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1.0 INTRODUCTION

An ongoing concern of the public and of organizations involved with nuclear power 

or radiation sources is radiation protection. One specific concern, recognized before 

the advent of nuclear power, is skyshine. In the context of this study, skyshine is 

defined as directly or indirectly ionizing radiation which scatters in the atmosphere 

after leaving its source. While a small, efficient shield can block direct radiation 

from a source to a detector or point of interest, skyshine can avoid the shield 

entirely and still produce a significant dose at the detector. Even when a direct 

dose is present, the fraction of the total dose due to skyshine can be substantial..

Recent events emphasize a need for accurate methods to estimate gamma-ray 

skyshine. After accidents at Three Mile Island and Chernobyl, reviews were made 

of the techniques used to forecast and estimate the dose to the public and 

surrounding land from radiation releases of many types. Soon, low-level radioactive 

waste repositories will be built in several states. Effects on the environment will be 

a topic of study for every site, and gamma rays are likely to be a large component of 

any radiation to reach the surroundings. Gamma-ray skyshine will also be present 

at sites for the storage of spent fuel. In these repositories, air or water convection 

may be used to carry off waste heat. Air would not shield the fuel as well as water 

in storage pools, yet photons from fission products could escape from either type of 

repository to the atmosphere. All of these situations call for methods of estimating 

exposure rates from gamma rays which reach the point of interest as skyshine.

Another justification for work on this topic is found in the American National 

Standard for Calculation and Measurement of Direct and Scattered Gamma 

Radiation from LWR Nuclear Power Plants, ANSI/ANS-d.6.1-1987. This
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document explains that the activation of 16N in the coolant of boiling water reactors 

is a cause for concern. As stated in the standard, "... at a BWR the 16N 

contribution to the total measured dose rate is the only significant one that changes 

nearly instantaneously with power level variations." This activity in the coolant 

depends on water chemistry; at facilities where hydrogen is added directly to the 

coolant, its presence may cause the activity to increase severalfold. The gamma 

radiation from 16N has been detected inside and outside the containment of several 

BWRs, and is documented in the standard. (AN87)

ANSI/ANS-6.6.1-1987 also provides reference calculations for simple skyshine 

problems, and recommends that comparisons be made between those calculations 

and results of computational methods of interest applied to the same problems. The 

standard states that dose rates should be found for areas outside a plant (or other 

gamma-ray source) which personnel are expected to occupy regularly, such as 

construqtion areas or recreation areas. Heavily populated areas should also be 

chosen for study. Also, the standard explains requirements for calculations and 

measurement techniques used to obtain gamma ray dose rates, and suggests ways to 

treat scattered radiation components of the results. In summary, the standard 

provides a reference for those who wish to insure that the methods they use are in 

reasonable agreement with other methods, both in technique and in results. (AN87) 

These concerns and standards promote the search for accurate estimates of 

gamma-ray skyshine dose. Practical benchmark experiments are often accepted as 

the best sources of data, but in the case of radiation skyshine, experiments can be 

time-consuming and impractical. The alternative sources of data widely accepted 

as standard are computer codes Programs have been developed specifically for 

skyshine problems, and other general transport codes may be applied to skyshine

2



dose estimation. Ideally, an experiment would be performed first to collect data in 

a real situation. Next, a code would be executed and the results would be checked 

against the experimental data. When the code results agree well with the 

benchmark data, the code could then be applied to similar problems with confidence 

in its accuracy, and at less cost than an experiment.

Problems and physical geometries simulated by many codes are simple: open 

air environments, sources enclosed by a silo or a sphere, free-standing walls, or 

buildings defined by four walls and a ceiling. These simple systems allow 

computational effort to concentrate on particle transport and dose computation, 

instead of geometric problems such as changes in material along a particle's 

direction of travel. Also, the simple geometries can be modeled more easily in 

practical experiments, so benchmark data should be easier to obtain for comparison.

The numerical methods used in skyshine computer codes include discrete 

ordinates transport, line-beam techniques and Monte Carlo methods. While these 

codes can be accurate, most are large and computationally intense, making them 

difficult to use on a regular basis. One notable exception is the MicroSkyshine 

method developed by Faw and Shultis, which may be implemented on a personal 

computer and has been shown to be accurate for several practical cases (Fa87). 

Another method which requires less computational time and effort applies 

point-kernel techniques and buildup factors to estimate gamma exposure. This 

approach has been taken by Trubey (Tr61), Kitazume (Ki68) and Roseberry 

(R08O).

The point-kernel technique, or single scatter and buildup method, is modeled 

on the basis that each photon scatters once, and 0"V onci, as it travels from its 

source to a detector. However, a buildup factor is applied along the path of the
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photon from the point of scatter to the detector. The volume of air wherein the 

photon scatters may be thought of as a "first-collision source" of scattered photons. 

Integration over all "source volumes" can provide an estimate of scattered 

gamma-ray intensity at the point of interest.

Roseberry applied the point-kernel method to the case of a point source 

concealed from a detector by a cylindrical shield, open above the source. A 

benchmark experiment in this geometry was performed, and comparison of 

experimental data to Roseberry's numerical results proved that the method is useful 

and accurate, though conservative (R08O). A second simple skyshine problem 

involves a point source concealed from a detector by a semi-infinite, perfectly 

absorbing wall. The point-kernel method is applied to the wall problem in this 

work as an extension of Roseberry's solution.

This thesis discusses computational techniques used in past and current codes 

for gamma-ray skyshine analysis. It begins with a review of gamma-ray skyshine 

studies, most of which have been numerical; one practical benchmark experiment is 

also described. Next, the single scatter and buildup model is discussed in depth. 

Photon interactions and the use of buildup factors in this scheme are explained, and 

an exposure rate equation is derived based on the model. Calculations performed by 

Roseberry with the model are repeated, using new data and a different integration 

method. The semi-infinite wall problem is also approached with this model, 

employing the same data and integration scheme. Finally, the results obtained in 

both the silo and wall computations are compared to results of other methods, and 

to benchmark data and ANSI standards where possible. This allows conclusions 

about the usefulness of method and the new data presented in this thesis. -
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2.0 REVIEW OF COMPUTATIONAL SKYSHINE STUDIES

Before a technique of computing skyshine is presented in this thesis, a review of past 

work in the field will be useful. Methods which experimenters have found to work 

well in the past can be used as a starting point in research; for this work, a 

literature review will act as a starting point.

Research on skyshine is reported in publications dating back to the 1950's. 

One 1956 report by Zerby (Ze56) explained calculations needed to adjust neutron 

flux densities and dose rates to accommodate variations in air density. The 

calculations were applied to measurements made at the Tower Shielding Facility, 

where a radiation source was suspended in midair and measurements were taken at 

a second point in the air. Since the measured dose rates and flux densities contained 

a component due to air-scattered radiation, this work could be considered one of the 

first on skyshine computation. Note that it is concerned with neutron skyshine, 

however.

Zerby's report also demonstrates two common methods of computing skyshine 

quantities. Preliminary computations were performed for the experiment using the 

Monte Carlo method. The results demonstrated that in nearly all cases, neutrons 

which had scattered in air three times or less were the major contributors to 

measured dose. (Ze56) The Monte Carlo method became practical with the 

introduction of the modern mainframe computer, and is employed in many 

particle-transport codes. The conclusion that particles which scatter fewer times 

are more important supports the use of the point-kernel method, in which the point 

of first scatter is treated as a source for transport to some other point.
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All but one of the numerical skyshine studies discussed in this chapter utilize 

one of the two techniques named above. Monte Carlo studies will be reviewed first, 

followed by a discussion of work based upon single-scatter models and a third 

method involving the single-scatter technique. A fourth section will describe a 

benchmark experiment and the work associated with it.

2.1 Monte Carlo Studies

An early study of skyshine by Monte Carlo computation is that of Lynch ei al 

(Ly58). The program written in the study was for a simple problem: a 

monoenergetic line beam of gamma rays (that is, gammas released in one direction 

at one energy) from a point source placed in an infinite air medium, with no other 

shielding. Flux densities were reported for different source-detector distances, 

source energies and beam directions. Tissue dose rates were also computed and 

reported.

For comparison purposes, Lynch et al modified the code to use an isotropic 

source and isotropic scattering without energy degradation. Results were compared 

to the analytic solution of the Boltzmann equation for the same case, and the 

average numerical results were within 15% of the Boltzmann solution; often the 

error was much less. Computations of single-scatter flux densities were also 

compared to analytical solutions, and similar accuracy was found in these 

quantities. For this ideal case, the Monte Carlo method was shown to be useful if 

statistical methods were used to compute confidence limits on results.

A much more detailed Monte Carlo code package was prepared by Radiation 

Research Associr 1969 (Ma69; Co69). Instead of gamma-ray skyshine, this 

study concentrated on the X-rays and fluorescent light resulting from nuclear
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explosions. Comparing this work to that of the ideal, simple geometry of Lynch 

et al. demonstrates the advances made in the Monte Carlo method over the decade 

between the two reports. The RRA codes computed energy deposition as well as 

flux density; the point source strength could be specified as a function of time, 

energy, and direction; attenuation coefficients could be made altitude dependent and 

energy dependent; and flux density could now be computed over time and over 

changes in air density or altitude.

The first code in the package, named ZAP, used random walks to trace the 

entire path of each X-ray, scatter by scatter, until its "death." Compton, 

photoelectric, and pair production interactions, and some coherent scattering, were 

all accounted for, so that both scattering and absorption of the X-ray could be 

recorded (Ma69). The second code in the package, PFLASH, received data from 

ZAP on the energy deposited by X-rays absorbed in air. Using extensive data on 

the physics of fluorescent light production, this conversion code then created 

volumetric source terms for fluorescent light to be used by the third code, FLASH. 

FLASH computed the fluorescent light intensity at a point detector due to the 

volumetric source created by PFLASH. It performed fluorescent light transport by 

a backward Monte Carlo method, in which particle histories begin at the detector 

and "walk backward" to the source. This method allows angular-dependent 

quantities to be computed in less time than by forward Monte Carlo methods, and 

also allows time-dependent calculations just as forward calculations do (Co69). In 

summary, this study by RRA demonstrates the advances made in the method after 

the work of Lynch et aL, and the interactions which would be regularly used for 

probability calculations in the futir'
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Neither of the Monte Carlo studies above involved shields or structures of any 

sort. Perhaps the first Monte Carlo code to determine the effects of structures on 

gamma-ray dose was the SKYSHINE program, later modified to become the more 

versatile SKYSHINE-II code (La79). In both programs, a source was enclosed in a 

simple building of four walls, a ceiling and a floor. Sections of the walls and ceiling 

could be "removed" to collimate the radiation. Since the calculations were based 

upon Monte Carlo line-beam data, the code would obtain dose by integrating the 

line-beam data over all beams passing through the opening or openings.

The source could be specified as a neutron source, a primary gamma-ray 

source or a secondary gamma-ray source, each with a spectrum of emitted energies, 

and anisotropic scattering could be treated in the calculations. Using the results of 

Zerby and other Monte Carlo studies, the code performed its own computations to 

find the air-scattered dose rate at each wall, the floor, the ceiling, and other points 

outside the building. This allowed users to study the effects of building design on 

radiation dose, whether direct radiation dose or skyshine. In this respect, 

SKYSHINE was a milestone in the topic of radiation studies.

The MORSE code has been modified many times, with each version given its 

own capabilities to use in certain problems or to receive data from other programs. 

The 1984 release, MORSE-SGC/S, is a neutron and gamma Monte Carlo code 

which solves both shielding and criticality problems. The physical form of the 

system studied is described with combinatorial geometry, a versatile algorithm 

which creates region boundaries from planes and conic surfaces. Particle transport 

is based upon the Boltzmann equation, and performed by "supergroups," energy 

groups rv'ade up of smaller energy groups. To reduce the computer memory 

required, MORSE-SGC/S separates the entire spectrum of particle energies into
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clusters of energy regions. The code performs calculations on particles in the first 

cluster, or supergroup, stores the results, then calls in data on the particles in the 

next lower supergroup to work with. Both the combinatorial geometry and 

supergroups make the code versatile in terms of possible applications and computers 

which may be used. (We84)

MORSE-SGC/S reports responses to both uncollided radiation and the sum of 

direct and scattered radiation. This would suggest that it is ideal for gamma-ray 

skyshine analysis. However, work at Kansas State shows the code requires many 

gamma-ray histories to estimate the usually low gamma-ray skyshine dose. Also, 

MORSE cannot satisfactorily simulate point detectors, since Monte Carlo codes 

must use finite volumes, and small volumes receive few particles to count toward 

dose. (Sh88) Even with particle weight biasing to reduce the standard deviation of 

results, uncertainties on such small quantities could make the results useless. This, 

combined with the long run-times required, may make MORSE-SGC/S impractical 

for gamma-ray skyshine analysis. Indeed, this argument has been made against the 

Monte Carlo method in general as applied to gamma-ray skyshine: The number of 

particle histories required to obtain good statistics can be prohibitive. The method 

is simple to apply and may be of use for neutron skyshine analysis, but that is not of 

concern here.

2.2 Single-Scatter Studies

As cited by Trubey (Tr61), C. H. Bernard first hypothesized in 1953 that the 

single-scattered flux density made a good approximation to the total scattered flux 

density for gamma rays r** r°utrons. Because buildup and exponential attenuation
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tend to counteract each other, Bernard did not use either. Trubey's work marked 

an early application of Bernard's model to gamma rays.

Trubey considered a simple problem, a monodirectional, monoenergetic point 

source of gamma rays in infinite air. This is identical to the line-beam problem 

used by Lynch et o/. (Ly58) for their Monte Carlo research, and the problem was 

chosen to allow comparisons with their results. Dose rates computed in this manner 

agreed very well with the Monte Carlo calculations; however, flux densities 

computed with the single-scatter model were low if the gamma rays backscattered, 

that is, if the line beam was directed away from the detector and photons could only 

reach the detector by reversing direction. The use of Trubey's results was limited 

by the model; any shielding would make the data invalid. Still, as noted by Faw 

and Shultis (Fa87), Trubey confirmed that most skyshine dose in these cases is due 

to once-scattered gamma rays.

Kitazume (Ki68) introduced a new single-scatter formula for approximating 

gamma-ray dose when a point source and detector are in air above ground. This 

formula allowed the point source to be isotropic or monodirectional. Attenuation of 

both unscattered and scattered photons was accounted for, and Taylor buildup 

factors were applied to once-scattered gamma rays to simulate multiple scatters. 

The formula is very general and has proven useful in later work; Roseberry's 

formulation (R08O) was shown to be equivalent to Kitazume's.

Kitazume performed line-beam source calculations to be compared with those 

of both Lynch et al and Trubey. With buildup factors for air unavailable, 

Kitazume chose to use factors for water instead. The results compared well with 

the Monte Carlo calculations except for low source energies and large 

source-detector distances, or low energies and photon beams at large angles from an
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axis between source and detector. Even this disagreed with Lynch et al by only 

20%. The discrepancies became smaller as source energy increased, while Trubey's 

computations without attenuation and buildup yielded poorer underestimates of the 

Monte Carlo values as the energy increased. (Ki68) This makes a strong argument 

for the inclusion of both attenuation and buildup in single-scatter calculations; 

indeed, their use has become standard.

A notable series of point-kernel programs was developed during the 1960's at 

Los Alamos for neutron and photon shielding studies. This series, named QAD, 

consists of several codes which compute uncollided flux densities, dose rates and 

energy depositions from a volumetric source. While the codes compute only 

line-of-sight quantities, the geometries they can use are complex. QAD employs a 

combinatorial geometry in which Cartesian, cylindrical and spherical surfaces are 

combined to describe the physical system being modeled. The regions may be of 

different materials or mixtures of materials. Also, QAD codes can recreate buildup 

factors from curves fit to experimental data, and apply them to paths through each 

region, regardless of material. (Ma67)

The QAD codes themselves have no use in single-scatter studies. Their 

importance lies in the offshoot family of gamma-ray codes known as G3, which 

borrow the very versatile combinatorial geometry routine from QAD (Ma73). The 

G3 codes can group detector responses by source energy or scattered gamma energy, 

and can report doubly differential flux densities by energy and direction of the 

incoming photons.

G3 employs the point source and point detector geometry first used by 

Trubey, with many c: the conventions of single-scatter calculations. At each 

scattering point between source and detector, the uncollided flux density is
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multiplied by the probability of a Compton scatter toward the detector for a photon 

of the source energy. Treating the scattering point as a new source, the uncollided 

flux density at the detector due to the "scattering source" is calculated and 

multiplied by the buildup factor in infinite air for the scattered photon energy. In 

running G3, the user defines scattering "boxes;" for simplicity, scatters occur only at 

the center of each box, and resulting quantities are integrated over the volume of 

the box.

One sample problem used to test G3 is the same line-beam problem studied 

by Lynch et al, Trubey and Kitazume. In comparison to the Monte Carlo results of 

Lynch et al, G3 gives results within 10% for most distances, except at the shortest 

source-detector distances. (RS85) There are problems which G3 cannot address 

well, however; one of these is discussed in the next section. Still, G3 is a useful and 

reliable code in some skyshine applications, and it will be used for comparisons in 

this work.

2.3 Other Numerical Skyshine Studies

A study recently completed at Kansas State University (Fa87) employs a method 

different from both Monte Carlo and single-scatter techniques. The MicroSkyshine 

method was first based upon the results of Lampley's SKYSHINE-II line-beam 

Monte Carlo code (La79), and the first MicroSkyshine code incorporated a data base 

from SKYSHINE-II. The data base contained coefficients of an empirical equation 

which had been fit to Monte Carlo results; the MicroSkyshine program interpolated 

values of these coefficients to yield gamma-ray response functions continuous over 

source energy and direction.
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The method's simplicity makes it suitable for use on microcomputers, and 

MicroSkyshine is now commercially available. This version solves problems 

involving a gamma-ray point source inside a cylindrical silo, or a point, line or 

plane source of photons behind a semi-infinite wall. Slab shields may be placed 

above the source, over the silo or wall. Such simple geometries might be used as 

approximations of more complex real situations, such as a 16N gamma-ray source 

within a turbine building.

The first version of MicroSkyshine used photon response functions from 

SKYSHINE-II; the code was validated against two ANSI-standard reference 

problems (AN87) and G3 results for the silo and wall geometries. For the ANSI 

problems, the MicroSkyshine geometries were adapted as closely as possible to the 

reference problems, though exact replication was not possible. The results from the 

code and the ANSI standard were in very close agreement. When compared to 

MicroSkyshine values for the simple geometries, G3 values were consistently lower 

in cases with a slab shield over the source. A comparison of both codes' results to 

benchmark experimental data discussed in the next section (R08O) revealed that G3 

seriously underpredicts in those instances because it cannot account for gamma-ray 

scattering and buildup in the slab. The MicroSkyshine responses proved more 

accurate, validating the method in these cases. Overall, Faw and Shultis report the 

method results are conservative and within 50% of nearly all documented reference 

values. (Fa87)

The version of MicroSkyshine available to the public uses an improved set of 

response functions developed specifically for the method by Shultis and Faw (Sh87). 

The oriri^al response functions were developed by Radiation Research Associates 

for SKYSHINE-II. The empirical equation for response had been fit to results of
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Monte Carlo computations, and the parameters contained small discontinuities for 

adjacent energy groups and directions. The errors, probably from statistical 

variations, propagated into the computed skyshine dose of early versions of 

MicroSkyshine. The old response functions also led to overprediction of dose for 

large source-detector distances, and extrapolation for high energy photons and large 

distances could give negative response values.

The new gamma-ray response functions were computed by a point-kernel 

formula much like the line-beam dose formula of Kitazume (Ki68), but which also 

included a response from annihilation photons created by pair-production positrons 

in air. The integration required to arrive at the response functions was 

accomplished numerically with Gaussian quadrature. To describe the functions, let 

^(E,x,^) be the dose at distance x from the source, in air of standard density p0, 

resulting from a photon of energy E emitted at an angle 0 from an axis between the 

source and detector. These responses, computed by the point-kernel formula, were 

fitted to the approximating function

5e(E,x,0) = KE(p//)0)2[x(p/po)]b exp[a-cx(p/p0)] , (2-1)

where k is a constant conversion factor, p is the air density, and a, b, and c are 

empirical parameters.

Response functions were computed at discrete source energies and beam 

directions from the source-detector axis, then fit to this formula, the same empirical 

formula as was used with the original Monte Carlo functions. With linear 

interpolation, however, the new p orameters produce no discontinuities or negative 

values, and the new response functions are accurate for source-<ietector distances up
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to 5000 meters compared with 1500 meters for the SKYSHINE-II response 

functions. Besides clearing up the difficulties mentioned in the previous paragraph, 

the new photon response functions eliminate small variations in dose as the system 

geometry is changed slightly. Most important, comparison with benchmarks shows 

the new response functions produce more accurate and realistic results and are in 

better agreement with benchmark data than the old results. (Sh87)

2.4 Experimental Work

Although the early paper by Zerby (Ze56), discussed at the beginning of this 

chapter, described computations made on experimental measurements of neutron 

radiation in air, it does not describe the experiments thoroughly. To this author's 

knowledge, only one benchmark skyshine experiment involving point sources has 

been documented in detail. This gamma-ray skyshine experiment was performed in 

1979 at the Kansas State University Nuclear Engineering Shielding Facility, 

sponsored by the Japanese Nuclear Safety Research Association, and documented in 

an article by Nason et al (Na81).

In the experiment, three 60Co point sources of strength ranging from 10 Ci to 

3800 Ci were placed at the axis of a cylindrical concrete silo. A high pressure 

ionization chamber for exposure rate measurements, and a sodium iodide detector 

for photon energy spectra measurements, were placed at distances up to 700 m from 

the source. The three source configurations included a collimator on the open silo to 

direct the gammas into a 150-degree cone, and concrete shields of thickness 21 cm 

or 42.8 cm over the silo. The thickness of the silo walls prevented much radiation 

from leaving the silo horizontally and contributing to measured exposure rates. 

Also, a lead and concrete collimator on the Nal assembly removed background
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radiation from the measured spectra. Both of these features, along with background 

measurements, allowed the dose and spectra due solely to gamma-ray skyshine to be 

determined easily.

Results from both detector systems were corrected for variations in response 

with the energy of the incident radiation. These corrections came from calibration 

tests and manufacturer's data on the instruments. For comparison purposes, 

calculations were performed using DOT, a two-dimensional discrete ordinates 

transport code; the cylindrical silo geometry was selected for its reproducibility with 

such programs. As a test of the accuracy of the results from both detectors, 

exposure rates were computed from the Nal spectral measurements and corrected 

from the collimation angle on the detector to a 4x exposure rate. For nearly all 

experimental cases, these exposure rates agreed very well with those from the 

ionization chamber. Thus, the experimental results can be used reliably as a 

benchmark for predictive methods and as design data for nuclear facilities. (Na81)

'One predictive method which has been tested against these benchmark results 

was the subject of a thesis by Roseberry (R08O). The method uses a variation of the 

infinite air, single-scatter equation of Kitazume (Ki68), but as Faw, Roseberry and 

Shultis point out (Fa86), the addition of the concrete slabs over the silo to the 

model and the treatment of the scattering angle as an independent variable are 

significant improvements. Roseberry's results compare favorably with 1979 

ANSI-standard calculations and the benchmark experiment data, although no 

ground-air interface is used and the model overpredicts the experimental results. 

Roseberry's method also yields more accurate results than DOT when the silo is 

covered by a concrete ro^f. This example may encourage the use of the benchmark 

experimental results to test other programs or designs, since Roseberry easily
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modeled the cylindrically symmetric geometry. Roseberry's model is discussed in 

detail in Chapter 3 of this work.

Although experiments to measure skyshine exposure rates are rare, 

measurements are often taken in practical situations where direct and scattered 

gamma rays are present. In the case of light water nuclear reactors, the direct and 

scattered photons from contained radionuclides is one of the many components of 

the radiation field on site. To measure these gamma rays, their contribution to the 

overall response must be isolated. Time dependence must also be taken into 

account. An American National Standard was developed for the calculation and 

measurement of such gamma radiation from LWRs in the mid 1970's, and a revised 

Standard was issued in 1987. This standard describes what factors are important in 

designing a radiation measurement program, the tools available to measure 

radiation fields, the techniques of measurement, and how data from them should be 

interpreted in light of their limitations. (AN87) These recommendations might 

prove useful in future skyshine experiments with regard to experimental setup and 

data interpretation, should a benchmark experiment be contemplated.
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3.0 COMPUTATION OF SKYSHINE EXPOSURE RATES 
FOR SIMPLE GEOMETRIES

As mentioned in Chapter 2, numerical computation of radiation fields and

doses can be less costly and time consuming than physical modeling with 

experimental radiation sources. Of the two common numerical schemes that 

were reviewed, the single-scatter and buildup model normally requires less time 

and effort to program and execute. In this chapter, the interactions and 

assumptions which make up the single-scatter and buildup model are 

explained. Next, a general exposure rate equation is presented for the case of 

a point source and point detector in air. This equation uses the single-scatter 

and buildup model, and was first presented by Roseberry (R08O) in his thesis. 

The remainder of the chapter is devoted to the description of two simple 

geometries for which the photon exposures are calculated by this point-kernel 

equation* One geometry involves a point gamma-ray source inside an open, 

cylindrical silo, with a point detector some distance away outside the silo. 

The other geometry separates the source and detector by a wall extending to

infinity on the left, right and bottom, but having a top edge. In either

geometry, a concrete roof slab may be placed over the source.

The usefulness of a model involving point sources may seem limited for 

practical cases involving, for instance, steam lines. However, point sources in 

modeling have been endorsed in the American National Standard

ANSI/ANS~d.6.1-1987. In the modeling of BWR turbine buildings, the 

Standard states that the source need not be detailed, and equivalent point 

sources may be used, if desired, to estimate dose rate. Source strengths may 

be taken from plant specifications; self-shielding of the source may also be 

used, but should be explained or discussed if it is used. (AN87) All these
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points would appear to support the substitution of a point source for more 

complex sources in numerical models.

The ANSI standard is also clear on the use of shielding and the 

modeling of skyshine: “All significant sources of gamma radiation...which are

essentially unshielded relative to air scattering (i.e., shielded on the sides but 

essentially unshielded on the top) shall be considered. Sources which are 

shielded only by the outside shield wall of a building should be considered.... 

All sources of gamma radiation which are located outside of shielded buildings 

shall be considered." (AN87) These three situations correspond to the silo 

geometry, the wall geometry, and the problem of a point source in an infinite 

air medium, respectively. The standard also requires that shielding in any 

form must be represented by the model, positioned and oriented correctly with 

respect to the source or sources, within the limitations of the numerical 

method used. Topography, such as bluffs or buildings acting as shadow 

shields, should also be considered, but are not required in the model. (AN87) 

The two geometries studied in this work were chosen with the American 

National Standard in mind, and can meet several of its requirements, including 

those of shielding and (for the wall problem) topography.

3.1 The Single-Scatter and Buildup Model

The model used by both computer codes written for this study is the 

single-scatter and buildup model for gamma rays. The method is normally 

applied to situations involving point photon sources and point detectors in air. 

It can be extended to problems of line, plane and volume sources, but only 

with a dramatic increase in computational effort, and no such extension will be
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discussed. Similarly, other media might be used, but the method was 

developed solely for air skyshine studies, so only air will be the primary 

medium.

Consider a photon leaving a point source and traveling in some arbitrary 

direction through an infinite air medium. After traveling some distance, the 

photon will suffer an interaction with the air, resulting in one or more photons 

or electrons of different direction and energy than the source photon. The 

actual result depends on the source photon energy and the energy-dependent, 

angular-dependent cross sections of air. The volume of air where the photon 

interacts may be thought of as a "first-collision source" of photons and 

electrons; in the case of gamma-ray skyshine, only photons are of concern.

The gamma rays which reach the point detector may have scattered 

once, more than once, or not at all after leaving the source. It would require 

the resources of a Monte Carlo code to trace every photon through every 

interaction, and not every gamma ray followed in this manner would reach the 

detector. Instead, the photon flux density at the detector can be found

analytically by treating the first-collision source as a point source of secondary 

gamma rays, as the name implies. The energy and intensity of the photons 

leaving the first-collision source will depend on the direction, energy and 

intensity of the gamma rays from the true source, and the cross-sections for 

gamma rays in air of interactions which create or scatter photons.

By applying inverse-square attenuation and exponential attenuation, the 

uncollided flux density at the detector from the first-collision source can be 

found. By also applying a buildup factor for a point source in infinite air, 

total flux density at the detector from the single-scatter source can be
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estimated. In a sense, all photons which scatter for the first time at the 

volume of interest and eventually reach the detector are collected together and 

computed in one step using buildup, hence the name for the method.

Figure 3-1 shows a simple illustration of the model for a particular 

scattering volume. The first leg of the gamma-ray journey involves only 

attenuation of photons traveling to the first-collision source; attenuation and 

buildup are applied on the second "leg” of the journey, since not all photons 

follow this path precisely. If the flux densities or responses at the detector 

due to all scattering volumes are added together, the result is an estimate of 

the total scattered flux density or detector response. This summation may be 

accomplished by expressing the quantity of interest as a function of position of 

the scattering volume, and integrating the function over all space for which 

first-collision sources have a clear path to the point detector. The total

response at the detector is approximately the sum of the uncollided response 

from the point source and this first-collision integral.

The interactions considered at the first-collision source and the 

application of buildup deserve much attention, and will now be discussed in 

detail.

3.1.1 Interactions Considered

Gamma rays undergo many kinds of interactions in a typical medium. 

The three most common interactions, of course, are Compton scattering, 

photoelectric interactions, and pair production. Because gamma-ray skyshine is 

not concerned with electrons, photoelectric effects are generally neglected; in 

these cases, the gamma ray is absorbed entirely and lost at the collision point,
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producing a free electron. The ZAP code (Ma69) did consider photoelectric 

effects for X-rays, but it was necessary to track the electrons to their 

absorption points to provide the fluorescent light source for the PFLASH and 

FLASH codes (Co69). ZAP may be considered an exception to the rule.

The remaining interactions are now discussed in the context of 

gamma-ray analysis.

Compton Scattering. The Compton interaction has been used in every 

application of the single-scatter and buildup model that the author has 

reviewed, and should be considered a requirement of the method. Compton 

scattering depends directly and simply on the position of the first-collision 

source through the Compton formula for scattered photon energy and the 

Klein-Nishina cross section. Also, for photons of energies encountered in 

common situations (50 keV to 10 MeV, for instance), Compton scattering 

dominates interactions in air by a factor of two or more. This can be seen in 

Fig. 3.2, where interaction coefficients in air are graphed for the three primary 

interactions. The early Monte Carlo skyshine study by Lynch ef al. (Ly58) 

involved only Compton scattering; the authors stated that for their interests, 

photoelectric interactions were of no use, and all other primary and secondary 

processes were negligible by comparison.

The use of the Compton and Klein-Nishina formulas in the model 

requires an approximation that free electrons and electrons bound to atoms 

possess the same scattering characteristics. This is because the Klein-Nishina 

formula is correct strictly for free electrons, electrons not residing in an atomic 

orbital. The RRA code ZAP did not make this approximation, and corrected
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the Compton interaction coefficients for electron binding effects (Ma69). 

Chilton et al state that such a correction is not necessary, and the 

approximation that all electrons are unbound is quite valid. They point out 

that the Klein-Nishina formula fails when the kinetic energy of the recoil 

electron approaches its binding energy, a situation found only with low photon 

energies and material of high atomic number. At such low energies, however, 

the photon is much more likely to undergo a photoelectric interaction than 

incoherent scattering, and the error due to the approximation is negligible. 

(Ch84) Also, air contains only negligible amounts of high-Z materials, so 

recoil electrons in air are not likely to have kinetic energies comparable to 

their binding energy. With these facts in mind, the approximation of free 

electrons is quite justified, and is used in this work.

Pair Production. The photons resulting from Compton interactions are 

emitted from the point of collision, as are the recoil electrons. In the case of 

pair production, however, an electron and a positron are emitted from the 

collision point; the positron travels a distance before encountering an electron 

and annihilating. Two 0.511 MeV gamma rays are emitted from this point, 

and it is these annihilation quanta which are of interest in gamma-ray 

analysis.

The choice of whether or not to include the annihilation photons was 

first based upon the distance traveled by the positron. For instance, the 

Monte Carlo code ZAP included pair production in its calculations. Marshall 

et al. rtated that pair production positrons are likely to travel no more than 

three meters in air before they interact with an electron. Since the distances
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involved in the study were comparable to the earth's radius, the annihilation 

was assumed to occur at the site of pair production, with the two photons 

emitted back-to-back and isotropically. (Ma69) When pair production is 

included in modem codes, the same assumption is made; the MicroSkyshine 

code also neglects the distance traveled by the positron in order to include the 

annihilation photons in its point-kernel computations (Sh87).

A second and more common consideration is the energy of the source 

photons. Pair production has a minimum gamma-ray cutoff energy of 1.02 

MeV; photons below this energy cannot induce pair production. The

interaction coefficient is negligible for gamma-ray energies below 1.5 MeV, and 

is still a full order of magnitude below the Compton interaction coefficient for 

photon energies below 5 MeV (Ch84), as can be seen in Fig. 3-2. For

situations involving 16N sources, which most often emit 6.13 MeV gamma rays, 

pair production can make significant contributions to skyshine. Other sources 

are not as likely to give rise to annihilation photons in this manner.

For this work, it has been decided to neglect pair production effects. 

The criterion used to justify pair production in ZAP is not the reason; those 

few codes which include the process always ignore the distance traveled by 

positrons. Few of the numerical methods reviewed in Chapter 2 or used for 

comparisons later in this work account for pair production, so including the 

process here would make the comparisons difficult. Although the codes will 

underestimate detector responses that would occur in reality, it is necessary 

that these comparisons be made without pair production to validate the 

method. Pair production can easily be included the programs if deemed 

necessary.
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Other Interactions. Any other interactions which may produce photons 

or scatter gamma rays are customarily ignored. For instance, as electrons are 

ejected from a nucleus by photoelectric interaction, they leave behind an 

excited atom which may emit fluorescence photons. The energy of these 

photons is never higher than the binding energy of the photoelectron. For air, 

the fluorescence is in the eV range, far too low in energy to be of interest. 

Coherent (Rayleigh) scattering has a negligible effect on the energy or 

direction of the photon, and it too is ignored in most shielding work. (Ch84) 

The Monte Carlo code FLASH did apply Rayleigh scattering, but was 

concerned with visible fluorescent light. For such low-energy photons, 

Rayleigh scattering is significant, as are unusual processes such as refraction by 

air molecules and scattering and absorption by aerosol particles (Co69). 

Indeed, FLASH incorporated many processes which apply only to visible light 

and have no use in gamma-ray skyshine analysis.

Evaluation of interaction coefficients. From the discussion above, it is 

clear that only Compton interactions are regularly used in single-scatter and 

buildup models. Therefore, the Klein-Nishina formula is often the only 

interaction coefficient evaluated, and it may easily be computed for a given 

gamma-ray energy. Where pair production is included, tabulated coefficients 

have been used (Ma69, Sh87), and interpolation would be necessary for photon 

energies not in the tables. This would slow down evaluation of the first- 

collision source in some cases.

For situations where no concrete shielding is placed over the point 

source, evaluation of the cross sections is simple. Because the photons 

reaching the scattering volume (or first-collision source) have their first
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interaction at that point, the cross section is taken at the energy of the source 

photons. In cases where shielding covers the gamma source, however, it may 

be difficult but sound practice to find the spectrum of uncollided and collided 

photons leaving the shield in the direction of the first-collision volume, then 

apply a spectrum-weighted cross section at the volume. Roseberry and Shultis 

(Ro82) argue that this is not necessary. They state that photons which leave 

a thick slab shield are essentially collimated into a beam of uncollided photons 

or photons which have undergone small deflections and are nearly unchanged 

in energy. Any photons which have suffered collisions and lost energy in the 

slab will be attenuated by the atmosphere and can be neglected when 

computing exposure rates far from the point source. Roseberry and Shultis 

conclude that the Compton scattering cross section still may be evaluated at 

the source energy when a concrete shield is present above the source. This 

assumption reduces computational effort required by the model and will be 

applied in this thesis.

In summary, Compton scattering is the only interaction regularly used in 

the single-scatter and buildup model, although some works have included pair 

production. This study will consider only Compton scattering at the 

first-collision source.

3.1.2 Application of Buildup

To account for photons which scatter more than once, a buildup factor is 

applied to the second leg of the gamma-ray path shown in Fig. 3-1. Buildup 

has also been employed in a limited fas^'^* in shields over the point source.
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The use of buildup factors requires some assumptions, which will be discussed 

here.

Buildup factors commonly available for computations are for point 

isotropic sources in infinite media. In some simulations, such as that used by 

Roseberry for the point source in a silo, the air-ground interface is neglected 

and an infinite air medium is used instead. This justifies the use of an 

infinite-air buildup factor after one scatter, but the approximation results in 

overprediction of exposure rates near the ground, since earth tends to absorb 

more scattered photons than air. On the other hand, the first-collision source 

at the scattering volume is not isotropic, since Compton scattering is biased in 

the forward direction. (Fa86) This makes the use of a buildup factor derived 

from an isotropic source inappropriate. Still, Shultis and Faw demonstrated 

that applying the isotropic buildup factor to the non-isotropic scattering source 

introduces only a small error to the results of MicroSkyshine (Sh87). It may 

be that this practice in MicroSkyshine underpredicts the detector response, 

compensating for the overprediction from the use of infinite air instead of an 

earth-air interface.

When the point source in Fig. 3-1 is collimated upwards but open to the 

air, the first-collision volume can correctly be treated as the point of first 

interaction for the gamma ray. All buildup can be applied to the second leg 

of the photon path, and no buildup need be applied to the path between 

source and scattering volume. Roseberry and Shultis proved that the single 

buildup factor provided the best results in a point-kernel code, using 

benchmark measurements for comparison. (Ro82) If a coiijrCoe slab or other 

shield covers the collimated source, as in Fig. 3-3, scattering will occur in the
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shield and should be accounted for in some manner. The approach taken by 

Roseberry and Shultis is to apply an infinite-medium buildup factor for a 

point isotropic source in concrete. The factor is applied over the appropriate 

distance through the slab shield, and is evaluated at the gamma-ray source 

energy. Further, it is assumed in this approach that all photons leaving the 

shield, including those counted in buildup, remain at the source energy. While 

the last approximation is not correct, it allows cross sections at the 

first-collision source to be evaluated only at the source energy, not several 

energies. Roseberry and Shultis show that the use of the second buildup 

factor in the concrete shield yields far more accurate results than the omission 

of buildup in concrete entirely. Although its use is a rough approximation, it 

is "extremely important." (Ro82) Faw and Shultis (Fa87) later stated that 

the concrete buildup approximation, combined with attenuation through the 

concrete, gave reasonable values of point exposure rates for shield thicknesses 

of six mean free paths or less. They could not validate the approximation for 

larger shields, however. The approach is studied in detail by Bassett (Ba88).

In summary, to use buildup factors in air between the first-collision 

source and the detector, the air-ground interface should be approximated by 

infinite air, and the first-collision source should be treated as a point source 

with a source strength per steradian equal to the intensity leaving the 

differential volume in the direction of the point detector. In cases where a 

concrete shield covers the point source, buildup factors may be used in the 

concrete, treating all photons entering and leaving the shield as photons at the 

source energy. The shield should be of moderate thickness, only a few mean 

free paths if possible.

31



3.2 The Exposure Rate Integral Equation

With the assumptions of the single-scatter and buildup model outlined above, 

an equation for the exposure rate at the detector may now be presented. 

Exposure is the response commonly reported when only gamma-ray sources are 

present. Formulation of the model was introduced by Kitazume (Ki68) to 

evaluate dose rate, with a generic factor to convert flux density to the desired 

response, and with the Taylor buildup approximation incorporated into the 

formula. Similar analytical equations have been presented in descriptions of 

FLASH (Co69) and G3 (Ma73). The derivation for G3 is notably 

straightforward, and very much like the derivation to follow, although G3 

converts the first-collision source to an equivalent isotropic source.

The exposure rate equation presented here was derived by Roseberry 

(R08O) and repeated without proof in the paper of Roseberry and Shultis. 

(Ro82); in the former reference, it is shown to be equivalent to Kitazume's 

formula. The formula is derived here in a brief manner; the reader should 

consult the thesis of Roseberry for more detail.

The infinite-air, single-scatter geometries of Fig. 3-1 and Fig. 3-3 are 

repeated in Fig. 3-4, with geometric distances labeled. The source and 

detector are separated by a distance d along the line of sight; this line will be 

referred to as the source-detector axis. Photons leaving the source travel a 

distance a through air to reach the first-collision volume, and if a concrete 

slab is present, also travel a distance ac through the concrete. The total 

distance from the source to the differential first-collision volume dV is labeled 

a; the point detector lies r* dist tnce b from dV.
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scattering

detectorsource

(a)

///

detectorsource

Fig. 3-4. Distances involved in the single-scatter geometry: (a) no
overhead shield; (b) overhead concrete roof present.
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In the absence of a concrete roof, the uncollided gamma-ray flux density 

at the first-collision volume dV is given by the simple formula

0° = — exp(-pa) , (3-1)
4?ra2

where S = source strength,
pL = linear attenuation coefficient in air for source 

photons of energy E.

If a concrete slab is placed over the source, source photons will also be 

collimated by the material of the slab. The uncollided gamma-ray flux 

density at dV is now

^ = 47r(a+ac)2 (3-2)

where /ic = linear attenuation coefficient in the roof material 
for source photons of energy E.

Recall the assumption that photons reaching the first-collision volume dV have 

their first interaction in that volume. As long as this assumption holds, only 

uncollided flux density need be used to compute interactions in dV. Also, 

recall from Section 3.1.1 that only Compton scattering will be considered in 

this work, so the first-collision volume may be properly called a "differential 

scattering volume," a more common name in the literature.

The number of photons which reach the differential scattering volume dV 

and scatter through an angle 9$ (see Fig. 3^) into a solid angle of unit 

steradian toward the detector may be written as

Sv = 0°NcrdV = exP(-/^ “ ^cac) dV , (3-3)
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where N = electron density in dV (R08O)

= (3.0064 x 1023 g-i) Pai[ , 

and = differential Compton scattering cross section 

= *(0s,E).

The energy of the photon after scattering through an angle 9S depends upon 9S 

and the initial photon energy E. Using the approximation of free electron 

interactions for bound electrons in air, the energy E of a scattered photon can 

be related to its initial energy E and the complement 0 of the scattering angle 

by the Compton formula (Ch84),

E = ----------- R—^------------------ , (3-4)

1 + (1 + C0S/J)

where mec2 is the rest mass energy of an electron. The supplement of the 

scattering angle was chosen here, since 0 will be used later as an independent 

variable. The cross section itself can be evaluated with the Klein-Nishina 

differential scattering formula (Ch84), which appears in dimensional form in 

(Ro80) as

re2 A2 r A 1+A+cos/? 
(l+A+cos/?)2 U+^+cos/y A

where re = classical electron radius (Ch84)

= 2.818 x lO-is m,

and A = Compton wavelength

= mec2/E.

sin2/? , (3-5)
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The formula is evaluated at the source energy, since it is assumed that all 

gamma rays reaching the differential scattering volume are uncollided or have 

lost no energy.

Next, the differential exposure rate dX. at the detector due to photonss
scattering only at dV in a steradian toward the detector may be written as

dXs = fea E K exp(-£b) (3-6)

where b = distance in air from the scattering volume to 
the detector,

= mass energy absorption coefficient in air for 

photons of energy E,

H = linear attenuation coefficient in air for gamma 
photons of energy E,

K = energy flux-to-exposure-rate conversion factor (Ch84)

= 1.835 x 10-8 R.g.jfleV-1.

Substituting for Sv from equation (3-3) produces

dXs = —^ E exp(-/ia - //cac- /*b) dV . (3-7)
47r(a+a c)2b2 p

This is the uncollided exposure rate at the detector from the first-collision 

source; gamma rays which scatter more than once must be accounted for using 

buildup factors as discussed in Section 3.1.2.

A ^xdup factor B accounts for multiple scattering along the path from 

the scattering volume dV to the detector. This factor is evaluated at the
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A
scattered gamma-ray energy E and over the distance b; the scattering volume 

is treated as a first-collision source of photons of energy E, located a distance 

b from the detector. Another buildup factor B accounts for gamma-ray 

scattering in the concrete roof, if one is present. This factor is evaluated at 

the source energy E and applied over the concrete path length a^; photons 

leaving the slab are assumed to retain their energy. The assumption that dV 

is the point of first interaction fails when the concrete is involved; the buildup 

factor B increases the flux density at the scattering volume, since it is not 

solely given by Eq. (3-2).

Correcting the single-scatter exposure rate equation for buildup produces 

a new differential exposure rate expression, Eq. (3-8),

dXs = S-ffNBB? fea E exp(-jua - /icOc - jib) dV. ('3-8) 
4x( a+a c )2b2 p

Integration of Eq. (3-8) over all space V for which photons may scatter 

once and travel from source to detector gives the final expression for the total 

exposure rate X at the detector,

X = —SKNBBor— g - /jcac - //b) dV. (3-9)
V 47r(a + ac)2b2 p

This formula includes attenuation and buildup in a concrete roof over the 

point gamma-ray source. For cases where the roof is absent, Eq. (3-9) holds 

with ac = 0 and B = 1.

The space V over T’Thich integration takes place is dependent upon the 

physical problem, whether a silo or a wall is present, for example. Selection
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of proper limits of integration will allow the application of Eq. (3-9) to many 

shielding situations. A good choice of coordinate system will also make 

evaluation of the integral equation easier. Both of these issues are addressed 

in the remainder of the chapter. Section 3.3 applies Eq. (3-9) to the case of 

a point source in a' cylindrical silo; section 3.4 considers a point source behind 

a semi-infinite wall.

3.3 Application of the Exposure Rate Integral Equation to a Silo Geometry 

The problem of a point source of gamma rays within a cylindrical silo has 

been solved numerically by Roseberry (Ro80), and reported again by Roseberry 

and Shultis (Ro82). Their coordinate system and limits of integration will be 

repeated here, and improvements made to the computer code used by 

Roseberry will be examined.

The problem is illustrated in simplified fashion in Fig. 3-5. A point 

source of gamma rays is located at the axis of a cylindrical silo with perfectly 

absorbing walls. The top of the silo is open to the air and collimates the 

gamma rays vertically into a known solid angle. Alternately, a concrete slab 

of thickness t is placed over the silo and point source. A point detector is 

located at distance d from the point source, at the same elevation as the 

source. The source and detector are below the top of the silo, so that 

photons must scatter to reach the detector. In both cases, the medium is 

simulated as infinite air; no ground interface is used in calculations.
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col I imator

detectorsource

air-ground interface

concrete
shield

detectorsource

air-ground interface

Fig. 3-5. Simplified calculation^ geometry for the case of a point source 
within a silo: ■ a) no overhead shield; (b) overhead concrete roof present.
[From (RoSO)]
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3.3.1 Coordinate System

To integrate Eq. (3-9) over all space in which an uncollided gamma ray 

may scatter once and reach the detector directly, a three-dimensional 

coordinate system must be selected. For the silo problem, the coordinate 

system consists of three angles /?, 9, and c, defined in Fig. 3-6. The angles 9 

and e specify the direction in which a photon leaves the source, while (3 

locates the scattering volume dV along that path. In this system, the 

variables a, E and //en/p depend only on 0. Using this coordinate system 

yields the following expressions (RoSO, Ro82):

b = d sin^ esc/? , (3-10)

ac = t sece csc^ , (3-11)

a = d(cos0 + sinf? cot/3) - ac , (3-12)

and

dV = (a+ac)2 d sin*# esc2/? d/? d0 de . (3-13)

For a homogeneous air atmosphere, the application of this coordinate system 

to the exposure rate equation, Eq. (3-9), gives the final form (Ro82) of

y _ SKN 
A ~ 2TT

/?max
Ihs. a E

0 P

@max
d0 B exp(-/a - pb)

^min

fmax

de B exp(-//cac) . (3-14)
J0
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Source DETECTOR

Fig. 3-6. Coordinate system for the single-scatter model as applied to the 
silo gec-^Uy. [From (RoS2)]
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Here, use has been made of symmetry in the variable e; since the last 

integrand is an even function of e, and Cmin = -emax, the integral from erain to 

emax may be replaced by twice the integral from 0 to €max. Also, it has been 

assumed that a >> a^, so that the distance a is approximately independent of 

the angle e. For the case of an unshielded source, Eq. (3-14) reduces to 

(Ro82)

y _ SKN
fim&x

dp ^ ai 
0 p

^max

d^ B exp(-//a - //b) emax • (3-15)
^min.

3.3.2 Limits of Integration

The values of the angles which make up the coordinate system are 

limited by the collimation of - the silo and the restriction that the source, 

detector and scattering volume must form a closed triangle. The outer radius 

of the collimator silo is designated r, as shown in Fig. 3-5. To describe the 

collimation, the variable h is defined in Fig. 3-5 (a) as the distance of the 

point source below the outer lip of the collimation silo, where no concrete roof 

is present. When a shield is present over the source, as in Fig. 3-5(b), the 

distance h cannot be easily defined, since the collimator is no longer atop the 

silo. Instead, the minimum value of 9 may be defined to correspond to the 

longest gamma-ray path through the concrete shield that does not also pass 

through the silo, or the longest path through the shield that makes a 

significant contribution to the detector response. (Ro82) The distance h may 

then be computed as r tan0rain. Note that r and h depend upon the outer 

edge of the silo; in the MicroSkyshine code, for example, the inner dimensions
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of the silo determine r and h, and care should be taken to avoid confusion of 

these definitions.

The limits of integration are related to the silo dimensions by the 

following formulas (RoSO, Ro82). Where the source is unshielded,

0min = arctan — . (3—16)

If the silo is shielded, ^min is defined as mentioned above, with h computed 

from 0min and r.

0max = min{(7r - ftnin), K - P - arctan[h/(d-r)]} (3-17)

fmax = arccos(sin0min csc^) (3-18)

In Roseberry's original code, the upper limit on 0, the supplement of the 

scattering angle, depended on the silo height and the distance of the detector 

from the silo. Since the silo material is assumed to be a perfect absorber, 

photons were required to rise above the silo before scattering. This 

requirement took the following form:

Anax = 7T - 0mia - arctan[h/(d-r)] . (3-19)

Note that /?max depends only on the problem geometry, not the variable A 

since ^min is a constant for each geometry of source, detector and silo. The 

derivation of these limits is straightforward, and can be found in the thesis of 

Roseberry (RoSO).
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In reality, photons from an isotropic source in the silo may reflect off 

the interior walls of the silo, then scatter out the top and eventually 

contribute to the detector response. This was seen to some extent in 

benchmark experiments (RoSO). The use of Eq. (3-19) would not account for 

these photons and could result in an underestimate of detector response when 

compared to benchmark data. Faw and Shultis (Fa87) simulated the

contributions of gamma rays which ricochet off the silo wall by allowing single 

scatters within the silo and computing detector responses from these "inside 

scatters," neglecting the shielding of the silo wall entirely. In a sense, 

MicroSkyshine uses the silo only to collimate the source photons into a known 

solid angle, not to restrict the space in which photons scatter. This 

conservative approach has been taken in modifying Roseberry's program for 

this work. Photons scattering within the silo and escaping are simulated by 

extending the region of integration into the silo, an area not visible from the 

detector. The limits on 9 and e remain the same, but the restriction of the 

silo wall is removed from Eq. (3-19), so that /? is limited only by the angle of 

collimation, that is, the possible directions of source photons. In this work,

fim&x — 7T — 0min • (3—20)

Photons which scatter within the silo follow a path directly to the detector; 

the "perfectly absorbing" silo material is ignored. This approach avoids 

possible underestimation of true exposures or dose.
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3.3.3 Numerical Evaluation

The silo skyshine problem was solved numerically by Roseberry (RoSO) 

using Eqs. (3-14) through (3-19). The computer code written for this

purpose, SKY, employed triple trapezoidal integration to compute the exposure 

rate from an isotropic source emitting one gamma ray per second at a 

specified energy. The angle of collimation of the silo and the thickness of an 

overhead concrete shield, if present, could be specified. To normalize results, 

the areal density between source and detector (distance times air density) was 

computed and reported; exposure rates were multiplied by the square of the 

source-detector distance and divided by the solid angle of collimation of the 

source photons. These normalized exposure rates were displayed versus areal 

density for all comparisons.

Part of the work performed for this thesis involved modifications to 

SKY. Since the original code was written, improved cross sections and 

buildup factors have been published, and improvements have been made in 

numerical integration techniques. These data and methods have been 

incorporated into a new version of Roseberry's code, and comparisons have 

been made to investigate the effects of the changes. These comparisons and 

changes will be described in this section.

Numerical Approximations. The program written by Roseberry involved 

several approximations made to simplify coding of the exposure rate equation 

or to shorten run times (RoSO). Many of these were retained in subsequent 

versions of SKY, referred to in this work as SKY8 and SILOGP.
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Although the angle (3 has a theoretical lower limit of zero, this occurs 

when the scattering volume is infinitely far from the source and detector. 

Gamma rays are very unlikely to travel to such a point, and the contribution 

to the detector response will be negligible for cases where 0 is small. 

Therefore, Roseberry placed a limit on the distance in air through which 

photons might travel; the distance over both legs of the journey was limited 

to 10 mfp (mean free paths). This places a numerical lower limit on 0 below 

which the integrand is approximately zero. For some later versions of SKY,

this limit was increased to 20 mfp, although Roseberry showed that 10 mfp 

was adequate for d < 700 m. (RoSO) Following a similar analysis, Roseberry 

placed a limit of 15 mfp on the photon path length in concrete. This yields a 

numerical upper limit on e, above which the integrand is negligible. In SKY8 

and SILOGP, this cutoff value was retained.

Equation (3-14) assumes that the distance a traveled by source photons 

is approximately independent of e. To carry through on the assumption, the 

concrete distance ac was dropped from Eq. (3-12) within the code SKY, 

leaving only 9 and 0 as the independent variables. For problems involving 

60Co point sources, Roseberry approximated the emission spectrum of 1.17 

MeV and 1.33 MeV photons by two 1.25 MeV photons per disintegration. 

This customary approach was proven to change the computed exposure rates 

by less than two percent for all configurations studied. (RoSO) Both of these 

numerical approximations were also carried over into the revised versions of 

the code and problems performed with them.

The MicroSkyshine code (Fa87) alloweu photons which first scatter within 

the silo to contribute to measured results. As discussed in the previous
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section, a similar approximation has been used in SKY8 and SILOGP. 

However, approximations found in other works were not applied in modifying 

SKY. One of these, used in G3 (Ma73), was to "convert" the first-collision 

scattering source at dV to an equivalent isotropic source. This would justify 

the use of a buildup factor computed for a point isotropic source and solve the 

incongruity mentioned in section 3.1.2. However, the source term "conversion" 

performed by G3 is to simply multiply the photon flux density leaving the 

first-collision source in a unit steradian toward the detector by 47r. To find 

the flux density at the detector from this isotropic scattering source, the new 

source strength must be divided by 47rb2. The 4x terms cancel, and the end 

result is identical to Eq. (3-6), where the scattering source term Sv is directed 

into a unit steradian, and need only be divided by b2 to account for inverse 

square attenuation. The conversion does not truly yield ah equivalent 

isotropic scattering source, and is eliminated in the formulation, so it was not 

applied in this work.

Finally, the air density is taken to be constant over all regions in which 

gamma rays travel, and the atmosphere is taken to be homogeneous in 

composition. Since the distances involved in computations are not likely to 

exceed 5000 meters, this is a valid approximation; numerical estimates of 

attenuation through an altitude-dependent atmosphere, such as the method 

used by ZAP (Ma69), are avoided. For simplicity, the concrete shield placed 

over the source is also assumed to be homogeneous. Approximating density 

changes in either air or concrete is rarely, if ever, required.

Use of Gauss Quadrature. The original code SKY written by Roseberry 

performed its numerical integration of Eq. (3-14) by triple trapezoidal
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integration. The three regions of integration (over /?, 6 and e) were each 

divided into ten regions, with a total of 1100 mesh points at which the 

integrand was evaluated. Roseberry found this to be an acceptable mesh size 

both in accuracy and in computation time. (RoSO)

Gauss quadrature is commonly known to be more accurate than 

trapezoidal integration, and can achieve better results with fewer evaluations of 

the integrand than either trapezoidal integration or the use of Simpson's rule. 

Some recent computer codes use Gauss quadrature in some capacity, notably 

MORSE (We84) and MicroSkyshine (Fa87). Hornbeck (Ho75) comments that 

great accuracy is possible without many points, and that Gauss quadrature is 

"a very desirable method to use for multiple integration," since fewer 

evaluations of the integrands are necessary than with other methods, and less 

error accumulates in the outer integral as a result. Details of the technique 

may be found in any of the three references above.

In the first modification to SKY, named SKY8, the trapezoidal 

integration formulas were replaced by function subprograms and a Gauss 

quadrature subroutine. The subroutine used here originated at Sandia National 

Laboratory, and performs adaptive quadrature; that is, separate integrations are 

performed over successively smaller sections of the entire region of integration 

until the change in the result is below a chosen criterion. SKY and SKY8 

were applied to two different silo geometries, one with an unshielded, 

collimated silo, the other with a concrete shield 21 cm thick over the silo. 

The source in both cases was a 60Co point source, normalized to a strength of 

one photon per second. As shown in Tables 3-1 and 3-2, the change in

exposure rates is minimal, less than 2% in all cases. Because the Gaussian
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Table 3-1. Comparison of methods of numerical integration as applied to 
the computer code SKY. The exposures are for a 60Co point source on the 
axis of an open silo with a solid angle of collimation of 4.683 sr. Air 
density is taken as 1.2 mg/cm3.

Normalized exposure 
[m2 • R/(sr * photon)]

Source-detector 
distance (m)

Areal density
(s/cm2)

Computed by 
8-point 
Gauss 
quadrature

Computed by 
11-point 
trapezoidal 
integration

25.0
37.5
50.0
62.5
75.0
87.5

100.0
112.5
137.5 
150.0
162.5 
175 
200 
225 
250 
275 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
•850 
900 
950

3.0
4.5
6.0
7.5 
9.0

10.5 
12.0
13.5
16.5 
18.0
19.5 
21 
24 
27 
30 
33 
36 
42 
48 
54 
60 
66 
72 
78 
84 
90 
96

102
108
114

* 2.853(-17) = 2.853x10'17

2.853(-17)* 
4.182 (-17) 
5.358 (-17)
6.367 (-17) 
7.209(-17) 
7.892(-17) 
8.429(-17) 
8.831 (-17) 
9.292 (-17) 
9.377(-17) 
9.384(-17) 
9.323(-17) 
9.038(-17) 
8.598(-17) 
8.058 (-17) 
7.462 (-17) 
6.842 (-17) 
5.621 (-17) 
4.509(-17) 
3.554(-17) 
2.764(-17) 
2.126(-17 
1.621(-17) 
1.227(-17) 
9.225(-18) 
6.902 (-18) 
5.142(-18) 
3.816(-18) 
2.821(-18) 
2.080(-18)

2.832 (-17) 
4.152-17) 
5.319(-17) 
6.321(-17) 
7.157 (-17) 
7.836(-17) 
8.369 (-17) 
8.768(-17) 
9.226(-17) 
9.312(-17) 
9.318(-17) 
9.258(-17) 
8.976(-17) 
8.538 (-17) 
8.002(-17) 
7.409(-17) 
6.793 (-17) 
5.579(-17) 
4.475(-17) 
3.526(-17) 
2.740 (-17) 
2.106(-17) 
1.604(-17) 
1.213(-17) 
9.115(-18) 
6.814(-18) 
5.071 -18) 
3.759(-18) 
2.777 (-18) 
2.045 (-18)
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Table 3-2. Comparison of methods of numerical integration as applied to 
the computer code SKY. The exposures are for a 60Co point source on the 
axis of a silo, shielded by a concrete slab of density 2.13 g/cra3 and 
thickness 21 cm. Air density is taken as 1.2 mg/cm3.

Normalized exposure 
[m2 • R/(sr • photon)]

Source-detector 
distance (m)

Areal
(g/cm:

25.0 3.0
37.5 4.5
50.0 6.0
62.5 7.5
75.0 9.0
87.5 10.5

100.0 12.0
112.5 13.5
137.5 16.5
150.0 18.0
162.5 19.5
175 21
200 24
225 27
250 30
275 33
300 36
350 42
400 48
450 54
500 60
550 66
600 72
650 78
700 84
750 90
800 96
850 102
900 108
950 114

Computed by 
8-point 
Gauss
quadrature

Computed by 
11-point 
trapezoidal 
integration

2.412(-18)* 
3.516(-18) 
4.460(-18) 
5.236(-18)
5.847 (-18) 
6.308(-18) 
6.634 (-18) 
6.841(-18) 
6.968(-18) 
6.917(-18)
6.808(r18)
6.652(-18) 
6.237(-18) 
5.738 (-18) 
5.200(-18) 
4.658(-18) 
4.133 (-18) 
3.182 (-18) 
2.395(-18) 
1.773(-18) 
1.298(-18) 
9.408(-19) 
6.772(-19) 
4.848(-19) 
3.454(-19) 
2.452(-19) 
1.737 (-19) 
1.227 (-19) 
8.650(- 20) 
6.087(-20)

2.413(-18) 
3.517(-18) 
4.460(-18) 
5.235 (-18) 
5.847(-18) 
6.308 (-18) 
6.634(-18) 
6.842(-18) 
6.970 (-18) 
6.920(-18) 
6.812(-18) 
6.656 (-18) 
6.243 (-18) 
5.744(-18) 
5.208(-18) 
4.666(-18) 
4.141 (-18) 
3.189 (-18) 
2.401(-18) 
1.779(-18) 
1.302 (-18) 
9.444 (-19) 
6.799 (-19) 
4.868(-19) 
3.469(-19) 
2.464(-19) 
1.745 (-19) 
1.233(-19) 
8.691(-20) 
6.119(-20)

* 2.412(-18) = 2.412xl0'18
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quadrature method is known to be more accurate, it has been retained in the 

code.

Data Used in Codes. The single-scatter and buildup method requires 

two data bases: one of gamma-ray interaction coefficients, the other of

parameters used in computing buildup factors. In SKY, Roseberry employed 

attenuation coefficients published by the National Bureau of Standards; the 

data are over twenty years old, however, and more recent data can be 

obtained from several sources. Buildup was computed in SKY by the Berger 

formula, with published coefficients used as the data base. A new formula for 

photon buildup known as geometric progression has become popular for 

numerical use; although the formula is complex compared to the Berger 

approximation, the results agree more closely with experimental and 

computational data (Ha83, Ha86). It was decided to bring these two portions 

of the code up to date and compare results to determine what changes, if any, 

would result in the exposure rates from the modifications.

The first alteration made to SKY8 was the replacement of the Berger 

buildup formula by the geometric progression formula of Harima et at (Ha86). 

An early version of the formula (Ha83) was presented as an alternative to 

other gamma-ray buildup approximations, which were fit to reported data but 

did not reproduce them well. Some buildup formulas deviated as much as 

40% from widely-used moments method data; one approximation was cited as 

giving negative buildup factors when extrapolated. Harima obtained 

coefficients for the first version of the geometric progression from fits to 

numerical moments-method results and results of other computer codes.
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Except for lead, the geometric-progression (or GP) buildup factors were well 

within 10% of the original data. The coefficients were easily interpolated, 

another advantage of the GP method.

The current version of the GP buildup formula (Ha86) was published by 

Harima et al three years later. The authors explain the physical meaning of 

each term in this more accurate form, report coefficients for several materials 

over different energy ranges, suggest an extrapolation method for large 

distances, and recommend parabolic interpolation in energy and distance. The 

formula and interpolation scheme were, used by Shultis and Faw (Sh87) in 

computing response functions for the MicroSkyshine code, and are employed by 

Cain and Trubey (RS86) in a recent version of the QAD program for 

microcomputers. It was this revised formula that was included in the modified 

version of SKY8, renamed' SILOGP.

The GP approximating function for the gamma-ray point-source buildup 

factor is defined as (Ha86, RS86)

B(E0,x) 1 + ^ &

1 + (b-l)x

K * 1 

K = 1

where

K — cxa + d taDh(x/Xk - 2) - tanh(-2)
1 - tanh(-2)

(3-21)

(3-22)

and

E0 = gamma-ray source energy,

x = source-detector distance in the medium in mean free 
paths,
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b,c,a,d,Xk = parameters dependent on E0 and the material of the 
medium.

The values for the parameters used in this work are those used in 

QAD-CGGP (RS86); the subroutines used to calculate the buildup factors are 

identical to those in QAD, with a modification to correct an error in the 

parabolic interpolation procedure.

For comparison of buildup, the unshielded and shielded silo geometries 

used in testing the Gauss quadrature subroutines were again used. Normalized 

exposure rates were computed along a radial from the source out to 950 m 

using the Berger buildup formula, and again with the GP buildup formula. 

The results are shown in Fig. 3-7. Differences in the buildup are immediately 

seen; for the unshielded case, where buildup is only used in air, the normalized 

exposure profile computed with GP factors shows less variation over distance 

than the Berger-formula exposure profile. The tendency of the Berger factors 

to overestimate close to the source is especially evident here. The GP buildup 

method was chosen for all subsequent work.

The other change in the data base was an update of interaction 

coefficients. The twenty-year-old NBS values used by Roseberry were replaced 

by those published in an article by Hubbell (Hu82). This compilation, also 

performed for the National Bureau of Standards, contains values of fx/p and 

Pen/p for forty elements and forty-five mixtures over the range of 1 keV to 20 

MeV. Very little of the data is empirical; the mass attenuation and mass 

energy absorption coefficients were obtained from theory, with empirical 

adjustments made to fan/p- Values for mixtures were computed from the 

elemental data and appropriate weight fractions. Of special note is the 

White-Grodstein composition for concrete used by NBS, which differs from the
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exposures are for a 60Co point source on the axis of a silo, with and without 
overhead concrete shielding.
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composition used for ANSI-standard problems (AN87). This difference was 

neglected for later comparisons to ANSI reference results.

Exposure rates were computed with the old and new interaction 

coefficients to compare changes in detector response. The same silo problems 

were used in this test as were used with the integration and buildup factor 

comparisons. Also, since the decision to use the new data was made well 

after the GP buildup formula was incorporated, both sets of computations 

employed adaptive Gaussian 8-point quadrature and GP buildup factors. The 

results are presented in Tables 3-3 and Z-i. For the case of an unshielded, 

collimated source, the change in the exposure rate due to the change in /x/p 

values is less than 2%, even at large distances. This is to be expected, since 

Hubbell (Hu82) reported that differences in the data from earlier standard 

values are only 5% in the worst cases. For the shielded silo case, the data 

from Hubbell produce exposures which are consistently lower, but the change is 

less than 3%, even as the source-detector distance approaches 1000 meters.

The final version of the silo skyshine code SILOGP, including Gauss 

quadrature, the geometric-progression buildup formula, and new interaction 

coefficients, is listed in Appendix A. In Chapter 4 this version will be 

compared to other methods and validated against reference data.

3.4 Application of the Exposure Rate Integral Equation to a Wall Geometry

The other problem addressed in this thesis is that of a point source of gamma 

rays separated from a point detector by a semi-infinite wall. The wall 

geometry is shown in simple form in Fig. 3-8, with distances bet-^m the 

source, detector, and scattering volume labeled; the Cartesian dimensions which
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Table 3-3. Comparison of mass interaction data used in the computer 
code SILOGP. The exposures are for a 60Co point source on the axis of 
an open silo with a solid angle of collimation of 4.683 sr. Air density 
is taken as 1.2 mg/cm3.

Normalized exposure 
[m2 • R/(sr ■ photon)]

Source-detector 
distance (m)

Areal density
(s/cm2)

fjt/p from p/p from 
Roseberry Hubbell
(Ro80) (Hu82)

25.0 3.0
37.5 4.5
50.0 6.0
62.5 7.5
75.0 9.0
87.5 10.5

100.0 12.0
112.5 13.5
137.5 16.5
150.0 18.0
162.5 19.5
175 21
200 24
225 27
250 30
275 33
300 36
350 42
400 48
450 54
500 60
550 66
600 72
650 78
700 84
750 90
800 96
850 102
900 108
950 114

* 2.223(-17) = 2.223x10-17

2.223(-17)* 
3.152(-17) 
3.967(-17) 
4.674(-17) 
5.277 (-17) 
5.782 (-17) 
6.197(-17) 
6.527(-17) 
6.964(-17) 
7.085 (-17) 
7.150(-17) 
7.165 (-17) 
7.070(-17) 
6.847(-17) 
6.529(-17) 
6.150(-17) 
5.732(-17) 
4.856(-17) 
4.009(-17) 
3.243(-17) 
2.583 (-17) 
2.031 (-17) 
1.580(-17) 
1.218(-17) 
9.326(-18) 
7.092 (-18) 
5.362 (-18) 
4.035 (-18) 
3.022(-18) 
2.255(-18)

2.222(-17) 
3.150(-17) 
3.965 (-17) 
4.670 (-17) 
5.271 (-17) 
5.775 (-17) 
6.187(-17) 
6.515(-17) 
6.948(-17) 
7.067(-17) 
7.130(-17) 
7.143(-17) 
7.046(-17) 
6.821 (-17) 
6.502(-17) 
6.122(-17) 
5.704(-17) 
4.829(-17) 
3.984(-17) 
3.222(-17) 
2.564(-17) 
2.015(-17) 
1.567 (-17) 
1.208 (-17) 
9.239(-18) 
7.022 (-18) 
5.307 (-18) 
3.991(-18) 
2.988(-18) 
2.229(-18)
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Table 3-4. Comparison of mass interaction data used in the computer 
code SILOGP. The exposures are for a 60Co point source on the axis of a 
silo, shielded by a concrete slab of density 2.13 g/cm3 and thickness 21 
cm. Air density is taken as 1.2 mg/cm3.

Source-detector 
distance (m)

Normalized exposure 
[m2 • R/(sr • photon)]

/i/p from n/p from 
Areal density Roseberry Hubbell
(g/cm2) (RoSO) (Hu82)

25.0 3.0 1.636 (-18)* 1.629(-18)
37.5 4.5 2.309 (-18) 2.299(-18)
50.0 6.0 2.891(-18) 2.877 (-18)
62.5 7.5 3.386(-18) 3.368(-18)
75.0 9.0 3.796(-18) 3.775(-18)
87.5 10.5 4.128 (-18) 4.103 (-18)

100.0 12.0 4.387(-18) 4.359(-18)
112.5 13.5 4.580(-18) 4.549(-18)
137.5 16.5 4.795 (-18) 4.759(-18)
150.0 18.0 4.829(-18) 4.791(-18)
162.5 19.5 4.823(-18) 4.784 (-18)
175 21 4.782 (-18) 4.741 (-18)
200 24 4.617 (-18) 4.574 (-18)
225 27 4.370(-18) 4.326(-18)
250 30 4.071 (-18) 4.028(-18)
275 33 3.743 (-18) 3.701(-18)
300 36 3.405(-18) 3.364 (-18)
350 42 2.744 (-18) 2.709(-18)
400 48 2.152(-18) 2.123(-18)
450 54 1.654(-18) 1.629(-18)
500 60 1.251(-18) 1.231 (-18)
550 66 9.335 (-19) 9.180(-19)
600 72 6.898(-19) 6.779(-19)
650 78 5.054(-19) 4.963 (-19)
700 84 3.677 (-19) 3.609(-19)
750 90 2.661(-19) 2.609(-19)
800 96 1.916(-19) 1.877(-19)
850 102 1.374(-19) 1.346 (-19)
900 108 9.820(- 20) 9.613i-20)
950 X J. 1 6.996(-20) 6.845 (-20)

* 1.636(-18) = 1.636xl0-is
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Fig. 3-8. Simplified calculational geometry for the case of a point source 
behind a semi-infinite wall: (a) no overhead shield; (b) overhead concrete roof
present.
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locate the source, detector and wall in space are presented in Figs. 3-9 and 

3-10. The wall extends downward and sideways to infinity and is of perfect 

absorbing material. The point source lies a distance Xs from the wall, 

measured perpendicular to the wall, and lies a distance ys below the top edge 

of the wall. The point detector lies a distance Xd from the wall face and ya

below the wall edge. To measure the "offset" of the source and detector, a

vertical plane is extended from the source through the wall, normal to the 

wall. The distance from the detector to this plane, or the "offset," is za- If

either the source or detector (never both) is above the wall edge, ys or ya is

negative, respectively. The value of za is taken as positive in the direction 

shown in Fig. 3-9.

The source and detector may or may not lie on a line normal to the 

wall, and may have different heights with respect to the top of the wall, but 

must be separated along the line of sight by the wall. This restriction forces 

photons to scatter in air to reach the detector. As in the silo problem, the 

source may be open to the air or covered by a concrete shield of thickness t. 

The source-detector distance is again designated as d. No ground-air interface 

is involved in this problem, for simplicity, and the thickness of the wall is 

negligible.

To the author's knowledge, the wall problem has only been addressed 

previously by Faw and Shultis (Fa87) using MicroSkyshine. Their coordinate 

system differs from the one developed for this work, due to the requirements 

of MicroSkyshine. Results of the two methods will be compared in the next 

chapter.
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Fig. 3-9. Coordinate system for the source and detector before application 
of the single-scatter geometry to the wall problem.
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Fig. 3--10. Coordinate system for the source and detector, presented in 
orthographic views based on the XYZ axes.



3.4.1 Coordinate Systems

The exposure rate equation which is to be solved for the wall case is 

repeated here.

X SKNBBg-— ^ g ^ - ik»c - jib) dV
JV 4ir(a+ac)2b2 p

(3-9)

To integrate Eq. (3-9) over all space in which a gamma ray may scatter once 

and reach the detector directly, a three-dimensional coordinate system must 

again be selected. The system of angles used in the silo problem by

Roseberry was chosen first, but produced an extremely large and cumbersome 

set of limits, many of which were valid only for certain positions of source 

and detector. It was discovered that a simple cylindrical coordinate system 

could be applied instead, requiring fewer equations to determine the limits of 

integration. Thus the cylindrical system was used in the numerical analysis.

Using the cylindrical coordinate system requires that the source, detector 

and wall positions be translated to cylindrical coordinates. By definition, the 

source lies at the origin and the point detector is at r = 0, z = d. Only the 

edge of the wall is of concern, and it may be described by an infinite line. 

The translation begins with the rotation of the Cartesian geometry of Fig. 

3-10 into a second Cartesian geometry, in which the source and detector lie 

the same distance h below the wall. The rotation is presented in Fig. 3-11, 

and its result is shown in Fig. 3-12. The intermediate angles and quantities 

are as follows:

9 ~ arctan j-
Xs + Xd (3-23)
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Source Detector

Fig. 3—11. Translation of wall geometry from Cartesian to cylindrical
coordinates: first step, rotation in XY plane through an angle 6.
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Fig. 3-12. Translation of wall geometry from Cartesian to cylindrical
coordinates: new coordinates of source and detector in X'Y'Z' system created
by first rotation.



h = ys cos# - Xs sin^ = yd cos0 + Xd sin# (3-24)

x' = xs cos# + ys sin# s (3-25)

= Xd cos# - yu sin# (3-26)

The X and Y axes are rotated through an angle 9 to become the X' and Y' 

axes. Note that the Y' axis lies in the XY plane, which acts as a reference 

for the offset Zd, and that Y' is perpendicular to the source-detector axis, 

which lies in the X'Z' plane.

The second step of the transformation is another rotation of Cartesian 

axes. The X' and Z axes are rotated through an angle £ to become the X" 

and Z" axes, as shown in Fig. 3-13. The axis Y' remains unchanged, and is 

identical to the Y" axis. The angle £ is defined such that the source-detector 

axis is parallel to the X" axis, and is given by

f = arctan .z^ . .
xs + xd

(3-27)

The result of this second rotation is shown in Fig. 3-14.

are defined by

The new quantities

= Xg sec£ , (3-28)

xd = xd sec^ ’ (3-29)

Note that xg + = d. Here, x^ represents the distance along the

source-detector axis from the source to the top of the wall, while x^ is the
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Fig. 3-13. Translation of wall geometry from Cartesian to cylindrical 
coordinates: second step, rotation in X'Z' plane through an angle
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Fig. 3-14. Translation of wall geometry from Cartesian to cylindrical
coordinates: new coordinates of source and detector in XMY"Z" system created
by second rotation.



distance from the detector to the top of the wall. These two quantities 

directly affect limits of integration, as will be shown later.

Finally, the cylindrical coordinate system (r,0,z) is superimposed on the 

third Cartesian system (X", Y", Z") in Fig. 3-15. The cylindrical polar axis 

is taken as the source-detector axis, with the point source located at the 

origin of the system and the detector at z = d. The radial coordinate r of 

the scattering volume dV is measured from this axis. The polar axis is 

parallel to the X" axis, hence the polar coordinate z is taken as positive in 

the positive x" direction. The quantities r and <j> are defined in a plane 

parallel to the Y"Z" plane, with the positive Y" axis acting as the 0 = 0 

direction. The angle 0 is measured using the right-hand rule about the X'1 

axis. Since the Y' and Y" axes are equivalent, Y1 is normal to the 

source-detector axis, and the X'Y' plane acts as a reference for the offset zu, 

it is concluded that the reference plane for 0 must include the source-nietector 

axis, and must intersect the z^ reference plane to form a line perpendicular to 

that axis.

The complement 0 of the scattering angle is still required, since the 

Compton scattering parameters depend upon it. Given the cylindrical 

coordinates (r,0,z) of the scattering volume, 0 may be found. From Figs. 3-8 

and 3-15,

0 = arccot | + arccot ^ . (3-30)

Other quantities can be obtained from the Pythagorean theorem:
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Fig. 3-15. Translation of wall geometry from Cartesian to cylindrical 
coordinates: relationship between the X"Y"Z" system and the cylindrical 
system.



b = 7 (d-z)2 + r2 , (3-31)

(3-32)

The element of volume is

dV = r dr d<£ dz . (3-33)

The development of an accurate formula for the path length ac in 

concrete is complicated, because the concrete slab may be skewed with respect 

to the source-detector axis and the cylindrical coordinate system. Figure 3-16 

illustrates the components of the path length ac, taken as XYZ components 

because the concrete shield is parallel to the XZ plane. To obtain ac, the 

cylindrical components must be transformed "backwards" to the original 

Cartesian system. Figures 3-10 through 3-15 will be useful at this point.

Given the cylindrical coordinates (r,^,z) of the scattering volume dV, its 

Cartesian coordinates in the X"Y"ZM system are

(3-34)

(3-35)

w" = r sin(j) . z (3-36)
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Fig. 3-16. Cartesian components of the path length ac through the concrete
slueld and the path length a between the source and the scattering volume



If a Cartesian coordinate system is rotated about its origin to produce a 

second system, the coordinates of one point in both systems are related to one 

another by the following system of equations:

x = Axx' + Ayy' + Azz'

y = //Xx' + /jyy' + paZ'

Z = I/XX' + 1/yY' + vzz'

(3-37)

where

(x,y,z) = coordinates of the point in XYZ space,

(x'jy'jZ1) = coordinates of the point in X'Y'Z' space,

(AxjMx^x) = direction cosines of the X' axis (not the
X axis) with respect to the XYZ coordinate 
axes.

This system of equations will yield the coordinates of dV in the X'Y'Z' 

system, which was rotated about the Y' axis through an angle £ to produce

the X"Y"Z" axes. With Ax = cos£, Ay = 0, and Az = -sm£, for example,

w' = z cos£ - r sin0 sin£ . (3-38)

Similarly,

w' = r cos<p , (3-39)

w' = z sin$ + r sin0 cos? . z (3^10)
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The same operation can be performed with Eqs. (3-37) through (3-40) to find 

the coordinates of dV in XYZ space.

wx = z cosf cos# - r (sin^ sin£ cos# - cos<j> sin#) (3-41)

wy = -z cos£ sin# + r (sin0 sin£ sin# + cos<fi cos#) (3^2)

wz = z sin^ + r sin^ cos^ (3-43)

With this example, we can now determine ac, the concrete path length.

Because ac lies on a line from the source (the origin) to dV, its components

a/> Tr ^ 3xe proportional to the components wx, wy, and wz.e,y c,z
Further, the Y component must always be equal to t, the concrete shield 

thickness. So, we may define the components of as the coordinates of dV, 

normalized to a Y-component of t. Define

ac,x = tw*/wy ’ (3-M)

ac,z = twz/wy > (3-45)

using Eqs. (3-41) - (3-43). The concrete path length is then given by

^ = [a2,x + a?,z + t2]2 • (3_46)

Finally, with the Compton scattering quantities defined by Eqs. (3-4) 

and (3-5), the exposure rate equation (3-9) may be expressed as an integral 

over r, z and 4>.

73



Tmax Zmax
X = SKN

TtF dr r
Tmia

dz y^. q e exp(-//b) 
Zmin b2 ^

0max •p
(10---------- exp(-£ia - ^c^c) (3-47)

0min (a+a-c)^

Unlike the equation for the silo geometry, this does not approximate the path 

length a as independent of the inner variable. For the case of an unshielded 

source, ac = 0 and the integrands show no dependence on <t>. Equation (3-47) 

then reduces to

zmax
dz a E exp(-/ia-//b)

zmin a2b2

* (^roax ~ ^min) ■ (3~48).

A A
In this coordinate system, the variables <r, E and /Xen//> (itself a function 

of E) again depend on /?, but /? now depends on the cylindrical coordinates r 

and z. As a result, those variables move from the outer integral to an inner 

integral and must be evaluated more often. This disadvantage of the 

cylindrical system is offset by the relative simplicity of the integration limits, 

which are presented next.

X = SKN
T¥~

tmax
dr r

rm in
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3.4.2 Limits of Integration

The limits of integration in Eq. (3^7) are best understood with the aid 

of Fig. 3-17. The scattering volume dV must always lie at a position which 

is visible to the source and the detector; this is a requirement of the 

single-scatter model. The union of the regions which are visible from the 

source and from the detector is the shaded area labeled the "scattering zone" 

in Fig. 3-17. This volume of space extends infinitely into and out of the 

page, as the wall does. The differential scattering volume dV is restricted to 

the scattering zone, thus integration takes place over this volume.

Limits on r. In Fig. 3-18, the system is oriented so that the scattering 

zone may be viewed in the cylindrical coordinate system. From this view, 

limits on r are easily deduced. Recall from Section 3.4.1 and Fig. 3-14 that 

the source and detector are both a distance h below the wall in the X"Y"Z" 

coordinate system. The edge of the wall marks the closest approach of the 

scattering zone to the source-detector axis, therefore rmin = h.

The upper limit of integration over r in fact approaches infinity, since a 

gamma ray could, in theory, travel an infinite distance, undergo a Compton 

scatter of 180°, and return again to the detector. As with the numerical 

solution of the silo problem, however, contributions from scattering volumes 

very far from the detector are negligible, and a cutoff criterion is necessary. 

The criterion selected by Roseberry for the SKY code, mean free paths 

traveled by the photon in air, is satisfactory.

Let Tmax be chosen such that for all values of r > rmax> a photon must 

travel a distance in mean free paths greater than the chosen cutoff value Mcut.
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Fig. 3-17. Definition of the scattering zone used to formulate limits of 
integration “or the wall geometry.
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Referring to Fig. 3-4, the distance traveled by the photon in air is /^a + /zb. 

Since the attenuation coefficient of air increases as photon energy decreases 

over nearly all energies of interest, /z < //. Define the path length function M 

as

M(z) = /za + /zb « /i [ [r2+z2]* + [r2 + (d-z)2]^] . (3^49)

If M equals the cutoff value MCutj then the actual mean free path distance in 

air, /za + /zb, will exceed MCut> since /zb < /zb. Defining rmax in terms of M 

instead of MCut is a conservative choice, insuring that all scattering volumes 

for which the path length is below Mcut are included in the integration.

By the first derivative test, M is minimum at z = d/2 for constant r. 

If the minimum value of M for constant r is Mcut, the minimum mean free 

path length in air for that value of r must be greater than Mcut, since /zb > 

/zb. This value of r may be taken as rmax. Substituting z = d/2 and M = 

Mcut,

Mcut — r2 + (d/2)2 + r2 + (d - d/2)2 (3-50)

Tmax — (Mcut/M)2 - d2 (3-51)

This formula is used in the numerical analysis for the wall case.

Limits on z. The limits on z and <j> are strongly dependent on the 

source and detector locations as measured from the wall. The possible

combinations of source and detector positions with respect to the wall may be
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divided into three categories. These categories, shown in Fig. 3-19, are 

visualized best in the X^VZ" frame of reference, with the source-detector axis 

horizontal. They are:

(1) The wall lies between the source and detector, and is not directly 

above either. This occurs only when x^' > 0 and x^j > 0.

(2) The wall extends over and above the source in the Y" direction; in

the XYZ system, the detector is much farther below the top of the

wall than the source. In this case, x” < 0.a
(3) The wall extends over and above the detector in the Y" direction; 

in the XYZ system, the source is much farther below the top of 

the wall than the detector. In this case, < 0.

The second and third cases may be useful in modeling situations where a 

source and detector are at the base of a cliff and top of the cliff, or at the 

base and roof of a tall building.

For a specific value of r, the scattering volume dV will lie on the surface 

of a cylinder of radius r about the source-detector axis. If any portion of the 

cylinder lies within the scattering zone of Fig. 3-17, that value of r lies within 

the limits of integration. Some examples are illustrated in Fig. 3-20. The 

smallest useful cylinder, of course, has radius rmin = h. For a cylinder of 

radius r > h, the values of z between which the cylinder intersects the 

scattering zone correspond to the analytical limits of integration for z. The 

problem is therefore reduced to locating the intersection of the cylinder and 

the two half-planes bordering the scattering zone. Restrictions on z based on 

the mean-free-path cutoff MCut will also be required.
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Fig. 3-19. Types of wall-source-detector geometries, viewed in the Cartesian
and cylindrical frames of reference: (a) the wall lies between the source and
detector, but is above neither; fb) the wall extends over and above the source;
(c) the wall extends over and above the detector.



Scattering
Zone

sourcel ^

detector

Fig. 3-20. Cylindrical surfaces used to determine limits of integration on z: 
(a) the wall lies between the source and detector, but is above neither; (b) the 
wall extends over and above the source; (c) the wall extends over and above 
the detector.
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To begin, consider the first geometry (x^ > 0, > 0) illustrated in

Fig. 3-20. At z = zmin, the cylinder contacts the scattering zone at only one 

point: the half-plane above the source, which passes through the top edge of

the wall and defines the space visible from the detector. The radial r will be 

perpendicular to this half-plane at z = zmin, since r defines a circle which is 

tangent to the plane. This fact can be utilized to compute zmin. A skeletal 

geometry, with only the wall edge, half-plane above the source, and the 

source-detector axis, is shown in Fig. 3-21. From this figure, Eq. (3-29) and 

the identity d = x^ + x^j,

a = arctan ---- -— — arctan ^ ,
x^j cos£ xd

(3-52)

p = (d-z) cosf tana = h(d-z)(cosf)/x^ , (3-53)
1

<MII (3-54)

tantf - taM - h ,
sec^ xj esc? ’

(3-55)

and

r - p cosS - ^..(d-2) cosl . (3-56)
(h2sin2f + x^2)2

Rearranging Eq. (3-56) to produce z as a function of r, an expression is

obtained for the lower limit on z.

r(h2sin2f + x^2)^ 
z = d h cos£ (3-5T)
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Fig. 3-21. Geometry used to find limits of integration over z using a radial 
r normal to the boundary of the scattering zone over the source.



Figure 3-22 shows a similar skeletal geometry for the half-plane above the 

detector, which marks the space visible from the source. At z = zmax, the 

cylinder in Fig. 3-20(a) intersects this half-plane at only one point. By 

identical analysis, the value of z on the detector side, is given by

r(h2sin2£ + x'2)^
o

h CO s £ (3-58)

For all r such that a radial of length r exists normal to the half-plane 

above the source, Eq. (3-57) gives the value of zmin. If £ ^ 0, however, there 

can be values of z for which no radial from the axis to the scattering zone is 

perpendicular to the half-plane above the source, because the half-plane does 

not extend to those values of z. Figure 3-23 demonstrates that all radials 

which are normal to the half-plane lie in a plane of their own. The 

important value of r is that value for which the radial is normal to the 

half-plane at the edge of the wall For larger r, Eq. (3-57) yields zfflin. For 

smaller r, the radial at (r,z) which contacts the half-plane at only one point 

does so at the top of the wall, and this fact must be used to find zmin. The 

same argument applies to Eq. (3-58); if r is greater than or equal to the 

length of the radial which reaches the edge of the wall and is normal to the 

half-plane over the detector, Eq. (3-58) produces zmax- Otherwise, zm&K is 

determined differently.

Figure 3-24 presents a typical radial of length r, at axial position z, 

which ends at the top of the wall. The radial acts as the diagonal of a box, 

ant! its length may easily be computed. From *^e figure,
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Fig. 3-22. Geometry used to find limits of integration over z using a radial 
r normal to the boundary of the scattering zone over the detector.
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Fig. 3-23. The set of radials normal to a half plane bordering the scattering 
zone.
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Fig. 3-24. Geometry defining the radial distance r from axial position z to 
the top of the wall.



r2 = h2 + (x” - z) cos f s + (x”-z) cos^ tan7O (3-59)

Using Eqs. (3-28) and (3-54) and the identities tan7 = cot(7r/2 - 7) and 

1 + cot2£ = csc2£,

r2 = h2 + (x' - z cos£)2 csc2^ . (3-60)s

To add the requirement that the same radial must be normal to the 

half-plane over the source, Eq. (3-57) is substituted into Eq. (3-60); the result 

is the minimum value of r for which Eq. (3-57) equals Zmin.

r = |r [h2 sin2£ + (x^)2]*.

Substituting Eq. (3-58) into (3-60) yields the smallest radial 

which Eq. (3-58) equals zmax.

r = |r [h2 Sin2? + (x')2]'. (3-62)

For instances in which r is less than one or both of the criteria above, 

Eq. (3-60) may be used alone to find the appropriate limit on z. By solving 

for z without the use of Eqs. (3-57) or (3-58), the restriction that the radial 

be normal to a half-plane is lifted. Equation (3-60) has two solutions for z, 

roots of a quadratic.

(3-61)

distance r for
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Zi x' - sin^ (r2 - h2)^ sec^

Z2 = [x- + sin^ (r2 - h2)^ sec^

(3-63)

The smaller of the two roots corresponds to zBin; the larger corresponds to

Zmax* Either or both may be used as a limit, as the geometry demands.

To summarize the analysis to this point: The limits on z are piecewise

functions, with the point of changeover dependent on r. For the case of x" >s
0 and > 0,

zmin -

[h2sin2£ + (xj)2]2 r

d ■ r —------------ ’ r - [ll2sin2? + (xd)2]
(3-64)

min (zi,z'2) , otherwise.

[h2sin2^ + (x;)2]2 _____________ s____
h cos{

zmax ~ "

max (zi,Z2')

r > K [hW? + (x')2]^ 
xs s

otherwise.

(3-65)

The second and third geometry cases in Figs. 3-19 and 3-20 may now 

be discussed. In the second class of problems, where x£ < 0 and x^ > 0, 

both half-planes bordering the scattering zone lie above and behind the point 

source in the cylindrical frame of reference. The guidelines for determining 

Zmin are the same as for the first class of problems, since the half-plane on

89



which zmin depends still extends above and behind the source in these cases. 

The guidelines for determining Zmax, however, must be changed. When z = 

Zmax, the cylindrical surface of radius r intersects the scattering zone at only 

one point. As shown in Fig. 3-20(b), this point is the very tip of the wedge- 

shaped scattering zone, which is also the top of the wall. The radial r and 

its position z are thus governed by Eq. (3-60), and zmSix equals the larger of 

its two solutions in Eq. (3-63). Figure 3-20(c) presents the case of x" > 0, 

< 0, wherein both half-planes extend behind the detector. By analogy, we 

find Zmin is always the smaller of the solutions to Eq. (3-60), while zmax 

follows the same guidelines as in the first class of problem geometries.

Computing limits of integration on z using only the half-planes bordering 

the scattering zone will lead to inefficiency; on occasion, much of the cylinder 

of radius r between these values of z will lie further from the source and 

detector than a practical value of the path length cutoff Mcut. An example is 

that of large source-detector distances and a relatively short wall. Integrating 

over this space yields a negligible response, and therefore is unnecessary. 

Alternate limits of integration over z based on the path length cutoff MCut 

will avoid this wasted effort.

Figure 3-25 illustrates an approximation for useful limits on z using the 

mean free path. cutoff. Since the total path length traveled by a photon is 

restricted to MCut mean free paths, the photon must scatter within the

ellipsoid shown. Recall that in two dimensions, the sum of the distances from 

any point on an ellipse to both foci is a constant. In the figure, this distance

is Ri + R2. By easing ohis constant sum to the cutoff distance MCu Jfi for

photons at the source energy, and rotating the ellipse about the
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Fig. 3-25. Alternate limits of integration over z, based on 
mean-free-path cutoff.



source-detector axis, an ellipsoid is created with major axis of length MCut/A 

and minor axis of length 2rmax. This ellipsoid may be used to restrict the 

range of integration of z to useful values.

In the cylindrical coordinate system, the source rests at the origin, and 

the detector lies at r = 0, z = d. The center of the ellipsoid then lies at 

r = 0, z = d/2. The analytic equation for the two-dimensional ellipse is

(z - d/2)2 + 
(Mcut/2/i) 2

(r-0)2 = t 

rraax

If r is known, Eq. (3-66) yields two solutions for z:

(3-66)

z _ d i Mcut
I —^T 1 IT max.

(3-67)

Turning to the three-dimensional case, if r is known, the differential scattering 

volume dV will lie on a cylinder of radius r about the source-detector axis for 

any z and (j>. The intersections of this cylinder with the ellipsoid mark upper 

and lower limits of z required by the mean free path cutoff. The limiting 

values correspond to Eq. (3-67), since the cylinder and ellipsoid are invariant 

in (j>.

cut d Mcut,
zmin 2fi ,

zcut +II Mcut
max

1 - r '
Tmax,

1 - r
Traax.

(3-68)

(3-69)
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The limits obtained with the cutoff value should be compared to the 

limits on z obtained using the half-planes bordering the scattering zone. 

Using the two requirements that photons must collide with air volumes in the 

scattering zone and travel less than Mcut mean free paths, the larger of the 

two values of zmin should be used, and the smaller of the two values of zmax 

should be applied.

The final form for the limits of integration over z is similar to Eqs. 

(3-64) and (3-65). The lower limit zmin may be found by Eq. (3-57) only if 

> 0; comparing the three types of source-detector geometries will make 

this evident. If < 0 or the radial coordinate r is smaller than its criterion 

of Eq. (3-61), Zmin will be the smaller of zi and z% given by Eq. (3-63). If 

the value zm^n from the mean free path cutoff analysis is larger in any 

instance, it becomes zmin instead. The upper limit follows similar guidelines 

involving x^. For all possible cases, then, the limits of integration over z are 

expressed by the following formulas.

where

(3-70)

geom
zmin

d - r
h2sin2^+(x(j)2 

h cos£ xd > 0 and r > ih h2sin2£+(xp2

min (zi,Z2) , otherwise, (3-71)

and
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min
d _ Mcut
7 ~TjT 1 -

> max.
(3-72)

where

geom
max

zmax — min geom
max

eut
max (3-73)

h2sin2^+(x')2
* o'

h cos"| > 0 and r >

max (zi,Z2) otherwise,

h2sin2^+(x')2
* o

(3-74)

and

cut _ d , 
zmax 5 +

hdcut
2jr

. _
1 - r

Tin ax. (3-75)

The quantities zi and Z2 are defined by Eq. (3-63). In a case where the 

source and detector are not offset, z = £ = 0, and the limits simplify greatly.

max

Zmin (£—0) — '

cut
min

max cut
minj ’

> 0

otherw i se

(3-76)

min d - ~r
cut"

’ zmax , x; > o

max (£-0) - ‘

min
XB 5

cut"
zmaxj otherwise

(3-77)
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Because the restrictions on r simplify to r > h, and rmin = h, they may be 

removed entirely.

Limits on <j>. The limits of integration over <fi may also be different for 

each of the three types of source-detector arrangements in Fig. 3-19. The 

three cases will be considered separately, then combined to produce a single 

set of equations for 0min and As will be shown, the region of

integration in <j> can sometimes be composed of two regions, with a finite set 

of values of <j> between them wherein the integral is invalid.

First, consider the case where x” > 0 and > 0, Fig. 3-19(a). For 

known r and z, the scattering volume dV may reside anywhere on the 

perimeter of a circle of radius r, with center at distance z along the axis from 

the point source. Some examples for each type of source-detector arrangement 

are presented in Fig. 3-26. Only the arc of the circle which lies in the 

scattering zone may be included in the integration. Thus, the values of (j) 

which border the arc are the integration limits.

Figure 3-27 is a skeletal geometry in which a radial r at position z 

contacts the half-plane over the point source, but may or may not be 

perpendicular to the plane. Two radials of length r at two azimuthal angles <fi 

are possible solutions; one corresponds to the other to 0max. It is

possible to employ the length of perpendiculars m and n in computing the 

limiting angles. Recall that ^min and ^max are measured from the plane 

formed by the Y" axis and the source-detector axis (see Fig. 3-15). Also, m, 

n and the <j) reference plan; are all normal to the X'Z' plane. Therefore, m
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Elevation views, X*Y' plane, £= 30°

Fig. 3-26. Cylindrical surfaces defining limits of integration over <j> for 
’mown r and z: (a) the wall lies between the source and detector, but is
above neither; (b) the wall extends over and above the source; (c) the wall 
extends over and above the detector.
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Fig. 3-27. Geometry defining limits of integration over 0 for a case in 
which the wall extends above neither source nor detector.



and n form angles (f>min and 0max with the two radials, respectively, which 

form the same angles with the (j> reference plane.

From the figure, note that <f>nin < 0.

COS^min ~ in/l* , 

cos^max = n/r 5

tana =

tana =

(d-z) cos^ + r sin^>miii sm^ ’

(3-78)

(3-79)

(3-80)

(3-81)fd-z) cos^ + r sm^max sm^ '

Combining these with Eq. (3-52) results in a single formula, which may be 

solved for either limiting value of <t>.

h _ ■ '____r COS^lim ____ ^
xj “ (d-z) cos^ + r sin^iim sin^ * (3-82)

The two solutions stem from the presence of cos^nm in the numerator and 

sin^um in the denominator; rearranging Eq. (3-82) yields

h[(d-^s) cos£ + r sin^iim sin£]/x^ = r [1 - sin^iim]^ . (3-83)

Solving for the limits yields

sin^iim = ^ ’

where

^ = - h2 sin^ (d-z) cos^ ,

(3-84)

(3-85)
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(3-86)•2 = {(rx^)2[(x^)2 + (h sin£)2] - [h (d-z) cosf]2}% 

and

^ = r[(x^)2 + (h sin?)2] - (3-87)

The minimum ^ is found by subtracting 3 in Eq. (3-84); maximum ^ is 

found by adding 3

This same analysis may be performed for radials which contact the 

half-plane above the detector. The values of 0 at which the circle of radius r 

and axial position z intersect this half-plane are stated without proof, but are 

arrived at by the same logic.

. , .0 ± £Sin 01 in, = ----y— (3-88)

where

0 = h2 z cos£ sin£ , (3-89)

* = {(rxp2 [(x^)2 + (h sin?)2] - [hzx^ cos?]2}*, (3-90)

and

?= r [(x;)2 + (h sin?)2] . (3-91)

The lower limit of <j> is obtained by subtracting £ from .2$ the upper limit by 

adding it.

Equations (3-84) through (3-91) are valid only so long as the circle 

described by r and z intersects the half-plane with which the equation is 

derived. In Fig. 3-26(a), one circle at Z2 straddles the two half-planes,

entering the scattering zone through one and leaving out the other. From this 

case, it may be concluded that a change in expressions for and 0max
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occurs over the range of z. These switches occur at values of z where the 

circle intercepts the top of the wall; for smaller z values, Eq. (3-84) is used, 

while Eq. (3-88) gives the limit on (f> for larger z. Furthermore, the z 

coordinates for which the radial intersects the top of the wall have been given 

previously as Eq. (3-63). It can be shown that 0min changes from Eq. (3-84) 

to Eq. (3-88) at z = zi, and that <l>max switches form at z = 22.

To summarize the previous discussion, in which > 0 and xjj > 0, the

expressions for the limits of integration on (j> take on one of two different

forms, according to the value of z and Eq. (3-63). For the class of problems

in which > 0 and Zj > 0, s a ’

0min — '
arcsin [(^-^2)/#] , z < zi 

arcsin. [(.0-#)/<5f , z > zi
(3-92)

0max
arcsin , z < 23

arcsin [(^H^)/<5f , z > 23 .
(3-93)

The limits above are displayed versus z in Fig. 3-28 for three different 

source-detector geometries of this type. The angle f is different for each case, 

but short computations will show that z\ always marks the z coordinate at 

which 0min changes formulas, and 23 always acts as the point of change for 

0max. Note that the limits on 0 are parabolas when plotted versus z; 

expressed another way, the intersection of a cylinder of radius r and a 

half-plane bordering the scattering zone forms a parabola on the curved surface 

of the cylinder. The intersections of the two parabolas formed by the two
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Fig. 3-28. Limits of integration over <p *br source-detector geometries in
which the wall extends above neither source nor detector. In all cases, x" ands
x^ are positive; xs = = ys = yd = 5 m, r = 7 m. Note the parabolic
shape of the curves.
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planes lie at zi and 22, and the area enclosed by the parabolas is the region of 

integration over z and 0.

The second and third types of source-detector geometries may be solved 

with the knowledge obtained above. Figures 3-26(b) and (c) show how four 

values of <f> may be required to describe the scattering zone for constant r and 

z. The cylinders of radius r sketched in Fig. 3-20 still form parabolas with 

the half-planes bordering the scattering zone, but both parabolas open in the 

same direction. As before, the area enclosed by the parabolas acts as the 

region of integration, and the limits are described by Eqs. (3-84) through 

(3-91). (In the case of = 0 or xjj = 0, when the top edge of the wall lies 

directly over the point source or point detector, respectively, the cylinder and 

one of the half-planes intersect to form a line instead of a parabola. The 

region of integration is still the area between the intersecting curves.)

Figures 3-29 and 3-30 are plots of the intersection of a cylinder with

two half-planes for x^ < 0. In Fig. 3-29, the larger parabola on the left is

the intersection with the lower half-plane, such as in Fig. 3-20(b). The

parabola formed by the upper surface nests within it, and splits the valid 

values of into two regions past its apex in the positive z direction. In the 

situation which created Fig. 3-30, the source-detector axis is strongly skewed, 

ie., the offset of the detector from the source is relatively large. The

parabola on the upper half-plane is skewed as a result; its apex does not lie 

between the arms of the lower parabola, thus the apex is not shown in the 

figure. Still, the area between the two curves is the region of integration over 

z and <f>. To find t^e limits on then, the values of z at which the curves 

intersect are needed, and the z and (j) coordinates of the apex of the inner
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2 Cm)

Fig. 3-29. Limits of integration over 0 in a source-detector geometry for 
which the wall extends over the source and the (f> integral breaks into two 
integrals over separate regions. In the case shown, xs = xd = ys = 5 m, yd 
= 25 m, zd = 2 m, and r = 9 m.
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Fig. 3-30. Limits of integration over 0 in a source-detector geometry for 
which the wall extends over the source, but the <j> integral does not split into 
two separate regions. In the case shown, xs = Xd = ys — 5 m, ya = 25 m, 
Zd = 20 m, and r = 9 m.
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parabola are required. The same conclusion can be drawn from the case of xjj 

< 0 by analogous arguments.

Many of the expressions necessary have already been derived with the 

case of Xg > 0, xJJ > 0. Figure 3-31 is a skeletal geometry used in finding 

the z and 4> coordinates of the apex on the upper half-plane. An imaginary 

circle of radius r about the axis in the IJKL plane would contact the 

half-plane in one point; therefore the radial r is normal to this half-plane,

defined by the point detector and top edge of the wall (x^j < 0). Since the

radial is perpendicular to the surface, one would expect the result to be 

similar to the analysis in Fig. 3-21, the result of which is Eq. (3^57). Indeed, 

the only difference is a change of sign:

r [(xh)2 + b2 sin2£]2
zapex = d + h cds£ , < 0 . (3-94)

The azimuthal angle is still given by Eqs. (3-84) - (3-87); because the two

values of (j> converge, we have

Sinope* = M/*0lz = Zapex , < 0 . (3-95)

The results for the case of x" < 0 should now be obvious, and so areO
presented without proof.

r [(x')2 + h2 Sin2£]*
Zapex = E~ COS^----  ’ Xs < 0 ' (3_96)
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Fig. 3-31. Geometry defining the z coordinate at which the <j> integration 
may break into two integrals. In the case shown, the wall extends above the 
detector. The angle 6 is defined such that r > 0.



sin^W = (Of$\z = Zapex , x” < 0 ? (3-97)

where ^ and ^are given by Eqs. (3-S9) and (3-91), respectively.

These quantities are used in comparisons to determine if the azimuthal 

integral over will break into two regions, and if so, over what region of z it 

does so. Two criteria may be deduced from Figs. 3-29 and 3-30.

(1) The z coordinate locating the apex of the inner parabola, zapex, 

must lie between the limits of integration for z.

(2) The <j> coordinate 0apex of this point must lie between the 0 values 

of the outer parabola at zaPex-

If both conditions are met, the azimuthal integral will split into two regions; 

if not, the integral remains one.

The values of zi and 22 perform a slightly different function than for the 

first class of geometries, where > G,' x£ > 0. As before, they mark

endpoints of the region of z where Eq. (3-84) or Eq. (3-88) is valid. When

x” < 0, however, and the phi integral splits into two regions, both formulas

may only be used for values of z smaller than zi or Z2; the half-planes do 

not exist above these values of z within a distance r of the source-detector 

axis. In Fig. 3-29, for example, the negative values of <f> which mark the 

integration limits converge at z = zi and do not exist for higher values of z. 

The two upper values of 0 are only useful for limits of integration when

Zapex < z < z2. One would correctly anticipate the figure to be reversed if x^j

< 0 and the phi integral splits. Then, the two lower values of (j> can be used 

as limits if zi < z < zapex, and higher azimuthal angles may be used if z2 < z

< zapex. In the eailier discussions, the two equations for ^rain were used as 

limits only on opposite sides of zi, and so on.
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If the phi integral does not break apart, as in Fig. 3-30, the values of zi 

and Z2 have mixed roles. In the figure, for example, x" < 0; zi marks the 

point at which the lower limit of (j> switches formulas. The lower azimuthal 

angle found by Eq. (3-84) gives way to the higher angle from Eq. (3-88) as z 

increases. The parabola created by the intersection of the cylindrical surface 

and the upper half-plane [for example, see Fig. 3-20(b)] has its apex well 

outside the region of integration, and consequently only one leg of that 

parabola is used for limits on <j>. This leg defines 0min for zt < z < z2. The 

offset zd of the detector is positive in the geometry which produced the figure; 

if zd were -20 instead of +20, the opposite leg of the upper parabola would 

be used alone to define 0max over part of the range of z. The analogies to 

the case of x^ < 0 should be clear; Eqs. (3-84) and (3-88) map parabolas 

open to the left, and only one leg of Eq. (3-84) is used over the range of z. 

(Each plot of <t> versus z is for constant r.)

This discussion of the phi limits for cases when the scattering zone is 

not between the source and detector is presented in an organized fashion in 

Table 3-5. The examples have concerned source-detector arrangements in 

which Xg < 0; analogies to x^J < 0 are easily made, and may be understood 

more easily with the help of the table. The formulas for 0, zapex and 0apex 

are repeated here in the notation of the table.

sin = (3-98)

sin02 = (3-99)

sin 03 = (3-100)
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Table 3-5. Limits of integration over the azimuthal angle 4> for known values of r and z, in source-detector geometries such 
that Xg or is negative. Subscripted variables are defined by Eqs. (3-98) through (3-111).

^min,! *max,l min,2 ^max,2

zBin^z
£min(zi,Z2)

x»<0
min(zi,Z2)<z
<Z«ax

zapex,l-z-inin(zi*Z2)*

zmin<zapex,l<zmax’

^l^zapex,l^ < ^apex.l < ^zapex,l^ 
otherwise

zi<z2
Zl>Z2

$1 ^3

^i. fa

<i>i 4>i
fa

fa fa

*«in<z fzi<z2
<max(zi,Z2) Z|>z2

fa
fa fa

=[d<0

max(zi,zj)<z
^ZB&x

max(z1)z2)<z<zapex2l

zmin<'zapex,2<'zmax’

^l^zapex,2^ < ^apex(2 < ^2^zapex,2^ 

otherwise

03 01 fa 04

03 04



sin <£4 = (3-101)

where

^ - h2 sin£ (d-z) cos£ , (3-102)

$ = + (h sin£)2] - P1 xd (d-2) (3-103)

* = r[(xd)2 + (h sine)2] , (3-104)

^ = h2 z cos^ sin^ , (3-105)

^ = {(rxg)2 [(xs)2 + (h sin^)2l - [hzXg cos^]2}’ , (3-106)

and

^ = r [(x')2 + (h sin02] . (3-107)

r [(xi)2 + ^ sin2?]^
1-7 — ... 8- ,r» ✓ n
apex,l h cos^ ’ xs ^ u (3-108)

r [(xj)2 + h2 sin2^]^
zapex,2 ^ "i h cos<f ’ xd < 0 (3-109)

"•Vm "- «lpexJ . *:<» (3-110)

3inVx,2 = ^/^lz = zapeXi2 - *d<° (3-111)

In summary, Table 3-6 lists limits of integration over the azimuthal 

angle <j) for all possible source-detector geometries and known values of r and 

z. The notation is the same as that of Table 3-5. It is assumed that the 

limits are not evaluated at r = rmin, which is a trivial case; otherwise, the 

limits hold for all r and z.
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Table 3-6. Limits of integration over the azimuthal angle <f> for known values of r and z. Subscripted variables are defined by 
Eqs. (3-98) through (3-111).

Z<Z|, Z\ $ ZBin

xj>0» z>zi» zi # Znax
xjj>0 z<z2, z2 # zBin

Z>Z2, Zj t Zaax

x"<0s

xjjco

<min(zi,Z2)

zapex,l—z—miI1(Z|’ZJ^,
z • <z , <z nun apex.l max’

^l^zapex,l^ < ^apex.l < ^2^zapex,l^ 
otherwise

mintz^Z})^
<z

■ax

Zain^Z
^maxfz^zi)

max(zi,z2)<z
<zmax

Zl<Z2

Zl>Zj

Zl<Z2

Zl>Z2

max(z1)z2)<z<zapex2,

zmin<zapexl2<:zmax’

^^zapex,2^ < ^apex,2 < ^2^zapex,2^ 
otherwise

^min,! ^max,l ^min,2 ^max,2

"TP
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fa
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The patterns inherent in the integration limits may be seen in Figs. 3-32 

through 3-34. In each graph, limits of integration on 0 are plotted versus z 

for a given source-detector geometry and increasing values of r. The graphs 

are, in fact, contour plots of the intersection of a cylindrical surface of radius 

r with the boundaries of the scattering zone. Given the radius r, the 

differential scattering volume for a gamma-ray must lie on the surface of the 

appropriate cylinder; the contour plots describe the section of each cylinder 

within the scattering zone, thus the area of integration. Fig. 3-20 illustrates 

this concept well.

3.4.3 Numerical Evaluation

The semi-infinite wall skyshine problem discussed in this work is solved 

numerically by the computer code WALLGP, listed in Appendix B. This 

FORTRAN program calculates the exposure rate, kerma rate or dose 

equivalent due to an isotropic point source emitting one photon per second. 

The locations of the point source and point detector with respect to the wall 

are specified in the input; if a concrete shield is involved, its thickness and 

density are also read by the input routine. Results are presented as response 

per photon, and also as response per photon multiplied by the square of the 

source-detector distance. The second quantity is sometimes preferred for 

comparisons, since it varies less with distance. Because the interaction 

coefficients of Hubbell (Hu82), the geometric-progression buildup factor formula 

(Ha86, RS86), and the adaptive Gaussian quadrature all proved successful in 

the SILOGP code for the silo problem, all these features were employed iu 

WALLGP. Some approximations made by Roseberry (Ro80) were also tested
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Fig. 3-32. Contour plot of the limits of integration in the wall geometry for
increasing values ot the radial coordinate r. The source and detector lie in a
plane normal to the wall; xs = Xd = ys = yu = 10 m.
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z (m)

Fig. 3-33. Contour plot of the limits of integration in the wall gjometry for
increasing values of the radial coordinate r. The source and detector are offset
by za = 5 m; the wall extends over neither source nor detector. xs = Xd =
Ys = yd = 10 m.
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Fig. 3-34. Contour plot of the limits of integration in the wall geometry for
increasing values of the radial coordinate r. The source and detector lie in a
plane normal to the wall, and the wall extends over the source in the
cylindrical frame of reference. xs = xd = ys = 10 m; ya = 40 m; za = 0.
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in WALLGP, along with approximations unique to the wall geometry. Their 

usefulness is discussed as the final topic of this chapter.

In all calculations performed by the code WALLGP, air density is taken 

to be constant throughout the system. This is assumed in many computer 

codes, and since most physical problems considered in this work have less than 

2000 m separating the source and detector, the assumption seems valid. 

Uniform density of the concrete shielding is also assumed for simplicity.

For a variety of source energies and source-detector arrangements, 

detector responses were computed using double precision and single precision 

versions of WALLGP. To three significant digits, no differences were found 

between results of the two programs. Although single-precision computations 

require shorter computing times and fewer resources, double precision results 

are more accurate in most applications. It was decided to employ double 

precision in the final version of WALLGP, for the advantage of accuracy.

One assumption made by Roseberry to simplify the computer code SKY 

was not made in the code for the wall skyshine geometry. Roseberry 

approximated the path length a traveled by source photons in air as the total 

path length a from the point source to the scattering volume dV. In the 

absence of a concrete shield over the source, a = a, and the assumption is 

correct. If a concrete shield is present, the assumption can introduce error, 

especially in instances when the differential scattering volume lies close to the 

source. The effect is to lower the computed detector response by artificially 

reducing the uncollided flux entering dV. Since Roseberry's code included the 

assumption, yet overestimated the results of a benchmark experiment (R08O), 

the approximation was justified in SKY.
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In this work, a more rigorous approach has been taken. In the absence 

of a concrete shield, the distance a along the first leg of the gamma-ray path 

is independent of the azimuthal angle (j> (analogous to the angle e in the silo 

geometry). Further, every integrand of Eq. (3-47) is independent of the 

azimuthal angle, and the innermost integral over d0 equals the integrand times 

the difference in limits. If a shield is present, a is dependent on <j> through 

Eqs. (3-32) and (3^46), since the distance ac through the roof is nonzero. In 

the code WALLGP, Eq. (3-32) is used as written if the geometry involves a 

shield; thus, the approximation of Roseberry is not used. If no shield is 

involved, WALLGP computes a as part of the z integrand and uses Eq. (3-32) 

with ac = 0, as Roseberry did for all cases.

An important input parameter to the wall program is the photon path 

length cutoff value in mean free paths, variable CUTMFP. Gamma rays 

which must travel farther than the cutoff value to reach the detector are 

ignored in computation of response. Also, the cutoff value is used to compute 

limits on the integration variables r and z via Eqs. (3-51), (3-68) and (3-69). 

Roseberry (Ro80) chose ten mean free paths in air and fifteen mfp in concrete 

as cutoff values. In WALLGP, a single value is compared against the mean 

free paths in air and concrete traversed by a photon, avoiding double 

standards.

To find a suitable value of the cutoff, exposure rates were computed for 

fourteen different source-detector arrangements, listed in Table 3-7. The test 

cases were selected from reference problems described in Chapter 4; exposure 

rates were found using cutoff values of 10, 20, 30, and 40 mean free paths. 

The results, presented in Table 3-8, point toward a cutoff of 40 mean free
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Table 3-7. Test cases used to investigate the convergence of the 
computer code WALLGP. The test cases are selected from reference 
problems presented in Chapter 4, and are grouped according to the 
parameter which varies between cases.

Source
Test
case

energy
(MeV) (m)

Xd
(m)

Vs
(m)

ya
(m)

Zd
(m)

t
(m)

Pconc
(g/cm3)

Pai r
(mg/cm3)

1 6.2 40 40 0.00001 0.00001 0 0 1.22
2 6.2 400 400 0.00001 0.00001 0 0 1.22
3 6.2 750 750 0.00001 0.00001 0 0 1.22

4 6.13 1 9 0.7 0.7 0 0 1.25
5 6.13 1 799 0.7 0.7 0 0 1.25
6 6.13 1 9 0.7 0.7 0 0.3 2.13 1.25
7 6.13 1 799 0.7 0.7 0 0.3 2.13 1.25

8 0.1 500 500 0.00001 0.00001 0 0 1.25
9 1.0 500 500 0.00001 0.00001 0 0 1.25

10 10 500 500 0.00001 0.00001 0 0 1.25

11 1.25 3 100 3.0 3.0 10 0.1 2.35 1.2
12 1.25 3 100 3.0 3.0 300 0.1 2.35 1.2

13 1.25 3 100 3.0 3.0 10 0.01 2.35 1.2
14 1.25 3 100 3.0 3.0 10 1.0 2.35 1.2
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Table 3-8. Behavior of detector responses computed by WALLGP with 
changes in the mean free path cutoff value. The test cases are 
described in detail in Table 3-7. All computations were performed using 
a convergence criterion of 17. difference between successive evaluations 
of the exposure integral.

Normalized exposure 
(R/photon)

10 mfp 20 mfp 30 mfp 40 mfp
Test case cutofi cutoff cutoff cutofx

1 1.003
2 1.134
3 7.113

4 8.323
5 1.050
6 1.358
7 1.209

8 0*
9 1.274

10 6.724

11 3.826
12 4.678

-19)* 1.003 (-19)
-21) 1.134(- 21)
-23) 7.124(- 23)

-20) 8.323 (-20)
-23) 1.084 (-23)
-20) 1.358(- 20)
-24) 1.657(- 24)

8.571 (-28) 
-23) 1.399 (-23)
;-22) 6.708(-22)

-21) 3.827(- 21)
-22) 4.719(- 22)

9.004(-20) 6.512(-20)
1.134(- 21) 1.134(-21)
7V806(- 23) 7.118(- 23)

8.168(-20) 8.323(-20)
1.084(- 23) 1.085 (-23)
1.342 (-20) 1.358 (-20)
1.662 (-24) 1.657 (-24)

1.377 (-27) 1.382 (-27)
1.400 (-23) 1.400 (-23)
6.792(- 22) 6.710(- 22)

3.827(- 21) 3.827(-21)
4.720(- 22) 4.718(-22)

13
14

8.992 (-21) 
0b

9.071 (-21 
4.107(-26

9.135 (-21 
4.168(- 26

9.173 (-21 
4.162(-26

*1.003(-19) = 1.003x10"19
aSource-detector distance in mean free paths is larger than cutoff 
value; WALL performs no calculations.

bConcrete shield thickness in mean free paths is larger than cutoff 
value; WALL performs no calculations.
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paths as the optimum value. Note that a cutoff of 10 mfp with 100 cm of 

concrete overhead eliminates all contributions to detector response; one meter 

of concrete corresponds to over 13 mean free paths for a 1.25 MeV photon. 

Similarly, if the source-detector distance equals 1000 m, it becomes physically 

impossible for a 0.1 MeV gamma ray to travel only 10 mfp and reach the 

detector; 1000 m in air corresponds roughly to 18.5 mfp for these photons. 

Larger cutoff values will avoid this problem and allow computations for larger 

source-detector distances. On the other hand, the geometric progression 

buildup factors used in the code only extend to 40 mean free paths (RS86), so 

longer distances must be eliminated from consideration. The criterion of 40 

mfp keeps as many dose contributions as possible in computations, and holds 

the computations to conditions for which the buildup data are valid.

The first test case, however, shows that CUTMFP is not the only 

variable important to convergence; computed exposure actually decreases in this 

case as CUTMFP increases. Another cause for concern is the Gauss 

quadrature used to integrate Eq. (3^7). Gauss quadrature is normally not 

recommended for integration of ill-behaved functions or functions with 

discontinuous derivatives. An advantage of the adaptive Gaussian quadrature 

subroutine used in this work is its ability to work with such functions. 

Figures 3-32, 3-33 and 3-34 demonstrate that the limits of integration on <j> 

are not at all smooth, so that the exposure rate integral equations for the wall 

geometry can be expected to "misbehave" over the range of z. The

quadrature routine used here can account for such behavior if sufficient 

accuracy is requested by the calling program. Therefore, tests were run to 

determine a sufficient value of the user-supplied error parameter DEL. The
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value of the integral computed by the quadrature routine will have a 

maximum error of DEL times the true value of the integral being evaluated.

Table 3-9 presents exposure values computed by WALLGP for most of 

the geometries presented in Table 3-7, with DEL ranging from 0.05 to 0.001. 

The differences in detector responses computed with error criteria of 

DEL = 0.01 and DEL = 0.001 are nearly always a fraction of one percent. 

The differences are larger for short source-detector distances, such as in test 

cases 1, 4 and 6. Case 1, in which the source and detector are 80 m apart 

and nearly on a line of sight, requires 0.1% error for accurate results (compare 

with Table 3-8). Alternately, a smaller value of MFPCUT in such instances 

may help, but is not recommended.

Though 0.1% accuracy may be desirable, values of DEL = 0.001 can 

result in impractical computation times in most instances. For normal 

calculations, it is suggested that DEL = 0.01 be entered as the error 

parameter; this will produce accurate answers in a reasonable time. For 

source-detector distances below 100 m, especially with low walls, DEL = 0.001 

will be necessary.

In summary, it was assumed in the wall skyshine code that photons 

which travel more than forty mean free paths in air and/or concrete produce a 

negligible response at a point detector. Unlike Roseberry's silo method, the 

wall method computes the distance traveled by a source photon in air exactly. 

Double precision computations were found to be accurate, as was a 

requirement of 1% error in the integration routines. The final version of the 

program WALLGP is listed in Appendix B; results of validation tests are 

presented in the next chapter.
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Table 3-9. Behavior of detector responses computed by WALLGP with 
changes in convergence criteria. The estimated error equals the product 
of the convergence parameter DEL and the computed detector response; the 
value of DEL in each case is the percent error expressed as a decimal. 
The test cases are described in detail in Table 3-7. All computations 
were performed using a mean free path cutoff value of 40 mfp.

Normalized exposure 
(R/photon)

Test 57. 27. 17. 0.57. 0.27. 0.17.
case error error error error error error

1
2
3

6.113(- 20)*6.393(- 20) 
1.287 (-21) 1.130 (-21) 
7;0G6(-23) 6.994(-23)

6.512(-20) 7.777(-20) 
1.134(-21) 1.134(-21) 
7.118(-23) 7.124(-23)

8.806(-20) 9.158(-20) 
1.134(-21) 1.134(- 21) 
7.121(-23) 7.121(-23)

4
5
6 
7

8.346(-20) 8.346 
1.084(-23) 1.085 
1.360 (-20) 1.358 
1.772 (-24) 1.669

-20) 8.323(-20 
-23) 1.085 (-23 
-20) 1.358(-20 
-24) 1.657(- 24

8.294(- 20) 7.933
1.083(-23) 1.080
1.357 (-20) 1.322
1.657(-24) 1.656

-20) 7.867(-20 
-23) 1.079 (-23 
-20) 1.322 (-20 
-24) 1.657(- 24

8
9

10

1.382 (-27) 1.382 (-27) 1.382 (-27) 1.377 (-27) 1.376 (-27) 1.376 (-27) 
1.319 (-23) 1.390 (-23) 1.400 (-23) 1.399 (-23) 1.399 (-23) 1.398 (-23) 
6.757(-22) 6.729(-22) 6.710(-22) 6.743(-22) 6.744(-22) 6.726(-22)

11
12

3.836(-21) 3.827(-21) 3.827(-21) 3.822(-21) 3.820(-21) 3.820(-21 
4.709(-22) 4.718(-22) 4.718(-22) 4.709(-22) 4.709(-22) 4.709(-22

*6.113(-20) = 6.113x10-20
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4.0 RESULTS AND VALIDATION OF THE CODES DEVELOPED IN

THIS WORK

A necessary step in the development of a numerical model is comparison of its 

results to real data from the physical system being modeled, or to results 

accepted as correct by authorities in the field. The numerical models for 

gamma-ray skyshine analysis presented in the previous chapter will now be 

validated by comparisons to standards and results from other computations. 

In the case of the silo geometry modeled by SILOGP, benchmark experimental 

data will be presented for comparison, but ’no such data are available for the 

wall geometry modeled by WALLGP.

The American National Standard which addresses skyshine measurements 

and computations includes reference calculations for this purpose. One of the 

reference problems involves a point isotropic source of 16N gamma rays sixty 

feet above an air-ground interface. Detectors are placed along the ground at 

specific distances from the source, and dose rates are reported along the range 

of detectors. (AN87) While the problem does not involve either a silo or a 

wall shielding the detector, both SILOGP and WALLGP can model situations 

approaching the problem. By using an open silo with a full angle of 

collimation of 180°, or a wall of very small height between source and 

detector, the two codes can approximate the open point source and produce 

results comparable to the ANSI reference calculations. A second ANSI 

reference problem places the 16N source inside a rectangular concrete building 

without a roof. The detector response in this problem is likely to be 

dependent upon the solid angle into which source photons are collimated. The
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cylindrical silo of SILOGP would simulate the rectangular building better than 

a single wall, but would still introduce error through incorrect collimation. 

Therefore, only the first problem will be used for reference in this work.

A problem similar to the ANSI reference calculation was used in the 

validation of MicroSkyshine (Fa87,Sh87) and may also be used to advantage 

here. Air kerma buildup factors were determined from moments-method 

calculations by Chilton et al (Ch80) These widely-accepted buildup factors 

were manipulated to give exposures due to a point source in infinite air

emitting photons only in a hemisphere of directions; this hemisphere lies above 

a plane containing the source and detector. This 2^ problem is easily

approximated by the MicroSkyshine code, and exposures computed by that 

code were compared against the results inferred from the buildup factors of

Chilton et al Both SILOGP and WALLGP can approximate the same

geometry, and this problem will be solved with both codes as another test of 

their accuracy.

Experimental data reported by Nason et al. (Na81) and Roseberry (R08O) 

from the KSU benchmark skyshine experiment will be compared to results 

generated by SILOGP for the geometry and conditions of the experiment. 

Roseberry cited results of the transport code DOT, which others prepared for 

the study; since this code is in use today, those computed exposure rates will 

also be compared to SILOGP values. Finally, WALLGP and SILOGP will be 

tested extensively against the MicroSkyshine program for microcomputers, in an 

attempt to validate all three codes. The MicroSkyshine tests will include 

variations of geometry parameters as well as benchmark and . 'brence

problems.
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4.1 Comparison of SILOGP to Other Methods and Benchmark Data

The code SILOGP, which solves the problem of a point source inside a 

collimating silo, will be tested first. Data from seven sources were selected to 

validate SILOGP; four problem geometries were studied, and observations were 

made of changes in detector response with chosen parameters. One of the four 

systems is that of the benchmark skyshine experiments reported by Nason et 

a/., for which measured responses and responses computed by the code DOT

3.5 are available (Ro80,Na81). A similar configuration was used in the 

validation of MicroSkyshine, one that is identical to the experimental 

conditions except for changes in material properties (Fa87, Sh87). The third 

problem is a standard from ANSl/ANS-fi.6.1-1987, Reference Problem 1.1. 

(AN87) The fourth problem, also presented in references on the MicroSkyshine 

code, is the problem for which buildup factors of Chilton et al (Ch80) 

were used to predict exposure rates. The last two problems do not involve 

silos or shielding, but are useful in testing the behavior of SILOGP in the 

limiting case of 2x geometry.

4.1.1 Comparisons to Benchmark Study

The skyshine benchmark experiment (Na81) described in Chapter 2 

provides physical data to test the accuracy of SILOGP. In the experiment, 

one of three 60Co point sources was placed on the axis of a cylindrical 

concrete silo. Wedges atop the silo collimated the photons into a cone with a 

full angle of 150.5°, and with the point source at the apex of the cone. 

Exposure rates were measured and recorded at distances up to 700 m from the 

source. A sodium iodide spectrometer measured the differential energy
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spectrum of scattered photons over the same distances, and these results were 

converted to exposure rates to confirm the values measured directly. In other 

cases, the collimator was replaced by a concrete shield over the source, either 

21 cm thick or 42.8 cm thick. Similar measurements were taken under these 

conditions and recorded. Air density during each source exposure was 

computed from atmospheric data taken at the time of measurement.

Final exposure rates were corrected for the energy and directional 

sensitivity of the ionization chamber. For comparisons, all reported exposure 

data were multiplied by the square of the source-to-detector distance, divided 

by the solid angle of collimation formed by the silo, and normalized to a 

source strength of one photon per second. This compensates for inverse-square 

attenuation and reduces the range of values required by graphs. To account 

for variations in air density between measurements, these normalized exposure 

data were plotted against the areal density, the product of the source-detector 

distance and the air density.

Three comparison runs of SILOGP were performed, one for the open silo 

and one for each of the shielded source configurations. The 1.17 MeV and 

1.33 MeV photons emitted by 60Co were approximated by 1.25 MeV photons, 

a common practice in numerical work. A representative air density of 1.12 

mg/cm3 was chosen, close to many of the air densities reported during the 

benchmark experiments. Where a concrete shield was required, the measured 

density of 2.13 g/cm3 reported by Roseberry (Ro80) was input to the code.

The results of SILOGP are compared with the experimental results in 

Fig. 4-1. Notice that SILOGP underpredicts the experimental ^sult;. below 30 

g/cm2 (270 m) in all configurations. Roseberry attributed a similar problem
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Fig. 4-1. Comparison of measured data from the benchmark skyshine experiment, 
discrete ordinates calculations by DOT, and calculated results of the point-kernel 
code SILOGP.
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with SKY to direct penetration of photons through the concrete silo walls in 

the experiment. Since SKY did not account for direct penetration, Roseberry 

expected underprediction below a source-detector distance of 200 m, especially 

where the source was shielded. (R08O) SILOGP, however, artificially increases 

response by allowing photons to scatter in the air within the silo and travel in 

air directly to the detector, "through" the silo walls. This approximation 

could compensate for the direct penetration, but it was introduced to simulate 

photons which scatter for the first time within the confines of the silo, then 

escape and contribute to dose at the detector. This is separate from the 

direct penetration suggested by Roseberry. Other non-ideal effects may be 

present in the physical situation, such as reflection of photons off the silo 

walls and floor (and roof, if one is present) before they leave the structure; 

Roseberry indicated that gamma rays could even scatter within the source 

material or within the stainless steel source containment used in the 

experiment (Ro80). Most of these phenomena would degrade the photon 

energy spectrum and increase the detector response close to the silo. Despite 

the approximation, SILOGP still underestimates the detector response close to 

the silo, suggesting that the approximation cannot compensate for all these 

effects.

The code SILOGP overpredicts the experimental results for areal densities 

above 30 g/cm2 in all cases. One likely cause for this is the uncertainty 

introduced by applying an infinite medium buildup factor for an isotropic point 

source on the second leg of the photon path. Recall from the previous 

chapter that soil tends to absorb more scattered phr'J”-'$ than air, so that the 

use of an infinite-air buildup factor where an air-ground interface exists will
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cause overprediction of detector response near the ground. The uncertainty 

increases with distance from the source, as it did with the SKY code (R08O). 

Another uncertainty is introduced by the use of a buildup factor for an 

isotropic point source with the anisotropic scattering source. The actual 

scattering distribution at the differential volume dV is biased in the forward 

direction, with fewer gamma rays scattering back toward the source. The 

number of photons scattering toward the detector, however, is the same for the 

actual anisotropic scattering source and the isotropic source implicitly assumed 

in the use of the buildup factors. If the photon must scatter through a large 

angle (ie., if ft is small), the isotropic source will probably have a smaller 

total strength than the true scattering source, since the anisotropic scattering 

source is weaker in backward directions. Conversely, if the photon scatters 

through a small angle {i.e., (3 is large), the assumed isotropic source is 

stronger than the actual scattering source, and the use of the buildup factor 

will probably result in overestimates of detector response. This would help to 

explain why SILOGP overpredicts experimental results for long source-detector 

distances; most photons which contribute to dose in these instances would 

undergo small-angle scatters. SILOGP shares this approximation with 

WALLGP, MicroSkyshine and G3; MicroSkyshine exhibits the same tendency in 

Fig. 4-1, supporting this argument.

Overall, the computed results agreed best with the benchmark data for 

the open silo, ranging from 25% underprediction to 36% overprediction. Cases 

involving concrete shields did not agree as well with experiment, but in all 

problems, SILOGP underpredicts at short distances and overpredic* t long 

distances. The typical deviation of SILOGP from experiment was 20% for the
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case of the open silo, 40% for the case of a 21 cm overhead shield, and 30% 

for the case of a 42.8 cm overhead shield.

After the benchmark study, the discrete ordinates computer code DOT 

was applied to the benchmark problems to test its effectiveness in skyshine 

studies. While SILOGP is a special-purpose code tailored to this point-source 

skyshine problem, DOT is more general, incorporating more complex sources 

and geometries. Both are mainframe codes, but the discrete ordinates 

approach of DOT requires much more expense and computer resources than 

the point-kernel method of SILOGP or any other code discussed in this 

chapter. Normally, DOT is used only for major design problems or benchmark 

calculations, such as the ANSI Standard Problems or the KSU experiment 

discussed here.

Roseberry (Ro80) reports that DOT computations performed using 39 

energy groups closely matched measured, exposure rates past 200 m from the 

source in an open silo. Computations were also performed with 10 energy 

groups for all configurations, shielded and unshielded. These results 

consistently underestimated the benchmark measurements beyond a detector 

position of 30 g/cm2 from the source. Nason (Na79) tabulated the results and 

concluded that neglect of the air-ground interface in the DOT runs led to this 

underestimate, which averaged 10% but was as much as 20% at times. Since 

SILOGP also neglects ground effects, a comparison may be made between the 

discrete ordinates method and the single-scatter method.

Figure 4-1 also compares SILOGP results with the DOT results reported 

by Nason. The two programs agree well wh'"*'' no overhead shield is involved; 

note that these DOT results were obtained with 39 groups. Where a shield is
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present, a large difference can be seen: 10-group DOT results underpredict 

benchmark measurements over most of the region of interest, while SILOGP 

overpredicts. Calculations using 39 groups were not performed with DOT for 

these cases, though the finer energy structure might have yielded better 

results. From a conservative view, the single-scatter method would be 

recommended over discrete ordinates calculations with a coarse energy grid. 

Close to the silo, the reverse would be true. The discrete ordinates method 

might also yield better accuracy with a finer energy structure. The 

advantages of DOT are offset by its extreme cost and high demand on 

computer resources, however, so that the single-scatter method might be the 

first choice in actual practice.

Figure 4-1 includes results of the microcomputer program MicroSkyshine 

for the benchmark experiment. While the code agrees well with benchmark 

results, the conditions used by MicroSkyshine are not identical to those of the 

experiment. The MicroSkyshine program will be reviewed alone in a later 

section, with comparisons to SILOGP made under the conditions of 

MicroSkyshine.

4.1.2 Comparisons to ANSI Standard

The American National Standard ANSI/ANS-6.6.1-1987 (AN87) provides 

four sets of reference calculations for the validation of measurement methods 

and numerical techniques. One of these, Reference Problem LI, was solved by 

SILOGP to allow an assessment of its accuracy in the limiting case of 27r 

collimation. As with any ANSI Standard, the conditions of ^he problem are 

very specific, so that they may be reproduced closely by the method being
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tested. The Standard recognizes that methods are unique; some programs 

which estimate exposure or dose, for example, cannot separate direct and 

scattered components in their output. Thus, the Standard recommends that 

methods be documented, and recommends that assumptions or changes in 

computer codes which are made to solve the problem be discussed.

In Reference Problem LI, illustrated in Fig. 4-2, an isotropic point 

source of 6.2 MeV gamma rays is placed 60 feet (18.3 m) above the ground, 

in open air. An imaginary axis runs normal to the ground and through the 

source, which emits one photon per second. Detectors are placed 3 feet 

(0.91 m) above the ground, at distances from the source axis between 200 feet 

and 5000 feet (61 m and 1500 m). Air in the problem has a mass density of 

1.22 mg/cm3, with an atomic number density of l.OTxlO19 atoms/cm3 of 

oxygen, 4.02xl019 atoms/cm3 of nitrogen. Dose rates should be computed in 

units of xad(air)/year, with one year assumed to be 8766 hours.

Since no experimental measurements were available, seven computer codes 

were selected by the Standards Working Group, and their results for the 

problem are given as reference values. The methods used include Monte Carlo 

(OGRE, COHORT II), discrete ordinates transport (DOT-II), the point-kernel 

method (G3, QADMOD, SKREEN), and integration of parametric air­

scattering data (SKYSHINE). Different assumptions were made in each code, 

and different data libraries were used, but the results agreed with each other, 

well within an order of magnitude (AN87, Fa87).

As SILOGP solved this problem, the point source was placed at the top 

of the silo on its axis, forming ? full angle of collimation of 180°. This 

simulated a source and detector placed at the same height from a ground-air
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interface with no structures in the vicinity. Since the source and detector of 

the ANSI reference problem are not the same distance above the ground, the 

line-of sight source-detector distance in the true problem ranges from 208 feet 

(63.4 m) to approximately 5000 feet (1500 m), not from 200 to 5000 feet 

exactly. SILOGP computed air kerma starting at 63.4 m from the source and 

extending to 1500 m; responses are displayed against the horizontal distance 

measured along the ground, as required by the Standard, not against the true 

source-detector distance. Because the ground is treated as air by SILOGP 

and by several of the codes in the Reference, the air-ground interface can be 

made parallel to the source-detector axis without introducing error to the 

results of SILOGP. Also, SILOGP can compute only exposure, kerma, or dose 

equivalent response. Air kerma is a very good approximation to absorbed dose 

in air, thus it was used.

In Fig. 4-3, results of SILOGP are compared to the ANSI reference 

data, and to results of the MicroSkyshine code for Reference Problem 1.1. 

Both programs are in excellent agreement with the reference data and with 

each other in this limiting case of 2t geometry. Of the reference programs, 

the closest agreement to SILOGP seems to be with the results of the code 

SKREEN; since both use a point-kernel model, this is not surprising. 

SILOGP also comes close to the results of G3 at larger distances, and to 

COHORT 11. SILOGP imitates MicroSkyshine most, however; the two codes 

will be compared extensively later in this section.
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4.1.3 Comparisons to Buildup Factors in the 2z Problem

One of the tests used to validate MicroSkyshine (Fa87, Sh87) resembles 

the ANSI Standard problem but uses buildup factors developed by Chilton, 

Eisenhauer and Simmons (Ch80) from moments-method calculations. In this 

inventive benchmark calculation, photons are emitted from a point source into 

a solid angle of 2x steradians. The exposure rate at a point detector due to 

scattered photons only is determined from the infinite medium buildup factors 

of Chilton et al in a straightforward manner.

Consider an isotropic point source emitting S gamma rays of energy E in 

infinite air, and a point detector located a distance r from the source. The 

total response at the detector is an elementary computation:

M = response function (response per unit fluence) for photons of energy
E,

li = total attenuation coefficient of photons of energy E,

B(/ir) = infinite medium buildup factor for photons of energy E at //r mean 
free paths from the source.

This total response arises from both uncollided and scattered photons. The 

component from uncollided gamma rays is

Therefore, in infinite air, the response at the detector due to scattered photons alone

(4-1)

where

r,o _ exp(-nr)
u 4irr* (4-2)
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is the difference in these quantities:

DS = Sfl exp| /it) p(#|r) _ J] . (4-3)

However, MicroSkyshine and SILOGP (and WALLGP) are limited to studying the 

half-space above an air-ground interface. Suppose the point source emits photons 

in only a hemisphere of directions on one side of a plane, with the source and 

detector residing in the plane. The detector response for scattered gamma rays in 

this case would be exactly half the response for the point isotropic source. The 

result for the 2-k geometry, therefore, is

°L = PM - X] ■ (4-4)

Since SILOGP computes only the scattered response, and is restricted to the Stt 

geometry, this formula is of interest to us.

The reference calculations for this problem were performed using Eq. (4-4), 

air kerma buildup factors of Chilton zt al (Ch80) and the attenuation data of Storm 

and Israel (St67). Exposure rates were computed, thus the response function for 

exposure was substituted for SI (see section 3.2 of this work). Although the buildup 

factors are based on air kerma, Chilton zi al state: "The air kerma data can be used 

for exposurz buildup factors to a close approximation, as long as bremsstrahlung is 

negligible, a matter that...is questionable at the higher energies." (Ch80) These 

benchmark calculations are for source energies from 0.1 to 10 MeV and distances out 

to 2500 m from the point source. Buildup factors are available for 15 MeV photons,
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but were not used in the reference calculations, probably because of the warning 

quoted above.

The reference results are presented in Figs. 4-4 and 4-5 as individual data 

points, along with SILOGP and MicroSkyshine results for the same problems. The 

agreement of SILOGP with the buildup results is excellent over the range of photon 

energies and distances considered. Except for exposures from 0.1 MeV photons 

beyond 600 m from the source, the SILOGP results are consistently within 15% of 

the buildup values. The improved version of MicroSkyshine, by comparison, 

overestimates the buildup results past 1000 m, at all energies (Sh87); comparison of 

Figs. 4-4 and 4-5 will demonstrate this.

MicroSkyshine and SILOGP both underestimate the reference results for 0.1 

MeV photons past 600 m. One possible, though unlikely, cause is that both 

SILOGP and MicroSkyshine use the geometric-progression buildup formula of 

Harima et al (Ha86). For air, however, the GP coefficients are based on the same 

data from Chilton et al as was used in the reference calculations. The maximum 

deviation of the geometric-progression fit from the data is less than 3% (RS86) over 

a range of 40 mfp, or about 2000 m. While the fit itself may not be to blame, it is 

possible that some other influence related to the buildup calculation created the 

discrepancy. An error or uncertainty in the reference calculations themselves may 

also be responsible; the cause is not obvious at this time.

4.1.4 Comparisons to MicroSkyshine

The MicroSkyshine code (Fa87, Sh87), developed for microcomputers, is 

applicable to mary problems involving skyshine from a point gr.mma-ray source. 

Among the problems which it solves are the two simplified geometries studied in
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this work: the point source on the axis of a cylindrical silo, and the point source 

behind a semi-infinite wall. The author knows of no other codes which solve these 

identical problems, save those of this thesis. Thus, a comparison of the results of 

MicroSkyshine and SILOGP is mandatory.

Differences should be expected when comparing results of the two codes. 

MicroSkyshine is a general purpose program intended for complex photon sources 

and geometries; by preparing this line-beam code for microcomputers, the 

developers exchanged precision for speed of results. It should be emphasized that 

MicroSkyshine has purposely been made conservative (Sh87), since it is intended for 

general problems in industrial design. Of all the codes reviewed here, 

MicroSkyshine is also the least expensive to use. SILOGP, by comparison, is a 

special-purpose point-kernel code for mainframes which is expensive to use but does 

not intentionally overpredict detector response and does not sacrifice precision. 

These facts should be kept in mind as the reader reviews this section.

The first source-detector arrangement of interest is nearly identical to the 

benchmark problem performed at the KSTJ Shielding Facility (Na81). A 60Co point 

source is placed on the axis of a cylindrical silo; the source and the edge of the silo 

form a line at an angle of 75.25° from the axis of the silo, so that the full angle of 

collimation is 150.5°. The 60Co source is approximated by a source which emits 

1.25 MeV photons. Exposures per photon are computed at distances out to 700 m 

from the source, and normalized in the same fashion as the benchmark data. 

Calculations are also performed with concrete shields of thickness 21 cm and 42.8 

cm over the silo. The major difference between the MicroSkyshine problem and the 

benchmark experiment is :n material densities. While Roseberry (Ro80) reported no 

air densities during the benchmark experiments above 1.21 mg/cm3, the
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MicroSkyshine calculations were performed using an air density of 1.25 mg/cm3 

(Fa87). The concrete shields used in the experiment had a reported density of 2.13 

g/cm3 (R08O), yet calculations performed in the MicroSkyshine validation employed 

2.32 g/cm3 as the concrete density. The differences are not explained in the 

MicroSkyshine reference; to eliminate disagreement due to differences in material 

densities, it was decided to perform SILOGP calculations with the densities used in 

MicroSkyshine.

The results of SILOGP and MicroSkyshine for this problem are displayed in 

Fig. 4-6. Also shown are the results of the point kernel code G3, as reported by 

Faw and Shultis (Fa87) for the same problem geometry. The code G3 employs the 

same point-kernel model and approximations as SILOGP (and WALLGP), but is a 

general purpose program for design work, and somewhat expensive to run. The 

specialized codes of this work may be preferable, as G3 uses a combinatorial 

geometry (RS85) which is very difficult to use. The tendency of G3 to underpredict 

where a concrete shield is present is made obvious in the plot.

SILOGP yields a lower estimate of exposure than MicroSkyshine for 

source-detector distances under 500 m (60 g/cm2); the codes agree very well for 

larger distances. In the worst cases, SILOGP results are less than 70% of the 

MicroSkyshine estimates. Both programs account for photons which scatter within 

the silo before leaving it; although this is cited as a major approximation of 

MicroSkyshine, it cannot be to blame for the discrepancy. MicroSkyshine includes 

pair production photons in the dose, while SILOGP does not; however, because the 

gamma rays from 60Co are not far above the pair production threshold, this is not a 

likely cause either.
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A similax disagreement between SILOGP and MicroSkyshine is evident in the 

preceding discussion of the moments-method problem. MicroSkyshine computes 

higher exposure rates than SILOGP for all the problems in Figs. 4-4 and 4-5, 

especially past 1000 m. Since the two geometries involve different angles of 

collimation, it was decided to compare the responses computed by the codes over a 

larger range of collimation angles. Any tendencies shown in this parametric study 

could help to explain the discrepancies seen in other problems. For a point source of 

1 MeV photons on the axis of an open silo, in air of density 1.25 mg/cm3, the 

exposure per photon was computed by both codes at a detector 400 m from the 

source. Collimation angles formed by the silo ranged from 179.999° (approaching 

the 2t problem) to 1° (approaching a line beam directed normal to the 

source-detector axis). The results are presented in Table 4-1. The difference in 

results decreases as the collimation "opens up"; for the case approaching a 

line-beam source, the SILOGP result is 15% lower than that of MicroSkyshine, but 

for the 27t case, the difference is only 9%.

An important clue to the cause can be found in the second KSU report by 

Shultis and Faw on MicroSkyshine (Sh87). The MicroSkyshine method employs 

line-beam response functions, evaluated at selected gamma-ray energies and beam 

angles from the source-detector axis. The response functions were computed by a 

point-kernel formula similar to Eq. (3-9) of this work, but including pair 

production in the evaluated response. A formula involving three parameters was fit 

to these response functions, and by interpolating the parameters, the response 

functions can be evaluated continuously over energy and beam angle. This formula, 

not the point-kernel equations which generate the response functions, is evaluated 

by MicroSkyshine in computing exposures or doses; it is identical to the parametric

144



Table 4-1. Comparison of detector responses computed by tbe codes 
MicroSkyshine and SILOGP with changes in collimation angle. Values of 
exposure per photon are presented for a point source of 1.0 MeV photons 
placed inside an open silo of radius 1 m. The detector lies 400 m from 
the source in each case, on a line normal to the silo axis. The height 
of the silo above the source defines the angle of collimation. Air 
density is taken as 1.25 mg/cm3. All SILOGP results were obtained using 
a convergence criterion of 17«.

Silo
height
(m)

Full angle 
of
collimation
(degrees)

Normalized exposure (R/photon)

Computed by Computed by
MicroSkyshine SILOGP

Percent 
difference 
from Micro­
Skyshine

0.00001 179.999 2.853(-21)* 2.605(- 21) - 8.7
0.01 • 178.854 . 2.725(-21) 2.478(-21) - 9.1
0.1 168.6 1.929(-21) 1.737(-21) -10.0
0.7 110 2.941(- 22) 2.542(-22) -13.6
1.0 90 1.524(-22) 1.312(-22) -13.9
5.0 22.62 6.160 (-24) 5.279(-24) -14.3

114.589 1 1.179(-26) 1.003(-26) -15.0

*2.853(-21) = 2.853x10-21
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fit used in the SKYSHINE-II program, the industry-standard mainframe code at 

the time MicroSkyshine was created (Fa87, Sh87).

In the MicroSkyshine report, Shultis and Faw report the deviations of the fits 

from the doses computed by the point-kernel method. The mean absolute deviation 

(MAD) and maximum deviation of the fit over the range of source-detector 

distances are tabulated in the report for each energy and beam angle, and patterns 

are evident. For the gamma-ray energies above 1.5 MeV, the MAD peaks at about 

10% at an angle of 75° or 85°, decreasing as the angle increases or decreases from 

this direction. At 1.5 MeV, the MAD of the parametric fit increases with the beam 

angle to 11% at 75°, decreases as the beam angle increases, then rises again; as the 

beam approaches the direction opposite the source-detector axis, the formula can 

deviate from the computed response as much as 50%. At 0.75 MeV, the MAD 

reaches a maximum at a beam angle of 85°, then remains at this level; the 

three-parameter formula typically deviates by 12 or 13 percent, sometimes by as 

much as 35% above the point-kernel results. Below 0.75 MeV, the fit deviates even 

more from the computed response, fits worst at angles as low as 25° or 35°, and can 

be as much as 45% above the point-kernel values. Data computed over a 

source-detector range of 2500 m or more produced each set of coefficients, and the 

report states that the fit is almost always worst when the detector is closest to the 

source.

In Figs. 4-4 and 4-5, the greatest disagreement between SILOGP and 

MicroSkyshine occurs between 0.1 and 1.0 MeV, where the parametric fits of the 

latter code are most inaccurate. In Fig. 4-6, the discrepancies between 

MicroSkyshine and SILOGP are worst below 60 g/cm2, or 480 m; compared to the 

2500 m range of the fits, this is close to the source, and the poor fit by
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MicroSkyshine close in would help to explain the disagreement. If the point-kernel 

results of SILOGP are nearly equal to the point-kernel results to which the 

MicroSkyshine formulas are fit, this disagreement would be entirely due to the 

uncertainties produced by the fit.

The pattern seen in Table 4-1 can also be explained by the deviation between 

the fitted response function of MicroSkyshine and the computed doses upon which it 

is based. In the table, 1 MeV photons axe collimated through angles from 1° to 

180°, with the discrepancy between SILOGP and MicroSkyshine decreasing with 

increasing collimation angle. The uncertainty in the MicroSkyshine function fit for 

beam angles less than 90° is likely to fall below that at 90° if the source photons are 

between 0.75 MeV and 1.5 MeV; also, the interpolation between these energies 

would produce the largest uncertainty in the computed dose at large beam angles, 

those above 90°. A one-degree collimation angle in MicroSkyshine would include 

only line-beams at an angle of 90° to the source-detector axis, while a 27r problem 

would include the beams at smaller and larger angles. Assuming photons which 

leave the source in directions toward the detector have more bearing on the detector 

response than photons heading away from the detector, it would be possible for the 

differences between the fitted function results of MicroSkyshine and the "true" 

results of the moments-method doses to decrease as the collimation angle increases 

and the function is evaluated at larger and smaller angles. This is the same trend 

shown in the last column of Table 4-1.

In summary, because the uncertainties of the line-beam gamma-ray response 

functions created for use in MicroSkyshine show the same behavior as the differences 

between MicroSkyshine and SILOGP, this author concludes that the inaccuracies of 

those functions are responsible for their disagreement. It is possible that a function
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which reproduces the original dose data more faithfully would produce results more 

in line with SILOGP, since the dose data were obtained with a point-kernel 

calculation very similar to the methodology of SILOGP.

4.2 Comparison of WALLGP to Other Methods

The remainder of the chapter will concentrate on WALLGP, the code produced 

specifically for this thesis. No benchmark experiment has been performed for the 

problem of a gamma-ray source behind a perfectly absorbing wall, so a definitive 

validation of the results of WALLGP is not possible. It is possible to test the 

accuracy of the code in the limiting case of a 2n geometry; the ANSI Standard 

problem and the benchmark calculation prepared by Faw and Shultis (Fa87, 

Sh87) can be compared to WALLGP results for a geometry involving a very low 

wall, nearly a 27r solid angle of collimation for source photons. The ANSI Standard 

problem could be considered important in validating WALLGP, but it does not 

involve a wall, the physical arrangement WALLGP was intended for. 

MicroSkyshine is the only other code known to this author which can predict 

detector responses from sources concealed behind a semi-infinite wall; WALLGP 

and MicroSkyshine will be compared extensively in this section. WALLGP will be 

applied to many of the problem geometries presented in the MicroSkyshine 

documentation (Fa87, Sh87), since results are readily available for the latter code. 

Differences in the codes will also be analyzed as functions of source photon energy, 

overhead shield thickness, and wall height; this parametric study may help to 

explain differences in computed exposures and doses, just as the studies for SILOGP 

did.
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4.2.1 Comparisons to ANSI Standard

In the extreme case of an unshielded, uncollimated source geometry, ANSI 

Standard Problem LI, which was described in section 4.1.2, is available for 

comparisons with WALLGP. This configuration of source and detector is an 

extreme case, not one for which WALLGP was intended, but it can verify the 

single-scatter model upon which the code is based. Limiting cases are often 

excellent tests of the accuracy of a program and its underlying theory; other codes 

have been adapted to a problem involving only a point source and point detector for 

such tests, although the codes were meant for more complex situations (Ma69).

To approximate a point source in infinite air with the semi-infinite wall 

problem, the wall must be effectively removed from the geometry; the source and 

detector should be placed so that the line of sight between the two would graze the 

top of the wall. This would be similar to placing the source and detector on the 

ground with only infinite air above. SILOGP could effectively remove the 

obstruction by placing the source and detector at the level of the silo opening. 

WALLGP cannot accomplish this, however, because some limits of integration are 

inversely proportional to the height h of the wall above the source-detector axis; 

when the source-detector axis rests on the wall edge, the limits are no longer valid. 

The point source in open air must be approximated by a source barely hidden from 

the detector by the wall. For all WALLGP validation runs, the point source and 

detector lie .01 mm below the edge of the wall. All other problem specifications are 

adhered to, such as the photon source energy of 6.2 MeV and the air density of 1.22 

mg/cm3. A cutoff value of 40 mean free paths was used, and the convergence 

criterion DEL was set to produce an answer with estimated error of 0.1%.
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The source and detector of the ANSI reference problem are not the same 

distance above the ground, recall; air kerma responses have been computed by 

WALLGP using the true source-detector separation distance, then displayed 

against the horizontal distance from the detector to a point directly below the 

source. It was again assumed that the direction of the surface between the air and 

the ground makes no difference in the comparison, since the ground is treated as air 

by WALLGP and by several of the ANSI codes.

The doses predicted by WALLGP for the ANSI Standard Problem are shown 

in Fig. 4-7 against the ANSI reference data and the results of MicroSkyshine. The 

agreement with the Standard is excellent, except for the closest detector points, 

those within 100 m of the ground point below the source. The error criterion of 

0.1% is not adequate at this close range; recall from Chapter 3 that the error 

criterion must be selected carefully in this region. Here, increasing the cutoff adds 

negligible values of exposure and complicates the evaluation of the integral exposure 

rate equation. Beyond 100 m, the results of WALLGP are nearly identical to those 

of SILOGP presented earlier; this is to be expected, since both use the same 

point-kernel model, and the same equation is integrated over nearly identical 

regions in both programs. The estimates made by MicroSkyshine and WALLGP are 

almost a single curve beyond 100 m of the ground point below the source. This too 

was evident with SILOGP, and validates both the point-kernel model and the 

line-beam response function method for ANSI Standard Problem LI.

4.2.2 Comparisons to Buildup Factors in the 2jr Problem

The Stt problem developed by Faw and Shultis (Fa87, Sh87) for testing 

MicroSkyshine can be modeled exactly by SILOGP, but not by WALLGP; as with
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the ANSI Standard problem, the line-of-sight of the source and detector must be 

blocked by the wall for the limits of integration used by WALLGP to be valid. The 

problem is described in section 4.1.3, and involves a point source and point detector 

resting on an air-ground interface. By definition of the problem, photons must 

leave the source in the direction of the air. To create as closely as possible the 

hemisphere of directions in which photons leave the source, the height h of the wall 

above the source-detector axis is made a small "epsilon11 value, .01 mm. Exposure 

rates are computed out to 2500 m from the source, for photons of energies ranging 

from 0.1 to 10 MeV.

The results of WALLGP are compared to the moments-method reference 

values in Fig. 4-8. At all energies except 0.1 MeV, WALLGP fits the reference 

points closely; where percent differences can be judged, WALLGP comes within 15% 

of reference values. The program underpredicts the dose computed by buildup 

factors at the lowest energy, 0.1 MeV; as stated in the validation of SILOGP, the 

cause of this disagreement is not obvious. As expected, SILOGP and WALLGP 

produce nearly identical curves in Figs. 4-4 and 4-8, because the two programs 

employ the same model and integrate the same formula over nearly identical regions 

of space. Based on the results for the ANSI Reference Problem and the 2x 

geometry, WALLGP and SILOGP are valid for use in 27r configurations where 

photons axe uncollimated or nearly so, that is, where a silo or wall barely blocks the 

source from the detector and photons travel in nearly all directions from the source 

above ground.
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4.2.3 Comparisons to MicroSkyshine

The remainder of this chapter is concerned with MicroSkyshine and 

WALLGP, and their computed responses for a variety of problems. The author 

knows of no other computer codes which address the ideal problem of a semi-infinite 

wall between source and detector; it is natural that the two codes be contrasted over 

a wide range of source-detector configurations. Most of the work presented here is 

in the form of parametric comparisons, discussions of how results change with shifts 

in problem parameters. Since the two codes do not share certain assumptions, 

differences will be evident; the parametric comparisons are intended to demonstrate 

the causes for disagreement.

The first problem of this set was chosen from the reports on MicroSkyshine 

(Fa87, Sh87) and is the class of problem WALLGP is most concerned with. In this 

situation, a 16N point source, emitting 6.13 MeV gamma rays, is one meter from the 

face of a semi-infinite wall of shielding material. A point detector is placed on the 

other side of the wall, at distances up to 800 m from the source. Both the source 

and detector are 0.7 m below the top edge of the wall, as measured parallel to the 

wall face, and the axis between the source and detector is perpendicular to the wall. 

For one case, no shielding is above the source, and in the second, a concrete shield 

30 cm thick rests on the top of the wall and extends over all space on the source side 

of the wall. The air medium has a density of 1.25 mg/cm3, while concrete shielding, 

if used, has a density of 2.13 g/cm3. For purposes of accuracy, the problem was run 

by WALLGP using a mean free path cutoff of 40 mfp and an error criterion of 0.005 

(0.5% error in the result).

The dose estimates obtained from MicroSkyshine and ."WMLGP are 

illustrated in Fig. 4-9. The results of the single-scatter code G3 are also shown. As
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Fig. 4-9. Comparison of dose est;mates computed by MicroSkyshine, G3 and 
WALLGP. A 16N point source is located 1 m behind a wall in an infinite air 
medium, with the source and detector on a line normal to the wall and 0.7 m below 
its top edge. Where a concrete shield is present, it rests on the top of the wall and 
extends over the source, at a right angle to the wall.
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mentioned in the MicroSkyshine report (Fa87), G3 cannot account for buildup 

effects in the overhead shielding, and seriously underpredicts the detector response 

in all cases involving overhead shielding. This is evident in the figure, where G3 

results for the case of 30 cm of overhead shielding are below values of both 

MicroSkyshine and WALLGP. The point-kernel code WALLGP consistently 

computes a significantly lower exposure than MicroSkyshine over the entire 

measurement baseline; since MicroSkyshine is intentionally conservative, this is not 

surprising. The difference of WALLGP ranges from 20% below MicroSkyshine 

results at the extreme distances to 50% below MicroSkyshine at a source-detector 

distance of 100 m. The presence or absence of the concrete shield does little to 

change this disagreement, suggesting that it is not involved.

Three causes for the disagreement are evident. The first was discussed in the 

comparisons of SILOGP and MicroSkyshine, but did not cause difficulties with 

SILOGP. To account for photons which scattered from the walls of the silo during 

the benchmark experiment and contributed to measured dose, MicroSkyshine uses 

the silo, walls, or other shielding only to collimate the photon source. Only line 

beams which do not pass through the silo or wall are included by MicroSkyshine in 

computing dose; response from the entire beam is included, even from those photons 

which would scatter behind the wall or within the silo and pass through the 

obstruction to reach the detector (Fa87). SILOGP makes a similar approximation 

to produce results closer to the benchmark measurements. WALLGP does not 

compute dose using gamma rays which must pass through the wall, however; 

photons which scatter from the wall face are much less likely to contribute to 

detector doie than photons which reflect from the of the silo, and the 

approximation is not as helpful. Figure 4-10 is a graphic comparison of the
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Fig. 4-10. Comparison of the regions of space in the wall geometry in which 
WALLGP and MicroSkyshine allow photons to undergo their first scatter. In 
WALLGP, the point of scatter must have a clear path to both the source and 
detector. In MicroSkyshine, line beams from the source must not intersect the wall, 
and photons may scatter anywhere along a line beam, including points obstructed 
from the detector.
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scattering zone of WALLGP with the approximated scattering zone of 

MicroSkyshine, showing the areas behind the wall where the photon is allowed to 

scatter for the first time. MicroSkyshine's overpredictive results should be higher 

than those of WALLGP, since MicroSkyshine makes the approximation in all 

problems, including the wall case.

The second cause of disagreement is pair production. MicroSkyshine has 

included annihilation photons in its response functions (Sh87), while WALLGP 

ignores pair production. For 6.13 MeV photons, the pair production cross-section is 

not negligible, and WALLGP can be expected to underestimate the detector 

response to a 16N source. The third possible cause for a difference in results from 

WALLGP and MicroSkyshine is the deviation of the fitted response function curves 

used in MicroSkyshine from the point kernel data used to produce the fits. Shultis 

and Faw (Sh87) report adequate fits with the coefficients at 5.5 MeV and 6.5 MeV, 

from which responses to 6.13 MeV photons are computed; the largest deviation of 

the fitted formulas from the data is under 17%. If the formulas tend to overpredict 

the original point-kernel data, and those data agree well with the point-kernel 

results of WALLGP, this would combine with the inclusion of pair production to 

widen the disagreement of the two codes. MicroSkyshine would be likely to 

overpredict, while WALLGP, because of its neglect of pair production, 

underpredicts.

The next comparison between the two programs is presented in Table 4-2. 

The source, detector and wall are configured as they were for the problem of Fig. 

4-9, except that the detector remains at 400 m from the source, and the energy of 

source photons is varied from 1.0 to 8.0 MeV The .wo programs diverge as the 

source energy increases, and at 8 MeV, MicroSkyshine reports almost double the
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Table 4-2. Comparison of detector responses computed by the codes 
MicroSkyshine and VALLGP with changes in source energy. Values of 
exposure per photon are presented for a point source placed 1 m behind a 
semi-inf inite wall and 0.7 m below the top of the wall. The detector 
lies 399 m from the wall face opposite the source, and 0.7 m below the 
top of the wall. The source-detector axis is normal to the wall. Air 
density is 1.25 mg/cm3; concrete density is 2.13 g/cm3. All VALLGP 
results were obtained using a convergence criterion of 17. and a cutoff 
distance of 40 mfp.

Normalized exposure (R/photon)

Source energy Computed by Computed by Percent difference
(MeV) MicroSkyshine VALLGP from MicroSkyshine

No overhead shield

1.0 4.204(-22
2.0 4.785(- 22
3.0 4.755 (-22'
4.0 4.732(- 22
5.0 4.746(-22
6.0 4.823(- 22
7.0 4.854(- 22
8.0 4.888 (-22;

cm concrete shield

1.0 1.264(- 23
2.0 -3.497(- 23
3.0 5.046(- 23
4.0 6.067(- 23
5.0 6.676(-23
6.0 7.420(- 23
7.0 7.746(- 23
8.0 8.017(-23

3.606(- 22) -14.2
4.011(-22) -16.2
3.816(-22) -19.7
3.497(-22) -26.1
3.204(- 22 -32.5
2.936(-22) * -39.1
2.715(-22) -44.1
2.493 (-22) -49.0

1.071(- 23) -15.3
2.795 (-23) -20.1
3.925(-23) -22.2
4.479(- 23) -26.2
4.656(- 23) -30.3
4.616(- 23) -37.8
4.462(- 23) -42.4
4.248 (-23) -47.0

*4.204(-22) = 4.204x10-22
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exposure that WALLGP computes. One obvious reason is pair production: 

MicroSkyshine includes annihilation photons, WALLGP does not. The uncertainty 

in WALLGP would be expected to increase as energy and the pair production 

cross-section increase. The effects of the "transparent wall" approximation made 

by MicroSkyshine are difficult to judge; the energy dependence of the dose due to 

photons which "pass through the wall" is not known. The third cause of 

disagreement, the deviation of MicroSkyshine's fitted response functions from the 

point-kernel data, may have an influence; the fits improve, however, as source 

energy increases, while the agreement of WALLGP and MicroSkyshine does not 

improve. The author feels that in this problem, WALLGP shows a serious 

deficiency in not including pair production. In its current form, it should be used 

with caution at higher source energies.

Another problem parameter which greatly affects dose from the source is the 

height of the wall between source and detector. WALLGP and Microskyshine were 

applied to a series of problems identical to those in Table 4-2, except that the 

source photons are restricted to 1 MeV, and the height of the wall above the source 

and detector is varied from 0.01 mm to 200 m. The exposures per photon computed 

by MicroSkyshine and WALLGP are compared in Table 4-3. The source energy of 

1 MeV was chosen to eliminate errors in WALLGP from pair production. As would 

be expected, disagreement is largest for the highest walls because WALLGP does 

not include photons which scatter behind the wall. For the 200 m wall results,

MicroSkyshine responses are nearly two orders of magnitude above those of
♦

WALLGP. Where the wall height is negligible, there are much smaller differences 

in the computed exposures; the disagreements are less than 15%, smaller than some 

deviations of the fitted response functions in MicroSkyshine. The prominent cause
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Table 4-3. Comparison of detector responses computed by the codes 
MicroSkyshine and VALLGP with changes in wall height. Values of 
exposure per photon are presented for a point source of 1.0 MeV photons 
placed 1 m behind a semi-infinite wall. The detector lies 399 m from 
the wall face opposite the source, and the source-detector axis is 
normal to the wall. The wall height equals the vertical distance from 
the top of the wall to either the source or detector. Air density is 
1.25 mg/cm3; concrete density is 2.13 g/cm3. All VALLGP results were 
obtained using a convergence criterion of IX and a cutoff distance of 
40 mfp.

Normalized exposure (R/photon)

Vail height Computed by Computed by Percent difference
(m) MicroSkyshine VALLGP from MicroSkyshine

No overhead shield

0.00001 2.861 (-21
0.01 2.736 (- 21
0.1 1.977 (-21
0.7 4.204(-22
1.0 2.761(- 22
5.0 9.903 (- 23

10. 8.754(- 23
50. 7.069(-23

100. 6.603(- 23
200. 6.427(- 23;

cm concrete shield

0.00001 1.344 (- 23
0.01 1.344(- 23'
0.1 1.344(- 23'
0.7 1.264(-23
1.0 1.087(- 23
5.0 3.736(- 24

10. 2.955(- 24
50. 2.531(- 24

100. 2.250(- 24
200. 2.080(- 24

*2.861(-21) = 2.861x10-21

2.608(-21) -8.8
2.492(- 21) - 8.9
1.766(-21) -10.7
3.606(-22) -14.2
2.313(- 22) -16.2
6.840(- 23) -30.9
4.984(- 23) -43.1
1.341 (-23) -81.0
3.779 (-24) -94.3
3.456(-25) -99.5

1.157(- 23) -13.9
1.157(-23) -13.9
1.155(- 23) -14.1
1.071(- 23) -15.3
9.062(- 24) -16.6
2.987(- 24) -20.0
2.142(-24) -27.5
7.714(- 25) -69.5
2.675 (-25) -88.1
2.951(-26) -98.6
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of disagreement in these cases is the following approximation made by 

MicroSkyshine: gamma rays which undergo their first interaction behind the wall 

from the detector contribute to measured dose, and the contribution may be found 

by treating the interaction point as a source of scattered photons and ignoring 

shielding effects of the wall.

Finally, Table 4-4 presents the results of WALLGP and MicroSkyshine for 23 

configurations, grouped according to the parameter which varies from the base value 

shown in the first line. The purpose of this compilation is to describe the behavior 

of the responses as each aspect of the situation changes. For instance, as the 

detector is moved parallel to the wall, increases; the source-detector separation 

increases, and both codes compute decreasing absorbed dose rates, as one would 

expect. As ys or yd increases, the wall presents more shielding and decreases the 

solid angle of directions from the source or detector which are not blocked; both 

MicroSkyshine and WALLGP report decreasing absorbed doses as these quantities 

increase. Both programs also confirm that increasing overhead shield thickness 

substantially reduces dose, as one would expect after reviewing the results of the 

benchmark experiment.

The two codes disagree on the behavior of detector response with changes in 

source energy. As the energy of source gamma rays increases, MicroSkyshine 

predicts response will drop until the pair production effect becomes noticeable, then 

predicts an increase in dose as photon energy and (/i/p)pP increase. WALLGP, 

which considers only Compton scattering effects, computes responses which 

continuously decline with increasing source energy and a dropping Compton 

cross-section. Table 4-2 reveals sinr.lar patterns for a different geometry; in this 

case, as then, WALLGP is proven to be flawed at higher energies because it neglects
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Table 4-4. Parametric studv of detector responses computed by the codes 
MicroSkyshine and VALLGP. Values of air kerma are presented for changes 
in source energy, position of source and detector, thickness of the 
overhead concrete shield, and air density. In all cases, concrete 
density is taken as 2.35 g/cm3. Percent differences are the difference 
of WALLGP values from MicroSkyshine results.

Normalized air kerma 
(rad/photon)

E xs Xd ys yd Zd t p&ir - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7,
(MeV) (m) (m) (ra) (m) (m) (m) (g/cm3) MicroSky. VALLGP diff.

1.25 3 100 3 3 10 0.10 1.2 6.050(-21)* 3.3364(-21) -44.9

1.25 3 100 3 3 0 0.10
1:25 ' 3 100' 3 3 30 0.10
1.25 3 100 3 3 100 0.10
1.25 3 100 3 3 300 0.10

1.2 e.081(-21)
1.2 5.813(-21)
1.2 3.931 (-21)
1.2 5.945(- 22)

3.3531(- 21) -44.9 
3.2123(-21) -44.7 
2.2402(-21) -43.0 
4.1111(- 22) -30.8

2.25 3 100 3 3 10 0.10
5.25 3 100 3 3 10 0.10
7.25 3 100 3 3 10 0.10

1.2 5.001(- 21
1.2 4.415(-21
1.2 4.635 (-21

3.1514(-21) -37.0 
2.1763(-21) -50.7 
1.7481(-21) -62.3

1.25 3 100 1 3 10 0.10
1.25 3 100 10 3 10 0.10

1.2 9.737(-21) 6.0801 (-21) -37.6
1.2 3.178(-21) 1.4633(-21) -54.0

1.25 3 100 3 -1 10 0.10
1.25 3 100 3 1 10 0.10
1.25 3 100 3 10 10 0.10

1.2 6.416 
1.2 6.230 
1.2 5.454

-21) 3.4972 
‘-21) 3.4226 
-21) 3.0108

-21) -45.5 
-21) -45.1 
-21) -44.8

1.25
1.25

3 10 3 3 10 0.10
3 1000 3 3 10 0.10

1.2 4.853(- 20) 2.6189(-20) -46.0
1.2 1.969(-25) 1.8563(-25) - 5.7

1.25 1 100 3 3
1.25 10 100 3 3
1.25 100 100 3 3

10 0.10 1.2 3.218
10 0.10 1.2 9.263
10 0.10 1.2 2.858

-21) 1.7680(-21) -45.1
-21) 5.2014(-21) -43.8 
-21) 1.7330(-21) -39.4

1.25 3 100
1.25 3 100

3 3 10 0.10
3 3 10 0.10

1.1 5.856(-21) 3.2403(-21) -44.7
1.3 6.189(-21 3.4152(-21) -44.8

1.25 3 100 3 3 10 0.0
1.25 3 100 3 3 10 0.01
1.25 3 100 3 3 10 1.00

1.2 1.449(- 20) 8.4088(- 21) -42.0
1.2 1.402 (-20) 7.8479(- 21) -44.0
1.2 5.180 -26) 3.6336(-26) -29.9

*6.050(-21) = 6.050x10-21
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pair production. MicroSkyshine is more likely to predict the true response in such 

situations, although it can overpredict because of the "transparent wall" 

approximation mentioned earlier.

Another pattern revealed by MicroSkyshine and WALLGP occurs as xs is 

changed, as the source is moved toward or away from the wall. The highest dose 

occurs when the source is located 10 m from the wall; moving the source to a 

position 3 m or 1 m from the wall reduces the dose, because the "shadow" cast by 

the wall in the direction of the detector has been enlarged. In the other direction, 

moving the source out to 100 m from the wall also reduces the dose, but by 

attenuation, not by the shielding effect of the wall. Both programs behave properly 

in this set of problems, in a manner which makes intuitive sense.

The behaviors of the results of the two programs are similar in the parametric 

comparisons, but the values themselves are significantly different. Typically, the 

MicroSkyshine results are one and one-half to two times the doses computed by 

WALLGP. For most of these cases, pair production is negligible; the lack of fit of 

the response functions used by MicroSkyshine is not enough to help explain the 

discrepancy. The wall height is small compared to the source-detector distance, yet 

the MicroSkyshine approximation of scatters behind the wall could be a cause of 

disagreement. There may be other factors contributing to the difference, also; the 

point-kernel calculations which produced the MicroSkyshine response functions may 

differ markedly from the calculations performed by WALLGP, not as assumed.

In summary, both MicroSkyshine and WALLGP are likely to be inaccurate in 

estimating detector responses to a point source of gamma rays behind a wall. 

MicroSkyshine compute do-^e from photons which scatter behind the wall f-om the 

detector, neglecting the shielding effects of the wall and applying buildup to a direct
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path from the scattering volume to the detector. While this approach in a silo 

simulation compensates for photons which reflect from the interior walls of a silo as 

their first scatter, it may not be appropriate in the wall geometry. Gamma rays 

which reflect off the wall in a real situation will be directed away from the detector 

and should contribute little to measured dose. WALLGP should not be trusted in 

cases involving photon sources of moderate or high energies, for it neglects pair 

production, and annihilation photons are substantial for situations involving 

high-energy photons, such as 16N sources. If a wall in a real situation does not 

absorb source photons well and the MicroSkyshine approximation is appropriate, 

WALLGP will underestimate still further, since it only considers dose from 

photons scattering in full view of the detector.
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5.0 CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The two goals of this work center on the two computer codes written for 

gamma-ray skyshine analysis. The first objective was to test modifications made to 

the point-kernel code of Roseberry, which computes the exposure or dose from a 

point gamma-ray source placed within a collimating silo. The second goal was to 

validate a similar code written for the ideal problem of a point gamma-ray source 

placed behind a semi-infinite wall. While SILOGP and WALLGP are based on the 

same point-kernel skyshine model, SILOGP appears to be much more reliable in the 

cases studied and agreed more closely with silo geometry reference values and other 

skyshine codes. Benchmark experimental data for the wall problem are not 

available, so that a definitive comparison cannot be made for WALLGP as it was 

for SILOGP. Yet, deficiencies are obvious in the code for the wall problem.

The first code, SILOGP, involved three major changes from Roseberry's code 

SKY, along with an approximation intended to correct for a non-ideal experimental 

condition. A Gauss quadrature routine and updated photon interaction data were 

slight improvements over SKY; the geometric-progression buildup factors which 

were introduced made a noticeable change in results, and are widely regarded as 

more accurate. To account for photons which can scatter within the confines of the 

silo before leaving it, the upper limit of integration over the supplement of the 

scattering angle was altered to simulate such photons in the dose computations. 

SKY did nothing to imitate this interior scattering.

In comparisons to the benchmark experiment, this revised point-kernel code 

gave results with accuracy comparable to other numerical methods tested. Its best 

performance is for those geometries involving wide angles of collimation, where the
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source is relatively near the top of the silo. The ANSI Reference Problem and the 

27r problem of Faw and Shultis (Fa87) were examples of this, and proved that the 

model upon which the code is based is sound in this extreme case. Close to the 

source silo, the results of the code SILOGP should not be relied on, since it regularly 

underpredicts there. The approximation made to simulate scattering within the silo 

did not correct this problem entirely; the new geometric progression buildup factors 

may make the underprediction worse than it was with SKY. Farther from the source 

silo, SILOGP overpredicts, but within the range of distances considered, the 

difference is not extreme, and a conservative approach would demand overprediction 

rather than underprediction. In the presence of an overhead concrete shield, 

SILOGP produces more reliable results than many codes, because of the buildup 

approximation in concrete first made by Roseberry.

One improvement which can yet be made to this code is the inclusion of pair 

production interactions. While SILOGP did not show a tendency to underpredict 

where high-energy source photons were involved, the pair-production effect should 

be added for completeness, and the process can be added to the code easily. A 

second possibility suggested by Roseberry (R08O) is that new buildup factors be 

computed for anisotropic sources, or for detectors at or near an interface between 

the air and the ground. All buildup factors currently available are for isotropic 

point sources and point detectors in infinite media only. While Shultis and Faw 

(Sh87) claim that adapted buildup factors are not necessary, such data would be 

well suited for this application and might reduce the overprediction of SILOGP at 

large distances. The computations required are beyond the scope of this work, 

however, and not a priority.
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WALLGP yields very reliable results in problems involving very low walls, 

such as the ANSI Standard Problem. As with SILOGP, the agreement of WALLGP 

with reference values validates the underlying theoretical model in the limiting case 

of 27r geometry. There appears to be no tendency to overpredict or underpredict 

with distance, as there is with SILOGP; the results for sources shielded by overhead 

concrete are not seriously off, as they tend to be with G3. Still, with no 

experimental results available for comparisons, no definitive conclusions can be 

drawn for the problems WALLGP is intended for: a point source of gamma rays 

separated from detectors by a wall of shielding material of non-negligible height.

One difficulty in WALLGP made evident in this work involves the numerical 

integration of the exposure equation. The code encounters problems when the 

source and detector are relatively close together; it was discovered that increasing 

the mean free path cutoff criterion will lower the resulting estimate of detector 

response significantly. SILOGP shows no such difficulty, although it uses the same 

quadrature subroutine. The probable cause of this is the cylindrical coordinate 

system chosen for WALLGP; SILOGP uses a different coordinate system, based 

entirely on angles. Although the two codes integrate the same exposure rate 

equation, the different coordinate systems require terms to be placed in a different 

order, and the expressions integrated by SILOGP and WALLGP take on different 

forms.

Figure 5-1 presents the values of the /?, 0, and e integrands evaluated by 

SILOGP over the regions of integration, for a typical problem. Gauss-Legendxe 

quadrature can easily integrate over these functions, and the adaptive quadrature 

used by SILOGP should simply refine the estimate of the areas under these curves. 

Figure 5-2 presents the values of the r, z and <j) integrands evaluated by WALLGP
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0 1 
relative value of independent variable

Fig. 5-1. Normalized graphs of the functions integrated by SILOGP. Each 
integrand is plotted for a single source-detector geometry. The abscissa of each 
integrand curve is normalized to a value of zero for the minimum value of 0, 9 or e, 
and a value of one for the maximum value of the variable. The value of the 
integrand is normali^d in che same manner. The innermost integration is over the 
angle e; this integrand is presented for a constant value of 0 and 9. The middle 
integrand, dependent upon 9, is graphed for constant 0. The outer integrand is 
dependent only upon 0.
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relative value of independent variable

Fig. 5-2. Normalized graphs of the functions integrated by WALLGP. Each 
integrand is plotted for a single source-detector geometry. The abscissa of each 
integrand curve is normalized to a value of zero for the minimum value of r, z or 0, 
and a value of one for the maximum value of the variable. The value of the 
integrand is normalized in the same manner. The innermost integration is over the 
angle 0; this integrand is presented for a constant value of r and z. The middle 
integrand, dependent upon z, is graphed for constant r. The outer integrand is 
dependent only upon r.
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over their regions of integration. The r integrand asymptotically approaches zero 

quickly, and this outer integral could present problems for conventional 

Gauss-Legendre quadrature if the upper limit were extended too far. The adaptive 

Gauss quadrature in use here performs separate integrations over successively 

smaller sections of the entire region of integration until the change in the overall 

result is below the chosen level. It is conceivable that even this method would 

underestimate the integral; if the upper limit is extended too far, the large values of 

the integrand at low values of r could be ignored or not accounted for properly.

Two approaches might be taken to alleviate this problem. The first is to 

abandon the cylindrical coordinate system in favor of the angular coordinate system 

used in SILOGP. The limits of integration for the wall geometry were developed 

first in the angular coordinate system, but proved to be very cumbersome and 

dependent on many variables in the source-detector geometry. Using the angular 

system may provide integrals like those in SILOGP, expressions easier to integrate 

using Gauss-Legendre quadrature. The second option is to complement the 

quadrature weights and zeros in the current program with weights and zeros from a 

different method. For instance, Gauss-Laguerre quadrature approximates a given 

function using Laguerre polynomials, which are variations of exponential functions 

(Sh88, Ho75). Ideally, the innermost integrals over <jt and z would be evaluated 

using weights and zeros from Legendre polynomials, then the outer r integration 

would be performed with Laguerre weights and zeros. This may prove to be the 

more efficient option, if further study of the program is conducted.

The MicroSkyshine code provides most of the data for comparisons with 

WALLGP, and any weaknesses in MicroSkyshine, such as the errors in parametric 

fits to reference data, make judgments of the accuracy of WALLGP difficult. One
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obvious shortcoming of the present work pointed out by MicroSkyshine is the 

neglect of pair production from high-energy gamma rays. Although most of the 

codes used for comparisons did not compute dose from annihilation photons, 

MicroSkyshine results show that the decision to exclude them could ruin computed 

results in the event that pair production dominates photon interactions. The author 

strongly recommends that pair production be included in WALLGP for future work, 

to improve computed responses from sources of high-energy photons.

Data on the wall geometry are rare, and more studies of this problem may be 

beneficial. A benchmark experiment involving a gamma-ray source behind a wall 

would provide the best comparison by far, and could reveal other problems in 

WALLGP beyond those of pair production and the integration method. For 

example, it could show the importance of gamma rays which penetrate the shield 

wall, and perhaps validate the "transparent wall" approximation of MicroSkyshine. 

Because experiments of this type are rare and expensive, use of widely accepted 

numerical data will probably be necessary.

In summary, SILOGP and WALLGP should both be modified to include pair 

production, and the method of integration in the code for the wall problem should 

be reconsidered. This author feels that SILOGP is accurate and useful for the 

prediction of dose from a point gamma-ray source, but that WALLGP should not 

be relied upon, and that modifications to WALLGP and more conclusive 

comparisons should be performed before it is used in practical situations.
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APPENDIX A

The Computer Program SILOGP Developed in this Work 

for the Problem of a Point Gamma-Ray Source in a 

Cylindrical Silo

(Some subroutines required by this program are in Appendix C.)
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c ....................................................................................................................
C SILOGP FORTRAN, V. 2.6, AUGUST 1988
C .........................................................
c
C The prograa SILOGP calculates the dose rate frota a point isotropic 
C garnaa ray source collimted into a cone about the vertical and 
C shielded by an overhead concrete slab.
C
C The method is docuaented in the paper "Point Kernel Calculation of 
C Skyshine Exposure Rates," Nucl. Sci. Engg., 80, 334-338 (1982), by 
C N. L Roseberry and J. Kenneth Shultis. The program was written by 
C N. L. Roseberry, (M.S. thesis, Kansas State University, 1980) and 
C revised by R. E. Faw, 1985, and D. L. George, 1987-88.
C
C SILOGP integrates the singly scattered gamne-ray fluxes over a 
C spatial region encompassing up to 40 mean free paths in air for the 
C total path length, including both air and a concrete shield. Inte- 
C gration is performed by triple Gaussian quadrature, using an adaptive 
C method of integration. Interaction coefficients are taken from 
C Hubbell, J. H., "Photon Mass Attenuation and Energy-Absorption 
C Coefficients from 1 KeV to 20 MeV," Int. J. Appl. Radiat.
C Isot., 33, 1269-1290, 1982. Gamne-ray exposure buildup 
C factors are evaluated using the geometric progression fitting 
C function and data as reported in Harima, et al., "Validity of 
C the Geometric Progression Gamna-Ray Buildup Factors," Nucl.
C Sci. Eng. 94, Sept. 1986. Log-log interpolation is used for 
C buildup factors and interaction coefficients. Conversion factors 
C for prescribed dose equivalents are taken from standard 
C ANSI/ANS-6.6.1-1977.
C
C The upper limit on source energy is 10 MeV. An error state arises 
C if energies of scattered photons fall below 0.02 MeV.
C
C In version 2.6, all geometry data is received from input files. The 
C first record of the file lists source energy, angle of collimation,
C concrete thickness, and concrete and air densities. The remainder 
C of the file consists of an unformatted list of source-detector 
C distances (m). Data output is via the console and a named output 
C file. Integration is performed with an error tolerance of 2%, and 
C cutoff values for distances in air and/or concrete are 40 mfp.
C
C Results are given as the dose rate per unit source strength,
C multiplied by the square of the source-detector distance (m)
C and divided by the specified full-angle of collimation (sr).
C
C The following subprograms must be linked for execution:
C
C SILOGP THE MAIN PROGRAM
C RESG GAMMA RAY RESPONSE FUNCTIONS
C GMUHUB GAMMA RAY INTERACTION COEFFICIENTS
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

BUGf> BUILDUP FACTORS (GEOMETRIC PROGRESSION FORMULA)
GAUSS >
GAUS9 > GAUSSIAN QUADRATURE ROUTINES 
GAUS10 }

THE FOLLOWING INPUTS ARE REQUIRED FROM THE INPUT FILE:

FIRST RECORD:
E SOURCE ENERGY (MEV)
DANG FULL ANGLE OF COLLIMATION (DEG)
T CONCRETE THICKNESS (M)
RC CONCRETE DENSITY (G/CM|3)
RAA AIR DENSITY (MG/CM|3)
NRESP TYPE OF RESPONSE FUNCTION:

1 * EXPOSURE
2 > AIR KERMA
3 = WATER KERMA
4 « ANSI PRESCRIBED DOSE EQUIVALENT 

SUBSEQUENT RECORDS:
D SOURCE-DETECTOR DISTANCE (M)

IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION X(20)
CHARACTERS FNAME 
CHARACTERS A(8)
EXTERNAL TING3
C0MM0N/$1/T,CMU,E/S2/THS,D,US,ES,U/S4/THA,8,KLUNK/S5/NAA,

&NBB,RA,P!,CON,III
DATA A/'Exposure','Air Kerma1,'Water Kerma','Dose Equivalent', 

&'(ni|2 R/sr)',2*,(m|2 rad/sr)','(m|2 rem/sr)'/
PI=OACOS(-1.000)

C..................................
C Read Input Data
C..................................
C WRITE(*,100)
C 100 FORMAT(' INPUT FILE NAME - ')
C READ(*,101) FNAME
C 101 FORMAT(A)
C 0PEN(8,FILE-FNAME)

0PEN(8)
C WR1TE(*,102)
C 102 FORMAT(' OUTPUT FILE NAME - ')
C READ(*,101) FNAME
C 0PEN(9,FILE=FNAME,STATUS*'UNKNOWN')

0PEN(9,STATUS*'UNKNOWN')
READ(8,*) E, DANG, T, RC, RAA, NRESP 
IF (NRESP.EQ.1) THEN 

NAA = 1
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NBB * 1

ELSE IF (NRESP.EQ.2) THEN 
NAA « 2 
NBB > 1

ELSE IF (NRESP.EQ.3) THEN 
NAA * 2 
NBB > 2 

ELSE
HAA * 3 
NBB * 1 

END IF
C...........................................................
C Calculate Angles of Collimation
C...........................................................

RANG > DANG*PI/180.DO
STER ■ 2.D0*PI*(1.DO-DCOS(RANG/2.DO>)

C...........................................................
C Begin Writing Output
C...........................................................

WRITE (9,109) E,DANG,STER,RAA,T,RC 
WRITE (*,109) E,DANG,STER,RAA,T,RC

109 FORMATS CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE1,//
&• Photon Energy (MeV) ................  '/PS.3,/,
&• Full Angle of Collimation (deg) ......  ',F8.3,/,
&' Solid Angle of Collimation (sr) ...... ',F8.3,/,
&' Air Density (mg/eu.cm) .............. ',F8.3,/,

Concrete Thickness (m) .............. ',F8.3,/,
&' Concrete Density (g/cu.cm) ...........  ',F8.3,/)
WRITE(9,110) A(NRESP),A(NRESP+4)
WRITE(*,110) A(NRESP),A(NRESPH)

110 FORMAT(1 SOURCE-DETECTOR AREAL DENSITY NORMALIZED ',4,/,
&• DISTANCE (M) (G/CM|2) ',A,/)

C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C Initialize Parameters in MKS Units 
C RC * concrete density, g/m**3
C CMU * attenuation coefficient of source photons in concrete, 1/m 
C RA > air density, fl/e**3
C U * attenuation coefficient of source photons in air, 1/m 
C THS * minimum value of theta allowed by collimation
C...........................................................

RC*RC*1.00+06
CMU*GMUHU8(E,1,3)*RC*1.D-4
RA»RAA*1.00+03
U*GMUHUB(E,1,1)*R/*1.D-4
THS«(PI-RANG)/2.D0
BMAX=PI-THS
KLUNK»0

C...........................................................
C Read Input Data for Source-Detector Distance (m)
C.................................................-.........
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20 READ <8,*,END*11) D

C...........................................................
C Conversion factor * electrons per gram of air * source-detector
C distance * air density / (2*pi) / solid angle of collimation
C ...........................................................

CON>4.7848D+22*D*RA/STER
C...........................................................
C BMN « miniaua value of beta determined froai mean free path cutoff
C...........................................................

BMN»BMIN(RA)
IF (BMN.LT.BMAX) THEN

CALL GAUS8(TING3,BMN,BMAX,2.D-02,XSUM,IERR3)
ELSE

(CLUNKS 
XSUN=0.000 

END IF
IF (IERR3.NE.1) KLUNK=3 
DM-D*RA/1.00 04

C...........................................................
C Write Output
C ...........................................................

URITE(*,111) D,DM,XSUM,KLUNtC 
• URITE(9,111) D,DM,XSUM,KLUNK

111 FORMAT(F8.2,10X,F8.3,7X,E10.4(7X,'ERROR CODE:',12)
GO TO 20 

11 STOP 
END

C -..........................................................
C FUNCTION TINGS EVALUATES THE BETA (SCATTERING ANGLE) INTEGRAND
C...........................................................

FUNCTION TING3(AUG)
INPLICIT REAL*8 <A-H,0-Z)
EXTERNAL TING2
COMMON/SI/T,CMU,E/S2/THSfD,US,ES,U/S4/THA,B,KLUNK/S5/NAA( 

&NBfi,RA,PI,CON,111 
E$«SCATEN(E,AUG)
UEN«RESG(NAArNBB,ES,111)*1.D-4 
US*GMUHUB(ESr1,1)*RA*1.D-4 
SIGs$IGMA(E,AUG)
THLsPI-THS
IF (THL.GT.(Pl-AUG)) THL^Pl-AUG 
B«AUG
CALL GAUS9(TING2,THS,THL,2.D-02,TANS2,IERR2)
IF (IERR2.NE.1) KLUNX=2
PARTN*aIG*UEN*TANS2
TING3=C0N*PARTN
RETURN
END

C...........................................................
C FUNCTION TING2 EVALUATES THE THETA INTEGRAND
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c.............................................................................................

FUNCTION TING2 (THETA)
INPLICIT REAL*8 <A-HfO-Z)
EXTERNAL TINfil
C0NM0N/Sl/T,CNU(E/S2/THASfDfUSlES,U/S4/THA(BrXLUNK
AR»0*(PCOS(THETA)+OSIN(THETA)/OTAN(B))*U
BR«0*DSIN(THETA>/DSIN(B)*US
EP*EPF(TNETA)
THA-THETA
CALL GAUS10(TING1,0.D+O0,EP,2.0-02,TAHS1,IERR1)
IF (IERR1.NE.1) KLUNK-1
TING2-BUGP(1,ES,BRrIERR)*DEXP(-AR-BR)*TANS1
RETURN
END

C...........................................................
C FUNCTION TING1 EVALUATES THE EPSILON INTEGRAND
C...........................................................

FUNCTION TING1 (EPSILN)
INPLICIT REAL*8 (A-H,0-Z)
COMMON/SI/TtCNUfE/S2/THAS,0,US,ES,U/S4/THA,B,KLUNK 
AG-T*CHU/DSIN(THA)
A-AG/DCOS(EPSILN)
TINGl-BUGP(3,E,A,IERR)*DEXP(*A)
RETURN
END

C...........................................................
C FUNCTION EPF(THA) CALCULATES THE UPPER LINIT ON THE EPSILON INTEGRAL 
C THA - THETA VALUE IN RADIANS
C - FUNCTION EPF L1H1TS EFP SUCH THAT THE CONCRETE PATH LENGTH <0R- 40
C...........................................................

FUNCTION EPF(THA)
INPLICIT REAL*8 <A'H,0‘Z)
COMMON/SI/T,SNU,E/S2/THSH,D,US,ESfU 
A«DSIN(THSN)/DSIN(THA)
IF (A.GE.1.000) GO TO 10 
EP-OACOS(A)
TEST*T*SNU/DC0S(EP)/DS1N(THA>
IF (TEST.LE.40.0D0) GO TO 15 
A*TEST*DCOS(EP)/40.0D0 
IF (A.GE.I.ODO) GO TO 10 
EP-DACOS(A)
GO TO 15 

10 EP-O.ODO 
15 EPF-EP 

RETURN 
END

C..........................................................
C FUNCTION SCATEN(E,B) CALCUUTES THE SCATTERED GAMMA ENERGY 
C IN MEV AFTER A SINGLE SCATTER.
C E - THE UNSCATTERED GAMMA ENERGY IN MEV



C B a THE SUPPLEMENT OF THE SCATTERING ANGLE UITH RESPECT TO
C THE INCIDENT PHOTON DIRECTION, IN RADIANS
C......................... *...............................

FUNCTION SCATEN (E,B)
INPLICIT REAL*8 (A-H,0*Z)
SCATEN«E/(1 .ODO+E/.511003400*0 .ODO+OCO$(B)>)
RETURN
END

C..........................................................
C FUNCTION SIGNA(E,B) CALCULATES THE KLEIN-NISHINA CROSS*
C SECTION IN N**2
C E » THE UNSCATTERED GANNA ENERGY IN NEV
C B » THE SUPPLEMENT OF THE SCATTERING ANGLE UITH RESPECT TO
C THE INCIDENT PHOTON DIRECTION, IN RADIANS
C..........................................................

FUNCTION SIGNA (E,B)
INPLICIT REAL*8 (A-H,0-Z)
Al=.511003400/E 
P*1.0OO+AL+0COS(B)
SIGMAa3.970387D*30*AL**2/P**2*(AL/P+P/AL-DSIN(B)**2)
RETURN
END

C......................................................... .
C FUNCTION BHIN(R) ESTIMATES THE VALUE OF THE SCATTERING ANGLE FOR 
C UHICH THE TOTAL AIR PATH LENGTH IS 40 NFP
C R > AIR DENSITY IN G/M**3
C .........................................................

FUNCTION BHIN(R)
IMPLICIT REAL*8 <A-H,0-Z>
COMMON/Sl/T,CMU,E/S2/THAS,D,US,ES,U/S4/THA,B,KLUNK 
PI>OACOS (*1.000)
DBaPI/180.0D0 
B*2.0D0*DB 
DO 10 Is1,89 
AG«SCATEN(E,B)
TEST-0*(U/0TAN(B)+GMUHU8(AG,1,1)*R*1.D-4/DSIN(B))
IF (TEST.LE.40.DO) GO TO 20 
B«B+OB 

10 CONTINUE 
DO 15 1*1,89 
AG*SCATEN(E,B)
TEST*0*GMUHUB(AG,1,1)*R*1.0*4 
IF (TEST.LE.40.DO) GO TO 20 
B*8+0B 

15 CONTINUE
WRITE (9,5) D,E 
WRITE (*,5) D,E

5 FORMAT (5X,'THE FUNCTION TO FIND THE MINIMUM VALUE OF BETA1,
A 1 FAILED. DETECTOR - SOURCE DISTANCE IS'^Z^,1 SOURCE1,
B 1 GAMMA ENERGY IS,,F6.3)
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20 BMIN»B-DB 

RETURN 
END



APPENDIX B

The Computer Program WALLGP Developed in this Work 

for the Problem of a Point Gamma-Ray Source Behind a 

Semi-Infinite Wall

(Some subroutines required by this program are in Appendix C.)
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c.............................................................................................
C UALLGP FORTRAN, V. 2.5, 8/8/1988
C...........................................................
c
C THE PROGRAM UALLGP CALCUUTES THE DOSE RATE FROM A POINT ISOTROPIC 
C GAMMA RAY SOURCE SHIELDED BY A SLAB OF PERFECTLY ABSORBING 
C MATERIAL.
C
C UALLGP INTEGRATES THE SINGLY SCATTERED GMMA-RAY FLUXES OVER A REGION 
C OF SPACE ENCOMPASSING A SOURCE, DETECTOR AND SEMI-INFINITE SUB OF 
C PERFECTLY ABSORBING MATERIAL BETUEEN THE TWO POINTS. INTEGRATION 
C IS PERFORMED BY TRIPLE GAUSSIAN QUADRATURE, USING AN ADAPTIVE METHOD 
C OF INTEGRATION.
C
C INTERACTION COEFFICIENTS ARE TAKEN FROM TABULATIONS IN 
C HUBBELL, J. H., "PHOTON MASS ATTENUATION AND ENERGY-ABSORPTION 
C COEFFICIENTS FROM 1 KEV TO 20 MEV," INT. J. APPL. RADIAT. ISOT.,
C 53, 1269-1290, 1982. GAMMA RAY EXPOSURE BUILDUP FACTORS ARE 
C EVALUATED USING THE GEOMETRIC PROGRESSION FITTING FUNCTION AND 
C DATA AS REPORTED IN HARIMA, ET AL., "VALIDITY OF THE GEOMETRIC 
C PROGRESSION GAMMA-RAY BUILDUP FACTORS," NUCL. SCI. ENG. 94,
C SEPT. 1986. LOG-LOG INTERPOUTION IS USED FOR BUILDUP FACTORS 
C AND INTERACTION COEFFICIENTS. CONVERSION FACTORS FOR PRESCRIBED 
C DOSE EQUIVALENTS ARE TAKEN FROM STANDARD ANSI/ANS-6.6.1-1977.
C
C THE UPPER LIMIT ON SOURCE ENERGY IS 10 MEV, DUE TO LIMITED 
C ATTENUATION DATA. THE BUILDUP FACTORS ARE VALID OUT TO 40 MEAN FREE 
C PATHS.
C
C DATA INPUT 1$ ENTIRELY VIA AN INPUT FILE, UHICH PROVIDES A LIST OF 
C POSITIONS OF SOURCE AND DETECTOR UITH RESPECT TO THE UALL (M),
C SOURCE ENERGY (MEV), AIR DENSITY, CONCRETE DENSITY UHEN NEEDED, AND 
C RESPONSE FUNCTION REQUIRED. OUTPUT IS VIA A NAMED FILE. RESULTS 
C ARE GIVEN AS THE DOSE RATE PER UNIT SOURCE STRENGTH.
C
C VERSION 2.5 IS INTENDED TO BE RUN BY AN IBM CMS EXEC FILE CONTAINING 
C FILEDEFS, INSTEAD OF REQUESTING NAMES FOR INPUT AND OUTPUT FILES FROM 
C THE TERMINAL. ALL QUERIES TO THE TERMINAL HAVE BEEN DISABLED. UNIT 
C 10 RECEIVES ONLY OUTPUT DATA, UITHOUT HEADINGS, IN A FORM SUITABLE 
C FOR USE BY PLOTTING PROGRAMS.
C
C ALSO, VERSION 2.5 PUCES A MEAN-FREE-PATH RESTRICTION ON THE 
C LIMITS OF Z; THIS AVOIDS UASTEFUL EVALUATION OF FUNCTIONS IN AREAS 
C OF SPACE MORE THAN CUTMFP FROM THE DETECTOR OR SOURPE.
C
C THE FOLLOWING SUBPROGRAMS MUST BE LINKED FOR EXECUTION:
C
C UALLGP THE MAIN PROGRAM
C RESG GAMMA RAY RESPONSE FUNCTIONS
C GMUHUB GAMMA RAY INTERACTION COEFFICIENTS (HUBBELL)
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C BUGP BUILDUP FACTORS (GEOMETRIC PROGRESSION FORMULA)
C ZLIM >
c PHSPLT > LIMITS OF INTEGRATION
c PHILIM >
c PHI FUNCTION USED BY PHILIM
c GAUSS >
c GAUS9 > GAUSSIAN QUADRATURE ROUTINES
c GAUS10 >
c ERTRAP SUBROUTINE TO END CODE IF GEOMETRY ERROR OCCURS
c
C THE FOLLOWING INPUTS ARE REQUIRED FROM THE INPUT FILE:
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c
C INITIALIZATION 
C

IMPLICIT REAL*8 (A-H,0-Z>
LOGICAL*! BREAK,CFLAG 
CHARACTER*64 FNAME, A<8)
EXTERNAL TING3
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, ODD 
COMMON /ZVARS/ ZMIN, ZMAX, 21, Z2
COMMON/S1/T,CMU,E,U/S2/DEL/S3/NAA,NBB,RA/S4/AR,BR,CR,CUTMFP 
C0MMQN/S6/CFLAG
DATA A/'Exposure','Air Kerma*,'Water Kerma','Dose Equivalent', 
&'(R/S)1,2*'(RAD/S)1,*(REM/S)•/
PI=OACOS(-1.000)

C
C READ INPUT DATA 
C 
C

E SOURCE ENERGY (MEV)
XS SOURCE-WALL DISTANCE NORMAL TO THE WALL (M)
XD DETECTOR-WALL DISTANCE NORMAL TO THE WALL (M)
YS SOURCE DISTANCE BELOW TOP OF UALL (M) (-VE IF ABOVE)
YD DETECTOR DISTANCE BELOW TOP OF WALL (M)
ZD OFFSET OF DETECTOR FROM AN AXIS NORMAL TO WALL THRU

SOURCE (M)
T THICKNESS OF CONCRETE SLAB ABOVE SOURCE AND WALL (M)
RC DENSITY OF CONCRETE (G/CM‘3)
RAA DENSITY OF AIR (MG/CM‘3)
NRESP RESPONSE FUNCTION DESIRED:

1 EXPOSURE (R/S)
2 AIR KERMA (RAD/S)
3 WATER KERMA (RAD/S)
4 DOSE EQUIVALENT (REM/S)

DEL ABSOLUTE ACCURACY DESIRED IN INTEGRATION ROUTINES
CUTMFP MAXIMUM MEAN FREE PATH DISTANCE USED IN COMPUTATIONS 

(CONTRIBUTIONS FROM PHOTONS TRAVELING FARTHER ARE 
IGNORED; 40 MFP ABSOLUTE MAXIMUM)

WRITE(*,100)
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C 100 FORMAT(' INPUT FILE NAME - ')
C REAO<*,101) FNAME 
C 101 FORMAT(A)
C 0PEN(8,FILE-FNAME)

0PEN(8)
C WRITE!*,102)
C 102 FORMAT!• OUTPUT FILE NAME • ')
C READ!*,101) FNAME 
C OPEN!9,FILE-FNAME,STATUS*'UNKNOWN1)

OPEN!9,STATUS*'UNKNOWN')
C WRITE!*,103)
C 103 FORMAT!• PLOT DATA FILE NAME • ')
C READ!*,101) FNAME 
C OPEN!10,FILE*FNAME,STATUS*•UNKNOWN1) 

OPENCIO.STATUS-'UNKNOWN1)
20 READ(8,*,END*11) E,XS,XD,YS,YD,2D,T,RC,RAA,NRESP,DEL,CUTMFP 

IF (NRESP.EQ.1) THEN 
NAA « 1 
NBB * 1

ELSE IF (NRESP.EQ.2) THEN 
NAA * 2 
NBB * 1

ELSE IF (NRESP.EQ.3) THEN 
NAA * 2 
NBB * 2 

ELSE
NAA * 3 
NBB * 1 

END IF 
CFLAG*.TRUE.

C
C ECHO INPUT 
C

URITE(*,*) ...................... •
URITE(9,*) ...................... ■
WRITE (9,109) E,RAA,RC,CUTMFP,DEL*100. 
WRITE (*,109) E,RAA,RC,CUTMFP,DEL*100. 

109 FORMAT(' CALCULATION OF SKYSHINE GAMMA
&' Photon Energy (MeV) .............
&' Air Density (m9/cu.cai) ..........
&' Concrete Density (9/cu.as) .......

RAY NORMALIZED RESPONSE1,// 
... '.F8.3,/,
... 1,F8.3,/,
... 1,F8.3,//,

&' Mean Free Path Cutoff Criterion ...... ',F8.3,/,
&' Percent Error of Result .............  ',F8.3,/)
WRITE(9,110)
WRITE(*,110)

110 FORMAT(' X(S) X(D) Y(S) Y(0) Z(D) T
&/,' (m> (m) (m) (m) (m) (m) •)
URITE(*,111) XS,XD,YS,YD,ZD,T 
WRITE(9,111) XS.XD.YS.YD.ZD.T

111 FORMAT(6(F8.2,2X),/)
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IF (E.GT.10.) THEN 

WRITE (9,207)
WRITE (*,207)

207 FORMAT (' ***INPUT ENERGY OF •(F8.2,1 MEV IS TOO LARGE***')
GO TO 20

ELSE IF (XS.LE.(0.D+O).OR.)(D.LE.(O.D+0)) THEN 
WRITE (9,202)
WRITE (*,202)

202 FORMAT(' ***IMPROPER GEOMETRY: SOURCE AMD DETECTOR ON SAME SIDE OF 
ft WALL***')

GO TO 20
ELSE IF (YS.LT.(O.DO).AND.T.GT.(O.DO)) THEN 

WRITE (9,205)
WRITE (*,205)

205 FORMAT(' ***IMPROPER GEOMETRY: SOURCE IS ABOVE BOTTOM OF CONCRETE 
&SLAB***•>

GO TO 20
ELSE IF (T.GT.(O.DO).AND.RC.EQ.(O.DO)) THEN 

WRITE (9,210)
WRITE (*,210)

210 FORMAT(' ***CONCRETE SHIELD NOT ASSIGNED A DENSITY***')
GO TO 20

ELSE IF (CUTMFP.GT.40.) THEN 
WRITE (9,206)
WRITE (*,206)

206 FORMAT (' ***CUTOFF VALUE OF ',F8.2,' MFP IS TOO LARGE***')
GO TO 20 

ELSE 
END IF 

C
C CONVERT TO CYLINDRICAL COORDINATE SYSTEM
C H= height of wait edge above source-detector axis = minimun r
C THETA » angle of rotation between X and X' axes
C PSI - angle of rotation between X' and X" axes
C XSP ■ distance in X' direction froM source to top of wall
C XDP * distance in X' direction fraa detector to top of wall
C DDD * distance separating source and detector
C RMAX - naxiaua value of r 
C

THETA » DATAMUYS - YD) / (XS + XD»
H * YS * DCOS(THETA) - XS * DSIN(THETA)
IF (H.LE.(0.D+0)) THEN 

WRITE (9,203)
WRITE (*,203)

203 FORMAT(' ***!MPROPER GEOMETRY: SOURCE AND DETECTOR ON A CLEAR LINE 
ft OF SIGHT***')

GO TO 20 
ELSE 
END IF
XSP * XS * DCOS(THETA) + YS * DSIN(THETA)
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IF (DABS(XSP).LE.(1.00-10)) XSP * O.D+O 
XDP * XD * DCOS(THETA) - YD * DSIN(THETA)
IF (DABS(XDP).LE.(1.0D-10» XDP * O.D+O 
PSI » DATANCZD / (XSP + XDP))
DDD s (XSP * XDP) / DCOS(PSI)

INITIALIZE PARAMETERS IN UNITS OF METERS

RC«RC*1.00+06 
CMlNCMUHUB(Er1,3)*RC*1.D-4 
RA>RAA*1.00+03 
UsGMUHUB(E,1,1)*RA*1.D-4 
CUTsCUTMFP/U

Conversion fectors<electrons per grasi of air)*(air density)/(4*pi)

CON«2.39240+22* RA

CARRY OUT INTEGRATION OVER R

IF (CUT.LE.DDD) THEN 
IF (T.EQ.(O.DQ)) THEN

WRITE (*,201) CUTMFP, CUT 
WRITE (9,201) CUTMFP, CUT 

ELSE
WRITE (*,201) CUTMFP, CUT, (CUTMFP/CMU)
WRITE (9,201) CUTMFP, CUT, (CUTMFP/CMU)

END IF 
GO TO 20 

ELSE
RMAX=OSORT(CUT*CUT-DDO*ODO)/2.
IF (RMAX.LE.H.OR.CUTMFP.LT.T*CMU) THEN 

IF (T.EQ.(O.DO)) THEN
WRITE (*,201) CUTMFP, CUT 
WRITE (9,201) CUTMFP, CUT 

ELSE
WRITE (*,201) CUTMFP, CUT, (CUTMFP/CMU)
WRITE (9,201) CUTMFP, CUT, (CUTMFP/CMU)

END IF
201 FORMAT (• ***CUTOFF VALUE OF ',F8.2,1 MFP IS TOO SMALL***1, 

fc/,' ****,F8.2,' M IN AIR***',F8.2,' M IN CONCRETE***')
GO TO 20 

ELSE 
END IF 

END IF
CALL GAUS8(TING3,H,RMAX,DEL,XSUM.IERR3)
XSUH*XSUH*CQN 
IF (IERR3.NE.1) THEN 

WRITE (*,204)
WRITE (9,204)
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204 FORMATC ***1NACCURATE ESTIMATE OF R INTEGRAL***1)

ELSE 
END IF 

C
C WRITE OUTPUT 
C

IF (XSUM.EQ.(0.D+O0).AND.CFLAG) THEN 
WRITE (*,208) CUTMFP 
WRITE (9,208) CUTMFP

208 FORMATC ***CUTOFF VALUE OF ',F8.2,' MFP IS TOO SMALL***',/,' ***A 
&LL EVALUATED PATH LENGTHS IN CONCRETE EXCEED CUTOFF VALUE***')
ELSE

WRITE(9,112) A(NRESP)
WRITE(*,112) A(NRESP)

112 FORMATC Normalized ',A20,'Response rate * d**2')
WRITE(*,113) XSUM,A(NRESP+4),XSUM*DOD*DOD,A(NRESP+4) 
WRITE(9,113) XSUM>A(NRESP+4),XSUM*D0D*D00,A(NRESP+4)

113 FORMAT(1X,1PE10.4,1X,A7,13X,1PE10.4,lX,'m**2*',A7)
WRITE(10,114) 0D0,DDD*RAA/10.,XSUM,XSUM*DDD*DDD

114 FORMAT<2(F7.2,2X),2(1PE10.4,1X»
END IF
GO TO 20 

11 STOP 
END

C...........................................................
C FUNCTION TING3 EVALUATES THE R INTEGRAND 
C R ■ value of r at which GAUSS evaluates the integrand 
C RMAX * upper limit of integration over r
C Z1, 22 * z coordinates at which the wall edge is a distance r from 
C the source-detector axis. Limits on phi will merge or change
C expressions at these values of z.
C TERM * discriminant of the quadratic whose solutions are 21 and 
C 22
C 2MIN, 2MAX * limits of integration over z 
C 2MINL, ZMAXL * limits on z computed from the source-detector 
C geometry; compared to limits computed from the mean free path
C cutoff criterion to determine 2MIN and ZMAX
C................................. -.........................

DOUBLE PRECISION FUNCTION TING3(R)
IMPLICIT REAL*8 (A-H,0-Z)
EXTERNAL TING2
COMMON /GEOM/ THETA, K, PSI, XSP, XDP, DDD 
COMMON /ZVARS/ ZMINL, ZMAXL, Z1, Z2 
COMMON /ERVARS/ RPT, ZPT
C0MM0N/S1/TrCMU,E,U/S2/DEL/S4/AR,BR,CR,CUrMFP 
RPT=R
CUT*CUTMFP/U
RMAXsDSQRT(CUT*CUT-DDD*DDD)/2.

C
C COMPUTE Z BREAKPOINTS WHERE PHI WILL SWITCH EXPRESSIONS



192
c

TERM*OSIN(PSI)«DSQRT(R*R-H*H)
Z1*<XSP-TERM)/DC0S(PSI)
Z2*<XSP+TERM>/DC0S<PSI)

C
C CARRY OUT INTEGRATION OVER Z 
C

CALL ZLIN(R( Z1( Z2, ZMINL, ZMAXL)
ZMIN-DMAX1(ZMINL,<DOD-CUT*DSQRT(1.*R+ft/RMAX/RMAX))/2.)
ZMAX-OMIN1 (ZMAXL, (DOtKCUT*OSORT(1. •R*R/RMAX/RMAX»/2.)
CALL GAUS9(TING2,ZMIN,ZMAX,DEL,ZANS,IERR2)
IF <IERR2.NE.1) THEN 

URITE(9,200)
URITE(*,200)

200 FORMATC ***INACCURATE ESTIMATE OF Z INTEGRAL***')
ELSE 
END IF
TING3=R*ZANS
RETURN
END

C...........................................................
C FUNCTION TING2 EVALUATES THE Z INTEGRAND 
C Z » value of z at which the integrand is evaluated 
C BETA « si^jplement of the photon scattering angle 
C AAA ■ distance (n) traveled by photon in air before scattering 
C AR ■ Mean free paths traveled by photon in air before scattering 
C BBS > distance <m) traveled by photon in air after scattering 
C BR * Mean free paths traveled by photon in air after scattering
C...........................................................

DOUBLE PRECISION FUNCTION TING2 (Z)
IMPLICIT REAL*8 (A-H,0*Z)
LOGICAL*1 BREAK,CFLAG 
EXTERNAL TINGl
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD 
COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2 
COMMON /ERVARS/ R, ZPT
C0MM0N/$VT,CMU,E,U/S2/DEL/S3/NAA,NBB,RA/S4/AR,BR,CR,CUTMFP
C0MH0N/S6/CFLAG
ZPT«Z

C
C COMPUTE SCATTERED GAMMA LEG LENGTH, B
C

BETA«OATAN(Z/R)+OATAN((DDD•Z)/R)
ES«SCATEN(E,BETA'
UEH«RESuvNM,NBB,ES, 111 )*1 .D-4 
IF (III.NE.O) THEN 

WRITE (*,300) III 
WRITE (9,300) III

300 FORMATC ***ERROR ',11,' IN COMPUTATION OF RESPONSE FUNCTION***') 
ELSE
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END IF
SIG«SIGMA(E,BETA)
B8B=0SQRT<R*R+(DDD-Z)*(DD0-Z)>
U$*GHUHUB<ES,1,1)*RA*1.D-4 
Bft-US*BBB 

C
C COMPUTE LIMITS OF INTEGRATION FOR PHI
C BREAK * logical variable, TRUE If region of integration over phi 
C splits in two at any values of z between z Units
C ZSPLIT » value of z where one region of integration over phi 
C becomes two, or two becomes one (only used if BREAKS.TRUE.)
C PMIN1, PMAX1 * Units of integration over phi if only one valid 
C region; limits over lower region if two regions of phi are
C valid
C PMIN2, PMAX2 a limits of integration over upper region of phi if 
C' ' two regions of phi are valid; set to zero if only one region 
C of phi is possible (BREAKS.FALSE.)
C

CALL PHSPLT(R, ZSPLIT, BREAK)
CALL PHILIM(R, Z, ZSPLIT, BREAK, PMIN1, PMAX1, PMIN2, PMAX2)

C
C IF NO CONCRETE SLAB, COMPUTE PHI INTEGRAL AS A CONSTANT TIMES 
C DIFFERENCE IN PHI LIMITS (NO DEPENDENCE ON PHI)
C

IF (T.LE.(O.DO)) THEN 
CFLAG*.FALSE.
AAA*DSQRT(R*R+Z*Z)
AR«U*AAA
CR«0.D0

C
C IF DISTANCE THROUGH AIR FROM SOURCE TO SCATTERING VOLUME IS
C GREATER THAN CUTOFF VALUE, SET INTEGRAND TO ZERO; IF NOT,
C EVALUATE INTEGRAL
C

IF (AR.GT.CUTMFP) THEN 
PANS1*0.D+O0 

ELSE
PANS1*DEXP(-AR)/AAA/AAA*(PMAX1-PMIN1+PMAX2-PMIN2)

END IF 
ELSE 

C
C IF CONCRETE SLAB PRESENT, CARRY OUT INTEGRATION OVER PHI 
C

CALL GAUS10(TING1,PM!N1,PMAX1,DEL,PANS1,IERR1)
C
C IF INTEGRAL HAS TWO REGIONS, INTEGRATE BETWEEN HIGHER LIMITS
C

IF (BREAK) THEN
CALL GAUS10(TING1,PMIN2,PMAX2,DEL,PANS2,IERR0)
PANS1*PANS1+PANS2
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ELSE

IERROsI 
END IF
IF (IERR1.NE.1.0R.IERRO.NE.1) THEN 

URITE(9(200)
URITE(*,200)

200 FORMATC1 ^INACCURATE ESTIMATE OF PHI INTEGRAL***1 >
ELSE 
END IF 

END IF 
C
C COMPLETE Z INTEGRAND 
C
C COMPARE PATH LENGTHS EVALUATED IN Z INTEGRAND AGAINST MEAN
C FREE PATH CUTOFF; IF LARGER THAN CUTOFF, SET INTEGRAND TO ZERO
C

IF (BR.GT.CUTMFP.OR.(T.LE.(0.DO).AND.(AR+BR).GT.CUTMFP)) THEN 
TING2*0.D+00 

ELSE
TING2SBUGP(1,ES,BR,IERR)*SIG*UEN*DEXP(-BR)*PAN$1/BBB/BBB 
IF (IERR.NE.O) THEN 

WRITE (*,400) IERR 
WRITE (9,400) IERR

400 FORMATC ***ERROR ',11,' IN COMPUTATION OF AIR BUILDUP FACTOR***') 
ELSE 
END IF 

END IF 
RETURN 
END

C...........................................................
C FUNCTION TINGl EVALUATES THE PHI INTEGRAND 
C PHI s value of phi at Mhich the integrand is evaluated
C CCC = distance (m) traveled by photon in concrete
C CR » mean free paths traveled by photon in concrete
C........................................................----

DOUBLE PRECISION FUNCTION TINGl (PHI)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL*! CFLAG
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD 
COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2 
COMMON /ERVARS/ R, Z
C0MM0N/$1/T,CMU,E,U/S4/AR,BR,CR,CUTMFP/S6/CFLAG

c
C C0MPUT1 PATH LENGTH OF PHOTON THROUGH CONCRETE SLAB 
C

WXaZ*DCOS(PSI)*DCOS(THETA)-R*(DSIN(PHI)*DSIN(PSI)*DCOS(THETA)
& -DCOS(PHI)*DSIN(THETA))
WY»-Z*DCOS<PSI)*DSIN(THETA)+R*<DSIN(PHI)*DSIN(PSI)*OSIN(THETA)
& +OCOS(PHI)*DCO$(THETA))
WZ*Z*DSIN(PSI)+R*DSIN(PHI)*DCOS(PSI)
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CCC*T*0SQRT<WX*W(/UY/WY+U2*U2/Wr/Wr+1.)
C
C COMPLETE PHI INTEGRAND 
C

AAA*OSQRT(R*R+Z*Z >-CCC 
CR«CMJ*CCC 
AR>U*AAA 

C
C IF PHOTON PATH LENGTH THROUGH CONCRETE IS GREATER THAN CUTOFF
C CRITERION, SET INTEGRAL TO ZERO
C

IF (CR.GT.CUTMFP) THEN 
TINGl*0.D+O0 

C
C IF PHOTON PATH LENGTH BEFORE SCATTERING OR TOTAL PATH LENGTH
C TRAVELED IS GREATER THAN CUTOFF CRITERION, SET INTEGRAL TO
C ZERO
C

ELSE IF ((AR+CR).GT.CUTMFP.OR.(AR+BR+CR).GT.CUTMFP) THEN 
CFLAG*.FALSE.
TING1=O.D+O0

C
C CUTOFF CRITERION NOT EXCEEDED; INTEGRAND EVALUATED
C

ELSE
CFLAG*.FALSE.
TING1*8UGP(3,E,CR,IERR)*DEXP(*AR~CR)/(AAA+CCC)/(AAA+CCC)
IF (IERR.NE.O) THEN 

WRITE (*,400) 1ERR 
WRITE (9,400) IERR

400 FORMATC ***ERROR ',11,’ IN COMPUTATION OF CONCRETE BUILDUP FACTOR 
&***•)

ELSE 
END IF 

END IF 
RETURN 
END

C.....................................................
C FUNCTION SCATEN(E.B) CALCULATES THE SCATTERED GAMMA ENERGY 
C IN MEV AFTER A SINGLE SCATTER.
C E * THE UNSCATTERED GAMMA ENERGY IN MEV
C B * THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT
C TO THE INCIDENT PHOTON DIRECTION IN RADIANS
C........................ ............................

DOUBLE PRECISION FUNCTION SCATEN (E,B)
IMPLICIT REAL*8 (A-H.O-Z) 
SCATEN*E/(1.0OO+E/.5110034D0*(1.0D0+OCOS(8)))
RETURN
END

C...........................................................
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C FUNCTION SIGMA(E,B) CALCULATES THE KLEIN-’NISHINA CROSS'
C SECTION IN N**2
C E * THE UNSCATTERED GAMA ENERGY IN MEV
C B * THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT
C TO THE INCIDENT PHOTON DIRECTION IN RADIANS
C...... ..........................................

DOUBLE PRECISION FUNCTION SIGMA (E,B)
IMPLICIT REAL*8 (A-H.O-Z)
AL».5110034D0/E 
P«1 .XO+AL+OCOS(B)
SIGMA*3.970387D-30*AL**2/P**2*(AL/P^P/AL*DSIN<B>**2)
RETURN
END
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c* **•******•**••**«******
C SUBROUTINE TO END PROGRAM IN CASE OF ERROR
c************************

SUBROUTINE ERTRAP 
IMPLICIT REAL*8(A-H,0-Z)
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DOD 
COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2 
COMMON /ERVARS/ RPT, ZPT 
WRITE (6,101)

101 FORMATC CONDITIONS LEADING TO ERROR:')
WRITE (6,102) RPT, ZPT

102 FORMATC R * ',19611.4,1 Z » '.IPEII.A)
WRITE (6,103) H, ZMIN, ZMAX

103 FORMATC LIMITS: RMIN - ZMIN » ZMAX >
&1PE11.4)
WRITE (6,104) THETA, PSr

104 FORMATC ANGLES: THETA « 'JPEII.A,1 PSI * ',1PE11.4)
WRITE (6,105) XSP, XDP

105 FORMATC ROTATED GEOMETRY: X/SUB S/PRIME = •,1PE11.4,/19X,1 X/SUB 
&D/PRIME > ',1PE11.4)
STOP
END

C************************ 
C FUNCTION TO COMPUTE ROOTS OF EQUATION FOR PHI GIVEN R AND Z
C** # *********************

DOUBLE PRECISION FUNCTION PHI (R, Z, I)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD 
PI * DACOSC 1.00+0)

C
C COMPUTE SEPARATE TERMS FOR VALUE OF PHI 
C
C SOURCE SIDE CONTACT POINTS 
C

IF (I.EQ.1.0R.I.EQ.2) THEN 
IF (XDP.EQ.O.D+O) THEN

TERM1 * -(XSP + XDP • Z * Dcbs(PSI))
TERM2 - 0.
TERMS « R * DSIN(PSI)

ELSE
TERM1 * -H*H*DSIN(PSI)*(XSP+XDP“Z*DCOS(PSI))/XDP/XDP 
TERM2 » R*R*(1.+(H*DSIN(PSI)/XDP)*(H*DSIN(PS!)/XDP))

& -(H*(XSP+XDP-Z*DCOS(PSI))/XDP)*(H*(XSP+XDP-Z*DCOS(PSI))/XDP) 
TERMS « R * (1.+ H * H * OSIN(PSI) * DSIN(PSI) / XDP / XDP) 

END ir 
C
C DETECTOR SIDE CONTACT POINTS 
C

ELSE IF (I.EQ.3.0R.I.EQ.4) THEN 
IF (XSP.EQ.O.D+O) THEN
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TERM1 - Z * DCOS(PSI)
TERH2 - 0.
TERMS ■ R * DSIM(PSI)

ELSE
TERM1 « H * H * OSIN(PSI) * Z * DCOS(PSI) / XSP / XSP 
TERH2«R*R*<1.+(K*DSINCP$1 )/XSP)*(H*DSIN<P$I)ASP))

* “(H*Z*OCOS(PSI>/XSP)*(H*Z*OCOS(PSI)/XSP)
TERMS ■ R * (1.+ H * H * DSIN(PSI) * DSIN(PSI) / XSP / XSP) 

END IF 
C
C CALL ERROR TRAPPING SUBROUTINE; ARGUMENT IS INVALID 
C

ELSE
WRITE (6,101)

101 FORMATC1 INCORRECT ARGUMENT FOR FUNCTION PHI.1)
CALL ERTRAP 

END IF 
C
C COMPUTE PHI 
C

IDISGN > 1
IF (MOO(1,2).EQ.1) IDISGN » *1 
IF (DABS(TERM2).LE.(1.D’10)) TERM2 * 0.
TERM* * (TERM1 + IDISGN * DSQRT(TERM2)) / TERMS 
IF (TERM4.LT.(1.D’10-1.)) THEN 

PHI » -PI/2.
ELSE IF (TERM4.GT.O.-1.D-10)) THEN 

PHI * PI/2.
ELSE

PHI * DATANCTERM4 / DSQRTO. - TERM4 * TERM4))
END IF 
END

Q******tk***«*************
C SUBROUTINE TO SELECT LIMITS ON PHI FRGM ROOTS OF PHI FORMULA
C************************

SUBROUTINE PHILIM (R, Z, ZSPLIT, BREAK, PMIN1, PMAXl, PMIN2, 
ft PMAX2)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL*! BREAK
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DOD 
COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2 

C
C SELECT PHI LIMITS FROM GEOMETRY AND BREAKPOINTS 
C
C WALL "LEANS OVER" SOURCE; TWO REGIONS OF INTEGRATION FOR PHI 
C POSSIBLE 
C

IF (XSP/DCOS(PSI).LT.O) THEN
IF (Z.GT.ZMIN.AND.Z.LE.ZSPLIT) THEN 

PMINl * PHKR, Z, 1)
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PMAX1 > PHKR, Z, 2)
PNIN2 * 0 
PMAX2 * 0

ELSE IF <Z.GE.ZSPLIT.AND.Z.LE.0M1N1(Z1,Z2)) THEN 
PMINl * PHI(R, Z, 1)
IF (BREAK) THEN

PMAX1 - PHKR, Z, 3)
PMIN2 * PHKR, Z, 4)
PMAX2 - PHKR, Z, 2)

ELSE
PMAXl * PHKR, Z, 2)
PHIM2 ■ 0 
PMAX2 = 0 

END IF
ELSE IF (Z.GE.DMINKZ1 ,Z2).AND.Z.LT.ZMAX) THEN 

PHIN2 * O'
PMAX2 « 0 
IF (Z1.LT.Z2) THEN 

PMINl > PHKR, Z, 4)
PMAXl s PHKR, Z, 2)

ELSE
PMINl « PHKR, Z, D 
PMAXl > PHKR, Z, 3)

END IF 
ELSE

URITEC6,102)
102 FORMATC ERROR IN SUBROUTINE PHILIM, XSP.LT.O.1)

CALL ERTRAP 
END IF 

C
C WALL "LEANS OVER" DETECTOR; TUO REGIONS OF INTEGRATION FOR PHI 
C POSSIBLE 
C

ELSE IF (XDP/DCOS(PSI).LT.0) THEN
IF (Z.GT.ZMIN.AND.Z.LE.DMAX1<Z1,Z2)) THEN 

PMIN2 = 0 
PMAX2 » 0 
IF (Z1.LT.Z2) THEN 

PMINl - PHKR, Z, 3)
PMAX1 a PHKR, z, 1)

ELSE
PMIN1 a PHKR, Z, 2)
PMAXl a PHKR, Z, 4) 

rHD IF
ELSE IF (Z.GE.0MAX1(Z1,22).AND.Z.LE.ZSPLIT) THEN 

PMINl a PHKR, Z, 3)
IF (BREAK) THEN

PMAXl = PHKR, Z, 1)
PMIN2 a PHKR, Z, 2)
PMAX2 * PHKR, Z, 4)
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ELSE

PMAXl * PHKR, Z, 4)
PMIN2 ■ 0 
PMAX2 - 0 

END IF
ELSE IF (Z.GE.ZSPLIT.AND.Z.LT.ZMAX) THEN 

PMINl - PHI(R, Z, 3)
PMAXl * PNI(R, Z, 4)
PM1N2 « 0 
PMAX2 - 0 

ELSE
UR1TE(6,103)

103 FORMATC ERROR IN SUBROUTINE PHILIM, XDP.LT.O.')
CALL ERTRAP

END IF 
C
C ONE REGION OF INTEGRATION FOR PHI 
C

ELSE
PMIN2 * 0 
PMAX2 = 0 

C
C LOWER LIMIT
C

IF (Z.LE.Z1.AND.Z.NE.ZMIN) THEN 
PMINl * PHKR, Z, 1)

ELSE IF (2.GE.Z1.AND.Z.NE.ZMAX) THEN 
PMINl » PHKR, Z, 3)

ELSE
WRITE(6,104)

104 FORMATC ERROR IN SUBROUTINE PHILIM, NORMAL CASE, FINDING PH 
&IMIN.’)

CALL ERTRAP 
END IF 

C
C UPPER LIMIT
C

IF (Z.LE.22.AND.Z.NE.ZMIN) THEN 
PMAXl * PHKR, Z, 2)

ELSE IF (Z.GE.Z2.AND.Z.NE.ZMAX) THEN 
PMAXl > PHI(R, Z, 4)

ELSE
URITE(6,105)

105 FORMATC ERROR IN SUBROUTINE PHILIM, NORMAL CASE, FINDING PH 
&IMAX.')

CALL ERTRAP 
END IF 

END IF 
END

Q************************
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C SUBROUTINE TO COMPUTE POSSIBLE BREAKPOINTS FOR PHI LIMITS 
£**•**•***•*•*•*«******• 

SUBROUTINE PHSPLT (R, ZSPLIT, BREAK)
IMPLICIT REAL*8 (A*H,0*Z)
LOGICAL*! BREAK
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD 
COMMON /ZVARS/ ZMIN, ZMAX, Z1, Z2 
BREAK * .FALSE.

C
C SELECT GEOMETRIES WHERE SPLIT POSSIBLE 
C

IF (R.GT.H.AND.(XSP.LT.O.OR.XDP.LT.0)) THEN 
C
C FIND VALUES OF Z WHERE INNER LIMITS APPEAR 
C

IF(XSP.LT.O) THEN
ZSPL1T*-DSQRT((R*XSP/H/DC0S(PS1))*(R*XSP/H/DC0S(PS1))

& *<1+H*H*DSIN(PSI)*DSIM(PSI)/XSP/XSP)>
ELSE

ZSPLIT»ODD+OSQRT<(R*XDP/H/DCOS<PSI))*(R*XDP/H/DCOS<PSI))* 
& (1+H*H*DSIN(PSI)*DSIN(PSI)/XDP/XDP))

END IF 
C
C CONFIRM THAT INNER LIMITS ARE ON SCATTERING ZONE AND COMPUTE THEM 
C

IF (ZSPLIT.GE.ZMIN.AND.ZSPLIT.LE.ZMAX) THEN
IF (XSP.LT.O) THEN

PHI1 m PHKR, ZSPLIT, 1)
PHIZ 9 PHKR, ZSPLIT, 3)
PHIS m PHI(R, ZSPLIT, 4)
PHK ■ PHKR, ZSPLIT, 2)

ELSE
PHI1 a PHKR, ZSPLIT, 3)
PHIZ a PHKR, ZSPLIT, 1)
PHIS 9 PHKR, ZSPLIT, 2)
PHI4 9 PHKR, ZSPLIT, 4)

END IF
IF (PHIZ.NE.PHIS) THEN 

WRITE(6,106)
106 FORMATC VARIABLE ZSPLIT HAS BEEN COMPUTED INCORRECTLY.1)

CALL ERTRAP 
END IF 

C
C FIND IF PHI REGION OF INTEGRATION DOES SPLIT (INNER LIMITS ARE 
C INSIDE OUTER LIMITS)
C

IF (PHI1.LT.PHI2.AND.PH13.LT.PHI4) THEN 
BREAK s .TRUE.

ELSE 
END IF
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ELSE 
END IF 

ELSE
2SPLIT > ZMIN 

END IF 
END

C**** **************
C SUBROUTINE TO COMPUTE LIMITS ON Z 
£**•••*****•••***** 

SUBROUTINE 2LIM (R, Z1, Z2, ZMIN, ZMAX)
IMPLICIT REALMS (A-K,0-Z)
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD 

C
C COMPUTATION OF LOWER LIMIT ON Z 
C

ZMIN a DMINKZ1, Z2)
IF (XDP.GT.O) THEN

TERM * DSQRT(H*H*DSIN(PSI)*DSIN(P$I)+XDP*XDP) 
IF (R.GE.(H*TERM/XDP>) THEN 

EXPRSN*R*TERM/H/DC0S(PS1)
ZMIN » DDD • EXPRSN 

ELSE 
END IF 

ELSE 
END IF 

C
C COMPUTATION OF UPPER LIMIT ON Z 
C

ZMAX * DMAXKZ1, Z2)
IF (XSP.GT.O) THEN

TERM * DSQRT(H*H*DS1N(PS1)*DS1N(P$1)+XSP*XSP) 
IF (R.GE.(H*TERM/XSP)) THEN 

ZMAX=R*TERM/H/DCOS{PSI)
ELSE 
END IF 

ELSE 
END IF 
END
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c

DOUBLE PRECISION FUNCTION BUGP(N,E(XXfIERR)
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

THIS FUNCTION SUBPROGRAH EVALUATES GANNA RAY EXPOSURE BUILDUP FACTORS 
USING THE GEOMETRIC PROGRESSION FITTING FUNCTION AND DATA AS REPORTED 
IN HARIMA, ET AL., "VALIDITY OF THE GEOMETRIC PROGRESSION GAMMA-RAY 
BUILDUP FACTORS," NUCL. SCI. ENG. 94, SEPT. 1986. VARIATION OF 
COEFFICIENTS WITH ENERGY IS DETERMINED BY LINEAR INTERPOLATION IN 
LOG(E). PARTS HAVE BEEN TAKEN FROM THE SUBROUTINE "SETP" USED IN 
THE CODE "QAD-CGGP”, WRITTEN BY D. TRUBEY (RSIC, OAK RIDGE NATIONAL 
LABORATORY).

ARGUMENT N IS THE MATERIAL INDEX: 1. AIR
2. WATER
3. CONCRETE
4. IRON
5. LEAD

ARGUMENT E IS THE ENERGY E (MEV)
ARGUMENT XX IS THE NUMBER OF MEAN FREE PATHS

IMPLICIT REAL*8(A’H,0-Z)
DIMENSION EE(25),BFSET(5,25,3),FL0GE<25)

C MEANING OF INDICES: BFSET(MATERIAL,E,COEFFICIENT) 
COMMON/BLD01/PARAM(5)

C
C data for air

DATA <(BFSET(1,J,K),K=1,5),J*1,25)/1.170,
& 0.459,0.175,13.73,*0.0862, 1.407,0.512,0.161,14.40,-0.0819,
&2.292,0.693,0.102,13.34,-0.0484, 3.390,1.052,-0.004,19.76,-0.0068, 
& 4.322,1.383,-0.071,13.51,0.0270, 4.837,1.653,-0.115,13.66,0.0511, 
& 4.929,1.983,-0.159,13.74,0.0730, 4.580,2.146,-0.178,12.83,0.0759, 
& 3.894,2.148,-0.173,14.46,0.0698, 3.345,2.147,-0.176,14.08,0.0719, 
& 2.887,1.990,-0.160,14.13,0.0633, 2.635,1.860,-0.146,14.24,0.0583, 
& 2.496,1.736,-0.130,14.32,0.0505, 2.371,1.656,-0.120,14.27,0.0472, 
8. 2.207,1.532,-0.103,14.12,0.0425, 2.102,1.428,-0.086,14.35,0.0344, 
& 1.939,1.265,-0.057,14.24,0.0232, 1.835,1.173,-0.039,14.07,0.0161, 
& 1.712,1.051,-0.011,13.67,0.0024, 1.627,0.983,0.006,13.51,-0.0051, 
& 1.558,0.943,0.017,13.82,-0.0117, 1,505,0.915,0.025,16.37,-0.0231, 
& 1.418,0.891,0.032,12.06,-0.0167, 1.358,0.875,0.037,14.01,-0.0226, 
& 1.267,0.844,0.048,14.55,-0.0344/

C
C data for water

DATA ((BFSET(2,J,K),K»1,5),J*1,25)/1.182,
& 0.463,0.175,14.23,-0.0908, 1.427,0.549,0.'43,14.86,-0.0707,
& 2.335,0-/36,0.087,13.28,-0.0419, 3.477,1.117,-0.019,11.67,0.0026, 
& 4.461,1.457,-0.084,13.62,0.0341, 4.983,1.730,-0.126,13.64,0.0561, 
& 5.059,2.059,-0.168,13.67,0.0770, 4.663,2.221,-0.186,13.33,0.0826, 
& 3.897,2.242,-0.185,14.19,0.0777, 3.478,2.154,-0.176,14.50,0.0774, 
& 2.920,2.022,-0.164,14.21,0.0655, 2.660,1.882,-0.149,14.24,0.0595, 
& 2.500,1.766,-0.135,14.33,0.0546, 2.377,1.679,-0.124,14.23,0.0503,
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& 2.212,1.544,'0.105,14.36,0.0437, 2.103,1.441,-0.089,14.22,0.0378, 
& 1.939,1.269,-0.058,14.52,0.0246, 1.839,1.173,-0.039,14.07,0.0161, 
ft 1.710,1.056,-0.013,11.82,0.0047, 1.621,0.989,0.004,13.45,-0.0041, 
ft 1.554,0.939,0.018,13.55,-0.0122, 1.507,0.903,0.029,16.13,-0.0272, 
ft 1.422,0.879,0.035,13.36,-0.0191, 1.362,0.859,0.042,13.37,-0.0247, 
ft 1.267,0.843,0.047,15.08,-0.0336/

C
C data for concreta

DATA ((BFSET(3,J,K),IC«1,S),J-1,25)/1.029, 
ft 0.364,0.240,14.12,-0.1704, 1.067,0.389,0.214,12.68,-0.1126, 
ft 1.212,0.421,0.201,14.12,-0.1079, 1.455,0.493,0.171,14.53,-0.0925, 
ft 1.737,0.628,0.115,15.82,-0.0600, 2.125,0.664,0.118,11.90,-0.0615, 
ft 2.557,0.895,0.042,14.37,-0.0413, 2.766,1.069,0.001,12.64,-0.0251, 
ft 2.824,1.315,-0.049,8.66,-0.0048, 2.716,1.430,-0.070,18.52,0.0108, 
ft 2.522,1.492,-0.082,16.59,0.0161, 2.372,1.494,-0.085,15.96,0.0194, 
ft 2.271,1.466,-0.082,16.25,0.0195, 2.192,1.434,-0.078,17.02,0.0199, 
ft 2.066,1.386,-0.073,15.07,0.0202, 1.982,1.332,-0.065,15.38,0.0193, 
ft 1.848,1.227,-0.047,16.41,0.0160, 1.775,1.154,-0.033,14.35,0.0100, 
41.671,1.054,-0.010,10.47,-0.0008, 1.597,0.988,0.008,12.53,-0.0115, 
ft 1.527,0.951,0.020,9.99,-0.0184, 1.478,0.940,0.021,13.11,-0.0163, 
ft 1.395,0.917,0.028,13.45,-0.0213, 1.334,0.901,0.035,12.56,-0.0267, 
ft 1.260,0.823,0.065,14.28,-0.0581/

C
C data for iron

DATA (CBF$ET(4,J,K),K>1,5),J*1,25)/1.004, 
ft 1.583,-0.565,5.53,0.3568, 1.012,0.130,0.620,11.39,-0.6162, 
ft 1.028,0.374,0.190,29.34,-0.3170, 1.058,0.336,0.248,11.65,-0.1188, 
ft 1.099,0.366,0.232,14.01,-0.1354, 1.148,0.405,0.208,14.17,-0.1142, 
ft 1.267,0.470,0.180,14.48,-0.0974, 1.389,0.557,0.144,14.11,-0.0791, 
ft 1.660,0.743,0.079,14.12,-0.0476, 1.839,0.911,0.034,13.23,-0.0334, 
ftl.973,1.095,-0.009,11.86,-0.0183,1.992,1.187,-0.027,10.72,-0.0140, 
ft 1.974,1.230,-0.036,9.30,-0.0110, 1.942,1.251,-0.041,7.89,-0.0090, 
ft 1.892,1.244,-0.040,6.95,-0.0123, 1.846,1.223,-0.037,6.74,-0.0131, 
ft 1.750,1.197,-0.040,15.90,0.0110, 1.712,1.126,-0.022,7.34,-0.0047, 
&1.627,1.059,-0.005,11.99,-0.0132, 1.553,1.026,0.005,12.93,-0.0191, 
ft 1.483,1.009,0.012,13.12,-0.0258, 1.U2,0.980,0.023,13.37,-0.0355, 
ft 1.354,0.974,0.029,13.65,-0.0424, 1.297,0.949,0.042,13.97,-0.0561, 
ft 1.194,1.048,-0.002,5.01,0.0584/

C
C data for lead

DATA (<BFSET(5,J,K),KS1,5),J*1,25)/0.,
ft 0.,0.,0.,0., 0.,0.,0.,0.,0., 1.006,0.230,0.442,12.61,-0.5099, 
ft 1.013,0.302,0.331,10.34,-0.3011, 1.024,0.289,0.289,12.38,-0.1453, 
ft 1.n?e.0.423.0.179,17.00,-0.1217, 1.058,0.357,0.238,12.96,-0.1230, 
ft 2.165,1.323,0.079,12.13,-0.0731, 1.520,0.337,0.019,9.05,-0.0108, 
ft 1.201,0.271,0.171,5.00,0.0842, 1.135,0.523,0.140,17.37,-0.0874, 
ft 1.180,0.597,0.113,16.76,-0.0596, 1.233,0.631,0.107,14.62,-0.0533, 
ft 1.271,0.684,0.089,14.56,-0.0417, 1.334,0.738,0.073,13.84,-0.0334, 
ft 1.372,0.789,0.059,13.44,-0.0288, 1.409,0.865,0.039,13.11,-0.0217, 
ft 1.425,0.903,0.036,13.26,-0.0319, 1.383,0.967,0.027,13.51,-0.0385,



206

ft 1.328,1.009,0.023,14.06,-0.0403, 1.303,0.954,0.052,13.90,-0.0714, 
ft 1.233,1.127,-0.012,5.00,0.0459, 1.175,1.149,-0.005,5.26,0.0484, 
ft 1.135,1.167,0.002,5.53,0.0488, 1.083,1.190,0.017,6.11,0.0646/

C
C
c*****-« *#•*•••••••*••«•••••***•***•*
C
C ** ENERGY INTERPOLATION OF GP PARAMETERS **

DATA EE /0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1,
* 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0,
* 1.5, 2., 3., 4., 5., 6., 8., 10.,
* 15. /

C
C

IERR » 0
IF (XX.LE.O.DO) THEN 
BUGP * 1.DO 
RETURN 

END IF
IF (E.LT..015DO.OR.E.GT.15.DO) THEN 

IERR « 1 
BUGP > 1.D0 
RETURN 

END IF
IF (N.LT.1.0R.N.GT.5) THEN 

IERR » 2 
BUGP * 1.D0 
RETURN 

END IF
IF (XX.GT.40.D0) THEN 

IERR = 3 
BUGP * 1 .DO 
RETURN 

END IF 
C 
C

NLIN*0
1 NLIM*NLIM+1

IF<8FSET(N,NUM,1).GT.O) GO TO 2 
GO TO 1

2 CONTINUE 
C

DO 3 1=1,25
FLOGE(1)=OLOG(EE(I))

3 CONTINUE 
C

10 CONTINUE 
C

NJ*NIIM 
12 CONTINUE
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IF(E.LE.EECNJ)) GO TO 13 
IF(NJ.GE.25) GO TO 100 
NJ«NJ+1 
GO TO 12 

C
13 CONTINUE

IF(NJ.LE.NIIM) GO TO 100 
!F(NJ.EQ.NUN+1.0R.NJ.EQ.25) GO TO 200 
GO TO 300 

C
C ** E<EE(NLIM) Oft EE(2S)<E **

100 DO 101 1*1,5
PARAM(l)*BF$ET(N,NJ,L)

101 CONTINUE 
GO TO 999

C
C ** EE(NLIM)<E<EE(NLIN+1)
C OR EE(24)<E<EE(25) **
C (PARABOLIC INTERPOLATION)

200 X*OLOG(E)
IF (NJ.EQ.25) NJ*NJ*1 
XI»fLOGE(NJ-1)
XJ*FLOGE(NJ>
XXsFLOGE(NJ+1)
CI*(X-XJ)/(XI-XJ)*(X-XK)/(XI-XK)
CJ»(X-XI)/(XJ-XI)*(X-XK)/(XJ-XK)
CK*(X-XI)/(XK-XI)*(X-XJ)/(XK-XJ)
DO 201 L-1,5

PARAMCL)*CI*BFSET(N(NJ-1,L)
* +CJ*BFSET(N,NJ,L)
* +CK*BFSET(N,NJ+1,L)

201 CONTINUE
GO TO 999 

C
C ** EE(NJ-2)<EE(NJ-1)<E<EE(NJ)<EE(NJ+1) ** 
C (REVISED PARABOLIC INTERPOLATION)
300 X*OLOG(E)

XI*FLOGE(NJ-2)
XJ*FLOGE(NJ-1)
XK*FLOGE(NJ)
XL*FLOGE(NJ+1)
CI*0.5*(X-XJ)/(XI"XJ)*(X-XK)/(XI-XK)
CJ*0.5*(X-XI)/(XJ-XI)*(X-XK)/(XJ-XK)
C,v*0.5*(X-XI)/(XK-Xl)*(X-XJ)/(XK-XJ)
DJ*0.5*(X-XK)/(XJ-XK)*(X-XL)/(XJ-XL)
DK*0.5*(X-XJ)/(XK*XJ)*(X-XL)/(XK-XL)
DL*0.5*(X-XJ)/(XL*XJ)*(X-XK)/(XL-XK)
DO 301 L-1,5

PARAM(L)*CI*BFSET(N,NJ-2,L)
* +(CJ+OJ)*BFSET(N,NJ-1,L)
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* ♦<aC+OK>*BfSET<N,MJ,l>
* ♦ol*bfset<mj+i,l>

301 CONTINUE
c
C EVALUATE BUILDUP FACTOR 
C
999 8UGP*BLDUP(XX)

RETURN
END

C
c***********************************
c

FUNCTION BLDUP(TTT)
C ** BUILDUP FACTORS CALCULATED BY GP-HETHOO **

IMPLICIT REAL*8(A-H,0-2)
COMMON /BLD01/ PARAM(5)

C ITT a MU TIMES DISTANCE
C

IFUTT.LE. 0.) GO TO 100 
IF<TTT.GT.40.) GO TO 200 

C
FK«PARAM<2)*DEXP<PARAM(3>*DL0G<TTT >)

* +PARAM< 5)*FUNCF(TTT,PARAM(4))
IF(FK.LE.O.) GO TO 100

GO TO 300 
C

200 FK3S«PARAM(2)*DEXP(PARAM(3)*DLOG(35.DO»
* +PARAM(5)*FUNCF<35.D0,PARAM(4» 
FK40-PARAM(2)*DEXP<PARAM(3)*DLOG(40.D0))

* +PARAM(5)*FUNCF(40.D0,PARAM(4)) 
TEMP«(1.D0‘DEXP(O.1D0*DLOG(TTT/35.D0)))

* /(I.-DEXP(0.1*DLOG(40.DO/35.DO))) * DLOG((FK40*1.D0)/(FK35-1.DO)) 
FR * 1.000+(FK35-1.0DO)*DEXP(TEMP)

C
300 TEMP-TTT

IF(FX.NE.1.) TEMP»(DEXP(TTT*DLOG(FK))-1.)/(FK-1.)
BLDUP-1.♦(PARAMC 0*1.)*TEMP 
RETURN 

C
100 BLDUP*1.

RETURN
END

C
C*******»*««***4«***************»***
c

FUNCTION FUNCF(XrXK)
IMPLICIT REAL*8(A-H,0-2)

C
T*X/XK

IF(T.GE.7.) GO TO 1



FUNCF«1.-<1.+OEXP<4.DO)>/(DEXP(2.*T)+OEXP(4.DO)) 
RETURN 

1 FUNCF=1.
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C

RETURN
END
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SUBROUTINE GAUSS -- DOUBLE PRECISION IBM 370 VERSION 

PURPOSE
GAUSS INTEGRATES REAL FUNCTIONS OF ONE VARIABLE OVER FINITE 
INTERVALS, USING AN ADAPTIVE 8-POINT GAUSS-LEGENDRE ALGORITHM. 
GAUSS IS INTENDED PRIMARILY FOR HIGH ACCURACY INTEGRATION OR 
INTEGRATION OF SMOOTH FUNCTIONS. FOR LOWER ACCURACY 
INTEGRATION OF FUNCTIONS WHICH ARE NOT VERY SMOOTH, EITHER 
QNC3 OR QNC7 MAY BE MORE EFFICIENT.

USAGE
CALL GAUS8(FUN,A,B,ERR,ANS,IERR)

FUN - NAME OF EXTERNAL FUNCTION TO BE INTEGRATED. THIS NAME 
MUST BE IN AN EXTERNAL STATEMENT IN THE CALLING PROGRAM. 
FUN MUST BE A FUNCTION OF ONE REAL ARGUMENT (THE 
VARIABLE OF INTEGRATION).

A - LOWER LIMIT OF INTEGRAL.
B - UPPER LIMIT OF INTEGRAL (MAY BE LESS THAN A).
ERR * USER-SUPPLIED ERROR PARAMETER. ANS WILL NORMALLY HAVE 

NO MORE ERROR THAN ERR TIMES THE INTEGRAL OF THE 
ABSOLUTE VALUE OF FUN(X).

ANS • COMPUTED VALUE OF INTEGRAL.
IERR • ERROR PARAMETER SET BY GAUSS:

IERR - 1 IS NORMAL.
IERR a 2 MEANS ANS IS PROBABLY INSUFFICIENTLY ACCURATE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL FUNCTION FUN(X) MUST BE SUPPLIED BY THE USER.

METHOD
AN ADAPTIVE 8-POINT GAUSS-LEGENDRE ALGORITHM WITH INTERVAL 
BISECTION, COMBINED RELATIVE/ABSOLUTE ERROR CONTROL, AND 
COMPUTED MAXIMUM REFINEMENT LEVEL WHEN A IS CLOSE TO B.

SUBROUTINE GAUS8(FUN,A,B,ERR,ANS,IERR)
IMPLICIT REALMS (A-H,0-Z)
DIMENSION AA(30),HH(30),LR(30),VL(30),GR(30)

C***« 8-POINT GAUSS- .EGEGNDRE QUADRATURE DATA.
DATA XI,X2,X3,X4/0.183434M2495650D0,0.52553240991632900, 

1 0.79666647741362700,0.96028985649753600/
DATA W1,W2,W3,W4/0.36268378337836200,0.31370664587788700, 

1 0.22238103445337400,0.10122853629037600/
C**** MISCELLANEOUS PARAMETERS.

DATA SQ2/1.41421356237309500/
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GO TO 4
C**** PROCEED TO RIGHT HALF AT THIS LEVEL.

8 VL<L)*GLR
9 EST«GR(L-1)

LR<L)*1
AA<L)*AA(L>+4.D0*HH(L>
GO TO 4

C**+* RETURN ONE LEVEL.
10 VR*GLR
11 IF(L.LE.I) GO TO 14 

L*L-1
EPS»EPS*2.D0
EFs*EF*SQ2
IF(LR(L).GT.O) GO TO 13 
VLCL)*VL(L+1)+VR- 
GO TO 9

13 VR*VL(L+1)+VR 
GO TO 11

C**** EXIT.
14 ANS*VR

IF(NXL.GT.O) IERR=Z
RETURN
END

C****

C**** THE FOLLOUING SUBROUTINES ARE DUPLICATES OF GAUSS, USED TO AVOID 
C**+* CALLING THE SUBROUTINE RECURSIVELY.
£***• .................................................................

SUBROUTINE GAUS9(FUN,A,B,ERR,AN$,1ERR)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION AA(30),HH(30),LR(30),VL(30),GR(30)

C**** 8-POINT GAUSS-LEGEGNDRE QUADRATURE DATA.
DATA Xl,X2,X3,X4/0.18343464249565000,0.52553240991632900,

1 0.79666647741362700,0.96028985649753600/
DATA U1,U2,U3,U4/0.362683783378362D0,0.313706645877887D0,

1 0.22238103445337400,0.10122853629037600/
C**** MISCELLANEOUS PARAMETERS.

DATA SQ2/1.41421356237309500/
DATA LMN,NLMX,KMX,KML,NBIT$/1,30,5000,6,64/

C**** 8-POINT GAUSS-LEGENDRE INTEGRATION FUNCTION.
G8(X,H)*H*«Wl*(FUN(X-X1*H)fFUN(X+X1*H))+W2*(FUN(X-X2*H>+FUN(X+X2* 
1H)))+(U3*(FUN(X-X3*H)*FUN(X+X3*H))+W4*(FUN(X-X4*H)+FUN<X+X4*H>)))  

C**** INITIALIZE.
ANS»~.DO
IERR=1
IF(A.EQ.B) RETURN 
LMX=NLMX
IF(B.EQ.O.DO) GO TO 3 
!F(DSIGN(1.D0,B)*A.LE.0.D0) GO TO 3 
C«DABS(1.00-A/B)
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IF(C.GT.O.IDO) GO TO 3
N1B»~IDINT(DLOG<C)/DIOG(2.DO))
LMX»MIM0(MLMX,HBITS-MI8*6)
LMX-MAXO(LMX,LMN)

3 TOLaOMAXl(ERR,2.DO**(5-MBITS))/2.DO 
1F(ERR.LT.O.OO) TOL*0.50-6 
EPS-TOL
HH(1)*(B-A)/4.D0
AA(1)*A
LR(1)«1
L*1
EST=G8(AA(L)+2.D0*HH(L),2.D0*HH(L))
K-8
AREA=OABS(EST)
EF*0.500
MXL=0

C**** COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
4 GL*G8(AA(L)+HH(L),HH(L)) 

GR(L)*G8(AA(L)+3.00*HH<L),HH(L))
K*<+16
AREA=AREA+(DABS(GL)+OABS(GR(L))-DABS(EST))

C IF(l.LT.LMN) GO TO 11 
GLR*GL+GR(L)
EE*EF*OABS(EST-GLR)
AE*OMAX1(EPS*AREA,TOL*OABS(GLR))
IF(EE-AE) 6,6,7

5 MXL-1
6 IFCLRCL)) 8,8,10

C**** CONSIDER THE LEFT HALF OF THIS LEVEL.
7 IFCK.GT.KMX) LMX=KML 

IF(L.GE.LMX) GO TO 5 
L=L+1
EPS=EPS/2.D0
EF=EF/S02
HH(L)*HH(L-1)/2.D0
LR(L)*-1
AA(L)«AA(L-1)
EST-GL 
GO TO 4

C**** PROCEED TO RIGHT HALF AT THIS LEVEL.
8 VLCD-GLR
9 EST*GR(L-1)

LR(L)*1
AA(L)*AA(L)+4.D0*HH(L)
GO TO 4

C**** RETURN ONE LEVEL.
10 VR*GLR
11 IFCL.LE.1) GO TO 14 

L*L-1
EPS*EPS*2.D0
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EF*EF*$Q2
IF(LR(L).GT.O) GO TO 13 
Via)*Vl(L+1 )+VR 
GO TO 9

13 VR«VL(L+1)*VR 
GO TO 11

C**** EXIT.
14 AM$»VR

IF(MXL.GT.O) IERR«2
RETURN
END

£****

C****
. SUBROUTINE- GAUS10(FUN,AfBtERR,ANS,IERR) - 

IMPLICIT REAL*8 <A-H,0‘Z)
DIMENSION AA(30)(HH(30),LR(30),VL(30),GR(30)

C**** 8-POINT GAUSS-LEGEGNDRE QUADRATURE DATA.
DATA Xl,X2,X3,X4/0.18343464249565000,0.52553240991632900,

1 0.796666477413627D0,0.96028985649753600/
DATA U1,W2(U3,U4/0.36268378337836200,0.313706645877887D0,

1 0.22238103445337400,0.10122853629037600/
C**** MISCELLANEOUS PARAMETERS.

DATA SQ2/1.41421356237309500/
DATA LMN,NLMX,KMX,KML,NBITS/1,30,5000,6,64/

C**** 8-POINT GAUSS-LEGENDRE INTEGRATION FUNCTION.
G8<X,H)»H*((W1*(FUM<X-X1*H)+FUN<X+X1*H))+U2*(FUNCX-X2*H)+FUN(X+X2* 
1H)))+(U3*(FUN<X-X3*H)+FUN<X+X3*H))+W4*<FUN<X-X4*H)+FUN(X+X4*H)») 

C**** INITIALIZE.
ANS«O.DO
IERR*1
IF(A.EQ.B) RETURN 
LMXsNLMX
IF(B.EQ.O.DO) GO TO 3 
1F(DSIGN(1.D0,B)*A.LE.0.D0) GO TO 3 
CN>ABS(1.D0-A/B)
IF(C.GT.O.IDO) GO TO 3 
NIB»-IDINT(DLOG(C)/DLOG(2.DO))
LMX>MIN0(NLMX,NBITS-NIB-6)
LMX>MAXO(LMX,LMN)

3 TOL*OMAX1(ERR,2.DOM(5-NBITS))/2.DO 
IFCERR.LT.O.DO) TOL>0.50-6 
EP$*TOL
HH(1)>(B-A)/4.D0
AA(1)*A
LR(1)*1
L»1
EST«G8(AACL)^2.D0*HH(U,2.D0*HHCL»
K=8
AREA=OABS(EST)
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EFsO.SOO
MXL«0

C**** COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
4 GL*G8(AA(L)+HH(L),HH<L)) 

GR(L)»G8(AA(L)+3.D0*HH(L),HHa))
K-K+16
AREA*AREA+(DABS(GL)+OABS((jR(L))*DABS(EST))

C IF(L.LT.LMN) GO TO 11 
GLR*GL+GR(L)
EE*EF*DABS(EST*GLR)
AE>OMAX1(EPS*AREA,TOL*DABS(GLR»
IF(EE-AE) 6,6,7

5 MXL*1
6 IF(IR(L)) 8,8,10

C**** CONSIDER THE LEFT HALF OF THIS LEVEL.
7 IF(K.GT.KMX) LMX=KML 

IF(L.GE.LMX) GO TO 5 
L*L*1
EPS*EP$/2.D0
EF*EF/SQ2
HH(L)»HH(L-1)/2.D0
LR(L)«-1
AA(L)»AA<L-1)
E$T*GL 
GO TO 4

C**** PROCEED TO RIGHT HALF AT THIS LEVEL.
8 VL(L)*GLR
9 EST«GR(L-1)

LR(L)«1
AA(L)*AACL)+4.D0*HH(L)
GO TO 4

C**** RETURN ONE LEVEL.
10 VRsGLR
11 IF(L.LE.1) GO TO 14 

L*L-1
EPS“EPS*2.D0
EF«EF*SQ2
IF(LR(L).GT.O) GO TO 13 
VL(L)*VL(L+1)+VR 
GO TO 9

13 VR*VL(L+1)+VR 
GO TO 11

C**** EXIT.
14 ANSsVR

IF(MXL.GT.O) IERR«2
RETURN
END
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c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

DOUBLE PRECISION FUNCTION GMUHUB(EE,MN,NN) 
DOUBLE PRECISION VERSION

COMPUTES HASS ATTENUATION COEFFICIENTS AND HASS KERMA COEFFICIENTS 
FOR AIR; UATER, CONCRETE, IRON, AND LEAD 
OVER THE RANGE 0.01 TO 10 HEV

Reference: Hubbell, J. H., "Photon Hass Attenuation and
Energy*Absorptfon Coefficients fnon 1 keV to 20 HeV," 
Int. J. Appl. Radiat. Isot., 33, 1269-1290, 1982.

VARIABLE EE IS THE ENERGY (HeV)

. INDEX HH DETERMINES TYPE GNU: 1. TOTAL MASS INTER. COEFFICIENT
2. MASS KERMA COEFFICIENT

INDEX NN DETERMINES MATERIAL: 1. AIR
2. WATER
3. CONCRETE
4. IRON
5. LEAD

FUNCTION RETURNS COEFFICIENT <CM|2/G)

IMPLICIT REAL*8(A-H,0‘Z>
DIMENSION N(5),E(33,5),COEF1(33,5),COEF2(33f5)

C NUMBER OF ELEMENTS IN ENERGY RANGE 
DATA N/4*25,33/

C ENERGY GROUP STRUCTURE
DATA E/.01,.015,.02,.03,.04,.05,.06,.08,.10,.15,.2,.3,.4

&,.5,.6,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10.,8*0.
01.. 015..02..03..04..05..06..08..10..15..2..3..4

6.. 5..6..8.1..1.5.2..3..4..5..6..8..10..8*0.
6.. 01..015..02..03..04..05..06..08..10..15..2..3..4 
£,.5,.6,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10.,8*0.
6.. 01..015..02..03..04..05..06..08..10..15..2..3..4
6.. 5..6..8.1..1.5.2..3..4..5..6..8..10..8*0.

01.. 01304..01304..015..0152..0152..015861..015861..02..03..04
05.. 06..08..088004..088004..10..15..2..3..4..5 

*,.6,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10./
DATA ((COEF1(I,J),1*1,33),J-1,1)/
& 5.0160+00,1.5810+00,7.6430-01,3.501D-01.2.471D-01 
4,2.0730-01,1.8710-01,1.6610-01,1.5410-01,1.3560-01,1.2340-01 
4,1.0680-01,9.5480-02,8.7120-02,8.0560-02,7.0750-02,6.3590-02 
4,5.1760-02,4.UTD-02,3.5810-02,3.0790-02,2.7510-02,2.5230-02 
4,2.2250-02,2.0450-02,8*0.00/
DATA ((COEFlU,J),I=1,33),J=2,2)/
4 5.2230+00,1.6390+00,7.9580-01,3.7180-01,2.6680-01,2.2620-01 
4,2.0550-01,1.8350-01,1.7070-01,1.5040-01,1.3700-01,1.1870-01
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&,6.2290-01,2.5610-01,1.4390-*01,9.5640-02,7.1320-02, 
*,3.7870-02,2.7140-02,2.4070-02,2.3510-02,2.4630-02, 
*,2.7300-02,2.9460-02,3.1140-02/

C
C PERFORM INTERPOLATION 
C

DO 101 I - 1,N(HN)
IF (EE.EQ.E(I,NN>) GO TO 102 
IF (EE.LT.E(I,NN)) GO TO 103

101 CONTINUE
102 IF(MM.EQ.I) GMUHUB * COEF1(I,NN>

IF(MM.EQ.2) GMUHUB * C0EF2(I,NN)
GO TO 104

103 II * 1-1
GOTO (201,202), MM

201 YYl * DLOG(COEF1(II,NN)>
YY2 * DLOG(COEF1(I,NN))
GOTO 203

202 m * DLOG(COEF2(II,NN)>
YY2 * DLOG(COEF2(I,NN»

203 XXI * DLOG(E(II,NN))
XX2 > DLOG(E(l,NN))
GG * DLOG(EE)
ZZ ■ YYl + (GG-XX1)*(YY2-YY1)/(XX2-XX1)
GMUHUB = OEXP(ZZ)

104 CONTINUE 
RETURN 
END

(M
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DOUBLE PRECISION FUNCTION RESG(N,M,E,IERR)
* DOUBLE PRECISION VERSION
*

* This function subprogram returns the ganna-ray response function at
* energy E (MeV) for the following types of response (arg. N):
*

* 1. Exposure (R ca|2)
* 2. Absorbed dose or kerme (cGy ca|2)
* 3. ANSI Prescribed dose equivalent CcSv cm|2)
*
* Absorbed dose or kerma is evaluated for the following media (arg. H):
* 1. Air
* 2. Water
* 3. Concrete
* 4. Iron
* 5. Lead
*

* Note: M is a durniy argument if N » 1 or 3.
«

* The following function is required: GMUHUB
* (effective June 1988, GMU no longer used)
*

IMPLICIT REAL*8(A-H,0-Z)
IERR s 0
IF (M.LT.1.0R.M.GT.5) THEN 

IERR > 1 
RESG * 1.DO 
RETURN

END IF
IF (N.LT.1.0R.N.GT.3) THEN 

IERR > 2 
RESG « 1.DO 
RETURN

END IF
IF (N.EO.3.AND.E.LT.0.01) THEN 

IERR * 3 
RESG * 1.DO 
RETURN

END IF
IF (N.EQ.3.AND.E.GT.15.D0) THEN 

IERR » 3 
RESG * 1.DO 
RETURN

END IF
IF (N.NE.3.AND.E.LT..0100) THEN 

IERR « 3 
RESG > 1.00 
RETURN

END IF
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IF (N.NE.3.AND.E.GT.10.00) THEN 

IERR * 3 
RESG * 1.00 
RETURN 

END IF

IF (N.EQ.1) THEN
RESG • 1.835D-8*E*GMUHU8(E,2,1>
RETURN

ELSE IF (N.EQ.2) THEN
RESG * 1.602D-8*E*GMUHUB(E,2,M)
RETURN

ELSE IF (N.EQ.3) THEN 
X » LOG(E)
1F(E.LE..03D0) THEN

RESG*-20.47700-1.745400*X 
GO TO 10

ELSE IF(E.LE..500) THEN
RESG*-13.62600-.57117D0*X-1.095400*X*X-.2489700*X*X*X 
GO TO 10

ELSE IF(E.LE.S.OO) THEN
RESG*-13.13300+.72008D0*X-.03360300*X*X 
GO TO 10 

ELSE
RESG»-12.79100+.2830900*X+.1087300*X*X 

END IF
10 RESG*£XP(RESG)/3600.D0

RETURN 
END IF 
RETURN 
END



APPENDIX D

Sample Input and Output for the Program SILOGP

The following is a guide for preparation of input files for the 
code SILOGP. In each execution of the code, a separate file is read, 
describing the problem geometry and other parameters. The source photon 
energy, silo dimensions, material properties and type of detector 
response specific to the problem are constant, and listed only once in 
the file. The detector response may be computed at any number of 
distances from the source in each execution. The detector positions 
make up the balance of the input file. Only one input file is accepted 
in each problem execution; if any quantity except the source-detector 
distance must be changed, a new input file and a separate execution of 
SILOGP will be required.

The first record of the input file lists source photon energy, 
angle of collimation of the silo, concrete roof thickness (if one is 
present), and densities of concrete and air. If the outer radius of the 
silo, r, and the height of the outer rim of the collimator above the 
point source, h, are known, the angle of collimation ft (omega) may be 
computed from the formula

ft = 2 arctan (r/h).
If a concrete roof is not used, the roof thickness and concrete density 
should be specified as 0. All quantities in the first record should be 
separated by commas or spaces.

The remainder of the input file consists of a list of radial 
source-detector distances. Each distance should be placed on a separate 
line, and the distances need not be in any order. The values are not 
restricted by format; for instance, a source-detector distance of 120 m 
may be expressed as M120n or "120." or M1.2E+02.M

FIRST RECORD: 
E
DANG
T

RC

Source photon energy (MeV) (maximum energy 10 MeV)
Full angle of collimation (aegrees)
Concrete thickness (m)
Concrete density (g/cm3)

RAA Air density (mg/cm3)
NRESP Type of response function:

1 = exposure
2 = air kerma
3 = water kerma
4 = ANSI prescribed dose equivalent

SECOND AND SUBSEQUENT RECORDS:
D Source-detector distance (m) at which response is

computed

The sample problem, shown in Figure D-l, resembles the benchmark 
experiments performed at Kansas State University. In the example, a 
cobalt-60 source is placed on the axis of a silo covered by 21 cm of
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concrete. In reality, 60Co emits two photons per decay, of energies 
1.17 MeV and 1.33 MeV. These are approximated by two 1.25 MeV photons 
for this problem. Since no collimating wedges can be placed on the silo 
walls when a concrete roof is present, the full angle of collimation 
formed by the silo is defined by interior dimensions. The point source 
is 31 cm below the roof of the silo, and the interior radius of the silo

is 1.18 m; these produce a full angle of collimation of 150.5°. The air
density is 1.12 mg/cm3, while the concrete has a density of 2.13 g/cm3. 
Exposure rates are to be computed between 30 m and 700 m from the 
source.

The input file for this example is shown below, and resides in the 
file SAMPLE-S.IN on this distribution disk.

30
50
70
100
150
200
300
400
500
600
700

Results are given by SILOGP as the dose rate per photon, multiplied 
by the square of the source-detector distance (m) and divided by the 
solid angle of collimation (steradians) defined by the silo. In these 
units, effects of inverse-square attenuation and collimation are 
eliminated, and results may be graphed in less space. To convert to 
units of exposure per unit time, multiply this result by the solid angle 
of collimation reported in the output, divide by the square of the 
source-detector distance, and multiply by the number of photons emitted 
per unit time. Areal density is the product of the source-to-detector 
distance and the air density; presenting exposure as a function of areal 
density compensates for variations in atmospheric temperature and 
pressure.

The output created by the example input file is shown below. It 
resides alone in the file SAMPLE-S.OUT on the distribution disk.

CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE

1.25,150.5,0.21,2.13,1.12,1

1.250
150.500

4.083
1.120
0.210
2.130
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SOURCE- DETECTOR 
DISTANCE (M)

AREAL DENSITY 
(G/CM|2)

NORMALIZED Exposure 
(m|2 R/sr)

30.00 3.360 0.1798E-17 ERROR CODE: 0
50.00 5.600 0.2731E-17 ERROR CODE: 0
70.00 7.840 0.3468E-17 ERROR CODE: 0

100.00 11.200 0.4232E-17 ERROR CODE: 0
150.00 16.800 0.4769E-17 ERROR CODE: 0
200.00 22.400 0.4675E-17 ERROR CODE: 0
300.00 33.600 0.3634E-17 ERROR CODE: 0
400.00 44.800 0.2425E-17 ERROR CODE: 0
500.00 56.000 0.1487E-17 ERROR CODE: 0
600.00 67.200 0.8653E-18 ERROR CODE: 0
700.00 78.400 0.4865E-18 ERROR CODE: 0

The last column lists any error codes generated by the integration 
routines in SILOGP. If the error code is nonzero, a numerical 
integration performed by the code did not meet the confidence criteria, 
and the accuracy of the reported exposure should be questioned.
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75.25 dag

0.2t m

Sourca

Ground
1.18 m

50 m to 700 m

Oatoctor

Fig. D-l. Illustration of the problem geometry modeled by the sample input 
file for SILOGP. The point source emits 1.25 MeV photons; air density is
1.12 mg/cm3, and concrete density is specified as 2.13 g/cm3.



APPENDIX E

Sample Input and Output for the Program VALLGP

The following is a guide for preparation of input files for the 
code VALLGP. In each execution of the code, information for any number 
of problem, geometries are read from the input file, with information for 
each problem on a separate line. The quantities required for each 
problem include source photon energy, coordinates of the source and 
detector with respect to the wall separating them, concrete roof 
thickness (if one is present), and densities of concrete and air. Also 
required are the type of detector response to be computed, the maximum 
distance in mean free paths which photons may travel, and a convergence 
criterion for the adaptive integration subroutines.

Some restrictions apply to the input parameters. Since the source 
and detector must be separated by the wall, the distances YS and YD of 
the source and detector below the wall must not both be negative in the 
same problem geometry. If no concrete roof is to be used, the roof 
thickness and concrete density should be specified as 0: All quantities 
in each record should be separated by commas or spaces, but are not 
otherwise restricted by format. For instance, a source-wall distance of 
120 m may be expressed as "120", "120." or "1.2E+02.M

THE FOLLOWING INPUTS ARE REQUIRED ON ONE LINE FOR EACH CASE:

E Source energy (MeV) (maximum energy 10 MeV)
XS Source-wall distance normal to the wall (m)
XD Detector-wall distance normal to the wall (m)
YS Source distance below top of wall (m) (negative if source

is above the wall)
YD Detector distance below top of wall (m) (negative if

detector is above the wall)
ZD Offset of detector from an axis normal to the wall

through source (m)
T Thickness of concrete slab above source and wall (m)
RC Density of concrete (g/cm3)
RAA Density of air (mg/cm3)
NRESP Response function desired:

1 = exposure (R/s)
2 = air kerma (rad/s)
3 = water kerma (rad/s)
4 = dose equivalent (rem/s)

DEL Absolute accuracy desired in integration routines
[Recommended value in most cases = 0.01 (17.)]

CUTMFP Maximum mean free path distance used in computations
(contributions from photons traveling farther than CUTMFP 
are ignored; 40 mfp absolute maximuidj

In the sample problem shown in Figure E-l, a cobalt-60 point source 
is placed 3 m behind a wall and 3 m below its top edge. The point
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detector at which exposure rates are measured is placed on the other 
side of the wall, 100 m from the wall (measured normal to the wall face) 
and 3 m below the top of the wall. A reference plane may be placea 
through the source and normal to the wall; the detector lies 10 m from 
this plane, measured parallel to the wall. A concrete slab shield 10 cm 
thick is placed above the source, resting on the edge of the wall and 
extending infintely in directions behind the source and along the wall.

The two photons emitted by 60Co with each decay, of energies 1.17 
MeV and 1.33 MeV, are approximated by two 1.25 MeV photons for this
problem. The concrete has a density of 2.35 g/cm3, while the air
density is 1.2 mg/cm3. Exposure rates are to be computed at the 
detector; a convergence criterion of DEL=.01 and a cutoff value of 40 
mean free paths have been selected.

The record of the input file which defines this example problem is 
shown below. It may be found separately in the file SAMPLE-W.IN on this 
distribution disk.

1.250, 3.0, 100.0, 3.0, 3.0, 10.0, 0.10, 2.35, 1.2, 1,.01,40.

Results are given by WALLGP as the dose rate per second, with the 
source normalized to a strength of one photon emitted per second. By 
multiplying this result by the true source strength, the true response 
rate may be obtained. The output created by the input file above is 
shown below; this output is written by WALLGP to logical unit 9. The 
output is listed separately in the distribution file SAMPLE-W.OUT.

CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE

Photon Energy (MeV) ........................................... 1.250
Air Density (mg/cu.cm) .................................... 1.200
Concrete Density (g/cu.cm) ........................... 2.350

Mean Free Path Cutoff Criterion ................ 40.000
Percent Error of Result .................................. 1.000

X(S) X(D) Y(S)
(m) (m) (m)
3.00 100.00 3.00

Normalized Exposure 
3.8266E-21 (R/S)

Y(D) Z(D) T
(m) (m) (m)
3.00 10.00 0.10

Response rate * d**2 
4.0979E-17 m**2*(R/S)

A second output file is created by WALLGP on logical unit 10. This 
file contains data useful for plotting results on a graph. For each 
problem, one line of outpu- created, containing in order:

1) the straight-line distance in meters between the source and 
detector;
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2) the areal density (the product of distance and air density, in
g/cm2) separating the source and detector on a straight line;

3) the response rate, normalized to a source strength of one photon 
per second from the source;

4) the response rate, multiplied by the square of the source- 
detector distance. This value is sometimes useful in comparing results 
of different problem geometries, since effects of inverse-square 
attenuation are eliminated from the results.
The line of output in the plot data file created for this example case 
is shown below, and in the file SAMPLE-W.PIT.

103.48 12.42 3.8266E-21 4.0979E-17
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Fig. E-l. Illustration of the problem geometry modeled by the sample input
file for WALLGP. The point source emits 1.25 MeV photons; air density is
1.2 mg/cm3, and concrete density is specified as 2.35 g/cm3.
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ABSTRACT

Two computer codes were developed to analyze gamma-ray skyshine, the scattering 

of gamma photons by air molecules. A review of previous gamma-ray skyshine 

studies discusses several Monte Carlo codes, programs using a single-scatter model, 

and the MicroSkyshine program for microcomputers. A benchmark gamma-ray 

skyshine experiment performed at Kansas State University is also described.

A single-scatter numerical model was presented which traces photons from 

the source to their first scatter, then applies a buildup factor along a direct path 

from the scattering point to a detector. The FORTRAN code SKY, developed with 

this model before the present study, was modified to use Gauss quadrature, recent 

photon attenuation data and a more accurate buildup approximation. The resulting 

code, SILOGP, computes response from a point photon source on the axis of a.silo, 

with and without concrete shielding over the opening. Another program, 

WALLGP, was developed using the same model to compute response from a point 

gamma source behind a perfectly absorbing wall, with and without shielding 

overhead.

Results of SILOGP were compared to measurements from the KSU 

benchmark experiment. SILOGP underpredicted the experimental exposure rates 

within 250 m of the source and overpredicted responses further away. Average 

deviations of SILOGP from experiment ranged from 20% to 40%. Both SILOGP 

and WALLGP were compared to an ANSI Standard problem involving a point 

source in open air, and both were found to be in excellent agreement with reference 

values. The two codes also agreed very well with results for a similrr problem based 

on infinite-medium point-source buildup factors computed using the method of



moments.

SILOGP and the microcomputer code MicroSkyshine were applied to several 

silo skyshine problems. SILOGP returned lower exposure estimates, within 30% of 

MicroSkyshine values in the worst cases, but within 15% in others. MicroSkyshine 

was also used to test WALLGP in comparisons which varied individual problem 

parameters. WALLGP consistently predicted a response at least 20% lower than 

that predicted by MicroSkyshine. Discrepancies between results of WALLGP and 

MicroSkyshine were attributed in large measure to the deliberately conservative 

approximations upon which the MicroSkyshine method was based.


