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Hydraulic Conductivity of Rock Fractures

Robert W. Zimmerman and Gudmundur S. Bodvarsson

Earth Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

The problem of the flow of a single-phase fluid through a rough-walled rock frac-
ture is discussed within the context of rigorous fluid mechanics. The derivation of the
“‘cubic law’’ is given as the solution to the Navier-Stokes equations for flow between
smooth, parallel plates, the only fracture geometry that is amenable to exact treatment.
The various geometric and kinematic conditions that are necessary in order for the
Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw
equations are studied and quantified. In general, this requires a sufficiently low flow
rate, and some restrictions on the spatial rate of change of the aperture profile. Vari-
ous analytical and numerical results are reviewed pertaining to the problem of relating
the effective hydraulic aperture to the statistics of the aperture distribution. These stu-
dies all lead to the conclusion that the effective hydraulic aperture is always less than
the mean aperture, by a factor that depends on the ratio of the mean value of the aper-
ture to its standard deviaton. The tortuosity effect caused by regions where the rock
walls are in contact with each other is studied using the Hele-Shaw equations, leading
to a simple correction factor that depends on the area fraction occupied by the contact
regions. Finally, the predicted hydraulic apertures are compared to measured values
for eight data sets from the literature for which aperture and conductivity data were
available on the same fracture. It is found that reasonably accurate predictions of
hydraulic conductivity can be made based solely on the first two moments of the aper-
ture distribution function, and the proportion of contact area.
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Introduction

In many geological formations with low matrix permeability, fluid flow takes
place predominantly through fractures. In some cases the bulk of the flow takes place
through a single fracture or fault, while in other cases the flow occurs through a net-
work of fractures. In either case, an understanding is needed of how fluid flows
through a single rough-walled rock fracture. Fracture-dominated flow is important in
many situations of technical or scientific interest, such as in certain naturally-fractured
petroleum reservoirs, for many geothermal reservoirs, and in many underground waste
isolation problems. Yucca Mountain, Nevada, for example, which is a potential site of
a U. S. Department of Energy underground radioactive waste repository, contains
numerous geological units that are highly fractured. A clear understanding of the
hydraulic conductivity of fractures has therefore been identified as an important
scientific problem that must be addressed during the site characterization process at

Yucca Mountain (Gomberg, 1991).

In this report, we address the question of how to relate the hydraulic conductivity
of a fracture to the geometry and topography of the fracture walls and asperities. We
do this by starting with the Navier-Stokes equations, _which govern the flow of a
single-phase fluid, systematically simplify the equationsv to reduce them to manageable
form, while carefully considering the conditions required for the various approxima-
tions to be valid. We then discuss and review various analytical and numerical studies
that have been done for different types of fracture geometry models. The aim of this
discussion is to arrive at an equation that will relate the fracture conductivity to a
small number of basic geometrical parameters, such as the mean aperture, fractional
contact area, etc. Finally, we compare the various theoretical models to a few sets of
data that have been found in the literature in which conductivities and aperture statis-

tics have been measured on the same rock fractures.
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There are other fracture properties that are not directly addressed in this report,
such as those that control two-phase flow and solute transport. However, a clear
understanding of single-phase flow in a rough-walled rock fracture is a prerequisite to
the development of both two-phase flow models and solute transport models. Most
models of two-phase flow in fractures (i.e., Pruess and Tsang, 1990; Murphy and
Thomson, 1993) assume that each phase follows a local version of the cubic law,
which rigorously applies only to single-phase flow in a smooth-walled fracture.
Hence, an understanding of the limitations, if any, of the cubic law for single-phase
flow is certainly needed for the further refinement of two-phase flow models. Solute
transport models also often utilize the velocity profile that occurs during flow through
a smooth-walled fracture (i.e., Homne and Rodriguez, 1983). Any deviation from this
profile caused by wall roughness or asperity contact will have an effect on solute tran-
sport. In fact, the tortuous streamlines that the fluid follows as it flows around the

asperities constitute a primary mechanism for lateral dispersion.

Basic Equations Governing Fluid Flow

The flow of an incompressible Newtonian viscous fluid is governed by the fol-

lowing form of the Navief—Stokes equations (Batchelor, 1967, pp. 147-150):

u o _p_lo B
at+(uV)u—F pr+pV2u, (1)

where p is the fluid density, F is the body force vector (per unit mass), p is pressure,
i is the fluid viscosity, and u is the velocity vector. The first term on the left
represents the acceleration of a fluid particle due to the fact that, at a fixed point in

space, the velocity may vary with time. The second term is the advective acceleration

term, which accounts for the facf that, even in steady-state flow, a given fluid particle
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may change its velocity (i.e., be accelerated) by virtue of moving to a position at
which there is a different velocity. The sum of these two terms represents the
acceleration of a fluid particle computed by ‘‘following the particle’’ along its trajec-
tory. The term (u-V)u can be interpreted as the scalar operator u-V operating on the
vector u. The forcing terms on the right-hand side represent the applied body force,

the applied pressure gradient, and the viscous forces.

Eq. (1) represents one vector equation, or three scalar equations, containing four
functions: three velocity components and the pressure field. In order to have a closed
system of equations, they must be supplemented by the so-called continuity equation,
which represents conservation of mass. For an incompressible fluid, conservation of

mass is equivalent to conservation of volume, and the equation takes the form

divu=Vu=0. 2)

The assumption of incompressibility is acéeptable for liquids under typical subsurface
conditions. For example, as the compressibility of water is only 4.9x1071%Pa
(Batchelor, 1967, p. 595), a pressure change of 1 MPa (10 bars) changes the density by
only 0.05%. This compressibility effect is important for transient problems, since it
contributes to the storativity of the rock/fluid system. However, since the relationship
between permeability and fracture geometry is most readily studied using steady-state
processes, transient effects can be ignored for the present purposes, and the fluid den-
sity can be assumed to be constant. The relevant boundary conditions for the Navier-
Stokes equations include the so-called “‘no-slip’” conditions, which specify that at any
boundary between the fluid and a solid, the velocity vector of the fluid must equal that
of the solid (Batchelor, 1967, p. 149). This implies that at the fracture walls, not only

is the normal component of the velocity equal to zero, but the tangential component

vanishes as well.
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The most common situation in subsurface flow is for the only appreciable body
force to be that due to gravity, in which case F=g. Taking the z direction to be verti-
cally upwards, we have g=—ge,, where g = 9.81m/s? = 9.81 N/kg, and e, is a unit
vector in the vertical direction. The gravitational term can be removed from the
governing equations by defining a reduced pressure (Batchelor, 1967 p. 176; Phillips,
1991, p. 26) as |

p=p+pgz, 3)

in which case the two terms F—(1/p)Vp can be written as
F-2Vp=-ge~—Vp="1(Vp+pge,) = —V(p+pgz)= —LV5.
P p p p ‘ Y

Hence, the governing equations can be written without the gravitational term, as long
as it is understood that the pressure represents the reduced pressure, as defined in eq.
(3), and the density is assumed constant. For simplicity of notation, we will use p,

with the understanding that it actually represents the reduced pressure p.

Fracture permeability is generally defined under the assumption of steady-state
flow under a uniform macroscopic pressure gradient. In the steady-state, the term

du/dt drops out, and the equations reduce to
uVZu - p(u-Viu = Vp . (5)

The presence of the advective component of the acceleration, (u-V)u, generally causes

the equations to be nonlinear, and consequently very difficult to solve. In certain cases
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this term is either very small, in which case it can be neglected, or else vanishes alto-
gether. The case of steady flow between parallel plates is one in which the advective
terms vanish identically, thus allowing an exact solution to be obtained, as will be
shown below. I any other more realistic geometry is to be considered as a model of a
rock fracture, approximations must be made to linearize the Navier-Stokes equations,
or otherwise reduce them to tractable form. Some of these resulting approximate

equations, such as the Reynolds and Hele-Shaw equations, are discussed below.

Parallel Plate Model and Cubic Law

The simplest model of flow through a rock fracture is the so-called parallel plate
model, in which the fracture is assumed to be bounded by two smooth, parallel walls
separated by an aperture 2. This is actually the only geometrical fracture model for
which an exact calculation of the hydraulic conductivity is possible; this calculation
yields the well-known ‘‘cubic law’” (Witherspoon et al., 1980). Despite its assumption
of an overly-simplified fracture geometry, this model is still widely-used in subsurface
flow modeling. Furthermore, most other models can be considered to be refinements
of the parallel plate model to include the effects of wall roughness, asperity contacts,

etc. It is therefore worthwhile to study the parallel plate model in detail.

Assume that the fracture walls can be represented by two smooth, parallel plates
that are separated by an aperture %, as in Fig. 1. Now imagine that there is a uniform
pressure gradient within the plane of the fracture. This can be accomplished, for
example, by holding two opposing edges of the fracture at pressures p; and p,,, respec-
tively (see Fig. 1a), in which case the magnitude of the macroscopic pressure gradient
is (p; —p,)L. This magnitude will also be denoted by Vpl, where. the overbar
denotes an average over the plane of the fracture. We now set up a Cartesian coordi-
nate system which has its x;=x direction parallel to Vp, its x,=y direction lying per-

pendicular to x; in the plane of the fracture, and its direction x3=z perpendicular to
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the fracture walls. The top and bottom walls of the fracture correspond to z =%h/2.

Note that this z direction is not necessarily vertical.

The (reduced) pressure gradient lies entirely in the plane of the fracture, and has
no z component. It seems plausible that the velocity will also have no z component,
particularly since u#, must not only vanish at the two walls of the fracture, z =1h/2,
but must also have a mean value of zero. Since the geometry of the region between
the plates does not vary with x or y, the pressure gradient should also be uniform
within the plane of the fracture. Hence we assume that the velocity vector depends
| only on z. Note that as all components of the velocity must vanish at z =%+ 4/2, the
velocity vector must necessarily vary with z. The components of the vector (u-V)u

can be written explicitly as
wVu= (u-V)(ux,uy,uz) = [u-(Vux) R u-(Vuy), u(Vu, )} . (6)

As the velocity components do not vary with x or y, any of the three velocity gra-
dients that are not identically zero must be present in the z direction, whereas the
velocity vector resides in the x—y plane. Hence, each of the dot products in eq. (6) is

zero. This serves to remove the nonlinear term from eq. (5), leaving
uVau(z) = Vp . (7

Now recall that Vp lies parallel to the x axis, and can be written as

8)
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Comparison of eqs. (7) and (8) show that the three velocity components must satisfy

the following three equations:

Vzux(z)z-ly?fl, Vi, (z)=0, Vu,(@)=0. )

The boundary conditions for each velocity component are that #; =0 when z = +h/2.
It is obvious that u =0 will satisfy the governing equations for u, and u,, and their
associated boundary conditions. To find u,, we integrate eq. (9a) twice with respect to

z, and make use of the boundary conditions, yielding

IV |

2_ 2
20 [z2-r12)?]. (10)

u,(z) =

Finally, we must verify that this velocity satisfies the continuity equation (2):

v _ Ou, oduy, - du, o ’
A (b

since u, =u, =0, and u, depends only on z, but not on x.

The velocity profile given by eq. (10) is parabolic, and symmetric about the mid-
plane of the fracture (see Fig. 1b). The velocity vanishes at the fracture walls, and is
largest along the midplane, where its magnitude is IVp |#%/8y. The total volumetric
flux through the fracture, for a width w in the y direction (perpendicular to the pres-

sure gradient), is found by integrating the velocity across the fracture from z = —h/2 10

z=+h/2:
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+h/2

Q=w| u()d-= wj 'VP‘[ 2_ (hoy?ldz = =102 Wk

(12)
k12 —h12 12

The minus sign indicates that the flux is in the direction opposite to the pressure gra-
dient, which is to say the fluid flows from regions of high pressure to regions of low
pressure. The average velocity can be found by dividing the flux by the cross-

sectional area, wh:

_ _ Va2

Now recall Darcy’s law for flow through porous media, which in one dimension

can be written as (de Marsily, 1986, p. 56)

—kAIVp |

Q= m

(14)

Since the cross-sectional area A is equal to wh, comparison of egs. (12) and (14)

shows that the permeability of the fracture can be identiﬁed- as

2
b= 11’.2_ (15)

The product of the permeability and area, kA, which is sometimes known as the

transmissivity, is equal to

(16)
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which expresses the so-called cubic law. An important consequence of the cubic law

is that the fracture transmissivity is extremely sensitive to the size of the aperture.

_Although the transmissivity calculated for the parallel plate model, given by eq.
(16), is often referred to as the cubic law, the dependence of T on K3 is actually a
consequence of the fact that the equations must be dimensionally consistent. Since Q
has dimenéions of [m>/s], the pressure drop has dimensions of [Pa], the length L has
dimensions of [L], and p has dimensions of [Pa‘s], T must have dimensions of [m?].
As it is obvious that the total flux must scale linearly with the depth w perpendicular
to the direction of flow, T must therefore scale with the cube of the aperture. Hence,
the transmissivity can necessarily be written as T = Cwh>, where C is a diménsionless
parameter. From this point of view, it may be said that the main prediction of the

parallel plate model is that C = 1/12.

Deviations from the Cubic Law

The cubic law was derived under the assumption that the fracture could be
modeled as the region bounded by two smooth, parallel plates. For this geometry, it is
an exact result. Real rock fractures, however, have rough walls, and, hence, have vari-
able apertures. Furthermore, there are usually regions where the two opposing faces of
the fracture wall are in contact with each other, effectively reducing the aperture to
zero. Since transmissivity is proportional to %3, fluid flowing in a variable-aperture
fracture under saturated conditions will tend to follow paths of least resistance, which
is to say paths of largest aperturc.‘ This will cause the fluid particles to depart from
the fectilinear streamlines found for the parallel plate model. Contact regions between
the opposing fracture walls will cause the streamlines to follow tortuous paths, as the
fluid particles flow around the obstructions. Each of these factors has the effect of

invalidating the conditions under which the cubic law was derived.
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In order to apply the cubic law to the prediction of the transmissivity of a real
rock fracture, one could assume that eq. (16) still holds if the aperture # is replaced by
the mean aperture <2>. This is sometimes taken to be an alternate definition of the

cubic law, i.e., (cf., Brown, 1987)

= w<h>3
12

a7

Although eq. (17) is in some sense a first approximation to the actual transmissivity of
a rough or obstructed fracture, the effects of roughness and obstructions are not prop-
erly accounted for by merely replacing 2 with <h>, as will be shown in detail below.
This suggests that we deﬁﬁe the so-called hydraulic aperture 4y to be that value that

allows the transmissivity to be defined by the ‘‘cubic-law’’, i.e.,

why
T = I (18)

Hence, the problem of relating the transmissivity of a fracture to.its geometry can be
thought of in terms of finding an expression for the hydraulic aperture Ay . This
requires solution of the Navier-Stokes equations in fracture geometries that include
varying aperture and obstructed regions. These solutions have only be obtained by
approximate means, in which the Navier-Stokes equations are first reduced to simpler
governing equation(s).

Another possible cause of deviations from the cubic law is turbulence. Although
the velocity profile found above for the parallel plate model was derived using various
plausible assumptions and educated guesses, it can be rigorously verified by substitu-

tion back into the Navier-Stokes equations, and then also checking that the boundary
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conditions are satisfied; the continuity equation was verified in eq. (11). This raises,
however, the question of whether or not this solution is the unique solution to the
problem of flow between two smooth parallel plates under a uniform pressure gradient.
In general, there is no uniqueness theorem for the full Navier-Stokes equations, as
there is, say, in the theory of linear elasticity (Sokolnikoff, 1956, pp. 86-89). In fact,
at sufficiently high velocities, the laminar velocity profile derived above, although still
a légitimate solution to the governing equations, will become unstable, giving way to
turbulent flow (e.g., Sherman, 1990, Chapter 13). This transition will typically occur
when the Reynolds number, defined here by

Re = R 19

exceeds about 1150 (de Marsily, 1986, p. 66). The Reynolds number is a dimension-
less- measure of the relative strengths of inertial forces to viscous forces. At low Rey-
nolds numbers, viscous forces are strong enough to damp out any perturbations from
the uni-directional, laminar flow field, whereas at sufficiently high velocities small per-
turbations to the laminar flow field will tend to grow in an unstable manner. Combin-
ing egs. (13) and (19) yields the following criterion for the laminar solution derived in

the previous section to be stable:

138002

Vol <
2 e

(20)

This expression shows that high viscosity, low density, and small apertures all tend to

stabilize the flow field.
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The stability condition given by eq. (20) is satisfied in most subsurface flow situa-
tions. For example, consider water with a viscosity of 10> Pa's and a density of
10°kg/m>®. Even for fracture apertures as large as 10~ m, laminar flow will be stable
for pressure gradients as high as about 1.4x 107 Pa/m. This gradient is equivalent to
about 140bars/m, which is much larger than the gradients that would typically be
encountered. If the fluid is air, with a viscosity of about 2x 1075 Pa-s and a density of
abbut 1.2kg/m® (Batchelor, 1967, p. 175), then flow through a 1 mm wide fracture
will be stable for pressure gradients up to about 4.6x 10%Pa/m, or about 46’ bars/m.
Hence, it seems that genuine turbulent instability can often be ignored when studying
flow through rock fractures. Possible exceptions include situations of forced fluid
flow, such as hydraulic fracturing (Jung, 1989), where large pressure gradients may be
developed. For a real rough-walled fracture, however, inertia effects due to tortuous
flowpaths will lead to deviations from the cubic law long before genuine turbulence

occurs, i.e., at lower flowrates, as will be discussed below.

Reynolds Lubrication Approximation

At low flowrates, the two main causes of deviations from the cubic law are
rdughness of the fracture walls, which leads to spatial variations in aperture, and asper-
ity contact between the opposing fracture faces, which leads to partial obstruction of
the flow. Although asperity contact can be thought of as an extreme case of aperture
variation, it is convenient to analyze these two effects separately. First consider the
case where the aperture varies from point to point, but is always greater than zero, i.e.,
no asperity contact. Under certain geometric and kinematic conditions, the Navier- -
Stokes equations can be reduced to the simpler Reynolds ‘‘lubrication’ equation. One
requirement for the Reynolds equation to be valid is that viscous forces dominate the
inertial forces (Batchelor, 1967, p. 222). To quantify this criterion, we first estimate

the orders of magnitude of the three terms appearing in eq. (5). The first term, uV?u,
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represents the viscous forces; the second term, p(u-V)u, represents inertial forces; and
the third term, Vp, represents the pressure gradient. Let U be a characteristic magni-
tude of the velocity, which could be thought of as the average velocity, as in eq. (13),
although a precise definition is not needed for an order-of-magnitude analysis. Across
the thickness of the fracture, the velocity varies from O at the upper and lower walls to
some maximum value which is on the order of U, and this variation occurs over a dis-

tance 2. Hence the order of magnitude of the viscous terms can be estimated to be

mag [UV7u] = -’;—Z 1)

where h? appears due to the fact that there are two derivatives taken with respect to z
_in the expression V2u. The magnitude of the pressure gradient term can be estimated

to be
mag[Vpl = Vpl, (22)

where 1Vp | is the magnitude of the overall reduced pressure gradient established at the
ends ends of the fracture, as in Fig 1. To check that this sort of order-of-magnitude
analysis is sensible, note that equating the magnitudes of the viscous forces and the
pressure gradient from egs. (21) and (22) leads to the following estimate for the

characteristic velocity U:

%5 112
mag[U] = ’;", @3

which is consistent with the form that was calculated (exactly) for the parallel plate
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~ model, eq. (10).

We now estimate the magnitude of the inertial forces. First note that the magni-
tudes calculated above correspond to the forces acting in the direction of the mean
flow. This is clear for the term Vp, which acts in this direction. For the viscous term,
this is seen by noting that U is actually the characteristic velocity in the x direction,
parallel to the applied macroscopic pressure gradient. To estimate the magnitude of
thé term (u-V)u, we first define a characteristic length A in the x direction, which may
be the wavelength of the aperture variations, or the distance between asperity obsta-
cles, etc. (see Fig. 2). The velocity gradient is then on the order of U /A, and the iner-

tial terms have magnitude

, ,
mag [(u-V)u] = % . 24)

For the inertia terms to be smaller than the viscous terms, we must have (Schlichting,

1968, p. 109)

2 2
P%—<JZ—’21 or Re*sf%<1, (25)

y

where the reduced Reynolds number Re* is defined to be the product of the traditional
Reynolds number, pUh/u, and the geometrical parameter h/A. The question of
whether or not this condition is satisfied in typical subsurface flow situations will be

discussed below.

If condition (25) is satisfied, then the advective inertia term (u-V)u is negligible
compared to the other two terms in eq. (5), and we can replace the Navier-Stokes

equations (1) with the Stokes ‘‘creeping flow’’ equations:
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uVau =Vp , (26)

which can be written out in component form as

az aZ a2 . »
u" = =_lo (27a)
ox? dy? 9z2 B ox :

9% 1
ox2 dy? dz2 M

F
%

F
%

5

9 27
2z, (27b)

02 02 02
Yo O (C% 1o 27¢)
2 | a?  mor

These three equations must still be accompanied by the continuity equatibn, (11). The
Stokes equations are linear, which makes them easier to solve than the Navier-Stokes
equations. Another slight operational advantage to their use is that there is a unique-
ness theorem for solutions to the Stokes equations in finite regions such as the space
between two fracture walls (see Langlois, 1964, pp. 161-163). This is of course a
purely mathematical consequence of ignoring the inertia terms, which are the source of
turbulence. The Stokes equations are nevertheless three-dimensional, in general. For
the parallel plate model, the equations effectively become one-dimensional, since there
is only one nonzero velocity component, and it depends on only one position coordi-
nate. Any deviation from the parallel plate geometry causes the velocity vector to
have at least two nonzero components, which depend on at least two of the position
coordinates. Aithough the linearity of the Stokes equations allows methods such as
Green’s functions (Pozrikidis, 1987,1992) and separation of variables (Lee and Fung,
1969; Tsay and Weinbaum, 1991) to be used, solutions are still difficult to obtain, and
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unwieldy to utilize and interpret. Hence, it is desirable to further simplify the equa-

tions before attempting to solve them for different types of fracture geometries.

The validity of the Stokes equations requires that the flow rate (as quantified by
the reduced Reynolds number) be sufficiently small. Further reduction to the simpler
Reynolds lubrication equation requires the additional criterion that changes in aperture
occur gradually. To derive the lubrication equations, we first assume that the charac-
tcﬁstic wavelength of aperture variations, A, is much larger than the aperture 2. Using
an order-of-magnitude analysis similar to that which is commonly used to derive the
boundary-layer equations (Schlichting, 1968, pp. 118-119), the magnitudes of the

second derivatives of u, that appear in eq. (27) can be estimated as

U
2’

i

= ma = =, ma
mag %2 4 A2 54

where we assume that the characteristic lengths in the x and y directions are the same
for a macroscopically isotropic fracture. Eq. (28) shows that if (& /A)? <1, the deriva-

tives with respect to x or y will be negligible compared to those with respect to z.

The proper choice of a characteristic magnitude for u, is not as clear, since, for
example, the average of u, taken over the entire fracture plane must be zero. This fol-
lows from the fact that for a macroscopically isotropic fracture, if the overall pressure
gradient points in the x direction, the overall flux must also have no y component (see
Bear, 1972, p. 142; Phillips, 1991, p. 27). Whatever value is used for the characteris-
tic magnitude of u,, the conclusion will nevertheless follow that the a2'uy /0z% is the
dominant term on the left side of eq. (27b), as long as A/A < 1. Although the average
value of dp/dy is also zero, local variations in aperture will ‘cause this term to be

locally nonzero; as it is the only term on the right-hand side of eq. (27b), dp/dy can-

not be ignored.
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Estimates of the magnitudes of the terms appearing in eq. (27c) are more difficult
to make. The argument that was made above in the solution of the parallel plate prob-
lem was that since u#, must vanish at the top and bottom walls of the fracture, and
since the average value of %, must vanish over the entire fracture plane, then 1, will
be small everywhere, and can be neglected. This argument does not actually prove,
however, that u, will be nearly zero locally at each point (x,y,z). The assumption
thét u, is negligible seems plausible if the aperture variations are very gradual, i.e.,
h/A< 1. But as long as the fluid always fills the entire fracture, this assumption can
never be exactly true, except in the case of uniform aperture (i.e., parallel plate flow).
Abrupt changes in aperture in the x or y direction would certainly require that the
fluid velocity have an appreciable component in the z direction. More precise esti-
mates of the range of validity of this particular assumption will be discussed in the

next section. For now, we assume that u, is negligible.

According to the order-of-magnitude arguments given above, if the aperture varies

gradually in the plane of the fracture, the Stokes equations (27a-c) can be replaced by

0%, op
u—872— =30 (29a)
aZuy P
. 29b
T 52 9y (29b)

These equations have the same form as eq. (9a), which occurred in the parallel plate
model, although now the velocity components vary with x,y,andz, and the pressure
gradient will in general vary with x andy. Since u, was assumed to vanish, dp/dz
must be zero in order to be consistent with eq. (27¢). The right-hand sides of eq. (29)

do not depend on z, so the equations can be integrated with respect to z, bearing in
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mind the no-slip boundary conditions at the top and bottom walls, z=%; and z =—h,

(see Fig. 2), to yield

ety 2= 5 LI G e +hy), (302
Uy (x,y.2) = i-a-’%;—yl(z —hy)z +hy), (30b)

which is essentially the same parabolic profile as was found for the case of constant
aperture, eq. (10), except that the velocity is now parallel to the local pressure gra-
dient, which may not always be aligned with the overall pressure gradient. If we do
not assume that the two fracture walls are symmetric with respect to the z axis, the

two half-apertures £ ;(x,y) and hy(x,y) will not necessarily be equal.

As we are ultimately interested in the total flux through the fracture, we now
integrate the velocity profiles given by eq. (30) across the width of the fracture, from
—h, to hy, to find

hy

~_1 _ —h3@y) op(x.y)

o = h—J;lzux(x,y,z)dz = 20 ot (31a)
1 " | h3(x.y) 9p(x.y)

= __ = — Xy VAL

, = h_Luy(x,y,z)dz o y (31b)

where the overbar indicates an average taken over the z coordinate, and the total aper-

ture is given by h =h;+hk,. Evaluation of the integrals in eq. (31) is facilitated by
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defining a new variable {=z + h, that represents the distance along the z axis from the

bottom wall.

Egs. (31a,b) represent an approximate solution to the equations of conservation of
momentum, eq. (29), but still contain an unknown pressure field. The pressure is
found by utilizing the continuity equation, in some form. The continuity equation as
given by eq. (2), however, applies to the actual local velocities, not to the integrated
vaiues. But V-u=0, so the integral of V-u with respect to z must also be zero. Inter-
changing the order of these two operations then shows that the divergence of the aver-
age velocity, il_,. is also equal to zero. (In general, the order of these two mathematical
operations can be interchanged as long as the velocity components vanish at z =%, and
z=—h,, as can be proven by applying Liebnitz’ rule for differentiating and integral
with respect to a parameter). Hence, we can apply eq. (2) to the profiles given in eq.

(29), yielding

V- [r3x.y)Vpxy)]l =0, (32a)
TN VR IR P
ie., w [h (x,y)axJ + 3y [h (x,y)ay} =0, (32b)

which is the equation first derived by Reynolds (1886) for lubrication-type flows. Eq.
(32) has often been derived in the context of studying fracture permeability (see
Walsh, 1981; Brown, 1989), by merely assuming that the cubic law holds locally at
each point in the fracture, and then invoking the principle of conservation of mass.
Although this is a useful interpretation of eq. (32), this type of derivation does not
clearly display the conditions necessary for the validity of the various approximations

that are implicitly contained in the final equation.
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Eq. (32) is a single, linear partial differential equation that describes the pressure
field in the fracture plane. Its solution requires prescription of either the pressures or
their normal derivatives (i.e., the fluxes) over the outer boundary of the fracture plane.
To use this equation to find the permeability of a fracture, one would typically solve it
in a rectangular region defined by O<x <L,, O0<y <L,. The two lateral sides y =0
and y =Ly would be no-flow boundaries, whereas ﬁe sides x =0 and x =L, are con-
staht pressure boundaries. If there is no flow out of the two lateral sides, &, must
equal O at y =0 and y =L,. Eq. (31) shows that &, is proportional to dp/dy, so we
see that the normal derivative of the ﬁressure must vanish on the lateral boundaries.
The x =0 boundary would have p =p;, and the x =L, boundary would have p =p,_,
where (p, —p;)/L, =Vp. The overall flux would be found by integrating iz, across the

x =0 inlet of the fracture:

y=L,

Q= [ LOy)dy. (33)
y=0

Finally, the fracture transmissivity would be found from T = QW/IVp!l. A fracture
permeability could be defined as in eq. (16) by dividing T by the nominal area of the
fracture, w<h>, although the transmissivity is the more generally useful parameter, as

its definition does not require knowledge of the mean aperture.

Range of Validity of the Lubrication Approximation

Reduction of the Navier-Stokes equations to the Reynolds equation requires that
the aperture /2 always be much less, in some sense, than the characteristic spatial
wavelength A of the aperture variations. It would be useful to have a quantitative
measure of how small 4/A must be in order for the solutions to the Reynolds equation

to closely approximate the solutions to the Navier-Stokes equations. Strict a priori

%&——h,
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€rTor estimates are unfortunately difficult to derive. A more practical approach is to
focus on a .speciﬁc geometry for which analytical treatment of the Navier-Stokes equa-
tions is possible, so as to allow comparison with the lubrication theory predictions.
For instance, consider the problem of flow between a smooth wall and a sinusoidally-

varying wall, such as the geometry shown in Fig. 3. The aperture can be described by
h(x) = <h>[1 + 8sinRrx/A)] , (34)

where A is the wavelength of the aperture variations, and 9 is the relative amplitude of
the aperture variations, normalized with respect to <k>. The aperture does not vary

with y, and the flow is in the x direction.

Hasegawa and Izuchi/(1983) performed a perturbation analysis of this problem,
using as their small parameters the Reynolds number, Re=pU<h >/, where U is the
mean velocity that would occur if the walls were smooth, and the geometrical parame-
ter e=<h>/A. The velocity components &, and u, are nonzero, and are functions of x
and z. Following the standard procedure of regular perturbations, Hasegawa and Izuchi
(1983) essentially assumed that u, and u, could be expanded as power series in Re
and &, inserted these expansions into the Navier-Stokes equations, and then equated the
coefficients of each power of Re and € to zero. This approach reduces the nonlinear
Navier-Stokes equations to a sequence of linear equations. The zeroth-order solution,
corresponding to Re=0 and €=0, is identical to the corresponding solution of the
lubrication equation for this geometry. Hasegawa and Izuchi (1983) also found the
first-order correction due to non-zero values of Re and €. These corrections represent
the errors incurred by replacing the Navier-Stokes equations with thc Reynolds lubrica-
tion equation.

When translated into the present notation, the solution found by Hasegawa and

Izuchi, including the first non-trivial coirections in Re and €, can be expressed as (see
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their egs. 27-32)

| 2 2\sd '
i =<p 31|y - SEA=IN |, 18 poala] 35
" [ 5(1+8%72) 8085 | G

The harmonic mean <> would result from solving a one-dimensional version of
the lubrication equation (see eq. (42) below). The second term in brackets therefore
represents the discrepancy between the Navier-Stokes and Reynolds solutions. To see
the conditions that must be satisfied by Re and € in order for this term to be negligible,
first let Re=0. As 8 is restricted by definition to lic between O and 1, the term that
multiplies € in eq. (35) is always less than 0.662. In order for the error to be less
than, say, 10%, we would need 0.662<h>%AZ < 0.1, which implies A > 2.57<h>.
Since the aperture undergoes its maximum variation within a half-wavelength, this
conditidn is roughly equivalent to saying that sizable aperture variations can only occur
over distances greater than the mean aperture <k>, for the Reynolds solution to be
valid. As pointed out by Zimmerman et al. (1991), this condition is much less restric-
tive than the one proposed earlier by Brown (1987), which can, in the present context
of a sinusoidal aperture variation, be expressed as A > 30<h>. Nevertheless, examina-
tion of aperture profiles measured on real rock fractures (Gentier et al., 1989) shows .

that even this less restrictive condition is not always satisfied.

We now consider the criteria that must be met by Re in order for the correction
term in the solution found by Hasegawa and Izuchi (1983) to be small. The term due
to nonzero Re in eq. (35) is always multiplied by the term due to nonzero <A>/A. As
we have already seen that the Reynolds approximation will break down if A is not
sufficiently small, in order to find restrictions on the allowable values of Re we now

restrict our attention to the worst admissible case, A=2.57<h>, in which case the error

is already 10% when Re=0. If we now assume that at most another 10% error will be
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tolerated, eq. (35) yields the condition 13 Re%/8085 < 1, which in turn implies Re < 25.
However, when Re > 1, it is not necessarily permissable to ignore the subsequent
terms in the perturbation series, which would be proportional to higher powers of Re,
but which were not calculated by Hasegawa and Izuchi. What can be said with some
confidence based on eq. (35) is that if Re < 1, for example, the error due to a nonzero
Reynolds number will be smaller than that due to nonzero <h>/A. Hence Re < 1
seems to be a conservative criterion for the lubrication equation to provide a reason-

able approximation to the Navier-Stokes equations, for this particular problem.

When expressed in terms of parameters such as the applied pressure gradient, this
criterion takes a form similar to that given in eq. (20) for the flow to be stable, except

that the maximum Reynolds number is 1 instead of 1150:

2
IVp 1 < 22 (36)
ph*

The condition for the flow to be governed by the Reynolds lubrication equation is
therefore stricter, by about a factor of one thousand, than the condition that the flow
(in a smooth-walled channel) be laminar. Following the analysis given above for the
onset of turbulence, we see that for a fracture having an aperture of 1 mm, saturated
with water of density 1000kg/m> and viscosity 0.001Pa-s, the pressure gfadient must
be less than 10*Pa/m, or about 0.1bars/m. This critical gradient is certainly larger
than most naturally-occurring groundwater potential gradients, but could be exceeded

in cases of forced flow (cf., Jung, 1989).

The criterion given by eqg. (36) does not merely refer to the validity of the lubri-
cation equation as an acceptable mathematical expediency. More fuhdmnentally, this
condition also determines whether or not the flow process will be linear or nonlinear.

If this and the previously-defined geometrical criteria are satisfied, the term involving
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Re will be negligible, so hy will be independent of the flowrate, which in turn implies
(see egs. 14,18) that the flowrate will be directly proportional to the applied pressure
gradient. For larger valués of Re, eq. (35) shows that Ay will depend on the pressure
gradient, in which case egs. (14,18) show that the flowrate will be a nonlinear function
of IVpl. Comparison of eq. (36) and eq. (20) shows that the appearance of a non-
linear relationship between Q and Vp can occur at flowrates that are much less than
those required to produce genuine turbulence. This point was made by Bear (1972, p.
178) in the context of flow through three-dimensional porous media. Bear discussed
experimental results by Wright (1968) and others that showed nonlinear effects arising
at Reynolds numbers as low as 1-10, whereas true turbulence did not occur until Re
reached about 60-100. Geertsma (1974) pointed out, also in the context of three-
dimensional porous media, that in cases of practical importance in petroleum engineer-
ing, including converging flow near wellbores, nonlinear departures from Darcy’s law
occur during laminar, not turbulent, flow. Coulaud et al. (1991) performed numerical
solution to the full Navier-Stokes equations for transverse flow past an array of
infinitely long, parallel cylinders, and found slight nonlinearity in the relationship
between pressure drop and flowrate to begin at about Re=2, although the flow was
still clearly laminar. Nevertheless, deviations from a Darcy-type linear relationship
between Vp and Q are often attributed, perhaps erroneously, to turbulence (cf.,

Geertsma, 1974).

Numerical Solutions to the Lubrication Equations

Under the conditions that the reduced Reynolds number is small, and that the
aperture variations occur gradually, flow through a fracture can be described by the
lubrication equation, eq. (32). Although it is in one sense simpler than either the

Navier-Stokes or Stokes equations, because it is a single scalar equation rather than a

vector equation, the presence of the term 4 (x,y) renders it an equation with variable
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coefficients. For certain special (anisotropic) geometries the equation becomes one-
dimensional, in which case it is easy to solve; these cases are discussed in the next
section. For arbitrary isotropic aperture distributions it cannot be solved analytically,
but it is amenable to numerical solution procedures. Several studies have been done in
which the equations were solved numerically for various aperture distributions, with
the intention of finding some simple relation between the transmissivity and the statis-
tics of the aperture distribution. |

Patir and Cheng (1978) used finite differences to solve the lubrication equation
for flow between two surfaces, fhe half-apertures of which, #; and &,, obeyed a Gaus-
sian height distribution‘ with linearly-decreasing auto-correlation functions. Although
their intended application was to lubrication flows in machine components, it is con-
venient to use the terminology of fracture flow when diséussing their results. They
studied both statistically isotropic fractures, and anisotropic fractures with aperture dis-
tributions that had different correlation lengths in two orthogonal directions; only the
results for isotropic fractures will be discussed here. As the transmissivity of a frac-
ture is proportional to the cube of the hydraulic aperture, as shown by eq. (18), the
numerically-calculated transmissivities can be discussed in terms of the hydraulic aper-
ture, hy .

Patir and Cheng (1978) displayed their calculated results as a function of the ratio
of the nominal aperture &, to the standard deviation of the roughness distribution func-
tion, G4; the meanings of ‘thesc parameters are discussed in more detail below. The
results are shown in Fig. 4, in which each data point represents the average of about
ten different realizations baséd on the same values of 4, and G;. No values were
given for the correlation lengths bof the height distributions, although they were
presumably much less than the overall length L of the computational region, and

greater than the length ! used in the finite difference calculations. For values of 4,/c,

between 0.5 and 6.0, Patir and Cheng found that the hydraulic aperture could be fit
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with the function (see Fig. 4)

By = h3[1 - 0.90¢03k/0] ‘ 37)

According to these results, the nominal aperture %, is a zeroth-order approximation to
the hydraulic aperture k. The effect of surface roughness is to decrease the hydraulic
aperture below the value h,. Although eq. (37) provides a reasonable fit to the data
when h,/G, lies between 0.5 and 6, the parameters in the equation were not chosen so
as to provide a best fit in the limit as h,/G; — oo; hence, this equation should not be
thought of as a rigorous first-order correction to the cubic law in the limit of small

amounts of roughness.

An important point to note about the findings of Patir and Cheng concerns the
issue of contact areas at which the two opposing surfaces touch, and the manner in
which this affects the definitions of 7, and ¢,;. Translated into the present notation,
they defined upper and lower surfaces, the distances of which from the z =0 plane are

given by two half-aperture distributions as follows:

. _

hy(x,y) = —2i+d1_(x,y>, (38a)
ho

h2(x,}’) = _2‘+d2(x,.)’), . (38b)

where the functions d;(x.y) have a mean value of zero. If k,+h,>0, then the frac-

ture is open at that point, and the aperture is given by kh=h;+h, However, if

hi+h,<0, ie., the curves representing the upper and lower surfaces of the fracture
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overlap each other, then the fractdre is assumed to be obstructed at that point, and the
aperture is taken to be zero. As pointed out by Brown (1989), the mean aperture </ >
will equal 4, if there are no contact regions, but <h> will be greater than %, if there
are contact regions, since the negative values of the function h=h;+h, are not
allowed to contribute to the calculaﬁon of <h>. Hence, the parameters hob and o,
used by Patir and Cheng (1978) do not represent the actual mean and standard devia-
tion of the aperture; except for small values of 6;, when no contact occurs. Accord-
ing .to Patir and Cheng, contact regions occurred when h,/c; <3, but they did not
quantify the amount of contact area that occurred. Therefore, when £,/0; <3, the
results shown in eq. (37) and Fig. 4 represent the combined effects of aperture varia-

tion and asperity contact.

Brown (1987,1989) performed a similar finite difference analysis of the Reynolds
equation, for fractures having randonﬂngenerated, fractal roughness profiles. The
fractal dimension of the fracture walls varied from 2.0, which represents a smooth
wall, to 2.5, which was found by Brown and Scholz (1985) to correspond to a max-
imum amount of roughness that occurs for real rock fractures. The flow region
between fracture walls was formed by generating two surfaces having the same fractal
dimension, and then choosing a value for the nominal aperture k,, which is the mean
distance between the two planes. T‘he aperture was then set to zero at any point in the
fracture plane where the two fracture walls overlapped. Although Brown presented
most of his results in terms of the actual mean aperture <h>, he followed Patir and
Cheng (1978) in using ¢, to quantify the roughness, which is to say, he used the stan-
dard deviation of the distance that exists between the two surfaces before all negative
apertures are set to zero. Hence, it is not possible to replot his data in terms of the

actual mean and standard deviation of the fracture aperture; this definition of 6, must

be kept in mind when examining Brown’s results.
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Fig. 4 also shows the transmissivities that were computed by Brown (1987) for a
surface having a fractal dimension of 2.5, normalized to the cubic law value based on
the mean aperture. Each one of the data points represents the mean of ten different
realizations. Brown found that the fractal dimension had little effect on the computed
transmissivities, and that ky seemed to be mainly a function of <4> and ;. Brown’s
mean transmissivities fell very close to the values found by Patir and Cheng (1978),
regardless of the fractal dimension of the surface. This agreement provides some vali-
dation of the computational procedures used in the two studies. However, for low
values of <h>/G,;, the unquantified amount of contéct area makes it difficult to
rigorously compare the two sets of results, since 2, and <h> are not equivalent when

there is contact between the two fracture faces.

Analytical Treatment of the Lubrication Model

Once the Navier-Stokes equations have been reduced to the Reynolds lubrication
equation (32), fluid flow through the fracture is then governed by the very same equa-
tion that governs, say, heat conduction in an isotropic but inhomogeneous two-
dimensional medium. The cube of the local aperture, 23(x,y), plays the same role as
the thermal conductivity, k£, aside from the multiplicative constant 1/12 which can be
factored out and ignored. A similar equation governs porous medium flow in a
nearly-horizontal aquifer which has a permeability and/or thickness that varies gradu-
ally from point to point (Bear, 1972, p. 215). The problem of finding the effective
hydraulic aperture for a fracture that is governed by the‘ Reynolds equation is therefore
equivalent to finding the effective conductivity of a heterogeneous two-dimensional
conductivity field, be it electrical, thermal, or hydraulic. A great deal of mathematical
work has been done on this problem, the results of which can be applied directly to
fracture flow, with the understanding that if the aperture (i.e., conductivity) varies too

rapidly, in the sense quantified previously, the Reynolds equation will no longer be
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valid.

The effective macroscopic conductivity of a heterogeneous medium depends not
“only on the statistical distribution of the local conductivities, but also on the geometri-
cal and topological manner in which the local conductivity is distributed. In other
words, the spatial correlation between the regions of high and low conductivity also
has an effect on the overall conductance. However, if the statistical distribution of
coﬁductanccs is known, but the correlation structure of the conductivity field is either
unknown or ignored, upper and lower bounds can be computed for the overall
effective conductivity (Beran, 1968, p. 242; Dagan, 1979). These bounds, which are
derived using variational principles and certain trial functions for the local pressure

field, can be expressed as

<> < kyy < <k>, (39)

or <351 <pgd < <3S, (39b)

where we identify the local conductivity with £3. The lower bound <1/k> is often
called the harmonic mean, whereas the upper bound <k> is called the arithmetic mean
(de Marsily, 1986, p. 81).

The upper bound can be thought of as corresponding to the hypothetical situation
in which all of the conductive elements are arranged in parallel with each other,
whereas the lower bound corresponds to a series arrangement of the individual ele-
ments (Dagan, 1979). These extreme cases correspond to geometries in which the
aperture varies in only one of the two directions, x or y, while the imposed pressure
gradient is in the x direction (see Fig. 5). For example, in the case where the aperture

varies only in the direction of the applied pressure gradient, the Reynolds equation
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(32) reduces to the one-dimensional form
d |,3.,,9P
_- 1 =0, 4
dx [h ) dx} 0 40
which can be integrated once to yield
dp
rx)=-==C, 41
002 (41)

where C is a constant of integration. Comparison of egs. (41) and (31a) shows that
the constant of integration is equal to —12iz,. A second integration from x =0 to

x =L, yields

L,
— dx _ -3
-p; = —12 — = —12uir.L,<h3>, (42)
Po—P; uuxg pr WiE, L,
which can be rearranged to yield
_ _=Ivpl , 5 _
ux = ._I—z_llp—<h 3> 1 - (43)

The total flux is found by integrating iZ, in the y-direction, as in eq. (33), which yields

-IVpiL
0-—2— ; Y cp31, (44)
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But Ly is equivalent to w, the width of the fracture in the direction normal to the flow,

so comparison with eqs. (12,18) shows that this model leads to
hi = <h=3>71, : (45)

which is identical to the lower bound in eq. (39). An analogous treatment of the case .
where the aperture varies only in the direction normal to the flow would lead to (see

Neuzil and Tracy, 1981)
hi = <h3>, | (46)

which reproduces the upper bound. These models have been used as heuristic devices
to estimate the effect of aperture variations on the overall conductivity (see Neuzil and
Tracy, 1981; Silliman, 1989). However, it must be understood that these types of
aperture variations do not lead to macroscopically isotropic’ behavior. Hence, rather
than interpret the bounds given by eq. (39) as representing any specific simplified frac-
ture geometry, we interpret these ‘‘series’” and ‘‘parallel’’ conductances as upper and
lower bounds that utilize information about the aperture distribution function of the
fracture, but do not utilize information conceming the spatial correlation of the aper-

ture field.

More restrictive upper and lower bounds on the overall effective conductivity of a
heterogeneous medium have been found by Hashin and Shtrikman (1962). For the
commoniy—assumed case of a log-normal distribution of conductivities, however, these
bounds degenerate (Dagan, 1979) into the series and parallel bounds given by eq.
(39a). For this case, the ‘‘self-consistent field’’ approximation has been used (Dagan,

1979), along with a perturbation approach (Dagan, 1993), to approximate the effective
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conductivity in terms of the mean and standard deviation of the conductivity distribu-
tion function. In the case of a statistically-isotropic m~ dimensional media, Dagan

found
-o 1 1 1 1 20’1’ |
2
kepr = <k>e ¥ 1+[E__}G%+[___]__+ e, (47)

where Y =In(k), and Oy is the standard deviation of In(k). The term outside of the
square brackets is equal to the geometric mean of the conductivity distribution, %;,

which is defined (in general) by
kg = <>, (48)

As a fracture is analogous to a two-dimensional conductivity field, the appropriate
value of m is 2, in which case the of and of terms inside the brackets drop out, leav-

ing
kofr = <k>e ™+ 0 (o). 49)

This result can also be expressed as

0-2
Y
kef =<k>li1—-—27"+ ] (0]
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Although eq. (50) was derived for .the specific case of a lognormal conductivity
distribution, it can nevertheless be used as an approximation regardless of the form of
the conductivity distribution. For this purpose, it would be éonvenient to express egs.
(49,50) in terms of the standard deviation of %k, rather than in terms of the standard
deviation of In(k). To do this, we first recall that if & is lognormally distributed, then
the- first two moments of k are related to the first two moments of y =In(k) by

(Aitchison and Brown, 1957, p. 11)

<k>=g¥>+oi2 (51)

of = <k>2[e°f’ - 1] . (52)

Eliminating ¢ from egs. (49,52) yields

. 2 -172
Koo = <k>|14+ 2% (53)
eff <k>? ’ : -

which, to first-order in 62, can be expressed as
1 of |
kepp =<k>|1- ———+ - |. (54)

Eq. (54) agrees with the result that can be found from a two-dimensional version of
the calculation performed by Landau and Lifshitz (1960, pp. 45-46), who assumed that
the conductivity varied smoothly in space about its mean value, <k>, but did not

assume that & was lognormally distributed. It therefore is a valid approximation, up to
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order 0',?, for all smoothly-varying two-dimensional conductivity distributions. Since
smooth spatial variation is a necessary condition for the use of the lubrication approxi-

.mation, this result holds in all cases for which the lubrication approximation applies.

We now make use of the identification of k¥ with %3 to express the above results
in terms of the moments of the aperture distribution itself. In general, for arbitrary
aperture distributions, there is no fixed relationship between <k3> and <h>, or between

of and o}

. In the case of a lognormal distribution, however, we can make use of the
fact that In(k)=In(23)=3In(k) to find that <In(k)>=3<In(k)> and oZ; =902,
(Aitchison and Brown, 1957, p. 11). Furthermore, if k£ is lognormally distributed, then
so is h =kY3. If we let z =In(k ), where z has mean vaiue <z> and variance 622, then
the statistical moments <h”> are given by (Aitchison aﬂd Brown, 1957, p. 8; Gutjahr

et al., 1978)
<h"> = en<z>+nzo,2/2. (55)

Using these relationships, along with egs. (51,52), we can rewrite egs. (53,54) as

962 |2 97
h,3=<h3>[1+<h:2] = <h3>[1— S (56)

Again using egs. (51,52), with % in place of k and z =In(h) in place of y =In(k), we

find after some algebra that eq. (56) can also be written as

7
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Eq. (57) indicates that when there is roughness, the hydraulic aj)enurc is smaller than
the mean aperture. This is a non-trivial result since, for example, it can be shown (see
Silliman, 1989) that the lower bound on Ay given by eq. (39b) can never exceed <h>,
whereas the upper bound can never be less than <i2>. Hence, the bounds in them-
selves are not powerful enough to show that hy < <h>. Eq. (§7) is also in rough
agreement with the numerical results of Patir and Cheng (1978) and Brown (1987), ‘
pafticularly when h/6 >2, which is the range where, due to lack of substantial contact

area, the various definitions used for 2 and ¢ coincide.

Eq. (57) has also been derived by other methods, using specific fracture
geometries that did not require lognormal aperture distributions. Elrod (1979) used
Fourier transforms to solve the Reynolds equation for a ‘‘fracture’’ the aperture of
which had “‘sinusoidal ripples in two mutually perpendicular directions’, and arrived
at eq. (57) for the isotropic case. Zimmerman et al. (1991) considered the case of
small regions of uni-directional ripples, as in eq. (34), which were then assembled |
together so that ihe direction of striation was randomly distributed. For both
sinusoidal and sawtooth profiles, their results agree with eq. (57) up to terms of order
oZ/<h>%. They also examined the effect of higher-frequency sinusoidal components in
the aperture profile, using the assumption that the amplitudes of the sinusoidal com-
ponents were positively correlated with the wavelengths, as was found to be the case
by Brown and Scholz (1985). In other words, the small-wavelength roughness will
usually be of small amplitude; which is to say that there will be no sharp dagger-like
peaks in the aperture profile. They found that as long as the results are expressed in
terms of <h> and o7, the relationship between hy, <h>, and G, was essentially
unaffected. Hence, it seems that there is much evidence to support eq. (57) as an esti-
mate of the hydraulic aperture in terms of only the mean and standard deviation of the |
apérture distribution. Of course, if the details of the aperture distribution are known,

the geometric mean of & can also be used to estimate Ay, since (Piggott and Elsworth,
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1993)

3
Ink> _ e<]n(h > 83<1nh>

i =ky = kg = € = (e = 3. (58)

This latter estimate seems to be accurate to at least O (0'?) for lognormal aperture dis-
tributions (Dagan, 1993), but it is not clear that eq. (58) is preferable to eq. (57) in the
general case. For example, the numerical simulations of Piggott and Elsworth (1992)
indicated that the geometric mean is a very poor predictor of the effective conductivity
when the conductivity follows a bimodal distribution, particularly in two dimensions

(see also Warren and Price, 1960, Fig. 7).

Effect of Contact Areas

As mentioned above, the areas where thé rock faces are in contact with each
other can be thought of as regions where the aperture is zero. However, most of the
methods used to estimate or bound Ay will break down if the aperture distribution
function ever takes on the value of zero. For example, the harmonic mean of k£, which
provides a lower bound to the effective conductivity, (see eq. (39b)), will degenerate to
zero in these cases, as will the the geometric mean, since a finite probability of having
k =0 will cause <In(k)>—>—<. Note that a lognormal distribution of apertures does
not allow the aperture to equal zero, sixice if In(h) varies from —eo t0 + oo but vanishes
as In(h) — *oo, A will take on only positive values. This suggests using methods such
as those discussed above for the regions where the fracture is open, and treating the
contact regions by separate methods. This approach has been taken by, for example,

Walsh (1981) and Piggott and Elsworth (1992).

To isolate the effect of contact areas, we consider a fracture for which the aper-
ture is uniform and equal to A,, except for isolated contact regions where 2 =0 (see

Fig. 6). As usual, flow through this sort of geometry could, in principle, be analyzed
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by solving the full Navier-Stokes equations. Since this approach is not feasible, we
again reduce the governing equations to a more tractable form. Following the pro-
cedure by which the lubrication equation was derived for cases where the aperture was

smoothly-varying, but nonzero, we find that we again require
2
Re* = P%_ <1, and h/A<l, - (59)

where now the characteristic lengthscale in the plane of the fracture, A, should be
identified with, say, the dimensions in the (x,y) plane of the typical contact region (see
Fig. 6). We again arrive at the lubrication equation (32b), except that since 4 =0 in
those rcgibns of the plane where the fracture faces are in contact, the equation has no
meaning in those regions. Hence, we can only use this equation in the unobstructed

regions, where A (x,y)=h,, in which case eq. (32b) reduces to Laplace’s equation:

_9% ¥ _
Vzé(x,y)=sﬁ+ja‘;i'—0. (60)

This mathematical model of flow between a pair of parallel plates that are obstructed
by cylindrical posts is known as the Hele-Shaw model (Bear, 1972, pp. 687-692).

The boundaries of the contact regions must be treated as boundaries of the region
in the (x,y) plane where this equation is to be solved. Consider one of these boun-
daries, which will be denoted by I';. Since no fluid can enter the contact region, the
component of the velocity vector normal to I'; must be zero. Egs. (30) or (31) show

that the velocity vector is parallel to the pressure gradient, so we see that

P - (Vpyn=0, 61)
on
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where n is the outward unit normal vector to I';, and n is the scalar coordinate in the
direction of n. If we consider a rectangular region such as shown in Fig. 6, with uni-
form pressures on the x =0 and x =L, boundaries, no flow on the y =0 and y =L,
boundaries, and no flow across the interior boundaries I';, we have a well-posed boun-
dary value problem for Laplace’s equation, which will therefore have a unique solution

(see Bers et al., 1964, pp. 152-154).

One problem that arises is that, in general, the solution to this problem will not
satisfy the no-slip boundary conditions on the internal boundaries I';. In physical
- terms, the Hele-Shaw solution does not account for viscous drag along the sides of the
posts. The no-slip condition specifies that not only must the normal component of the
velocity vanish, but so must the tangential component. However, if the components of
the velocity vector are zero in two mutually orthogonal directions at each point on I,
then the velocity components {u,, uy} must both be zero. But the Hele-Shaw solution
will generally yield a nonzero velocity &, where ¢ is the local coordinate tangential to
I';. Hence, the Hele-Shaw solution will be in error in a certain region surrounding
each contact area. In the original mathematical derivation of the the Hele-Shaw equa-
tions, Stokes (1905, p. 278) hypothesized that the region where the error is appreciable
will be limitcd to a thin layer surrounding each I, the extent of which in the (x,y)
plane will be of order %,. This was verified by Thompson (1968), who developed a
perturbation solution to the Stokes creeping flow equations, eq. (27), for flow between
two parallel plates that are propped open by a single obstacle, the planform of which
in the (x,y) plane is a ciicle of radius ¢. Thompson used the method of matched -
asymptotic expansions to piece together a solution valid near the obstacle, and another
valid far from the obstacle, and found that the relative discrepancy between the Stokes
and Hele-Shaw models was indeed on the order of h,/a. In fact, he found that the
relative error in the prediction of the effect that the obstacle has on reducing the flux,

for a given far-field pressure gradient, was 1.26h,/a. However, this discrepancy is
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already something of a higher-order effect, in the sense that the parallel plate conduc-
tance, #2/12, is the zeroth-order result, and the first-order correction, which is captured
by the Hele-Shaw model, is due to the fact that the fluid must follow a tortuous path
around the obstacles. The additional factor of viscous drag on the sides of the post-
like obstacles, which is not accounted for by the Hele-Shaw model, will generally be
smaller still than the Hele-Shaw tortuosity correction, since k,/a will typically be less
than one. For example, the findings of Pyrak-Nolte et al. (1987) indicate that typical
average apertures of fractures in crystalline rock are on the order of 107*—107> m,
while asperity sizes (in the fracture plane) are on the order of 10°1-1073 m. Gale et
al. (1990) measured apertures and asperity dimensions on a natural fracture in a granite
from Stripa, Sweden, under a normal stress of 8 MPa, and found average values of
A =0.1mm, ¢ =1.0mm. |

Kumar et al. (1991) used the Brinkman (1947) equation to further analyze the
deviations from the Hele-Shaw model caused by finite values of x,/a. Whereas the
Hele;Shaw equation is derived by integrating the Stokes equations across the thickness
of the fracture, the Brinkman equation can be ‘‘derived’’ by integrating the equations
in the y-direction, which is the direction in the plane of the fracture, perpendicular to
the direction of the mean flow. The obstacles are then not explicitly included in the
geometry of the problem, but their effect on retarding the flow is represented by a dis-
tributed body force that is proportional to the velocity. This body force is found by
solving the problem of flow past an array of infinitely long, parallel cylinders
(Howells, 1974; Sangani and Yao, 1988). The results of the Brinkman analysis, along
with the experimental data collected from various sources by Zimmerman and Kumar
(1991), show that as long as &,/a < 1, deviations from the Hele-Shaw conductivity will

be less than 10%.

The problem of creeping flow through a smooth-walled fracture of aperture #,,

propped open by an array of circular cylinders of radii a > h,, therefore reduces to the
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problem of finding the effective conductance of é two-dimensional medium of conduc-
tance k,, and which coﬁtains a dispersion of non-conductive, circular obstacles. This
is a typical problem in effective medium theory, although it is of a different sort than
that discussed above in relation to the lubrication model, in which the conductivity
varied smoothly in space. A review of some of the various methods that have been
proposed to attack this type of two-component effective medium problem is given by
Hashin (1983). VFonunatcly, the predictions of the various methods do not diverge
appreciably until the areal concentration of obstacles approaches about 0.30, which
exceeds the amount of contact area that occurs in rock fractures, which is usually less
than 0.25 (Tsang and Witherspoon, 1981; Pyrak-Nolte et al., 1987). Hence, any rea-
sonable effective medium theory that has been proposed for two-component systems

can be used for this problem.

Walsh (1981) used the effective medium theory that was originally proposed by
Maxwell (1873, pp. 360-365), who estimated the effective conductivity of a three-
dimensional medium containing a dispersion of non-conductive spheres. In the termi-
nology of the present discussion, Maxwell’s method consists of calculating the
decrease in flow due to a single obstacle of known size and shape, averaging this
effect over all shapes and orientations of the obstacles, and then equating the resulting
decrease in flow to that which would be caused by a single circular ‘‘obstruction”
which has some effective conductivity k.. The basic solution of the effect of a sin-
gle circular obstruction on a uniform flow field can be found in Carslaw and Jaeger
(1959, p. 426). Utilizing this solution, and the procedure outlined by Maxwell, Walsh
(1981) found that the circular obstacles decrease the conductance below the cubic law
value by a factor (1-c)/(1+c), where ¢ is the fraction of the (x,y) plane that is

occupied by asperity obstructions. Hence the hydraulic aperture can be expressed as

h = h31=C

°1+c ' (62)
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Zimmerman et al. (1992) used boundary element calculations to verify the accuracy of
this result to within about 2% for asperity concentrations up to 0.25 (see also Chen,
1990). If eq. (57) were applied to a fracture that has aperture ks, with probability
(1—c) and aperture zero with probability c, it would predict k3 = A 3(1—1.5¢ +..),
which to first ordcr in ¢ is somewhat, although not substantially, different from eq.
(62). |

Since the factor involving the asperity concentration ¢ reflects the tortuosity
induced into the streamlines by the obstacles, this factor would be expected to depend
on the planform of the asperity region. Zimmerman et al. (1992) extended Walsh’s
result to the case where the asperities were a randomly-distributed collection of
ellipses, oriented randomly so that the overall conductivity was isotropic. Their
analysis utilized the basic solution to two-dimensional flow around an elliptical obsta-
cle that was presented by Obdam and Veling (1987). For ellipses of aspect ratio o,
they found the hydraulic aperture to be given by

' 1- 1+0)?
h,%:hg—l—;%, where ﬁ:-(ZT“)—. (63)

The factor B defined in eqn. (63) is always gfeater than unity, and monotonically
increases as the ellipse becomes more elongated. Hence, elliptical obstacles obstruct
the flow to a greater degree than do circular obstacles. This is consistent with the fact
that Walsh’s expression for circular obstacles coincides with the theoretical upper
bound on k,¢¢/k, that was derived using variational principles by Hashin and Shtrik-
man (1962) for a two-component medium, the components of which had conductivities
k, and 0. The factor B depends weakly on o as long as the obstacles are not very
elongated. For example, an aspect ratio of 2 leads to B=1.125, and a=3 yields

B=1.333. Although actual contact areas in fractures are not perfectly elliptical in
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planform, Zimmerman et al. (1992) showed that eq. (63) can be applied to a smooth-
walled fracture propped open by irregularly-shaped asperities, if the actual asperities
are “‘replaced’’ by ellipses that have the same perimeter/area ratio.

Another method of accounting for the tortuosity caused by contact areas would be
to use the effective medium theory of Kirkpatrick (1973). This model, originally
developed to estimate the conductivity of random electrical networks, does not assume
any particular shape for the asperity areas, but can be interpreted as corresponding to a
checkerboard-like geometry in which each block is randomly assigned an aperture
from the actual aperture distribution function. In the present context, this corresponds
to each block having either aperture /4, with probability (1—¢), or aperture 0 with pro-
bability ¢. The finite-difference representation of conduction on such a checkerboard
geometry would be a square lattice of conductors, in which case Kirkpatrick’s theory

predicts that
kg = h2(1-2c) . (64)

This model has many arguments in favor of its use. Firstly, it does not require any
information conceming the geometrical shapes and distribution of the contact areas,
other than the assumption that these areas are in some sense irregular, which is reason-
able. At low concentrations, it asymptotically agrees with Walsh’s result for circular
asperities, since each give a tortuosity factor of (1—2c), to first order in ¢. It also
predicts a tortuosity factor that is always less than the Hashin-Shtrikman upper bound,
which is (1=c)/(1+c). Finally, it correctly predicts the existence of a percolation limit,
which is a critical value of the contact area (in this case, 0.50) at which flow is com-
pletely obstructed. Although it seems reasonable that a sufficiently large amount of
contact area will block off all flow paths, contact areas as large as 0.50 have not been

reported very often in the literature, so for practical purposes this issue may be moot.
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Nevertheless, the fact that eq. (64) incorporates the percolation phenomenon in some

manner strengthens its utility as an estimate of the tortuosity.

Comparison of Models to Experimental Data

The question we now address is whether or not the various models and approxi-
mations presented and discussed above can be used to quantitatively relate the
hydraulic conductance of a fracture to measured values of the aperture. We will not
consider issues related to the process of making measurements of the aperture either in
the field or in the laboratory, which are discussed by Gentier et al. (1989), Hakami and
Barton (1990), and Johns et al. (1993), among others. We assume that data are avail-
able pertaining to the distribution function of the apertures, and also on the amount
(and possibly the shapes) of the contact regions. The question we pose is how these
data can be used to predict the conductivity, bearing in mind that in many cases, one
might actually be more interested in the inverse problem of determining apertures and

contact areas from conductivity data.

Although many measurements of fracture surface roughness have been reported in
the literature, as well as many measurements of fracture conductivity, there are very
few data sets in which both aperture data and hydraulic conductivity have been meas-
ured on the same fracture. Oﬁe ‘difﬁculty is that of relating the roughness measured
for a sihgle fracture surface to the aperture formed between two opposing surfaces
when they are in contact (cf., Brown et al., 1986; Wang et al., 1988). Many of the
measurements upon which certain widely-used roughness-conductivity correlations are
based were actually made on artificially-roughened channels, the aperture profiles of
which bore little resemblance to those of real fractures (Lomize, 1951; Louis, 1969).
We will discuss only those available data sets in Which measured fracture conductivi-

ties can be directly compared to aperture measurements made on the same fractures.
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Comparisons between the various models and the measured values will be made
on .the basis of the cube of the hydraulic aperture, hﬁ , which is essentially equivalent
to the transmissivity, aside from the factor of 12. The hydraulic apertures will be
predicted using eight different schemes that are suggested by the previously-discussed
analyses. These include using <h>3, <h3>, b3, and <h>3[1-1.50%<h>?]. In each
case, the averages will be taken over those portioﬂs of the fracture that are not in con-
taci and thereby closed to flow. If the fractional contact area ¢ is known, predictions
will also be made by correcting the above values by the tortuosity factor (1-2c¢), as

discussed above.

Gale et al. (1990) measured the apertures and conductivities of two fractures in a
quartz monzonite granite from Stripa, Sweden, using a resiﬁ-impregnation technique
that allowed aperture measurements to be made on the fracture under the same stress
conditions as were used in the flow tests; further experimental details can be found in
their report. Data from their two samples, which were taken from the same rock core,
are shown in Table 1, along with the various predicted values of k3. The values of
<h> and o, were computed directly by Gale et al. (1990). We computed <43> by
assuming that the distribution was lognormal, which is shown by their Figs. 3.19 and
3.31 to be a reasonably accurate assumption, in which case eq. (55) can be used to

show that <h3> = <h>°/h8. The values used for h; are arithmetic means of the hg
values measured on four profiles from each fracture. Since in each case all four
profiles were statistically very similar, this method of averaging h; should yield nearly
the same result as would be found by averaging all the individual values of Inh.
Table 1 shbWs that use of the mean aperture <k> in the cubic law, even if corrected
for the contact area, will greatly overestimate the actual conductivity. Use of <h3>, as
was suggested by Neuzil and Tracy (1981), will result in even greater error. The
‘geometric mean Ag is somewhat more accurate, particularly if corrected for the effect

of contact area. The most accurate predictions of Ay are those made by using the
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two-term perturbation estimate, eq. (57), in conjunction with the tortuosity correction,
(1-2c). Note that for both fractures, a more accurate prediction could be made by
assuming that the contact areas were non-circular, and using the tortuosity factor given
by eq. (63). As it is not possible to objectively estimate the equivalent aspect ratio of
the contact areas from the available data, we have used Kirkpatrick’s ‘‘random lattice™’
tortuosity factor. Although Brown (1987) did not use precisely the same hydraiulic
apérture predictions as used in Table 1 to compare against his numerical solutions of
the lubrication equations, it is worth noting that he also found that <A>> was a more
accurate predictor of hf, than was <h3>, and that <h>>(1—c¢)/(1+c¢) was still more

accurate.

Aperture and hydraulic conductivity measurements were made by Hakami (1989;
see also Hakami and Barton, 1990) on epoxy replicas of fractures in five granite cores
from Stripa. Sample A was a ﬁne-grained granite, sample B was a leptite,. and sam-
ples {SZ,S3,S4} were quartz monzonites. Mean apertures, averaged over areas of
about 1cm?, were found by injecting a known volume of dyed water into the fracture
at various locations, and dividing the volume of the water drop by the observed area it
occupied in the plane of the fracture. Although no contact area percentages were
reported, the photographs shown of the water drops (Hakami, 1989, p. 46), as well as
the aperture histograms at different stress levels (ibid., p. 67), seem to imply that con-
tact area was minimal. We will therefore assume ¢ =0 in our calculations. The
assumption of minimal contact area is also cénsistent with the fact that the aperture
measurements were made under very low values of normal stress (ibid., p. 66). Exper-
imental values, and the various predictions of the hydraulic aperture, are shown in
Table 2 for Hakami’s five samples; sample A was measured under two different
stresses. We used the values of <> and 6, corresponding to the best log-normal fit
to the aperture distributions; in most cases these values were well within 10% ’of the

actual values, but for sample S3 this has the effect of ignoring a few anomalously high
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apertures, which would alier 6, but would not be expected to affect Ay . Of the four
methods of estimating k3, eq. (57) is in general the most accurate, followed by ré,
<h>?, and then <h3>. In five of the six cases, both eg. (57) and the geometric mean
yield conductivities that are within a factor of two of the measured value. In one case,
Al, which was sample A tested under a nonzero normal stress, the measured conduc-
tance was extremely low, and was not accurately predicted by any of the methods. No
explanation was given for the extremely low permeability measured in this test.
Excluding this anomalous case, eq. (57) had an average error (in absolute value) of
21.5%, whereas the geometric mean had an average error of 42.1%. The fact that eq.
(57) did not systematically overestimate the conductivity supports our assumption that

the contact area correction factor is negligible for these cases.

For both sets of data discussed above, we have found that the expression

2
c
i = <h>3[1—% <hh>2

](I—ZC) ‘ (65)

usually provides a good estimate of the fracture conductivity. In fact, it was generally
superior to the use of the cube of the geometric mean aperture, even after correction
for the tortuosity due to contact area. This latter estimate is equivalent to that sug-
gested by Piggott and Elsworth (1992), with (1—2c) used as their tortuosity factor 7.
(In contrast to the definition used in the petroleum literature, here the tortuosity factor
is defined to be a multiplicative constant that is <1, rather than a factor that appears in
the denominator and is >1.) Since there is much theoretical evidence in support of use
of the geometric mean in the case of two-dimensional lognormal distributions, whereas
the correction given by eq. (57) is only an O(c?) perturbation approximation, these
reSults call for some explanation. One point to bear in mind is that the actual distribu-

tions always deviate somewhat from being lognormal, and in such cases h; should
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only be a first-order estimate of hy. Hence, kg and eq. (57) are both first approxima-
tions to hy, each in a different sense, for distributions that are slightly perturbed from
lognormal. Another point is that some error is introduced when replacing the Navier-
Stokes equations with the lubrication equation, eq. (32), due to finite values of <h>/A,
as was discussed previously. Eq. (35) implies that these errors tend to reduce the
effective conductivity below the value predicted by the lubrication model. This may
, exblajn the fact that h; overestimates hy. If this explanation is correct, it may be for-
tuitous that eq. (57) just happens to “‘err’’ in the right direction.

i

Summary

We have discussed the problem of fluid flow through a rock fracture, treating it as
a problem in ﬂuid mechanics. First, the ‘‘cubic law’’ was derived as an exact solution
to the Navier-Stokes equations for flow between smooth, parallel plates. For more
realistic geometries, the Navier-Stokes equations cannot be solved in closed form, and
they must be reduced to simpler equations. The various geometric and kinematic con-
ditions that are necessary in order for the Navier-Stokes equations to be replaced by
the lubrication or Hele-Shaw equations were then studied. A review was given of
analytical and numerical studies of the lubrication equation for a rough-walled fracture.
Several analytical and numerical studies lead to the conclusion that the hydraulic aper-
ture can be predicted (see egs. 37,57,58) from knowledge of the mean and the standard
deviation of the aperture distribution. We showed that one can account for the tortuos-
ity effect caused by regions where the rock walls are in contact with each other by a
relatively simple correction factor, given by eq. (64), that depénds only on the frac-
tional amount of contact area. Finally, comparison was made between the various
predictions of hy, and the measured values, for eight data sets from two different
research groups in which apertures and conductivities were available on the same frac-

ture. The results showed that, in general, reasonably accurate predictions of
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conductivity could be made by combining either the perturbation result, eq. (57), or the

geometric mean, eq. (58), with the tortuosity factor given by eq. (64).
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Nomenclature

Roman letters

> o0 ga

radius of asperity in fracture plane

areal concentration of asperities

body force vector, eq. (1)

gravitational acceleration vector

magnitude of g

aperture of fracture

half apertures, Fig. 2

hydraulic aperture, eq. (18)

nominal aperture of rough fracture

mean value of aperture

local conductivity in lubrication model, =h3/12
geometric mean of conductivity

effective conductivity

length of fracture in direction of mean flow
length of fracture in direction of mean flow
length of fracture normal to direction of mean flow
dimension, = 2 for fracture flow; eq. (47)
direction in fracture plane normal to the asperity boundary
pressure

pressure at inlet to fracture

pressure at outlet to fracture

reduced pressure, =p +pgz; eq. (3)

volumetric flowrate

Reynolds number; eq. (19)
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Re* reduced Reynolds number; eq. (25)

3 time

T  transmissivity of fracture; eq. (16)

u velocity vector

u;  velocity component in direction i

U  order of magnitude of velocity

w width of fracture, normal to mean flow direction, in fracture plane
x direction of mean flow

y direction normal to mean flow, in fracture plane
Y  In(k), where k is the local fracture conductivity
z vertical direction

z direction normal to the fracture plane

Greek letters

o aspect ratio of elliptical contact region

B shape factor for effective conductivity; eq. (63)
I’  boundary of asperity (in fracture plane)

o amplitude of sinusoidal aperture perturbation

£ relative roughness parameter, = <h>/A

A characteristic length in plane of fracture

1} viscosity of fluid

p density of fluid

o, standard deviation of aperturé roughness function; eq. (38)
o, standard deviation of aperture distribution

o, standard deviation of conductivity

oy standard deviation of log conductivity

V  gradient operator
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Table 1. Hydraulic transmissivities of fractures in quartz monzonite granite from
Stripa, Sweden. Aperture data and measured conductivities are from Gale et al
(1990). Predictions of hydraulic apertures are made using methods described in the
text. Transmissivity per unit width is equal to h3/12.

Sample S2 S3

<h> 180 pum 223 pm

Gy, 106 pm 162 um

¢ 146 .349
<h3> 7.54x102 m® | 51.8x1072 m?
<h3>(1-2c) 534x102m® | 15.6x102? m’
<h>? 5.83x 10712 m® 11.1x1072 m3
<h>3(1-2c) 413x1072 m3 | 3.35x1072 m’
¥ 513102 m® | 513x10% m?
h3(1-2c) 3.63x10?m® | 1.55x107? m?
<h>3[1~1.502/<h>?] 2.80x107 2 m3 | 231x1072m?
<h>3[1-1.50<h>2(1-2¢) | 1.98x10712m® | 0.70x10712 m?
hj (measured) 1.12x1012 m? | 0.34x1072 m}
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Table 2. Hydraulic transmissivities of fractures in granite cores from Stripa, Sweden.
Aperture data and measured conductivities are from Hakami (1989). Predictions of
hydraulic apertures are made using methods described in the text. Transmissivity per
unit width is equal to 43/12.

B S2 S3 S4 Al A2
<h> 309 464 393 261 83 161
o 193 773 295 98 34 72
<h3> 7924 | 24371 | 23198 | 2646 | 0912 | 7.209
<h>? 29.50 99.90 60.70 1780 | 0572 | 4.173
¥ 1800 | 63.96 31.05 1460 | 0453 | 3.175
<h>3[1-1.502/<h>?] 12.24 48.03 9.40 1404 | 0428 | 2921
h§ (measured) 13.14 7840 | 14.53 1331 | <10™* | 2.406

<h> and G, are given in units of pm; other values are in units of 1072 m>.
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ESD-9311-0004

Fig. 1. Parallel-plate fracture of aperture %, with uniform pressures p; and p, imposed
on two opposing faces. The resulting parabolic velocity distribution given by

eq. (10) is shown in the lower cartoon.
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Fig. 2. Side view of a cross-section of a rough-walled rock fracture containing no
contact areas. The two half-apertures are &, and %, both defined as positive.

The characteristic length over which the aperture varies appreciably is denoted

by A.
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ESD-9311-0006

Fig. 3. Side view of a fracture channel consisting of one smooth wall and one
sinusoidal wall, with the aperture given by eq. (34). The mean aperture is
<h>, the spatial wavelength is A, and the amplitude of the aperture roughness
is 8.
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Fig. 4. Results found numerically by Patir and Cheng (1978) and Brown (1987) for

the hydraulic aperture as a function of the relative roughness. The slightly

different definitions used for 4 and ¢ are discussed in the text. Also plotted

is eq. (37), which was fitted by Patir and Cheng to their numerical values.
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Fig. 5. Fracture in which the aperture varies either only in the direction of flow (top),
or only in the direction transverse to the flow (bottom). First case leads to
h1§=<h’3>'1, which is a lower bound on the actual isotropic conductivity.

Second case leads to h,;” =<h3>, which is an upper bound on the actual isotro-

pic conductivity.
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Fig. 6. Schematic diagram of computational prbblem for the Hele-Shaw model, with
impermeable boundaries at y =0 and y =L,, constant pressure boundaries at

x =0 and x =L,, and two internal impermeable boundaries that represent the

asperity regions.




