAL PORTIONS
OF ALL THREE DESIGNS

BULK MATERIAL	LLL Solar Pond	Chamberlain Lumber Kiln	Honeywell Concentrating	Mixed Designs 500 x 10 ⁶ M ²	Mixed Designs 1000 x 10 ⁶ M ²
Asbestos Ore	B(b)		B	B	B
Cadmium	B	B		B	B
Chromium		B	B	B	B
Iron, Steel		A (a)		A	A
Ferromanganese	B	B	B	B	B
Mercury			B	B	B
Nickel		B	B	B	B
Silver	B	B		B	B
Tin	B	B	B	B	B
Zinc	B	B	B	B	B

(a) A = Significant problem - additional assessment necessary.

(b) B = Potential problem - supply should be monitored.

TABLE 15. PROBLEM RAW MATERIALS IN AIPH SYSTEMS

INDIVIDUAL SYSTEMS AT 500 MILLION SQUARE METERS BY THE YEAR 2000
MIXED DESIGNS AT 500 AND 1000 MILLION SQUARE METERS EQUAL PORTIONS
OF ALL THREE DESIGNS

RAW MATERIAL	LLL Solar Pond	Chamberlain Lumber Kiln	Honeywell Concentrating	Mixed Designs 500×10^6 M ²	Mixed Designs 1000×10^6 M ²
Asbestos Ore	B(a)	B	B	B	B
Bauxite	B	B	B	B	B
Chromite		B	B	B	B
Copper Ore	B	B	B	B	B
Fluorspar	B	B	B	B	B
Manganese Ore	B	B	B	B	B
Mercury Ore			B	B	B
Nickel Ore		B	B	B	B
Petroleum	B	B	B	B	B
Tin Ore	B	B	B	B	B
Zinc Ore	B	B	B	B	B

(a) B = Potential problem--supply should be monitored.

exceeding the screening criteria threshold values are classed as "C" materials - posing no problems. "C" materials are not listed in Tables 12, 13, 14, and 15. Please keep in mind that the A-B-C ratings are scenario specific.

The reasons for classifying the materials as either "A" or "B" will become clear in the following discussions of the "A" and "B" materials.

"A" MATERIALS IN SHACOB AND AIPH SYSTEMS

Table 16 contains all the screening factors for the "A" bulk materials found in the scenarios investigated. Since none of the raw material criteria were exceeded, the supply of raw materials does not constrain bulk material supplies. We need concern ourselves only with the bulk material criteria in Table 16.

Iron, Steel

In five scenarios, steel exceeds the threshold level from cost ($\$15/m^2$) only. All other factors are well below the threshold and shall not concern us. The quantity of supplies will be adequate. Steel cost varies from \$23 to $\$59/m^2$ ($\$2.14$ to $\$5.48/ft^2$), which is in the order of 10% of the total system installed cost. Doubling the cost of steel decidedly affects economic viability of the system, and for this reason alone, steel represents a potential constraint to SHACOB and AIPH.

Fortunately, the steel industry is mature and competitive and prices have been relatively stable. However, if the present situation ceases to continue mitigating strategies will be necessary and could include:

1. Enter into long term supply contracts with favorable price agreements.
2. Minimize steel usage by more efficient mechanical design or by eliminating certain components such as storage tanks.
3. Have substitute materials ready for use when the relative costs become favorable.

Table 16. Screening Factors in Scenarios Where "A" Bulk Materials Were Found

Factors	Material Usage Mt.	Percent Supplied as By-Product	World Prodn Growth Rate 1976-2000	Solar's % of World Consumption	% from Largest Country	Cost per Unit Output ±/SM	Net Percent Imported
Threshold Levels	---	58	18 %/yr	18	35	15	50
Scenario ^(a)							
Iron, Steel							
Amer Heliothermal H & HW	33,379,590	1	3	0	16	23 ^(a)	10
RayPak-HT + Cool + HW	51,070,088	1	3	1	16	35 ^(a)	10
Chamberlain Lumber Kiln	85,477,352	1	3	1	16	59 ^(a)	10
A1PH-Mixed Systems	34,375,328	1	3	0	16	24 ^(a)	10
A1PH-Mixed- 10^9m^2	68,750,656	1	3	1	16	24 ^(a)	10
Glass, Soda Lime							
SHACOB-Mixed- 10^9m^2	13,299,237	0	3	10 ^(a)	5	4	5
PVF (Polyvinyl Fluoride)							
KTA & Ecoxol Heat Pump Sys	75,060	0	8	18 ^(a)	5	32	5

a. All scenarios at $500 \times 10^6 \text{m}^2$ unless otherwise noted.

The high iron and steel costs shown in Table 16 are due to the use of iron and steel in all three principal components - piping, storage vessels, and collectors. For a more detailed description of steel uses, refer to the individual system characterizations in Appendix B.

Soda Lime Glass and Polyvinyl Fluoride

In the mixed design SHACOB scenario of one billion m^2 by the year 2000, 10% of the world's consumption of soda lime glass is consumed by SHACOB systems (Table 16). All other criteria are well below the threshold levels. There are no raw material supply constraints to glass production. The projected production growth rate of 3% should be attained easily enough. Soda lime glass is used as a double glazing in seven of the SHACOB system designs, as a single glazing in one design, and as evacuated tubes in the remaining design.

Polyvinyl fluoride (PVF) single glazing used in one system deployed to 500 million m^2 by the year 2000 will account for 18% of the world's consumption of fluorocarbons. All other criteria are well below the threshold levels, except for production growth rate at 8% which is modest for the plastics industry which has routinely expanded at rates of 10% to 15% in the past. No raw material constraints to PVF production were found in the raw material screening.

Both PVF and soda lime glass are used solely for collector glazings in SHACOB and AIPH systems. Since both of these "A" materials show up because of a potential for solar to drive the market, we recommend that future price trends in these industries be watched closely and that surges in demand due to solar are prevented since these could easily cause prices to rise sufficiently to affect the economics of the designs. Both materials are produced by a limited number of responsible manufacturers. The capital requirements of both industries

are considerable. And long term production contracts will materially ease the prospects of any unexpected price increases.

The situation for the other popular glazing alternatives is similar, as shown in Table 17. Table 17 also shows the amount of each glazing material that could be installed by the year 2000 without exceeding 10% of the world's consumption in any single year. For the exponential growth rate used in this study, the largest single year installation is in the year 2000 and is equal to 15% of the total installations. Under these assumptions, a total of nearly 6.2 billion m^2 of single glazing is possible. Over half of that is FRP polyester. Clearly, solar collectors represent a large market potential for the suppliers of glazing materials. Long term production contracts would be mutually beneficial to both suppliers and users of glazing materials.

"B" MATERIALS IN SHACOB AND AIPH SYSTEMS

"B" materials in SHACOB and AIPH systems will be discussed jointly because the reasons for classifying them as "B" materials are the same. Eleven bulk and fifteen raw materials were classified "B" in various scenarios as previously shown in Tables 12, 13, 14, and 15.

The specific screening criteria exceeded by each "B" bulk materials are given in Table 18. Only three criteria are involved. They say:

1. More than 50% of the supply comes as a byproduct whose production is limited by the production rate of the principal product, or
2. More than 35% is produced by a single foreign country, or
3. More than 50% of the U.S. supply is imported.

These factors pose no supply problem in the scenarios studied because in all cases the solar consumption as a percentage of world consumption and cost to solar are low.

TABLE 17. Some Glazing Material Alternatives

Glazing Material	Typical Thickness Inches	One Billion m ² Installed by Year 2000		Area With Solar Limited to of Consumption In Year 2000 10 ⁹ m ²
		Material Usage 10 ⁶ MT	Solars % of World Consumption	
PVF (Tedlar) ^(a)	.004	.153	30	.26
FEP (Teflon) ^(a)	.002	.109	19	.48
Glass	.125	7.94	6	1.68
FRP Polyester (70 w/o Polyester)	.035	.994	3	3.52
Polycarbonate	.0625	1.91	34	.22
TOTAL				6.16

(a) A registered trademark of E.I. DuPont Co.

TABLE 18. CRITERIA EXCEEDED BY "B" BULK MATERIALS^(a) IN SHACOB AND AIPH SYSTEMS

FACTORS	Percent Supplied as Byproduct	% From Largest Country	Net Percent Imported
THRESHOLD LEVELS	50	35	50
<u>BULK MATERIALS</u>			
Antimony	X		X
Asbestos		X	X
Cadmium	X		X
Carbon Black	X		
Chromium			X
Ferromanganese	X		X
Mercury			X
Nickel			X
Silver	X		
Tin			X
Zinc			X

(a) "B" materials are those whose impacts on solar energy devices will be negligible unless extreme shifts occur in the current pattern of supply.

Since the solar share of world consumption is low, the material will be available in the quantities required by solar even if the total U.S. supply is limited severely by cartels, political action or decrease in production. Under conditions of limited supply and hence, increased competition for the material, increased prices are anticipated. Even then a large price increase would be required to push the already low materials cost to solar (cost/m^2) to an unacceptable level and force the use of substitutes.

The same type of reasoning was used in classifying the "B" raw materials. The specific criteria exceeded by each "B" raw material is shown in Table 19. Two criteria are identical to those just discussed - Net Percent Imported and Percent From Largest Foreign Country. The effect of these two raw material factors on solar is minimal because the solar use and cost to solar for each of these raw materials is small (circa 1% and $\$1/\text{m}^2$ and less).

Exceeding the criteria for United States reserves and resources means either that more of the raw material will be imported in the future or that U.S. reserves and resources will have to increase. Historically, reserves and resources have generally increased with time due to continued exploration, development, and improved technology or increased prices which shift previously uneconomic deposits into the reserve category. Whether or not U.S. reserves and resources increase, the raw materials will be available worldwide in sufficient amounts since the criteria for world reserves and resources were not exceeded. Again, supply disruptions will have little effect because solar usage and cost to solar are small for all these materials.

World production growth rate of 7% was exceeded by one material, lithium ore. Once again the small solar requirement will be satisfied even if the world

TABLE 19. CRITERIA EXCEEDED BY "B" RAW MATERIALS^(a) IN
SHACOB AND AIPH SYSTEMS

FACTORS	% U.S. Reserves Consumed by 2000	% U.S. Resources Consumed by 2000	Net Percent Imported	% From Largest Country Non-US	World Production Growth Rate
THRESHOLD LEVELS	400	300	50	60	7 %/Yr
<u>RAW MATERIALS</u>					
Antimony Ore	X	X	X		
Asbestos	X		X		
Bauxite	X		X		
Chromite	X	X	X		
Copper Ore	X	X			
Fluorspar	X		X		
Lithium Ore					X
Manganese Ore			X		
Mercury Ore		X	X		
Nickel Ore	X	X	X		
Petroleum	X				
Tin Ore	X	X	X		
Zinc Ore			X		
Tung Nuts			X	X	
Petroleum Byproduct	X				

(a) "B" materials are those whose impacts on SHACOB and AIPH systems will be negligible unless extreme shifts occur in the current pattern of supply, or unless solar usage increases substantially.

production rate does not meet demand. Higher prices resulting from demand exceeding supply will not raise the already low cost to solar significantly. Since solar's percent of world consumption is low, it follows that the growth rate is high because of projected non-solar demands for the raw material. In other words, the production growth rate is largely independent of solar demand.

Taking a broader perspective, one sees that all the other criteria exceeded by "B" materials, both bulk and raw, are largely independent of solar demand. They are exogenous criteria. Any material in a solar device that exceeds at least one of the exogenous criteria is always classed as a "B" material or higher. So long as the material's share of world consumption or its cost to the solar device are low, it remains a "B" material.

If solar usage of a "B" material increases enough, either one or both of the endogenous criteria (solar's share of world consumption and the cost to solar) will be exceeded. When these endogenous criteria are exceeded, the material is classified as an "A" material. In that situation, exogenous factors could significantly affect the availability and cost of the material to solar.

In summary, materials which are present in a solar device and exceed any of the exogenous criteria are classified as "B" materials so long as their use in the solar device is small. Their impacts on SHACOB and AIPH systems will be negligible - unless extreme shifts occur in the current pattern of supply, or unless solar usage increases sufficiently to put them into the "A" material category.

REFERENCES:

1. Solar Collector System Engineering, Program ACSE 1, Scotch Programs, Box 430734, Miami, FL.
2. Klein, S. A., W. A. Beckman, and J. A. Duffie: A Design Procedure for Solar Heating Systems, Solar Energy, vol. 18, pp. 113, 1976.
3. Beckman, W. A., J. A. Duffie, and S. A. Klein: Simulation of Solar Heating Systems, "Applications of Solar Energy for Heating and Cooling a Building," Chap. 9, ASHRAE, New York, 1976.
4. Klein, S. A., W. A. Beckman, and J. A. Duffie: A Design Procedure for Solar Air Heating Systems, 1976 ISES American Sect. Conf., Winnipeg, Manitoba, August 15-20, 1976.
5. J. D. Balcomb, J. C. Hedstrom, R. D. McFarland, Passive Solar Heating of Buildings, Workshop on Solar Energy Applications, Associated Universities, Inc. June 27-July 31, 1977.
6. Fred Roach, Scott Noll, Shaul Ben-David, Larry Bickle, William Schulze, Prospects for Solar Energy: The Impact of the National Energy Plan, Los Alamos Scientific Laboratory, LA - 7064 - MS, December 1977.
7. J. W. Litchfield, R. L. Watts, W. E. Gurwell, J. N. Hartley, C. H. Bloomster, A Methodology for Identifying Materials Constraints to Implementation of Solar Energy Technologies, Pacific Northwest Laboratories, PNL-2711, July 1978.
8. S. D. Rosier, D. K. Davis, W. E. Gurwell, T. P. Harrington, T. A. Nelson, S. A. Smith, R. L. Watts, Operating Manual and Data Base for the Critical Materials Assessment Program (CMAP), Pacific Northwest Laboratory, PNL- , September 1978.
9. Solar Energy - A Status Report, U.S. Department of Energy, DOE-ET-0062, June 1978, p. 41.

APPENDIX A

ACTUAL COMPUTER RUNS OF BULK AND RAW MATERIAL SCREENING FACTORS

		<u>Page</u>
SHACOB and AIPH System Identifications		A-1
Screening Factors		
<u>Design Number</u>	<u>Short Title</u>	
<u>SHACOB</u>		
25	SUNWORKS RES HW	A-2
26	SOLARON-RES HT	A-4
27	SOLARON-RES HT + HW	A-6
28	AMER HELIOTHERMAL H + HW	A-8
29	KTA AND ECOSOL HEAT PUMP SY	A-10
30	RAYPAK - HT + COOL + HW	A-12
31	TROMBE WALL CONCRETE	A-14
32	TROMBE WALLWWATER	A-16
33	DIRECT GAIN MASONRY WALL	A-18
<u>AIPH</u>		
40	LLL SOLAR POND	A-20
41	CHAMBERLAIN - LUMBER KILN	A-22
42	HONEYWELL CONCENTRATING	A-24
SHACOB	500 MILLION M ² SCENARIO	
	BILLION M ² SCENARIO	
AIPH	500 MILLION M ² SCENARIO	
	BILLION M ² SCENARIO	

SHACOB and AIPH System Identifications

<u>Design Number</u>	<u>Short Title</u>	<u>Full Title</u>
<u>SHACOB</u>		
25	SUNWORKS RES HW	DOMESTIC HOT WATER-SUNWORKS COLLECTOR
26	SOLARON-RES HT	SPACE HEATING - SOLARON SYSTEM
27	SOLARON-RES HT + HW	SPACE HEATING AND DOMESTIC HOT WATER - SOLARON
28	AMER HELIOTHERMAL H + HW	SPACE HEATING AND DOMESTIC HOT WATER - AMERICAN HELIOTHERMAL
29	KTA AND ECOSOL HEAT PUMP SY	SPACE HEATING AND DOMESTIC HOT WATER - KTA AND ECOSOL HEAT PUMP SYSTEM
30	RAYPAK - HT + COOL + HW	SPACE HEATING AND COOLING AND DOMESTIC HOT WATER - RAYPAK COLLECTOR
31	TROMBE WALL CONCRETE	PASSIVE SPACE HEATING - CONCRETE TROMBE WALL
32	TROMBE WALL WATER	PASSIVE SPACE HEATING - WATER-TANK TROMBE WALL
33	DIRECT GAIN MASONRY WALL	PASSIVE SPACE HEATING - DIRECT GAIN, MASONRY WALLS
<u>AIPH</u>		
40	LLL SOLAR POND	PROCESS HOT WATER, URANIUM MILLING - LLL SOLAR POND
41	CHAMBERLAIN - LUMBER KILN	PROCESS HEAT, LUMBER KILN - CHAMBERLAIN COLLECTORS
42	HONEYWELL CONCENTRATING	PROCESS STEAM, TEXTILE DRYING - HONEYWELL CONCENTRATING COLLECTORS

BULK MATERIAL REQUIREMENTS FOR SUNWORKS RES HW

SOLAR SCENARIO:

INTRODUCTION YEAR -- 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PRODN GROWTH RATE 1978-2000	SOLAR'S % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	4571000.	9.	*				14.
ANTIMONY	1750.	100.	*				**
CEMENT	729120.						**
CHROMIUM	7800.						
COPPER	5225000.						
GLASS, FIBER	10780000.						
GLASS, SODA LIM	79380000.						
IRON, STEEL	50846220.						
LITE	21157.						
FERROMANGANESE	31173.						
NICKEL	7886.						
SAND & GRAVEL	1510320.						
STONE	2900000.						
SUPERIOM	11200.						
TIN	68393.						
WATER	215110000.						
ZINC	11200.						
STAINLESS STEEL	35000.						
LUMBER, SOFTWOOD	38880000.						
PHENOLIC RESIN	161000.						
RUBBER, SBR	63000.						
SILICONES	28000.						
TEFLON	2100.						
URETHANE	637000.						
NEOPRENE	315000.						
ETHYLENE GLYCOL	763000.						

R&D MATERIAL REQUIREMENTS FOR SUNWORKS RES 100

SOLAR SCENARIO:
INTRODUCTION YEAR -1985
CUMULATIVE CAPACITY 2000 - 500. M SO. M

FACTORS	RAW MATERIAL	WORLD PRODUCTN	MAX % FOR	% U.S.	% U.S.	% FROM	% WORLD	% WORLD,	PRESENT	NET
	USAGE (1000MT)	GROWTH RATE	SOLAR IN ONE YEAR	RESERVES WORLD	CONSUMED BY 2000	RESOURCES CONSUMED BY 2000	LARGEST COUNTRY NON-US	RESERVES CONSUMED BY 2000	RESOURCES CONSUMED BY 2000	COSTS IN \$/SM OF SOLAR
THRESHOLD LEVELS	7	7	18.	468.	268.	60.	369.	268.	13.	50.
MATERIALS										
ANTIMONY ORE	184.	8.	9	1219.	*	1131.	*	22.	76.	64.
ASBESTOS	23554.	11.	2269.	533.	*	28.	34.	190.	120.	120.
BRONITE	278.	11.	11.	303.	*	2.	28.	14.	14.	14.
BORITE	78.	11.	29.	11.	*	2.	58.	10.	10.	10.
BUTTITE	43.	11.	3353.	424.	*	0.	27.	17.	17.	17.
CHROMITE	192.	11.	666.	666.	*	1.	18.	13.	13.	13.
CLAYES	20043.	11.	1045.	5.	*	1.	12.	13.	13.	13.
COAL, BITUMIN/ANTHRACITE	47210.	11.	738.	738.	*	0.	18.	200.	200.	200.
COPPER ORE	1149795.	11.	704.	151.	*	0.	12.	12.	12.	12.
FELDSPAR	378.	11.	175.	55.	*	0.	22.	18.	18.	18.
FLUORSPAR	378.	11.	188.	77.	*	0.	11.	11.	11.	11.
GYPSUM	39887.	11.	4435.	245.	*	0.	24.	39.	39.	39.
IRON ORE	781.	11.	562.	562.	*	0.	25.	25.	25.	25.
LEAD ORE	171.	11.	94.	94.	*	0.	15.	20.	20.	20.
MANGANESE ORE	2915.	11.	4478.	146.	*	0.	20.	20.	20.	20.
NATURAL GAS	938.	11.	17.	17.	*	0.	12.	12.	12.	12.
NICKEL ORE	6.	11.	1.	1.	*	0.	6.	6.	6.	6.
NITROGEN, FIXED	3456.	11.	1.	1.	*	0.	5.	5.	5.	5.
PETROLEUM	21917.	11.	1.	1.	*	0.	1.	1.	1.	1.
SALT	7469.	11.	1.	1.	*	0.	1.	1.	1.	1.
SAND/GRAVEL	2968.	11.	1.	1.	*	0.	1.	1.	1.	1.
STONE	1178.	11.	1.	1.	*	0.	1.	1.	1.	1.
SULFUR	606938.	11.	1.	1.	*	0.	1.	1.	1.	1.
TIN ORE	262.	5.	1.	1.	*	0.	1.	1.	1.	1.
ZINC ORE	140589.	11.	1.	1.	*	0.	1.	1.	1.	1.
MILK BYPRODUCTS	1562.	11.	1.	1.	*	0.	1.	1.	1.	1.
LUMBER	125355.	11.	1.	1.	*	0.	1.	1.	1.	1.
SEA WATER	482028.	11.	1.	1.	*	0.	1.	1.	1.	1.
WATER	23657.	11.	1.	1.	*	0.	1.	1.	1.	1.
MISC.	1255017.	11.	1.	1.	*	0.	1.	1.	1.	1.
STEAM	377164.	11.	1.	1.	*	0.	1.	1.	1.	1.
LIMESTONE	482028.	11.	1.	1.	*	0.	1.	1.	1.	1.
COAL, BY PROD	2355017.	11.	1.	1.	*	0.	1.	1.	1.	1.
ELECTRICITY	1.	1.	1.	1.	*	0.	1.	1.	1.	1.
COAL, BYPRODUCT	1.	1.	1.	1.	*	0.	1.	1.	1.	1.

BULK MATERIAL REQUIREMENTS FOR SOLARON - RES HT

SOLAR SCENARIO:

INTRODUCTION YEAR = 1985

CUMULATIVE CAPACITY 2000 = 500. M SO. M

FACTORS	MATERIAL MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PROGN GROWTH RATE 1975-2000	SOLAR'S % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50	10. %/YR	10.	35.	15.	50.
MATERIALS							
COPPER	115245.	1			12	12	45.
GLASS, FIBER	2285200.	0			55	55	25.
GLASS, SODA LIM	10573200.	0			16	16	15.
IRON, STEEL	16703560.	1			5	5	95.
FERROMANGANESE	181369.	100	*		10	10	*
SAND & GRAVEL	1221400000.	0			21	21	85.
ZINC	1481852.	25			5	5	*
GLUE, PHENOL, FOR	73284.	0			20	20	11.
LUMBER, SOFTWOOD	6829597.	0			5	5	14.
PHENOLIC RESIN	9950.	0			5	5	15.
RUBBER, SDR	126000.	0			10	10	
SILICONES	126000.	0			12	12	
POLYCARBONATE	27500.	0					
VITREOUS ENAMEL	171390.	0					

RAW MATERIAL REQUIREMENTS FOR SOLARON - RES HT

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	RAW MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	MAX. % FOR ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	7. %/YR	10.	400.	300.	60.	300.	200.	15.	50.
MATERIALS										
ASBESTOS	1.			539.	*	28.	34.	190.	129.	99.
BAUXITE	1002.			2213.	*	295.	28.	14.	89.	89.
BORATE	571.			11.		6.	10.	11.	1.	1.
SULFATE	148.			129.		6.	6.	12.	1.	1.
CLAYS	179.			985.	*	1.	10.	13.	1.	1.
COAL	23722.			983.	*	43.	12.	35.	10.	10.
COAL BITUM/LIGHT	18.			783.	*	151.	10.	13.	35.	35.
COPPER ORE	26180.			783.	*	1.	22.	200.	120.	120.
FERROSPAR	1023.			100.		4.	11.	15.	1.	1.
IRON ORE	95332.			245.		277.	24.	30.	11.	11.
LEAD ORE	1354.			562.	*	216.	22.	22.	35.	35.
MANGANESE ORE	619.			92.		6.	15.	126.	1.	1.
NATURAL GAS	482.			151.		6.	19.	110.	110.	110.
OXYGEN	18.			151.		1.	20.	6.	6.	6.
PETROLEUM	606.			151.		1.	20.	155.	155.	155.
SALT	9443.			151.		1.	12.	6.	6.	6.
SAND/GRAVEL	130005.			151.		1.	12.	15.	15.	15.
SODIUM NITRATE	5.			151.		1.	15.	6.	6.	6.
SULFUR	48.			151.		1.	15.	6.	6.	6.
ZINC ORE	24958.			151.		1.	15.	6.	6.	6.
MILK BYPRODUCTS	1.			151.		1.	15.	6.	6.	6.
LUMBER	6832.			151.		1.	15.	6.	6.	6.
SEA WATER	41.			151.		1.	15.	6.	6.	6.
WATER	148839.			151.		1.	15.	6.	6.	6.
WHEAT	21.			151.		1.	15.	6.	6.	6.
MISC.	609.			151.		1.	15.	6.	6.	6.
STEAM	27221.			151.		1.	15.	6.	6.	6.
LIMESTONE	19337.			151.		1.	15.	6.	6.	6.
COAL, BY PROD	40120.			151.		1.	15.	6.	6.	6.
ELECTRICITY	181317.			151.		1.	15.	6.	6.	6.

BULK MATERIAL REQUIREMENTS FOR SOLARON - RES HT + HW

SOLARON SCENARIO:

INTRODUCTION YEAR: 1985

CUMULATIVE CAPACITY 2000 = 500. M SQ. M

FACTORS	MATERIAL KLT.	PERCENT SUPPLIED AS BY PRODUCT	WORLD PROD GROWTH RATE 1976-2000	SOLARON'S % OF WORLD CONE. OPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	37430.	6.					14.
COPPER	579315.	1.					4.
GLASS, FIBER	2364888.	6.					18.
CLAY, SODA LIM	18079998.	6.					19.
IRON, STEEL	18132748.	1.					13.
LEAD	13790.	13.					11.
FERROMANGANESE	180453.	100.	*				10.
SAND, GRAVEL	122148888.	6.					10.
TIN	13790.	25.					29.
ZINC	1401852.	25.					21.
STAINLESS STEEL	17730.	6.					10.
GLUE, PHENOL, FOR	73284.	6.					10.
LUMBER, SOFTWOOD	6829597.	6.					10.
PHENOLIC RESIN	9858.	6.					10.
RUBBER, SBR	133980.	6.					10.
SILICONES	126688.	6.					10.
POLYCARBONATE	37430.	6.					10.
VITREOUS ENAMEL	171398.	6.					10.

RAM MATERIAL REQUIREMENTS FOR SOLARON - RES HT + HW

SOLAR SCENARIO:
INTRODUCTION YEAR ~1985
CUMULATIVE CAPACITY 2000 ~ 500. M SQ. M

FACTORS	RAM MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	MAX. % FOR SOLAR IN ONE YEAR	% U.S. RESERVES BY 2000	% U.S. CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD, RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED	
THRESHOLD LEVELS	7.	2400.	10.	400.	300.	68.	200.	200.	15.	58.	
MATERIALS											
ASBESTOS	1.	355.	0.	539.	*	28.	34.	190.	629.	0.	90. *
BRICKLINE	1228.	1.1	0.	2214.	*	295.	28.	14.	9.	89.	0.
BOSPHUS	591.	1.1	0.	11.	0.	58.	11.	5.	5.	0.	0.
BUTANE	149.	1.	0.	28.	0.	10.	12.	1.	1.	15.	0.
CHROMITE	11.	0.	0.	3358.	*	424.	*	27.	17.	4.	0.
CLAYS	198.	0.	0.	0.	0.	1.	10.	0.	1.	1.	0.
COAL	25555.	0.	0.	6.	1.	6.	6.	13.	1.	1.	0.
COAL BITUM/LIGHT	18.	0.	0.	6.	1.	0.	0.	13.	0.	0.	0.
COPPER ORE	126301.	0.	0.	938.	*	434.	*	12.	24.	0.	0.
FELDSPAR	1623.	0.	0.	55.	*	0.	10.	85.	0.	0.	0.
FLUORSPAR	158.	0.	0.	783.	*	151.	22.	13.	0.	0.	0.
IRON ORE	104011.	0.	0.	56.	0.	7.	11.	15.	0.	0.	0.
LEAD ORE	1913.	0.	0.	78.	0.	38.	11.	12.	13.	0.	0.
MANGANESE ORE	663.	0.	0.	100.	0.	4.	24.	9.	11.	0.	0.
NATURAL GAS	736.	0.	0.	245.	0.	277.	0.	38.	0.	0.	0.
NICKEL ORE	142.	0.	0.	4431.	*	5317.	*	37.	54.	0.	0.
NITROGEN FIXED	0.	0.	0.	0.	0.	0.	5.	22.	0.	0.	0.
OXYGEN	22.	0.	0.	0.	0.	0.	0.	110.	0.	0.	0.
PETROLEUM	665.	0.	0.	562.	*	210.	0.	0.	0.	0.	0.
SHLT	9582.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SODA/NaPTEL	130979.	0.	0.	0.	0.	0.	0.	90.	72.	0.	0.
SODIUM NITRATE	5.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SULFUR	61.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
TIN ORE	137900.	0.	0.	4366.	*	1310.	35.	29.	19.	0.	0.
ZINC ORE	24988.	0.	0.	151.	0.	0.	0.	0.	0.	0.	0.
MILK BYPRODUCTS	1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LUMBER	6832.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SEA WATER	55.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
WATER	151166.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
WHEAT	21.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
MISC.	753.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
STEAM	38678.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LIMESTONE	26332.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
COAL, BY PROD	41523.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
ELECTRICITY	188488.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

BULK MATERIAL REQUIREMENTS FOR AMER HELIOTHERMAL H+HW

SOLAR SCENARIO:

INTRODUCTION YEAR: ~ 1985
CUMULATIVE CAPACITY 2000 ~ 500. M SQ. M

FACTORY	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PRODN GROWTH RATE 1976-2000	SOLAR'S % OF WORLD CONS. OPTION	% FROM LONGST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	974850.	0.	2.6	0.	13.	2.	14.
COPPER	384513.	1.	2.6	13.	11.	1.	45.
GLASS, FIBER	1523690.	0.	2.6	15.	15.	1.	15.
GLASS, SOFT LIM	5762671.	0.	2.6	15.	15.	1.	15.
IRON, STEEL	33379598.	1.	2.6	16.	19.	2.	16.
FERROMANGANESE	201486.	100. *	2.6	16.	19.	2.	99.
WATER	59325152.	0.	2.6	16.	19.	2.	15.
ZINC	681149.	25.	2.6	21.	21.	1.	88.
LUMBER, SOFTWOOD	428890.	0.	2.6	28.	28.	1.	12.
TEFLON	20100.	0.	2.6	28.	28.	1.	11.
NYLON	4820.	0.	2.6	28.	28.	1.	11.
NEOPRENE	291450.	0.	2.6	28.	28.	1.	15.
POLYCARBONATE	18655.	0.	2.6	28.	28.	1.	15.
POLYPROPYLENE O	1039170.	0.	2.6	28.	28.	1.	15.
VITREOUS ENAMEL	2010.	0.	2.6	28.	28.	1.	8.

RAW MATERIAL REQUIREMENTS FOR AMER HELIOTHERMAL H+HW

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500, M SQ. M

FACTORS	FCM MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	MAX % FOR SOLAR IN ONE YEAR WORLD	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD, RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	7. X/yr	10.	400.	300.	60.	300.	220.	15.	50.
MATERIALS										
ASBESTOS	0.									
BRONZITE	5648.	15.5	0.	539. *	28.	34.	190.	129.	0.	90. **
BORAX	381.	1.1	0.	11.	297.	28.	14.	5.	5.	5.
BUTANE	3.	0.	0.	26.	0.	59.	10.	5.	5.	5.
CLAY	356.	0.	0.	8.	0.	10.	12.	1.	1.	1.
COAL	42259.	1.1	0.	6.	1.	16.	6.	1.	1.	10.
COAL BITUM/PLT	43718.	1.1	0.	6.	1.	16.	13.	1.	1.	10.
COPPER ORE	34593.	0.	0.	935.	*	433.	*	12.	24.	58.
DEUTERIUM	536.	0.	0.	5.	0.	10.	1.	0.	0.	5.
FLUORIC FLAR	371.	0.	0.	704.	*	151.	22.	200.	120.	55.
IRON ORE	189549.	1.0	0.	56.	7.	7.	15.	6.	6.	33.
LEAD ORE	16.	0.	0.	77.	38.	11.	126.	13.	13.	100.
MANGANESE ORE	1130.	0.	0.	100.	4.	24.	8.	9.	9.	5.
NATURAL GAS	786.	0.	0.	245.	0.	272.	93.	0.	0.	45.
OXYGEN	286.	0.	0.	563.	*	210.	0.	110.	0.	45.
PETROLEUM	4344.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SALT	8343.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SAND/GRAVEL	4822.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SODIUM NITRATE	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SULFUR	285.	0.	0.	93.	1.	15.	90.	155.	0.	28.
ZINC ORE	12124.	0.	0.	149.	0.	34.	0.	0.	0.	88.
LUMBER	424.	0.	0.	0.	0.	0.	0.	0.	0.	18.
SEA WATER	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
WATER	74583.	0.	0.	17.	0.	0.	0.	0.	0.	1.
MISC	619.	0.	0.	0.	0.	0.	0.	0.	0.	0.
STEAM	66164.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LIMESTONE	28394.	0.	0.	0.	0.	0.	0.	0.	0.	0.
COAL, BY PROD	1757.	0.	0.	0.	0.	0.	0.	0.	0.	0.
ELECTRICITY	973557.	0.	0.	0.	0.	0.	0.	0.	0.	0.

BULK MATERIAL REQUIREMENTS FOR KTA AND ECSOL HT PUMP SY

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2030 - 560. M SQ. M

FACTORS	MATERIAL USAGE M.T.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PROGN GROWTH RATE 1978-2030	SOLAR'S % OF WORLD CONS.PTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	----	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	4914794.	0.			13.	10.	14.
CARBON BLACK	122270.	100.	*		12.	8.	8.
CERAMIC	5163711.	0.			18.	0.	4.
COPPER	4141022.	1.			12.	11.	45.
GLASS, SODA LIM	6255600.	0.			15.	8.	5.
IRON, STEEL	16116886.	1.			15.	11.	16.
LEAD	31112.	12.			11.	8.	18.
MANGANESE	6342.	30.			35.	0.	0.
POLYCHLORINATED	30030.	100.	*		18.	0.	90.
STONE, GRANITE	18696259.	0.			3.	0.	0.
STONE, GRANITE	21623682.	0.			14.	0.	46.
SILICON	7172.				14.	2.	65.
SILVER	6295.	20.	*		25.	11.	1.
TIN	35945.	25.			21.	0.	0.
WATER	79488300.	0.			35.	0.	88.
ZINC	184105.	25.			10.	0.	1.
ALKYL RESIN	27105.	0.			10.	0.	1.
PHENOLIC RESIN	47955.	0.			10.	0.	1.
NYLON	10425.	0.			10.	0.	0.
URETHANE	308580.	0.			10.	0.	0.
POLYVINYL FLUOR	75666.	0.			10.	0.	0.
PAINT THINNER	52125.	0.			10.	0.	0.

RAW MATERIAL REQUIREMENTS FOR KTA AND ECOL HT PUMP SY

SULPHUR SCENARIO:
INTRODUCTION YEAR -1985
CUMULATIVE CAPACITY 2000 - 566. M SQ. M

FACTORS	RAW MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	WORLD % FOR ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED	1		2		3		4	
											10.	480.	360.	60.	200.	200.	15.	50.
THREE-YEAR LEVELS																		
MATERIALS																		
ALUMINUM	0.	3.	0.	532	*	38.	34.	190.	120.	0.	30.	1.	1.	0.	0.	0.	0.	0.
BRONZE	24864.	5.	2.	2273.	*	303.	28.	14.	9.	1.	0.	0.	0.	0.	0.	0.	0.	0.
BUTANE	5.	1.	0.	29	2.	0.	10.	12.	1.	1.	0.	0.	0.	0.	0.	0.	0.	0.
CLOUTS	943.	1.	0.	0.	0.	0.	16.	0.	1.	1.	0.	0.	0.	0.	0.	0.	0.	0.
COPPER	30789.	1.	0.	0.	0.	1.	0.	13.	13.	1.	1.	0.	0.	0.	0.	0.	0.	0.
COKE	375.	1.	0.	0.	0.	1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
COAL, RETUMPLIGHT	511900.	0.	0.	1032.	*	452.	12.	86.	75.	0.	0.	0.	0.	0.	0.	0.	0.	0.
COPPER ORE	58.	0.	0.	0.	0.	0.	18.	13.	13.	0.	0.	0.	0.	0.	0.	0.	0.	0.
DEI PETTER	718.	0.	0.	702.	*	152.	22.	201.	11.	0.	0.	0.	0.	0.	0.	0.	0.	0.
DIAMOND	248.	0.	0.	175.	0.	0.	18.	11.	15.	0.	0.	0.	0.	0.	0.	0.	0.	0.
GYPSUM	100212.	0.	0.	56.	7.	38.	11.	126.	12.	0.	0.	0.	0.	0.	0.	0.	0.	0.
IRON ORE	1047.	0.	0.	78.	4.	24.	24.	93.	11.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LEAD ORE	543.	0.	0.	100.	245.	277.	30.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
MANGANESE ORE	2818.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
NATURAL GAS	1865.	0.	0.	562.	*	210.	22.	110.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
NITROGEN, FIXED	16538.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
PETROLEUM	11442.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SALT	44572.	0.	0.	381.	0.	161.	14.	210.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SAND/GRAVEL	21024.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SILVER ORE	1430.	0.	0.	94.	1.	15.	25.	73.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
STONE	359454.	0.	0.	4412.	*	1326.	32.	154.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SULFUR	3305.	0.	0.	147.	0.	0.	25.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
TIN ORE	153.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
ZINC ORE	150.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
FLAM SEED	150.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
MIX. BYPRODUCTS	2.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LUMBER	2.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SEA WATER	4610.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
SOFTEN	78.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
WATER	168898.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
MISC.	1406.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
STEAM	140354.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LIMESTONE	29414.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
COAL, BY PROD	436329.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
ELECTRICITY	1048171.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
COAL BYPRODUCT 2	182679.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

BULK MATERIAL REQUIREMENTS FOR RAYPAK - HT + COOL + HM

SOLPK SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	MATERIAL U.S. TON MT.	PERCENT SUPPLIED AS BY PRODUCT	WORLD PROD GROWTH RATE 1976-2000	SOLPK'S % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	1525182.	0.			13		*
ASBESTOS	56225.	0.			10		*
BORONITE	97338.	0.			10		*
CHROMITE	4515.				15		*
CEMENT	350332.	0.			18		*
CHROMIUM	116.				31		*
COPPER	3558798.	0.			12		*
COTTON FIBER	1203056.	0.			5		*
GLASS, SOFT LIM	8310363.	0.			5		*
Gypsum	28122.	0.			10		*
IRON, STEEL	51676688.	1.			16		*
LEAD	14885.	13.			11		*
LITHIUM	8459.	0.			1		*
MANGANESE	397873.	100.	*		3		*
MERCURY	323.				19		*
NICKEL	453.				29		*
SAND, GRAVEL	375971.				15		*
STONE	738977.				14		*
SILICON	5899.				14		*
SILVER	194.				14		*
TIN	25138.				20		*
WATER	100098332.				5		*
ZINC	418383.				21		*
STAINLESS STEEL	43667.				10		*
LUMER, SOFTWOOD	1773165.				21		*
PHENOLIC RESIN	9353.				10		*
PVC PLASTIC	225185.				21		*
RUBBER, SBR	144188.				10		*
SILICONES	299925.				21		*
TEFLON	3806.				10		*
COTTON FIBERS	6542.				21		*
KRAFT FIBERS	2666.				21		*
URETHANE	285735.				10		*
ASPHALT	1354560.				21		*
NEOPRENE	47537.				10		*
ETHYLENE GLYCOL	1457788.				21		*
POLYETHYLENE	4386.				10		*
EPDM RUBBER	26768.				21		*

RAW MATERIAL REQUIREMENTS FOR RAYPAK - HT + COOL + HH

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. N 50. M

FACTORS	RAW MATERIAL (1000MT)	WORLD GROWTH RATE	WORLD % FOR ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED
THREEHUND LEVELS	7. X/100	10.	100.	300.	600.	1000.	200.	300.	15.	50.
MATERIALS										
ALUMINUM	57.		5.39.	*	20.	34.	120.	20.	30.	89.
BAUXITE	8372.	1.	2231.	*	298.	28.	14.	1.	1.	35.
BORATE	321.	1.	11.	8.	2.	50.	18.	10.	10.	60.
BUTANE	160.	1.	20.	2.	10.	12.	12.	1.	1.	37.
CHROMITE	28.	1.	3351.	*	424.	*	17.	0.	1.	37.
CLAYS	614.	0.	0.	0.	0.	18.	13.	13.	13.	35.
COAL	66311.	0.	0.	0.	1.	6.	13.	13.	13.	35.
COAL, BITUM/LIGHT	12320.	0.	0.	0.	1.	6.	13.	13.	13.	35.
COPPER ORE	783100.	2.	1025.	*	449.	*	12.	12.	12.	35.
FELDSPAR	822.	2.	5.	0.	0.	10.	13.	13.	13.	35.
FLUORSPAR	532.	0.	785.	*	151.	22.	201.	11.	11.	35.
GYPSUM	56.	0.	175.	0.	0.	19.	15.	15.	15.	35.
IRON ORE	296553.	1.	57.	8.	8.	11.	126.	56.	33.	33.
LEAD ORE	469.	1.	72.	38.	38.	11.	126.	13.	13.	100.
LITHIUM ORE	3653.	1.	55.	20.	20.	1.	12.	18.	11.	55.
MANGANESE ORE	1766.	1.	100.	4.	4.	24.	13.	11.	36.	100.
MERCURY	9.	1.	386.	576.	576.	39.	93.	54.	54.	70.
NATURAL GAS	2912.	0.	245.	277.	277.	37.	22.	22.	22.	40.
NICKEL ORE	395.	0.	4432.	*	5318.	*	116.	0.	0.	40.
NITROGEN, FIXED	8.	0.	0.	0.	0.	0.	202.	0.	0.	40.
OXYGEN	16.	0.	0.	0.	0.	0.	90.	0.	0.	20.
PETROLEUM	5113.	0.	0.	563.	*	210.	0.	0.	0.	60.
SALT	13889.	0.	0.	0.	0.	0.	202.	0.	0.	60.
SAND/GRAVEL	7249.	0.	0.	0.	0.	0.	90.	0.	0.	60.
SILVER ORE	1379.	0.	0.	372.	0.	0.	14.	0.	0.	60.
STONE	739.	0.	0.	0.	0.	0.	15.	0.	0.	60.
SULFUR	443.	0.	0.	93.	0.	1.	15.	0.	0.	60.
TIN ORE	251290.	1.	4393.	*	1318.	24.	12.	12.	12.	60.
ZINC ORE	8352.	1.	148.	0.	0.	16.	15.	15.	15.	60.
COTTON	6.	0.	0.	0.	0.	0.	20.	0.	0.	1.
HICK BYPRODUCTS	1955.	0.	0.	0.	0.	0.	12.	0.	0.	1.
LUMBER	1557522.	0.	0.	0.	0.	0.	13.	0.	0.	1.
SEA WATER	165669.	0.	0.	17.	0.	0.	13.	0.	0.	1.
WATER	165669.	0.	0.	0.	0.	0.	13.	0.	0.	1.
MISC.	1617.	0.	0.	0.	0.	0.	13.	0.	0.	1.
STEAM	183499.	0.	0.	0.	0.	0.	13.	0.	0.	1.
LIMESTONE	42672.	0.	0.	0.	0.	0.	13.	0.	0.	1.
COAL, BY PROD	288316.	0.	0.	0.	0.	0.	13.	0.	0.	1.
ELECTRICITY	5163978.	0.	0.	0.	0.	0.	13.	0.	0.	1.
COAL BYPRODUCT 2	169155.	0.	0.	0.	0.	0.	13.	0.	0.	1.
PETROLEUM BYPRO	69000.	0.	0.	564.	*	211.	22.	110.	36.	40.

BULK MATERIAL REQUIREMENTS FOR TROMBE WALL CONCRETE

SOLAR SCENARIO:

INTRODUCTION YEAR

- 1985

CUMULATIVE CAPACITY 2000 - Sea. M SQ. M

FACTORS	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY PRODUCT	WORLD PRODN GROWTH RATE 1976-2000	SOLAR'S % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	1529750.	0.	7.	8.	13.	3.	14.
CARBON BLACK	143982.	100. *	7.	8.	12.	3.	0.
CEMENT	60852404.	0.	1.	1.	10.	4.	4.
GLASS, SODA LIM	7807000.	0.	1.	1.	10.	4.	5.
IRON, STEEL	5524394.	1.	6.	6.	16.	4.	10.
FERROMANGANESE	33346.	100. *	2.	2.	10.	4.	*
SAND & GRAVEL	126051400.	0.	4.	6.	10.	1.	0.
STONE	247756200.	0.	4.	6.	10.	1.	0.
ALKYD RESIN	38173.	0.	1.	1.	5.	0.	1.
NEOPRENE	119215.	0.	1.	1.	5.	0.	1.
PRINT THINNER	58025.	0.	1.	1.	5.	0.	15.

RAW MATERIAL REQUIREMENTS FOR TROMBE WALL CONCRETE

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	RAW MATERIAL USEAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	MAX % FOR SOLAR IN ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED
PIPELINE LEVELS	1.	2.	10.	400.	300.	63.	200.	100.	15.	58.
MATERIALS										
ASBESTOS	6.	35.	0.	530. *	28.	74.	190.	19.	65.	65.
BRASSIE	7739.	35.	0.	2238. *	292.	58.	14.	1.	1.	1.
CLAYS	8892.	35.	0.	6.	8.	13.	13.	1.	1.	1.
COTL	10176.	10.	1.	1.	1.	1.	1.	1.	1.	1.
COAL, BITUMIN. LIGHT	10208.	10.	1.	1.	1.	1.	1.	1.	1.	1.
FLUORITE	728.	1.	1.	1.	1.	1.	1.	1.	1.	1.
FLUOROPAR	151.	1.	1.	1.	1.	1.	1.	1.	1.	1.
GASOLIN	2921.	1.	1.	1.	1.	1.	1.	1.	1.	1.
IRON ORE	31554.	1.	1.	1.	1.	1.	1.	1.	1.	1.
MANGANESE ORE	183.	1.	1.	1.	1.	1.	1.	1.	1.	1.
NATURAL GAS	4689.	1.	1.	1.	1.	1.	1.	1.	1.	1.
PETROLEUM	378.	1.	1.	1.	1.	1.	1.	1.	1.	1.
SALT	10477.	1.	1.	1.	1.	1.	1.	1.	1.	1.
SAND/GRVEL	134664.	1.	1.	1.	1.	1.	1.	1.	1.	1.
STONE	247756.	1.	1.	1.	1.	1.	1.	1.	1.	1.
SULFUR	382.	1.	1.	1.	1.	1.	1.	1.	1.	1.
FLAX SEED	171.	1.	1.	1.	1.	1.	1.	1.	1.	1.
LUMBER	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
SOYBEAN	87.	1.	1.	1.	1.	1.	1.	1.	1.	1.
WATER	3863.	1.	1.	1.	1.	1.	1.	1.	1.	1.
MISC.	51.	1.	1.	1.	1.	1.	1.	1.	1.	1.
STEAM	44896.	1.	1.	1.	1.	1.	1.	1.	1.	1.
LIMESTONE	95983.	1.	1.	1.	1.	1.	1.	1.	1.	1.
COAL, BY PROD	312834.	1.	1.	1.	1.	1.	1.	1.	1.	1.

BULK MATERIAL REQUIREMENTS FOR TRONBE WALL WATER

YEAR SCENARIO:
INTRODUCTION YEAR = 1985
COMMERCIAL CAPACITY 2000 = 563 M. SR. M

FACTORY	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PROD GROWTH RATE 1976-2000	SOURCE'S % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/TON	NET PERCENT IMPORTED
THRESHOLD LEVELS	50.	10.	2%/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	1529750.	0.	2.	0.	13.	3.	14.
CARBON BLACK	143982.	100. *	2.	0.	12.	0.	0.
CEMENT	5516594.	0.	3.	0.	18.	0.	4.
GLASS, SODA LIM	7807680.	0.	3.	0.	5.	0.	0.
IRON, STEEL	19966678.	1.	3.	0.	16.	14.	10.
FERROMANGANESE	134523.	100. *	2.	0.	9.	0.	93. *
SAND / GRAVEL	11427231.	0.	4.	0.	10.	0.	0.
STONE	22460422.	0.	3.	0.	3.	0.	0.
WATER	76065594.	0.	3.	0.	6.	0.	0.
PLEXID RESIN	38173.	0.	2.	0.	5.	0.	1.
NEOPRENE	119215.	0.	3.	0.	5.	0.	1.
PAINT THINNER	58025.	0.	3.	0.	5.	0.	0.
SODIUM DICHROMA	75960.	0.	3.	0.	5.	0.	0.

RAW MATERIAL REQUIREMENTS OR TROMBE WALL WATER

SOLAR SCENARIO:

INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	ROW	WORLD	MAX % FOR	% U.S.	% U.S.	% FROM	% WORLD	% WORLD, PRESENT	NET	
	MATERIAL	PRODUCTN	SOLAR IN	RESERVES	RESOURCES	LARGEST	RESERVES	RESOURCES IN	PERCENT	
THRESHOLD LEVELS	---	7. %/YR	18.	480.	360.	68.	360.	280.	15.	50.
MATERIALS										
ALUMINUM	9.	3	0	539.	*	28.	34.	190.	129.	90.
BRUXELLE	7775.	77.	0	2239.	*	297.	14.	14.	89.	89.
CHROMITE	84.	3	0	3357.	*	425.	*	17.	66.	66.
CLAY	1612.	1	0	6.	0	1.	6.	1.	6.	6.
COAL	20205.	20.	0	6.	0	1.	1.	1.	10.	10.
COAL BITUM/LIGHT	18342.	18.	0	6.	0	1.	1.	1.	10.	10.
FELDSPAR	726.	7.	0	6.	0	1.	1.	1.	7.	7.
FLUORITE	206.	2.	0	784.	*	151.	22.	200.	129.	129.
Gypsum	265.	2.	0	175.	*	151.	12.	11.	56.	56.
IRON ORE	112842.	11.	0	59.	*	4.	11.	15.	41.	41.
MANGANESE ORE	656.	6.	0	160.	*	277.	11.	93.	160.	160.
NATURAL GAS	653.	6.	0	245.	*	216.	11.	11.	47.	47.
PETROLEUM	921.	9.	0	56.	*	1.	9.	9.	28.	28.
SALT	18784.	18.	0	6.	0	1.	1.	1.	18.	18.
SAND/GRAVEL	16983.	16.	0	6.	0	1.	1.	1.	6.	6.
STONE	22466.	22.	0	6.	0	1.	1.	1.	6.	6.
SULFUR	395.	3.	0	93.	*	0.	16.	16.	16.	16.
FLAX SEED	171.	1.	0	6.	0	0.	1.	1.	0.	0.
LUMBER	2.	0	0	6.	0	0.	1.	1.	0.	0.
SOYBEAN	87.	0	0	1.	0	0.	1.	1.	0.	0.
WATER	78844.	78.	0	17.	0	1.	1.	1.	18.	18.
WCO	181.	1.	0	0.	0	0.	0.	0.	0.	0.
EMM	61356.	61.	0	0.	0	0.	0.	0.	0.	0.
LIMESTONE	29868.	29.	0	1.	0	0.	0.	0.	0.	0.
COAL, BY PROD	312894.	31.	0	1.	0	0.	0.	0.	0.	0.
ELECTRICITY	46832.	46.	0	0.	0	0.	0.	0.	0.	0.

BULK MATERIAL REQUIREMENTS FOR DIRECT GRAIN MASONRY WALL

SOLAR SCENARIO:

INTRODUCTION YEAR: 1985

COMMERCIAL CAPACITY 2000: 500. M SQ. M

FACTORY	MATERIAL USED MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PROD BRIGHT RND 1976-2288	SOLAR'S % OF WORLD PRODUCTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT 1/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	1533000	0.	2	0	13.	3.	14.
CEMENT	123480000	0.	1	1	18.	35.	4.
GLASS, SODA LIM	7812000	0.	1	0	5.	4.	5.
IRON, STEEL	7230754	1.	1	0	16.	4.	16.
FERROMANGANESE	43646	100. *	0	0	9.	0.	99. *
SAND / GRAVEL	255760000	0.	4.	0	10.	1.	0.
STONE	582740000	0.	3	1	3.	3.	0.
NEOPRENE	123900	0.	0	0	5.	0.	1.

RAW MATERIAL REQUIREMENTS FOR DIRECT GRAIN MASONRY WALL

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	ROW MATERIAL USE/	WORLD PRODUCTN RATE	MAX. % FOR ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED
	(1000MT)									
TIMEFOLD LEVELS	1. 2. %/yr	3. %/yr	4. %	5. %	6. %	7. %	8. %	9. %	10. %	11. %
MATERIALS										
ANODES	0.									
BRICKS	7760.		0.	539.	*	28.	34.	193.	0.	56.
CLAYS	17921.		0.	2230.	*	297.	28.	14.	0.	89.
COAL	25661.		0.	0.		0.	10.	9.	1.	1.
COAL, PETROLEUM, LIGHT	18585.		0.	0.		1.	6.	13.	1.	1.
FELDSPAR	727.					0.	10.	12.	1.	1.
FLUORSPAR	166.			703.	*	151.	22.	260.	0.	5.
COPPER	5922.			177.		0.	10.	11.	0.	0.
IRON ORE	41543.			55.		2.	11.	15.	6.	1.
MANGANESE ORE	246.			188.		4.	24.	6.	11.	1.
NATURAL GAS	8235.			246.		277.	30.	93.	0.	0.
PETROLEUM	428.			562.	*	210.	22.	110.	0.	0.
SALT	10493.			0.		0.	5.	0.	0.	1.
SHED/GRVEL	267962.		4.	0.		0.	0.	0.	0.	0.
STONE	502740.		0.	0.		0.	15.	90.	0.	0.
SULFUR	383.			93.		1.	0.	0.	0.	0.
LUMBER	1.			17.		0.	12.	0.	0.	0.
WATER	6557.			0.		2.	0.	0.	0.	0.
MUD	67.			1.		0.	0.	0.	0.	0.
STEM	47619.			0.		0.	16.	0.	0.	0.
LIMESTONE	182696.		3.	7.		0.	5.	0.	0.	2.

BULK MATERIAL REQUIREMENTS FOR LLL SOLAR POND

SOLAR SCENARIO:

INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	MATERIAL MT.	PERCENT SUPPLIED AS BY PRODUCT	WORLD PROD GROWTH RATE 1976-2000	SOL. % OF WORLD CON.PTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/M	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	1267.	6.	*	*	*	*	*
ASBESTOS	199338.	6.6	*	*	*	*	*
CHROMIUM	172.	100.	14.0	12.	12.	14.	14.
COPPER	51571012.	69914.	10.0	14.	14.	14.	14.
COPPER, FIBER	214500.						
GLASS, SOFT LIM	1287800.						
IRON, STEEL	3723924.						
LITHIUM	67.						
FLUOROMANGANESE	23257.		*	*	*	*	*
PORCELAIN	185.						
STONE, GRVEL	139926624.						
STONE	267630520.						
SILICON	6394.						
SILVER	23.						
TIN	200.						
WATER	52975000.						
ZINC	39225.						
GLUE, PHENOL, FOR POLYESTER RESIN	1463.						
PVC PLASTIC	586500.						
KRAFT FIBERS	39127.						
URETHANE	64250.						
NEOPRENE	41430.						
POLYVINYL FLUOR	15470.						
	19175.						

RAW MATERIAL REQUIREMENTS FOR LIL SOLAR FOND

SOLAR SCENARIO:

INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500. M SQ. M

FACTORS	RAW	WORLD	% FOR	% U.S.	% U.S.	% FROM	% WORLD	% WORLD,	PRESENT	NET
	MATERIAL	PRODUCTN	SOLAR IN	RESERVES	RESOURCES	LARGEST	RESERVES	RESOURCES	COSTS IN	PERCENT
THRESHOLD LEVELS	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
MATERIALS										
ACETIC ACID	191.	3.9	0.	548.	*	20.	34.	190.	123.	6.
BRUITE	186.	3.9	0.	2211.	*	295.	29.	14.	89.	4.
BORATE	54.	3.9	0.	11.	*	53.	18.	8.	8.	4.
CLAY	7513.	3.9	0.	0.	*	18.	0.	13.	10.	10.
COAL	9621.	3.9	0.	6.	*	6.	0.	13.	32.	32.
COAL BITUMIN. OIL	2338.	3.9	0.	6.	*	12.	12.	13.	1.	1.
COPPER ORE	15361.	3.9	0.	984.	*	431.	*	85.	24.	0.
FLUORITE	128.	3.9	0.	5.	*	10.	10.	13.	0.	0.
FLUOROCAR.	50.	3.9	0.	782.	*	151.	22.	200.	100.	100.
GYPSUM	2475.	3.9	0.	176.	*	6.	10.	11.	0.	0.
IRON ORE	21488.	3.9	0.	55.	*	7.	11.	15.	0.	0.
LEAD ORE	21.	3.9	0.	77.	*	38.	11.	125.	13.	13.
MANGANESE ORE	122.	3.9	0.	188.	*	4.	24.	6.	0.	0.
MINERAL GAS	4183.	3.9	0.	245.	*	27.	6.	9.	40.	40.
NITROGEN, FIXED	6.	3.9	0.	0.	*	5.	5.	5.	0.	0.
PETROLEUM	235.	3.9	0.	562.	*	210.	22.	115.	0.	0.
SALT	1123.	3.9	0.	0.	*	6.	6.	6.	9.	9.
SAND/GRAVEL	143852.	3.9	0.	372.	*	98.	14.	267.	0.	0.
SILVER ORE	162.	3.9	0.	0.	*	0.	0.	95.	0.	0.
STONE	287636.	3.9	0.	0.	*	0.	0.	73.	0.	0.
SULFUR	24.	3.9	0.	93.	*	1.	15.	154.	0.	0.
TIN ORE	1999.	3.9	0.	4333.	*	1300.	*	29.	0.	0.
ZINC ORE	733.	3.9	0.	146.	*	33.	19.	15.	0.	0.
MILK BYPRODUCTS	6.	3.9	0.	0.	*	0.	26.	0.	0.	0.
LUMBER	129.	3.9	0.	0.	*	0.	12.	0.	0.	0.
SEA WATER	6.	3.9	0.	0.	*	0.	0.	13.	0.	0.
WATER	56665.	3.9	0.	12.	*	0.	16.	0.	0.	0.
WHEAT	6.	3.9	0.	0.	*	0.	16.	0.	0.	0.
MISC.	94.	3.9	0.	0.	*	0.	16.	0.	0.	0.
STEAM	5648.	3.9	0.	0.	*	0.	16.	0.	0.	0.
LIMESTONE	74879.	3.9	0.	0.	*	1.	16.	0.	0.	0.
COAL, BY PROD	593838.	3.9	0.	0.	*	1.	16.	0.	0.	0.
ELECTRICITY	253583.	3.9	0.	0.	*	6.	1.	13.	1.	1.
COAL BYPRODUCT 2	24531.	3.9	0.	0.	*	6.	6.	0.	0.	0.

BULK MATERIAL REQUIREMENTS FOR CHAMBERLAIN - LUMBER KIL

SOLAR SCENARIO:
 INTRODUCTION YEAR - 1985
 CUMULATIVE CAPACITY 2000 - 560. M SQ. M

FACTORS	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY PRODUCT	WORLD PRODN GROWTH RATE 1976-2000	SOLAR'S % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT \$/SM	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. 2/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	5192220	8.	*	1.	13.	10.	**
CH. IRON	2562	100.	*	1.	15.	10.	**
CH. CHROMIUM	207895	6.	1.	1.	31.	10.	**
CH. TIC	1316190	1.	0.	1.	32.	10.	**
GLASS, FIBER	1127280	100.	*	1.	16.	10.	*
GLASS, SOFT LIM	1600247	100.	*	1.	14.	10.	*
IRON, STEEL	85472352	1.	0.	1.	21.	10.	*
LEAD	4192	100.	*	1.	16.	10.	*
CH. CHROMIUM	516352	100.	*	1.	14.	10.	*
NIKEL	102694	100.	*	1.	14.	10.	*
SILICON	4532	1.	0.	1.	16.	10.	*
SILVER	1424	100.	*	1.	21.	10.	*
TIN	7455	100.	*	1.	16.	10.	*
WATER	41632560	1.	0.	1.	16.	10.	*
ZINC	722397	100.	*	1.	16.	10.	*
LUMBER, SOFTWOOD	38002680	1.	0.	1.	16.	10.	*
PHENOLIC RESIN	796355	100.	*	1.	16.	10.	*
PVC PLASTIC	309575	100.	*	1.	16.	10.	*
TEFLON	1494	100.	*	1.	16.	10.	*
COTTON FIBERS	556954	100.	*	1.	16.	10.	*
KRIMET FIBERS	238266	100.	*	1.	16.	10.	*
URETHANE	625155	100.	*	1.	16.	10.	*
EPDM RUBBER	538126	100.	*	1.	16.	10.	*

RAW MATERIAL REQUIREMENTS : OR CHAMBERLAIN - LUMBER KIL.

SOURCE SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500 M SQ. M

FACTORS	1981 MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	MIN. % FOR SOLAR IN ONE YEAR	% U.S. RESERVES WORLD BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD, RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/SM OF SOLAR	NET PERCENT IMPORTED	15.	50.
TIME SCALED LEVELS	1	7.	16.	400.	300.	60.	300.	100.	15.	50.		
MATERIALS												
ALUMINUM	1.											
BRONZE	26910.											
BORON	292.											
CHROMIUM	621.											
CHROME	914.											
COAL	112533.											
COAL, BY-PRODUCT	42999.											
COPPER ORE	203503.											
COPPER, IR	910.											
FLUORITE	1852.											
IRON ORE	486835.											
LEAD ORE	147.											
MANGANESE ORE	2845.											
NATURAL GAS	2037.											
NICKEL ORE	10269.											
NITROGEN, FIXED	0.											
OXYGEN	141.											
PETROLEUM	5584.											
SALT	32426.											
SAND/GRAVEL	7392.											
SILVER ORE	18651.											
SULFUR	1372.											
TIN ORE	74554.											
ZINC ORE	13376.											
COTTON	556.											
MILK BYPRODUCTS	27.											
LUMBER	38490.											
SEA WATER	57.											
WATER	874551.											
MISC.	1520.											
STEAM	239973.											
LIMESTONE	71827.											
COAL, BY-PROD	833887.											
ELECTRICITY	4274689.											
COAL BYPRODUCT 2	378329.											

BULK MATERIAL REQUIREMENTS FOR HONEYWELL CONCENTRATING

SULFUR SODIUM

INTRODUCTION YEAR - 1985

COMBATIVE CAPACITY 2000 - 500. M SQ. M

RH MATERIAL REQUIREMENTS FOR HONEYWELL CONCENTRATING

SOLAR SCENARIO:
INTRODUCTION YEAR - 1985
CUMULATIVE CAPACITY 2000 - 500, M SQ. M

FACTORS	RH	WORLD	WORLD X FOR	X U.S.	X U.S.	X FROM	X WORLD	X WORLD	PRESENT	NET
	MATERIAL	PRODUCTN	SOLAR IN	RESERVES	RESOURCES	LARGEST	RESERVES	RESOURCES	COSTS IN	PERCENT
	USAGE	GROWTH	ONE YEAR	WORLD	CONSUMED	COUNTRY	CONSUMED	CONSUMED	\$/SM OF	IMPORTED
THREE-FIGURE LEVELS	7.	10.	18.	400.	300.	60.	300.	300.	10.	30.
MATERIALS										
ALUMINUM	570.	1861.0	331.	121.	11.	28.	100.	14.	**	**
BRONZE	1861.0	1861.0	331.	330.	301.	9.	100.	100.	**	**
BORITE	331.	331.	121.	121.	11.	11.	100.	100.	**	**
CHROMITE	121.	121.	45.	45.	42.	1.	100.	100.	**	**
CLAY	45.	45.	15.	15.	11.	1.	100.	100.	**	**
COAL	23654.	23654.	22687.5	22687.5	200.	1.	100.	100.	**	**
COAL, PITUM/LIGHT	22687.5	22687.5	10000.0	10000.0	902.0	0.	100.	100.	**	**
COAL, FINE	10000.0	10000.0	14.	14.	10.	0.	100.	100.	**	**
COBALT	14.	14.	3.75	3.75	2.62	0.	100.	100.	**	**
FLUOROPH	3.75	3.75	7960.7	7960.7	784.	0.	100.	100.	**	**
IRON ORE	7960.7	7960.7	12.	12.	56.	7.	100.	100.	**	**
LEAD ORE	12.	12.	1.8	1.8	77.	0.	100.	100.	**	**
LIME	1.8	1.8	462.	462.	408.	0.	100.	100.	**	**
MANGANESE ORE	462.	462.	6.0	6.0	57.	0.	100.	100.	**	**
MERCURY	6.0	6.0	4.88	4.88	384.	0.	100.	100.	**	**
MOLYBDENUM ORE	4.88	4.88	611.	611.	44.	0.	100.	100.	**	**
NATURAL GAS	611.	611.	2719.	2719.	444.	0.	100.	100.	**	**
NICKEL ORE	2719.	2719.	6.0	6.0	57.	0.	100.	100.	**	**
NITROGEN, FIXED	6.0	6.0	1.0	1.0	1.0.	0.	100.	100.	**	**
OXYGEN	1.0	1.0	1.0	1.0	1.0.	0.	100.	100.	**	**
PETROLEUM	1.0	1.0	1.0	1.0	1.0.	0.	100.	100.	**	**
PROPANE	1.0	1.0	1.0	1.0	1.0.	0.	100.	100.	**	**
SALT	1.0	1.0	14771.	14771.	1303.	0.	100.	100.	**	**
SAND/GRVEL	14771.	14771.	1851.0	1851.0	1303.	0.	100.	100.	**	**
SILIC	1851.0	1851.0	341.0	341.0	433.	0.	100.	100.	**	**
TIN ORE	341.0	341.0	416.	416.	147.	0.	100.	100.	**	**
ZINC ORE	416.	416.	1691.0	1691.0	147.	0.	100.	100.	**	**
MILK BYPRODUCTS	1691.0	1691.0	12827.4	12827.4	1466.	0.	100.	100.	**	**
LUMBER	12827.4	12827.4	19822.5	19822.5	1466.	0.	100.	100.	**	**
SEA WATER	19822.5	19822.5	23.8	23.8	1466.	0.	100.	100.	**	**
WATER	23.8	23.8	7342.	7342.	416.	0.	100.	100.	**	**
MISC	7342.	7342.	416.	416.	1466.	0.	100.	100.	**	**
STEAM	416.	416.	1691.0	1691.0	1466.	0.	100.	100.	**	**
LIMESTONE	1691.0	1691.0	12827.4	12827.4	1466.	0.	100.	100.	**	**
COAL, BY PROD	12827.4	12827.4	19822.5	19822.5	1466.	0.	100.	100.	**	**
ELECTRICITY	19822.5	19822.5								

BULK MATERIAL SUMMARY REPORT

SHACOB Mixed System Scenario: Introduction Year - 1985
 Cumulative Capacity by the Year 2000 - 500 M. Sq. M.
 Composed of 9 SHACOB Designs Each at 55.6 M. Sq. M.

THIS REPORT IS FURNISHED ON THESE MATERIALS:
 25 26 27 28 29 30 31 32 33

FACTORY	MATERIAL ITEM	PERCENT SUPPLIED BY PRODUCT	WORLD PROD GROWTH RATE 1976-2000	SOURCE % OF WORLD CONSUMPTION	2 ENCL LARGEST COUNTRY	COST PER UNIT OUTPUT	NET PERCENT IMPORTED
THRESHOLD LEVELS	50.	10.	20. %/yr	10.	35.	15.	50.
MATERIALS							
ALUMINUM	1847663.	0.					
ANTIMONY	195.	100.	*				
ASBESTOS	6258.	0.					
BONITE	16823.	0.					
CAPTAIN	582.	100.	*				
CARBON BLOCK	46379.	100.	*				
CEMENT	21805448.	0.					
CHROMIUM	791.	0.					
COOLER	1303843.	1.					
GLASS, FIBER	94241.	0.					
GLASS, SOFT LHM	6661668.	0.					
GYPSUM	3127.	0.					
IRON + STEEL	192600778.	1.					
LEAD	3204.	12.					
LITHIUM	346.	0.					
MAGNESIUM	706.	30.					
FERROMANGANESE	116361.	100.	*				
MERCURY	36.	2.					
NICKEL	829.	7.					
SAND + GRAVEL	72293486.	0.					
STONE	687023383.	0.					
SILICON	2699.	0.					
SILVER	717.	70.	*				
TIN	15696.	25.					
WATER	37416252.	0.					
ZINC	455758.	25.					
STAINLESS STEEL	16719.	0.					
ALKYL RESIN	9725.	0.					
GLUE, PHENOL, FOR	16298.	0.					
LUMBER, SOFTWOOD	2186235.	0.					
PHENOLIC RESIN	26466.	0.					
PVC PLASTIC	29832.	0.					
RUBBER, SBR	51968.	0.					
SILICONES	64505.	0.					
TEFLON	16803.	0.					
NYLON	1686.	0.					
COTTON FIBERS	728.	0.					
KRAFT FIBERS	312.	0.					
URETHANE	136922.	0.					
ASPHALT	150620.	0.					
NEOPRINE	113614.	0.					
ETHYLENE GLYCOL	246942.	0.					
POLYETHYLENE	488.	0.					
POLYVINYL FLUOR	8347.	0.					
EPDM RUBBER	2977.	0.					
PAINT, THINNER	18701.	0.					
SODIUM BICHROMATE	8447.	0.					
POLYCARBONATE	8347.	0.					
POLYPROPYLENE, G	115556.	0.					
VITREOUS ENAMEL	38341.	0.					

RAW MATERIAL SUMMARY REPORT

SHACOB Mixed System Scenario: Introduction Year - 1985
 Cumulative Capacity by the Year 2000 - 500 M. Sq. M.
 Composed of 9 SHACOB Designs Each at 55.6 M. Sq. M.

THIS REPORT IS A SUMMARY OF THESE 9 DESIGNS:
 25 26 27 28 29 30 31 32 33

FACTORIES	RAW	WORLD	MIN. % FOR	2 U.S.	% U.S.	% FROM	% WORLD	% WORLD,	PRESENT	NET
	MATERIAL	PRODUCTN	ONE YEAR	RESOURCES	RESOURCES	LEAST	RESOURCES	RESOURCES	COSTS IN	PERCENT
THRESHOLD LEVELS	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
MATERIALS										
ANTIMONY ORE	29	1210	*	1129	*	22	75	64	4	*
ASBESTOS	26	539	*	298	*	34	190	14	5	**
BAUXITE	9779	2235	*	298	*	59	18	121	10	**
BORATE	23	11	*	298	*	10	17	11	1	*
BUTANE	53	20	*	424	*	27	16	6	1	*
CHROMITE	19	3351	*	424	*	18	11	11	1	*
CLAYS	3376	6	*	1	*	10	11	11	1	*
COAL	31189	6	*	439	*	10	11	11	1	*
COMB. BITUMULIGHT	17666	1832	*	439	*	10	11	11	1	*
COPPER ORE	34271	5	*	151	*	11	11	11	1	*
FELDSPAR	628	784	*	151	*	11	11	11	1	*
FLUORSPAR	325	1726	*	151	*	11	11	11	1	*
GYPSUM	1051	222	*	151	*	11	11	11	1	*
IRON ORE	112458	1984	*	573	*	11	11	11	1	*
LEAD ORE	606	245	*	277	*	11	11	11	1	*
LITHIUM ORE	482	4431	*	5317	*	11	11	11	1	*
MANGANESE ORE	657	5626	*	218	*	11	11	11	1	*
MERCURY	1	31	*	92	*	11	11	11	1	*
NATURAL GAS	2628	63	*	8	*	11	11	11	1	*
NICKEL ORE	169	4369	*	1311	*	11	11	11	1	*
NITROGEN, FIXED	33	148	*	34	*	11	11	11	1	*
OXYGEN	33	148	*	0	*	11	11	11	1	*
PETROLEUM	1976	148	*	0	*	11	11	11	1	*
SPILT	11724	148	*	0	*	11	11	11	1	*
SAND/GRANUL	70585	148	*	0	*	11	11	11	1	*
SILVER ORE	5111	148	*	0	*	11	11	11	1	*
SODIUM NITRATE	1	148	*	0	*	11	11	11	1	*
STONE	88783	148	*	0	*	11	11	11	1	*
SULFUR	513	148	*	0	*	11	11	11	1	*
TIN ORE	156063	148	*	0	*	11	11	11	1	*
ZINC ORE	8217	148	*	0	*	11	11	11	1	*
COTTON	1	148	*	0	*	11	11	11	1	*
FLAX SEED	50	148	*	0	*	11	11	11	1	*
MILK BYPRODUCTS	1	148	*	0	*	11	11	11	1	*
LUMBER	22891	148	*	0	*	11	11	11	1	*
SEA WATER	173723	148	*	0	*	11	11	11	1	*
SOYBEAN	28	148	*	0	*	11	11	11	1	*
WATER	97688	148	*	0	*	11	11	11	1	*
WHEAT	565	148	*	0	*	11	11	11	1	*
MISC.	768	148	*	0	*	11	11	11	1	*
STEAM	71634	148	*	0	*	11	11	11	1	*
LIMESTONE	51586	148	*	0	*	11	11	11	1	*
COAL, BY PROD	289934	148	*	0	*	11	11	11	1	*
ELECTRICITY	1107393	148	*	0	*	11	11	11	1	*
COAL BYPRODUCT	81058	148	*	0	*	11	11	11	1	*
PETROLEUM BYPRO	7682	148	*	0	*	11	11	11	1	*

BULK MATERIAL SUMMARY REPORT

SHACOB Mixed System Scenario: Introduction Year - 1985
Cumulative Capacity by the Year 2000 - 1000 M. Sq. M.
Composed of 9 SHACOB Designs Each at 111.1 M. Sq. M.

THIS REPORT IS A SUMMARY OF THESE 9 DESIGNS:
 25 26 27 28 29 30 31 32 33

FACTORS	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PROD GROWTH RATE 1975-2000	SOURCE'S % OF WORLD DESCRIPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT	NET PERCENT IMPORTED
THRESHOLD LEVELS	---	50.	10. 2.7/8	10.	35	15.	50.
MATERIALS							
ALUMINUM	3688686	0.					14.
ANTIMONY	389	100. *					55.
ASBESTOS	12483	0.					90.
BENTONITE	21867	0.					19.
COPPER	1082	100. *					57.
CARBON BLOCK	92956	100. *					0.
CEMENT	43532458	0.					4.
CHROMIUM	1586	0.					100.
COFFEE	3106096	1					45.
GLASS, FIBER	1826068	0.					5.
GLASS, SODA LHM	13299237	0.					32.
Gypsum	6243	0.					16.
IRON, STEEL	38402276	1					13.
LCD	18276	13					1.
LITHIUM	1876	0.					0.
MAGNESIUM	1409	30					99.
FERROMANGANESE	232383	100. *					55.
MERCURY	72						**
NICKEL	1855						75.
GRANITE, GRAVEL	144326912						0.
STONE	177686764	0.					46.
SILICON	5388	0.					35.
SILVER	1432	70					*
TIN	36138	25					85.
WATER	74698726						15.
ZINC	909876	25					15.
STAINLESS STEEL	21408	0.					15.
ALKYL RESIN	19414						1.
GLUE, PHENOL, FOR	32538						1.
LUMBER, SOFTWOOD	4361607	0.					1.
PHENOLIC RESIN	50838	0.					1.
PVC PLASTIC	49973	0.					1.
RUBBER, SBR	103789	0.					1.
SILICONE	128779						1.
TEFLON	33945	0.					1.
NYLON	3287	0.					1.
COTTON FIBERS	1453	0.					1.
KRAFT FIBERS	823						1.
URETHANE	273352						1.
RESIN	300699	0.					1.
NEOPRENE	225622						1.
ETHYLENE GLYCOL	492995	0.					1.
POLYETHYLENE	574						1.
POLYVINYL FLUOR	16663	0.					1.
EPDM RUBBER	5942	0.					1.
PAINT, THINNER	37335	0.					1.
SODIUM DICROMATE	16863	0.					1.
POLYCARBONATE	16663	0.					1.
POLYPROPYLENE G	230696	0.					1.
VIETREOUS ENAMEL	76543	0.					1.

RAW MATERIAL SUMMARY REPORT

SHACOB Mixed System Scenario: Introduction Year - 1985
Cummulative Capacity by the Year 2000 - 1000 M. Sq. M.
Composed of 9 SHACOB Designs Each at 111.1 M. Sq. M.

THIS REPORT IS A SUMMARY OF THESE 9 DESIGNS:
 25 26 27 28 29 30 31 32 33

FACTORS	RAW MATERIAL USE/RE (1000MT)	WORLD PRODUCTN GROWTH RATE	MAX. X FOR SOLAR IN ONE YEAR WORLD	% U.S. RESERVES BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/MT OF SOLAR	NET PERCENT IMPORTED
THRESHOLD LEVELS	--	7. X/YR	10.	400.	300.	60.	300.	200.	15.	50.
MATERIALS										
ANTIMONY ORE	41.		0.	1210.	*	1120.	*	22.	70.	0.
ASBESTOS	13.		0.	539.	*	28.	*	34.	120.	0.
BAUXITE	19523.		1.	2250.	*	301.	*	26.	14.	10.
BORITE	474.		1.	11.	*	8.	*	53.	16.	10.
BUTANE	118.		0.	28.	*	2.	*	18.	12.	10.
CHROMITE	37.		0.	3352.	*	424.	*	27.	17.	10.
CLAYS	6739.		0.	6.	*	1.	*	6.	13.	10.
COAL	62089.		0.	6.	*	1.	*	6.	13.	10.
COAL BITUM/LIGHT	33208.		0.	6.	*	1.	*	6.	13.	10.
CO. M.R. ORE	601100.		0.	16023.	*	417.	*	10.	12.	10.
FELDSPAR	1254.		0.	706.	*	151.	*	22.	261.	0.
FLUORSPAR	650.		0.	126.	*	57.	*	18.	11.	0.
GYPSUM	2000.		0.	556.	*	38.	*	11.	15.	0.
IRON ORE	224532.		0.	656.	*	19.	*	1.	126.	0.
LEAD ORE	1217.		0.	656.	*	19.	*	1.	49.	0.
LITHIUM ORE	812.		0.	106.	*	573.	*	1.	133.	0.
MANGANESE ORE	1311.		0.	390.	*	277.	*	3.	23.	0.
MERCURY	2.		0.	443.	*	5318.	*	0.	36.	0.
NATURAL GAS	5247.		0.	160.	*	6.	*	0.	110.	0.
NICKEL ORE	337.		0.	395.	*	99.	*	0.	200.	0.
NITROGEN FIXED	0.		0.	371.	*	6.	*	0.	95.	0.
OXYGEN	75.		0.	562.	*	210.	*	0.	15.	0.
PETROLEUM	3946.		0.	562.	*	210.	*	0.	110.	0.
SALT	23407.		0.	0.	*	0.	*	0.	0.	0.
SAND/GRAVEL	150020.		0.	0.	*	0.	*	0.	400.	0.
SILVER ORE	18200.		0.	371.	*	99.	*	0.	100.	0.
SODIUM NITRATE	2.		0.	0.	*	0.	*	0.	95.	0.
STONE	177007.		0.	94.	*	1321.	*	0.	12.	0.
SULFUR	1822.		0.	4405.	*	34.	*	0.	10.	0.
TIN ORE	261382.		0.	158.	*	0.	*	0.	10.	0.
ZINC ORE	16405.		0.	0.	*	0.	*	0.	10.	0.
COTTON	1.		0.	0.	*	0.	*	0.	1.	0.
COTTON SEED	110.		0.	0.	*	0.	*	0.	1.	0.
MILK BYPRODUCTS	2.		0.	0.	*	0.	*	0.	1.	0.
WILDER	4409.		0.	0.	*	0.	*	0.	1.	0.
SEA WATER	346020.		0.	0.	*	0.	*	0.	0.	0.
SODIUM	56.		0.	0.	*	0.	*	0.	0.	0.
WATER	1950000.		0.	0.	*	0.	*	0.	1.	0.
MINE	0.		0.	0.	*	0.	*	0.	0.	0.
MISC.	1524.		0.	0.	*	0.	*	0.	1.	0.
STEARIN	143910.		0.	0.	*	0.	*	0.	1.	0.
LIMESTONE	182986.		0.	0.	*	0.	*	0.	1.	0.
COAL BY PROD	419412.		0.	0.	*	0.	*	0.	1.	0.
ELECTRICITY	2210000.		0.	0.	*	0.	*	0.	1.	0.
COAL BYPRODUCT 2	161824.		0.	0.	*	0.	*	0.	1.	0.
PETROLEUM BYPRO	15336.		0.	563.	*	210.	*	0.	110.	0.

BULK MATERIAL SUMMARY REPORT

AIPH Mixed System Scenario: Introduction Year - 1985
 Cumulative Capacity by the Year 2000 - 500 M. Sq. M.
 Composed of 3 AIPH Designs Each at 166.7 M. Sq. M.

THIS REPORT IS A SUMMARY OF THE 3 DESIGNS:
 40 41 42

ITEMS	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY-PRODUCT	WORLD PROD GROWTH RATE 1976-2000	SOIL & S. % OF WORLD CONSUMPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT	NET PERCENT IMPORTED
THRESHOLD LEVELS	50.	10.	10. %/YR	10.	35.	15.	50.
MATERIALS							
ALUMINUM	2926719.	0.					14.
ARMEDS	64441.	0.					52.
ASBESTOS	913.	100.	*				4.
CHROMIUM	17224718.	0.					45.
CHLORINE	74512.	0.					45.
COPPER	715867.	1.					10.
GLASS, FIBER	636828.	0.					16.
GLASS, BOTTLE	3883816.	0.					16.
IRON, STEEL	34376328.	1.					16.
LITHIUM	1625.	100.	*				16.
REFINERIUM	168.						16.
TECHNEUMINUM	268079.	100.	*				16.
URANIUM	4.						16.
URANIUM	214.						16.
NICKEL	48328.						16.
PORCELAIN	83.						16.
SAND & GRAVEL	46754236.						16.
STONE	69358264.						16.
SILICON	7335.						16.
SILVER	587.						16.
SULFUR	74.						16.
TIN	3826.						16.
WATER	31952642.						16.
ZINC	318128.						16.
STAINLESS STEEL	39282.						16.
ACRYLIC	28221.						16.
EPONYX RESIN	844449.						16.
GLASS, PLASTIC	488.						16.
PLASTIC	45279112.						16.
PHENOLIC RESIN	268352.						16.
POLYESTER RESIN	167167.						16.
PVC PLASTIC	118535.						16.
TEFLON	3774.						16.
COTTON FIBERS	185689.						16.
ARMFIB FIBERS	101674.						16.
URETHANE	222776.						16.
NEOPRENE	59824.						16.
PITCH	234603.						16.
POLYVINYL FLUOR	6184.						16.
EPDM RUBBER	79688.						16.

RAW MATERIAL SUMMARY REPORT

AIPH Mixed System Scenario: Introduction Year - 1985
 Cumulative Capacity by the Year 2000 - 500 M. Sq. M.
 Composed of 3 AIPH Designs Each at 166.7 M. Sq. M.

THIS REPORT IS A SUMMARY OF THESE 3 DESIGNS:
 40 41 42

FACTORS	RAW MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	MAX % FOR SOLAR IN ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/OR OF SOLAR	NET PERCENT IMPORTED
THREEFOLD LEVELS	---	7. %/YR	18.	460.	300.	60.	300.	200.	15.	50.
MATERIALS										
ASBESTOS	66.			539.	*	28.	190.	129.	90.	*
BRUXITE	15241.			2249.	*	300.	14.	9.	88.	*
BORATE	227.			11.		0.	10.	14.	67.	*
CHROMITE	249.			3373.	*	427.	17.	17.	67.	*
CLAYS	2866.			0.		0.	8.	8.	15.	*
COAL	48700.			6.		1.	15.	15.	41.	*
COAL BITUMEN/LIGHT	89248.			6.		1.	13.	13.	41.	*
COPPER ORE	157191.			993.	*	425.	10.	10.	36.	*
FLUOCSHIR	359.			55.		0.	10.	10.	36.	*
FLUOSILICIR	121.			705.	*	151.	10.	11.	36.	*
GYPSUM	827.			175.		0.	10.	11.	36.	*
IRON ORE	196161.			56.		38.	11.	11.	36.	*
LEAD ORE	54.			77.		0.	11.	12.	36.	*
LIME	9.			8.		0.	11.	11.	36.	*
MANGANESE ORE	1147.			100.		572.	19.	19.	36.	*
MERCURY	9.			384.		0.	16.	16.	36.	*
MOLYBDENUM ORE	162.			44.		277.	16.	16.	36.	*
NATURAL GAS	2281.			245.		5345.	16.	16.	36.	*
NICKEL ORE	4338.			4454.	*	0.	16.	16.	36.	*
NITROGEN, FIXED	6.			0.		210.	15.	15.	36.	*
OXYGEN	42.			562.	*	23.	15.	15.	36.	*
PETROLEUM	2211.			191.		0.	14.	14.	36.	*
PROPANE	68.			372.		0.	15.	15.	36.	*
SALT	16137.			93.		0.	15.	15.	36.	*
SAND/GRVEL	58369.			0.		1.	15.	15.	36.	*
SILVER ORE	3612.			4348.	*	1382.	34.	34.	36.	*
STONE	69350.			147.		0.	15.	15.	36.	*
SULFUR	784.			47.		0.	15.	15.	36.	*
TPN OME	36266.			17.		0.	15.	15.	36.	*
ZINC ORE	5855.			56.		0.	15.	15.	36.	*
COTTON	185.			1.		0.	15.	15.	36.	*
MILK BYPRODUCTS	9.			1.		0.	15.	15.	36.	*
LUMBER	12966.			1.		0.	15.	15.	36.	*
SEA WATER	79.			1.		0.	15.	15.	36.	*
WATER	313488.			1.		0.	15.	15.	36.	*
WHEAT	9.			1.		0.	15.	15.	36.	*
MISC.	679.			1.		0.	15.	15.	36.	*
STEAM	118489.			1.		0.	15.	15.	36.	*
LIMESTONE	55621.			1.		0.	15.	15.	36.	*
COAL, BY PROD	519677.			1.		0.	15.	15.	36.	*
ELECTRICITY	1578624.			1.		0.	15.	15.	36.	*
COAL BYPRODUCT 2	131883.			1.		0.	15.	15.	36.	*

BULK MATERIAL SUMMARY REPORT

AIPH Mixed System Scenario: Introduction Year - 1985
 Cumulative Capacity by the Year 2000 - 1000 M. Sq. M.
 Composed of 3 AIPH Designs Each at 333.3 M. Sq. M.

THIS REPORT IS A SUMMARY OF THE 3 SYSTEMS:
 40 41 42

FACTORS	MATERIAL USAGE MT.	PERCENT SUPPLIED AS BY PRODUCT	WORLD PROGN GROWTH RATE 1970-2000	SOILS % OF WORLD CONEPTION	% FROM LARGEST COUNTRY	COST PER UNIT OUTPUT	NET PERCENT IMPORTED
THRESHOLD LEVELS	50.	10.	2.2%/YR	10.	25.	15.	50.
MATERIALS							
ALUMINUM	5853437.	0.			13.		14.
ASBESTOS	128882.	0.			49.		45.
CERAMIC	1826.				15.		15.
CIMENT	34440113.	100.			12.		12.
COPPER	115203.	0.			12.		12.
COPPER	1431725.				10.		10.
GLASS, FIBER	1781548.				11.		11.
GLASS, SODA LIM	2712192.				26.		26.
IRON, STEEL	60751656.	1.			19.		19.
LEAD	32.0.				16.		16.
MAGNESIUM	215.				23.		23.
MANGANESE	416153.	100.			19.		19.
MERCURY	9.				14.		14.
MOLYBDENUM	420.				15.		15.
MICHT	800739.				21.		21.
PORCELAIN	157.				14.		14.
STONE ! GRAVEL	935082172.				14.		14.
STONE	138700528.				15.		15.
SILICON	14671.				21.		21.
SILVER	1014.				14.		14.
SULFUR	147.				15.		15.
TIN	6051.				21.		21.
WATER	63905884.				14.		14.
ZINC	636857.				15.		15.
STAINLESS STEEL	76554.				14.		14.
ACRYLIC	56443.				15.		15.
EPONYX RESIN	168897.				14.		14.
GLUE, PHENOL, FOR LUMBER, SOFTWOOD	977.				15.		15.
PALMOLIC RESIN	25386684.				14.		14.
POLYESTER RESIN	536785.				15.		15.
PVC PLASTIC	334334.				14.		14.
TEFLON	237869.				15.		15.
COTTON FIBERS	7547.				14.		14.
KRAFT FIBERS	371377.				15.		15.
URETHANE	282147.				14.		14.
NEOPRINE	445551.				15.		15.
PITCH	118049.				14.		14.
POLYVINYL FLUOR	459282.				15.		15.
EPDM RUBBER	12869.				14.		14.

RAW MATERIAL SUMMARY REPORT

AIPH Mixed System Scenario: Introduction Year - 1985
 Cumulative Capacity by the Year 2000 - 1000 M. Sq. M.
 Composed of 3 AIPH Designs Each at 333.3 M. Sq. M.

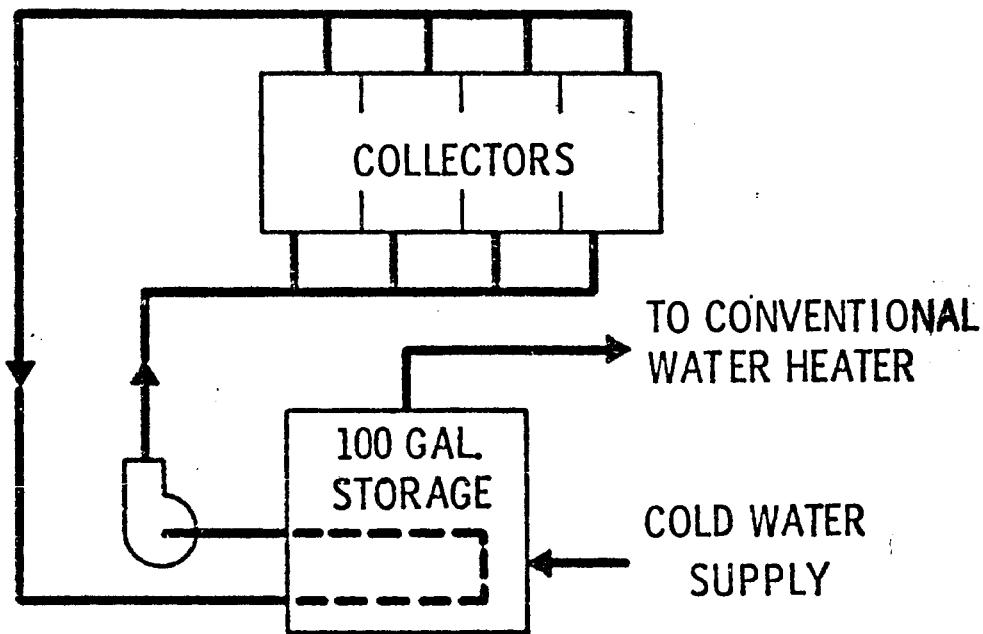
THIS REPORT IS A SUMMARY OF THESE 3 DESIGNS:
 40 41 42

FACTORS	RAW MATERIAL USAGE (1000MT)	WORLD PRODUCTN GROWTH RATE	% FOR SOLAR IN ONE YEAR	% U.S. RESERVES CONSUMED BY 2000	% U.S. RESOURCES CONSUMED BY 2000	% FROM LARGEST COUNTRY NON-US	% WORLD RESERVES CONSUMED BY 2000	% WORLD RESOURCES CONSUMED BY 2000	PRESENT COSTS IN \$/M. OF SOLAR	NET PERCENT IMPORTED
THRESHOLD LEVELS	7. %/YR	10.	400.	300.	60.	300.	300.	300.	15.	50.
MATERIALS										
ALUMINUM	131.									
BAUXITE	30482.									
BOPATE	445.									
CHROMITE	496.									
CLAYS	5736.									
COAL	97403.									
COAL BITUM/LIGHT	178496.									
COPPER ORE	214982.									
FLUORITE	717.									
FLUOROID	300.									
GYPSUM	1654.									
IRON ORE	392263.									
LEAD ORE	169.									
LIME										
MANGANESE ORE	2293.									
MERCURY										
MOLYBDENUM ORE	321.									
NATURAL GAS	4563.									
NICKEL ORE	9676.									
NITROGEN, FIXED										
OXYGEN	94.									
PETROLEUM	4421.									
PROPANE	131.									
SALT	32274.									
SILICOMAGNET	101738.									
SILVER ORE	7223.									
STONE	138701.									
SULFUR	1568.									
TIN ORE	68513.									
ZINC ORE	11765.									
COTTON	371.									
MILK BYPRODUCTS	18.									
LUMBER	25801.									
SEA WATER	159.									
WATER	626968.									
HEAT	0.									
MISC.	1356.									
STEAM	236978.									
LIMESTONE	119944.									
COAL, BY PROD	1042354.									
ELECTRICITY	3147247.									
COPP. BYPRODUCT 2	267765.									

APPENDIX B

SOLAR SYSTEMS DESIGN CHARACTERIZATION AND MATERIAL REQUIREMENTS*

by


T. B. Correy
W. E. Gurwell
E. I. Husa
J. O. Vining

		<u>Page</u>
SHACOB and AIPH System Identifications		B-1
Design Characterizations and Material Requirements		
<u>Design Number</u>	<u>Short Title</u>	
<u>SHACOB</u>		
25	SUNWORKS RES HW	B-2
26	SOLARON-RES HT	B-6
27	SOLARON-RES HT + HW	B-10
28	AMER HELIOTHERMAL H + HW	B-14
29	KTA AND ECOSOL HEAT PUMP SY	B-18
30	RAYPAK - HT + COOL + HW	B-21
31	TROMBE WALL CONCRETE	B-25
32	TROMBE WALL WATER	B-28
33	DIRECT GAIN MASONRY WALL	B-31
<u>AIPH</u>		
40	LLL SOLAR POND	B-34
41	CHAMBERLAIN - LUMBER KILN	B-38
42	HONEYWELL CONCENTRATING	B-42
Energy Contribution Calculations		B-46

*Material Requirements are in kilograms

SHACOB and AIPH System Identifications

Design Number	Short Title	Full Title
<u>SHACOB</u>		
25	SUNWORKS RES HW	DOMESTIC HOT WATER-SUNWORKS COLLECTOR
26	SOLARON-RES HT	SPACE HEATING - SOLARON SYSTEM
27	SOLARON-RES HT + HW	SPACE HEATING AND DOMESTIC HOT WATER - SOLARON
28	AMER HELIOTHERMAL H + HW	SPACE HEATING AND DOMESTIC HOT WATER - AMERICAN HELIOTHERMAL
29	KTA AND ECOSOL HEAT PUMP SY	SPACE HEATING AND DOMESTIC HOT WATER - KTA AND ECOSOL HEAT PUMP SYSTEM
30	RAYPAK - HT + COOL + HW	SPACE HEATING AND COOLING AND DOMESTIC HOT WATER - RAYPAK COLLECTOR
31	TROMBE WALL CONCRETE	PASSIVE SPACE HEATING - CONCRETE TROMBE WALL
32	TROMBE WALL WATER	PASSIVE SPACE HEATING - WATER-TANK TROMBE WALL
33	DIRECT GAIN MASONRY WALL	PASSIVE SPACE HEATING - DIRECT GAIN, MASONRY WALLS
<u>AIPH</u>		
40	LLL SOLAR POND	PROCESS HOT WATER, URANIUM MILLING - LLL SOLAR POND
41	CHAMBERLAIN - LUMBER KILN	PROCESS HEAT, LUMBER KILN - CHAMBERLAIN COLLECTORS
42	HONEYWELL CONCENTRATING	PROCESS STEAM, TEXTILE DRYING - HONEYWELL CONCENTRATING COLLECTORS

DOMESTIC HOT WATER
SUNWORKS COLLECTORS
AT
MANHATTAN, KANSAS

THIS SYSTEM PROVIDES ABOUT 75 PERCENT OF THE DOMESTIC HOT WATER NEEDS FOR A TYPICAL FAMILY OF FOUR IN A MILD CLIMATE. THE 74 SQUARE FEET OF SUNWORKS COLLECTORS SUPPLY HEAT TO A 100 GALLON STORAGE TANK WHICH IN TURN SUPPLIES HOT WATER DIRECTLY TO THE HOME OR IF NECESSARY TO A CONVENTIONAL WATER HEATER.

TECHNOLOGY	SHACOB
CAPACITY	18 MJ/HOUR
APPLICATION	DOMESTIC HOT WATER
LOCATION	MANHATTAN, KANSAS
INSULATION	5.5 GJ/SQUARE FEET-YEAR
SOLAR CONTRIBUTION	14 GJ/YEAR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	7.14 N·M
COLLECTOR AREA	5 TO 99 DEGREES C
OPERATING TEMPERATURE	GLYCOL AND WATER
ENERGY TRANSPORT MEDIUM	WATER
STORAGE TYPE	300 KG
STORAGE CAPACITY	

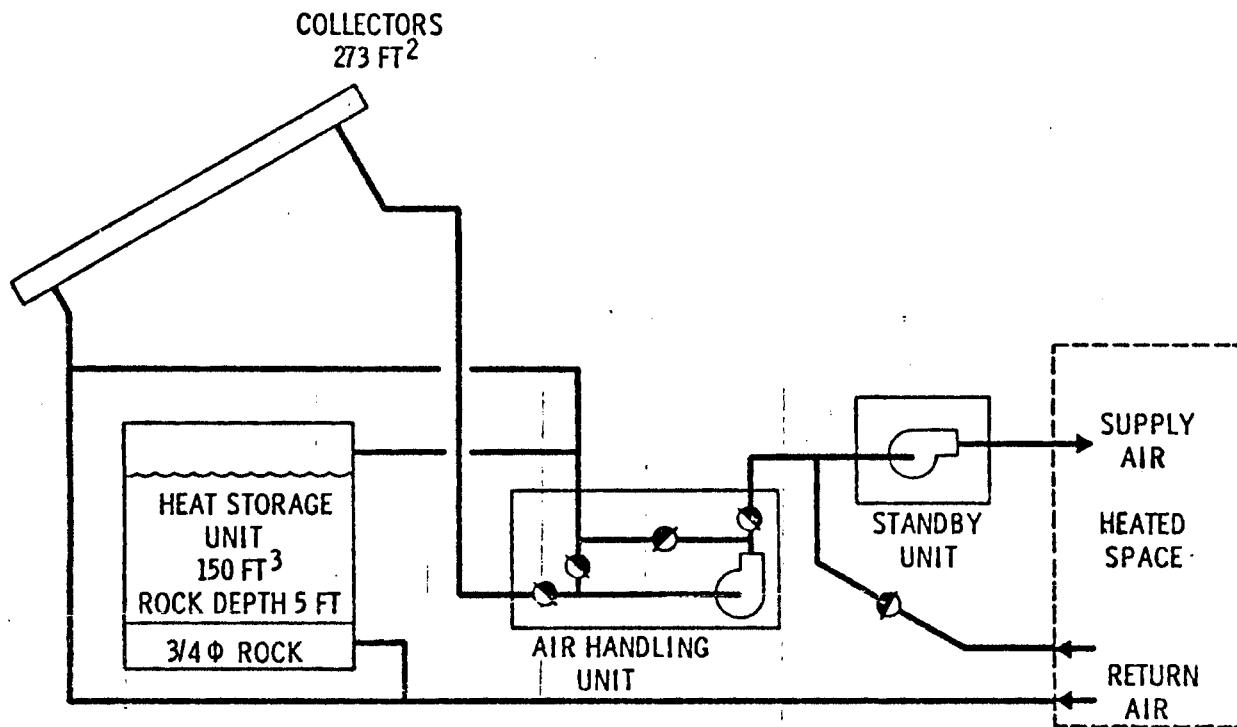
MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR - SUNWORKS SELECTORS NO. 10-1711	
12. 91	MISCELLANEOUS NUTS, BOLTS, RIVETS	CARBON STEEL
12. 92	GLAZING	SODA LIME GLASS
12. 93	ABSORBER	COPPER
12. 94	ENERGY TRANSPORT	COPPER
12. 95	INSULATION	GLASS WOOL
12. 97	FRAME	ALUMINUM
12. 98	SEALS	NEOPRENE SILICONE
13.	ENERGY TRANSPORT	
13. 01	MISCELLANEOUS	CARBON STEEL 53-50 SOLDER ANTIMONY TIN SOLDER
13. 02	PIPE AND FITTINGS	COPPER BRASS STAINLESS STEEL
13. 03	INSULATION	POLYURETHANE
13. 04	TRANSPORT FLUID	ETHYLENE GLYCOL WATER
13. 05	SUPPORTS	NAILS- CARBON STEEL
13. 06	SEALANTS	TEFLON
13. 07	VALVES	COPPER
13. 08	PUMPS	CAST IRON CARBON STEEL RUBBER
14.	ENERGY CONVERSION	
14. 02	HEAT EXCHANGER	COPPER NICKEL CHROMIUM

15. ENERGY STORAGE

15.83 STORAGE TANK

CARBON STEEL	57.9
CONCRETE	74.4
GLASS WOOL	4.4
WATER	388.8


17. ENERGY SYSTEM CONTROLLER

17.82 METERS, SWITCHES, TERMINAL BOARDS

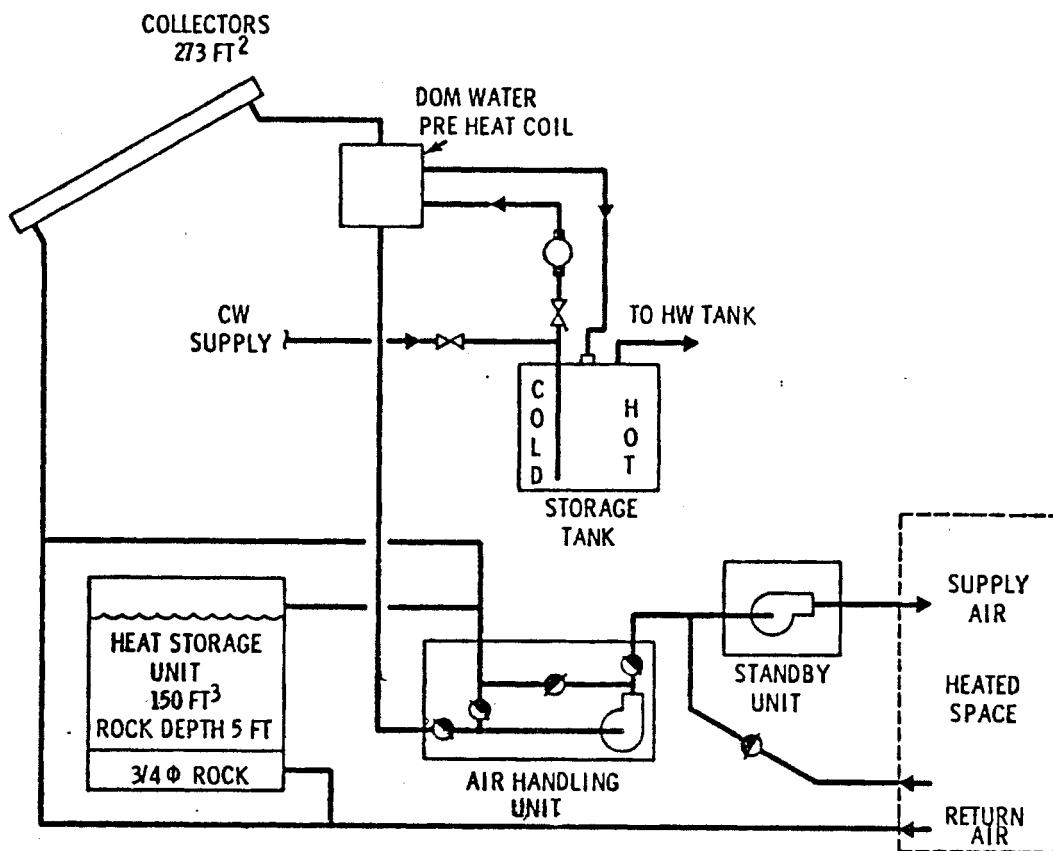
COPPER	1.1
60-40 SOLDER	0.23
PHENOLIC	2.3

FOOTNOTES

- 12.07 - Estimated 0.7#/ft for aluminum exterior frame and cap.
- 12.08 - Assumed 2.25#/collector for neoprene. Estimated use of silicone sealant.
- 13.01 - Estimated weight of teflon tape, pipe anchors and solder.
- 13.02 - 1/2 inch ID copper pipe 100 feet.
 - 1 to 1/2 inch ID cu pipe adapters (8).
 - 1/2 inch ID cu T's (12).
 - 1/2 inch ID cu Els (12).
 - 1/2 inch ID cu cross El (1).
 - 1/2 inch brass unions (6).
- Estimated weights of air vents, pressure gages and thermometers.
- 13.05 - Used 2 x 4's for base shoe top and bottom with sufficient bracing to obtain the desired tilt angle on the collectors.
- 13.06 - Assumed use of 1 roll of Teflon tape for pipe joints.
- 13.07 - Assumed all valves are 1/2 inch brass with estimated weights.
- 13.08 - Expansion Tanks (2 required) 14 ID x 16 long x 16 gage galvanized steel. Assumed weight.

SPACE HEATING
SOLARON SYSTEM
AT
WASHINGTON, D. C.

THIS SYSTEM PROVIDES SOLAR ASSISTED SPACE HEATING WITH ROCK BED HEAT STORAGE. THE 273 SQUARE FOOT COLLECTORS ARE SOLARON SERIES 2000, AIR TYPE, COLLECTORS. THE AIR HANDLING UNIT CONTAINS ALL OF THE AIR MOVING AND TEMPERATURE CONTROL HARDWARE.


TECHNOLOGY	SHACOB
CAPACITY	48 MJ/MR.
APPLICATION	SPACE HEATING
LOCATION	WASHINGTON, D. C.
INSULATION	5.5 GJ/M²M-YEAR
SOLAR CONTRIBUTION	27 GJ/YEAR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	
COLLECTOR AREA	25.4 M²M
OPERATING TEMPERATURE	
ENERGY TRANSPORT MEDIUM	AIR
STORAGE TYPE	ROCK
STORAGE CAPACITY	.5 2 MT

MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR - SOLARON SERIES 2000		
12.01	MISCELLANEOUS	SOFT WOOD CARBON STEEL	49.4 73.5
12.02	GLAZING	SODA LIME GLASS	537.0
12.03	ABSORBER	CARBON STEEL VITREGUS ENAMEL	78.8 8.7
12.04	DUCT	CARBON STEEL	78.5
12.05	INSULATION	GLASS WOOL	41.8
12.07	FRAME	CARBON STEEL	186.0
12.08	SEALS	BUTYL RUBBER SILICONE	6.4 6.4
13.	ENERGY TRANSPORT		
13.02	DUCT	CARBON STEEL ZINC	441.0 71.0
13.03	INSULATION	GLASS WOOL	40.0
13.08	FANS	COPPER CARBON STEEL BRASS POLYCARBONATE	5.0 5.00 5.00 5.00
15.	ENERGY STORAGE		
15.02	ROCK BED	PLYWOOD SOFTWOOD GLASS WOOL CARBON STEEL SAND AND GRAVEL	186.0 115.0 35.0 3.0 6200.0
17.	ENERGY SYSTEM CONTROL		
17.02	SWITCHES, METERS ETC.	COPPER POLYCARBONATE PHENOLIC	8.5 8.50

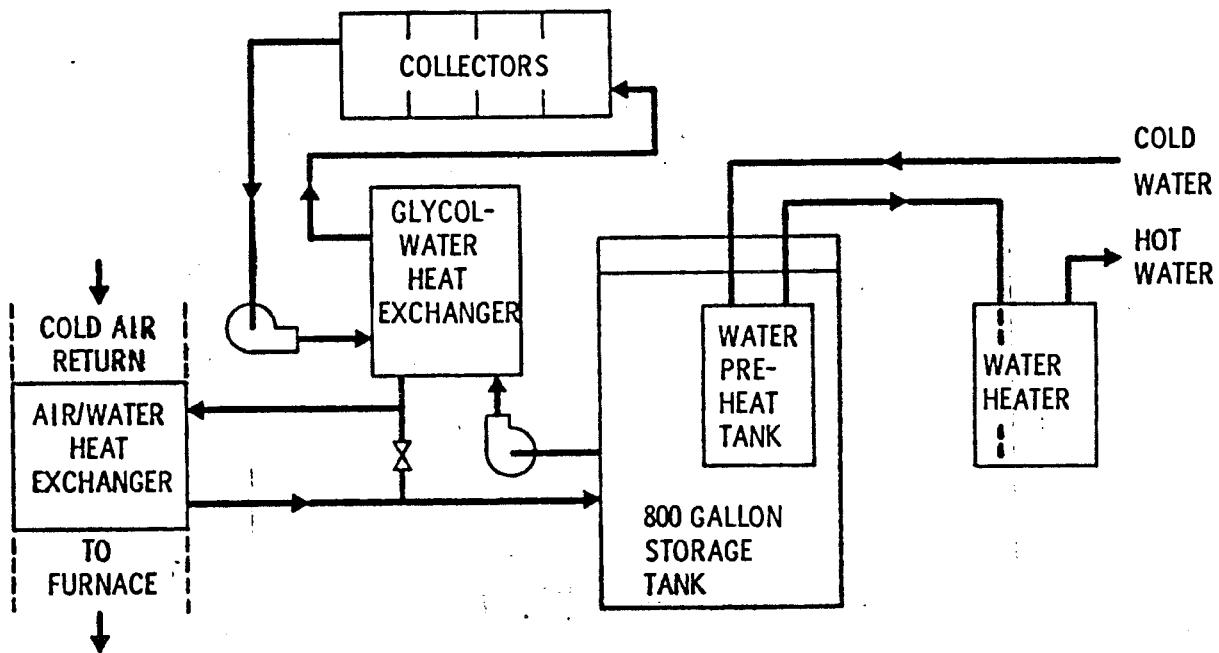
FOOTNOTES

- 12.01 - Wood nailer frame-assume 1-1/2 x 7 1/8 inches x 68 feet of lumber.
- 13.02 - Assumed 0.16 pound zinc per ft^2 of sheet metal. Sheet metal is 24 gage. Seventy-nine linear feet of 12 x 14 inch duct 13 linear feet 12 inch diameter duct. Eighteen linear feet of 14 inch diameter duct and 8 linear feet of 12 x 20 inch duct.
- 15.02 - Built from 2 x 4 studs with a 5/8 inch plywood inner wall and a 1/4 inch outer wall. To form the base, 2 x 6's are used. A steel screen holds rocks from falling into base.
- 17.02 - Assumed 3 pounds of controls in steel, copper, plastic phenolic, assorted things. Not defined now.

SPACE HEATING AND DOMESTIC HOT WATER
SOLARON
AT
WASHINGTON, D. C.

THE 273 SQUARE FOOT OF SOLARON SERIES 2000, AIR TYPE COLLECTORS, PROVIDES SOLAR ASSISTED SPACE HEATING AND DOMESTIC WATER PREHEAT. HEAT STORAGE IS IN THE ROCK BED, AND IN THE WATER STORAGE TANK. THE AIR HANDLING UNIT CONTAINS ALL OF THE AIR MOVING AND TEMPERATURE CONTROL HARDWARE.

TECHNOLOGY	SHACOB
CAPACITY	48 MJ/HOUR
APPLICATION	SPACE HEATING AND HOT WATER
LOCATION	WASHINGTON, D. C.
INSULATION	5.5 GJ/M ² ·M·YEAR
SOLAR CONTRIBUTION	39 GJ/YEAR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	25.4 MM
COLLECTOR AREA	AIR
OPERATING TEMPERATURE	ROCK AND WATER
ENERGY TRANSPORT MEDIUM	6.2 MT ROCK
STORAGE TYPE	
STORAGE CAPACITY	


MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR - SOLARON SERIES 2000		
12.01	MISCELLANEOUS	SOFTWOOD CARBON STEEL	49.4 73.5
12.02	GLAZING	SODA LIME GLASS	537.0
12.03	ABSORBER	CARBON STEEL VITREOUS ENAMEL	78.8 8.7
12.04	DUCT	CARBON STEEL	78.5
12.05	INSULATION	GLASS WOOL	41.0
12.07	FRAME	CARBON STEEL	186.0
12.08	SEALS	RUBBER SILICONE	6.4 5.4
13.	ENERGY TRANSPORT		
13.02	DUCT	CARBON STEEL ZINC	441.0 71.0
13.03	INSULATION	GLASS WOOL	40.0
13.08	FANS	COPPER CARBON STEEL BRASS POLYCARBONATE	5.0 5.0 6.0 6.0
14.	ENERGY CONVERSION		
14.01	MISCELLANEOUS	50-50 SOLDER GLASS WOOL	6.0 0.0
14.02	HEAT EXCHANGER	COPPER ALUMINUM 50-50 SOLDER	1.5 1.0 0.0
14.03	PIPING	COPPER	17.7
14.04	PUMPS	STAINLESS STEEL ALUMINUM RUBBER COPPER CARBON STEEL	0.9 0.9 0.4 1.4 0.9

15.	ENERGY STORAGE		
15. 02	ROCKBED	PLYWOOD SOFTWOOD CARBON STEEL GLASS WOOL SHND AND GRAVEL	195.0 115.0 25.0 25.0 6200.0
15. 03	HOT WATER STORAGE	CARBON STEEL GLASS WOOL	65.0 3.0
17.	ENERGY SYSTEM CONTROL		
17. 02	METERS ETC.	COPPER POLYCARBONATE PHENOLIC	2.0 1.0 0.0

FOOTNOTES

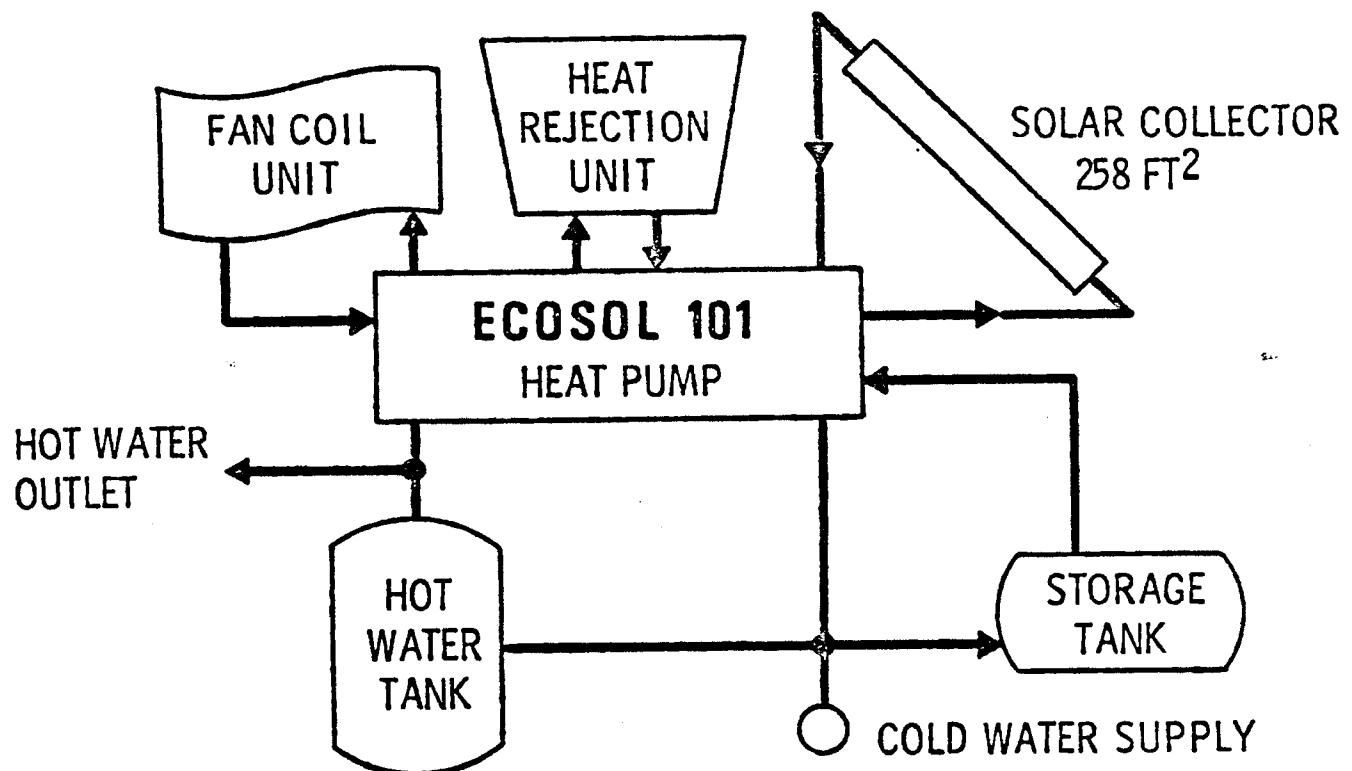
- 12.01 - Wood nailer frames-assume 1-1/2 x 7-1/8 inches x 68 feet of lumber.
- 13.02 - Assumed 0.16 pound zinc per ft^2 of sheet metal. Sheet metal is 24 gage. Seventy-nine linear feet of 12 x 14 inch duct 13 linear feet of 12 inch diameter duct. Eighteen linear feet of 14 inch diameter duct and 8 linear feet of 12 x 20 inch duct.
- 15.02 - Built from 2 x 4 studs with a 5/8 inch plywood inner wall and a 1/4 inch outer wall. To form the base, 2 x 6's are used. A steel screen holds rocks from falling into the base.
- 17.02 - Assumed 9-1/2 pounds of controls in steel, copper, plastic phenolic, assorted things. Not defined now.

SPACE HEATING AND DOMESTIC HOT WATER
AMERICAN HELIOTHERMAL
AT
WASHINGTON, D. C.

THIS SYSTEM USES 368 SQUARE FEET OF MIRCOMIT FLAT PLATE COLLECTORS IN A SEPARATE FREEZE PROTECTED GLYCOL LOOP. THE GLYCOL-WATER HEAT EXCHANGER TRANSFERS COLLECTED ENERGY TO THE WATER LOOPS WHICH PERFORM THE FUNCTIONS OF ENERGY STORAGE, SPACE HEATING, AND DOMESTIC WATER PREHEATING.

TECHNOLOGY	SHACOB
CAPACITY	65 MJ/HOUR
APPLICATION	HOT WATER AND SPACE HEATING
LOCATION	WASHINGTON, D. C.
INSULATION	5.5 GJ/M ² ·N·YEAR
SOLAR CONTRIBUTION	41 GJ/YEAR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	24.9 MM
COLLECTOR AREA	
OPERATING TEMPERATURE	
ENERGY TRANSPORT MEDIUM	GLYCOL AND WATER MIXTURE
STORAGE TYPE	WATER
STORAGE CAPACITY	3 MT

MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS


12.	ENERGY COLLECTOR - MIROMAT MODEL NO. 110		
12. 01	MISCELLANEOUS	CARBON STEEL	12. 2
12. 02	BLAZING	SODA LIME GLASS	285. 7
12. 03	ASSORBER	CARBON STEEL	413. 8
12. 04	PIPING	CARBON STEEL	292. 6
12. 05	INSULATION	GLASS WOOL	38. 8
12. 07	FRAME	CARBON STEEL ZINC	156. 8 7. 7
12. 08	SEALS	NEOPRENE	14. 5
13.	ENERGY TRANSPORT		
13. 01	MISCELLANEOUS	TEFLON	1. 0
13. 02	PIPE	CARBON STEEL ZINC	139. 0 12. 2
13. 03	INSULATION	GLASS WOOL	5. 9
13. 04	TRANSFER FLUID	PROPYLENE GLYCOL WATER	51. 7 34. 5
13. 05	SUPPORTS	SOFTWOOD CARBON STEEL	23. 9
13. 07	VALVES	BRASS CARBON STEEL NILON	2. 219
13. 08	PUMPS	ALUMINUM COPPER CARBON STEEL	6. 616 6. 616 7. 2
14.	ENERGY CONVERSION		
14. 02	HEAT EXCHANGERS	COPPER CARBON STEEL ZINC ALUMINUM	15. 9 62. 0 43. 0 45. 0

15.	ENERGY STORAGE		
15.02	STORAGE TANK	CARBON STEEL	584.0
		ZINC	11.4
		VITREOUS ENAMEL	0.1
		WATER	2917.5
		GLASS WOOL	32.0
17.	ENERGY SYSTEM CONTROLLER	COPPER	1.2
		CARBON STEEL	1.4
		POLYCARBONATE	0.0
		ALUMINUM	2.0

AMERICAN HELIOTHERMAL

FOOTNOTES

- 12.01 - Assumed steel screws and bolts, ignored platings.
- 12.07 - Used dimensions of the topless box to calculate weight.
- 13.02 - Base the zinc weight upon difference in weight for black & galvanized pipe.
- 13.04 - Assumed a minimum wood frame to assemble and contain heat exchange and pumping equipment.
- 13.08 - Weight is given from Sunstrand "L" model pump.
- 14.02 - The glycol/water heat exchanger is copper tube (coiled) inside steel tube counterflow type. Seventy-two inches of steel 5" diameter tube around 72 feet of 5/8 copper tube. The water/air heat exchanger is half iron and aluminum.
- 15.01 - For the 800 gallon storage tank use 4' diameter, 8' tall with .250" steel wall.
- 15.02 - Assumed 6" insulation around the 800 gallon tank.

SPACE HEATING AND DOMESTIC HOT WATER
 KTA AND ECOSOL
 HEAT PUMP SYSTEM
 AT
 WASHINGTON, D. C.

THE SOLAR ASSISTED HEAT PUMP SYSTEM SHOWN IN THE SCHEMATICS IS A COMMON MARRIAGE BETWEEN KTA COLLECTORS AND AN ECOSOL PACKAGE WHICH INCLUDES ALL CONTROLS AND HEAT EXCHANGERS AS WELL AS A HEAT PUMP. HEAT STORAGE IS INCLUDED IN THE SYSTEM. THE SUMMER COOLING FUNCTION OF THE HEAT PUMP IS NOT SOLAR ASSISTED.

TECHNOLOGY	SHACOB
CAPACITY	59 MJ/HR. SOLAR ASSIST
APPLICATION	SPACE HEATING AND DOMESTIC HOT WATER
LOCATION	WASHINGTON, D. C.
INSOLATION	5.5 GJ/N+M/YEAR
SOLAR CONTRIBUTION	52 GJ/YEAR
SUPPLEMENT	ELECTRIC
SOLAR EFFICIENCY	
COLLECTOR AREA	24 M²M
OPERATING TEMPERATURE	
ENERGY TRANSPORT MEDIUM	WATER
STORAGE TYPE	WATER
STORAGE CAPACITY	3.8 MT

MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

FOOTNOTES

12. Energy Collector

12.02 - Use two concentric tubes each 0.008 inch thick, OD=1.5 & 0.5 inches, 28 tubes per collector. Include endcaps of glass. Tedlar is 0.004 inch thick.

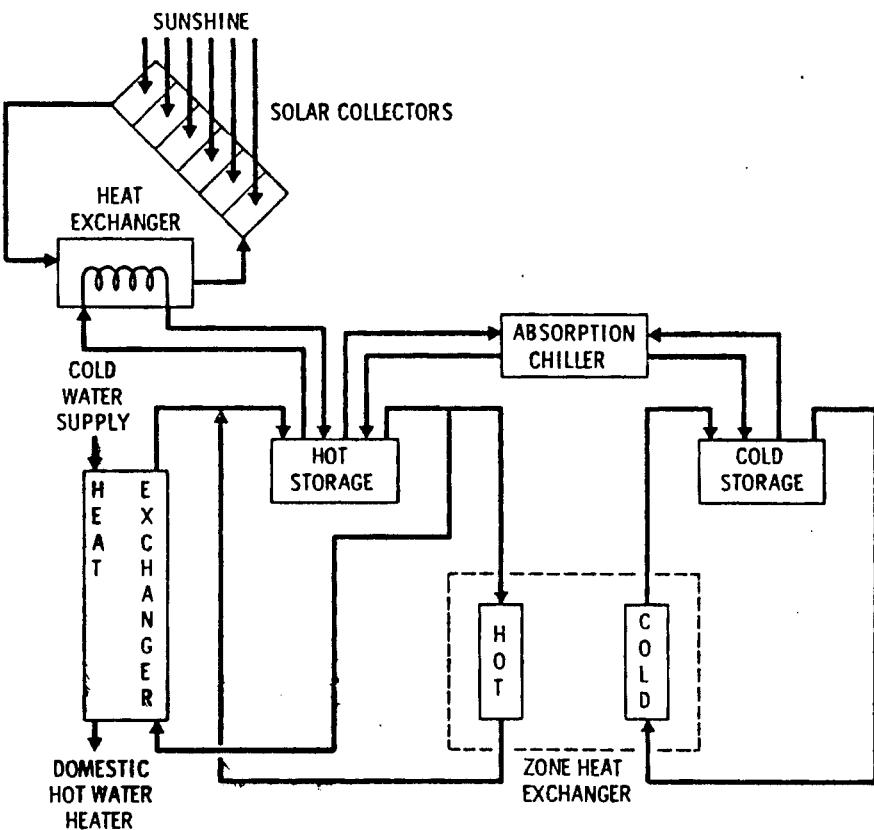
12.04 - Use 1/2 inch copper manifold top and bottom - guess.

12.05 - Use 3 x 3 x 46 inch block top and bottom.

12.06 - Use half silver 1.5 inch diameter, 0.00004 inch thick.

13. Energy Transport

13.02 - Use 3/4 inch copper to run to collector (40 ft.), evaporator (10), condenser (10) and domestic hot water (10 ft). Use one inch copper to storage tank (20 ft). Use 1/2 inch copper between storage tank and expansion tanks (4 ft).


13.03 - Insulation - use 3/4 inch on all piping.

13.04 - Assumed 70 pounds water.

13.07 - Assumed 11 valves at 3 pounds brass each.

13.08 - Pumps included in ECOSOL Package.

15.02 - Assumed 6 ft. diameter, 4-12 ft. tall - 0.25 wall steel. Assumed a concrete footing 6 ft diameter - 1 ft deep.

SPACE HEATING AND COOLING AND DOMESTIC HOT WATER
 RAYPAK COLLECTOR
 AT
 KIRKLAND AIR FORCE BASE, NEW MEXICO

THE SOLAR COLLECTOR SYSTEM CONSISTS OF 480 FLAT PLATE TUBULAR COLLECTORS TO FURNISH THE PRINCIPAL ENERGY FOR HEATING AND COOLING OF THE EXCHANGE MAIN STORE. EXCESS SOLAR HEAT IS STORED IN HOT STORAGE TANK.

THERE ARE THREE MODES OF WINTER OPERATION.

- DIRECT HEATING WHEN THE WATER IN THE HOT STORAGE TANK IS 125 DEGREES F OR ABOVE.
- HEAT PUMP HEATING WHEN THE HOT WATER STORAGE IS BELOW 125 DEGREES F TO SUPPLY THE HEAT TO THE HEAT PUMP, AND
- WINTER COOLING BY HEAT PUMP WITH COLD TANK USED FOR CONDENSING WATER SERVICE.

FOR SUMMER OPERATION THE HOT WATER FROM THE HOT WATER STORAGE TANK CIRCULATES THROUGH THE ABSORPTION CHILLER TO PROVIDE BUILDING COOLING. ADDITIONAL COOLING WHEN REQUIRED IS SUPPLIED BY THE HEAT PUMP SYSTEM.

ZONE HEAT EXCHANGERS HAVE BOTH HEATING AND COOLING COILS SO THAT DURING THE IN-BETWEEN SEASONS ANY ZONE CAN AUTOMATICALLY SELECT EITHER HEATING OR COOLING.

TECHNOLOGY	SH900B
CAPACITY	1800 BTU/HOUR
APPLICATION	HEATING AND COOLING A RETAIL STORE
LOCATION	KIRKLAND AIR FORCE BASE NEW MEXICO
INSOLATION	6000BTU/FT ² /YEAR
SOLAR CONTRIBUTION	3700 BTU/YEAR
SUPPLEMENT	ELECTRIC HEAT PUMP
SOLAR EFFICIENCY	77.0%
COLLECTOR AREA	770MM ²
OPERATING TEMPERATURE	
ENERGY TRANSPORT MEDIUM	ETHYLENE GLYCOL AND WATER
STORAGE TYPE	WATER
STORAGE CAPACITY	68,300 BTU

MATERIAL REQUIREMENTS
FUNCTIONAL COMPONENTS

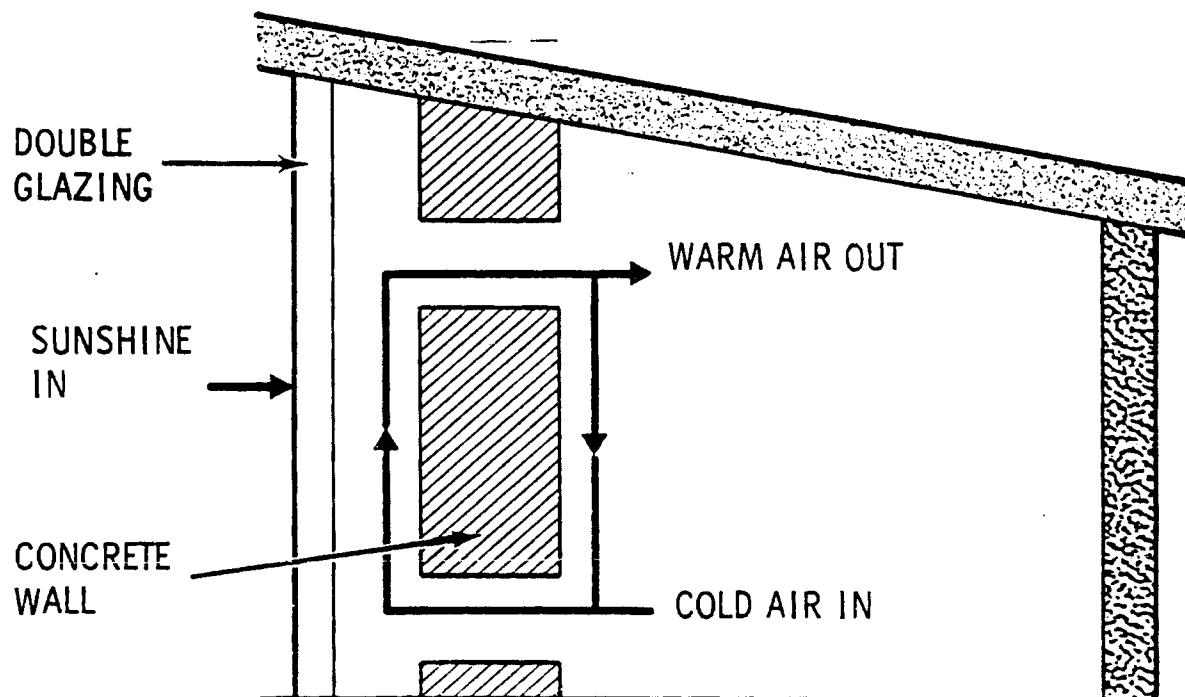
12.	ENERGY COLLECTOR 480 PANELS - RAYFAR DG-18P		
12.02	GLAZING	SODA LIME GLASS	1. 37-34
12.03	ABSORBER	ALUMINUM COPPER	163.9 364.9
12.05	INSULATION	GLASS WOOL	93.0
12.07	FRAME	CARBON STEEL ZINC Cadmium BRASS RUBBER SILICONE COPPER Gypsum	435.34 53.9 43.9 21.9 27.9 2. 38-34
12.09	SUPPORTS	CARBON STEEL	2. 38-34
13.	ENERGY TRANSPORT		
13.02	PIPE	CARBON STEEL TIN BRONZE LEADED RED BRASS 50-50 SOLDER COPPER MICARTA STAINLESS STEEL ZINC	1. 15-34 1. 15-34 1. 15-34 3. 1. 15-34 3. 1. 15-34 1. 15-34 1. 15-34
13.03	INSULATION	GLASS WOOL ALUMINUM	983.9 373.9
13.04	TRANSPORT FLUID	WATER ETHYLENE GLYCOL	1. 75-35 223.0
13.05	SUPPORTS	CONCRETE	20013.0
13.07	VALVES	CARBON STEEL STAINLESS STEEL EPT PLASTIC LEADED TIN BRONZE LEADED RED BRASS CAST IRON NEOPRENE RUBBER	157.0 165.0 64.0 166.0 173.0 5.4

13. 08	PUMPS	COPPER CARBON STEEL NEOPRENE TEFLON LEADED TIN BRONZE LEADED RED BRASS SILICON STEEL ALUMINUM SILVER	323.0 323.0 323.0 323.0 163.0 163.0 163.0 163.0
13. 09	SITE DEPENDENT - SOLAR MAINS	CARBON STEEL GLASS WOOL ZINC ALUMINUM	300.0 300.0 263.0 263.0
13. 10	EXPANSION TANKS	CARBON STEEL NEOPRENE	363.0 363.0 363.0 363.0
14.	ENERGY CONVERSION		
14. 02	HEAT EXCHANGERS	CARBON STEEL ALUMINUM BRONZE D LEADED TIN BRONZE TRANSITE ZINC COPPER ALUMINUM PVC NICHROME POLYETHYLENE SILICON STEEL	164.0 363.0 363.0 343.0 343.0 343.0 343.0 343.0 343.0 343.0 343.0 343.0 343.0 343.0
14. 04	ABSORPTION CHILLER	CARBON STEEL COPPER LITHIUM WATER BROMINE	3363.0 594.0 1434.0 1069.0 156.0
15.	ENERGY STORAGE		
15. 02	PRIMARY STORAGE	CARBON STEEL URETHANE ADHESIVE SILICON ASPHALT	1.25+64 443.0 355.0 2183.0
17.	ENERGY SYSTEM CONTROLLER		
17. 02	METERS, SWITCHES, TERMINAL BOARDS	COPPER COPPER MERCURY	1.3 1.0 0.5

FOOTNOTES

13. ENERGY TRANSPORT

A number of the components of the energy transport system provide dual functions and thus cannot be assigned wholly to either the solar system or to the basic system. In order to overcome this problem, the cooling tower and its circulating pump CP2 were considered part of the solar system. Heat exchanger HE1 and pumps CP5 and CP6 were considered part of the basic system. The heat pumps F/HP1 and F/HP2, pumps CP7 and CP8 and the domestic hot water system were considered parts of the basic system.


13.02 - PIPING

As a matter of economizing on materials and labor the solar panel header and piping were placed on the surface of the roof. Roof penetrations for pipe were reduced from 320 to 4.

13.04 - Ethylene glycol solution was estimated at a 50-50 volume percent.

13.07 - Weight of EPT plastic in butterfly valves was estimated.

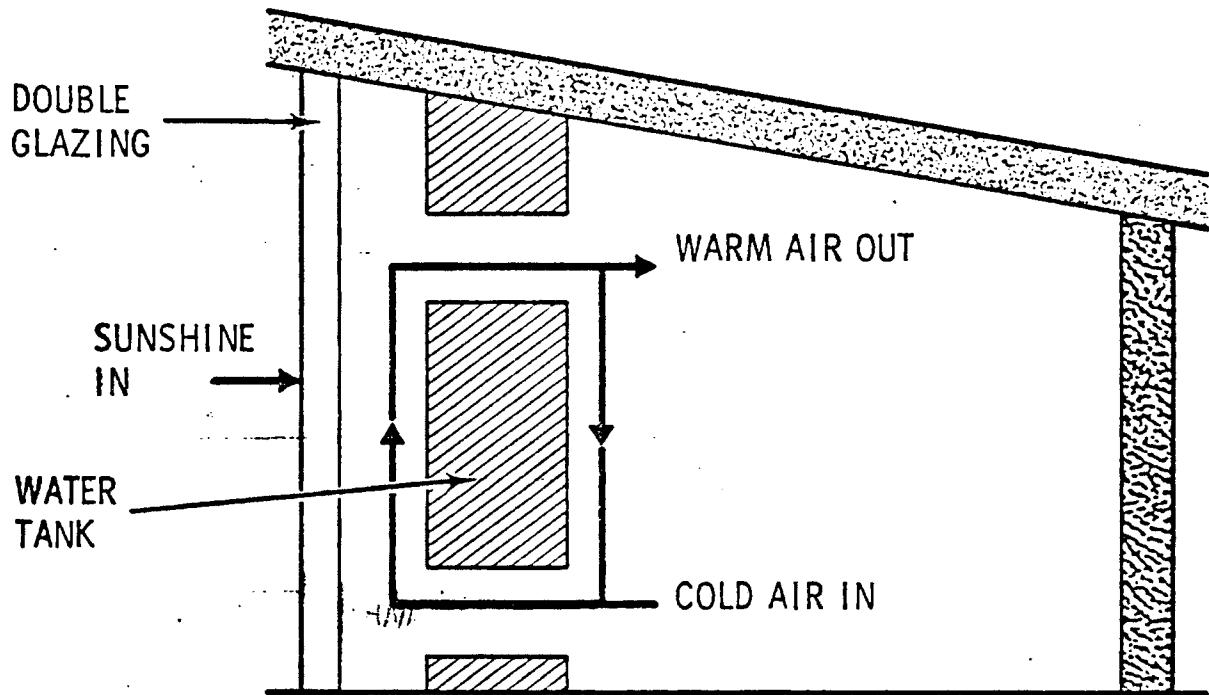
13.08 - Weight of ethylene glycol feeder system components was estimated.

PASSIVE SPACE HEATING
CONCRETE TROMBE WALL
AT
WASHINGTON, D. C.

THIS SYSTEM CONSISTS OF A DOUBLE GLAZED, SOUTH-FACING, CONCRETE WALL WHICH COMBINES THE HEAT COLLECTION AND STORAGE FUNCTIONS AS WELL AS FURNISHING THE STRUCTURAL SUPPORT FOR THE SOUTH SIDE OF THE ROOF. ROOM AIR CIRCULATES OVER THE HOT OUTER FACE BY THERMOSIPHON. LIGHTWEIGHT FLAPS ON THE TOP VENTS PREVENT REVERSE THERMOSIPHON WHEN THE OUTER WALL TEMPERATURE IS LESS THAN THE ROOM TEMPERATURE.

TECHNOLOGY	SHACOB
CAPACITY	96 MJ/HOUR
APPLICATION	SPACE HEATING
LOCATION	WASHINGTON, D. C.
INSULATION	3.7 GJ/MMM-YEAR
SOLAR CONTRIBUTION	100 GJ/YR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	28-35 PERCENT
COLLECTOR AREA	47.4 MM
OPERATING TEMPERATURE	18-60 DEGREES C
ENERGY TRANSPORT MEDIUM	AIR
STORAGE TYPE	CONCRETE
STORAGE CAPACITY	45 MT

MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS


12.	ENERGY COLLECTOR - CONCRETE TROMBE WALL 510 SQ. FT. GLAZING	
12.01	MISCELLANEOUS NAILS - CARBON STEEL	6.8
12.02	GLAZING SODA LIME GLASS	740.0
12.03	ABSORBER WALL AND FOOTINGS REINFORCING BAR	4.12+04
	CONCRETE CARBON STEEL FLAT BLACK ALKYD PAINT	520.0 22.0
12.07	FRAME - WINDOWS ALUMINUM	145.0
12.08	SEALS NEOPRENE	11.3

FOOTNOTES

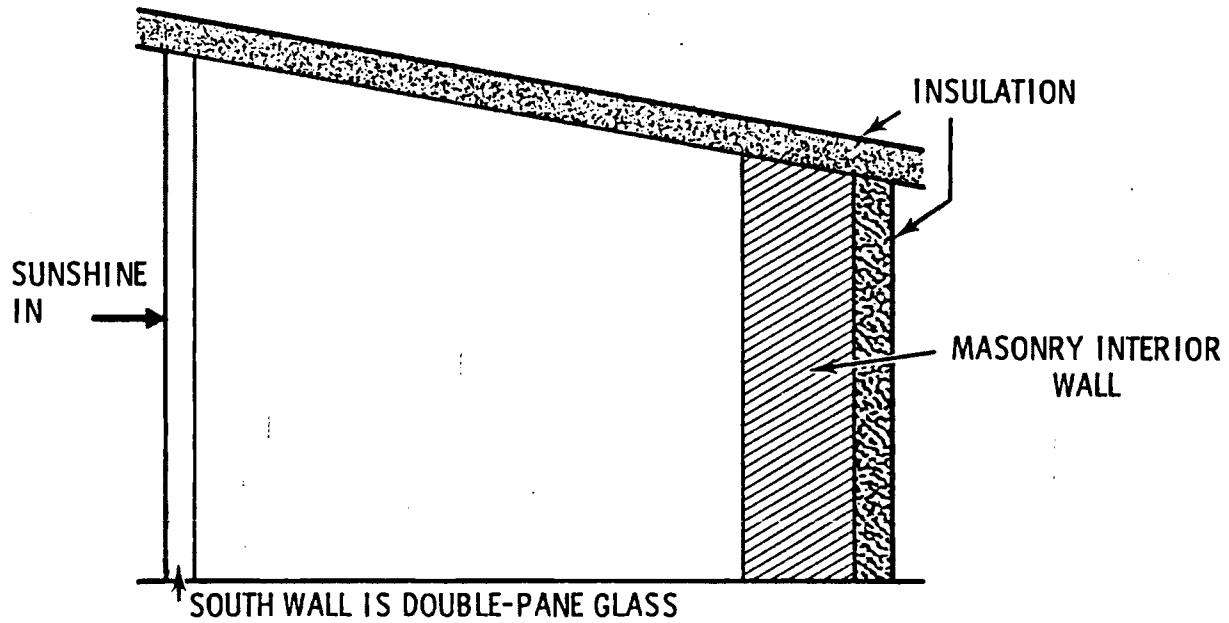
10. - Rules of thumb used in sizing Trombe wall: Glazed Trombe wall area equal to half of floor area, wall thickness - one foot, and double glazing. 1024 sq. ft. floor area assumed.

Solar contribution estimated from Nashville, TN data given by Balcombe et al, "Passive Solar Heating of Buildings", at Workshop on Solar Energy Applications, Associated Universities, Inc. June 27 through July 31, 1977. Approximately 65% solar contribution.

12.03 - Trombe wall also supports south side of roof.

PASSIVE SPACE HEATING
WATER-TANK TROMBE WALL
AT
WASHINGTON, D. C.

THIS VARIATION OF THE TROMBE WALL USES WATER TANKS TO ACHIEVE MORE UNIFORM ROOM TEMPERATURES THAN DOES THE CONCRETE TROMBE WALL. HOWEVER, THE ROOF MUST BE SUPPORTED BY ADDING BEAMS RATHER THAN THE WATER TANKS AND CORROSION AND LEAKING OF THE WATER ARE NOTEWORTHY DISADVANTAGES. OTHERWISE THE WATER TANK AND CONCRETE TROMBE WALLS OPERATE SIMILARLY.


TECHNOLOGY	SHACOB
CAPACITY	50 MJ/HOUR
APPLICATION	SPACE HEATING
LOCATION	WASHINGTON, D. C.
INSULATION	3.7 GJ/MM ² -YEAR
SOLAR CONTRIBUTION	20 GJ/YEAR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	20-35 PERCENT
COLLECTOR AREA	47.4M ²
OPERATING TEMPERATURE	10-45 DEGREES C
ENERGY TRANSPORT MEDIUM	AIR
STORAGE TYPE	WATER
STORAGE CAPACITY	2.2 MT

MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR-WATER TANK TROMBE WALL - 510 SQ. FT. GLAZING	
12.01	MISCELLANEOUS NAILS - CARBON STEEL	6.8
12.02	GLAZING SODA LIME GLASS	740.0
12.03	ABSORBER - WATER TANK CARBON STEEL FLAT BLACK ALKYD PAINT WATER SODIUM DICHROMATE	1250.0 22.0 7210.0 7.2
12.07	FRAME, WINDOW ALUMINUM	145.0
12.08	SEALS NEOPRENE	11.3
12.09	SUPPORTS FOOTING REINFORCING BAR I BEAM CHANNEL IRON	3735.0 51.2 250.0 346.0

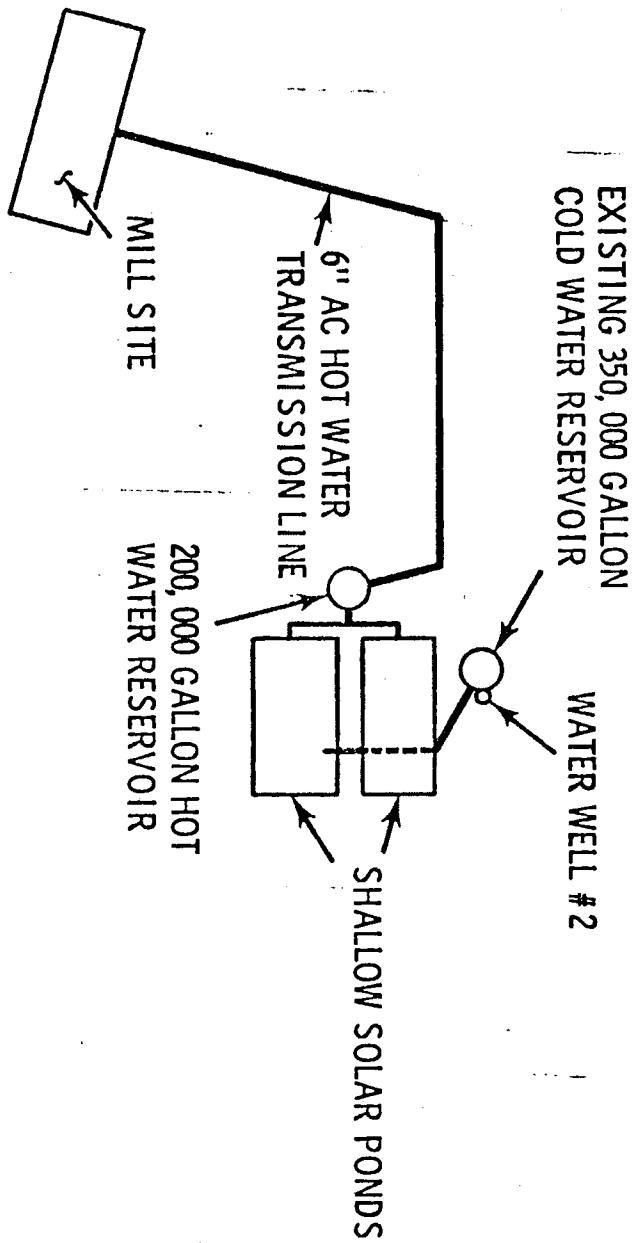
FOOTNOTES

10. - Rules of thumb used in sizing Trombe wall:; glazed Trombe wall area equal to half of floor area, six inch wall thickness, and double glazing. 1024 sq. ft. floor area assumed.
- Solar contribution estimated from Nashville, TN data given by Balcomb et al, "Passive Solar Heating of Buildings", at Workshop on Solar Energy Applications, Associated Universities, Inc., June 27 through July 31, 1977. Approximately 65% solar contribution.
- 12.03 - Corrosion inhibitor - 0.1% sodium dichromate assumed.
- 12.09 - Supports required are for the south side of roof and for the water tank.

PASSIVE SPACE HEATING
DIRECT GAIN, MASONRY WALLS
AT
WASHINGTON, D. C.

THE SIMPLEST OF ALL SOLAR HEATING SYSTEMS, DIRECT GAIN UTILIZES THE HOUSE WALLS TO BOTH ABSORB AND STORE SOLAR ENERGY. IT OFFERS LESS CONTROL OVER ROOM TEMPERATURES THAN DOES THE TROMBE WALL.

TECHNOLOGY	SHADES
CAPACITY	56 MJ/HOUR
APPLICATION	SPACE HEATING
LOCATION	WASHINGTON, D. C.
INSULATION	3.7 GJ/M ² ·YEAR
SOLAR CONTRIBUTION	26 GJ/YEAR
SUPPLEMENT	VARIABLE
SOLAR EFFICIENCY	58 - 66 PERCENT
COLLECTOR AREA	23.8 M ² (GLAZING)
OPERATING TEMPERATURE	15-30 DEGREES C
ENERGY TRANSPORT MEDIUM	AIR
STORAGE TYPE	MASONRY
STORAGE CAPACITY	42 MT


MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR-HOUSEWALLS 256 SQ. FT. GLAZING	
12. 01	MISCELLANEOUS NAILS	CARBON STEEL
12. 02	GLAZING	SODA LIME GLASS
12. 03	ABSORBER - HOUSE WALLS MASONRY WALLS REINFORCING BAR	CONCRETE CARBON STEEL
12. 07	FRAME, WINDOW	ALUMINUM
12. 08	SEALS	NEOPRENE

FOOTNOTES

10. Rules of thumb used in sizing direct gain: glazing area equal to one-fourth of floor area, four inch wall thickness, absorbing wall area equal to six times glazing area. 1024 sq. ft. floor area assumed.

Solar contribution equivalent to Trombe wall with twice the glazed area. Contribution estimated from Nashville, TN data given by Balcomb et al, "Passive Solar Heating of Buildings," at Workshop on Solar Energy Applications Associated Universities, Inc. June 27 through July 31, 1977. Approximately 65% solar contribution.

PROCESS HOT WATER
U MILLING
LLL SOLAR PONDS
AT
GRANTS, NEW MEXICO

THIS SYSTEM DESIGNED BY LAWRENCE LIVERMORE LABORATORY CONSISTS OF 15,400 MM³ OF SHALLOW SOLAR PONDS, A HOT WATER STORAGE RESERVOIR AND THE NECESSARY PUMPS, PIPING, TANKS, INSTRUMENTATION. THE SYSTEM IS SIZED TO PROVIDE 50 PERCENT OF THE HOT WATER REQUIRED FOR THE URANIUM MILLING AND MELTING PROCESS. THE HOT WATER IS USED TO ACCELERATE THE CHEMICAL LEACHING PROCESS BY WHICH URANIUM ORE IS CONCENTRATED.

TECHNOLOGY	ALPH
CAPACITY	27,500 MJ/YEAR
APPLICATION	CHEMICAL LEACHING OF URANIUM ORES
LOCATION	GRANTS, NEW MEXICO
INSULATION	7,150 MJ/MM-YEAR
SOLAR CONTRIBUTION	53,356 MJ/YR
SUPPLEMENT	0 MJ
SOLAR EFFICIENCY	48 PERCENT
COLLECTOR AREA	15,350 MM ²
OPERATING TEMPERATURE	60 DEGREES C
ENERGY TRANSPORT	WATER
STORAGE	750,000 KG
STORAGE CAPACITY	

MATERIAL REQUIREMENTS
BY
FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR - SHALLOW SOLAR PONDS		
12.02	GLAZING	POLYVINYL FLUORIDE FRP POLYESTER	598. 0 2. 28+04
12.03	ABSORBER	PVC	1083. 0
12.05	INSULATION	SODA LIME GLASS KRAFT PAPER GLUE, PHENOLIC FORM	3. 96+04 1980. 0 45. 0
12.07	FRAME GLAZING HARDWARE	CARBON STEEL ZINC Cadmium CONCRETE CARBON STEEL	6. 08+04 1190. 0 5. 3 1. 12+07 3440. 0
12.08	SEALS	URETHANE	15. 0
12.09	SUPPORTS	SAND	9. 91+05
13.	ENERGY TRANSPORT		
13.02	PIPE AND FITTINGS	CAST IRON CARBON STEEL PVC	9050. 0 24. 00 113. 0
13.04	TRANSPORT FLUID	WATER	1. 63+06
13.07	VALVES	CAST IRON LEADED TIN BRONZE COPPER CARBON STEEL ZINC	1280. 0 37. 00 60. 00 60. 00 6. 00
13.08	PUMPS	CAST IRON LEADED TIN BRONZE COPPER CARBON STEEL	740. 0 10. 40 100. 00 39. 00
13.09	SITE DEPENDENT PIPE	TRANSITE	2. 25+04
13.10	FOUNDATIONS	CONCRETE CARBON STEEL	8260. 0 95. 0
15.	ENERGY STORAGE		
15.02	STORAGE TANKS	CARBON STEEL LEADED TIN BRONZE NEOPRENE URETHANE	3. 19+04 30. 1 475. 00 1260. 0
15.04	SUPPORTS	SAND	6. 40+04
15.05	FOUNDATIONS	CONCRETE	126. 0

17. ENERGY SYSTEM CONTROLLER

17.01 MISCELLANEOUS

COPPER	1884.0
CARBON STEEL	198.0
PYC	7.99
PORCELAIN	5.33
ZINC	11.33
SILVER	0.77
ALUMINUM	39.0

FOOTNOTES

12. Energy Collector

All material items have been adjusted for the 16 ft x 210 ft pond dimensions and the number of ponds reduced from 36 to 26.

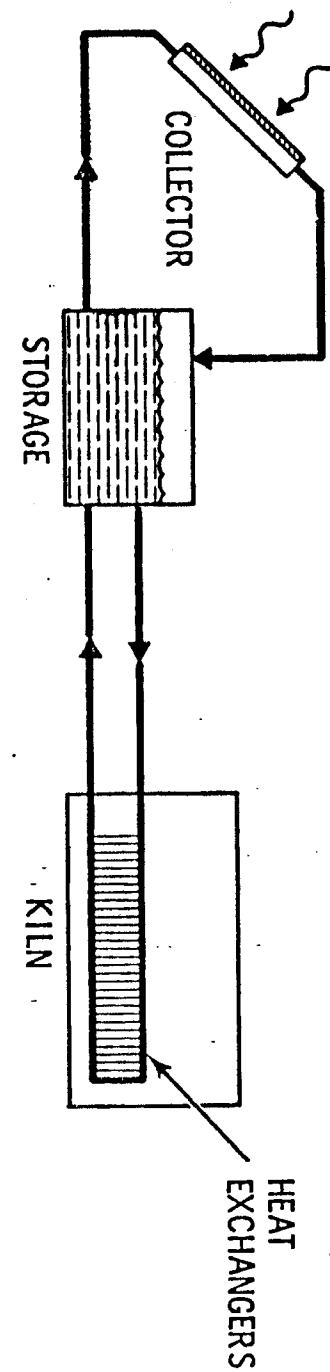
Asphalt paving was eliminated. Unistreet anchor street in curbing was replaced with 1/2 in. machine bolts put in the concrete curbing.

Glazing bows were estimated on the new pond dimensions.

12.08 - Density of foam rubber was estimated.

13.02 - Height of pipe stands was estimated from description.

13.07 - The amount of bronze in cast iron valves was estimated on information obtained from valve manufacturers.


The amount of copper in the valve actuators was estimated on information obtained from the manufacturer.

13.08 - The amount of copper, bronze and steel in pumps and motors was estimated on information obtained from the manufacturers.

13.10 - The amount of concrete and steel in the pumping station foundation was estimated.

17. Energy System Controllers

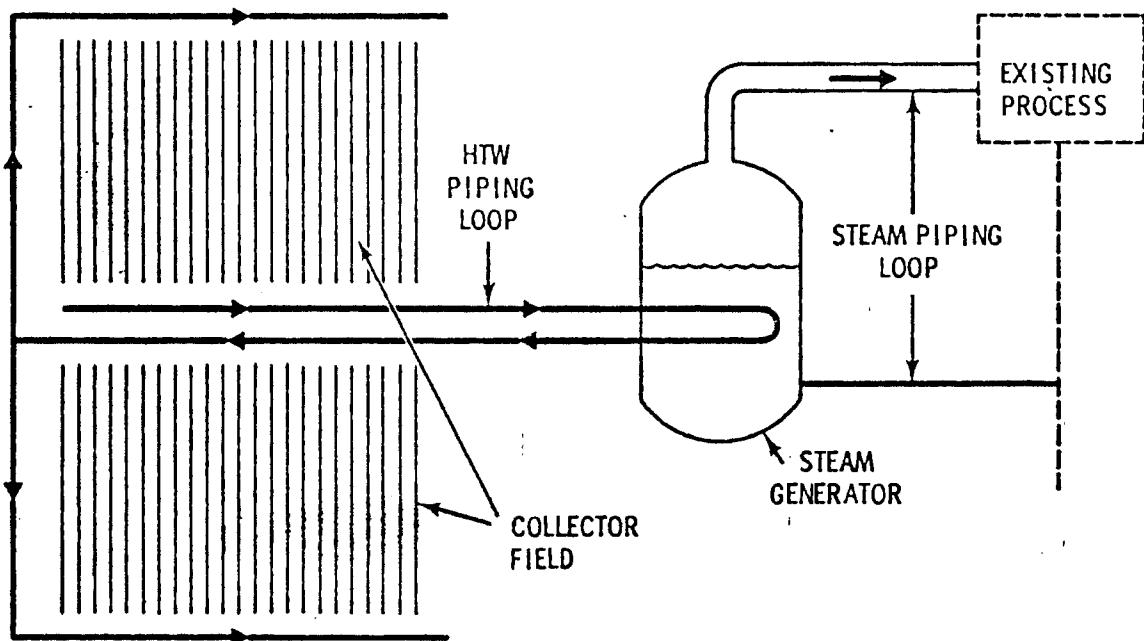
The amount of each material was estimated on information obtained from measuring and weighing similar existing equipment.

PROCESS HEAT
LUMBER KILN
CHARCOSA LUMBER
CO., INC.

CANTON, MISSISSIPPI

THIS SYSTEM DESIGNED BY LOCKHEED MISSILES AND SPRING CO. USES 2525 SQUARE FEET OF CHANNELIN CORPORATION FLAT PLATE COLLECTORS IN A SAWTOOTH ARRANGEMENT WITH REFLECTORS. THE HEAT TRANSFER MEDIUM IS WATER WITH 40,000 LB. OF STORAGE CAPACITY. HEAT IS TRANSFERRED TO THE KILN AIR THROUGH FIN PIPE HEAT EXCHANGERS IN THE KILN AIR THROUGH FIN PIPE HEAT EXCHANGERS IN THE KILN. AIR TEMPERATURE IS MONITORED AND CONTROLLED AND INTEGRATED INTO THE PRESENT COMPUTERIZED DRYING SYSTEM.

TECHNOLOGY	RIPH
CAPACITY	1000 M3/HOUR
APPLICATION	KILN DRYING HARDWOOD
LOCATION	CANTON, MISSISSIPPI
INSULATION	7'9"8" D/100' H/100' 19 PERCENT REFLECTED
SOLAR CONTRIBUTION	218,000 M3/ YEAR
SUPPLEMENT	NATURAL GAS
SOLAR EFFICIENCY	50 PERCENT
COLLECTOR AREA	234 M ²
OPERATING TEMPERATURE	49-52 DEGREES C
ENERGY TRANSPORT MEDIUM	WATER
STORAGE TIME	18,000 KU
STORAGE CAPACITY	


MATERIAL REQUIREMENTS FUNCTIONAL COMPONENTS

12.	ENERGY COLLECTOR - CHAMBERPLAIN	DOUBLE GLAZE BLACK CHROME	
		NO. 44-6267	
12.01	MISCELLANEOUS	CARBON STEEL	14.0
12.02	GLAZING	SODA LIME GLASS	4732.0
12.03	ABSORBER	CARBON STEEL CHROMIUM NICKEL	1.67+84 97.0 48.0
12.05	INSULATION		528.0
12.07	FOAMS	ALUMINUM CARBON STEEL ZINC	318.0 7395.0 1686.0
12.08	SEALS	EPDM RUBBER	112.0
12.09	SUPPORTS	SOFT WOOD CARBON STEEL ALUMINUM CHROMIUM MASONITE	1.78+84 6473.0 2811.0 1444.0 744.0
13.	ENERGY TRANSPORT		
13.01	MISCELLANEOUS	90-50 SOLDER CARBON STEEL ZINC	0.0000 0.0000 0.0000
13.02	PIPE AND FITTINGS	COPPER BRASS PVC CARBON STEEL	572.0 4300.0 1200.0 0.0000
13.03	INSULATION	URETHANE	212.0
13.04	TRANSPORT FLUID	WATER	1.95+84
13.07	VALVES	LEADED TIN BRONZE CARBON STEEL	29.0 82.0
13.08	PUMPS	CARBON STEEL TEFLON ALUMINUM CAST IRON	20.0 8200.0 0.0000

14.	ENERGY CONVERSION		
14.01	MISCELLANEOUS STRAPS AND HANGERS	CARBON STEEL ZINC	18.0 1.4
14.02	HEAT EXCHANGER	CARBON STEEL	7354.0
15.	ENERGY STORAGE		
15.01	MISCELLANEOUS FOAMED INSULATION	URETHANE	81.0
15.02	STORAGE TANK	CARBON STEEL	2113.0
17.	ENERGY SYSTEM CONTROLLER		
17.02	METERS, SWITCHES, TERMINAL BOARDS	CAST IRON LEADED TIN BRONZE SOAP LIME GLASS CARBON STEEL PHENOLIC SILVER NICKEL ALUMINUM PVC COPPER	8.9 7.7 8.2 87.8 1.8 8.7 8.1 8.5 7.8 12.8

FOOTNOTES

10. Estimates based upon document by S.J. Robertson and P.O. Mc Cormick, Solar Industrial Process Heat for Kiln Drying Lumber, Final Report - Phase I, LMSC-HREC TR D497234, March 30, 1977.
13. ENERGY COLLECTOR
 - 12.03 - Used Plating Thickness from Handbook
 - 12.09 - Cadmium plate estimated on basis of $1/2$ in 2 /fastener coated 0.0025 in. thick.
13. ENERGY TRANSPORT
 - All items taken from bill of material.
 - 13.01 - Assumed 6' - 0" spacing.
 - 13.01 - Assumed 2 in. wire solder used per average joint.
 - 13.02 - Handbook weights used on all pipe, tubing and fittings.
 - 13.08 - Material weights estimated on basis of motor and pump unit weight.
14. ENERGY CONVERSION
 - 14.01 - Estimated.
17. ENERGY SYSTEM CONTROLLER
 - 17.02 - Materials estimated from component parts.

PROCESS STEAM
TEXTILE DRYING
HONEYWELL CONCENTRATING COLLECTORS
AT
FAIRFAX, ALABAMA

THIS SYSTEM DESIGNED BY HONEYWELL INCORPORATED FOR THE WESTPOINT PEPPERELL MILL IN FAIRFAX, ALABAMA. PROCESS STEAM IS USED THERE TO DRY TEXTILES IN CYLINDRICAL CAN DRYERS. OVER 50 PERCENT OF ALL WOVEN GOODS ARE DRIED ON CYLINDRICAL CAN DRYERS.

THE SOLAR COLLECTOR SUBSYSTEM CONSISTS OF 48 PARABOLIC-TROUGH SINGLE-AXIS-TRACKING CONCENTRATING COLLECTORS WHICH HEAT WATER IN A HIGH TEMPERATURE WATER (HTW) LOOP TO 198 DEGREES C AT 239 PSI (AT TWO OCLOCK P. M. ON SEPTEMBER 21). THE HOT WATER FROM THE COLLECTORS FUELS A STEAM GENERATOR WHICH PROVIDES 544 KG/HOUR OF PROCESS STEAM TO THE CYLINDRICAL CAN DRYERS. THE BALANCE OF THE PROCESS STEAM REQUIREMENTS ARE GENERATED BY FUEL-OIL-FIRED BOILERS. CONDENSATE IS COLLECTED IN AN EXISTING CONDENSATE RECEIVER AND PUMPED BACK TO THE SOLAR HTW-FIRED STEAM GENERATOR.

TECHNOLOGY	AIPH
CAPACITY	1140 MJ/HOUR
APPLICATION	DRYING OF TEXTILE YARN
LOCATION	FAIRFAX, ALABAMA
INSULATION	4239 MJ/MM-YEAR
SOLAR CONTRIBUTION	1,346 MJ/YEAR
SUPPLEMENT	FUEL OIL
SOLAR EFFICIENCY	40 PERCENT
COLLECTOR AREA	773MM ²
OPERATING TEMPERATURE	198 DEGREES C
ENERGY TRANSPORT MEDIUM	WATER AND STEAM
STORAGE TYPE	NONE
STORAGE CAPACITY	NONE

MINISTERIAL GOVERNMENT GOVERNMENT OF INDIA

13. 04	TRANSPORT FLUID	WATER	1642. 0
13. 05	SUPPORTS	CARBON STEEL CAST IRON	2195. 0 218. 0
13. 07	VALVES	ALUMINUM ASBESTOS LEADED TIN BRONZE CAST IRON 416 STAINLESS STEEL 316 STAINLESS STEEL CARBON STEEL BRASS STAINLESS STEEL EPT RUBBER	0. 4 2. 9 5. 5 5. 5 7. 2 17. 1 33. 1 312. 0 19. 1 3. 2 0. 1
13. 08	PUMPS	STAINLESS STEEL CAST IRON COPPER CARBON STEEL	137. 0 65. 0 11. 2 3. 2
13. 10	EXPANSION TANKS	CARBON STEEL NEOPRENE	227. 0 250. 0
14.	ENERGY CONVERSION		
14. 05	STEAM GENERATOR	COPPER NICKEL 10 PERCENT CARBON STEEL GLASS WOOL ZINC	227. 0 353. 0 40. 0 4. 5
17.	ENERGY SYSTEM CONTROLLER		
17. 02	METERS, SWITCHES, RELAYS, TERMINAL BOARDS, ETC	COPPER CARBON STEEL PHENOLIC STAINLESS STEEL	15. 0 25. 0 10. 0 32. 0
17. 03	SUPPORTS - CABINETS	ALUMINUM STAINLESS STEEL CARBON STEEL	80. 0 5. 0 700. 0
22.	PLANT UTILITIES		
22. 01	BUILDING - BOILER AND CONTROLS	CARBON STEEL FIBERGLASS PLYWOOD - SOFTWOOD	1995. 0 798. 0 447. 0
22. 02	EMERGENCY GENERATOR 12 KW DIESEL POWERED	COPPER ALUMINUM CAST IRON CARBON STEEL	45. 4 4. 5 240. 0 31. 0

FOOTNOTES

10. Data are based on report ORO/5124-77/1, March, 1977.
- 12.04 - Teflon hose assumed.
- 12.06 - Epoxy adhesive assumed.
17. Energy system control requirements assumed to be 1/2 of the MIT-LL and UNL photovoltaic system at Mead, Nebraska.

ENERGY CONTRIBUTION CALCULATIONS

The details of all energy contribution calculations are given in Tables B.1, B.2, B.3, and B.4 which follow.

TABLE B.1. Details of Energy Contribution Calculations

System	Location	Collector Tilt	Energy Contribution Calculation Method	Insolation Calculation Method	Location Selection Method
Sunworks - HW	Manhattan, KS (38° Latitude)	38°	"f"-Chart ⁽¹⁻⁴⁾ (85% Solar)	"f"-Chart	Weighted Average ^(a)
Solaron-H	Washington, D.C. (38° Latitude)	48°	"f"-Chart (50% Solar)		
Solaron - H&HW					
American Helio. - H&HW					
KTA-Ecosol - H&HW					
Direct Gain - H					
Concrete Trombe - H					
Water Trombe - H					
RayPak - H, C, & HW	Site selection and all calculations completed by system designers.				
LLL Solar Pond			Estimated From Balcomb ⁽⁵⁾		
Chamber. Lumber Kiln					
Honeywell Textile Dry					

(a) See Tables B.2 and B.3

(1-4) References 1, 2, 3, and 4. Hot water or space heating load varied to arrive at percentage solar contribution shown (which is near the economic optimum in most cases. See reference 6).

(5) Reference 5.

TABLE B.2. Calculation of Weighted Average Solar Contribution From 6.9 m² Sunworks DHW System^(a)

State and Representative City ^{(6)(b)}	Projected New Homes Using Electric DHW 1977-1985 ⁽⁶⁾ (1000)	Assumed Number of Homes With Solar DHW (1000)	Solar Contribution per Home ⁽¹⁻⁴⁾ (At 85% Solar DHW) (GJ/yr)	State Yearly Solar Contribution From Solar DHW (10 ³ GJ)
CA-Los Angeles	200+	250	18.5	4626
FL-Miami	200+	250	19.0	4750
NY-Ithaca	100-199	150	8.42	1263
NJ- New York City	100-199	150	9.85	1478
AZ-Phoenix	50-99	75	23.9	1794
MD-Washington, DC	50-99	75	11.5	859
NV-Las Vegas	1-49	25	23.1	578
DL-Washington, DC	1-49	25	11.5	286
TOTAL		1,000		15,634

(a) Weighted Average Contribution = $\frac{15,634}{1,000} = 15.63 \text{ GJ/yr.}$

Representative Location Selected-Manhattan, KS = 14.38 GJ/yr
(15.63-14.38=1.25 GJ or 8% Allowance for System Thermal Losses)

(b) States listed are those where solar DHW is economically feasible in competition with electric resistance on a 10-yr life cycle cost basis without government incentives. Oil and gas are more economical on 10-yr life cycle basis without government incentives. Some states were represented by cities, outside of the state that have similar weather conditions.

TABLE B.3. Calculation of Weighted Average Solar Contribution From 25.4 m² Solaron Space Heating System(a)

State and Representative City(b)(b)	Projected New Homes Using Electric Space 1977-1985)(6) (1000)	Assumed Number of Homes With Solar Heating (1000)	Solar Contribution Per Home(1-4) (At 50% Solar) (GJ/yr)	State Yearly Solar Contribution From Solar Space Heat (-10 ³ GJ)
NY-Ithaca	100-199	150	22.9	3437
MD-Washington, DC	100-199	150	27.4	4108
MA-Boston	50-99	75	26.4	1978
NJ-New York City	50-99	75	22.7	1701
CT-Boston	1-49	25	26.4	659
RI-Newport	1-49	25	35.7	893
VT-Mt. Weather	1-49	25	35.3	881
NH-Mt. Weather	1-49	25	35.3	881
ME-Portland	1-49	25	41.7	1043
WI-Madison	1-49	25	35.0	876
MN-St. Cloud	1-49	25	41.9	1047
ND-Bismark	1-49	25	46.38	1159
SD-Rapid City	1-49	25	53.7	1343
CO-Boulder	1-49	25	48.1	1203
NM-Albuquerque	1-49	25	56.7	1417
TOTAL		725		22,626

(a)Weighted Average Contribution = $\frac{22,626}{725} = 31.2 \text{ GJ/yr.}$

Representative Location - Washington DC = 27.4 GJ/yr.
(31.2-27.4 = 3.8 GJ or 11% allowance for system thermal losses)

(b)Cities where solar space heat economically competitive with electric resistance on 20-yr life cycle cost basis without government incentives. Oil and gas are more economical on 10-yr life cycle basis without government incentives. Some states were represented by cities, outside of the state that have similar weather conditions.

TABLE B.4. Solar Contribution From 500 Million m² of Collector

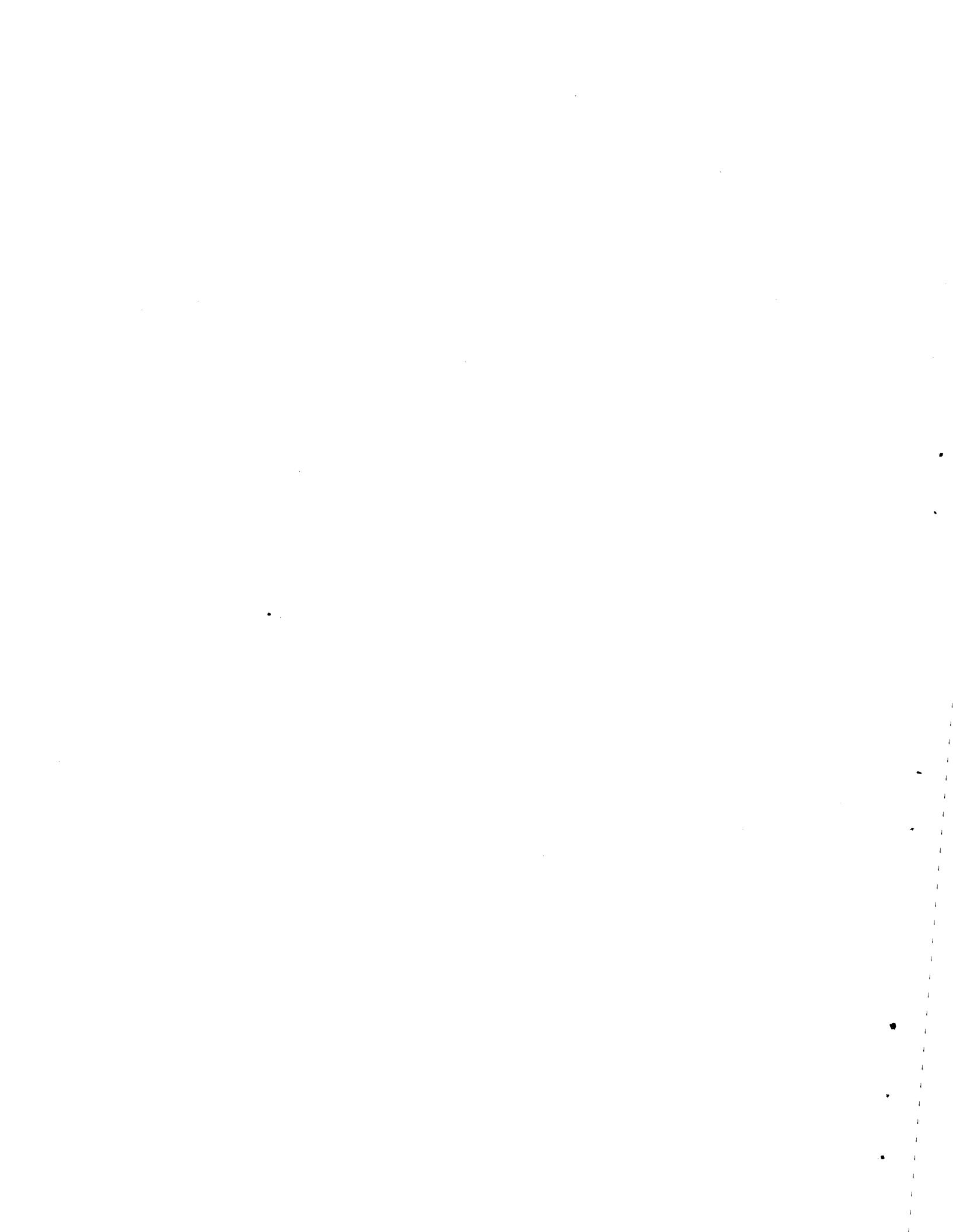
SHACOB Systems	Solar Contribution Quads
Sunworks Res HW	0.9
Solaron - Res HT	0.5
Solaron - Res HT + HW	0.7
Amer Heliothermal H+HW	0.8
KTA and ECOSOL Heat Pump System	1.0
RayPak - HT+COOL+HW	1.0
Trombe Wall Concrete	0.2
Trombe Wall Water	0.2
Direct Gain Masonry Wall	0.4
Mixed Case (Equal Portions of all 9 SHACOB Systems)	<hr/> 0.64
 <u>AIPH Systems</u>	
LLL Solar Pond	1.5
Chamberlain - Lumber Kiln	1.9
Honeywell Concentrating	0.8
Mixed Case (Equal Portions of all 3 AIPH Systems)	<hr/> 1.4

APPENDIX B: REFERENCES

1. Solar Collector System Engineering, Program ACSE 1. Scotch Programs Box 430734, Miami, FL.
2. S. A. Klein, W. A. Beckman, and J. A. Duffie, "A Design Procedure for Solar Heating Systems." Solar Energy, 18:113, 1976.
3. W. A. Beckman, J. A. Duffie, and S. A. Klein, "Applications of Solar Energy for Heating and Cooling a Building," Simulation of Solar Heating Systems. Chapter 9, ASHRAE, NY, 1976.
4. S. A. Klein, W. A. Beckman, and J. A. Duffie, A Design Procedure for Solar Air Heating Systems. 1976 ISES American Sect. Conf., Winnipeg, Manitoba, August 15-20, 1976.
5. J. D. Balcomb, J. C. Hedstrom, R.D. McFarland, "Passive Solar Heating of Buildings," Workshop on Solar Energy Applications. Associated Universities, Inc., June 27-July 31, 1977.
6. F. Roach, et al., Prospects for Solar Energy: The Impact of the National Energy Plan. LA-7064-MS, Los Alamos Scientific Laboratory, Los Alamos, NM, December 1977.

DISTRIBUTION

No. of Copies


OFFSITE

- 27 DOE Technical Information Center
- 10 Fred Koomanoff
Space Power Systems Project Office
Office of Energy Research
Department of Energy
Washington, D.C. 20545
- 1 A. A. Churm
DOE Patent Division
9800 S. Cass Avenue
Argonne, Illinois

ONSITE

DOE Richland Operations Office

- 1 H. E. Ransom
- 61 Pacific Northwest Laboratory
 - R. L. Watts (48)
 - S. A. Smith
 - T. A. Nelson (2)
 - W. E. Gurwell (2)
 - C. H. Bloomster
 - Technical Information Files (5)
 - Publishing Coordination (2)

