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1.0 INTRODUCTION

An ongoing concern of the public and of organizations involved with nuclear power
or radiation sources is radiation protection. One specific concern, recognized before
the advent of nuclear power, is skyshine. In the context of this study, skyshine is
defined as directly or indirectly ionizing radiation which scatters in the atmosphere
after leaving its source. While a small, efficient shield can block direct radiation
from a source to a detector or point of interest, skyshine can avoid the shield
entirely and still produce a significant dose at the detector. Even when a direct
dose is present, the fraction of the total dose due to skyshine can be substantial. .
Recent events emphasize a need for accurate methods to estimate gamma-ray
skyshine. After accidents at Three Mile Island and Chernobyl, reviews were made
of the techniques used to forecast and estimate the dose to the public and
surrounding land from radiation releases of many types. Soon, low-level radioactive
waste repositories will be built in several states. Effects on the environment will be
a topic of study for every site, and gamma rays are likely to be a large component of
any radiation to reach the surroundings. Gamma-~ray skyshine will also be present
at sites for the storage of spent fuel. In these repositories, air or water convection
may be used to carry off waste heat. Air would not shield the fuel as well as water
in storage pools, yet photons from fission products could escape from either type of
repository to the atmosphere. All of these situations call for methods of estimating
exposure rates from gamma rays which reach the point of interest as skyshine.
Another justification for work on this topic is found in the American National
Standard for Calculation and Measurement of Direct and Sceitered Gamma

Radiation from LWR Nuclear Power Plants, ANSI/ANS—6.6.1-1987.  This




document explains that the activation of !®N in the coolant of boiling water reactors
is a cause for concern. As stated in the standard, "... at a BWR the N
contribution to the total measured dose rate is the only significant one that changes
nearly instantaneously with power level variations." This activity in the coolant
depends on water chemistry; at facilities where hydrogen is added directly to the
coolant, its presence may cause the activity to increase severalfold. The gamma
radiation from !'SN has been detected inside and outside the containment of several
BWRs, and is documented in the standard. (ANS8T)

ANSI/ANS—6.6.1-1987 also provides reference calculations for simple skyshine
problems, and recommends that comparisons be made between those calculations
and results of computational methods of interest applied to the same problems. The
standard states that dose rates should be found for areas outside a plant (or other
gamma-ray source) which personnel are expected to occupy regularly, such as
construction areas or recreation areas. Heavily populated areas should also be
chosen for study. Also, the standard explains requirements for calculations and
measurement techniques used to obtain gamma ray dose rates, and suggests ways to
treat scattered radiation components of the results. In summary, the standard
provides a reference for those who wish to insure that the methods they use are in
reasonable agreement with other methods, both in technique and in results. (AN87)

These concerns and standards promote the search for accurate estimates of
gamma-ray skyshine dose. Practical benchmark experiments are often accepted as
the best sources of data, but in the case of radiation skyshine, experiments can be
time—consuming and impractical. The alternative sources of data widely accepted
as standard are computer codes Prorrams have been developed specifically for

skyshine problems, and other general transport codes may be applied to skyshine




dose estimation. Ideally, an experiment would be performed first to collect data in
a real situation. Next, a code would be executed and the results would be checked
against the experimental data. When the code results agree well with the
benchmark data, the code could then be applied to similar problems with confidence
in its accuracy, and at less cost than an experiment.

Problems and physical geometries simulated by many codes are simple: open
air environments, sources enclosed by a silo or a sphere, free—standing walls, or
buildings defined by four walls and a ceiling. These simple systems allow
computational effort to concentrate on particle transport and dose computation,
instead of geometric problems such as changes in material along a particle's
direction of travel. Also, the simple geometries can be modeled more easily in
practical experiments, so benchmark data should be easier to obtain for comparison.

The numerical methods used in skyshine computer codes include discrete
ordinates transport, line-beam techniques and Monte Carlo methods. While these
codes can be accurate, most are large and computationally intense, making them
difficult to use on a regular basis. One notable exception is the MicroSkyshine
method developed by Faw and Shultis, which may be implemented on a personal
computer and has been shown to be accurate for several practical cases (Fa87).
Another method which requires less computational time and effort applies
point-kernel techniques and buildup factors to estimate gamma exposure. This
approach has been taken by Trubey (Tr61), Kitazume (Ki68) and Roseberry
(Ro80).

The point—kernel technique, or single scatter and buildup method, is modeled
on the basis that each photon scatters once, and o~"" onc:, as it travels from its

source to a detector. However, a buildup factor is applied along the path of the



photon from the point of scatter to the detector. The volume of air wherein the
photon scatters may be thought of as a "first—collision source" of scattered photons.
Integration over all "source volumes" can provide an estimate of scattered
gamma-ray intensity at the point of interest.

Roseberry applied the point—kernel method to the case of a point source
concealed from a detector by a cylindrical shield, open above the source. A
benchmark experiment in this geometry was performed, and comparison of
experimental data to Roseberry’s numerical results proved that the method is useful
and accurate, though conservative (Ro80). A second simple skyshine problem
involves a point source concealed from a detector by a semi-infinite, perfectly
| absorbing wall. The point—kernel method is applied to the wall problem in this
work as an extension of Roseberry's solution.

This thesis discusses computational techniques used in past and current codes
for gamma-tay skyshine analysis. It begins with a review of gamma-ray skyshine
studies, most of which have been numerical; one practical benchmark experiment is
also described. Next, the single scatter and buildup model is discussed in depth.
Photon interactions and the use of buildup factors in this scheme are explained, and
an exposure rate equation is derived based on the model. Calculations performed by
Roseberry with the model are repeated, using new data and a different integration
method. The semi-infinite wall problem is also approached with this model,
employing the same data and integration scheme. Finally, the results obtained in
both the silo and wall computations are compared to results of other methods, and
to benchmark data and ANSI standards where possible. This allows conclusions

about the usefulness of th~ metlk)d and the new data presented in this thesis.




2.0 REVIEW OF COMPUTATIONAL SKYSHINE STUDIES

Before a technique of computing skyshine is presented in this thesis, a review of past
work in the field will be useful. Methods which experimenters have found to work
well in the past can be used as a starting point in research; for this work, a
literature review will act as a starting point.

Research on skyshine is reported in publications dating back to the 1950's.
One 1956 report by Zerby (Ze56) explained calculations needed to adjust neutron
flux densities and dose rates to accommodate variations in air density. The
calculations were applied to measurements made at the Tower Shielding Facility,
where a radiation source was suspended in midair and measurements were taken at
a second point in the air. Since the measured dose rates and flux densities contained
a component due to air—scattered radiation, this work could be considered one of the
first on skyshiné computation. Note that it is concerned with neutron skyshine,
however.

Zerby's report also demonstrates two common methods of computing skyshine
quantities. Preliminary computations were performed for the experiment using the
Monte Carlo method. The results demonstrated that in nearly all cases, neutrons
which had scattered in air three times or less were the major contributors to
measured dose. (Ze56) The Monte Carlo method became practical with the
introduction of the modern mainframe computer, and is employed in many
particle-transport codes. The conclusion that particles which scatter fewer tfmes
are more important, supports the use of the point—kernel method, in which the point

of first scatter is treated as a source for transnort t¢ some other point.



All but one of the numerical skyshine studies discussed in this chapter utilize
one of the two techniques named above. Monte Carlo studies will be reviewed first,
followed by a discussion of work based upon single—scatter models and a third
method involving the single-scatter technique. A fourth section will describe a

benchmark experiment and the work associated with it.

2.1 Monte Carlo Studies

An early study of skyshine by Monte Carlo computation is that of Lynch et al.
(Ly58). The program written in the study was for a simple problem: a
monoenergetic line beam of gamma rays (that is, gammas released in one direction
at one energy) from a point source placed in an infinite air medium, with no other
shielding. Flux densities were reported for different source—detector distances,
source energies and beam directions. Tissue dose rates were also computed and
reported.

For comparison purposes, Lynch et al modified the code to use an isotropic
source and isotropic scattering without energy degradation. Results were compared
to the analytic solution of the Boltzmann equation for the same case, and the
average numerical results were within 15% of the Boltzmann solution; often the
error was much less. Computations of single—scatter flux densities were also
compared to analytical solutions, and similar accuracy was found in these
quantities. For this ideal case, the Monte Carlo method was shown to be useful if
statistical methods were used to compute confidence limits on results.

A much more detailed Monte Carlo code package was prepared by Radiation
Research Associ~tes ir 1969 (Ma69; Co069). Instead of gamma-tay skyshine, this

study concentrated on the X-rays and fluorescent light resulting from nuclear



explosions. Comparing this work to that of the ideal, simple geometry of Lynch
et al. demonstrates the advances made in the Monte Carlo method over the decade
between the two reports. The RRA codes computed energy deposition as well as
flux density; the point source strength could be specified as a function of time,
energy, and direction; attenuation coefficients could be made altitude dependent and
energy dependent; and flux density could now be computed over time and over
changes in air density or altitude.

The first code in the package, named ZAP, used random walks to trace the
entire path of each X-ray, scatter by scatter, until its "death." Compton,
photoelectric, and pair production interactions, and some coherent scattering, were
all accounted for, so that both scattering and absorption of the X-ray could be
recorded (Ma69). The second code in the package, PFLASH, received data from
ZAP on the energy deposited by X-rays absorbed in air. Using extensive data on
the physics of fluorescent light production, this conversion code then created
volumetric source terms for fluorescent light to be used by the third code, FLASH.
FLASH computed the fluorescent light intensity at a point detector due to the
volumetric source created by PFLASH. It performed fluorescent light transport by
a backward Monte Carlo method, in which particle histories begin at the detector
and "walk backward" to the source. This method allows angular—dependent
quantities to be computed in less time than by forward Monte Carlo methods, and
also allows time—dependent calculations just as forward calculations do (Co069). In
summary, this study by RRA demonstrates the advances made in the method after
the work of Lynch et al, and the interactions which would be regularly used for

probability calculations in the futv--



Neither of the Monte Carlo studies above involved shields or structures of any
sort. Perhaps the first Monte Carlo code to determine the effects of structures on
gamma-ray dose was the SKYSHINE program, later modified to become the more
versatile SKYSHINE-II code (La79). In both programs, a source was enclosed in a
simple building of four walls, a ceiling and a floor. Sections of the walls and ceiling
could be "removed" to collimate the radiation. Since the calculations were based
upon Monte Carlo line-beam data, the code would obtain dose by integrating the
line-beam data over all beams passing through the opening or openings.

The source could be specified as a neutron source, a primary gamma—fa.y
source or a secondary gamma-ray source, each with a spectrum of emitted energies,
and anisotropic scattering could be treated in the calculations. Using the results of
Zerby and other Monte Carlo studies, the code performed its own computations to
find the air-scattered dose rate at each wall, the floor, the ceiling, and other points
outside the building. This allowed users to study the effects of building design on
radiation dose, whether direct radiation dose or skyshine. In this respect,
SKYSHINE was a milestone in the topic of radiation studies.

The MORSE code has been modified many times, with each version given its
own capabilities to use in certain problems or to receive data from other programs.
The 1984 release, MORSE-SGC/S, is a neutron and gamma Monte Carlo code
which solves both shielding and criticality problems. The physical form of the
system studied is described with combinatorial geometry, a versatile algorithm
which creates region boundaries from planes and conic surfaces. Particle transport
is based upon the Boltzmann equation, and performed by "supergroups," energy
groups ™ade up of smaller energy groups. To reduce tle computer memory

required, MORSE-SGC/S separates the entire spectrum of particle energies into




clusters of energy regions. The code performs calculations on particles in the first
cluster, or supergroup, stores the results, then calls in data on the particles in the
next lower supergroup to work with. Both the combinatorial geometry and
supergroups make the code versatile in terms of possible applications and computers
which may be used. (We84)

MORSE-SGC/S reports responses to both uncollided radiation and the sum of
direct and scattered radiation. This would suggest that it is ideal for gamma-ray
skyshine analysis. However, work at Kansas State shows the code requires many
gamma-ray histories to estimate the usually low gamma-ray skyshine dose. Also,
MORSE cannot satisfactorily simulate point detectors, since Monte Carlo codes
must use finite volumes, and small volumes receive few particles to count toward
dose. (Sh88) Even with particle weight biasing to reduce the standard deviation of
results, uncertainties on such small quantities could make the results useless. This,
combined with the long run—times required, may make MORSE-SGC/S impractical
for gamma-ray skyshine analysis. Indeed, this argument has been made against the
Monte Carlo method in general as applied to gamma-ray skyshine: The number of
particle histories required to obtain good statistics can be prohibitive. The method
is simple to apply and may be of use for neutron skyshine analysis, but that is not of

concern here.

2.2 Single-Scatter Studies
As cited by Trubey (Tr61), C. H. Bernard first hypothesized in 1953 that the
single-scattered flux density made a good approximation to the total scattered flux

density for gamma rays cr reutrons. Because buildup and exponential attenuat.on



tend to counteract each other, Bernard did not use either. Trubey's work marked
an early application of Bernard's model to gamma rays.

Trubey considered a simple problem, a monodirectional, monoenergetic point
gource of gamma rays in infinite air. This is identical to the line-beam problem
used by Lynch et al (Ly58) for their Monte Carlo research, and the problem was
chosen to allow comparisons with their results. Dose rates computed in this manner
agreed very well with the Monte Carlo calculations; however, flux densities
computed with the single-scatter model were low if the gamma rays backscattered,
that is, if the line beam was directed away from the detector and photons could only
reach the detector by reversing direction. The use of Trubey's results was limited
by the model; any shielding would make the data invalid. Still, as noted by Faw
and Shultis (Fa87), Trubey confirmed that most skyshine dose in these cases is due
to once-scattered gamma rays.

Kitazume (Ki68) introduced a new single—scatter formula for approximating
gamma-ray dose when a point source and detector are in air above ground. This
formula allowed the point source to be isotropic or monodirectional. Attenuation of
both unscattered and scattered photons was accounted for, and Taylor buildup
factors were applied to once-scattered gamma rays to simulate multiple scatters.
The formula is very general and has proven useful in later work; Roseberry's
formulation (Ro80) was shown to be equivalent to Kitazume's.

Kitazume performed line-beam source calculations to be compared with those
of both Lynch et al and Trubey. With buildup factors for air unavailable,
Kitazume chose to use factors for water instead. The results compared well with
the Monte Carlo calculations except for low source energies and large

source—detector distances, or low energies and photon beams at large angles from an
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axis between source and detector. Even this disagreed with Lynch et el by only
20%. The discrepancies became smaller as source energy increased, while Trubey's
computations without attenuation and buildup yielded poorer underestimates of the
Monte Carlo values as the energy increased. (Ki68) This makes a strong argument,
for the inclusion of both attenuation and buildup in single—scatter calculations;
indeed, their use has become standard.

A notable series of point—kernel programs was developed during the 1960's at
Los Alamos for neutron and photon shielding studies. This series, named QAD,
consists of several codes which compute uncollided flux densities, dose rates and
energy depositions from a volumetric source. While the codes compute only
line—of-sight quantities, the geometries they can use are complex. QAD employs a
combinatorial geometry in which Cartesian, cylindrical and spherical surfaces are
combined to describe the physical system being modeled. The regions may be of
different materials or mixtures of materials. Also, QAD codes can recreate buildup
factors from curves fit to experimental data, and apply them to paths through each
region, regardless of material. (Ma67)

The QAD codes themselves have no use in single-scatter studies. Their
importance lies in the offshoot family of gamma-ray codes known as G3, which
borrow the very versatile combinatorial geometry routine from QAD (Ma73). The
G3 codes can group detector responses by source energy or scattered gamma energy,
and can report doubly differential flux densities by energy and direction of the
incoming photons.

G3 employs the point source and point detector geometry first used by
Trubey, with meny c. the conventions of single—scatter calculatiorns. At each
scattering point between source and detector, the uncollided ﬂu;( density is
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multiplied by the probability of a Compton scatier toward the detector for a photon
of the source energy. Treating the scattering point as a new source, the uncollided
flux density at the detector due to the "scattering source" is calculated and
multiplied by the buildup factor in infinite air for the scattered photon energy. In
running G3, the user defines scattering "boxes;" for simplicity, scatters occur only at
the center of each box, and resulting quantities are integrated over the volume of
the box.

One sample problem used to test G3 is the same line~beam problem studied
by Lynch et al., Trubey and Kitazume. In comparison to the Monte Carlo results of
Lynch et al., G3 gives results within 10% for most distances, except at the shortest
source-detector distances. (RS85) There are problems which G3 cannot address
well, however; one of these is discussed in the next section. Still, G3 is a useful and
reliable code in some skyshine applications, and it will be used for comparisons in

this work.

2.3 Other Numerical Skyshine Studies

A study recently completed at Kansas State University (Fa87) employs a method
different from both Monte Carlo and single-scatter techniques. The MicroSkyshine
method was first based upon the results of Lampley's SKYSHINE-II line-beam
Monte Carlo code (La79), and the first MicroSkyshine code incorporated a data base
from SKYSHINE-II. The data base contained coefficients of an empirical equation
which had been fit to Monte Carlo results; the MicroSkyshine program interpolated
values of these coefficients to yield gamma-ray response functions continuous over

source energy and direction.
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The method's simplicity makes it suitable for use on microcomputers, and
MicroSkyshine is now commercially available. This version solves problems
involving a gamma-ray point source inside a cylindrical silo, or a point, line or
plane source of photons behind a semi—infinite wall. Slab shields may be placed
above the source, over the silo or wall. Such simple geometries might be used as
approximations of more complex real situations, such as a !N gamma-ray source
within a turbine building.

The first version of MicroSkyshine used photon response functions from
SKYSHINE-II; the code was validated against two ANSI-standard reference
problems (AN87) and G3 results for the silo and wall geometries. For the ANSI
problems, the MicroSkyshine geometries were adapted as closely as possible to the
reference problems, though exact replication was not possible. The results from the
code and the ANSI standard were in very close agreement. When compared to
MicroSkyshine values for the simple geometries, G3 values were consistently lower
in cases with a slab shield over the source. A comparison of both codes' results to
benchmark experimental data discussed in the next section (Ro80) revealed that G3
seriously underpredicts in those instances because it cannot account for gamma-ray
scattering and buildup in the slab. The MicroSkyshine responses proved more
accurate, validating the method in these cases. Overall, Faw and Shultis report the
method results are conservative and within 50% of nearly all documented reference
values. (Fa87)

The version of MicroSkyshine available to the public uses an improved set of
response functions developed specifically for the method by Shultis and Faw (Sh87).
The oririnal response functions were developed by Radiatior Research Associates

for SKYSHINE-II. The empirical equation for response had been fit to results of
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Monte Carlo computations, and the parameters contained small discontinuities for
adjacent energy groups and directions. The errors, probably from statistical
variations, propagated into the computed skyshine dose of early versions of
MicroSkyshine. The old response functions also led to overprediction of dose for
large source—detector distances, and extrapolation for high energy photons and large
distances could give negative response values.

The new gamma-tay response functions were computed by a point—kernel
formula much like the line—beam dose formula of Kitazume (Ki68), but which also
included a response from annihilation photons created by pair—production positrons
in air. The integration required to arrive at the response functions was
accomplished numerically with Gaussian quadrature. To describe the functions, let
Z(E,x,¢) be the dose at distance x from the source, in air of standard density po,
resulting from a photon of energy E emitted at an angle ¢ from an axis between the
source and detector. These responses, computed By the point—kernel formula, were

fitted to the approximating function

HEX,8) = KE(p/ 90)21x(0/ po)[P expla—cx(p/pa)] (2-1)

where x is a constant conversion factor, p is the air density, and a, b, and ¢ are
empirical parameters.

Response functions were computed at discrete source energies and beam
directions from the source-detector axis, then fit to this formula, the same empirical
formula as was used with the original Monte Carlo functions. With linear
intérpola.tion, however, the new garameters produce no discontinuities or negative

values, and the new response functions are accurate for source—detector distances up
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to 5000 meters compared with 1500 meters for the SKYSHINE-II response
functions. Besides clearing up the difficulties mentioned in the previous paragraph,
the new photon response functions eliminate small variations in dose as the system
geometry 18 changed slightly. Most important, comparison with benchmarks shows
the new response functions produce more accurate and realistic results and are in

better agreement with benchmark data than the old results. (Sh87)

2.4 Experimental Work
Although the early paper by Zerby (Ze56), discussed at the beginning of this
chapter, described computations made on experimental measurements of neutron
radiation in air, it does not describe the experiments thoroughly. To this author's
knowledge, only one benchmark skyshine experiment involving point sources has
been documented in detail. This gamma-ray skyshine experiment was performed in
1979 at the Kansas State University Nuclear Engineering Shielding Facility,
gponsored by the Japanese Nuclear Safety Research Association, and documented in
an article by Nason et al. (Na81).

In the experiment, three 8°Co point sources of strength ranging from 10 Ci to
3800 Ci were placed at the axis of a cylindrical concrete silo. A high pressure
ionization chamber for exposure rate measurements, and a sodium iodide detector
for photon energy spectra measurements, were placed at distances up to 700 m from
the source. The three source configurations included a collimator on the open silo to
direct the gammas into a 150—degree cone, and concrete shields of thickness 21 cm
or 42.8 ¢m over the silo. The thickness of the silo walls prevented much radiation
from leaving the silo horizontally and contributing to measured exposure rates.

Also, a lead and concrete collimator on the Nal assembly removed background
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radiation from the measured spectra. Both of these features, along with background
measurements, allowed the dose and spectra due solely to gamma—ray skyshine to be
.determined easily.

Results from both detector systems were corrected for variations in response
with the energy of the incident radiation. These corrections came from calibration
tests and manufacturer's data on the instruments. For comparison purposes,
calculations were performed using DOT, a two—dimensional discrete ordinates
transport code; the cylindrical silo geometry was selected for its reproducibility with
such programs. As a test of the accuracy of the results from both detectors,
exposure rates were computed from the Nal spectral measurements and corrected
from the collimation angle on the detector to a 47 exposure rate. For nearly all
experimental cases, these exposure rates agreed very well with those from the
ionization chamber. Thus, the experimental results can be used reliably as a
benchmark for predictive methods and as design data for nuclear facilities. (Na81)

‘One predictive method which has been tested against these henchmark results
was the subject of a thesis by Roseberry (Ro80). The method uses a variation of the
infinite air, single—scatter equation of Kitazume (Ki68), but as Faw, Roseberry and
Shultis point out (Fa86), the addition of the concrete slabs over the silo to the
model and the treatment of the scattering angle as an independent variable are
significant improvements. Roseberry's results compare favorably with 1979
ANSI-standard calculations and the benchmark experiment data, although no
ground—air interface is used and the model overpredicts the experimental results.
Roseberry's method also yields more accurate results than DOT when the silo is
covered by a concrete ro~f. This example may encourage the use of the benchmark

experimental results to test other programs or designs, since Roseberry easily
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modeled the cylindrically symmetric geometry. Roseberry's model is discussed in
detail in Chapter 3 of this work.

Although experiments to measure skyshine exposure rates are rare,
meagsurements are often taken in practical situations where direct and scattered
gamma, rays are present. In the case of light water nuclear reactors, the direct and
scattered photons from contained radionuclides is one of the many components of
the radiation field on site. To measure these gamma rays, their contribution to the
overall response must be isolated. Time dependence must also be taken into
account. An American National Standard was developed for the calculation and
measurement of such gamma radiation from LWRs in the mid 1970's, and a revised
Standard was issued in 1987. This standard describes what factors are important in
designing a radiation measurement program, the tools available to measure
radiation fields, the techniques of measurement, and how data from them should be
interpreted in light of their limitations. (AN87) These recommendations might
prove useful in future skyshine experinients with regard to experimental setup and

data interpretation, should a benchmark experiment be contemplated.
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3.0 COMPUTATION OF SKYSHINE EXPOSURE RATES
FOR SIMPLE GEOMETRIES

As mentioned in Chapter 2, numerical computation of radiation fields and
doses can be less costly and time consuming than physical modeling with
experimental radiation sources. Of the two common numerical schemes that
were reviewed, the éingle—-sca.tter and buildup model normally requires less time
and effort to program and execute. In this chapter, the interactions and
assumptions which make wup the single—scatter and buildup model are
explained. Next, a general exposure rate equation is presented for the case of
a point source and point detector in air. This equation uses the single—scatter
and buildup model, and was first presented by Roseberry (Ro80) in his thesis.
The remainder of the chapter is devoted to the description of two simple
geometries for which the photon exposures are calculated by this point—kernel
equation. One geometry involves a point gamma-ray source inside an open,
cylindrical silo, with a point detector some distance away outside the silo.
The other geometry separates the source and detector by a wall extending to
infinity on the left, right and bottom, but having a top edge. In either
geometry, a concrete roof slab may be placed over the source.

The usefulness of a model involving point sources may seem limited for
practical cases involving, for instance, steam lines. However, point sources in
modeling have been endorsed in the American National Standard
ANSI/ANS-6.6.1-1987. In the modeling of BWR turbine buildings, the
Standard states that the source need not be detailed, and equivalent point
sources may be used, if desired, to estimate dose rate. Source strengths may
be taken from plant specifications; self-shielding of the source may also be

used, but should be explained or discussed if it is used. (AN87) All these
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points would appear to support the substitution of a point source for more
complex sources in numerical models.

The ANSI standard is also clear on the wuse of shielding and the
modeling of skyshine: "All sigpificant sources of gamma radiation...which are
essentially unshielded relative to air scattering (i.e., shielded on the sides but
essentially unshielded on the top) shall be considered. Sources which are
shielded only by the outside shield wall of a building should be considered....
All sources of gamma radiation which are located outside of shielded buildings
shall be considered." (AN87) These three situations correspond to the silo
geometry, the wall geometry, and the problem of a point source in an infinite
air medium, respectively. The standard also requires that shielding in any
form must be represented by the model, positioned and oriented correctly with
respect to the source or sources, within the limitations of the numerical
method used. Topography, such as bluffs or buildings acting as shadow
shields, should also be considered, but are not required in the model. (AN87)
The two geometries studied in this work were chosen with the American
National Standard in mind, and can meet several of its requirements, including

those of shielding and (for the wall problem) topography.

3.1 The Single-Scatter and Buildup Model

The model used by both computer codes written for this study is the
single-gcatter and buildup model for gamma rays. The method is normally
applied to situations involving point photon sources and point detectors in air.
It can be extended to problems of line, plane and volume sources, but only

with a dramatic increase in computational effort, and no such extension will be
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discussed. Similarly, other media might be used, but the method was
developed solely for air skyshine studies, so only air will be the primary
medium.

Consider a photon leaving a point source and traveling in some arbitrary
direction through an infinite air medium. After traveling some distance, the
pboton will suffer an interaction with the air, resulting in one or more photons
or electrons of different direction and energy than the source photon. The
actual result depends on the source photon energy and the energy-dependent,
angular—dependent cross sections of air. The volume of air where the photon
interacts may be thought of as a "first—collision source" of photons and
electrons; in the case of gamma-ray skyshine, only photons are of concern.

The gamma rays which reach the point detector may have scattered
once, more than once, or not at all after leaving the source. It would require
the resources of a Monte Carlo code to trace every photon through every
interaction, and not every gamma ray followed in this manner would reach the
detector.  Instead, the photon flux density at the detector can be found
analytically by treating the first—collision source as a point source of secondary
gamma rays, as the name implies. The energy and intensity of the photons
leaving the first—collision source will depend on the direction, energy and
intensity of the gamma rays from the true source, and the cross—sections for
gamma rays in air of interactions which create or scatter photons.

By applying inverse~square attenuation and exponential attenuation, the
uncollided flux density at the detector from the first—collision source can be
found. By also applying a buildup factor for a point source in infinite air, ti.

total flux density at the detector from the single—scatter source can be
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estimated. In a sense, all photons which scatter for the first time at the
volume of interest and eventually reach the detector are collected together and
computed in one step using buildup, hence the name for the method.

Figure 3-1 shows a simple illustration of the model for a particular
scattering volume. - The first leg of the gamma-ray journey involves only
attenuation of photons traveling to the first—collision source; attenuation and
buildup are applied on the second '"leg" of the journey, since not all photons
follow this path precisely. 1If the flux densities or responses at the detector
due to all scattering volumes are added together, the result is an estimate of
the total scattered flux density or detector responsé. This summation may be
accomplished by expressing the quantity of interest as a function of position of
the scattering volume, and integrating the function over all space for which
first—collision sources have a clear path to the point detector. The fotal
response at the detector is approximately the sum of the uncollided response
from the point source and this first—collision integral.

The interactions considered at the first—collision source and the
application of buildup deserve much attention, and will now be discussed in

detail.

3.1.1 Interactions Considered

Gamma rays undergo many kinds of interactions in a typical medium.
The three most common interactions, of course, are Compton Sscattering,
photoelectric interactions, and pair production. Because gamma-ray skyshine is
not concerned with electrons, photoelectric effects are generally neglected; in

these cases, the gamma ray is absorbed entirely and lost at the collision point,
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producing a free electron. The ZAP code {Ma69) did consider photoelectric
effects for X-rays, but it was necessary to track the electrons to their
absorption points to provide the fluorescent light source for the PFLASH and
FLASH codes (Co69). ZAP may be considered an exception to the rule.

The remaining interactions are now discussed in the context of

gamma-tay analysis.

Compton Scailering. The Compton interaction has been used in every
application of the single—scatter and buildup model that the author has
reviewed, and should be considered a requirement of the method. Compton
scattering depends directly and simply on the position of the first—collision
source through the Compton formula for scattered photon energy and the
Klein-Nishina cross section.  Also, for photons of energies encountered in
common situations (50 keV td 10 MeV, for instance), Compton scattering
dominates interactions in air by a factor of two or more. This can be seen in
Fig. 3.2, where interaction coefficients in air are graphed for the three primary
interactions.. The early Monte Carlo skyshine study by Lynch et al {Ly38)
involved only Compton scattering; the authors stated that for their interests,
photoelectric interactions were of no use, and all other primary and secondary
processes were negligible by comparison.

The use of the Compton and Klein-Nishina formulas in the model
requires an approximation that free electrons and electrons bound to atoms
possess the same scattering characteristics. This is because the Klein—Nishina
formula is correct strictly for free electrons, alectrons not residing in an atomic

orbital. The RRA code ZAP did not make this approximation, and corrected
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the Compton interaction coefficients for electron binding effects (Ma69).
Chilton et al state that such a correction is not necessary, and the
approximation that all electrons are unbound is quite valid. They point out
that the Klein—Nishina formula fails when the kinetic energy of the recoil
electron approaches its binding energy, a situation found only with low photon
energies and material of high atomic number. At such low energies, however,
the photon is much more likely to undergo a photoelectric interaction than
incoherent scattering, and the error due to the approximation is negligible.
(Ch84) Also, air contains only negligible amounts of high-Z materials, so
recoil electrons in air are not likely to have kinetic energies comparable to
their binding energy. With these facts in mind, the approximation of free

electrons is quite justified, and is used in this work.

Pair Production. The photons resulting from Compton interactions are
emitted from the point of collision, as are the recoil electrons. In the case of
pair production, however, an electron and a positron are emitted from the
collision point; the positron travels a distance before encountering an electron
and annihilating. Two 0.511 MeV gamma rays are emitted from this point,
and it is these annihilation quanta which are of interest in gamma-ray
analysis.

The choice of whether or not to include the annihilation photons was
first based upon the distance traveled by the positron. For instance, the
Monte Carlo code ZAP included pair production in its calculations. Marshall
et al. ctated that pair production positrons are likely to travel no more thau

three meters in air before they interact with an electron. Since the distances
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involved in the study were comparable to the earth's radius, the anmihilation
was assumed to occur at the site of pair production, with the two photons
emitted back-to-back and isotropically. (Ma69) When pair production is
included in modern codes, the same assumption is made; the MicroSkyshine
code also neglects the distance traveled by the positron in order to include the
annihilation photons in its point—kernel computations (Sh8&7).

A second and more common consideration is the energy of the source
photons. Pair production has a minimum gamma-ray cutoff energy of 1.02
MeV; photons below this energy cannot induce pair production. The
interaction coefficient is negligible for gamma-ray energies below 1.5 MeV, and
is still a full order of magnitude below the Compton interaction coefficient for
photon energies below 5 MeV (Ch84), as can be seen in Fig. 3-2. For
situations involving 16N sources, which most often emit 6.13 MeV gamma rays,
pair production can make significant contributions to skyshine. Other sources
are not as likely to give rise to annihilation photons in this manner.

For this work, it has been decided to neglect pair production effects.
The criterion used to justify pair production in ZAP is not the reason; those
few codes which include the process always ignore the distance traveled by
positrons. Few of the numerical methods reviewed in Chapter 2 or used for
comparisons later in this work account for pair production, so including the
process here would make the comparisons difficult. Although the codes will
underestimate detector responses that would occur in reality, it is hecessary
that these comparisons be made without pair production to validate the
method. Pair production can easily be included ".. the programs if deemed

necessary.
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Other Interactions. Any other interactions which may produce photons
or scatter gamma rays are customarily ignored. For instance, as electrons are
ejected from a nucleus by photoeleciric interaction, they leave behind an
excited atom which may emit fluorescence photons. The energy of these
photons is never higher than the binding energy of the photoelectron. For air,
the fluorescence is in the eV range, far too low in energy to be of interest.
Coherent (Rayleigh) scattering has a negligible effect on the energy or
direction of the photon, and it too is ignored in most shielding work. (Chg&4)
The Monte Carlo code FLASH did apply Rayleigh scattering, but was
concerned with visible fluorescent light. For such low-energy photons,
Rayleigh scattering is significant, as are unusual processes such as refraction by
air molecules and scattering and absorption by aerosol particles (Co69).
Indeed, FLASH_ incorporated many processes which apply only to visible light
and have no use in gamma-ray skyshine analysis.

Evaluétion of interaction coefficients. From the discussion above, it is
clear that only Compton interactions are regularly used in single-scatter and
buildup models.  Therefore, the Klein—Nishina formula is often the only
interaction coefficient evaluated, and it may easily be computed for a given
gamma-ray energy. Where pair production is included, tabulated coefficients
have been used (Ma69, Sh87), and interpolation would be necessary for photon
energies not in the tables. This would slow down evaluation of the first—
collision source in some cases.

For situations where no concrete shielding is placed over the point
source, evaluation of the cross sections is simple. Because tli¢ phoutons

reaching the scattering volume (or first—collision source) have their first
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interaction at that point, the cross section is taken at the energy of the source
photons. In cases where shielding covers the gamma source, however, it may
be difficult but sound practice to find the spectrum of uncollided and collided
photons leaving the shield in the direction of the first—collision volume, then
apply a spectrum-weighted cross section at the volume. Roseberry and Shultis
(Ro82) argue that this is not necessary. They state that photons which leave
a thick slab shield are essentially collimated into a beam of uncollided photons
or photons which have undergone small deflections and are nearly unchanged
in energy. Any photons which have suffered collisions and lost energy in the
slab will be attemnated by the atmosphere and can be neglected when
computing exposure rates far from the point source. Roseberry and Shultis
conclude that the Compton scattering cross section still may be evaluated at
the source energy when a concrete shield is present above the source. This
assumption reduces computational effort required by the model and will be
applied in this thesis.

In summary, Compton scattering is the only interaction regularly used in
the single—scatter and buildup model, although some works have included pair
production. = This study will consider only Compton scattering at the

first—collision source.

3.1.2 Application of Buildup
To account for photons which scatter more than once, a buildup factor is
applied to the second leg of the gamma-ray path shown in Fig. 3-1. Buildup

has also been employed in a limited fask'~+ in shields over the point source.
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The use of buildup factors requires some assumptions, which will be discussed
here.

Buildup factors commonly available for computations are for point
isotropic sources in infinite media. In some simulations, such as that used by
Roseberry for the point source in a silo, the air—ground interface is neglected
and an infinite air medium is used instead. This justifies the use of an
infinite—air buildup factor after one scatter, but the approximation results in
overprediction of exposure rates near the ground, since earth tends to absorb
more scattered photons than air. On the other hand, the first—coilision source
at the scattering volume is not isotropic, since Compton scattering is biased in
the forward direction. (Fa86) This makes the use of a buildup factor derived
from an isotropic source inappropriate. Still, Shultis and Faw demonstrated
that applying the isotropic buildup fa,ct_or to the non-isotropic scattering source
introduces only a small error to the results of MicroSkyshine (Sh87). It may
be that this practice in Microskyshine underpredicts the detector response,
compensating for the overprediction from the use of infinite air instead of an
earth—air interface.

When the point source in Fig. 3-1 is collimated upwards but open to the
air, the first—collision volume can correctly be treated as the point of first
interaction for the gamma ray. All buildup can be applied to the second leg
of the photon path, and no buildup need be applied to the path between
source and scattering volume. Roseberry and Shultis proved that the single
buildup factor provided the best results in a point-kernel code, using
benchmark measurements for comparison. (Ro82) If a cou:rc.e slab or other

shield covers the collimated source, as in Fig. 3-3, scattering will occur in the
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shield and should be accounted for in some manner. The approach taken by
Roseberry and Shultis is to apply an infinite-medium buildup factor for a
point isotropic source in concrete. The factor is applied over the appropriate
distance through the slab shield, and is evaluated at the gamma-ray source
energy. Further, it is assumed in this approach that all photons leaving the
shield, including those counted in buildup, remain at the source energy. While
the last approximation is not correct, it allows cross sections at the
first—collision source to be evaluated only at the source energy, not several
energies. Roseberry and Shultis show that the use of the second buildup
factor in the concrete shield yields far more accurate results than the omission
of buildup in concrete entirely. Although its use is a rough approximation, it
is "extremely important." (Ro82) Faw and Shultis (Fa87) later stated that
the concrete buildup approximation, combined with attenuation through the
concrete, gave reasonable values of point exposure rates for shield thicknesses -
of six mean free paths or less. They could not validate the approximation for
larger shields, however. The approach is studied in detail by Bassett (Ba88).
In summary, to use buildup factors in air between the first—collision
source and the detector, the air—ground interface should be approximated by
infinite air, and the first—collision source should be treated as a point source
with a source strength per steradian equal to the intensity leaving the
differential volume in the direction of the point detector. In cases where a
concrete shield covers the point source, buildup factors may be used in the
concrete, treating all photons entering and leaving the shield as photons at the
source energy. The shield should be of moderate thlukness, only a few mean

free paths if possible.
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3.2 The Exposure Rate Integral Equation

With the assumptions of the single-scatter and buildup model outlined above,
an equation for the exposure rate at the detector may now be presented.
Exposure is the response commonly reported when only gamma-tay sources are
present. Formulation of the model was introduced by Kitazume (Ki68) to
evaluate doge rate, with a generic factor to convert flux density to the desired
response, and with the Taylor buildup approximation incorporated into the
formula. Similar analytical equations have been presented in descriptions of
FLASH (Co69) and G3 (Ma73). The derivation for G3 is notably
straightforward, and very much like the derivation to follow, although G3
converts the first—collision source to an equivalent isotropic source.

The exposure rate equation presented here was derived by Roseberry
(Ro80) and repeated without proof in the paper of Roseberry and Shultis
{Ro82); in the former reference, it is shown to be equivalent to Kitazume's
formula. The formula is derived here in a brief manner; the reader should
consult the thesis of Roseberry for more detail.

The infinite-air, single-scatter geometries of Fig. 3-1 and Fig. 3-3 are
repeated in Fig. 34, with geometric distances labeled. The source and
detector are separated by a distance d along the line of sight; this line will be
referred to as the source—detector axis. Photons leaving the source travel a
distance @ through air to reach the first—collision volume, and if a concrete
slab is present, also travel a distance a. through the concrete. The total
distance from the source to the differential first—collision volume dV is labeled

a; the point detector lies ¢+ dist:nce b from dV.
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(a)
source d detector
(b)
source d defector
. |
Fig. 3-4. Distances involved in the single-scatter geometry: {a) no

overhead shield; (b) overhead concrete roof picsent. |
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In the absence of a concrete roof, the uncollided gamma-~ray flux density

at the first—collision volume dV is given by the simple formula

$ = > exp(-pa) (3-1)

4ma?
where S = source strength,

g =linear attenuation coefficient in air for source
photons of energy E.

If a concrete slab is placed over the source, source photons will also be
collimated by the material of the slab. The uncollided gamma-ray flux

density at dV is now

S

0 -_— — — - p—

¢ aﬂiaﬂ'a-cj! exp( e #‘Ca’C)J (3 2)
where g, = linear attenuation coefficient in the roof material

for source photons of energy E.

Recall the assumption that photons reaching the first—collision volume dV have
their first interaction in that volume. As long as this assumption holds, only
uncollided flux density need be used to compute interactions in dV. Also,
recall from Section 3.1.1 that only Compton scattering will be considered in
this work, so the first—collision volume may be properly called a "differential
scattering volume," a more common name in the literature.

The number of photons which reach the differential scattering volume dV
and scatter through an angle 6; (see Fig. 3—4) into a solid angle of unit

steradian toward the detector may be written as

Sy = ¢ONgdV = E(%Jg exp(~pa — ftede) dV , (3-3)
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where N = electron density in dV (Ro80)
= (3.0064 x 102 g'1) pair ,
and ¢ = differential Compton scattering cross section
= o(0s,E).
The energy of the photon after scattering through an angle & depends upon &
and the initial photon energy E. Using the approximation of free electron
interactions for bound electrons in air, the energy B of a scattered photon can
be related to its initial energy E and the complement § of the scattering angle
s by the Compton formula {Ch84),
Bo_  E ,
1+ Mol (1 + cosf)

(3-4)

where mec? is the regt mass energy of an electron. The supplement of the
scattering angle was chosen here, since 4 will be used later as an independent
variable. The cross section itself can be evaluated with the Klein—Nishina
differential scattering formula (Ch84), which appears in dimensional form in

(Rog0) as

A2 [ A , IHAcosf .o ] 35
1+A+cosf)2 I+A+cosf A B, (39)

_ TI¢?
o=
(
where re = classical electron radius (Ch84)
= 2.818 x 10-15 m,
and A = Compton wavelength

= mec2/E.
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The formula is evaluated at the source energy, since it is assumed that all
gamma rays reaching the differential scattering volume are uncollided or have
lost no energy.

Next, the differential exposure rate dXS at the detector due to photons

scattering only at dV in a steradian toward the detector may be written as

~

ae = By en § K exp(—ib) (3-6)

where b = distance in air from the scattering volume to
the detector,

E%Q = mass energy absorption coefficient in air for
photons of energy E,
u = linear attenuation coefficient in air for gdmma
photons of energy E,
K = energy flux-to—exposure-rate conversion factor (Ch84)

i

1.835 x 108 R-g-MeV-1,

Substituting for Sy from equation (3-3) produces

dks = —SBNO__ fen |5 eyn(cpa — peac pb) dv . (3-7)
am(atac)?b2 P

This is the uncollided exposure rate at the detector from the first—collision
source; gamma rays which scatter more than once must be accounted for using

buildup factors as discussed in Section 3.1.2.
A “.u.dup factor B accounts for multiple scattering along the path from

the scattering volume dV to the detector. This factor is evaluated at the
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scattered gamma-ray energy E and over the distance b; the scattering volume
is treated as a first—collision source of photons of energy E, located a distance
b from the detector.  Another buildup factor B accounts for gamma-ray
scattering in the concrete roof, if one is present. This factor is evaluated at
the source energy E and applied over the concrete path length ag; photons
leaving the slab are assumed to retain their energy. The assumption that dV
is the point of first interaction fails when the councrete is involved; the buildup
factor B increases the flux density at the scattering volume, since it is not
solely given by Eq. (3-2).

Correcting the single—scatter exposure rate equation for buildup produces

a new differential exposure rate expression, Eq. (3-8),

dXs = SKNBB¢ ,fzen

= B exp(-—pa — peac — pb) dV.  (3-8)
dr(a+ac)2p? ? °

Integration of Eq. (3-8) over all space V for which photons may scatter
once and travel from source to detector gives the final expression for the total

exposure rate X at the detector,

% = [ SKNBDO s s oxp(yn — pa - jib) 4V, (3-9)
V 4r(a+ac)b? P
This formula includes attenuation and buildup in a concrete roof over the
point gamma-ray source. For cases where the roof is absent, Eq. (3-9) holds
with ac = 0 and B = 1.
The space V over +hich integration takes place is dependent upon tie

physical problem, whether a silo or a wall is present, for example. Selection
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of proper limits of integration will allow the application of Eq. (3-9) to many
shielding situations. @A good choice of coordinate system will also make
evaluation of the integral equation easier. Both of these issues are addressed
in the remainder of the chapter. Section 3.3 applies Eq. (3-9) to the case of
a point source in a cylindrical silo; section 3.4 considers a point source behind

a semi-infinite wall.

3.3 Applicatior of the Exposure Rate Integral Equation to a Silo Geometry
The problem of a point source of gamma rays within a cylindrical silo has
been solved numerically by Roseberry (Ro80), and reported again by Roseberry
and Shultis (Ro82). Their coordinate system and limits of integration will be
repeated here, and improvements made to the computer code used by
Roseberry will be examined.

The problem is illustrated in simplified fashion in Fig. 3-5. .A point
source of gamma rays is located at the axis of a cylindrical silo with perfectly
absorbing walls. The top of the silo is open to the air and collimates the
gamma rays vertically into a known solid angle. Alternately, a concrete slab
of thickness t is placed over the silo and point source. A point detector is
located at distance d from the point source, at the same elevation as the
source. = The source and detector are below the top of the silo, so that
photons must scatter to reach the detector. In both cases, the medium is

simulated as infinite air; no ground interface is used in calculations.
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source
collimator

L

detector

= qir-ground interface

concrete

shield (b)
______________ 0

source A 9} _ detector

= air-ground interface

Fig. 3-5. Simplified calculational geometry for the case of a point source
within a silo:  (z) no overhead shield; (b} overhead concrete roof present.
[From (Ro80)]
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3.3.1 Coordinate System

To integrate Eq. (3-9) over all space in which an uncollided gamma ray
may scatter once and reach the detector directly, a three—dimensional
coordinate system must be selected. For the silo problem, the coordinate
system consists of three angles 3, 4, and ¢, defined in Fig. 3-6. The angles ¢
and ¢ specify the direction in which a photon leaves the source, while §
locates the scattering volume dV along that path. In this system, the

variables ¢, E and ften/p depend only on . Using this coordinate system

yields the following expressions (Ro80, Ro82):

b = d sinf cscg , (3-10)
ac = t sece csch , (3-11)
a = d(cosd + sin# cotf) — ac , (3-12)
and
dV = (a+a¢)? d sin28 csc2fB df df de . (3—13)

For a homogeneous air atmosphere, the application of this coordinate system

to the exposure rate equation, Eq. (3-9), gives the final form (Ro82) of

ﬂmax N emax
dg l‘;—n ok dé B exp(—ua — ib)
min

0

fmax

de B exp{—peac) - (3—14)
0
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DETECTOR

Fig. 3-6. Coordinate system for the single-scatter model as applied to the
silo gec..utiy. [From (Ro82))

4]



Here, use has been made of symmetry in the variable e since the last
integrand is an even function of ¢, and ¢pin = —¢max, the integral from epin to
€max may be replaced by twice the integral from 0 to epax. Also, it has been
assumed that a >> a¢, so that the distance a is approximately independent of
the angle ¢. For ‘the case of an unshielded source, Eq. (3-14) reduces to

(Ro82)

ﬂmax n . 9!]18.}(
dg #;J s E df B exp(-pa — pb) €pax - (3-13)

Hm in

3.3.2 Limits of Integration

The values of the angles which make up the coordinate system are
limited by the collimation of.the gilo and the restriction that the source,
detector and scattering volume must form a closed triangle. The outer radius
of the collimator silo is designated r, as shown in Fig. 3-5. To describe the
collimation, the variable h is defined in Fig. 3-5(a) as the distance of the
point source below the outer lip of the collimation silo, where no concrete roof
is present. When a shield is present over the source, as in Fig. 3-5(b), the
distance h cannot be easily defined, since the collimator is no longer atop the
silo. Instead, the minimum value of § may be defined to correspond to the
longest gamma-~ray path through the concrete shield that does not also pass
through the silo, or the longest path through the shield that makes a
significant contribution to the detector response. (Ro82) The distance h may
then be computed as r tanfyi,. Note that r and h depend upon the outer

edge of the silo; in the MicroSkyshine code, for example, the inner dimensions
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of the silo determine r and h, and care should be taken to avoid confusion of
these definitions.
The limits of integration are related to the silo dimensions by the

following formulas (Ro80, Ro82). Where the source is unshielded,

h

gmin = arctan ? . (3_16)

If the silo is shielded, #pip is defined as mentioned above, with h computed

from 6fnin and r.

fnax = min{(r — fnin), 7 - 8 — arctanfh/(d-r)]} (3-17)

€max = arccos(sinfpin csc) (3-18)

In Roseberry's original code, the upper limit on B, the supplement of the
scattering angle, depended on the silo height and the distance of the detector
from the silo. Since the silo material is assumed to. be a perfect absorber,
photons were required to rise above the silo before scattering. This

requirement took the following form:

Puax = 7 — Bpin — arctan(h/(d-1)] . (3-19)
Note that QOpax depends omnly on the problem geometry, not the variable 4,
since fnin i3 a constant for each geometry of source, detector and silo. The

derivation of these limits is straightforward, and can be found in the thesis of

Roseberry (Ro80).
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In reality, photons from an isotropic source in the silo may reflect off
the interior walls of the silo, then scatter out the top and eventually
contribute to the detector response. This was seen to some extent in
benchmark experiments (Ro80). The use of Eq. (3-19) would not account for
these photons and could result in an underestimate of detector response when
compared to benchmark data. Faw and Shultis (Fa87) simulated the
contributions of gamma rays which ricochet off the silo wall by allowing single
scatters within the silo and computing detector responses from these "inside
scatters," neglecting the shielding of the silo wall entirely. In a sense,
MicroSkyshine uses the silo only to collimate the source photons into a known
solid angle, not to restrict the space in which photons scatter.  This
conservative approach has been taken in modifying Roseberry's program for
this work. Photons scattering within the silo and escaping are simulated ‘py
extending the region of integration into the silo, an area not visible from the
detector. The limits on # and ¢ remain the same, but the restriction of the
silo wall is removed from Eq. (3-19), so that # is limited only by the angle of

collimation, that is, the possible directions of source photons. In this work,
Buax = T — bnin . (3_20)
Photons which scatter within the silo follow a path directly to the detector;

the '"perfectly absorbing" silo material is ignored.  This approach avoids

possible underestimation of true exposures or dose.
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3.3.3 Numerical Evaluation

The silo skyshine problem was solved numerically by Roseberry (Ro80)
using Egs. (3-14) through (3-19). The computer code written for this
purpose, SKY, employed triple trapezoidal integration to compute the exposure
rate from an isotropic source emitting one gamma ray per second at a
specified energy. The angle of collimation of the silo and the thickness of an
overhead concrete shield, if present, could be speéiﬁed. To normalize results,
the areal density between source and detector (distance times air density) was
computed and reported; exposure rates were muitiplied by the square of the
source—detector distance and divided by the solid angle of collimation of the
source photons. These normalized exposure rates were displayed versus areal
density for all comparisons.

_ Part of the work performed for this thesis inveolved modifications to
SKY. Since the original code was written, improved cross sections and
buildup factors have been published, and improvements have been made in
numerical integration techniques. These data and methods have been
incorporated into a new version of Roseberry's code, and comparisons have
been made to investigate the effects of the changes. These comparisons and

changes will be described in this section.

Numerical Approzimations. The program written by Roseberry involved
several approximations made to simplify coding of the exposure rate equation
or to shorten run times (Ro80). Many of these were retained in subsequent

“versions of SKY, referred to in this work as SKY8 and SILOGP.
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Although the angle § has a theoretical lower limit of zero, this occurs
when the scattering volume is infinitely far from the source and detector.
Gamma rays are very unlikely to travel to such a point, and the contribution
to the detector response will be mnegligible for cases where § is small.
Therefore, Roseberry placed a limit on the distance in air through which
photons might travel; the distance over both legs of the journey was limited
to 10 mfp (mean free paths). This places a numerical lower limit on 3 below
which the integrand is approximately zero. For some later versions of SKY,
this limit was increased to 20 mfp, although Roseberry showed that 10 mfp
was adequate for d < 700 m. (Ro80) Following a similar analysis, Roseberry
placed a limit of 15 mfp on the photon path length in concrete. This yields a
numerical upper limit on ¢, above which the integrand is negligible. In SKY8
and SILOGP, this cutoff value was retained.

Equation (3-14) assumes that the distance a traveled by source f)hotons
is approximately independent of e. To carry through on the assumption, the
concrete distance a; was dropped from Eq. (3-12) within the code SKY,
leaving only # and 3 as the independent variables. For problems involving
60Co point sources, Roseberry approximated the emission spectrum of 1.17
MeV and 1.33 MeV photons by two 1.25 MeV photons per disintegration.
This customary approach was proven to change the computed exposure rates
by less than two percent for all configurations studied. (Ro80) Both of these
numerical approximations were also carried over into the revised versions of
the code and problems performed with them.

The MicroSkyshine code (Fa87) alloweu photons which first scatter within

the silo to contribute to measured results. As discussed in the previous
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section, a similar approximation has been used in SKY8 and SILOGP.
However, approximations found in other works were not applied in medifying
SKY. One of these, used in G3 (MaT73), was to "convert" the first—collision
scattering source at dV to an equivalent isotropic source. This would justify
the use of a buildup factor computed for a point isotropic source and solve the
incongruity mentioned in section 3.1.2. However, the source term "conversion"
performed by G3 is to simply multiply the photon flux density leaving the
first—collision source in a unit steradian toward the detector by 4x. To find
the flux density at the detector from this isotropic scattering source, the new
source strength must be divided by 47b2. The 4r terms cancel, and the end
result is identical to Eq. (3-6), where the scattering source term S, is directed
into a unit steradian, and need only be divided by b2 to account for inverse
square attenuation. The conversion does mnot truly yield an equivalent
isotropic scattering source, and is eliminated in the foﬁnulation, 80 it was not
applied in this work.

Finally, the air density is taken to be constant over all regions in which
gamma rays travel, and the a.txﬁosphere is taken to be homogeneous in
composition. Since the distances involved in computations are not likely to
exceed 5000 meters, this is a valid approximation; numerical estimates of
attenuation through an altitude—dependent atmosphere, such as the method
used by ZAP (Ma69), are avoided. For simplicity, the concrete shield placed
over the source is also assumed to be homogeneous. Approximating density
changes in either air or concrete is rarely, if ever, required.

Use of Gauss Quadrature. The original code SKY written by Roseberry

performed its numerical integration of Eq. (3-14) by triple trapezoidal
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integration. The three regions of integration (over 5, # and ¢) were each
divided into ten regions, with a total of 1100 mesh points at which the
integrand was evaluated. Roseberry found this to be an acceptable mesh size
both in accuracy and in computation time. (Ro80)

Gauss quadrature is commonly known to be more accurate than
trapezoidal integration, and can achieve better results with fewer evaluations of
the integrand than either trapezoidal integration or the use of Simpson's rule.
Some recent computer codes use Gauss quadrature in some capacity, notably
MORSE (We84) and MicroSkyshine (Fa87). Hornbeck (Ho75) comments that
great accuracy is possible without many points, and that Gauss quadrature is
"a very desirable method to use for multiple integration," since fewer
evaluations of the integrands are necessary than with other methods, and less
error accumulates in.the outer integral as a result. Details of the technique
may be found in any of the three references above.

In the first modification to SKY, named SKY8, the trapezoidal
integration formulas were replaced by function subprograms and a Gauss
quadrature subroutine. The subroutine used here originated at Sandia National
Laboratory, and performs adaptive quadrature; that is, separate integrations are
performed over successively smaller sections of the entire region of integration
until the change in the result is below a chosen criterion. SKY and SKY8
were applied to two different silo geometries, one with an unshielded,
collimated silo, the other with a concrete shield 21 cm thick over the silo.
The source in both cases was a 60Co point source, normalized to a strength of
one phot~n per second. As shown in Tables 3-1 and 3-2, the change i.

exposure rates is minimal, less than 2% in all cases. Because the Gaussian
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Table 3-1. Comparison of methods of numerical integration as applied to
the computer code SKY. The exposures are for a 69Co point source on the
axis of an open silo with a solid angle of collimation of 4.683 sr. Air
density is taken as 1.2 mg/cm3.

Normalized exposure
[m2 - R/(sr - photon)]

Computed by Computed by

8-point 11-point
Source-detector Areal density Gauss trapezoidal
distance (m) (g/cm2) quadrature  integration
25.0 3.0 2.853(-17)*  2.832(-17
37.5 4.5 4.182(-17 4.152(-17
50.0 6.0 5.358(-17 5.319(-17
62.5 7.5 6.367(-17 6.321(-17
75.0 9.0 7.209(-17 7.157(-17
87.5 10.5 7.892(-17 7.836(-17
100.0 12.0 8.429(-17 8.369(-17
112.5 13.5 8.831(-17 8.768(-17
137.5 16.5 9.292(-17 9.226(-17
150.0 18.0 9.377(-17 9.312(-17
162.5 19.5 9.384(-17 9.318(- 17
175 21 9.323(-17 9.258(-17
200 24 9.038(-17 8.976(- 17
225 27 8.598(-17 8.538(-17
250 30 8.058(-17 8.002(-17
275 33 7.462(-17 7.409(- 17
300 36 6.842(-17 6.793(-17
350 42 5.621(-17 9.979(-17
400 48 4.509(-17 4.475(-17
450 54 3.554(-17 3.526(-17
500 60 2.764(-17 2.740(-17
550 66 2.126(-17 2.106(- 17
600 72 1.621(-17 1.604(-17
650 78 1.227(-17 1.213(-17
700 84 9.225(-18 9.115(-18
750 90 6.902(-18 6.814(-18
800 96 5.142(-18 5.071(-18
‘850 102 3.816(-18 3.759(-18
900 108 2.821(-18 2.777(-18
950 114 2.080(-18 2.045(-18

* 2.853(-17) = 2.853x10-17
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Table 3-2.

thickness 21 cm.

Comparison of methods of numerical integration as applied to
the computer code SKY. The exposures are for a 60Co point source on the
axis of a silo, shielded by a concrete slab of density 2.13 g/cm3 and

Air density is taken as 1.2 mg/cm3.

Normalized exposure

[w2 - R/(sr - photon)]
Computed by Computed by
8- point 11- point

Source- detector Areal density Gauss trapezoidal

distarce (m) (g/cm2) quadrature integration
25.0 3.0 2.412(-18)*  2.413(-18
37.5 4.5 3.516(-18 3.517(- 18
50.0 6.0 4.460(-18 4.460(- 18
62.5 7.5 5.236(-18 5.235(-18
75.0 5.0 5.847(-18 5.847(-18
87.5 10.5 6.308(- 18 6.308(- 18
100.0 12.0 6.634(-18 6.634(- 18
112.5 13.5 6.841(-18 6.842(-18
137.5 16.5 6.968(-18 6.970(-18
150.0 18.0 6.917(- 18 6.920(-18
162.5 19.5 6.808(- 18 6.812(-18
175 21 6.652(- 18 6.656(-18
200 24 6.237(-18 6.243(-18
225 27 5.738(-18 5.744(-18
250 30 5.200(- 18 5.208(-18
275 33 4.658(-18 4.666(-18
300 36 4.133(- 18 4.141(-18
350 42 3.182(-18 3.189(-18
400 48 2.395(-18 2.401(-18
450 54 1.773(-18 1.779(- 18
500 60 1.298(-18 1.302(-18
550 66 9.408(-19 9.444(-19
600 72 6.772(-19 6.799(-19
650 78 4.848(-19 4.868(-19
700 84 3.454(-19 3.469(-19
750 90 2.452(-19 2.464(-19
800 96 1.737(-19 1.745(-19
850 102 1.227(-19 1.233(-19
900 108 8.650(-20 8.691(-20
950 114 6.087(-20 6.119(-20

¥ 92.412(-18) = 2.412x10-18
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quadrature method is known to be more accurate, it has been retained in the

code.

Data Used in Codes. The single-scatter and buildup method requires
two data bases: -one of gamma-ray interaction coefficients, the other of
parameters used in computing buildup factors. In SKY, Roseberry employed
attenuation coefficients published by the National Bureau of Standards; the
data are over twenty years old, however, and more recent data can be
obtained from several sources. Buildup was computed in SKY by the Berger
formula, with published coefficients used as the data base. A new formula for
photon buildup known as geometric progression has become popular for
numerical use; although the formula is complex compared to the Berger
approximation, _the results agree more closely with experimental and
computational data (Hag3, HaSG). It was decided to bring these two portions
of the code up to date and compa.r_e results to determine what changes, if any,
would result in the exposure rates from the modifications.

The first alteration made to SKY8 was the replacement of the Berger
buildup formula by the geometric progression formula of Harima et al (Ha86).
An early version of the formula (Ha83) was presented as an alternative to
other gamma-ray buildup approximations, which weré fit to reported data but
did not reproduce them well. Some buildup formulas deviated as much as
40% from widely—used moments method data; one approximation was cited as
giving negative buildup factors when extrapolated. Harima obtained
coefficients for the first version of the geometric progression from fits to

numerical moments—method results and results of other computer codes.
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Except for lead, the geometric—progression (or GP) buildup factors were well
within 10% of the original data. The coefficients were easily interpolated,
another advantage of the GP method.

The current version of the GP buildup formula (HaB86) was published by
Harima ef al three years later. The authors explain the physical meaning of
each term in this more accurate form, report coefficients for several materials
over different energy ranges, suggest an extrapolation method for large
distances, and recommend parabolic interpolation in energy and distance. The
formula and interpolation scheme were used by Shultis and Faw (Sh87) in
computing response functions for the MicroSkyshine code, and are employed by
Cain and Trubey (RS86) in a recent veision of the QAD program for
microcomputers. It was this revised formula that was included in the modified
version of SKY8, renamed SILOGP.

The GP 'approximating function for the gamma-ray point-source buildup

factor ig defined as (Ha86, RS86)

1+ (b1) KL K # 1
B(Eo,x) = k-1 , (3-21)
1 + (b-1)x , K=1
where
A tanh(x/Xy - 2) — tanh(-2)
K=cx"+d [ = tanh(=0) (3-22)
and

Eo = gamma-ray source energy,

X = source—detector distance in the medium in mean {ree
paths,
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b,c,a,d,Xx = parameters dependent on E, and the material of the
medium.

The values for the parameters used in this work are those used in
QAD-CGGP (RS86); the subroutines used to calculate the buildup factors are
identical to those in QAD, with a modification to correct an error in the
parabolic interpolation procedure.

For comparison of buildup, the unshielded and shielded silo geometries
used in testing the Gauss quadrature subroutines were again used. Normalized
exposure rates were computed along a radial from the source out to 950 m
using the Berger buildup formula, and again with the GP buildup formula.
The results are shown in Fig. 3-7. Differences in the buildup are immediately
seen; for the unshielded case, where buildup is only used in air, the normalized
exposure profile computed with GP factors shows less variation over distance
than the Berger—formula exposure profile. The tendency of the Berger factors
to overestimate close to the source is especially evident here. The GP buildup
method was chosen for all subsequent work.

The other change in the data base was an update of interaction
coefficients. The twenty—year—old NBS values used by Roseberry were replaced
by those published in an article by Hubbell (Hu82). This compilation, also
performed for the National Bureau of Standards, contains values of u/p and
ten/p for forty elements and forty—five mixtures over the range of 1 keV to 20
MeV. Very little of the data is empirical; the mass attenuation and mass
energy absorption coefficients were obtained from theory, with empirical
adjustments made to pen/p. Values for mixtures were computed from the
elemental data and appropriate weight fractions. Of special note is the

White—Grodstein composition for concrete used by NBS, which differs from the
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composition used for ANSI-standard problems (AN87). This difference was
neglected for later comparisons to ANSI reference results.

Exposure rates were computed with the old and new interaction
coefficients to compare changes in detector response. The same silo problems
were used in this test as were used with the integration and buildup factor
comparisons. Also, since the decision to use the new data was made well
after the GP buildup formula was incorporated, both sets of computations
employed adaptive Gaussian 8-point quadrature and GP buildup factors. The
results are presented in Tables 3-3 and 3H4. Fof the case of an unshielded,
collimated source, the change in the exposure rate due to the change in pfp
values is less than 2%, even at large distances. This is to be expected, since
Hubbell (Hu82) reported that differences in the data from earlier standard
values are only 5% in the worst cases. For the shielded silo case, the data
from Hﬁbbell produce exposures which are consistently lower, but the change is
less than 3%, even as the source-detector distance approaches 1000 meters.

The final version of the silo skyshine code SILOGP, including Gauss
quadrature, the geometric—progression buildup formula, and new interaction
coefficients, is listed in Appendix A. In Chapter 4 this version will be

compared to other methods and validated against reference data.

3.4 Application of the Exposure Rate Integral Equation to a Wall Geometry

The other problem addressed in this thesis is that of a point source of gamma
rays separated from a point detector by a semi—infinite wall. The wall
geometry is shown in simple form in Fig. 3-8, with distances beftw~-n the

source, detector, and scattering volume labeled; the Cartesian dimensions which
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Table 3-3. Comparison of mass interaction data used in the computer
code SILOGP. The exposures are for a 60Co point source on the axis of
an open silo with a solid angle of collimation of 4.683 sr. Air density
is taken as 1.2 mg/cm3.

Normalized exposure
[w2 - R/(sr - photon)]

' g/p from pfp from
Source- detector Areal density Roseberry Hubbell

distance (m) (g/cm2) (Ro80) (Hu82)
25.0 3.0 2.223(-171)*  2.222(-17
37.5 4.5 3.152(-17 3.150(- 17
50.0 6.0 3.967(-17 3.965(-17
62.5 7.5 4.674(-17 4.670(-17
75.0 9.0 5.277(-17 5.271(-17
87.5 10.5 5.782(-17 5.775(-17
100.0 12.0 6.197(-17 6.187(-17
112.5 13.5 6.527(-17 6.515(-17
137.5 16.5 6.964(-17 6.948(- 17
150.0 18.0 7.085(-17 7.067(-17
162.5 19.5 7.150(-17 7.130(-17
175 21 7.165(-17 7.143(-17
200 24 7.070(-17 7.046(-17
225 27 6.847(-17 6.821(-17
250 ' 30 6.529(-17 6.502(-17
275 33 6.150(-17 6.122(-17
300 36 5.732(-17 5.704(-17
350 42 4.856(-17 4.829(-17
400 48 4.009(-17 3.984(-17
450 54 3.243(-17 3.222(-17
500 60 2.583(-17 2.564(-17
550 66 2.031(-17 2.015(-17
6500 T2 1.580(-17 1.567(-17
650 : 78 1.218(-17 1.208(-17
700 84 9.326(-18 9.239(-18
750 30 7.092(- 18 7.022(-18
800 96 5.362(-18 5.307(-18
850 102 4.035(-18 3.991(-18
900 108 3.022(-18 2.988(-18
950 114 2.255(-18 2.229(-18

¥ 2.223(-17) = 2.223x10-17
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Table 3-4. Comparison of mass interaction data used in the computer
code SILOGP. The exposures are for a 60Co point source on the axis of a
silo, shielded by a concrete slab of density 2.13 g/cm® and thickness 21

cm. Air density is taken as 1.2 mg/cm3. ‘

Normalized exposure
[m2 - R/(sr - photon)]

' ufp from pfp from
Source-detector Areal density Roseberry Bubbell

distance (m) (g/cm?) (Ro80) (Hu82)
25.0 3.0 1.636(-18)*  1.629(-18
37.5 4.5 2.309(-18 2.299(-18
50.0 6.0 2.891{-18 2.877(-18
62.5 7.5 3.386(-18 3.368(-18
75.0 9.0 3.796(-18 3.775(-18
87.5 10.5 4.128(-18 4.103(-18
100.0 12.0 4.387(-18 4.359(-18
112.5 13.5 4.580(-18 4.549(- 18
137.5 16.5 4.795(-18 4.759(-18
150.0 18.0 4.829(-18 4.791(-18
162.5. 19.5 4.823(-18 4.784(-18
175 21 4.782(-18 4.741(-18
200 24 4.617(-18 4,574(-18
225 27 4.370(-18 4.326(-18
250 30 4,071(-18 4.028(-18
275 33 3.743(-18 3.701(- 18
300 36 3.405(-18 3.364(-18
350 42 2.744(-18 2.709(-18
400 48 2.152(-18 2.123(- 18
450 54 1.654(-18 1.629(-18
500 60 1.251(-18 1.231(-18
350 66 9.335(-19 9.180(-19
600 72 6.898(- 19 6.779(- 19
650 78 5.054(-19 4.963(-19
700 84 3.677(-19 3.609(- 19
750 90 2.661(-19 2.609(-19
800 96 1.916(-19 1.877(- 19
850 102 1.374(-19 1.346(-19
900 108 9.820(-20 9.613(-20
950 - 114 6.996(-20)  6.845(-20)

* 1.636(-18) = 1.636x10-18
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locate the source, detector and wall in space are presented in Figs. 3-9 and
3-10. The wall extends downward and sideways to infinity and is of perfect
absorbing material. The point source lies a distance xs from the wall,
measured perpendicular to the wall, and lies a distance ys below the top edge
of the wall. The point detector lies a distance x4 from the wall face and yq
below the wall edge. To measure the '"offset" of the source and detector, a
vertical plane is extended from the source through the wall, normal to the
wall. The distance from the detector to this plane, or the "offset," is zg9. If
either the source or detector (never both) is above the wall edge, ys or ygq is
negative, respectively. The value of z4 is taken as positive in the direction
shown in Fig. 3-9.

The source and detector may or may not lie on a line normal to the
wall, and may have different heights with respect to the top of the wall, but
must be separated along the line of sight by the wall. This restriction forces
photons to scatter in air to reach the detector. As in the silo problem, the
source may be open to the air or covered by a concrete shield of thickness t.
The source—detector distance is again designated as d. No ground-air interface
is involved in this problem, for simplicity, and the thickness of the wall is
negligible.

To the author's knowledge, the wall problem has only been addressed
previously by Faw and Shultis (Fa87) using MicroSkyshine. Their coordinate
system differs from the one developed for this work, due to the requirements
of MicroSkyshine. Results of the two methods will be compared in the next

chapter.
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Fig. 3-10.  Coordinate system for the source and detector, presented in
orthographic views based on the XYZ axes.



3.4.1 Coordinate Systems
The exposure rate equation which is to be solved for the wall case is

repeated here.

E exp(—pa — peac — pb) dV (3-9)

% = J - _SKNBBo __ fen
V dr(a+ag)2b2 P
To integrate Eq. (3-9) over all space in which a gamma ray may scatter once
and reach the detector directly, a three—dimensional coordinate system must
again be selected.  The system of angles used in the silo problem by
Roseberry was chosen first, but produced an eztremely large and cumbersome
set of limits, many of which were valid only for certain positions of source
and detector. It was discovered that a simple cylindrical coordinate system
could be applied instead, requiring fewer equations to determine the limits of
integration. Thus the cylindrical system was used in the numerical analysis.
Using the cylindrical coordinate system requires that the source, detector
and wall positions be translated to cylindrical coordinates. By deﬁnitiog, the
source lies at the origin and the point detector is at r = 0, z = d. Only the
edge of the wall is of concern, and it may be described by an infinite line.
The translation begins with the rotation of the Cartesian geometry of Fig.
3-10 into a second Cartesian geometry, in which the source and detector lie
the same distance h below the wall. The rotation is presented in Fig. 3-11,

and its result is shown in Fig. 3-12. The intermediate angles and quantities

are as follows:

§ = arctan ¥s —Jd (3-23)
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Fig. 3-12.  Translation of wall geometry from Cartesian to cylindrical
coordinates: new coordinates of source and detector in X'Y'Z' system created
by first rotation.



h = ys cosf ~ x5 sinf = yq cosél + x4 sind (3-24)

X = Xg c0sf + ys sinf {3-25)

xé = xq cosf# — yq sind (3-26)

The X and Y a,xes_ are rotated through an angle # to become the X' and Y'
axes. Note that the Y' axis lies in the XY plane, which acts as a reference
for the offset 24, and that Y' is perpendicular to the source—detector axis,
which lies in the X'Z' plane.

The second step of the transformation is another rotation of Cartesian
axes. The X' and Z axes are rotated through an angle £ to become the X"
and Z" axes, as shown in Fig. 3-13. The axis Y' remains unchanged, and is
identical to the Y" axis. The angle £ is defined such that the source—detector

axis is parallel to the X" axis, and is given by

¢ = arctan 4 — . (3-27)

The result of this second rotation is shown in Fig. 3-14. The new quantities

are defined by

xg = Xg sec§ , (3-28)

il

x& xc'1 secf . (3-29)

Note that xg + xg3 = d. Here, xg represents the distance along the

source—detector axis from th: soarce to the top of the wall, while x} is the
P d
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Fig. 3-14. Translation of wall geometry from Cartesian to cylindrical
coordinates: new coordinates of source and detector in X"Y"Z" system created
by second rotation.



distance from the detector to the top of the wall. These two quantities
directly affect limits of integration, as will be shown later.

Finally, the cylindrical coordinate system (r,¢,z) is superimposed on the
third Cartesian system (X", Y", Z") in Fig. 3-15. The cylindrical polar axis
is taken as the source—detector axis, with the point source located at the
origin of the gystem and the detector at z = d. The radial coordinate r of
the scattering volume dV is measured from this axis. The polar axis is
parallel to the X" axis, hence the polar coordinate z is taken as positive in
the positive x" direction. The quantities r and ¢ are defined in a plane
parallel to the Y"Z" plane, with the positive Y" axis acting as the ¢ = 0
direction. The angle ¢ is measured using the right-hand rule about the X"
axis. Since the Y' and Y" axes are equivalent, Y' is normal to the
source—detector axis, and the X'Y' plane acts as a reference for the offset zg,
it is concluded that the reference plane for ¢ must include the source-detector
axis, and must intersect the z4 reference plane to form a line perpendicular to
that axis.

The complement 3 of the scattering angle is still required, since the
Compton scattering parameters depend upon it. Given the cylindrical

coordinates (r,¢,z) of the scattering volume, f may be found. From Figs. 3-8

and 3-15,

f = arccot % + arccot ar; . (3-30)

Other quantities can be obtained from the Pythagorean theorem:
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b = m s (3“_31)

a=422+12 —a. (3-32)

The element of volume is
dV = r dr d¢ dz . (3-33)

The development of an accurate formula for the path length a; in
concrete is complicated, because the concrete slab may be skewed with respect
to the source—detector axis and the cylindrical coordinate system. Figure 3-16
illustrates the components of the path length a., taken as XYZ components
because the concrete shield is parallel to the XZ plane. To obtain ac, the
cylindrical components must be transformed '"backwards" to the original
Cartesian system. Figures 3-10 through 3-15 will be useful at this point.

Given the cylindrical coordinates (r,¢,z) of the scattering volume dV, its

Cartesian coordinates in the X"Y"Z" gystem are

w; =z, (3-34)
w; =T CcoS¢Q , (3-35)
w; =r sing . (3-36)
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If a Cartesian coordinate system is rotated about its origin to produce a
second system, the coordinates of one point in both systems are related to one

another by the following system of equations:

X = AxX’ + Ayy’ + Az’

= paX’ + gy’ + B ' (3-37)

()
l

]
1l

VgX' + WY+ vz’

where
(x,y,2) = coordinates of the point in XYZ space,
(x',y',z') = coordinates of the point in X'Y'Z' space,
(Ax,pix,¥z) = direction cogsines of the X' axis (not the

X axis) with respect to the XYZ coordinate
axes.

This system of equations will yield the coordinates of dV in the X'Y'Z'
system, which was rotated about the Y' axis through an angle ¢ to produce

the X"Y"Z" axes. With Ay = cosé, Ay = 0, and A, = -sin¢, for example,

W, = 2 03§ —r sing sin{ . (3-38)
Similarly,

w)‘r =T COS¢ , (3-39)

w, = z 5in§ + 1 sing cos§ . {3—40)
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The same operation can be performed with Egs. (3-37) through (3-40) to find

the coordinates of dV in XYZ space.

wx = z cosé cosd — r (sing siné cosd — cos¢ sind) (341)
wy = -z cosé sinf + r (sing siné sind + cos¢ cosd) (342)
Wy = 2 siné + r sing cosé (3—43)

With this example, we can now determine a¢, the concrete path length.
Because ac lies on a line from the source (the origin) to dV, its components
ac,x, ac, y and ac,z are proportional to the components wy, wy, and w,.
Further, the Y component must always be equal to t, the concrete shield
thickness. So, we may define the components of a. as the coordinates of dV,

normalized to a Y%ommnent of t. Define
a, _ = twg/wy , (3—44)
a,. = twy/wy, (345)
using Eqs. (3-41) — (3—43). The concrete path length is then given by

i
— 2 2
ac = [ac’x +al, it ]2 . | (3-46)

Finally, with the Compton scattering quantities defined by Egs. (3—4)
and (3-5), the exposure rate equation (3-9) may be expressed as an integral

over r, z and ¢.
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SKN T'max Zmax 3
X = T dr r dz =— p—;“— o E exp(—ub)

I'min Zmin b2

¢max B
: d
¢m in ¢ (a-+ 3-0)2

exp(—pa — picc) (3—47)

Unlike the equation for the silo geometry, this does not approximate the path
length a as independent of the inner variable. For the case of an unshielded
source, ac = 0 and the integrands show no dependence on ¢. Equation (3-47)

then reduces to

Tmax Zmax "
X = %Ii J dr r J dz —B- 11;7“ o E exp(—ua—ub)
Tmin Zmin a2b2
: (¢max - ¢min) . : (3_48)-

In this coordinate system, the variables o, E and ,ften/p (itself a function
of ﬁ}) again depend on 3, but 8 now depends on the cylindrical coordinates r
and z. As a result, those variables move from the outer integral to an inner
integral and must be evaluated more often.  This disadvantage of the
cylindrical system is offset by the relative simplicity of the integration limits,

which are presented next.
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34.2 Liwits of Integration

The limits of integration in Eq. (3—47) are best understood with the aid
of Fig. 3-17. The scattering volume dV must always lie at a position which
is visible to the source and the detector; this is a requirement of the
single-scatter model. The union of the regions which are visible from the
source and from the detector is the shaded area labeled the "scattering zone"
in Fig. 3-17. This volume of space extends infinitely into and out of the
page, as the wall does. The differential scattering volume dV is restricted to

the scattering zone, thus integration takes place over this volume.

Limits on r. In Fig. 3-18, the system is oriented so that the scattering
zone may be viewed in the cylindrical coordinate system. From this view,
limits on r are easily deduced. Recall from Section 3.4.1 and Fig. 3-14 that
the source and detector are both a distance h below the wall in the X"Y"Z"
coordinate system. The edge of the wall marks the cloéest approach of the
scattering zone to the source—detector axis, therefore rpijn = h.

The upper limit of integration over r in fact approaches infinity, since a
gamma ray could, in theory, travel an infinite distance, undergo a Compton
scatter of 1800, and return again to the detector. As with the numerical
solution of the silo problem, however, contributions from scattering voluxﬁes
very far from the detector are negligible, and a cutoff criterion is necessary.
The criterion selected by Roseberry for the SKY code, mean free paths
traveled by the photon in air, is satisfactory.

Let rpax be chosen such that for all values of r > rpax, a photon must

travel a distance in mean free paths greater than the chosen cutoff value Mcyt.
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Referring to Fig. 3-4, the distance traveled by the photon in air is ga + ub.
Since the attenuation coefficient of air increases as photon energy decreases
over nearly all energies of interest, u < x. Define the path length function M

a3

M(z) = pa + pb & o | 2422t + [2 + (d=)7f] . (349)

If M equals the cutoff value Mgy, then the actual mean free path distance in
air, ua + pb, will exceed Mcy,, Since ub < ;}b. Defining rpzx in terms of M
instead of Myt i8 a conservative choice, insuring that all scattering volumes
for which the path length is below Mgyt are included in the integration.

By the first derivative test, M is minimum at z = d/2 for constant r.
If the minimum value of M for constant r is Mgy, the minimum mean free
path length in air for that value of r must be greater than Mg¢ys, since f;b >
pb.  This value of r may be taken as rygx. Substituting z = d/2 and M =
Meut,

Meut = u“ 2 + (d/2)? + l r2 + (d — d/2)2 (3-50)

or
Tmax = [%] [(Mcut/up = d2] . (3-51)
This formula is used in the numerical analysis for the wall case.
Limits on z. The limits on z and ¢ are strongly dependent on the

source and detector locations as measured from the wall. The possible

combinations of source and detector positions with respect to the wall may be
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divided into three categories. = These categories, shown in Fig. 3-19, are
visualized best in the X"Y"Z" frame of reference, with the source—detector axis
horizontal. They are:

(1) The wall lies between the source and detector, and is not directly

above either. This occurs only when xg > 0 and x(’i > 0.
(2) The wall extends over and above the source in the Y" direction; in
the XYZ system, the detector is much farther below the top of the
wall thap the source. In this case, x; < 0.
(3) The wall extends over and above the detector in the Y" direction;
in the XYZ system, the source is much farther below the top of
the wall than the detector. In this case, x& < 0.
The second and third cases may be useful in modeling situations where a
source and detector are at the base of a cliff and top of the cliff, or at the
base and roof of a tall building.

For a specific value ofhr, the scattering volume dV will lie on the surface
of a cylinder of radius r about the source-detector axis. If any portion of the
cylinder lies: within the scattering zone of Fig. 3-17, that value of r lies within
the limits of integration. Some examples are illustrated in Fig. 3-20. The
smallest useful cylinder, of course, has radius rpin = h. For a cylinder of
radius r > h, the values of z between which the cylinder intersects the
scattering zonme correspond to the analytical limits of integration for z. The
problem is therefore reduced to locating the intersection of the cylinder and

the two half-planes bordering the scattering zone. Restrictions on z based on

the mean—{ree—path cutoff Mcyy will also be required.
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To begin, consider the first geometry (x's: > 0, xa > 0) illustrated in
Fig. 3-20. At z = ZzZpin, the cylinder contacts the scattering zone at only one
point: the half-plane above the source, which passes through the top edge of
the wall and defines the space visible from the detector. The radial r will be
perpendicular to this half-plane at z = 2zain, since r defines a circle which is
tangent to the plane. This fact can be utilized to compute zpja. A skeletal
geometry, with only the wall edge, half-plane above the source, and the
source—detector axis, is shown in Fig. 3-21. From this figure, Eq. (3-29) and

the identity d = xg + x('i,

o = arctan = arctan %— , (3-52)
xa cosé d

p = (d-z) cosé tana = h(d—z)(cosf)/x('i , (3-53)
v=7/2-¢, (3-54)

tana h
tand = = , 3-55
secy ch1 cscé ( )

and

r = p coséd = h (d-z) cos¢ (3—56)'

(h2sin?¢ + x}2)*

Rearranging Eq. (3-56) to produce z as a function of r, an expression is

obtained for the lower limit on z.

r(h2sin?€ + x)2)?
2= d -~ —poz . (3-57)
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Figure 3-22 shows a similar skeletal geometry for the half-plane above the
detector, which marks the space visible from the source. At z = zpx, the
cylinder in Fig. 3-20(a} intersects this half-plane at only one point. By

identical analysis, the value of z on the detector side, zpax, i8S given by

r(h2sin2¢ + x;;?)*
7 = W eo5 ¢ . (3-58)

For all r such that a radial of length r exists normal to the half-plane
above the source, Eq. (3-57) gives the value of zpin. If € # 0, however, there
can be values of z for which no radial from the axis to the scattering zone is
perpendicular to the half-plane above the source, because the half-plane does
not extend to those values of z. Figure 3-23 demonstrates that all radials
which are normal to the half-plane lie in a plane of their own. The
important value of r is that value for which the radial is normal to the
half-plane af the edge of the wall. For larger r, Eq. (3-57) yields zmia. For
smaller r, the radial at (r,z) which contacts the half-plane at only one point
does so at the top of the wall, and this fact must be used to find zpiz. The
same argument applies to Eq. (3-58); if r is greater than or equal to the
length of the radial which reaches the edge of the wall and is normal to the
half-plane over the detector, Eq. (3-58) produces zmax. Otherwise, zpax is
determined differently.

Figure 3-24 presents a typical radial of length r, at axial position z,
which ends at the top of the wall. The radial acts as the diagonal of a box,

anc its length may easily be computed. Froo *he fizure,
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r normal to the boundary of the scattering zone over the detector.
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2 = h? + [(x‘é - z) cos§]2 + [(x;—z) cosé tan7]2 . (3-59)

Using Eqs. (3-28) and (3-54) and the identities tany = cot(7/2 — %) and
1 + cot2f = csc2¢,

12 = h? + (xg — z c08£)? csc{ . (3-60)

To add the requirement that the same radial must be normal to the
half-plane over the source, Eq. (3-57) is substituted into Eq. (3-60); the result

is the minimum value of r for which Eq. (3—57) equals zaig.

M_J =

Tr =

T [0 sinz¢ + (x ). (3-61)

Substituting Eq. (3-58) into (3-60) yields the smallest radial distance r for
which Eq. (3-58) equals zpax.

b2 sin2¢ + (x))2]%. (3-62)

—
I
P'¢_|D‘

8

For instances in which r is less than one or both of the criteria above,
Eq. (3-60) may be used alone to find the appropriate limit on z. By solving
for z without the use of Eqs. (3-57) or (3-58), the restriction that the radial
be normal to a half-plane is lifted. Equation (3-60) has two solutions for z,

roots of a quadratic.
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71 = [xé — siné (r2 - ]12)%] secé

! (3-63)

Zg = [xé + 8iné (r2 - h2)%] secé

The smaller of the- two roots corresponds to zpin; the larger corresponds to
Znax- Dither or both may be used as a limit, as the geometry demands.

To summarize the analysis to this point: The limits on z are piecewise
functions, with the point of changeover dependent on r. For the case of xg >

0 and :E'Cli > 0,

[h28in2¢ + (x&)ﬂ%

h . 1

d-r K CosE , T 2 ) [h2sin2¢ + (xa)Q]2 |
Zmin = 3 (3_64)

min (zy,z2) -, otherwise.

| [sinng + (7}
sin2é + (x’
h . 1

r B cost S , T 2 % [h?sin2¢ + (x)?%]*
Zmax = 1 (3-65)

max (z1,2z2) , otherwise.

The second and third geometry cases in Figs. 3-19 and 3-20 may now
be discussed. In the second class of problems, where x; < 0 and xa > 0,
both half-planes bordering the scattering zone lie above and behind the point
source in the cylindrical frame of reference. The guidelines for determining

Zmin are the same as for the first class of problems, since the half-plane on
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which zpin depends still extends above and behind the source in these cases.
The guidelines for determining zpax, however, must be changed. When 2z =
Zmax, the cylindrical surface of radius r intersects the scattering zone at only
one point. As shown in Fig. 3-20(b), this point is the very tip of the wedge-
shaped scattering zone, which is also the top of the wall. The radial r and
its position z are thus governed by Eq. (3-60), and zpax equals the larger of
its two solutions in Eq. (3-63). Figure 3-20(c) presents the case of xy > 0,
x& < 0, wherein both half-planes extend behind the detector. By analogy, we
find Zmin is always the smaller of the solutions to Eq. (3-60), while zpax
follows the same guidelines as in the first class of problem geometries.

Computing limits of integration on z using only the half-planes bordering
the scattering zone will lead to inefficiency; on occasion, much of the cylinder
of radius r between these values of z will lie further from the source and
detector than a practical value of the path length cutoff Mcyi. An example is
that of large source—detector distances and a relatively short wall. Integrating
over this space yields a negligible response, and therefore is unnecessary.
Alternate limits of integration over z bé.sed on the path length cutoff Mgy
will avoid this wasted effort.

Figure 3-25 illustrates an approximation for useful limits on z using the
mean free path cutoff. Since the total path length traveled by a photon is
restricted to Mgyt mean free paths, the photon must scatter within the
ellipsoid shown. Recall that in two dimensions, the sum of the distances from
any point on an ellipse to both foci is a constant. In the figure, this distance
is Ry + Ry. By eqroting chis constant sum to the cutoff distance Mcy./p for

photons at the source energy, and rotating the ellipse about the
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Fig. 3-25.  Alternate limits of integration over =z, based on the
mean—free—path cutoff. '
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source—detector axis, an ellipsoid is created with major axis of length Mcyi/u
and minor axis of length 2rp,x. This ellipsoid may be used to restrict the
range of integration of z to useful values.

In the cylindrical coordinate system, the source rests at the origin, and
the detector lies at r = 0, z = d. The center of the ellipsoid then lies at

r =0, z = d/2. The analytic equation for the two—dimensional ellipse is

(z-4/2)2 , (002 _,

(3-66)
(Meur/2u) 2 rﬁla.x
If r is known, Eq. (3-66) yields two solutions for z:
_ d M t ri2
2 = § & Mg J 1-[rmax] . (3-67)

Turning to the three—dimensional case, if r is known, the differential scattering
volume dV will lie on a cylinder of radius r about the source—detector axis for
any z and ¢. The intersections of this cylinder with the ellipsoid mark upper
and lower limits of z required by the mearn free path cutoff. The limiting
values correspond to Eq. (3-67), since the cylinder and ellipsoid are invariant

in ¢.

cut _ d  Mecut | r ]2
Zmin = 2 ~ EC; J 1 - [rmax] (3-68)
cut _ d M t _ r |2
2it = § + Mo J 1 [rmax] (3-69)
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The limits obtained with the cutoff value should be compared to the
limits on 2z obtained using the half-planes bordering the scattering zone.
Using the two requirements that photons must collide with air volumes in the
scattering zone and travel less than Mgy mean free paths, the larger of the
two values of zpijn should be used, and the smaller of the two values of zpax
should be applied.

The final form for the limits of integration over z is similar to Egs.
(3-64) and (3-65). The lower limit zpijn may be found by Eq. (3-57) only if
xﬁ > 0; comparing the three types of source-detector geometries will make
this evident. If xa < 0 or the radial coordinate r is smaller than its criterion
of Eq. (3-61), zgin will be the smaller of z; and 2z, given by Eq. (3-63). If

cut

the value z min

from the mean free path cutoff analysis is larger in any
instance, it becomes zyin instead. The upper limit follows similar guidelines
involving x‘é. For all possible cases, then, the limits of integration over z are

expressed by the following formulas.

t

where

; h281n2§+(x&)2 h " )

r , X" >0 and r 2 = J 2gin?é+(x})2

_geon _ h cos¢ d Xq ( d
min

min (zy,z2) , otherwise, (3-71)
and
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cut _ d _ Meus _[r N
min ~ 2 5‘; 1 [rmax} (3-72)
Zmax = Min [zﬁggm , chlgﬂ , (3-713)
where
h2gin2é+(x!)2
r B 5, x">0andr hﬁ- J h2gin2¢+(x!)2
geon _ cos¢ 8 Xg S 374
Zmax (3-74)
max (z1,z2) , otherwise,
and
cut _ d t _|.r N
Zmax = 3 T 5t |1 [Im] (3-75)

The quantities z; and zp are

source and detector are not offset, z

defined by Eq. (3-63). In a case where the

£ = 0, and the limits simplify greatly.

rx!
_ d cut )
max [d + ) Zmin] , Xd >0
Zmin (£=0) = (3-76)
' cut .
max [xs , zmin] , otherwise
r-xl .
. _ s cut '
min {d + Zma.x] ) Xg > 0
Zmax (£=0) = (3-77)
: cut .
min [xé , Zma,x] , otherwise
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Because the restrictions on r simplify to r > h, and rupijn = h, they may be

removed entirely.

Limits on ¢. The limits of integration over ¢ may also be different for
each of the three types of source—detector arrangements in Fig. 3-19. The
three cases will be considered separately, then combined to produce a single
set of equations for @nin and ¢pax. As will be shown, the region of
integration in ¢ can sometimes be composed of two regions, with a finite set
of values of ¢ between them wherein the integral is invalid.

First, consider the case where x'S' > 0 and xéi > 0, Fig. 3-19(a). For
known r and 2z, the scattering volume dV may reside anywhere on the
perimeter of a circle of radius r, with center at distance z along the axis from
the point source. Some examples for each type of source—detector arrangement
are presented in Fig. 3-26. Only the arc of the circle which lies in the
scattering zone may be included in the integration. Thus, the values of ¢
which border the arc are the integration limits.

Figure 3-27 is a skeletal geometry in which a radial r at position z
contacts the half-plane over the point source, but may or may not be
perpendicular to the plane. Two radials of length r at two azimuthal angles ¢
are possible solutions; one corresponds tO ¢pin, the other 0 Gpax. It is
possible to employ the length of perpendiculars m and n in computing the
limiting angles. Recall that ¢min and @pax are measured from the plane
formed b:y the ¥" axis and the source—detector axis (see Fig. 3-13). Also, m,

n and the ¢ reference plar: are all normal to the X'Z' plane. Therefcre, m
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Fig. 3-26.  Cylindrical surfaces defining limits of integration over ¢ for
‘mown r and z: (a) the wall lies between the source and detector, but is
above neither; (b) the wall extends over and above the source; (¢} the wall
extends over and above the detector.
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and n form angles ¢nin and ¢@max with the two radials, respectively, which
form the same angles with the ¢ reference plane.

From the figure, note that ¢nip < 0.

COSPnin = M/T , (3-78)
COSPmax = B/T , (3~79)
_ m
tana = ({d=z) cosf + r Sindpin siné ° (3-80)
_ n
tana = (d—z) coSé + r S1ln@Ppay S1n€ ° (3-81)

Combining these with Eq. (3-52) results in a single formula, which may be

solved for either limiting value of ¢.

h _ I Ccosdrj
x] = (@) ¢3¢ + Tt singia SIDE - (3-82)

The two solutions stem from the presence of cos¢ism in the numerator and

singim in the denominator; rearranging Eq. (3-82) yields

h{(d-z) cost + 1 singum Sing]/xy = 1 (1 — sin?pumlt . (3-83)

Solving for the limits yields

singiin = ££ 2 (3-84)

where

£ = — h? sin¢ (d-z) cosé , {3-85)

98



B = {(tx})AxP? + (b sing)?] - [b x} (d-2) cose]2}?, (3-86)

and

% = 1l(xg)? + (b sin)?] . (3-87)

The minimum ¢ is found by subtracting 2 in Eq. (3-84); maximum ¢ is
found by adding 2

This same analysis may be performed for radials which contact the
half-plane above the detector. The values of ¢ at which the circle of radius r
and axial position z intersect this half-plane are stated without proof, but are

arrived at by the same logic.

I+ &

singlin = “—g— (3-88)
where :
P = h? z cosé siné | (3-89)
5 = {(mxy)2 ()2 + (n sin€)?] - [hax] cosl2}?, (3-90)
and
F= 1 [(xg)2 + (b sing)?] . (3-01)

The lower limit of ¢ is obtained by subtracting & from & the upper limit by
adding it.

Equations (3-84) through (3-91) are valid only so long as the circle
described by r and z intersects the half-plane with which the equation is
derived. In Fig. 3-26(a), one circle at zy straddles the two half-planes,
entering the scattering zone through one and leaving out the other. From this

case, it may be concluded that a charge in expressions for ¢nin and @pax
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occurs over the range of z. These switches occur at values of z where the
circle intercepts the top of the wall; for smaller z values, Eq. (3—84) is used,
while Eq. (3-88) gives the limit on ¢ for larger z. Furthermore, the z
coordinates for which the radial intersects the top of the wall have been given
previously as Eq. (3-63). It can be shown that ¢@gin changes from Eq. (3-84)
to Eq. (3-88) at z = 2z;, and that ¢pax switches form at z = z,.

To summarize the previous discussion, in which xg > 0 and xa > 0, the
expressions for the limits of integration on ¢ take on one of two different

forms, according to the value of z and Eq. (3-63). For the class of problems

in which z"‘; > 0 and x'c‘l > 0,

boin = arcsin [( 4 B)/¥) ,z < z G9)

arcsin. [(Z-&)/ A,z > z

b = arcsin [( A+ B/€ , z < 2o (3-03)

arcsin [(D+8)/ % ,2 > 22 .

The limits above are displayed versus z in Fig. 3-28 for three different
source-detector geometries of this type. The angle ¢ is different for each case,
but short computations will show that z; always marks the z coordinate at
which ¢@nin changes formulas, and z; always acts as the point of change for
¢max. Note that the limits on ¢ are parabolas when plotted versus z;
expressed another way, the intersection of a cylinder of radius r and a
half-plane bordering the scattering zone forms a parabola on the curved surface

of the cylinder. The intersections of the two parabolas formed by the two
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Fig. 3-28.  Limits of integration over ¢ for source—detector geometries in

which the wall extends above neither source nor detector. In all cases, xg and
xa are positive; Xs = Xd = ys = ¥4 = 5m, r = 7 m. Note -the parabolic

shape of the curves.
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planes lie at z: and z9, and the area enclosed by the parabolas is the region of
integration over z and ¢.

The second and third types of source—detector geometries may be solved
with the knowledge obtained above. Figures 3-26(b) and (c¢) show how four
values of ¢ may be required to describe the scattering zone for constant r and
z. The cylinders of radius r sketched in Fig. 3-20 still form parabolas with
the half-planes bordering the scattering zone, but both parabolas open in the
same direction. As before, the area enclosed by the parabolas acts as the
region of integration, and the limits are described by Egs. (3-84) through
(3-91). (In the case of xg = 0 or xj = 0, when the top edge of the wall lies
directly over the point source or point detector, respectively, the cylinder and
one of the half-planes intersect to form a line instead of a parabola. The
region of integration is still the area between the intersecting curves.)

Figures 3-29 and 3-30 are plots of the intersection of a cylinder with
two half-planes for x; < 0. In Fig. 3-29, the larger parabola on the left is
the intersection with the lower half-plane, such as in Fig. 3-20(b). The
parabola formed by the upper surface nests within it, and splits the wvalid
values of ¢ into two regions past its apex in the positive z direction. In the
situation which created Fig. 3-30, the source—detector axis is strongly skewed,
i.e., the offset of the detector from the source is relatively large. The
parabola on the upper half-plane is skewed as a result; its apex does not lie
between the arms of the lower parabola, thus the apex is not shown in the
figure. Still, the area between the two curves is the region of integration over
z and ¢. To find the limits on ¢, then, the salues of z at which the curves

Intersect are needed, and the z and ¢ coordinates of the apex of the inner
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Fig. 3-29. Limits of integration over ¢ in a source—detector geometry for
which the wall extends over the source and the ¢ integral breaks into two
integrals over separate regions. In the case shown, Xs = x4 = ys = 5 m, yd
=25m,z4 =2m,andr = 9 m.
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Fig. 3-30.  Limits of integration over ¢ in a source—detector geometry for

which the wall extends over the source, but the ¢ integral does not split into

two separate regions. In the case shown, Xs = x4 = ys = 5 m, yq = 25 m,
! Zg = 20 m, and r = 9 m.
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parabola are required. The same conclusion can be drawn from the case of x&
< 0 by analogous arguments.

Many of the expressions necessary have already been derived with the
case of xg > 0, xg > 0. Figure 3-31 is a skeletal geometry used in finding
the z and ¢ coordinates of the apex on the upper half-plane. An imaginary
circle of radius r about the axis in the IJKL plane would contact the
half-plane in one point; therefore the radial r is normal to this half-plane,
defined by the point detector and top edge of the wall (X('_"l < 0). Since the
radial is perpendicular to the surface, one would expect the result to be
similar to the analysis in Fig. 3-21, the result of which is Eq. {3-57). Indeed,
the only difference is a change of sign:

1

r [(x3)? + h? sin?{]
Zgpex = d + h COS& y X& < 0 . (3_94)

The azimuthal angle is still given by Eqgs. (3-84) — (3-87); because the two
values of ¢ converge, we have

Singapex = (A/F)|, _ , X3 <0. (3-95)

Z = Zgpex

The results for the case of xg < 0 should now be obvious, and so are

presented without proof.

r [(x))2 + b2 sin2¢]?

Zapex = — hcosé ) X; < 0. (3-96)
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singapex = (F/ I, _ » X <0, (3-97)

= Zapex

where & and ¥ are given by Egs. (3-89) and (3-91), respectively.

These quantities are used in comparisons to determine if the azimuthal
integral over ¢ will break into two regions, and if so, over what region of z it
does so. Two criteria may be deduced from Figs. 3-29 and 3-30.

(1) The z coordinate locating the apex of the inner parabola, zapex,

must lie between the limits of integration for z.
(2) The ¢ coordinate @dapex Of this point must lie between the ¢ values
of the outer parabola at Zapex.
If both conditions are met, the azimuthal integral will split into two regions;
if not, the integral remains one.

The values of z; and zy perform a slightly different function than for the
first class of geometries, where xg > 0, xg > 0. As before, they mark
endpoints of the region of z where Eq. (3-84) or Eq. (3-88) is valid. When
xg < 0, however, and the phi integral splits into two regions, both formulas
may only be used for values of z smaller than z; or 2zp; the half-—planes do
not exist above these values of z within a distance r of the source—detector
axis. In Fig. 3-29, for example, the negative values of ¢ which mark the
integration limits converge at z = z; and do not exist for higher values of z.
The two upper values of ¢ are only useful for limits of integration when
Zapex < Z < Zz. One would correctly anticipate the figure to be reversed if x"
< 0 and the phi integral splits. Then, the two lower values of ¢ can be used
as limits if zy < 2z < zgpex, and higher azimuthal angles may be used if z2 < z

< Zzpex- In the ealiier discussions, the two equations for ¢nin were used as

limits only on opposite sides of z;, and so on.
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If the phi integral does not break apart, as in Fig. 3-30, the values of z;

and zo have mixed roles. In the figure, for example, x!' < 0; z; marks the

8
point at which the lower limit of ¢ switches formulas. The lower azimuthal
angle found by Eq. (3-84) gives way to the higher angle from Eq. (3-88) as z
increases. The parabola created by the intersection of the cylindrical surface
and the upper half-plane [for example, see Fig. 3-20(b)] has its apex well
outside the region of integration, and consequently only one leg of that
parabola is used for limits on ¢. This leg defines ¢nin for z; < z < z5. The
offset zq of the detector is positive in the geometry which produced the figure;
if zq were —20 instead of '+20, the ‘apposite leg of the upper pé.xabola would
be used alone to define ¢pax over part of the range of z. The analogies to
the case of xi < 0 should be clear; Eqgs. (3—84) and (3-88) map parabolas
open to the left, and only one leg of Eq. (3-84) is used over the range of z.
(Each plot of ‘¢ versus z is for constant r.)

This discussion of the phi limits for cases when the scattering zone is
not between the source and detector is presented in an organized fashion in
Table 3-5. The examples have concerned source—detector arrangements in
which x; < 0; analogies to x!} < 0 are easily made, and may be understood

more easily with the help of the table. The formulas for ¢, zzpex and @apex

are repeated here in the notation of the table.

singy = (A-B)/F (3-98)

sings = (D)€ (3-99)

sings = (9-8)/ F (3-100)
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Table 3-6. Limits of integration over the azimuthal angle ¢ for known values of r and z, in source-detector geometries such
that xi or xj i8 negative. Subscripted variables are defined by Eqs. (3-98) through (3-111). _

qi’min,l ¢max,1 ¢min,2 ¢max,2

zapex,lszsmin(zhzz). #1. ¢s ¢4 $2
zmin<za.pex,1<zmax'
zninszl ) J
Smin Zy,%y
¢1(zapex,1) < ¢apex,1 < ¢2(za.pex,1)
otherwise $1. ¢2
xg <0 1
min(z,zq)<z 2,<2; $4 ¢2
SZmax 212%7 # s
(2010 <2 21523 ¢a [
<max(zy,52) 212123 ¢z b4
x§ <0 ; 'mﬂx(zn,Zz)SzSZapex'z, () 1 $2 $4
zmin<z.'a.pe:nc,2<zrnax’
max(z,23)<z )
$Zmax ¢1(zapex,2) < ¢apex,2 < ¢2(zapex,2)
lotherwise ¢ P4




sings = (D+8)/ F (3-101)

where
6 = — h2 siné (d-z) cosf , (3-102)
Z = {(xj)A(xy)? + (b siné)?] — [h xy (d-2) cos§]2}'%, (3-103)
# = r{(x3)? + (h sing)?] , (3~104)
P = h? z cos siné (3-105)
g = {(rx))? [(x)? + (b sin€)?] ~ [hzx| cosgl2}? (3~106)
and ' | |
F=r [(xé)'«’ + (h sin€)?| . (3-107)

r [(xg)2 + h? sin%]é

Zopex,] = R o8t , xg <0 (3-108)
r [(xy)? + h2 si112£]sz
—_ n
Sin¢apex,l = .@/9]2 =z, xg <0 (3-110)
pex, k
sixlc;ﬁai)&,:[,2 = A/¥|, _ Zapex2 | x4 <0 (3-111)

In summary, Table 3-6 lists limits of integration over the azimuthal
angle ¢ for all possible source—detector geometries and known values of r and
z. The notation is the same as that of Table 3-5. It is assumed that the
limits are not evaluated at r = rpin, which is a trivial case; otherwise, the

limits hold for all r and z.

110




IT1

Table 3—6. Limits of integration over the azimuthal angle ¢ for known values of r a.nd z. Subscripted variables are defined by
Eqgs. {3-98) through (3-111).
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The patterns inherent in the integration limits may be seen in Figs. 3-32
through 3-34. In each graph, limits of integration on ¢ are plotted versus z
for a given source—detector geometry and increasing values of r. The graphs
are, in fact, contour plots of the intersection of a cylindrical surface of radius
r with the boundaries of the scattering zone. Given the radius r, the
differential scattering volume for a gamma-ray must lie on the surface of the
appropriate cylinder; the contour plots describe the section of each cylinder
within the scattering zone, thus the area of integration. Fig. 3-20 illustrates

this concept well.

343 Numerical Evaluation

The semi-infinite wall skyshine problem discussed in this work is solved
numerically by the computer code WALLGP, listed in Appendix B. This
FORTRAN program calculates the exposure rate, kerma rate or dose
equivalent due to an isotropic point source emitting one photon per second.
The locations of the point source and point detector with respect to the wall
are specified in the input; if a concrete shield is involved, its t.hickness and
density are also read by the input routine. Results are presented as response
per photon, and also as response per photon multiplied by the square of the
source-detector distance. = The second quantity is sometimes preferred for
comparisons, since it varies less with distance.  Because the interaction
coefficients of Hubbell (Hu82), the geometric—progression buildup factor formula
(Ha86, RS86), and the adaptive Gaussian quadrature all proved successful in
the SII.LOGP code for the silo problem, all these features were employed iu

WALLGP. Some approximations made by Roseberry (Ro80) were also tested
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Fig. 3-32.  Contour plot of the limits of integration in the wall geometry for
increasing values ot the radial coordinate r. The source and detector lie in a
plane normal to the wall; x¢ = x4 = y5s = yq4 = 10 m.
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Fig. 3-33.  Contour plot of the limits of integration in the wall giometry for
increasing values of the radial coordinate r. The source and detector are offset
by z4 = 5 m; the wall extends over neither source nor detector. xs = x4 =
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Fig. 3-34.  Contour plot of the limits of integration in the wall geometry for
increasing values of the radial coordinate r. The source and detector lie in a
plane normal to the wall, and the wall extends over the source in the
cylindrical frame of reference. xs = x4 = ys = 10 m; yq = 40 m; zq4 = 0.
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in WALLGP, along with approximations unique to the wall geometry. Their
usefulness is discussed as the final topic of this chapter.

In all calculations performed by the code WALLGP, air density is taken
to be constant throughout the system. This is assumed in many computer
codes, and since most physical problems considered in this work have less than
2000 m separating the source and detector, the assumption seems valid.
Uniform density of the concrete shielding is also assumed for simplicity.

For a wvariety of source energies and source—detector arrangements,
detector responses were computed using double precision and single precision
versions of WALLGP. To three significant digits, no differences were found
between results of the two programs. Although single—precision computations
require shorter computing times and fewer resources, double precision results
are more accurate in most applications. It was decided to employ double
precision in the final version of WALLGP, for the advantage of accuracy.

One assumption made by Roseberry to simplify the computer code SKY
was not made in the code for the wall skyshine geometry.  Roseberry
approximated the path length a traveled by source photons in air as the total
path length a from the point source to the scattering volume dV. In the
absence of a concrete shield over the source, a = a, and the assumption is
correct. If a concrete shield is present, the assumption can introduce error,
especially in instances when the differential scattering volume lies close to the
source. The effect is to lower the computed detector response by artificially
reducing the uncollided flux entering dV. Since Roseberry's code included the
assumption, yet overestimated the results of a benchmark exneriment (Ro80),

the approximation was justified in SKY.
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In this work, a more rigorous approach has been taken. In the absence
of a concrete shield, the distance a along the first leg of the gamma-ray path
is independent of the azimuthal angle ¢ (analogous to the angle ¢ in the silo
geometry).  Further, every integrand of Eq. (3-47) is independent of the
azimuthal angle, and the innermost integral over d¢ equals the integrand times
the difference in limits. If a shield is present, a i dependent on ¢ through
Eqgs. (3-32) and (3-46), since the distance ac through the roof is nonzero. In
the code WALLGP, Eq. (3-32) is used as written if the geometry involves a
shield; thus, the approximation of Roseberry is not used. If no shield is
involved, WALLGP compﬁtes a aé'pa.rt of the z.integrand and uses Eq. (3-32)
with ac = 0, as Roseberry did for all cases. '

An important input parameter to the wall program is the photon path
length cutoff value in mean free paths, variable CUTMFP. Gamma rays
“which must travel farther than the cutoff value to Teach the detector are
ignored in computation of response. Also, the cutoff value is used to 6ompute
limits on the integration variables r and z via Eqs. (3-51), (3-68) and (3-69).
Roseberry (Ro80) chose ten mean free paths in air and fifteen mfp in concrete
as cutoff values. In WALLGP, a single value is compared against the mean
free paths in air and concrete traversed by a photon, avoiding double
standards. |

To find a suitable value of the cutoff, exposure rates were computed for
fourteen different source—detector arrangements, listed in Table 3-7. The test
cases were selected from reference problems described in Chapter 4; exposure
rates were found using cutoff values of 10, 20, 30, and 40 mean free paths.

The results, presented in Table 3-8, point toward a cutoff of 40 mean free
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Table 3-7. Test cases used to investigate the convergence of the
computer code WALLGP. The test cases are selected from reference
problems presented in Chapter 4, and are grouped according to the
parameter which varies between cases.

. Source
est ener Xs X4 Vs Yd Zd t Pconc Pair
case (V) () () () (m (® (w) (gemd) (mg/om)
1 6.2 40 40 0.00001 0.00001 O 0 1.22
2 6.2 400 400 0.00001 0.00001 O 0 1.22
3 6.2 780 750 0.00001 0.00001 O 0 1.22
4 6.13 1 9 0.7 0.7 0 0 1.25
5 6.13 1 799 0.7 0.7 0 0 1.25
6 - 6.13 1 9 - 0.7 = 0.7 g 0.3 2.13 1.25
7 6.13 -1 799 0.7 0.7 0 0.3 2.13 1.25
8 0.1 500 500 0.0000t 0.00001 O 0 1.25
9 1.0 500 500 0.00001 0.00001 O 0 1.25
10 10 500 500 0.00001 0.00001 O 0 1.25
11 1.25 3 100 3.0 3.0 16 0.1 2.35 1.2
12 1.25 3 100 | 3.0 3.0 300 0.t 2.35 1.2
13 1.25 3 100 3.0 3.0 10 0.01 2.35 1.2
14 1.25 3 100 3.0 3.0 10 1.0 2.35 1.2
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Table 3-8. Behavior of detector responses computed by WALLGP with
changes in the mean free path cutoff value. The test cases are
described ir detail in Table 3-7. All computations were performed using
a convergence criterion of 17 difference between successive evaluations
of the exposure integral.

Normalized exgosure

(R/photon

10 mfp 20 mfp 30 mfp 40 mfp

Test case cutoff cutoff cutoff cutoff
1 1.003(-19)* 1.003(-19 9.004(-20 6.512(-20
2 1.134(-21 1.134(-21 1.134(-21 1.134(-21
3 7f113 -‘3 7i124:—23 7.806(-23 7.118(-23
4 8.323(-20 8.323(-20 8.168(- 20 8.323(-20
5 1.050(-23 1.084(-23 1.084(-23 1.085(-23
6 1.358(-20 1.358(-20 1.342(-20 1.358(-20
7 1.209(-24 1.657(-24 1.662(-24 1.657(-24
8 Oa 8.571(-28 1.377(-27 1.382(-27
9 1.274(-23 1.399(-23 1.400(-23 1.400(-23
10 6.724(-22 6.708(-22 6.792(-22 6.710(- 22
11 3.826(-21 3.827(-21 3.827(-21 3.827(-21
12 4.678(-22 4.719(-22 4.720(-22 4.718(-22
13 8.992(-21) 9.071(-21 9.135(- 21 9.173(-21
14 ob 4.107(-26 4.168(- 26 4.162(- 26

*1.003(-19) = 1.003x10-19

aSource- detector distance in mean free paths is larger than cutoff
value; WALL performs no calculations.

bConcrete shield thickness in mean free paths is larger than cutoff
value; WALL performs no calculations.
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paths as the optimum value. Note that a cutoff of 10 mfp with 100 cm of
concrete overhead eliminates all contributions to detector response; one meter
of concrete corresponds to over 13 mean free paths for a 1.25 MeV photon.
Similarly, if the source-detector distance equals 1000 m, it becomes physically
impossible for a 0.1 MeV gamma ray to travel only 10 mfp and reach the
detector; 1000 m in air corresponds roughly to 18.5 mfp for these photons.
Larger cutoff values will avoid this problem and allow computations for larger
source—detector distances. On the other hand, the geometric progression
buildup factors used in the code only extend to 40 mean free paths (RS86), so
longer distances must be eliminated from consideration. The criterion of 40
mfp keeps as many dose contributions as possible in computations, and holds
the computations to conditions for which the buildup data are valid.

The first test case, however, shows that CUTMFP is not the only
variable important to convergence; computed exposure actually decreases in this
case a8 CUTMFP increases. Another cause for concern is the Gauss
quadrature used to integrate Eq. (3—47). Gauss quadrature is normally not
recommended for integration of ill-behaved functions or functions with
discontinuous derivatives. An advantage of the adaptive Gaussian quadrature
subroutine used in this work is its ability to work with such functions.
Figures 3-32, 3-33 and 3-34¢ demonstrate that the limits of integration on ¢
are not at all smooth, so that the exposure rate integral equations for the wall
geometry can be expected to "misbehave" over the range of z. The
quadrature routine used here can account for such behavior if sufficient
accuracy is requested by the calling program. Therefore, tests were run to

determine a sufficient value of the user—supplied error parameter DEL. The
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value of the integral computed by the quadrature routine will have a
maximum error of DEL times the true value of the integral being evaluated.

Table 3-9 presents exposure values computed by WALLGP for most of
the geometries presented in Table 3-7, with DEL ranging from 0.05 to 0.001.
The differences in detector responses computed with error criteria of
DEL = 0.01 and DEL = 0.001 are nearly always a fraction of one percent.
The differences are larger for short source—detector distances, such as in test
cases 1, 4 and 6. Case 1, in which the source and detector are 80 m apart
and nearly on a line of sight, requires 0.1% error for accurate results (compare
with Table 3-8). Alternately, a smaller value of MFPCUT in such instances
may help, but is not recommended.

Though 0.1% accuracy may be desirable, values of DEL = 0.001 can
result in impractical computation times in most instances. For normal
calculations, it is suggested fhat DEL = 0.01 be entered as the error
parameter; this will produce accurate answers in a reasonable time. For
source—detector distances below 100 m, especially with low walls, DEL = 0.001
will be necessary. |

In summary, it was assumed in the wall skyshine code that photons
which travel more than forty mean free paths in air and/or concrete produce a
negligible response at a point detector. Unlike Roseberry's silo method, the
wall method computes the distance traveled by a source photon in air exactly.
Double precision computations were found to be accurate, as was a
requirement of 1% error in the integration routines. The final version of the
program WALLGP is listed in Anpendix B; results of vaiidation tests are

presented in the next chapter.
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Table 3-9. Behavior of detector responses computed by WALLGP with
changes in convergence criteria. The estimated error equals the product
of the convergence parameter DEL and the computed detector response; the
value of DEL in each case is the percent error expressed as a decimal.
The test cases are described in detail in Table 3-7. All computations
were performed using a mean free path cutoff value of 40 mfp.

Normalized exposure

(R/photon)
Test 5% 2% 1% 0.5% 0.2% 0.1%
case error error error error error error
1 6.113(-20)*6.393(-20) 6.512(-20) 7.777(-20) 8.806(-20) 9.158(-20
2 1.287(-21) 1.130(-21) 1.134(-21) 1.134(-21) 1.134(-21) 1.134(-21
3 7.006(-23) 6.994(-23) 7.118(-23) 7.124(-23) 7.121(-23) 7.121(-23
4 B8.346(-20) 8.346(-20) 8.323(-20) 8.294(-20) 7.933(-20) 7.867(-20
5 1.084(-23) 1.085(-23) 1.085(-23) 1.083(-23) 1.080(-23) 1.079(-23
6 1.360(-20) 1.358(-20) 1.358(-20) 1.357(-20) 1.322(-20) 1.322(-20
7T 1.772(-24) 1.669(-24) 1.657(-24) 1.657(-24) 1.656(-24) 1.657(-24
8 1.382(-27) 1.382(-27) 1.382(-27) 1.377(-27) 1.376(-27) 1.376(-27
9 1.319(-23) 1.390(-23) 1.400(-23) 1.399(-23) 1.399(-23) 1.398(-23
10 6.757(-22) 6.729(-22) 6.710(-22) 6.743(-22) 6.744(-22) 6.726(-22
11 3.836(-21) 3.827(-21) 3.827(-21) 3.822(-21) 3.820(-21) 3.820(-21
12 4.709(-22) 4.718(-22) 4.718(-22) 4.709(-22) 4.709(-22) 4.709(-22

*6.113(- 20) = 6.113x10-20
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40 RESULTS AND VALIDATION OF THE CODES DEVELOPED IN
THIS WORK

A necessary step in the development of a numerical model is comparison of its
results to real data from the physical system being modeled, or to results
accepted as correct by authorities in the field. The numerical models for
gamma-tay skyshine anpalysis presented in the previous chapter will now be
validated by comparisons to standards and results from other computations.
In the case of the silo geometry modeled _by SILOGP, benchmark experimental
data will be presented for comparison, but no such data are available for the
wall geometry modeled by WALLGP.

The American National Standard which addresses skyshine measurements
and computations includes reference calculations for this purpose. One of the
reference broblems involves a point isotropic source of 6N gamma rays sixty
feet above an air—ground interface. Detectors are placed along the ground at
specific distances from the source, and dose rates are reported along the range
of detectors. (AN87) While the problem does not involve either a silo or a
wall shielding the detector, both SILOGP and WALLGP can model situations
approaching the problem. By using an open silo with a full angle of
collimation of 180° or a wall of very small height between source and
detector, the two codes can approximate the open point source and produce
results comparable to the ANSI reference calculations. A second ANSI
reference problem places the 16N source inside a rectangular concrete building
without a roof. The detector response in this problem is likely to be

dependent upon the solid angle into which source photons are collimated. The
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cylindrical silo of SILOGP would simulate the rectangular building better than
a single wall, but would still introduce error through incorrect collimation.
Therefore, only the first problem will be used for reference in this work.

A problem similar to the ANSI reference calculation was used in the
validation of MicroSkyshine (Fa87,5h87) and may also be used to advantage
here.  Air kerma buildup factors were determined from moments—method
calculations by Chilton et al (Ch80) These widely—accepted buildup factors
were manipulated to give exposures due to a point source in infinite air
emitting photons only in a hemisphere of directions; this hemisphere lies above
a Ap.lé,‘l'le cdnfaininé ‘the. scl)-u.rc;e a.nd' detéctor. l“This 21r problem is easily
approximated by the MicroSkyshine code, and exposures computed by that
code were compared against the results inferred from the buildup factors of
Chilton ef al  Both SILOGP and WALLGP can approximate the same
geometry, and this problem will be solved with both codes as another test of
their aecuracy.

Experimental data reported by Nason et al. {Na8l) and Roseberry (Ro80)
from the KSU benchmark skyshine experiment will be compared to results
generated by SILOGP for the geometry and conditions of the experiment.
Roseberry cited results of the transport code DOT, which others prepared for
the study; since this code is in use today, those computed exposure rates will
also be compared to SILOGP values. Finally, WALLGP and SILOGP will be
tested extensively against the MicroSkyshine program for microcomputers, in an
attempt to validate all three codes. The MicroSkyshine tests will include
variations of geometry parameters as well as benchmark and = “reuce

problems.
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4.1 Comparison of SILOGP to Other Methods and Benchmark Data

The code SILOGP, which solves the problem of a point source inside a
collimating silo, will be tested first. Data from seven sources were selected to
validate SILOGP; four problem geometries were studied, and observations were
made of changes in -detector response with chosen parameters. One of the four
systems is that of the benchmark skyshine experiments reported by Nason et
al., for which measured responses and responses computed by the code DOT
3.5 are available (Ro80,Na81). A similar configuration was used in the
validation of MicroSkyshine, one that is identical to the experimental
conditions except ;for cha.nges in m#teriél ﬁropertiés (FS,ST, .ShST). ‘The third
problem is a standard from ANSI/ANS-6.6.1-1987, Reference Problem I.1.
(AN87) The fourth problem, also presented in references on the MicroSkyshine
code, is the 2x problem for which buildup factors of Chilton et al (Ch80)
were used to predict exposure rates. The last two problems do not invoive
silos or shielding, but are useful in testing the behavior of SILOGP in the

limiting case of 2r geometry.

4.1.1 Comparisons to Benchmark Study

The skyshine benchmark experiment (Na81) described in Chapter 2
provides physical data to test the accuracy of SILOGP. In the experiment,
one of three 60Co point sources was placed on the axis of a cylindrical
concrete silo. Wedges atop the silo collimated the photons into a cone with a
full angle of 150.5°, and with the point source at the apex of the cone.
Exposure rates were measured and recorded at distances up to 700 m from the

source. A sodium iodide spectrometer measured the differential energy

125




spectrum of scattered photons over the same distances, and these results were
converted to exposure rates to confirm the values measured directly. In other
cases, the collimator was replaced by a concrete shield over the source, either
21 cm thick or 42.8 cm thick. Similar measurements were taken under these
conditions and recorded. Air density during each source exposure was
computed from atmospheric data taken at the time of measurement.

Final exposure rates were corrected for the energy and directional
sensitivity of the ionization chamber. For comparisons, all reported exposure
data were multiplied by the square of the source-to—detector distance, divided
by “thé solid angle of collimation formed by the silo, and normalized to a
source strength of one photon per second. This compensates for inverse—square
attenuation and reduces the range of values required by graphs. To account
for variations in air density between measurements, these normalized exposure
data x'zvere plotted against the areal density, the product of the source—detector
distance and the air density.

Three comparison runs of SILOGP were performed, one for the open silo
and one for each of the shielded source configurations. The 1.17 MeV and
1.33 MeV photons emitted by %0Co were approximated by 1.25 MeV photons,
a common practice in pumerical work. A representative air density of 1.12
mg/cm3 was chosen, close to many of the air densities reported during the
benchmark experiments. Where a concrete shield was required, the measured
density of 2.13 g/cm3 reported by Roseberry (Ro80) was input to the code.

The results of SILOGP are compared with the experimental results in
Fig. 4-1. Notice that SILOGP underpredicts the experimental result: below 30

g/em? (270 m) in all configurations. Roseberry attributed a similar problem
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Fig. 4-1. Comparison of measured data from the benchmark skyshine experiment,
discrete ordinates calculations by DOT, and calculated results of the point-kernel

code SILOGP.
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with SKY to direct penetration of photons through the concrete silo walls in
the experiment. Since SKY did not account for direct penetration, Roseberry
expected underprediction below a source-detector distance of 200 m, especially
where the source was shielded. (Ro80) SILOGP, however, artificially increases
response by allowing photons to scatter in the air within the silo and travel in
air directly to the detector, "through" the silo walls. This approximation
could compensate for the direct penetration, but it was introduced to simulate
photons which scatter for' the first time within the confines of the silo, then
escape and contribute to dose at the detector. This is separate from the
direct penetration suggested by Roseberry. Other non-ideal effects may be
present in the physical situation, such as reflection of photons off the silo
walls and floor (and roof, if one is present) before they leave the structure;
Roseberry indicated that gamma rays could even scatter within the source
material or within the stainless steel source containment used in the
experiment (Ro80). Most of these phenomena would degrade the photon
energy spectrum and increase the detector response close to the silo. Despite
the approximation, SILOGP still underestimates the detector response close to
the silo, suggesting that the approximation cannot compensate for all these
effects.

The code SILOGP overpredicts the experimental results for areal densities
above 30 g/cm? in all cases. One likely cause for this is the uncertainty
introduced by applying an infinite medium buildup factor for an isotropic point
source on the second leg of the photon path. Recall from the previous
chapter that soil tends to absorb more scattered phr*~~s tlian air, so that the

use of an infinite-air buildup factor where an air-ground interface exists will
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cause overprediction of detector response near the ground. The uncertainty
increases with distance from the source, as it did with the SKY code (Ro80).
Another uncertainty is introduced by the use of a buildup factor for an
isotropic point source with the anisoiropic scattering source.  The actual
scattering distribution at the differential volume dV is biased in the forward
direction, with fewer gamma rays scattering back toward the source. The
number of photons scattering toward the detector, however, is the same for the
actual anisotropic scattering source and the isotropic source implicitly assumed
in the use of the buildup factors. If the photon must scatter through a large
angle (ie, if § is small), the isétropic source will prbb.ablyr have a smaller
total strength than the true scattering source, since the anisotropic scattering
source is weaker in backward directions. Conversely, if the photon scatters
through a small angle (i.e, @ is large), the assumed isotropic source is
stronger than the actual scattering source, and the use of the buildup factor
will probably result in overestimates of detector regponse. This would help to
explain why SILOGP overpredicts experimental results for long source—detector
djsta;,nces; most photons which contribute to dose in these instances would
undergo small-angle scatters. SILOGP shares this approximation with
WALLGP, MicroSkyshine and G3; MicroSkyshine exhibits the same tendency in
Fig. 4-1, supporting this argument.

Overall, the computed results agreed best with the benchmark data for
the open silo, ranging from 25% underprediction to 36% overprediction. Cases
involving concrete shields did not agree as well with experiment, but in all
problems, SILOGP underpredicts at short distances and overpredict- -4 lung

distances. The typical deviation of SILOGP from experiment was 20% for the

129




case of the open silo, 40% for the case of a 21 cm overhead shield, and 30%
for the case of a 42.8 ¢cm overhead shield.

After the benchmark study, the discrete ordinates computer code DOT
was applied to the benchmark problems to test its effectiveness in skyshine
studies. While SILOGP is a special-purpose code tailored to this point—source
skyshine problem, DOT is more general, incorporating more complex sources
and geometries. = Both are mainframe codes, but the discrete ordinates
approach of DOT requires much more expense and computer resources than
the point—kernel method of SILOGP or any other code discussed in this
' cha.pier. | Nérrhally, DOT is used 6ﬁly for- mé.jor rdesign probiems of benchmark
calculations, such as the ANSI Standard Problems or the KSU experiment

discussed here.

Roseberry (Ro80) reports that DOT computations performed using 39

energy groups closely matched measured exposure rates past 200 m from the
source in a.n open silo. Computations were also performed with 10 energy
groups for all configurations, shielded and unshielded. These results
consistently underestimated the benchmark measurements beyond a detector
position of 30 g/cm? from the source. Nason (Na79) tabulated the results and
concluded that neglect of the air-ground interface in the DOT runs led to this
underestimate, which averaged 10% but was as much as 20% at times. Since
SILOGP also neglects ground effects, a comparison may be made between the
discrete ordinates method and the single-scatter method.

Figure 4-1 also compares SILOGP results with the DOT results reported
by Nason. The two programs agree well wh~~ no overhead shield is involved;

note that these DOT results were obtained with 39 groups. Where a shield is
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present, a large difference can be seen: 10-group DOT results underpredict
benchmark measurements over most of the region of interest, while SILOGP
overpredicts. Calculations using 39 groups were not performed with DOT for
these cases, though the finer energy structure might have yielded better
results.  From a -conservative view, the single-scatter method would be
recommended over discrete ordinates calculations with a coarse energy grid.
Close to the silo, the reverse would be true. The discrete ordinates method
might also yield better accuracy with a finer energy structure. The
advantages of DOT are offset by its extreme cost and high demand on
" computer résoﬁrceé, .'however,' ‘so.tha,t' the single%mtter method might be the
first choice in actual practice.

Figure 4-1 includes results of the microcomputer program MicroSkyshine
for the benchmark experiment. While the code agrees well with benchmark
results, the conditions used by MicroSkyshine are not identical to those of the
experiment. The MicroSkyshine program will be reviewed alone in a later
section, with comparisons to SILOGP made wunder the conditions of

MicroSkyshine.

4.1.2 Comparisons to ANSI Standard

The American National Standard ANSI/ANS—6.6.1-1987 (ANS87) provides
four sets of reference calculations for the validation of measurement methods
and numerical technigues. One pf these, Reference Problem I.1, was solved by
SILOGP to allow an assessment of its accuracy in the limiting case of 27
collimation. As with any ANSI Standard, the conditions of the problem are

very specific, so that they may be reproduced closely by the method being
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tested. The Standard recognizes that methods are unique; some programs
which estimate exposure or dose, for example, cannot separate direct and
scattered components in their output. Thus, the Standard recommends that
methods be documented, and recommends that assumptions or changes in
computer codes which are made to solve the problem be discussed.

In Reference Problem I.1, illustrated in Fig. 4-2, an isotropic point
source of 6.2 MeV gamma rays is placed 60 feet (18.3 m) above the ground,
in open air. An imaginary axis runs normal to the ground and through the
source, which emits one photon per second. Detectors are placed 3 feet
(0.91 m) above 'the ground, at distances from the source axis between 200 feet
and 5000 feet (61 m and 1500 m). Air in the problem has a mass density of
1.22 mg/cm3, with an atomic number density of 1.07x10® atoms/cm3 of
oxygen, 4.02x101% atoms/cm3 of nitrogen. Dose rates should be computed in
units of rad(air)/year, with one year assumed to be 8766 hours.

Since no experimental measurements were available, seven computer codes
were selected by the Standards Working Group, and their results for the
problem are given as reference values. The methods used include Monte Carlo
(OGRE, COHORT 1II), discrete ordinates transport (DOT-II}, the point—kernel
method (G3, QADMOD, SKREEN), and integration of parametric air—
scattering data (SKYSHINE). Different assumptions were made in eé.ch code,
and different data libraries were used, but the results agreed with each other,
well within an order of magnitude (AN87, Fa87).

As SILOGP solved this problem, the point source was placed at the top
of the silo on its axis, forming a full angle of collimation of 180°. This

simulated a source and detector placed at the same height from a ground-air
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interface with no structures in the vicinity. Since the source and detector of
the ANSI reference problem are not the same distance above the ground, the
line—of sight source-detector distance in the true problem ranges from 208 feet
(63.4 m) to approximately 5000 feet (1500 m), not from 200 to 5000 feet
exactly. SILOGP computed air kerma starting at 63.4 m from the source and
extending to 1500 m; responses are displayed against the horizontal distance
measured along the ground, as required by the Standard, not against the true
source—detector distance. Because the ground is ireated as air by SILOGP
and by several of the codes in the Reference, the air—ground interface can be
‘made parallel to the source-detector axis without infroducing error to the
results of SILOGP. Also, SILOGP can compute only exposure, kerma, or dose
equivalent response. Air kerma is a very good approximation to absorbed dose
in air, thus it was used.

In Fig. 4-3, results of SILOGP are compared to the ANSI reference.
data, and to results of the MicroSkyshine code for Reference Problem I.1.
Both programs are in excellent agreement with the reference data and with
each other in this limiting case of 27 geometry. Of the reference programs,
the closest agreement to SILOGP seems to be with the results of the code
SKREEN; since both use a point—kernel model, this is not surprising.
SILOGP also comes close to the results of G3 at larger distances, and to
COHORT II. SILOGP imitates MicroSkyshine most, however; the two codes

will be compared extensively later in this section.
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4.1.3 Comparisons to Buildup Factors in the 2z Problem

One of the tests used to validate MicroSkyshine (Fa87, Sh87) resembles
the ANSI Standard problem but uses buildup factors developed by Chilton,
Eisenhauer and Simmons (Ch80) from moments-method calculations. In this
inventive benchmark calculation, photons are emitted from a point source into
a solid angle of 27 steradians. The exposure rate at a point detector due to
scattered photons only is determined from the infinite medium buildup factors
of Chilton et al. in a straightforward manner.

Consider an isotropic point source emitting S gamma rays of energy E in

infinite air, and a"'pbint detector located a distance r from the source. The

total response at the detector is an elementary computation:

D = 32 explm) gy (1)

where

# = response function (response per unit fluence) for photons of energy

H

# = total attenuation coefficient of photons of energy E,

B(ur) = infinite medium buildup factor for photons of energy E at ur mean
free paths from the source.

This total response arises from both uncollided and scattered photons. The

component from uncollided gamma rays is

T (4-2)

Therefore, in infinite air, the response at the detector due to scattered photons alone
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is the difference in these quantities:

DS = 32 &D{=0) By 1. (4-3)

However, MicroSkyshine and SILOGP (and WALLGP) are limited to studying the
half-space above an air-ground interface. Suppose the point source emits photons
in only a hemisphere of directions on one side of a plane, with the source and
detector residing in the plane. The detector response for scattered gamma rays in
this case would be exactly half the response for the point isotropic source. The

result for the 2ér'geome£ry, therefoie, is

Dy =52 SD(o0) 1p(yr) 3. (4-4)

Since SILOGP computes only the scattered response, and is restricted to the 2x
geometry, this formula is of interest to us.

The reference calculations for this problem were performed using Eq. (4—4),
air kerma buildup factors of Chilton et al (Ch80) and the aitenuation data of Storm
and Israel (St67). Exposure rates were computed, thus the response function for
exposure was substituted for & (see section 3.2 of this work). Although the buildup
factors are based on air kerma, Chilton et al. state: "The air kerma data can be used
for ezxposure buildup factors to a close approximation, as long as bremsstrahlung is
negligible, a matter that...is questionable at the higher energies."” (Ch80) These
benchmark calculations are for source energies from 0.1 to 10 MeV and distances out

to 2500 m from the point source. Buildmp factors are available for 15 MeV photons,
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but were not used in the reference calculations, probably because of the warning
quoted above.

The reference results are presented in Figs. 44 and 4-5 as individual data
points, along with SILOGP and MicroSkyshine results for the same problems. The
agreement of SILOGP with the buildup results is excellent over the range of photon
energies and distances considered. Except for exposures from 0.1 MeV photons
beyond 600 m from the source, the SILOGP results are consistently within 15% of
the buildup values. The improved version of MicroSkyshine, by comparison,
overestimates the buildup results past 1000 m, at all energies (Sh87); comparison of
Figs. 44 and 4-5 will demonstrate this. | B

MicroSkyshine and SILOGP both underestimate the reference results for 0.1
MeV photons past 600 m. One possible, though unlikely, cause is that both
SILOGP and MicroSkyshine use the geometric-progression buildup formula of
Harima et al. (Ha86). For air, however, the GP coefficients are based on the same
data from Chilton et al. as was used in the reference calculations. The maximum
deviation of the geometric—progression fit from the data is less than 3% (RS86) over
a range of 40 mfp, or about 2000 m. While the fit itself may not be to blame, it is
possible that some other influence related to the buildup calculation created the
discrepancy. An error or uncertainty in the reference calculations themselves may

also be responsible; the cause is not obvious at this time.

4.1.4 Comparisons to MicroSkyshine
The MicroSkyshine code (Fa87, Sh87), developed for microcomputers, is
applicable to mary problems involving skyshine from a point grmma-ray source.

Among the problems which it solves are the two simplified geometries studied in

138




.’l.E_iB T ] T 1

1.E-19 -!‘ O o moments method results
\}:\\';"
1 E-20 \Q'ﬁ*‘\\. —  SILOGP
Lq“‘ o

normalized exposure (R/photan)
m
o
o

1.E-30 ‘ ' : ' :
0.0 500. 1000 1500 2000 2500

source-detector distance (m)

Fig. 4-4. Comparison of SILOGP results for the 27 problem of Faw and Shultis
(Fa87) to the moments—meti:cd reference values.

139



1-E-18 I T i 1

1.E-19 ;‘. O o moments method results
1.E-20) "‘{'\\:“\\\ — MicroSkyshine
N
S {.E-21}
S
= 1.E-22E
S
==}
o 1.E-23b
B
=
3 1.E-24§
(=1
>
2 {.E-25p
=)
~
: 1.E-26 g
e
s 1.E-27%
=
1.E-28%
1.E-29E
1.E-301 1 ] 1 | O
0.0 500. 1000 1500 2000 2500

source-detector distance (m)

Fig. 4-5  Comparison of MicroSkyshine results for the 2r problem of Faw and
C.a..is (Fa87) to the moments—method reference values.

140




this work: the point source on the axis of a cylindrical silo, and the point source
behind a semi-infinite wall. The author knows of no other codes which solve these

identical problems, save those of this thesis. Thus, a comparison of the results of
| MicroSkyshine and SILOGP is mandatory.

Differences should be expected when comparing results of the two codes.
MicroSkyshine is a general purpose program intended for complex photon sources
and geometries; by preparing this line-beam code for microcomputers, the
developers exchanged precision for speed of results. It should be emphasized that
MicroSkyshine hag purposely been made conservative (Sh87), since it is intended for
‘general problems in ‘industrial de81gn Of a.ll the codes rev1ewed here,
MicroSkyshine is also the least expensive to use. SILOGP, by comparison, is a
gpecial-purpose point~kernel code for mainframes which is expensive to use but does
not intentionally overpredict detector response and does not sacrifice precision.
These facts should be ke.pt in mind as the reader reviews this section.

The first source—detector arrangement of interest is nearly identical to the
benchmark problem performed at the KSU Shielding Facility (Na81). A 80Co point
source is placed on the axis of a cylindrical silo; the source and the edge of the silo
form a line at an angle of 75.25° from the axis of the silo, so that the full angle of
collimation is 150.5°. The 60Co source is approximated by a source which emits
1.25 MeV photons. Exposures per photon are computed at distances out to 700 m
from the source, and normalized in the same fashion as the benchmark data.
Calculations are also performed with concrete shields of thickness 21 em and 42.8
cm over the silo. The major difference between the MicroSkyshine problem and the
benchmark experiment is ‘n material densities. While Roseberry (Ro80) reported no

air densities during the benchmark experiments above 1.21 mg/cm3, the
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MicroSkyshine calculations were performed using an air density of 1.25 mg/cm3
(Fa87). The concrete shields used in the experiment had a reported density of 2.13
g/cm3 (Ro80), yet calculations performed in the MicroSkyshine validation employed
2.32 g/cm3 as the concrete density. The differences are not explained in the
MicroSkyshine reference; to eliminate disagreement due to differences in material
densities, it was decided to perform SILOGP calculations with the densities used in
MicroSkyshine.

The results of SILOGP and MicroSkyshine for this problem are displayed in
Fig. 4-6. Also shown are the results of the point kernel code G3, as reported by
 Faw and Shultis '(Fa,87) for the same proble-m. geometfj. The code G2 employs the
same point—kernel model and approximations as SILOGP (and WALLGP), but is a
general purpose program for design work, and somewhat expensive to run. The
specialized codes of this work may be preferable, as G2 uses a combinatorial
geometry (RS85) which is very difficult to use. The tendency of G3 to underpredict
where a concrete shield is present is made obvious in the plot.

SILOGP yields a lower estimate of exposure than MicroSkyshine for
source—detector distances under 500 m (60 g/cm?); the codes agree very well for
larger distances. In the worst cases, SILOGP results are less than 70% of the
MicroSkyshine estimates. Both programs account for photons which scatter within
the silo before leaving it; although this is cited as a major approximation of
MicroSkyshine, it cannot be to blame for the discrepancy. MicroSkyshine includes
pair production photons in the dose, while SILOGP does not; however, because the
gamma rays from 60Co are not far above the pair production threshold, this is not a

likely cause either.
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A similar disagreement between SILOGP and MicroSkyshine is evident in the
preceding discussion of the moments—method 27 problem. MicroSkyshine computes
higher exposure rates than SILOGP for all the problems in Figs. 44 and 4-5,
especially past 1000 m. Since the two geometries involve different angles of
collimation, it was decided to compare the responses computed by the codes over a
larger range of collimation angles. Any tendencies shown in this parametric study
could help to explain the discrepancies seen in other problems. For a point source of
1 MeV photons on the axis of an open silo, in air of density 1.25 mg/cm3, the
exposure per photon was computed by both codes at a detector 400 m from the
" source. Collimation angles formed by the silo railged from 179.999° (approaching
the 2r problem) to 1° (approaching a line beam directed normal to the
source—detector axis). The results are presented in Table 4-1. The difference in
results decreases as the collimation “opens up"; for the case approaching a
line-beam source, the SILOGP result is 15% lower than that of MicroSkyshine, but
for the 27 case, the difference is only 9%. |

An important clue to the cause can be found in the second KSU report by
Shultis and Faw on MicroSkyshine (Sh87). .The MicroSkyshine method employs
line-beam response functions, evaluated at selected gamma-ray energies and beam
angles from the source—detector axis. The response functions were computed by a
point—kernel formula similar to Eq. (3-9) of this work, but including pair
production in the evaluated response. A formula involving three parameters was fit
to these response functions, and by interpolating the parameters, the response
functions can be evaluated continuously over energy and beam angle. This formula,
not the point—kernel equations which generate the response functions, is evaluated

by MicroSkyshine in computing exposures or doses; it is identical to the parametric
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Table 4-1. Comparison of detector responses computed by the codes
MicroSkyshine and SILOGP with changes in cecllimation angle. Values of
exposure per photon are presented for a point source of 1.0 MeV photons
placed inside an open silo of radius 1 m. The detector lies 400 m from
the source in each case, on a line normal to the silo axis. The height
of the silo above the source defines the angle of collimation. ir
density is taken as 1.25 mg/cmd. All SILOGP results were obtained using
a convergence criterion of 17.

Full angle Normalized exposure (R/photon) Percent

Silo of difference

height collimation Computed by Computed by from Micro-
(m) (degrees) MicroSkyshine SILOGP Skyshine
0.00001 179.999 2.853(-21)* 2.605(-21 - 8.7
0.01 - 178.854 o 2.T25(-21 ' 2.478(-21 - 9.1
0.1 168.6 1.929(-21 1.737(- 21 -10.0
0.7 110 2.941(-22 2.542(-22 -13.6
1.0 90 1.524(-22 1.312(-22 -13.9
5.0 22.62 6.160(-24 5.279(- 24 -14.3
114.589 1 1.179(- 26 1.003(-26 -15.0

*2.853(-21) = 2.853x10-21
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fit used in the SKYSHINE-II program, the industry—standard mainframe code at
the time MicroSkyshine was created (Fa87, Sh87).

In the MicroSkyshine report, Shultis and Faw report the deviations of the fits
from the doses computed by the point—kernel method. The mean absolute deviation
{(MAD) and maximum deviation of the fit over the range of source—detector
distances are tabulated in the report for each energy and beam angle, and patterns
are evident. For the gamma-ray energies above 1.5 MeV, the MAD peaks at about
10% at an angle of 75° or 85°, decreasing as the angle increases or decreases from
this direction. At 1.5 MeV, the MAD of the parametric fit increases with the beam
angle to 11% at 75°, decreases as the beam'a,ng.le increases, then rises ‘a,ga.in; as the
beam approaches the direction opposite the source—detector axis, the formula can
deviate from the computed response as much as 50%. At 0.75 MeV, the MAD
reaches a maximum at a beam angle of 85° then remains at this level; the
three-parameter formula typically deviates by 12 or 13 percent, sometimes by as
much as 35% above the point—kernel results. Below 0.75 MeV, the fit deviates even
more from the computed response, fits worst at angles as low as 25° or 35°, and can
be as much as 45% above the point—kernel values. Data computed over a
source—detector range of 2500 m or more produced each set of coefficients, and the
report states that the fit is almost always worst when the detector is closest to the
source. |

In Figs. 44 and 4-5, the greatest disagreement between SILOGP and
MicroSkyshine occurs between 0.1 and 1.0 MeV, where the parametric fits of the
latter code are most inaccurate. In Fig. 4-6, the discrepancies between
MicroSkyshine and SILOGP are worst below 60 g/cm?2, or 480 m; compared to the

2500 m range of the fits, this is close to the source, and the poor fit by
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MicroSkyshine close in would help to explain the disagreement. If the point—kernel
results of SILOGP are nearly equal to the point—kernel results to which the
MicroSkyshine formulas are fit, this disagreement would be entirely due to the
uncertainties produced by the fit.

The pattern seen in Table 4-1 can also be explained by the deviation between
the fitted response function of MicroSkyshine and the computed doses upon which it
is based. In the table, 1 MeV photons are collimated through angles from 1° to
180°, with the discrepancy between SILOGP and MicroSkyshine decreasing with
increasing collimation angle. The uncertainty in the MicroSkyshine function fit for
beam angles less than 90° is likely to fall below that at 90° if the source photons are
between 0.75 MeV and 1.5 MeV; also, the interpolation between these energies
would produce the largest uncertainty in the computed dose at large beam angles,
those above 90°. A one-degree collimation angle in MicroSkyshine would include
only line-beams at an angle of 90° to the source—detector axis, while a 27 problem
would include the beams at smaller and larger angles. Assuming photons which
leave the source in directions toward the detector have more bearing on the detector
response than photons heading away from the detector, it would be possible for the
differences between the fitted function results of MicroSkyshine and the "true"
results of the moments—method doses to decrease as the collimation angle increases
and the function is evaluated at larger and smaller angles. This is the same trend
shown in the last column of Table 4-1.

In summary, because the uncertainties of the line~beam gamma-ray response
functions created for use in MicroSkyshine show the same behavior as the differences
hetween MicroSkyshine and SILOGP, this author concludes that the inaccuracies of

those functions are responsible for their disagreement. It is possible that a function
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which reproduces the original dose data more faithfully would produce results more
in line with SILOGP, since the dose data were obtained with a point—kernel

calculation very similar to the methodology of SILOGP.

4.2 Comparison of WALLGP to Other Methods

The remainder of the chapter will concentrate on WALLGP, the code produced
specifically for this thesis. No benchmark experiment has been performed for the
problem of a gamma-ray source behind a perfectly absorbing wall, so a definitive
validation of the results of WALLGP is not possible. It is possible to test the
" accuracy of the code in the 1iniitiné case of a 27 gedmétry; the ANSI Standard
problem and the 27 benchmark calculation prepared by Faw and Shultis (Fa87,
Sh87) can be compared to WALLGP results for a geometry involving a very low
W&l{, nearly a 27 solid angle of collimation for source photons. The ANSI Standard
problem could be considered important in validating WALLGP, but it does not
involve a wall, the physical arrangement WALLGP was intended for.
MicroSkyshine is the only other code known to this author which can predict
detector responses from sources concealed behind a semi-infinite wall, WALLGP
and MicroSkyshine will be compared extensively in this section. WALLGP will be
applied to many of the problem geometries presented in the MicroSkyshine
documentation (Fa87, Sh87), since results are readily available for the latter code.
Differences in the codes will also be analyzed as functions of source photon energy,
overhead shield thickness, and wall height; this parametric study may help to
explain differences in computed exposures and doses, just as the studies for SILOGP

" did.
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4.2.1 Comparisons to ANSI Standard

In the extreme case of an unghielded, uncollimated source geometry, ANSI
Standard Problem I.1, which was described in section 4.1.2, is available for
comparisons with WALLGP. This configuration of source and detector is an
extreme case, not one for which WALLGP was intended, but it can verify the
single-scatter model uporn which the code is based. Limiting cases are often
excellent tests of the accuracy of a program and its underlying theory; other codes
have been adapted to a problem involving only a point source and point detector for
such tests, although the codes were meant for more complex situations (Ma69).

To é,f)pro')dma,.te“a' point source in infinite air with the semi-infinite wall
problem, the wall must be effectively removed from the geometry; the source and
detector should be placed so that the line of sight between the two would graze the
top of the wall. This would be similar to placing the source and detector on the
ground with only infinite air above. SILOGP could effectively remove the
obstruction by placing the gsource and detector at the level of the silo opening.
WALLGP cannot accomplish this, however, because some limits of integration are
inversely proportional 10 the height h of the wall above the source—detector axis;
when the source—detector axis rests on the wall edge, the limits are no longer valid.
The point source in open air must be approximated by a source barely hidden from
the detector by the wall. For all WALLGP validation runs, the point source and
detector lie .01 mm below the edge of the wall. All other problem specifications are
adhered to, such as the photon source energy of 6.2 MeV and the air density of 1.22
mg/cm3. A cutoff value of 40 mean free paths was used, and the convergence

criterion DEL was set to produce an answer with estimated error oi 0.1%.
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The source and detector of the ANSI reference problem are not the same
distance above the ground, recall; air kerma responses have been computed by
WALLGP using the true source—detector separation distance, then displayed
against the horizontal distance from the detector to a point directly below the
source. It was again- assumed that the direction of the surface between the air and
the ground makes no difference in the comparison, since the ground is treated as air
by WALLGP and by several of the ANSI codes.

The doses predicted by WALLGP for the ANSI Standard Problem are shown
in Fig. 4-7 against the ANSI reference data and the results of MicroSkyshine. The
agreement with the Standard is excellent, except for the closest detector points,
those within 100 m of the ground point below the source. The error criterion of
0.1% is not adequate at this close range; recall from Chapter 3 that the error
criterion must be selected ca.ref_ully in this region. Here, increasing the cutoff adds
negligible values of exposure and complicates the evaluation of the integral exposure
rate equation. Beyond 100 m, the results of WALLGP are nearly identical to those
of SILOGP presented earlier; this is to be expected, since both use the same
point—kernel model, and the same equation is integrated over nearly identical
regions in both programs. The estimates made by MicroSkyshine and WALLGP are
almost a single curve beyond 100 m of the ground point below the source. This too
was evident with SILOGP, and validates both the point—kernel model and the

line-beam response function method for ANSI Standard Problem I.1.
4.2.2 Comparisons to Buildup Factors in the 2x Problem

The 27 problem developed by Faw and Shultis (Fa87, Sh87) for testing
MicroSkyshine can be modeled exactly by SILOGP, but not by WALLGP; as with
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the ANSI Standard problem, the line—of-sight of the source and detector must be
blocked by the wall for the limits of integration used by WALLGP to be valid. The
problem is described in section 4.1.3, and involves a point source and point detector
resting on an air—ground interface. By definition of the 27 problem, photons must
leave the source in the direction of the air. To create as closely as possible the
hemisphere of directions in which photons leave the source, the height h of the wall
above the source—detector axis is made a small “epsilon" value, .01 mm. Exposure
rates are computed out to 2500 m from the source, for photons of energies ranging
from 0.1 to 10 MeV.

The 'results- of WALLGP-a.re compa.réd to the momenfs—method reference
values in Fig. 4-8. At all energies except 0.1 MeV, WALLGP fits the reference
points closely; where percent differences can be judged, WALLGP comes within 15%
of reference values. The program underpredicts the dose computed by buildup
factors at the lowest energy, 0.1 MeV; as stated in the validation of SILOGP, the
cause of this disagreement is not obvious. As expected, SILOGP and WALLGP
produce nearly identical curves in Figs. 44 and 4-8, because the two programs
employ the same model and integrate the same formula over nearly identical regions
of space. Based on the results for the ANSI Reference Problem and the 27
geometry, WALLGP and SILOGP are valid for use in 27 configurations where
photons are uncollimated or nearly so, that is, where a silo or wall barely blocks the
source from the detector and photons travel in nearly all directions from the source

* above ground.
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423 Comparisons to MicroSkyshine

The remainder of this chapter is concerned with MicroSkyshine and
WALLGP, and their computed responses for a variety of problems. The author
knows of no other computer codes which address the ideal problem of a semi—infinite
wall between source and detector; it is natural that the two codes be contrasted over
a wide range of source—detector configurations. Most of the work presented here is
in the form of parametric comparisons, discussions of how resulis change with shifts
in problem parameters. Since the two codes do not share certain assumptions,
differences will be evident; the parametric comparisons are intended to demonstrate
the causes for disagreement. - | |

The first problem of this set was chosen from the reports on MicroSkyshine
(Fa87, Sh87) and is the class of problem WALLGP is most concerned with. In this
situation, a 16N point source, emitting 6.13 MeV gamma rays, is one meter from the
face of a semi-infinite wall of shielding material. A point detector is placed on the
other side of the wall, at distances ﬁp to 800 m from the source. Both the source
and detector are 0.7 m below the top edge of the wall, as measured parallel to the
wall face, and the axis between the source and detector is perpendicular to the wall.
For one case, no shielding is above the source, and in the second, a concrete shield
30 cm thick rests on the top of the wall and extends over all space on the source side
of the wall. The air medium has a density of 1.25 mg/cm3, while concrete shielding,
if used, has a density of 2.13 g/ecm3. For purposes of accuracy, the problem was run
by WALLGP using a mean free path cutoff of 40 mfp and an error criterion of 0.005
(0.5% error in the result).

The dose est'mates obtained from MicroSkyshine and WAILGP are

illustrated in Fig. 4-9. The results of the single—scatter code G3 are also shown. As
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Fig. 4-9. Comparison of dose est‘mates computed by MicroSkyshine, G3 and
WALLGP. A 16N point source is located 1 m behind a wall in an infinite air
medium, with the source and detector on a line normal to the wall and 0.7 m below
its top edge. Where a concrete shield is present, it rests on the top of the wall and
extends over the source, at a right angle to the wall.
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mentioned in the MicroSkyshine report (Fa87), G3 cannot account for buildup
effects in the overhead shielding, and seriously underpredicts the detector response
in all cases involving overhead shielding. This is evident in the figure, where G3
results for the case of 30 cm of overhead shielding are below values of both
MicroSkyshine and WALLGP. The point—kernel code WALLGP consistently
computes a significantly lower exposure than MicroSkyshine over the entire
measurement baseline; since MicroSkyshine is intentionally conservative, this is not
surprising. The difference of WALLGP ranges from 20% below MicroSkyshine
results at the extreme distances to 50% below MicroSkyshine at a source—detector
distance of 100 m. The presence or absence of the concrete shield does little to
change this disagreement, suggesting that it is not involved.

Three causes for the disagreement are evident. The first was discussed in the
comparisons of SILOGP a,pd MicroSkyshine, but did not cause difficulties with
SILOGP. To account for photons. which scattered from the walls 'of the silo during
the benchmark experiment and contributed to measured dose, MicroSkyshine uses
the silo, walls, or other shielding only to collimate the photon source. Only line
beams which do not pass through the silo or wall are included by MicroSkyshine in
computing dose; response from the entire beam is included, even from those photons
which would scatter behind the wall or within the silo and pass through the
obstruction to reach the detector (Fa87). SILOGP makes a similar approximation
to produce results closer to the benchmark measurements. WALLGP does not
compute dose using gamma rays which must pass through the wall, however;
photons which scatter from the wall face are much less Iikely to contribute to
detector dose than photons which reflect from the ba~ of the silo, and the

approximation is not as helpful. Figure 4-10 is a graphic comparison of the
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Fig. 4-10. Comparison of the regions of space in the wall geometry in which
WALLGP and MicroSkyshine allow photons to undergo their first scatter. In
WALLGP, the point of scatter must have a clear path to both the source and
detector. In MicroSkyshine, line beams from the source must not intersect the wall,
and photons may scatter anywhere along a line beam, including points obstructed
from the detector.
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scattering zone of WALLGP with the approximated scattering zone of
MicroSkyshine, showing the areas behind the wall where the photon is allowed to
scatter for the first time. MicroSkyshine's overpredictive results should be higher
than those of WALLGP, since MicroSkyshine makes the approximation in all
problems, including the wall case.

The- second cause of disagreement is pair production. MicroSkyshine has
included annihilation photons in its response functions (Sh87), while WALLGP
ignores pair production. For 6.13 MeV photons, the pair production cross—section is
not negligible, and WALLGP can be expected to underestimate the detector
fes'p(')ns;'e to a 18N source. The third possible cause for a différence in results from
WALLGP and MicroSkyshine is the deviation of the fitted response function curves
used in MicroSkyshine from the point kernel data used to produce the fits. Shultis
and Faw (Sh87) report adequate fits with the coefficients at 5.5 MeV and 6.5 MeV,
from wﬂch responses to 6.13 MeV photons are computed; the largest deviation of
the fitted formulas from the data is under 17%. If the formulas tend to overpredict
the original point-kernel data, and those data agree well with the point—kernel
results of WALLGP, this would combine with the inclusion of pair production to
widen the disagreement of the two codes. MicroSkyshine would be likely to
overpredict, while WALLGP, because of its neglect of pair production,
underpredicts.

The next comparison between the two programs is presented in Table 4-2.
The source, detector and wall are configured as they were for the problem of Fig,
4-9, except that the detector remains at 400 m from the source, and the energy of
scurce photons is varied from 1.0 to 8.0 MeV The .wo programs diverge as the

source energy increases, and at 8 MeV, MiéroSkyshine reports almost double the
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Table 4-2. Comparison of detector responses computed by the codes
MicroSkyshine and WALLGP with changes in source energy. Values of
exposure per photon are presented for a point source placed 1 m behind a
semi- infinite wall and 0.7 m below the top of the wall. The detector
lies 399 m from the wall face opposite the source, and 0.7 m below the
top of the wall. The source-detector axis is normal to the wall. Air
density is 1.25 mg/cm3; concrete density is 2.13 g/cm3. All WALLGP
results were obtained using a comvergence criterion of 17 and a cutoff
distance of 40 mfp.

Normalized exposure (R/photon)

Source energy Computed by Computed by Percent difference
(MeV) MicroSkyshine WALLGP from MicroSkyshine

No overhead shield

1.0 4.204(-22)* 3.606(-22 -14.2
2.0 4.785(-22 4.011(-22 -16.2
3.0 4.755(-22 3.816(-22 -19.7
4.0 4.732(-22 3.497(-22 -26.1
5.0 4.746(-22 3.204(-22 -32.5
6.0 4.823(-22 2.936(-22) -39.1
7.0 4.854(-22 2.715(-22 -44.1
8.0 4 ,888(-22 2.493(-22 -49.0
30 cm concrete shield
1.0 1.264(-23 1.071(-23 -15.3
2.0 3.497(-23 2.795(-23 -20.1
3.0 5.046(-23 3.925(-23 -22.2
4.0 6.067(-23 4.479(- 23 -26.2
5.0 6.676(-23 4.656(-23 -30.3
6.0 7.420(-23 4.616(-23 -37.8
7.0 7.746(- 23 4.462(-23 -42.4
8.0 8.017(-23 4,.248(- 23 -47.0

*4.204(-22) = 4.204x10-22
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exposure that WALLGP computes. One obvious reason is pair production:
MicroSkyshine includes annihilation photons, WALLGP does not. The uncertainty
in WALLGP would be expected to increase as energy and the pair production
cross—section increase. The effects of the "transparent wall" approximation made
by MicroSkyshine are difficult to judge; the energy dependence of the dose due to
photons which "pass through the wall" is not known. The third cause of
disagreement, the deviation of MicroSkyshine's fitted response functions from the
point—kernel data, may have an influence; the fits improve, however, as source
energy increases, while the agreement of WALLGP and MicroSkyshine does not
improve. The author feels that in this problem, WALLGP shows a serious
deficiency in not including pair production. In its current form, it should be used
with caution at higher source energies.

Another problem parameter which greatly affects dose from the source is the
height of the wall between source and detector. WALLGP and Microskyshine were
applied to a series of problems identical to those in Table 4-2, except that the
source photons are restricted to 1 MeV, and the height of the wall above the source
and detector is varied from 0.01 mm to 200 m. The exposures per photon computed
by MicroSkyshine and WALLGP are compared in Table 4-3. The source energy of
1 MeV was chosen to eliminate errors in WALLGP from pair production. As would
be expected, disagreement is largest for the highest walls because WALLGP does
not include photons which scatter behind the wall. For the 200 m wall resuits,
MicroSkyshine responses are nearly two .orders of magnitude above those of
WALLGP. Whefe the wall height is negligible, there are much smaller differences
in the computed exposures; the disagreements are less than 15%, smaller than some

deviations of the fitted response functions in MicroSkyshine. The prominent cause
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Table 4-3. Comparison of detector responses computed by the codes
MicroSkyshine and WALLGP with changes in wall height. Values of
exposure per photon are presented for a point source of 1.0 MeV photons
placed 1 m behind a semi-infinite wall. The detector lies 399 m from
the wall face opposite the source, and the source-detector axis is
normal to the wall. The wall height equals the vertical distance from
the top of the wall to either the source or detector. Air density is
1.25 mg/cm3; concrete density is 2.13 g/cm3. All WALLGP results were
ggta%ned using a convergence criterion of 1% and a cutoff distance of
mfp.

Normalized exposure (R/photon)

Wall height Computed by Computed by Percent difference
(m) MicroSkyshine WALLGP from MicroSkyshine

No overhead shield

0.00001 2.861(-21 2.608(-21 -8.8
0.01 2.736(-21 2.492(-21 - 8.9
0.1 1.977(-21 1.766(-21 -10.7
0.7 4.204(-22 3.606(-22 -14.2
1.0 2.761(-22 2.313(-22 -16.2
5.0 9.903(-23 6.840(-23 --30.9
10. 8.754(-23 4.984(-23 -43.1
50. 7.069(-23 1.341(-23 -81.0
100. 6.603(-23 3.779(-24 -94.3
200. 6.427(-23 3.456(-25 -99.5

30 cm concrete shield

0.00001 1.344(-23 1.157(-23 -13.9
0.01 1.344(-23 1.157(-23 -13.9
0.1 1.344(-23 1.155(-23 -14.1
0.7 1.264(-23 1.071(-23 -15.3
1.0 1.087(-23 9.062(-24 -16.6
5.0 3.736(-24 2.987(-24 -20.0
10. 2.955(-24 2.142(-24 -27.5
50. 2.531(-24 7.714(-25 -69.5
100. 2.250(-24 2.675(-25 -88.1
200. 2.080(-24 2.951(-26 -98.6

%2.861(-21) = 2.861x10-21
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of disagreement in these cases is the following approximation made by
MicroSkyshine: gamma rays which underge their first interaction behind the wall
from the detector contribute to measured dose, and the contribution may be found
by treating the interaction point as a source of scattered photons and ignoring
shielding effects of the wall.

Finally, Table 4-4 presents the results of WALLGP and MicroSkyshine for 23
configurations, grouped according to the parameter which varies from the base value
shown in the first line. The purpose of this compilation is to describe the behavior
of the responses as each aspect of the situation changes. For instance, as the
detector is moved parallel to the wall, zq increases; the source—detector separation
increases, and both codes compute decreasing absorbed dose rates, as one would
expect. As ys or yq increases, the wall presents more shielding and decreases the
solid angle of directions from the source or detector which are not blocked; both
MicroSkyshine and WALLGP report decreasing absorbed doses as these quantities
increase. Both programs also confirm that increasing overhead shield thickness
substantially reduces dose, as one would expect after reviewing the results of the
benchmark experiment.

The two codes disagree on the behavior of detector response with changes in
source energy. As the energy of source gamma rays increases, MicroSkyshine
predicts response will drop until the pair production effect becomes noticeable, then
predicts an increase in dose as photon energy and (u/p)pp increase. WALLGP,
which considers only Compton scattering effects, computes responses which
continuously decline with increasing source energy and a dropping Compton
cross-section. Table 4~2 reveals simlar patterns for a different geometry; in this

case, as then, WALLGP is proven to be flawed at higher energies because it neglects
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Table 4-4. Parametric study of detector responses computed by the codes
MicroSkyshine and WALLGP. Values of air kerma are presented for changes
in source energy, position of source and detector, thickmess of the
overhead concrete shield, and air density. In all cases, concrete
density is taken as 2.35 g/cm3. Percent differences are the difference
of WALLGP values from MicroSkyshine results.

Normalized air kerma

(rad/photon)

E Xs *d Ys Yd 2d t Pair 3

(MeV) (m) (m) (m) (m) (m) (m) (g/cm3) MicroSky. WALLGP diff.
1.25 3 100 3 3 10 0.10 1.2 6.050(-21)* 3.3364(-21) -44.9
1.25 . 3 100 3 3 0 0.10 1.2 6.081(-21) 3.3531(-21) -44.9
123 3 100 3 3 30 0.10 1.2 " 5.813(-21) 3.2123(-21) -44.7
1.25 3 100 3 3 100 0.10 1.2 3.931(-21) 2.2402(-21) -43.0
1.25 3 100 3 3 300 0.10 1.2 5.945(-22) 4.1111(-22) -30.8
2.25 3 100 3 3 10 0.10 1.2 5.001(-21) 3.1514(-21) -37.0
5.25 3 100 3 3 10 0.10 1.2 4.415(-21) 2.1763(-21) -30.7
7.25 3 100 3 3 10 0.10 1.2 4.635(-21) 1.7481(-21) -62.3
1.25 3 100 1 3 10 0.10 1.2 9.737(-21) 6.0801(-21) -37.6
1.25 3 100 10 3 10 0.10 1.2 3.178(-21) 1.4633(-21) -54.0
1.25 3 100 3 -1 10 0.10 1.2 6.416(-21) 3.4972(-21) -45.3
1.25 3 100 3 1 10 0.10 1,2 6.230(-21) 3.4226(-21) -45.1
1.25 3 100 3 10 10 0.10 1.2 5.454(-21) 3.0108(-21) -44.8
1.25 3 10 3 3 10 0.10 1.2 4.853(-20) 2.6189(-20) -46.0
1.25 3 1000 3 3 10 0.10 1.2 1.969(-25) 1.8563(-25) - 5.7
1.25 1t 100 3 3 10 0.10 1.2 3.218(-21) 1.7680(-21) -45.1
1.25 10 100 3 3 10 0.10 1.2 9.263(-21) 5.2014(-21) -43.8
1.25 100 100 3 3 10 0.10 1.2 2.858(-21) 1.7330(-21) -39.4
1.25 3 100 3 3 10 0.10 1.1  5.856(-21) 3.2403(-21) -44.7
1.25 3 100 3 3 10 0.10 1.3 6.189(-21) 3.4152(-21) -44.8
1.25 3 100 3 3 10 0.0 1.2 1.449(-20) 8.4088(-21) -42.0
1.25 3 100 3 3 10 0.01 1.2 1.402(-20) 7.8479(-21) -44.0
1.25 3 100 3 3 10 1.00 1.2 5.180(-26) 3.6336(-26) -29.9

*6.050(-21) = 6.050x10- 21
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pair production. MicroSkyshine is more likely to predict the true response in such
situations, although it can overpredict because of the "transparent wall"
approximation mentioned earlier.

Another pattern revealed by MicroSkyshine and WALLGP occurs as xs is
changed, as the source is moved toward or away from the wall. The highest dose
occurs when the source is located 10 m from the wall; moving the source to a
position 3 m or 1 m from the wall reduces the dose, because the "shadow" cast by
the wall in the direction of the detector has been enlarged. In the other direction,
moving the source out to 100 m from the wall also reduces the dose, but by
| attéﬁﬁatioﬁ, not by the shiélding effect of the wall. | Both programs 'béhé,ve .properly
in this set of problems, in a manner which makes intuitive sense.

The behaviors of the results of the two programs are similar in the parametric
comparisons, but the values themselves are significantly different. Typically, the
MicroSkyshine results are one and one-half to two times the doses computed by
WALLGP. For most of these cases, pair production is negligible; the lack of fit of
the response functions used by MicroSkyshine is not enough to help explain the
discrepancy. The wall height is small compared to the source—detector distance, yet
the MicroSkyshine approximation of scatters behind the wall could be a cause of
disagreement. There may be other factors contributing to the difference, also; the
point—kernel calculations which produced the MicroSkyshine response functions may
differ markedly from the calculations performed by WALLGP, not as assumed.

In summary, both MicroSkyshine and WALLGP are likely to be inaccurate in
estimating detector responses to a point source of gamma rays behind a wall.
MicroSkyshine computes dos2 from photons which scatter behind the wall f-om the

detector, neglecting the shielding effects of the wall and applying buildup to a direct
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path from the scattering volume to the detector. While this approach in a silo
simulation compensates for photons which reflect from the interior walls of a silo as
their first scatter, it may not be appropriate in the wall geometry. Gamma rays
which reflect off the wa.li in & real situation will be directed away from the detector
and should contribute little to measured dose. WALLGP should not be trusted in
cases involving photon sources of moderate or high energies, for it neglects pair
production, and annihilation photons are substantial for situations involving
high—energy photons, such as 16N sources. If a wall in a real situation does not
absorb source photons well and the MicroSkyshine approximation s appropriate,
WALLGP will underestimate still further, since it only considers dose from

photons scattering in full view of the detector.
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5.0 CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The two goals of this work center on the two computer codes written for
gamma-ray skyshine analysis. The first objective was to test modifications made to
the point—kernel code of Roseberry, which computes the exposure or dose from a
point gamma-ray source placed within a collimating silo. The second goal was to
validate a similar code written for the ideal problem of a point gamma-ray source
placed behind a semi-infinite wall. While SILOGP and WALLGP are based on the
same point—~kernel skyshine model, SILOGP appears to be much more reliable in the
cases studied and agreed more closely with silo geometry reference values and other
skyshine codes. Benchmark experimental data for the wall problem are not
available, so that a definitive comparison cannot be made for WALLGP as it was
for SILOGP. Yet, deficiencies are obvious in the code for the wall problem.

The first code, SILOGP, involved three major changes from Roseberry's code
SKY, along with an approximation intended to correct for a non~ideal experimental
condition. A Gauss quadrature routine and updated photon interaction data were
slight improvements over SKY; the geometric—progression buildup factors which
were introduced made a noticeable change in results, and are widely regarded as
more accurate. To account for photons which can scatter within the confines of the
silo before leaving it, the upper limit of integration over the supplement of the
scattering angle was altered to simulate such photons in the dose computations.
SKY did nothing to imitate this interior scattering.

In comparisons to the benchmark experiment, this revised point—kernel code
gave results with accuracy comparable to other numerical methods tested. Its best

performance is for those geometries involving wide angles of collimation, where the
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source is relatively near the top of the silo. The ANSI Reference Problem and the
27 problem of Faw and Shultis (Fa87) were examples of this, and proved that the
model upon which the code is based is sound in this extreme case. Close to the
source silo, the results of the code SILOGP should not be relied on, since it regularly
underpredicts there. - The approximation made to simulate scattering within the silo
did not correct this problem entirely; the new geometric progression buildup factors
may make the underprediction worse than it was with SKY. Farther from the source
silo, SILOGP overpredicts, but within the range of distances considered, the
difference is not extreme, and a conservative approach would demand overprediction
rather than underprediction. In the presence of an overhead concrete shield,
SILOGP produces more reliable results than many codes, because of the buildup
approximation in concrete first made by Roseberry.

One improvement which can yet be made to this code is the inclusion of pair
production interactions. While SILOGP did not show a tendency to underpredict
where high-energy source photons were involved, the pair—production effect should
be added for completeness, and the process can be added to the code easily. A
second possibility suggested by Roseberry (Ro80) is that new buildup factors be
computed for anisotropic sources, or for detectors at or near an interface between
the air and the ground. All buildup factors currently available are for isotropic
point sources and point detectors in infinite media only. While Shultis and Faw
(Sh87) claim that adapted buildup factors are not necessary, such data would be
well suited for this application and might reduce the overprediction of SILOGP at
large distances. The computations required are beyond the scope of this work,

however, and not a priority.

167




WALLGP yields very reliable results in problems involving very low walls,
such as the ANSI Standard Problem. As with SILOGP, the agreement of WALLGP
with reference values validates the underlying theoretical model in the limiting case
of 27 geometry. There appears to be no tendency to overpredict or underpredict
with distance, as there is with SILOGP; the results for sources shielded by overhead
concrete are not seriously off, as they tend to be with G3. Still, with no
experimental results available for comparisons, no definitive conclusions can be
drawn for the problems WALLGP is intended for: a point source of gamma rays
separated from detectors by a wall of shielding material of non—negligible height.

One difficulty in WALLGP made evident in this work involves the numerical
integration of the exposure equation., The code encounters problems when the
source and detector are relatively close together; it was discovered that increasing
the mean free path cutoff criterion will lower the resulting estimate of detector
response significantly. SILOGP shows no such difficulty, although it uses the same
quadrature subroutine. The probable cause of this is the cylindrical coordinate
system chosen for WALLGP; SILOGP uses a different coordinate system, based
entirely on angles. Although the two codes integrate the same exposure rate
equation, the different coordinate systems require terms to be placed in a different
order, and the expressions integrated by SILOGP and WALLGP take on different
forms.

Figure 5-1 presents the values of the 4, f, and ¢ integrands evaluated by
SILOGP over the regions of integration, for a typical problem. Gauss—Legendre
quadrature can easily integrate over these functions, and the adaptive quadrature
used by STLOGP should simply refine the estimate of the areas under these curves.

Figure 5-2 presents the values of the r, z and ¢ integrands evaluated by WALLGP
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relative value of integrand
]
1

relative value of independent variable

Fig. 5-1. Normalized graphs of the functions integrated by SILOGP. Each
integrand is plotted for a single source—detector geometry. The abscissa of each
integrand curve is normalized to a value of zero for the minimum value of §, 8 or ¢,
and a value of one for the maximum value of the variable. The value of the
integrand is normaliz=d in ihe same manner. The innermost integration is over the
angle ¢; this integrand is presented for a constant value of 3 and 4. The middle
integrand, dependent upon d, is graphed for constant 5. The outer integrand is
dependent only upon 8.
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relative value of integrand

relative value of independent variable

Fig. 5-2. Normalized graphs of the functions integrated by WALLGP. Each
integrand is plotted for a single source—detector geometry. The abscissa of each
integrand curve is normalized to a value of zero for the minimum value of 1, z or ¢,
and a value of one for the maximum value of the variable. The valne of the
integrand is normalized in the same manner. ".he innermost integration is over the
angle ¢; this integrand is presented for a constant value of r and z. The middle
integrand, dependent upon z, is graphed for constant r. The outer integrand is
dependent only upon r.
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over their regions of integration. The r integrand asymptotically approaches zero
quickly, and this outer integral could present problems for conventional
Gauss—Legendre quadrature if the upper limit were extended too far. The adaptive
Gauss quadrature in use here performs separate integrations over successively
smaller sections of the entire region of integration until the change in the overall
result is below the chosen level. It is conceivable that even this method would
underestimate the integral; if the upper limit i3 extended too far, the large values of
the integrand at low values of r could be ignored or not accounted for properly.

Two approaches might be taken to alleviate this problem. The first is to
" abandon the cylindrical coordinate system in favor of the angular coordinate system
used in SILOGP. The limits of integration for the wall geometry were developed
first in the angular coordinate system, but proved to be very cumbersome and
dependent on many variables in the source-detector geometry. Using the angular
system may provide integrals like those in SILOGP, expressions easier to integrate
using Gauss-Legendre quadrature. The second option is to complement the
quadrature weights and zeros in the current program with weights and zeros from a
different method. For instance, Gauss-Laguerre quadrature approximates a given
function using Laguerre polynomials, which are variations of exponential functions
(Sh88, Ho75). Ideally, the innermost integrals over ¢ and z would be evaluated
using weights and zeros from Legendre polynomials, then the outer r integration
would be performed with Laguerre weights and zeros. This may prove to be the
more efficient option, if further study of the program is conducted.

The MicroSkyshine code provides most of the data for comparisons with
WALLGP, and anv weaknesses in MicroSkyshine, such as the errors in parametric

fits to reference data, make judgments of the accuracy of WALLGP difficult. One
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obvious shortcoming of the present work pointed out by MicroSkyshine is the
neglect of pair production from high—energy gamma rays. Although most of the
codes used for comparisons did not compute dose from annihilation photons,
MicroSkyshine results show that the decision to exclude them could ruin computed
results in the event that pair production dominates photon interactions. The author
strongly recommends that pair production be included in WALLGP for future work,
to improve computed responses from sources of high—energy photons.

Data on the wall geometry are rare, and more studies of this problem may be
beneficial. A benchmark experiment involving a gamma-ray source behind a wall
would provide the best comparison by far, and could reveal other problems in
WALLGP beyond those of pair production and the integration method. For
example, it could show the importance of gamma rays which penetrate the shield
wall, and perhaps validate thg “transparent wall" approximation of MicroSkyshine.
Because experiments of this type are rare and expensive, use of widely accepted
numerical data will probably be necessary.

In summary, SILOGP and WALLGP should both be modified to include pair
production, and the method of integration in the code for the wall problem should
be reconsidered. This author feels that SILOGP is accurate and useful for the
prediction of dose from a point gamma-ray source, but that WALLGP should not
be relied upon, and that modifications to WALLGP and more conclusive .

comparisons should be performed hefore it is used in practical situations.
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APPENDIX A
The Computer Program SILOGP Developed in this Work
for the Problem of a Point Gamma—Ray Source in a

Cylindrical Silo

(Some subroutines required by this program are in Appendix C.)

177




[y 2Ny}

N O O0O0O000O000N0 0000000000000 0000O00000000000000nNn0000o0nonnnno0on

SILOGP FORTRAN, V. 2.6, AUGUST 1988

A er e e e -- Ll bk

The progrom SILOGP calculates the dose rate from a point isotropic
gamma ray source collimated into s cone about the vertical and
shielded by an overhead concrete slab.

The method is documented in the paper “Point Kernel Calculation of
Skyshine Exposure Rates,® Nucl. Sci. Engg., 80, 334-338 (1982), by
M. L Roseberry and J. Kenneth Shultis. The program was written by
M. L. Roseberry, (M.S. thesis, Kansas State University, 1980) and
revised by R. E. Faw, 1985, and D. L. George, 1987-88.

SILOGP integrates the singly scattered ganma-ray fluxes over a
spatial region encompassing up to 40 mean free paths in air for the
total path length, including both air and a concrete shield. Inte-
gration is performed by triple Gaussian quadrature, using an adaptive
method of integration. Interaction coefficients are taken from
Hubbell, J. H., "Photon Mass Attenuation and Energy-Absorption
Coefficients from 1 KevV to 20 MeV,” Int. J. Appl. Radiat.

Isot., 33, 1269-1290, 1982. Gamma-ray exposure buildup

factors are evaluated uging the geametric progression fitting
function and data as reported in Harima, et al., “validity of

the Geometric Progression Gamma-Ray Buildup Factors,” Nucl.

Sci. Eng. 94, Sept. 1986. Log-log interpolation is used for
buildup factors and interaction coefficients, Conversion factors
for prescribed dose equivalents are taken from standard
ANSI/ANS-6.6.1-1977.

The upper lLimit on source energy is 10 MeV. An error state arises
if energies of scattered photons fatl beiow 0.02 MeV.

In version 2.6, all geometry data is received from input files. The
first record of the file lists source energy, angle of collimation,
concrete thickness, and concrete and air densities. The remainder
of the file consists of an unformatted list of source-detector
distances (m). Data output is via the console and a named output
file. Integration is performed with an error tolerance of 2X, and
cutoff values for distances in air and/or concrete are 40 mfp.

Results are given as the dose rate per unit source strength,
multiplied by the square of the source-detector distance (m)
and divided by the specified full-angle of collimation (sr).

The following subprograms must be linked for execution:

SILOGP THE MAIN PROGRAM
RESG GAMMA RAY RESPONSE FUNCTIONS
GMUNHUB GAMMA RAY INTERACTION COEFFICIENTS
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BUGP BUILDUP FACTORS (GEOMETRIC PROGRESSICN FORMULA)
GAUS8 )

GAUS® GAUSSIAN QUADRATURE ROUTINES

GAUS10 )

THE FOLLOWING INPUTS ARE REQUIRED FROM THE INPUT FILE:

FIRST RECORD:
E SOURCE ENERGY (MEV)
DANG FULL ANGLE OF COLLIMATION (DEG)
T CONCRETE THICKNESS (M)
RC CONCRETE DENSITY (G/CM|3}
RAA AIR DENSITY (MG/CM|3)
NRESP TYPE OF RESPONSE FUNCTION:
1 = EXPOSURE
2 = AIR KERMA

3 = WATER KERMA
4 = ANSI PRESCRIBED DOSE EQUIVALENT
SUBSEQUENT RECORDS:
D SOURCE-DETECTOR DISTANCE (M)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION X(20)

CHARACTER*64 FNAME

CHARACTER™64 A{(8)

EXTERNAL TING3

COMMON/S1/T,CMU E/S2/THS,D,US,ES,U/S4/THA, 8, KLUNK/SS/NAA,

ENBB,RA,PI,CON, 111

DATA A/'Exposure','Air Kerma','Water Kerma', 'Dose Equivalent',

&'(m|2 R/sr)!, 2% (m|2 rad/sr)',"(m|2 rem/sr)'/

100

0

102

PI=DACOS(-1.000)

------------------------- P L T T L L L .

Read Input Data

-------------------------------------------------- P L L L L L]

WRITE(*,100)
FORMAT(' INPUT FILE NAME - 1)
READ(*,101) FNAME
FORMAT (A)
OPEN(S, FILE=FNAME)
OPEN(B)
WRITE(®, 102)
FORMAT(' OUTPUT FILE NAME - ')
READC*,101) FNAME
OPEN(S, FILE=FNAME , STATUS='UNKNOWN ' )
OPEN(9, STATUS= "UNKNOWN' )
READ(8,*) E, DANG, T, RC, RAA, NRESP
IF (NRESP.EQ.1) THEN

NAA = 1
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NBB = 1
ELSE IF (NRESP.EQ.2) THEN
NAA = 2
NBB = 1
ELSE IF (NRESP.EQ.3) THEN
NAA = 2
NBB = 2
ELSE
WAA = 3
NBB = 1t
END IF

RANG = DANG*P1/180.D0 o
" STER ‘= 2.DO*PI*(1.D0-DCOSCRANG/2.00))

WRITE (9,109) E,DANG,STER,RAA,T,RC
WRITE (*,109) E,DANG,STER,RAA,T,RC
109 FORMAT(' CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE®,//

&' Photon Energy (Me¥) ............. eteocne 1,F8.3,/,
&' Full Angle of Collimation (deg) ..... ... ',FB.3,/, .
2' Solid Angle of Collimation (8r) ........ ',F8.3,/,
&' Air Density (mg/CU.CM) ... ceveeunan .veex ',FB.3,/,
&' Concrete Thickness (m) ..... servasensess ',F8.3,/,
&' Concrete Density (Q/CU.CM) ....cowvcsnes 1, F8.3.

WRITE(9,110) A(NRESP),A(NRESP+4)
WRITE(™,110) A(NRESP),A(NRESP+4)

110 FORMAT(' SOURCE-DETECTOR AREAL DENSITY NORMALIZED ',A,/,
&' DISTANCE (M) {G/CM{2) LA

Initialize Parameters in MKS Units

RC = concrete density, g/m**3

cM) = attenuation coefficient of source photons in concrete, 1/m
RA = air demsity, g/m**3

U = attenuation coefficient of source photons in air, 1/m

THS = minimum value of theta allowed by collimation

o000 n0

RC=RC*1, 0D+06
CMU=GMUHUBCE, 1,3)*RC*1.0-4
RA=RAA™1.0D+03

U=GMUHUBCE, 1, 1%Ri *1.D-4
THS=(PI-RANG}/2.D0
BMAX=PI-THS

KLUNK=0




20 READ (8,*,END=11) D

© | camversion factor = electrons per grem of air + seuree-detector
C distance * air density / (2*pi) / solid angle of collimation

C T ezt T
© o = wintmm valun of bate determined from mean fres path cuteft
C - T

IF (BMN.LT.BMAX) THEN
CALL GAUSS(TING3,BMN,BMAX,2.D-02,XSUM, 1ERR3)
ELSE
KLUNK=4
XsuM=0.000
END IF o
IF C(1ERR3.NE.1) KLUNK=3
DM=D*RA/1.00 04

WRITEC*,111) D,DM,XSUN, KLUNK
WRITE(9,111) D,DM,XSUM, KLUNK
111 FORMAT(F8.2,10X,F8.3,7X,E10.4,7X, 'ERROR CODE:',12)

G0 TO 20
11 sTOP
END
L #»=="="vsvivmmmmenamcancancnnans B L L L LT L L T ey A
c FUNCTION TING3 EVALUATES THE BETA (SCATTERING ANGLE) INTEGRAND
[V L e m A TR TR RS AR AR AR AEEE AR TR BB R R RS ...

FUNCTION TING3(AUG)

IMPLICIT REAL*8 (A-H,0-2)

EXTERNAL TING2
COMMON/S1/T,CMU,E/S2/THS,D,US,ES,U/S4/THA, B, KLUNK/S5/NAA,
&NBB,RA,PI,CON, 111

ES=SCATEN(E , AUG)
UEN=RESG(NAA, N8B, ES, [11)*1.0-4
US=GMUHUBCES, 1, 1)*RA*1.D-4

SIG=SIGMA(E,AUG)

THL=P]-THS

1F (THL.GT.(P1-AUG)) THL=P1-AUG

B=AUG

CALL GAUSP(TING2,THS,THL,2.D-02, TANS2, [ERR2)
IF (IERR2.NE.1) XLUNK=2

PARTN=3 [ G*UEN*TANS2

TING3=CON*PARTN

RETURN

END

c FUNCTION TINGZ EVALUATES THE THETA INTEGRAND
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FUNCTION TING2 (THETA)

IMPLICIT REAL*S8 (A-H,0-2)

EXTERNAL TING1
COMMON/S1/T,CMU, E/S2/THAS,D, US, ES,U/S4/THA, B, KLUNK
AR=D*(DCOSC THETA)+DSINCTHETA)/DTAN(B))Y*U
BR=D*DSINCTHETA)/DSIN(B)*US

EP=EPF(THETA)

THA=THETA

CALL GAUS10(TING!,0.0+00,EP,2.0-02, TANS1, IERRT)
IF CIERR1.NE.1) KLUNK=1

TING2=BUGP(1,ES,BR, IERR)*DEXP(-AR-BR)*TANS

RETURN
END

C ----memmmmmmaaaa- B LR CEE TP PR RO EEEE LS PP TR

c FUNCTION TINGT EVALUATES THE EPSILON INTEGRAND

c ----------------------------------- B R L T T T T T I s

FUNCTION TING1 (EPSILN)
IMPLICIT REAL*8 (A-H,0-2)
COMMON/S1/T,CMU,E/S2/THAS,D,US,ES,U/S4/THA, B, KLUNK

AGET*CMU/DSINCTHA)

A=AG/DCOS(EPSILN)

TING1=BUGP(3,E, A, [ERRY*DEXP(-A)

RETURN

END ,
c ------------------------------------ T TER eSS LA AL A T T R T T TR TR A . .-
C FUNCTION EPF(THA) CALCULATES THE UPPER LIMIT ON THE EPSILON INTEGRAL
c THA = THETA VALUE IN RADIANS
C . FUNCTION EPF LIMITS EFP SUCH THAT THE CONCRETE PATH LENGTH <OR= 40
c ---------------------------------------- P e Lk T L L T ey e

FUNCTION EPF(THA)

IMPLICIT REAL*8 (A-H,0-2)

COMMON/S1/T,SMU,E/S2/THSM,D,US,ES, U

A=DSINCTHSM)/DSINCTHA)

IF (A.GE.1.000) GO TO 10

EP=DACOS(A)

TEST=T*SWU/DCOSCEP)/DSIN(THAY

IF (TEST.LE.40.000) GO TO 15

A=TEST*DCOS(EP)/40.000

IF (A.GE.1.000) GO TO 10

EP=DACOS(A)

10 15

10 EP=0.000
15 EPF=EP

RETURN

END
c ------------------------------------------ B R L T L)
C  FUNCTION SCATEN(E,B) CALCULATES THE SCATTERED GAMMA ENERGY
c IN MEV AFTER A SINGLE SCATTER.
¢ E = THE UNSCATTERED GAMMA ENERGY IN MEV
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B = THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT TO
THE INCIDENT PHOTOM DIRECTION, IN RADIANS
FUNCTIOM SCATEN (E,B)
IMPLICIT REAL*8 (A-H,0-2)
SCATEN=E/(1.0D0+E/.5110034D0"(1.0D00+DCOS(B) )
RETURN

FUNCTION SIGMACE,B) CALCULATES THE KLEIN-NISHINA CROSS-
SECTION IN M¥*2
€ = THE UNSCATTERED GAMMA ENERGY IN MEV
B = THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT TO
THE INCIDENT PHOTON DIRECTEON, IN RADIANS
FUNCTION SIGMA (E,B)
IMPLICIT REAL*8 (A-H,0-2)
AL=.5110034D0/E
Px1.0D0+AL+DCOS(B)
SIGMA=3.970387D-30%ALY*2/P**2* (AL/P+P /AL -DSIN(B)**2)
RETURN
END

FUNCTION BMIN(R) ESTIMATES THE VALUE OF THE SCATTERING ANGLE FOR
WHICH THE TOTAL AIR PATH LENGTH 1S 40 MFP
R = AIR DENSITY IN G/M**3
FUNCTION BMINCR)
IMPLICIT REAL*8 (A-H,0-2) _
COMMON/S1/T,CMU,E/S2/THAS,D,US,ES,U/S4/THA, B, KLUNK
P1=DACOS (-1.0D0)
D8=P1/180.000
B=2,000*DB
DO 10 1=1,89
AG=SCATEN(E,B)
TEST=0*(U/DTAN(B)+GMUHUBLAG, 1, 1)%R*1.D-4/DSIN(B))
IF (TEST.LE.40.D0) GO TO 20
R=8+08
10 CONTINUE
Do 15 1=1,89
AG=SCATEN(E,B)
TEST=D*GMUHUB(AG, 1, 1)*R*1.D-4
IF (TEST.LE.40.50) GO TO 20
B=8+DB
15 CONTIRUE
WRITE (9,5) D,E
WRITE (*,5) D,E
5 FORMAT (5X,'THE FUNCTION TO FIND THE MINIMUM VALUE OF BETA',
A ' FAILED. DETECTOR - SOURCE DISTANCE IS', F7.2,' SOURCE’,
B ' GAMMA ENERGY IS',F6.3)
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20 BMIN=B-DB
RETURN
END



APPENDIX B
The Computer Program WALLGP Developed in this Work
for the Problem of a Point Gamma—-Ray Source Behind a

Semi-Infinite Wall

(Some subroutines required by this program are in Appendix C.)
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c WALLGP FORTRAN, V. 2.5, 8/8/1988
c ------------------ L T T e L e L L L L L L L

THE PROGRAM WALLGP CALCULATES THE DOSE RATE FROM A POINT ISOTROPIC
GAMMA RAY SOURCE SHWIELDED BY A SLAB OF PERFECTLY ABSORBING
MATERIAL.

WALLGP INTEGRATES THE SINGLY SCATTERED GAMMA-RAY FLUXES OVER A REGION
OF SPACE ENCOMPASSING A SOURCE, DETECTOR AND SEMI-INFINITE SLAB OF
PERFECTLY ABSORBING MATERIAL BETWEEN THE TWO POINTS. INTEGRATION

1S PERFORMED BY TRIPLE GAUSSIAN QUADRATURE, USING AN ADAPTIVE METHOD
OF INTEGRATION.

INTERACTION COEFFICIENTS ARE TAKEN FROM TABULATIONS IN

RUBBELL, J. H., "PHOTON MASS ATTENUATION AND ENERGY-ABSORPTION
COEFFICIENTS FROM 1 KEV TO 20 MEV,™ INT. J. APPL. RADIAT. 180T.,
33, 1269-1290, 1982. GAMMA RAY EXPOSURE BUILDUP FACTORS ARE
EVALUATED USING THE GEOMETRIC PROGRESSION FITTING FUNCTION AND
DATA AS REPORTED IN HARIMA, ET AL., “VALIDITY OF THE GEOMETRIC
PROGRESSION GAMMA-RAY BUILDUP FACTORS,™ NUCL. SCI. ENG. %4,
SEPT. 1986. LOG-LOG INTERPOLATION IS USED FOR BUILDUP FACTORS
AND IHTERACT]CN COEFFICIENTS. CONVERSION FACTORS FOR PRESCRIBED
DOSE EQUIVALENTS ARE TAKEN FROM STANDARD ANSI/ANS-6.6.1-1977.

THE UPPER LIMIT ON SOURCE ENERGY IS 10 MEV, DUE TO LIMITED
ATTENUATION DATA. THE BUILDUP FACTORS ARE VALID OUT TO 40 MEAN FREE
PATHS.

DATA INPUT 1S ENTIRELY VIA AN INPUT FILE, WHICH PROVIDES A LIST OF
POSITIONS OF SOURCE AND DETECTOR WITH RESPECT TO THE WALL (M),
SOURCE ENERGY (MEV), AIR DENSITY, CONCRETE DENSITY WHEN NEEDED, AND
RESPONSE FUNCTION REQUIRED. OUTPUT IS VIA A NAMED FILE. RESULTS
ARE GIVEN AS THE DOSE RATE PER UNIT SOURCE STRENGTH.

VERSION 2.5 IS INTENDED TO BE RUN BY AN IBM CMS EXEC FILE CONTAINING
FILEDEFS, INSTEAD OF REQUESTING NAMES FOR INPUT AND OUTPUT FILES FROM
THE TERMINAL. ALL QUERIES TO THE TERMINAL HAVE BEEN DISABLED. UNIT
10 RECEIVES ONLY OUTPUT DATA, WITHOUT HEADINGS, IN A FORM SUITABLE
FOR USE BY PLOTTING PROGRAMS.

ALSO, VERSION 2.5 PLACES A MEAN-FREE-PATH RESTRICTION ON THE
LIMITS OF Z; THIS AVOIDS WASTEFUL EVALUATION OF FUNCTIONS IN AREAS
OF SPACE MORE THAN CUTMFP FROM THE DETECTOR OR SOURFE.

THE FOLLOWING SUBPROGRAMS MUST BE LINKED FOR EXECUTION:
WALLGP THE MAIN PROGRAM

RESG GAMMA RAY RESPONSE FUNCTIONS
GMUHUB GAMMA RAY INTERACTION COEFFICIENTS (HUBBELL)
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BUILDUP FACTORS (GEOMETRIC PROGRESSION FORMULA)
LIMITS OF INTEGRATION

FUNCTION USED BY PHILIM

GAUSSIAN QUADRATURE ROUTINES

SUBROUTINE TO END CODE IF GEOMETRY ERROR OCCURS

THE FOLLOWING INPUTS ARE REQUIRED FROM THE INPUT FILE:

E SOURCE ENERGY (MEV)}
Xs SOURCE-WALL DISTANCE NORMAL TO THE WALL (M)
XD DETECTOR-WALL DISTANCE NORMAL TO THE WALL (M}
YS§ " SOURCE DISTANCE BELOMW TOP OF WALL (M) (-VE IF ABOVE)
YD DETECTOR DISTANCE BELOW TOP OF WALL (M)
Fi) OFFSET OF DETECTOR FROM AN AXIS NORMAL TO WALL THRU
SOURCE (M)
T THICKNESS OF CONCRETE SLAB ABOVE SOURCE AND WALL (M)
RC DENSITY OF COMCRETE (G/CM"3)
RAA DENSITY OF AIR (MG/CH"3)
NRESP RESPONSE FUNCTION DESIRED:
1 EXPOSURE (R/S)
2 AIR KERMA (RAD/S}
3 WATER KERMA (RAD/S)
& DOSE EQUIVALENT (REM/S)
DEL ABSOLUTE ACCURACY DESIRED IN INTEGRATION ROUTINES
CUTMFP MAXIMUM MEAN FREE PATH DISTANCE USED IN COMPUTATIONS
(CONTRIBUTIONS FROM PHOTONS TRAVELING FARTHER ARE
1GNORED; 40 MFP ABSOLUTE MAXIMUM)
INITIALIZATION

IMPLICIT REAL*8 (A-H,0-2)
LOGICAL*1 BREAK,CFLAG

CHARACTER*S4

FNAME, A(8)

EXTERNAL TING3

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD

COMMON /ZVARS/ IMIN, ZMAX, 21, 22

COMMON/S1/T,CMUE, U/S2/DEL/S3/NAA, NBB ,RA/S4 /AR, BR, CR, CUTMFP
COMMON /S6/CFLAG

DATA A/'Exposure!,'Air Kerma','Water Xerma','Dose Equivalent!?,
&'(R/S)' ,2*'(RAD/S)', *(REM/S)*/

PI=DACOS(-1.000)

READ INPUT DATA

WRITE(*,100)




[z B+ I + I ¢ ]

o0 nNnn

(3]

188

100 FORMAT(! INPUT FILE NAME - ')
READC®,101) FNAME
101 FORMAT(A)
OPEN(8, FILE=FNAME)
OPEN(S)
WRITE(*,102)
102 FORMAT(' OUTPUT FILE NAME - ')
READC®,101) FNAME
OPEN(9, FILE=FNAME , STATUS= ' UNKNOWN ' )
OPEN(9, STATUS="UNKNOWN ' }
WRITE(*, 103)
103 FORMATC' PLOT DATA FILE NAME - )
READ(*,101) FNAME
OPEN( 10, FILE=FNAME , STATUS= ' UNKNOWN* )
OPEN( 10, STATUS='UNKNOWN ' )
20 READ(S,*,END=11) E,XS,XD,YS,YD,20,T,RC,RAA,NRESP,DEL, CUTHFP
IF (NRESP.EQ.1) THEN
NAA = 1
NBB = 1
ELSE IF (NRESP.EQ.2) THEN
NAA = 2
NBE = 1
ELSE IF (NRESP.EQ.3) THEN
NAA = 2 -
. NBB 3 2
ELSE
NAA = 3
NBB = 1
ENO IF
CFLAG=. TRUE,

ECHO INPUT

WRITE(*,*) "= = = = = = = = = =« = = o e oo mmeoo -
WRITE(D,*) "= = = = = = = - === ecmcomannannn-

WRITE (9,109) E,RAA,RC,CUTNFP,DEL*100.
WRITE (*,109) E,RAA,RC,CUTMFP,DEL*100.

109 FORMAT(' CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE',//

&' Photon Energy (MeV) ......vccens esase--. ',FB.3,/,
&' Ajir Density (Mg/CU.CM) ..cvvnevrnaaas .. ',F8.3,7,
&' Concrete Density (G/CU.CA)} +.evvancanes . ',F8.3,//,
&' Mean Free Path Cutoff Criterion ........ ',F8..3,/.
&' Percent Error of Result ......veveunees .« 1,F8.3.0)
WRITE(9,110)
WRITE(*,110)
110 FORMAT(' X(S) X(D) Y(S) Y(D) D)
&/,' (m} (m) (m) (m) {m} (m)

WRITEC*,111) XS,XD,YS,YD,2D,T
WRITE(9,111) XS,XD,YS,YD,2D,T
111 FORMAT(6(F8.2,2X),/)




O 000000000

189

IF (E.GT.10.) THEN
WRITE (9,207)
WRITE (*,207) s
207 FORMAT (' ***INPUT ENERGY OF ',FB.2,' MEV IS TOO LARGE™**')
GO TO 20
ELSE IF (XS.LE.(0.0+0).0R.¥D.LE.(0.D+0)) THEN
WRITE (9,202)
WRITE (*,202)
202 FORMAT(' ***IMPROPER GEOMETRY: SOURCE AND DETECTOR ON SAME SIDE OF
& WALLY®*1)
TO 20
ELSE IF (YS.LT.(0.DO).AND.T.GT.(0.D0)) THEN
WRITE (9,205)
WRITE (*,205)
205 FORMAT(® *"*IMPROPER GEOMETRY: SOURCE IS ABOVE BOTTOM OF CONCRETE
BSLAB**+1) . R : .
GO TO 20
ELSE IF (T.GT.(0.D0).AND.RC.EQ.(0.D0)) THEN
WRITE (9,210)
WRITE (*,210)
210 FORMAT(' ***CONCRETE SHIELD NOT ASSIGNED A DENSITY***1)
GO TO 20
ELSE IF (CUTMFP.GT.40.) THEN
WRITE (9,206)
WRITE (*,206)
206 FORMAT (' "**CUTOFF VALUE OF ',F8.2,' MFP IS TOO LARGE***!')
GO TO 20
ELSE
END IF

CONVERT TO CYLINDRICAL COORDINATE SYSTEM

H = height of wall edge above source-detector axis = minimum r
THETA = angle of rotation between X and X' axes

PSI = angle of rotation between X' and X" axes

XSP = distance in X' direction from source to top of wall

XDP = distance in X' direction from detector to top of wall
DDD = distance separating source and detector

RMAX = moaximum value of r

THETA = DATANC(YS - YD} / (XS + XO))
H = ¥YS * DCOS(THETA) - XS * DSIN(THETA)
IF (H.LE.(0.D+0)) THEN
WRITE (9,203)
WRITE (*,203)
203 FORMAT(' ***IMPROPER GEOMETRY: SOURCE AND DETECTOR UN A CLEAR LINE

& OF SIGHT#**1)
GO TO 20

ELSE

END IF

XSP = XS * DCOS(THETA) + YS * DSIN(THETA)
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1F (DABS(XSP).LE.(1.00-10)) XSP = 0.D+0
XDP = XD * DCOS(THETA) - YD * DSINCTHETA)
1F (DABS(XDP).LE.(1.00-10)) XDP = 0.D+0
PS1 = DATAN(ZD / (XSP + XDP))

DDD = (XSP + XDP} / DCOS(PSI)

INITIALIZE PARAMETERS IN UNITS OF METERS

RC=RC*1.0D+06
CMU=GMUNUB(E, 1,3)*RC*1.D-4
RA=RAA*™ 1. 00+03

U=GMUWUB(E, 1, 1)*RA*1.D-4
CUT=CUTMFP/U

Conversion factor=(electrons per gram of air)*(air density)/(4*pi)
CON=2.39240+22*RA
CARRY OUT INTEGRATION OVER R

IF (CUT.LE.DDD) THEN
IF (T.EQ.(0.DO)) THEW
WRITE (*,201) CUTMFP, CUT
WRITE (9,201) CUTHFP, CUT
ELSE
WRITE (*,201) CUTMFP, CUT, (CUTMFP/CMU)
WRITE (9,201) CUTMFP, CUT, (CUTMFP/CMU)
END IF
GO TO 20
ELSE
RMAX=DSGRT ¢ CUT*CUT -DDO*DDD) /2.
IF (RMAX.LE.H.OR.CUTMFP.LT.T*CMU) THEN
IF (T.EQ.(0.D0)) THEN
WRITE (*,201) CUTMFP, CUT
WRITE (9,201) CUTMFP, CUT
ELSE
WRITE (*,201) CUTHFP, CUT, (CUTMFP/CMU)
WRITE (9,201) CUTMFP, CUT, (CUTMFP/CMU)
END IF
201 FORMAT (* ***CUTOFF VALUE OF ',FB.2,' MFP 1S TOO SMALL***1,
&/," *™*1,F8.2,' N IN AIR***1 F8. 2 + M [N CONCRETE®*¥1)
GO TO 20
ELSE
END IF
END IF
CALL GAUSB(TING3,H,RMAX,DEL,XSUM, IERR3)
XSUMEXSUM*CON
IF CIERR3.NE.1) THEN
WRITE (*,204)
WRITE (9,204)
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FORMAT(' “**INACCURATE ESTIMATE OF R INTEGRAL***')
ELSE
END 1F

WRITE OUTPUT
1F (XSUM.EQ.(0.0+00).AND.CFLAG) THEN

WRITE (*,208) CUTMFP
WRITE (9,208) CUTNFP

208 FORMAT(' ***CUTOFF VALUE OF ',FB.2,' NFP IS TOO SMALL¥***1 /7 1 g

112

113

ZLL EVALUATED PATH LENGTHS IN CONCRETE EXCEED CUTOFF VALUE®**%1)
ELSE
WRITE(?,112) A(NRESP)
WRITE(*,112) ACNRESP)
FORMAT(' Normalized ',A20, 'Response rate * d**2!)
" WRITEC*,113) XSUM,ACNRESP+4), XSUM*DDD*DDD , ACNRESP+4)
WRITE(D,113) XSUM,ACNRESP+4),XSUM*DDD*DDD , ACNRESP+4)
FORMAT (1X, 1PE10.4, 1X, A7, 13X, 1PE10.4, 1X, 'm¥*2** AT)
WRITE(10,114) DDD,DDD*RAA/10. ,XSUM, XSUW*DDD*DDD

114 FORMAT(2(F7.2,2X},2¢(1PE10.4,1X))

END IF
GO TO 20
STOP

END

---------------- L L L L T T T

" FUNCTION TING3 EVALUATES THE R INTEGRAND

R = value of r at which GAUSB evaluates the integrand

RMAX = upper Limit of integration over r

21, 22 = z coordinates at which the wall edge is a distance r from
the source-detecter axis. Limits on phi will merge or change
expressions at these values of z.

TERM = discriminant of the gquadratic whose solutions are Z1 and
Z2

IMIN, ZMAX = Limits of integration over z

ZMINL, ZMAXL = Limits on z computed from the source-detector
geometry; compared to limits computed from the mean free path
cutoff criterion to determine ZMIN and ZMAX

DOUBLE PRECISION FUNCTION TINGS(R)

IMPLICIT REAL*8 (A-H,0-2)

EXTERKAL TING2

COMMON /GEQM/ THETA, K, PSI, XSP, XDP, DDD

COMMON /ZVARS/ ZMINL, ZMAXL, 21, 22

COMMON /ERVARS/ RPT, ZPT

COMMON/S1/T ,CMU,E,U/S2/DEL/S4/AR,BR,CR , CUTMFP

RPT=R

CUT=CUTMFP/U

RMAX=DSQRT(CUT*CUT-DDD*DDD }/2.

COMPUTE Z BREAKPOINTS WHERE PHI WILL SWITCH EXPRESSIONS
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TERM=DSIN(PSI)*D5SQRT(R*R-H*H)
Z1=(XSP-TERM)/DCOS(PSI}
Z2=(XSP+TERM)/DCOS(PSI}

CARRY OUT INTEGRATION OVER Z

CALL ZULIMCR, 21, Z2, ZMINL, ZMAXL)
ZMIN=DMAX1(ZMINL, (DDD-CUT*DSORT( 1. -R*R/RMAX/RMAX)) /2. )
ZMAX=DMIN1(ZMAXL , (DDD+CUT*DSORT( 1. -R*R/RMAX/RMAX)) /2. )
CALL GAUS9(TING2,ZMIN,ZMAX,DEL,ZANS, [ERR2)
IF (IERR2.NE.1) THEN
WRITE(9,200)
WRITE(*,200)
FORMAT(! ***INACCURATE ESTIMATE OF Z INTEGRAL***')
ELSE | Co ‘
END IF
TING3=R*2ANS
RETURN
END

FUNCTION TING2 EVALUATES THE Z INTEGRAND

Z = value of z at which the integrand is evaluated

BETA = supplement of the photon scattering angle

AAA = distance (m) traveled by photon in air before scattering
AR = mean free paths traveled by photon in air before scattering
BBB = distance {m) traveled by photon in air after scattering
BR = mean free paths traveled by photon in air after scattering
DOUBLE PRECISION FUNCTION TING2 (2)

IMPLICIT REAL*S (A-H,0-2)

LOGICAL*1 BREAK,CFLAG

EXTERNAL TING1

COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD

COMMON /fZVARS/ ZMIN, ZMAX, 21, 22

COMMON /ERVARS/ R, ZPT

COMMON/S1/T,CMU, E,U/S2/DEL/S3/NAA, NBB, RA/S4 /AR, BR, CR, CUTHFP
COMMON/S6/CFLAG

ZPT=Z

COMPUTE SCATTERED GAMMA LEG LENGTH, B

BETA=DATAN (2/R)+DATANC{DDD~Z)/R)
ES=SCATEN(E,BETA®
UEN=RESu( NAn, NBB,ES, 111)%1.D-4
IF (I11.NE.0) THEN
WRITE (*,300) III
WRITE ¢9,300) III
FORMAT(' ***ERROR *,I1,' IN COMPUTATION OF RESPONSE FUNCTION***1)
ELSE
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END IF

SIG=SIGMA(E,BETA)
BBB=DSQRT(R*R+(DDD-2)*{DDD~Z}}
US=GMURUB(ES, 1, 1)*RA*1.D-4
BR=US*BBB

COMPUTE LIMITS OF INTEGRATION FOR PHI

BREAK = logical variable, TRUE if region of integration over phi
splits in two at sny values of z between z limits

ZSPLIT = value of z where one region of integration over phi
becomes two, or two becomes one (only used if BREAK=.TRUE.)

PHINT, PMAX1 = Llimits of integration over phi if only one valid
region; limits over lower region if two regions of phi are
valid

PMINZ, PMAXZ = Limits of integration over upper region of phi jf

* two regions of phi are valid; set to zero if only one region

of phi is possible (BREAK=.FALSE.)

CALL PHSPLT(R, ZSPLIT, BREAK)
CALL PHILIM(R, Z, ZSPLIT, BREAK, PMINT, PMAX1, PMINZ, PMAX2)

1F NO CONCRETE SLAB, COMPUTE PHI INTEGRAL AS A CONSTANT TIMES
DIFFERENCE IN PHI LIMKITS {NO DEPENDENCE ON PHI)

1F (T.LE.(0.D0)) THEN
CFLAG=.FALSE.
AAA=DSORT(R*R+Z*Z)
AR®U*AAA
CR=0.D0

IF DISTANCE THROUGH AIR FROM SOURCE TO SCATTERING VOLUME 1S
GREATER THAN CUTOFF VALUE, SET INTEGRAND TO ZERO; IF NOT,
EVALUATE INTEGRAL

IF (AR.GT.CUTMFP) THEN
PANS1=0.0+00
ELSE
PANS1=DEXP ( -AR) /AAA/AAA*™ (PMAX1-PMIN1+PMAXNZ-PMINZ)
END IF
ELSE

IF CONCRETE SI;AB PRESENT, CARRY OUT INTEGRATION OVER PHI
CALL GAUS1O(TINGT,PMINT,PMAXT,DEL,PANST, IERR1)
IF INTEGRAL HAS TWO REGIONS, INTEGRATE BETWEEN HIGHER LIMITS
IF (BREAK) THEN

CALL GAUS1O(TING1,PMINZ, PMAX2,DEL,PANS2, IERRD}
PANS1=PANS1+PANS2
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ELSE
1ERRO=1
END IF
1F (1ERR1.NE.1.OR.IERRO.NE.1) TMEN
WITE(9,200)
WRITE(*,200)
200 FORMAT(' ***INACCURATE ESTIMATE OF PHI INTEGRAL*"*¢)
ELSE
END IF
END 1F

COMPLETE Z INTEGRAND

COMPARE PATH LENGTHS EVALUATED IN Z INTEGRAND AGAINST MEAN
FREE PATH CUTCOFF; IF LARGER THAN CUTOFF, SET INTEGRAND TO ZERO

O 00000

IF (BR.GT.CUTMFP.OR.(T.LE.(D.DO).AND.(AR+BR).GT.CUTMFP)) THEN
TING220.D+00
ELSE
TING2=BUGP(1,ES, BR, IERR)*SIG*UEN*DEXP( -BR)*PANS1/BBB/BBB
IF (JERR.NE.O) THEN
WRITE (*,400) IERR
WRITE (9,400) IERR
400 FORMAT(' ***ERROR *,11,' IN COMPUTATION OF AIR BUILDUP FACTOR®*+i)
ELSE
END IF
END IF
RETURN
END

c FUNCTION TING1 EVALUATES THE PHI INTEGRAND

c PH]1 = value of phi at which the integrand is evaluated
c CCC = distance (m) traveled by photon in concrete

c CR = mean free paths traveled by photon in concrete

DOUBLE PRECISION FUNCTION TING1 (PHI)

IMPLICIT REAL*8 (A-H,0-2)

LOGICAL*1 CFLAG .

COMMON /GEOM/ THETA, H, PSI, XSP, ¥DP, DOD
COMMON /ZVARS/ ZMIN, ZMAX, 21, 22

COMMON /ERVARS/ R, 2
COMMON/S1/T,CMU,E,U/S4/AR, BR,CR, CUTHFP/S6/CFLAG

(g}

COMPUTZ PATH LENGTH OF PHOTON THROUGH CONCRETE SLAB

WY =Z*DCOS{PSI )*DCOS(THETA)-R*(DSIN(PH] )*DSIN(PSI)*DCOS(THETA)
& -DCOS(PHI)*DSIN(THETA))

WY=-Z*DCOS(PST)*DSINCTHETAY+R*(DSINCPHI Y*DSINC(PSI }*DSIN(THETA)
& +DCOS(PHI)*DCOS(THETA))

WZ=T*DSIN(PSI }+R*DSIN(PHI )*DCOS(PSI)
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CCC=T*DSORT (WX*™WX /WY /WY+WZ*WZ /WY /WY+1. )

c
T COMPLETE PHI INTEGRAND
c
AMAZDSORT (R*R+Z¥2)-CCC
CR=CMU*CCE
AR=U*AAA
c
c IF PHOTON PATH LENGTH THROUGH CONCRETE 1S GREATER THAN CUTOFF
c CRITERION, SET INTEGRAL TO ZERO
¢
IF (CR.GT.CUTMFP) THEN
TING1=0.D+00
c
c IF PHOTON PATH LENGTH BEFORE SCATTERING OR TOTAL PATH LENGTH
c TRAVELED 1S GREATER THAN CUTOFF CRITERION, SET INTEGRAL TO
¢ ZERO
. ‘
ELSE IF ((AR*CR).GT.CUTMFP.OR.(AR#BR+CR).GT.CUTHFP) THEN
CFLAG=. FALSE.
TING1=0.D+00
¢
c CUTOFF CRITERION NOT EXCEEDED; INTEGRAND EVALUATED
c
ELSE
CFLAG=. FALSE.

TING1=BUGP(3,E,CR, IERR)*DEXP( - AR-CR)/ (AAA+CCC )/ (CAAA+CCC)
IF (IERR.NE.0) THEN
WRITE (*,400) IERR
WRITE (9,400) IERR
400 FORMAT(' ***ERROR ',I1,' IN COMPUTATION OF CONCRETE BUILDUP FACTOR
&ml)
ELSE
END IF
END IF
RETURN
END

FUNCTION SCATEN(E,B) CALCULATES THE SCATTERED GAMMA ENERGY
IN MEV AFTER A SINGLE SCATTER.
E = THE UNSCATTERED GAMMA ENERGY IN MEV
B = THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT
TO THE INCIDENT PHOTON DIRECTION IN RADIANS
£ ~--veeevecemecamaan D Sy p——
DOUBLE PRECISION FumCTION SCATEN (E,B)
IMPLICIT REAL*B (A-4,0-2)
SCATEN=E/(1.000+E/.5110034D0*(1.0DO+DCOS(B)))
RETURN
END
[ L N L LT [P P L L L 1 Ty Y

a0 o060
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FUNCTION SIGMACE,B) CALCULATES THE KLEIN-NISHINA CROSS-
SECTION IN w*=2
E = THE UNSCATTERED GAMMA ENERGY IN MEV
B = THE SUPPLEMENT OF THE SCATTERING ANGLE WITH RESPECT
TO THE INCIDENT PHOTON DIRECTION IN RADIANS

DOUBLE PRECISION FUNCTION SIGMA (E,B)

INPLICIT REAL*8 (A-H,0-2)

AL=.511003400/E

P=1.000+AL+DCOS(B)

SIGMA=3 9703870 -30%AL**2/p**2* (AL /P+P/AL-DSIN(B)**2)
RETURN

END
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C SUBROUTINE TO END PROGRAM IN CASE OF ERROR
C* % % = % % & % * * kR * * ® WX K NN * kX KW
SUBROUTINE ERTRAP
IMPLICIT REAL*B(A-H,0-2)
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DOD
COMMON /ZIVARS/ ZMIN, ZMAX, 21, 22
COMMON /ERVARS/ RPT, ZPT
WRITE (6,101)
107 FORMAT(' CONDITIONS LEADING TO ERROR:')
WRITE (46,102) RPT, ZPT
102 FORMAT(' R = ', 1PE11.4,' 2 = ', 1PE1L.4)
WRITE (6,103) H, ZMIN, ZMAX
103 FORMAT(' LIMITS: RMIN = ', 1PE11.4,* ZMIN = ', 1PE11.4,' ZMAX = ',
&1PE11.4) .
WRITE (6,104) THETA, PST
104 FORMAT(* ANGLES: THETA = ', 1PE11.4,' PSI = ',1PE11.4)
WRITE (&,105) XSP, XDP
105 FORMAT(® ROTATED GEOMETRY: X/SUB S/PRIME = ', 1PE11.4,/19X,' X/SUB
ED/PRIME = ', 1PE11.4)
sTOP
END .

c* * ¥ & ® * ¥ * ¥ & * * ¥ * ¥ T # & * ¥ * ¥ ¥ *

- C FUNCTION TO COMPUTE ROOTS OF EQUATION FOR PHI GIVEN R AND 2
C* ® % * w & ok * k ok k kK W K * W Nk Kk N W kW
DOUBLE PRECISION FUNCTION PHI (R, Z, I)
IMPLICIT REAL*8 (A-#,0-2)
COMMON /GEOM/ THETA, H, PSI, XSP, XDP, DDD
P1 = DACOS(-1.00+0)

c
C COMPUTE SEPARATE TERMS FOR VALUE OF PHI
c
¢ SOURCE SIDE CONTACT POINTS
¢
IF (1.EQ.1.0R.1.EQ.2) THEN
IF (XDP.EQ.0.0+0) THEN
TERM1 = -(XSP + XDP - Z * DCOS(PSI))
TERM2 = 0.
TERM3 = R * DSINCPSI)
ELSE
TERM1 = -H*H*DSIN(PS1)*(XSP+XDP-Z*DCOSCPSI ))/XDP/XOP
TERM2 = R*R*(1.+(H*DSIN(PSI)/XDP)*(H*DSINCPS1)/XDP))
& - (H*(XSP+XDP~Z*DCOS(PS1)) /XDP)*(H* (XSP+XDP-Z*DCOS(PSI } ) /XDP)
TERM3 = R * (1.+ H * H * DSINCPSI) * DSINCPSI) / XDP / XDP)
END «or
C
c DETECTOR SIDE CONTACT POINTS
¢

ELSE IF (1.EQ.3.0R.I.EQ.4) THEN
1F (XSP.EQ.0.D+0) THEN
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TERM1 = Z * DCOS(PSI)
TERM2 = 0.
TERM3 = R * DSIN(PSI)
ELSE
TERMY = H * H * DSIN(PSI) * Z * DCOS(PSI) / XSP / XSP
TERM2=R*R*(1.+(H*DSINCPSI }/XSP Y*(H*DSIN(PSI )/XSP))

& = (H*Z*DCOS(PSI y/XSP)* (K*Z*DCOS(PSI ) /XSP)
TERM3 = R * 1.+ H * { * DSINCPSI) * DSIN(PSI) / XSP / XSP)
END [F
c
c CALL ERROR TRAPPING SUBROUTINE; ARGUMENT IS INVALID
c
ELSE

WRITE (6,101)
101 FORMAT(' INCORRECT ARGUMENT FOR FUNCTION PHI.')

CALL ERTRAP
END IF
c
C  COMPUTE PHI
¢
IDISGN = 1

IF (MODC1,2).EQ.1) IDISGN = -1

IF (DABS(TERM2).LE.(1.D-10)) TERM2 = 0.

TERM4 = (TERM1 + IDISGN * DSQRT(TERM2)) / TERM3
IF (TERM4.LT.(1.D-10-1.)) THEN

PHI = -PI/2.
ELSE IF (TERM4.GT.{1.-1.D-10)) THEN
PHI = Pl1/2.
ELSE
PHI = DATAN(TERM& / DSQRT(1. - TERM& * TERM4))
END IF
END

Ch ® & & & & & * * H¥ & K * * * * * * & X * ¥ * *

c SUBROUTINE TQ SELECT LIMITS ON PHI FROM ROOTS OF PHI FORMULA
cﬁ L ] » * *® &* ] - " * W * & * ® - * L 3 » * - * * W
SUBROUTINE PHILIM (R, Z, ZSPLIT, BREAK, PMINT, PMAX1, PMIN2,
& PMAX2)
IMPLICIT REAL*B (A-H,0-2)
LOGICAL*1 BREAK
COMMON /GEOM/ THETA, W, PSI, X5, XDP, DOD
. COMMON /ZVARS/ ZMIN, ZMAX, 21, 22

SELECT PHI LIMITS FROM GEOMETRY AND BREAKPOINTS

WALL "LEANS OVER™ SOURCE; TWO REGIONS OF INTEGRATION FOR PMI
POSSIBLE

OO0 0000

IF (XSP/DCOSC(PS1).LT.0) THEN
IF (Z.GT.ZNIN.AND.Z.LE.ZSPLIT) THEN
PMIN = PHI(R, Z, 1)
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PMAX1 = PHI(R, Z, 2)
PMINZ = 0
PMAX2 = 0
ELSE IF (Z.GE.ZSPLIT.AND.Z.LE.DMIN1(21,22)) THEN
PMINT = PHICR, Z, 1)
IF (BREAK) THEN
PMAX1 = PHI(R, Z, 3)
PMINZ = PHICR, Z, &)
PMAX2 = PHI(R, Z, 2)
ELSE
PMAX] = PHI(R, Z, 2)
PMINZ = 0O
PMAXZ = 0
END IF
ELSE IF (Z.GE.DMIN1(Z1,22).AND.Z.LT.ZMAX) THEN
PNINZ = O o
PMAXZ2 = 0
IF (21.LT.22) THEN
PMINT = PHICR, Z, 4)
PMAX1 = PHI(R, Z, 2)
ELSE
PMIN1 = PHI(R, Z, 1)
PMAX1 = PHI(R, Z, 3)
END IF
ELSE
WRITE(S,102)
102 FORMAT(® ERROR IN SUBROUTINE PHILIM, XSP.LT.0.')
CALL ERTRAP
END IF

WALL “LEANS OVER" DETECTOR; TWO REGIONS OF INTEGRATION FOR PHI
POSSIBLE

ELSE IF (XDP/DCOS(PSI).LT.0) THEN
IF (2.GT.ZMIN.AND.Z.LE.DMAX1(Z1,22)) THEN
PMINZ = 0
PMAX2 = 0
IF (21.LT.Z2) THEN
PMINT = PHI(R, 2, 3)
PMAX1 = PHI(R, Z, 1)
ELSE
PMINI = PHI(R, Z, 2)
PMAX1 = PHI(R, Z, 4)
£ND IF
ELSE IF (Z.GE.DMAX1(21,22).AND.Z.LE.2SPLIT) THEN
PMIN1 = PHI(R, Z, 3)
IF (BREAK) THEN
PMAX1 = PHI(R, Z, 1)
PMINZ = PHI(R, Z, 2)
PMAX2 = PHI(R, Z, 4)
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ELSE
PHAX1 = PHI(R, Z, &)
PMINZ = O
PMAX2Z = 0
END IF
ELSE IF (2.GE.ZSPLIT.AND.Z.LT.ZMAX) THEN
PMINT = PHI(R, Z, 3)
PRAXT = PHICR, Z, 4)
PHINZ = O
PMAX2 = 0
ELSE
WRITE(6,103)
103 FORMAT{* ERROR IN SUBROUTINE PHILIM, XDP.LT.0.")
CALL ERTRAP
END IF

c ONE REGION OF INTEGRATION FOR PHI

ELSE
PMIN2 = 0
PMAX2 = O

c - LOWER LIMIT

IF (2.LE.Z1.AND.2.NE.ZMIN) THEN
PMINY = PHI(R, Z, 1)
ELSE IF (2.GE.21.AND.Z.NE.ZMAX) THEN
PHINT = PHICR, 2, 3)
ELSE
WRITE(6,104)
104 FORMAT(' ERROR IN SUBROUTINE PHILIM, NORMAL CASE, FINDING PH
ZIMIN. ')
CALL ERTRAP
END IF

c UPPER LIMIT

IF (2.LE.22.AND.Z.NE.ZMIN) THEN
PMAXY = PHI(R, Z, 2)
ELSE IF (2.GE.Z2.AND.2.NE.ZMAX) THEN
PMAXY = PHI(R, 2, &)
ELSE
WRITE(S, 105)
105 FORMAT(® ERROR IN SUBROUTINE PHILIM, NORMAL CASE, FINDING PH
SIMAX. ')
CALL ERTRAP
END IF
END IF
END

C* * * ®* ® & & & & ¥ * ¥ * * ¥ ® ¥ * * * * * * *
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C  SUBROUTINE TO COMPUTE POSSIBLE BREAKPOINTS FOR PHI LIMITS
c*ﬂ****it.tﬂ**'ﬁt't!*titt

SUBROUTINE PHSPLT (R, ZSPLIT, BREAK)

IMPLICIT REAL*8 (A-H,0-2)

LOGICAL*1 BREAK

COMMON /GEOM/ THETA, H, PSI, XSP, XOP, DDD

COMMON /ZVARS/ ZMIN, ZMAX, 21, Z2

BREAX = .FALSE.

(g ]

SELECT GEOMETRIES WHERE SPLIT POSSIBLE

IF (R.GT.H.AND.(XNSP.LT.0.0R.XDP.LT.0)) THEN

L4

FIND VALUES OF Z WHERE INNER LIMITS APPEAR

IF (XSP.LT.0) THEN
25P1.1T=-D5ART ((R*XSP/N/DCOS{PS1 ) Y* (R*XSP/H/DLCOS{PS1))
& *C1+H*H*DSIN(PST)*DSIN(PSI }/XSP/XSP))
ELSE
ZSPLIT=DDD+DSQART( (R*XDP/H/DCOS(PSI) Y*(R*XDP/H/DCOS{PS1))*
& (1+H*H*DSIN(PSI )*DSIN(PSI )/XDP/XDP)}
EWD IF

L]

CONFIRM THAT INNER LIMITS ARE ON SCATTERING ZONE AND COMPUTE THEM

IF (2SPLIT.GE.ZMIN.AND.ZSPLIT.LE.ZMAX)} THEN
IF (XSP.LT.0) THEN
PHIt = PHICR, ZSPLIT, 1)
PHIZ = PHI(R, ZSPLIT, 3)
PHI3 = PHI(R, ZSPLIT, &)
PHI4 = PHICR, ZSPLIT, 2)
ELSE
PHI1 = PHI(R, ZSPLIT, 3)
PHI1Z2 = PHICR, ZSPLIT, 1)
PHI3 = PHI(R, ZSPLIT, 2)
PHI4 = PNI(R, ZSPLIT, &)
END IF
IF (PHI2.NE.PHI3) THEN
WRITE(S, 106)
106 FORMAT(® VARIABLE ZSPLIT HAS BEEN COMPUTED INCORRECTLY.')
CALL ERTRAP
END IF

FIND IF PHI REGION OF INTEGRATION DOES SPLIT (INNER LIMITS ARE
INSIDE OUTER LIMITS)

0o 0oo0on

IF (PHIN1.LT.PHI2.AND.PHI3.LT.PHI&)} THEN
BREAK = .TRUE.

ELSE

END IF
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ELSE
END IF
ELSE
ZSPLIT = 7MIN
END IF
END
Cr = & * & ® A R b & k¥ N E R RN R KK R EE N

c SUBROUTINE TO COMPUTE LIMITS ON Z

cﬁ w * * * * * ® * B % * * » ®* * % % * * * ¥ * *
SUBROUTINE ZLIM (R, 21, 22, ZMIN, ZMAX)
IMPLICIT REAL*S (A-K,0-2)
COMMON /GEOM/ THETA, M, PSI, XSP, XDP, DDD

c
C COMPUTATION OF LOWER LIMIT ON Z
c
' ZMIN = DMIN1(Z1, 22) -
IF (XDP.GT.0) THEN
TERM = DSQRT(H*H*DSIN(PSI)*DSIN(PS] )+XDP*XDP)
IF (R.GE.(H*TERM/XDP)) THEN
EXPRSN=R*TERM/H/DCOS(PSI)
ZMIN = DDD - EXPRSN
ELSE
END IF
ELSE
END IF
c
C COMPUTATION OF UPPER LIMIT ON 2
c

2MAX = DMAX1(Z1, 22)
IF (XSP.GT.0) THEN
TERM = DSQRTUN*N*DSINC(PS1)*DSINC(PS1)+XSP*’SP)
IF (R.GE.(H*TERM/XSP)) THEN
ZMAX=R*TERM/H/DCOS(PSI)
ELSE
END IF
ELSE
END IF
END
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DOUBLE PRECISION FUNCTION BUGP(N, E,XX,IERR)

THIS FUNCTION SUBPROGRAM EVALUATES GAMMA RAY EXPOSURE BUILDUP FACTORS
USING THE GEOMETRIC PROGRESSION FITTING FUNCTION AND DATA AS REPORTED
IN HARIMA, ET AL., "VALIDITY OF THE GEOMETRIC PROGRESSION GAMMA-RAY
BUILDUP FACTORS," NUCL. SCI. ENG. 9%, SEPT. 19856. VARIATION OF
COEFFICIENTS WITH ENERGY IS DETERMINED BY LINEAR INTERPCLATION IN
LOGCE). PARTS WAVE GEEM TAKEN FROM THE SUBROUTINE WSETP™ USED IN

THE CODE “QAD-CGGP®, WRITTEN BY D. TRUBEY (RSIC, OAK RIDGE NATIONAL
LABORATORY) .

ARGUMENT N [S THE MATERIAL INDEX: 1. AIR
2. WATER
3. CONCRETE
4. IRON
5. LEAD

ARGUMENT E IS THE ENERGY E (MEV)

ARGUMENT XX IS THE NUMBER OF MEAN FREE PATHS

OO O0O0O0000000n00D00000n00n000n

IMPLICIT REAL*8(A-H,0-2)
OIMENSION EE(25),BFSET(5,25,5),FLOGE(25)

c MEAKING OF INDICES: BFSET(MATERIAL,E,COEFFICIENT)
COMMON/BLDO1/PARAM(S )

[ ¢

data for air .
DATA ((BFSET(1,J,K),X=1,5),4=1,25)/1.170,
& 0.459,0.175,13.73,-0.0882, 1.407,0.512,0.161,14.40,-0.0819,
&2.292,0.693,0.102,13.34,-0.0484, 3.390,1.052,-0.004,19.75,-0.0068,
& 4#.322,1.383,-0.071,13.51,0.0270, 4.837,1.653,-0.115,13.66,0.0511,
& 4.929,1.983,-0.159,13.74,0.0730, 4.580,2.145,-0.178,12.83,0.0759,
& 3.894,2.148,-0.173,14.46,0.0698, 3.345,2.147,-0.176,14.08,0.0719,
& 2.887,1.990,-0.160,14.13,0.0633, 2.635,1.860,-0.146,14.24,0.0583,
& 2.496,1.736,-0.130,14.32,0.0505, 2.371,1.656,-0.120,14.27,0.0472,
& 2.207,1.532,-0.103,16.12,0.0425, 2.102,1.428,-0.086,14.35,0.0344,
& 1.939,1.265,-0.057,14.24,0,0232, 1.835,1.173,-0.039,14.07,0.0161,
& 1.712,1.051,-0.011,13.467,0.0024, 1.627,0.983,0.006,13.51,-0.0051,
& 1.558,0.943,0.017,13.82,-0.0117, 1.505,0.915,0.025,16.37,-0.0231,
& 1.418,0.891,0.032,12.06,-0.0167, 1.358,0.875,0.037,14.01,-0.0225,
& 1.267,0.844,0.048,14.55,-0.0344/

c

C data for water

DATA ((BFSET(2,J,K),X=1,5),6J=1,25)/1.182,

& 0.463,0.175,14.23,-0.0908, 1.427,0.549,0.°43,14.36,-0.0707,

& 2.335,0./36,0.087,13.28,-0.0419, 3.477,1.117,-0.019,11.67,0.0026,

& 4.461,1.457,-0.084,13.62,0,0341, 4.983,1.730,-0.126,13.54,0.0561,

& 5.059,2.059,-0.168,13.67,0.0770, 4.863,2.221,-0.186,13.33,0.0826,

& 3.897,2.242,-0.185,14.19,0.0777, 3.478,2.154,-0.176,14.50,0.0774,

& 2.920,2.022,-0,164,14.21,0,0655, 2.560,1.882,-0.149,14.24,0.0595,

& 2.500,1.766,-0.135,14.33,0.0546, 2.377,1.679,-0.124,14.23,0.0503,




c
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& 2.212,1.544,-0.105,14.36,0.0437, 2.103,1.441,-0.089,14.22,0.0378,
& 1.939,1.269,-0.058,14.52,0.0246, 1.839,1.173,-0.039,14.07,0.0161,
& 1.710,1.056,-0.013,11.82,0.0047, 1.621,0.989,0.004,13.45,-0.0041,
& 1.554,0.939,0.018,13.55,-0.0122, 1.507,0.503,0.029,16.13,-0.0272,
& 1.422,0.879,0.035,13.36,-0.0191, 1.362,0.859,0.042, 13.37,-0.0247,
& 1.267,0.843,0.047,15.08,-0.0336/

C date for concrete

c

DATA ((BFSET(3,J,K),K=1,5),4=1,25)/1.029,

& 0.364,0.240,14.12,-0.1704, 1.067,0.389,0.214,12.68, -0.1126,

& 1.212,0.421,0.201,14.12,-0.1079, 1.455,0.493,0.171,14.53,-0.0925,
& 1.737,0.628,0.115,15.82,-0.0600, 2.125,0.664,0.118,11.50,-0.0615,
& 2.557,0.895,0.042,14.37,-0.0413, 2.766,1.069,0.001,12.64,-0,0251,
& 2.826,1.315,-0.049,8.66,-0.0048, 2.716,1.430,-0.070,18.52,0.0108,
& 2.522,1.492,-0.082,16.59,0.0161, 2.372,1.49%,-0.085,15.96,0.0194,
& 2.271,1.466,-0.082,16.25,0.0195, 2.192,1.434,-0.078,17.02,0.0199,
& 2.066,1.386,-0.073,15.07,0.0202, 1.982,1.332,-0.065,15.38,0.0193,
& 1.848,1.227,-0.047,16.41,0.0160, 1.775,1.154,-0.033,14.35,0.0100,
£1.671,1.054,-0.010,10.47,-0,0008, 1.597,0.988,0.008,12.53,-0.0115,
& 1.527,0.951,0.020,9.99,-0.0184, 1.478,0.940,0.021,13.11,-0.0163,
& 1.395,0.917,0.028,13.45,-0.0213, 1.334,0.901,0.035,12.56,-0.0267,
& 1.260,0.823,0.065,14.28,-0.0581/

C data for iron

c

DATA ((BFSET(4,J,K),K=1,5),J*1,25)/1.004,

& 1.58%,-0.565,5.53,0.3568, 1.012,0.130,0.620,11.39,-0.6162,

& 1.028,0.374,0.190,29.34,-0.3170, 1.058,0.336,0.248,11.65,-0.1188,
& 1.099,0.366,0.232, 14.01,-0.1354, 1.148,0.405,0.208,14.17,-0.1142,
& 1.267,0.470,0.180,14.48,-0.0974, 1.389,0.557,0.144,14.11,-0.0791,
& 1.660,0.743,0.079,16.12,-0.0476, 1.839,0.911,0.034,13,23,-0.0334,
£1.973,1.095,-0.009,11.86,-0.0183,1.992,1.187, -0.027, 10.72, -0.0140,
& 1.974,1.230,-0.036,9.30,-0.0110, 1.942,1.251,-0.041,7.89,-0.0090,
& 1.892,1.264,-0.040,6.95,-0.0123, 1.846,1.223,-0.037,6.74,-0.0131,
& 1.750,1.197,-0.040,15.90,0.0110, 1.712,1.126,-0.022,7.34,-0.0047,
£1.627,1.059,-0.005,11.99,-0.0132, 1.553,1.026,0.005,12.93,-0.0191,
& 1.483,1.009,0.012,13.12,-0.0258, 1.442,0.580,0.023,13.37,-0.0355,
& 1.354,0.974,0.029,13.65,-0.0424, 1.297,0.949,0.042,13.97,-0.0561,
& 1.194,1.048,-0.002,5.01,0.0584/

C data for lead

DATA ((BFSET(S,d,K),K=1,5),4=1,25)/0.,

&0.,0.,0.,0., 0.,0.,0.,0.,0., 1.006,0.230,0.442,12.61,-0.5099,

& 1.013,0.302,0.331,10.34,-0.3011, 1.024,0.289,0.289,12.38,-0.1453,
& 1.07¢ 0,423 0.179,17.00,-0.1217, 1.058,0.357,0.238,12.96,-0.1230,
& 2.165,1.323,0.079,12.13,-0.0731, 1.520,0.337,0.019,9.05,-0.0108,
& 1.201,0.271,0.171,5.00,0.0842, 1.135,0.523,0.140,17.37,-0.0874,

& 1.180,0.597,0.113,16.76,-0.0596, 1.233,0.631,0.107, 14.62,-0.0533,
& 1.271,0.684,0,089,14.56,-0.0417, 1.334,0.738,0.073,13.84,-0.0334,
& 1.372,0.789,0.059,13.44,-0,0288, 1.409,0.865,0.039,13.11,-0.0217,
& 1.425,0.903,0,036,13.26,-0.0319, 1.383,0.967,0.027,13.51,-0.0385,
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& 1.328,1.009,0.023,4.06,-0.0403, 1.303,0.954,0.052,13.90,-0.0714,
& 1.233,1.127,-0.012,5.00,0.0459, 1.175,1.149,-0.005,5.26,0.0484,
& 1.135,1.167,0.002,5.53,0,0488, 1.083,1.190,0.017,6.11,0.0646/
c
¢
cti"'.'*.*'ﬂI".-i'l'i'it"'**'ti.i‘l*.i
Cc
[ ** ENERGY INTERPOLATION OF GP PARAMETERS **
DATA EE /0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1,
. 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0,
* 1.5, 2., 3., 4., 5., 6., 8., 10.,
* 15. /

IERR = 0
IF (XX.LE.0.DO) THEN
BUGP = 1.D0
RETURN
END IF
IF (E.LT..01500.0R.E.GT.15.D0) THEN
1ERR = 1
BUGP = 1.00
RETURN
END IF
IF (N.LT.1.0R.N.GT.5) THEN
1ERR = 2
BUGP = 1.D0 -
RETURN
END 1F
IF (XX.GT.40.00) THEN
1ERR = 3
BUGP = 1.00
RETURN
END IF

NLIM=0

NLIM=NL 1M1
IF(BFSET(N,NLIM,1).6T.0) To 2

GO TO 1

2 CONTINUE

—

0o 3 1=1,25
FLOGE(1)=DLOG(EE(1))
3 CONTINUE

10 CONTINUE

NJ=NLIM
12 CONTINUE




0O 000 .

13

100

101

200

IF(E.LE.EE(NJ)) GO TO 13
IF(NJ.GE.25) GO TO 100
NJ=NJ+1

GO TO 12

CONTINUE
IF(NJ.LE.NLIN) GO TO 100
IF(MJ.EQ.NLIM+1.0R.NJ.EQ.25) GD TO 200
GO TO 300

** E<EE(NLIM) OR EE(25)<E **
90 101 L=1,5

PARAM(L )=BFSET(N,NJ, L)
CONTINUE
G0 TO 999

** EE(NLIM)<E<EE(NLIM+1)
OR EE(24)<E<EE(25) **

(PARABOLIC INTERPOLATION)
X=DLOG(E)
IF (NJ.EQ.25) NJ=NJ-1
XI=FLOGE(NJ-1)
XJ=FLOGE(NJ)
XK=FLOGE(NJ+1).

- CIa{X-Xd)/ (XTI -XJI*X-XKD/ (X1 -XK)

201

300

CI=(X=X1)/(Xd-XI I*(X-XK )/ (XJ-XK)

CK=(X-X1)/(XK-X1 )*(X-Xd )/ (XK-XJ)

DO 201 L=1,5

PARAMCL )=CI*BFSET(N,NJ-1,1)

+CJ*BFSET(N,NJ,L)
+CK*BFSETCN,NJ+1,L)

CONTINUE

GO TO 999

** EE(NJ-2)<EE(NJ-1)<E<EE(NJ)<EE(NJ+1) **
(REVISED PARABOLIC INTERPOLATION)

X=DLOG(E)

XI=FLOGE(NJ-2)

XS=FLOGE(NJ-1)

XK=FLOGE (NJ)

XL=FLOGE{NJ+1)

CI=0.5%{X-XJY7 (X1 -Xd)*(X-XK)/{XI -XK)

CJ=0.5%¢X-XI )/ (XJ-X1)*(X-XK)/ {XJ-XK)

€320, 5%(X-XI 3/ (XK-X1)* (X-XJ )/ {NK-XJ )

Dd=0.5%(X-XK)/ (XJ-XKY*¢X-XL)/(XJ-XL)

DK=0.5%(X~XJ )/ (XK-Xdy*{X-XL )/ (XK-XL)

DL=0.5%(X-Xd)/CKL~Xd I*(X-XKI/(XL-XK)

DO 301 L=1,5

PARAM(L)=CI*BFSET(N,NJ-2,L)

+(CJ+DJ)*BFSET(N, NJ-1,L)
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+(CK+DKYYBFSETIN, N, L)
* +DL*BFSET(N ,NJ+1,L)
301 CONTINUE
c
C  EVALUATE BUILDUP FACTOR
c ;
999 BUGP=BLDUP(XX)
RETURN
END
c
R I R R R N R R
c
FUNCTION BLDUP(TTT)
c ** BUILDUP FACTORS CALCULATED BY GP-METHOD **
IMPLICIT REAL*B(A-H,0-2) R
COMMON /BLDO1/ PARAM(S)
c TIT = M) TIMES DISTANCE

IF(TTT.LE. 0.) GO TOo 100
IFCTTT.GT.40.) GO TO 200

c
FX=PARAM(2)*DEXP(PARAM(I)*DLOG(TTT))
* +PARAN(S Y*FUNCF(TTT, PARAM(4))
1F(FK.LE.0.) GO TO 100
GO TO 300
c

200 FK35=PARAM(2)*DEXP (PARAM(3)*DL0G(35.00))
* +PARAM(S )*FUNCF (35.D0, PARAM(4))
FK40=PARAM(2)*DEXP(PARAM( 3 )*DLOG(40.D0))
. +PARAM(5)* FUNCF(40.D0, PARAM(4))
TEMP=(1.D0-DEXP(0. 1D0*DLOG(TTT/35.D0)))
* /¢1.-DEXP(0.1*DLOG(40.00/35.00))} * DLOG((FK40-1.00)/(FK35-1.D0))
FK = 1.000+(FK35-1.000)*DEXP(TEMP)
c
300 TEMP=TTT
IFCFK.NE.1.) TEMP=(DEXP(TTT*DLOG(FK))-1.)/(FK-1.)
BLOUP=1.,+(PARAM(1)~1.)*TENP
RETURN
c
100 BLDUP=1.
RETURN
END
£
c*******'***‘*!iQ**ﬁ‘*i**iﬁﬁ***ﬁwi'-
c
FUNCTION FUNCF(X,XK)
IMPLICIT REAL*B(A-H,0-2)

T=X/XK
IF(T.GE.7.) GO TO 1
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FUNCF=1.-(1.+DEXP(4.D0))/{DEXP(2.*T)+DEXP{4.D0))
RETURN
1 FUNCF=1.
RETURN
END
c

AR B NN RN R N N N R I I NI AN A N KA



c*m

crmww L eeaeeenanennenenanasananns ceeenenterensanaaaans
c*m

C¥*** SUBROUTINE GAUSS -- DOUBLE PRECISION IBM 370 VERSION

c*m

C**** PURPOSE

C#w*  GAUSS INTEGRATES REAL FUNCTIONS OF ONE VARIABLE OVER FINITE
Crs*=  [NTERVALS, USING AN ADAPTIVE B-POINT GAUSS-LEGENDRE ALGORITHM.
Cewwe  GAUSE |S INTENDED PRIMARILY FOR MIGH ACCURACY INTEGRATION OR
C##%*  INTEGRATION OF SMOOTH FUNCTIONS. FOR LOWER ACCURACY

C*##*  INTEGRATION OF FUNCTIONS WHICH ARE NOT VERY SMOOTH, EITHER
C*+**  QNC3 OR GNC7 MAY BE MORE EFFICIENT.

c*“*

C**** USAGE

C*+**  CALL GAUSB(FUN,A,B,ERR,ANS,IERR)

Creew .

C****  PUN - NAME OF EXTERNAL FUNCTION TO BE INTEGRATED. THIS NAME
Crrawse MUST BE IN AN EXTERNAL STATEMENT IN THE CALLING PROGRAM.
e FUN MUST BE A FUNCTION OF ONE REAL ARGUMENT (THE

Chiwe VARIABLE OF INTEGRATION).

C**** A - LOWER LIMIT OF INTEGRAL.

C¥*** g - UPPER LIMIT OF INTEGRAL (MAY BE LESS THAN A).

C****  ERR - USER-SUPPLIED ERROR PARAMETER. ANS WILL NORMALLY HAVE
Chaws NO MORE ERROR THAN ERR TIMES THE INTEGRAL OF THE

Creas ABSOLUTE VALUE OF FUN(X).

C***  ANS - COMPUTED VALUE OF INTEGRAL.

C*e**  [ERR - ERROR PARAMETER SET BY GAUSS:

Crenn IERR = 1 IS NORMAL .

Cwwwe IERR = 2 MEANS ANS IS PROBABLY INSUFFICIENTLY ACCURATE.
cm

Ce+* SUBRCUTINES AND FUNCTION SUBPROGRAMS REQUIRED

C****  THE EXTERNAL FUNCTION FUN(X) MUST BE SUPPLIED BY THE USER.
Ctt*i

Cr " HETHOD

C***% AN ADAPTIVE 8-POINT GAUSS-LEGENDRE ALGORITHM WITH INTERVAL
C**«*  BISECTION, COMBINED RELATIVE/ABSOLUTE ERROR CONTROL, AND
C****  COMPUTED MAXIMUM REFINEMENT LEVEL WHEN A IS CLOSE TO B.

cl‘l‘“l‘

creew L. eraetecaessseeenennnanetnasnn eeeneseeenenaeararean
c‘m

SUBROUTINE GAUSB(FUN,A,B,ERR,ANS, [ERR)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AA(30),HH(30),LR(30),VL(30),GR(30)
C**** 5-POINT GAUSS- .EGEGNORE QUADRATURE DATA.
DATA X1,X2,X3,X4/0. 18343464249565000, 0.52553240991632900,

1 0.79666647741362700,0.960289856497536D0/
DATA W1,W2,W3, Wé/0.36268378337836200,0.313706645877838700,
1 0.22238103445337400,0.10122853629037600/

Cr*** NISCELLANEOUS PARAMETERS.
DATA SQ2/1.414213562373095p0/
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DATA LMN, NLMX,KMX, KML ,NBITS/1,30,5000,6,64/
C**** B-POINT GAUSS-LEGENDRE INTEGRATION FUNCTION.
GBOX, HY=H*C CWT% CFUNCX-XTRH)+FUNCXEXTYH) ) +442% ( FUN (X~ X2%H )+ FUNCX+X2*
1H) )+ (3% CFUNCX - X5H Y+ FURCXBTH) YA ™ FUNCX - XAPH I FUN QR XA ) ) )
Cowex INITIALIZE.
ANS=0.00
1ERR=1
IF(A.EQ.B) RETURN
LMX=NLMX
1F(B.£Q.0.D0) GO TC 3
IF(DSIGN(1.D0,B)*A.LE.0.D0) GO TO 3
C=DABS(1.D0-A/B)
IF(C.GT.0.1D0) GO TO 3
NIB=- IDINT(DLOGCC)/DLOG(2.D0))
LMX=MINOCNLMX, NBITS-NIB-6)
LMY =MAXOCLMX , LMN)
3 TOL=DMAX1(ERR,2.DO%*(5-NBI7S))/2.D0
IFCERR.LT.0.D0) TOL=0.5D-6
EPS=TOL
HH(1)=(B-A)/4.D0
AA(T)=A
LRC1)=1
L=1
EST=GBCAACL Y+2.DO*HRCL Y, 2.D0%HHCL))
K=8
AREA=DARS(EST)
EF=0.5D0
MXL=0
C**** COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
4 GL=GBCAACLY+HH(L),HH(L))
GRCL )Y=GBCAALL )+3.D0*NHK(LY, HHCL))
K=K+16
AREA=AREA+(DABS(GL }+DABS{GR(L ) ) -DABS(EST))
t TF(L.LT.LMNY GO TO 1
GLR=GL+GR(L)
EE=EF*DABS(EST-GLR)
AE=DMAX1(EPS*AREA, TOL*DABS(GLR))
IF(EE-AE) 6,6,7
MXL=1
6 IFCLRCL)) 8,8,10
C*** CONSIDER THE LEFT WALF OF THIS LEVEL.
IF(K.GT.KMX) LMX=KML
IF(L.GE.LMX) 6O TO 5
L=L+1
EPS=EPS/2.D0
EF=EF/502
HHCL)=HH(L-1)/2.D0
LR(L)=-1
AACL)=AACL-1)
EST=GL

w

e |
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GO TO &
C*w** PROCEED TO RIGHT HALF AT THIS LEVEL.
8 VL(L)=GLR
9 EST=GR(L-1)
LR¢(L)=1
AALL)=AACL y+4 .DO"HH(L )
GO TO 4
Ch*ih RETURN ONE LEVEL.
10 VR=GLR
11 IF(L.LE. 1) TO 14
L=L-1
EPS=EPS*2.D0
EF=EF*SQ2
IF(LRCL).GT.0) GO TO 13
VLCL)=VL(L+1)+VR-
GO TO 9@
VR=VL(L+1)+VR
GO TO 11
EXIT.
ANSzVR
IF(MXL.GT.0) IERR=Z
RETURN
END

—13 -
> 1]

THE FOLLOWING SUBROUTINES ARE DUPLICATES OF GAUSB, USED TO AVOID
CALLING THE SUBROUTINE RECURSIVELY.

111

SUBROUTINE GAUS9CFUN,A,B,ERR,ANS, 1ERR)
IMPLICIT REAL™8 (A-H,0-Z)
DIMENSION AA(30),HH(30),LR(30),VL(30},GR(30)
8-POINT GAUSS-LEGEGNDRE QUADRATURE DATA.
DATA X1,X2,X3,X4/0.18343464249565000, 0.52553240991632900,
1 0. 7966664 TT41362TD0, 0. 96028585649753600/
DATA W1,42,\3,44/0.362683 78337836200, 0. 313706645877887D0,
1 0.22238103445337400, 0. 10122853629037600/
C*rie MISCELLANEOUS PARAMETERS.

DATA 5Q2/1.41421356237309500/

DATA LMN,NLMX,XMX,KML,NBITS/1,30,5000,6,64/
Cowk R-POINY GAUSS-LEGENORE INTEGRATION FUNCTIOM.

GBOX, HYZH* ( (W1* (FUNCX-XT*H)+FUNCX+XT*H) }+W2%  FUNCX-X2*H )+ FUNCX+X2%

1H) D)+ (UB* C FUNCX - X3 H)+ FUNCUHXB*H ) )+ ® CFUNO(-XG*H )+ FUNCXXA*H) ) ) )
Crewe INITIALIZE.

ANS="~.DO

1ERR=1

1F(A.EQ.B} RETURN

LMX=NLMX

1F(B.EQ.0.D0) GO 7O 3

IF(DSIGN(1.D0,B)*A,LE.0.D0) 6O TO 3

C=DABS(1.D0-A/B)

i
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1F(C.6T.0.100) GO TO 3
N1B=-IDINT(DLOG(C)/DLOG(2.D0))
LMX=MINOCNLMX ,NBITS-NIB-6)
LMX=MAXOCLMX , LMN)

3 TOL=DMAX1(ERR,2.D0"*{5-NBITS))/2.00
1F(ERR.LT.0.DO) TOL=0.50-6
EPS=TOL
HH(1)=(B-A})/4.D0
AACT)=A
LR(1)=1
L=1
EST=GB(AA(L )+2.DO*HH(L),2.DO*HH(L ))
k=8
AREA=DABS(EST)
. EF=0.5D0
MXL=0

Cw*** COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.

4 GL=GB(AACL)+HHCL) HHCL))
‘GRCL Y=GBCAACL)+3.DO*HH(L ), HH(L))
K=K+16
AREA=AREA+(DABS{GL )+DABS(GR(L))-DABS(EST))

c IFCL.LT.LMNY GO TO 11

GLR=GL+GR(L)
EE=EF*DABS(EST-GLR)
AE=DMAX 1 (EPS*AREA, TOL*DABS(GLR))
IF(EE-AE) 6,56,7
5 MxL=1
6 IF(LRC(L)) 8,8,10
C**** CONSIDER THE LEFT WALF OF THIS LEVEL.
7 IF(K.GT.KMX) LMX=KML
IF(L.GE.LMX) GO TO §
L=L+1
EPS=EPS/2.D0
EF=EF/sQ2
HH(L)=HH(L-1)/2.D0
LR(L)=-1
AACL)=AA(L-1)
EST=GL
GO TO &
Ch*** DROCEED TO RIGHT HALF AT THIS LEVEL.
8 VL{L)=GLR
9 EST=GR(L-1)
LR(L)=1
AACL)=AACL)+4 . DO*HH(L )
GO TO 4
C*¥** RETURN ONE LEVEL.
10 VR=GLR
11 IF(L.LE.1) GO TO 14
L=L-1
EPS=EPS*2.D0
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EF=EF*$a2
IF(LR(L).GT.0) TO 13
VL(L)=VL(L+1)+WR
Go To 9

13 VR=VL(L+1)+VR
60 TO 1

Creev EXIT.

14 ANS=VR
1F(MXL.GT.0) IERR=2
RETURM
END

C*ﬂ*
SUBROUTINE. GAUS10(FUN, A, B, ERR, ANS, IERR) .
IMPLICIT REAL*S (A-H,0-2)
DIMENSION AA(30),HH(30),LR(30),VL(30),GR(30)
C**+# 8.pOINT GAUSS-LEGEGNDRE QUADRATURE DATA.
DATA X1,X2,X3,%4/0.18343464249565000,0.52553240991632900,

1 0.796666477413627D0,0.960289856497536D0/
DATA W1,W2,W3,4W4/0.36268378337836200,0.31370664587788700,
1 0.22238103445337400,0.10122853629037600/

Cr*we MISCELLANEOUS PARAMETERS.

DATA $02/1.414213562373095D0/

DATA LMN,NLMX, KMX,KML,NBITS/1,30,5000,5, 64/
C**** B-POINT GAUSS-LEGENDRE INTEGRATION FUNCTION.

GBOX, HY=H* { (WI*C FUNCX-XT*H)+FUN (XX 1%H) J+2* { FUNCX - X2*H J+ FUN(X+X2*

THY I )+ OMB*CFUNCX-X3H )+ FUNCXHXIH ) JH* CFUNCX - X4*H )+ FUNCX+X4*H) ) ) )
C***% INITIALIZE.

ANS=0.D0

IERR=1

1F(A.EG.B) RETURN

LNX=NLMX

IF(B.EQ.0.00) GO TO 3

1F(DSIGN(1.00,B)*A.LE.0.DO) GO TO 3

C=DABS(1.D0-A/B)

IF{C.GT.0.1D00) GO TO 3

N1B=- IDINT{DLOG(C)/DLOG(2.00))

LMX=MINOCNLMX,NBITS-NI1B-6)

LMX=MAXO(LMX, LMN)

3 TOL=OMAX1(ERR,2.D0**(5-NBLTS))/2.D0

IF(ERR.LT.0.D0) TOL=0.5D-6

EPS=TOL

HHC1)=(B-A)/4.D0

AAC1)=A

LRCT)=1

L=1

EST=GBCAA(L )}+2.D0%HH(LY, 2. DO*HHCLY)

K=8

AREA=DABSCEST)
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EF=0.500
MxL=0
C**** COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
& GL=GB(AA(L)+HH(L),HH{L))
GRCL)=GB{AA(L)+3.DO*HH(L) , HH(L))
K=K+16
AREA=AREA+(DABS(GL)+DABS(GR(L))-DABS(EST))
c IFCL.LT.LMN) GO TO 11
GLR=GL+GR(L)
EE=EF*DABS(EST-GLR)
AE=DMAX1{EPS*AREA, TOL*DABS{GLR))
IF{EE-AE) 6,6,7
5 MXL=1
& IF(LRCL)) 8,8,10
C¥¥+% CONSIDER THE .LEFT HALF OF THIS LEVEL.
7 IF(K.GT.XKMX) LMX=KML
IFCL.GE.LMX) GO TO 5
L=L+1
EPS=EP$/2.D0
EF=EF/S502
HH(L)Y=HH(L-1)/2.D0
LRCL)=-1
AACL)Y=AA(L-1)
EST=GL
GO TO 4
C¥%** DROCEED TO RIGHT HALF AT THIS LEVEL.
8 VL{L)=GLR
9 EST=GR(L-1)
LR¢L)=1
AA(L)=AA(L)+4 .DOYHH(L)
G0 TO 4
C*»** RETURN ONE LEVEL.
10 VR=GLR
11 IF(L.LE.1) GO TO 14
L=L-1
EPS=EPS*2.D0
EF=EF*SQ2
1F(LR(L).GT.0) GO TO 13
VL(L)=VL(L+1)+VR
GT09
13 VRaVL(L+1)+VR
TO 1
Crer* EXIT,
14 ANS=VR
IF(MXL.GT.0) IERR=2
RETURN
END
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DOUBLE PRECISION FUNCTION GMUHUB(EE,MM, NN}
DOUBLE PRECISION VERSION

COMPUTES MASS ATTEMUATION COEFFICIENTS AND MASS KERMA COEFFICIENTS
FOR AIR; WATER, CONCRETE, IROM, AND LEAD
OVER THE RANGE 0.01 TO 10 Mev

Reference: Hubbell, J. H., "Photon Mass Attenuation and
Energy-Absorption Coefficients from 1 kev to 20 Mev,™
Int. J. Appl. Radiat. lsot., 33, 1269-1290, 1982.

VARIABLE EE [S THE ENERGY (MeV)

. INDEX MM DETERMINES TYPE GMU: . 1. TOTAL MASS INTER. COEFFICIENT

2. MASS KERMA COEFFICIENT

INDEX NN DETERMINES MATERIAL: 1. AIR
2. WATER
3. CONCRETE
4. IRON
5. LEAD

FUNCTION RETURNS COEFFICIENT (CM|2/6)

---------------------------------------------------------------------

IMPLICIT REAL*S(A-H,0-2)
DIMENSION N(5),E(33,5),C0EF1(33,5),C0EF2(33,5)

NUMBER OF ELEMENTS IN ENERGY RANGE
DATA W/4%25,33/

ENERGY GROUP STRUCTURE
DATA E/.01,.015,.02,.03,.04,.05,.06,.08,.10,.15,.2,.3, .4
£,.5,.6,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10.,8%0.
z,.01,.015,.02,.03,.04, .05,.06,.08,.10,.15,.2, .3, .4
£,.5,.6,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10. 8%,
£,.01,.015,.02,.03, .04, .05, .06, .08, .10, .15, .2, .3, .4
z,.5,.5,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10.,8%0,
&,.01,.015,.02,.03, .04, .05,.06,.08,.10,.15,.2,.3, .4
t,.5,.6,.8,1.,1.5,2.,3. ,4.,5.,6.,8.,10.,8%0.
&,.01,.01304,.01304,.015,.0152, .0152, .015861,.015861, .02, .03, .04
&,.05,.06, .08, 088004, .088004, .10, .15,.2, .3, .4,.5
&,.6,.8,1.,1.5,2.,3.,4.,5.,6.,8.,10./
DATA ((COEF1(1,J),1=1,33),J=1,1)/
& 5.0160+00,1.5810+00,7.5430-01,3.501D-01,2.471D-01
&,2.0730-01,1.8710-01,1.661D-01, 1.541D-01, 1.356D-01, 1 .234D-01
2,1.068D-01,9.5480-02,8.712D-02, 8.0560-02, 7.075D-02, 6.3590- 02
&,5.176D-02,4.447D-02,3.581D-02,3. 07902, 2. 7510-02, 2.523D-02
&,2.225D-02, 2. 045D-02, 8*0.00/
DATA ((COEF1(1,4),1=1,33),4=2,2)/
& 5.2230+00,1.6390+00, 7.958D-01,3.7180-01,2.668D-01, 2. 2620- 01
&,2.0550-01,1.8350-0%,1.7070-01,1.5040-01, 1.3700-01, 1.187D-01
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&,1.061D-01,9.687-02,8.957D-02,7.866D-02,7.0700-02,5.7550-02
£,4.9400-02,3.969D-02,3.4030-02,3.031D-02,2.771D-02,2.4290-02
&,2.2150-02,8%0.00/

DATA {(COEF1(1,J),I=1,33),4=3,3)/

& 2.6190+01,8.1850+00,3.6050+00,1.2020+00,6.0700-01,3.918D-01
&,2.9430-01,2.1190-01,1.781D-01,1.4330-01,1.2700-01,1.0820-01
&,9.6290-02,8.76/D-02,8.0980-02,7.1030-02,6.381D-02,5.197D-02
£,4.4820-02,3.654D-02,3.1890-02,2.895D-02,2.696D-02,2.4500-02
&,2.3110-02,8%0.D0/

DATA ((COEF1{1,J),I=1,33),J=4, 4}/

& 1.6900+02,5.656D+01,2.5460+01,8. 1090+00,3.6010+00, 1.944D+00
£,1.1970+00,5.9180-01,3.701D0-01,1.9600-01,1.458D-01, 1.0980-01
&,9.3980-02,8.4130-02,7.7030-02,6.698D-02,5.994D-02, 4. 8830-02
&,4.265D0-02,3.6220-02,3.311D0-02,3.1460-02,3.0570-02,2.9910-02
&,2.994D-02,8%0.00/ : C e

DATA ((COEF1(1,J),1=1,33),4=5,5)/

& 1.3060+02,56.1000+01,1.5800+02,1,1160+02,1.0700+02, 1.4800+02
&,1.3200+02,1.5300+02,8.6360+01,3.0320+01, 1.4360+01,8.041D+00
&,5.0200+00,2.4190+00, 1.56100+00, 7.3800+00,5.5500+00,2 . 014D+00
&,9.985D0-01,4,0260-01,2.3230-01,1.613D-01, 1.248D-01,8.8690-02
&,7.1030-02,5.2220-02,4.507D-02,4.234D-02,4.1970-02,4.272D-02
&,4.391D0-02,4.675D-02,4.972D-02/

DATA ((COEF2¢I,J),I1=1,33),J21,1)/

& 4.6400+00,1.3000+00,5.2550-01,1.501D-01,6.694D-02
&,4.031D0-02,3.004D-02,2.3930-02,2.318D-02,2.494D-02, 2. 6720-02
&,2.8720-02,2.9490-02,2.966D-02,2.953D-02,2.8820-02,2.787D-02
&,2.5450-02,2.3420-02,2.054D-02, 1.866D-02,1.737D-02,1.644D-02
&,1.5210-02,1.446D-02,8%0.D0/

DATA ((COEF2(I,d),1=1,33),4=2,2)/

& 4.8400+00,1.3400+00,5.367D-01,1.520D-01,6,8030D-02, 4. 1550-02
&,3.1520-02,2.583D-02,2.539D-02,2.762D-02,2.966D-02,3.192D-02
&,3.2790-02,3.2990-02,3.284D-02,3.205D-02,3,1000-02,2.831D-02
&,2.604D-02,2.278D-02,2.063D-02,1.913D~-02,1,804D-02,1.4657D-02
&,1.5660-02,8%0.00/

DATA ((COEF2(I,Jd),I=1,33),J4=3,3)/

& 2.4670+01,7.5820+00,3.217D+00,9.454D-01,3.9590-01,2.048D-01
&,1.2300-01,6.154D-02,4.180D0-02,3.014D-02,2.8870-02,2.9570-02
£,2.9800-02,2.984D-02,2.964D- 02,2 .887D-02, 2. 7900-02, 2. 554002
&,2.3480-02,2.086D-02,1.929D-02,1.828D-02,1.760D0-02,1.6800-02
&,1.6390-02,8%0.00/

DATA ((COEF2(1,J),I=1,33),J=4,4)/

& 1.3670+02,4.895D+01,2.257D+01,7.2370+00,3, 146D0+00, 1.5300+00
&,9.5380-01,4.0930-01,2.181D-01,7.9700-02,4.8400-02,3.374D-02
&,3.0500-02,2.9220-02,2.843D-02,2,718D-0¢2,2.604D-02,2.358D-02
&,2.1950-02,2.036D-02,1.984D-02,1.976D-02,1.991D0-02,2.0430-02
&,2.1000-02,8%0.00/

DATA ((COEF2(I1,J),1=1,33),J=5,5)/

& 1.2560+02,56.1000+01, 1. 1300+02,8.939D0+01, 8.0800+01, 1.0900+02
&,9.8800+01,1.140E+02,6.9230+01,2.5500+01, 1.2210+01, 6. 7960+00
&,4.177D+00,1.936D+00, 1.4500+00,2.3100+00, 2.229D+00, 1. 1350+00
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&,56.2290-01,2.581D0-01,1.4390-01,9.5640-02,7.132D-02,4.838D-02
&,3.7870-02,2.714D-02,2.4070-02,2.351D-02,2.463D-02,2.6000-02
&,2.7300-02,2.948D-02,3.114D-02/

PERFORM INTERPOLATION

DO 101 I = 1,NCNN)
IF (EE.EQ.ECI,NN)) GO TO 102
IF CEE.LT.ECI,NH)) GO TO 103
101 CONTINUE
102 IF(MM.EQ.1) GMUHUB = COEF1(],NN)
IF(MM.EQ.2) GMUHUB = COEF2(I,NN)
GO TO 104
103 11 = [-1
GOTO. (201,202), MM
201 YY1 = DLOGCCOEF1(II,NN))
YY2 = DLOGCCOEF1CI,NN))

GOTO 203

202 YY1 = DLOG(COEF2(11,NN))
YY2 = DLOG(COEF2(I,NN))

203 XX1 = DLOGCECIT,NN))
X2 = DLOGCE(I,NN))
66 = DLOGCEE) '

ZZ = YY1 + (GB-XN1)*(YY2-YY1)/(XX2-XX1)
GMUHUB = DEXP(ZZ)
104 CONTINUE
RETURN
END
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DOUBLE PRECISION FUNCTION RESG(N,M,E,I1ERR)
DOUBLE PRECISION VERSION

This function subprogram returns the gamma-ray response function at
energy E (MeV) for the following types of response (arg. N):

1. Exposure (R ca|2)
2. Absorbed dose or kerma (cGy cm|2)
3. ANSI Prescribed dose equivalent (cSv em|2)

Absorbed dose or kerma is evaluated for the following media (arg. M):
1. Air
2. Water
3. Concrete
4. Iron
5. Lead

Note: M is a dummy argument if N = 1 or 3.

The following function is required: GMUHUB
(effective June 1988, GMU no longer used)

IMPLICIT REAL*8(A-H,0-2)

1IERR = 0

IF (M.LT.1.0R,M.GT.5) THEN
IERR = 1
RESG = 1.D0
RETURN

END IF

IF (N.LT.1.0R.N.GT.3) THEN
IERR = 2
RESG = 1.D0
RETURN

END IF

1F (M.EQ.3.AND.E.LT.0.01) THEM
IERR = 3
RESG = 1.D0
RETURN

END IF

IF (N.EQ.3.AND.E.GT.15.D0) THEN
IERR = 3
RESG = 1.D0
RETURN

END IF

IF (N.NE.3.AND.E.LT..01D0) THEN
IERR = 3
RESG = 1.D0
RETURN

END IF
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IF (N.NE.3.AND.E.GT.10.D0O) THEN
1IERR = 3
RESG = 1.D0
RETURN

ENDO IF

IF (N.EQ.1) THEN
RESG = 1.835D-8*E*GMUHUB(E,2,1}
RETURN
ELSE IF (N.EQ.2) THEN
RESG = 1.602D-8*E*GMUHUB(E,2,M)
RETURN
ELSE IF (N.EQ.3) THEN
X = LOG(E)
1F(E.LE..03D00) THEN
RESG=-20.477D0-1.7454D0*X
GO TO 10
ELSE IF(E.LE..5D0) THEN

RESG=-13.626D0-.57117D0*X- 1. 0954D0*X*X - . 24897DO*X*X*X

GO 70 10
ELSE TF(E.LE.5.D0) THEN

RESG=-13.133D0+,72008D0*X - . 03360300*X*X

GO TO 10
ELSE

RESG=-12.79100+. 2830900*%+. 1087300*X*X

END IF
RESG=EXP(RESG)/3600.D0
RETURN

END IF

RETURN

END




APPENDIX D
Sample Input and Output for the Program SILOGP

The following is a guide for preparation of input files for the
code SILBGP. In each execution of the code, a separate file is read,
describing the problem geometry and other parameters. The source photon
energy, sSilo dimensions, material properties and type of detector
response specific to the problem are constant, and listed only once in
the file. The detector response may be computed at any number of
distances from the source in each execution.. The detector positions
make up the balance of the input file. Only one input file is accepted
in each problem execution; if any quantity except the source-detector
distance must be changed, a new input file and a separate execution of
SILDGP will be required.

The first record of the input file lists source photon emnergy,
angle of collimation of the silo, concrete roof thickness (if one 1is
present), and densities of concrete and air. If the outer radius of the
silo; r, and the height of tlie outer rim of the collimator above the
point source, h, are known, the angle of collimation @ (omega) may be
computed from the formula

@ = 2 arctan (r/h).
If a concrete roof is not used, the roof thickness and concrete density
should be specified as 0. All quantities in the first record should be
separated by commas or spaces.

The remainder of the input file consists of a list of radial
source-detector distances. FEach distance should be placed on a separate
line, and the distances need not be in any order. The values are not
restricted by format; for instance, a source-detector distance of 120 m
may be expressed as "120" or "120." or "1.2E+02."

FIRST RECORD: .
E Source photon energy (MeV) Smaximum energy 10 MeV)
DANG Full angle of collimation (degrees)
T Concrete thickness (m)
RC Concrete density (g/cm®)
RAA Air density (mg/cm®)
NRESP Type of response function:
1 = exposure
2 = air kerma
3 = water kerma
4 = ANSI prescribed dose equivalent

SECUNg AND SUBSEQUENT RECORDS:

Source-detector distance (m) at which response is
computed

The sample problem, shown in Figure D-1, resembles the benchmark

experiments performed at Kansas State University. In the example, a
cobalt-60 source is placed on the axis of a silo covered by 21 cm of
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concrete. In reality, %°Co emits two photons per decay, of energies
1.17 MeV and 1.33 MeV. These are approximated by two 1.25 MeV photons
for this problem. Since no collimating wedges can be placed on the silo
walls when a concrete roof is present, the full angle of collimation
formed by the silo is defined by interior dimensions. The point source
is 31 cm below the roof of the silo, and the interior radius of the silo

is 1.18 m; these produce a full angle of collimation of 150.5°. The air

density is 1.12 mg/cm®, while the concrete has a density of 2.13 g/cm®.
Exposure rates are to be computed between 30 m and 700 m from the
source.

The input file for this example is shown below, and resides in the
file SAMPLE-S.IN on this distribution disk.

1.25,150.5,0.21,2.13,1.12,1

700

Results are given by SILOGP as the dose rate per- photon, multiplied
by the square of the source-detector distance (m) and divided by the
solid angle of collimation (steradians) defined by the silo. In these
wnits, effects of inverse-square attenuation and collimation are
eliminated, and results may be graphed in less space. To convert to
units of exposure per unit time, multiply this result by the solid angle
of collimation reported in the output, divide by the square of the
source-detector distance, and multiply by the number of photons emitted
per unit time. Areal demsity is the product of the source-to-detector
distance and the air density; presenting exposure as a function of areal
density compensates for variations in atmospheric temperature and
pressure.

The output created by the example input file is shown below. It
resides alone in the file SAMPLE-S.0UT op the distribution disk.

CALCULATION OF SKYSHINE GAMMA- RAY NORMALIZED RESPONSE

Photon Energy (MeV) .................... 1.250
Full Angle of Collimation (deg) ........ 150.590
Solid Angle of Collimation (sr) ........ 4.183
Air Density (mg/cu.cm) ................. 1.120
Concrete Thickness (m) ................. 0.210
Concrete Density (g/cu.cm) ............. 2.130




SOURCE- DETECTOR  AREAL DENSITY NGRMALIZED Exposure

DISTANCE (M)

30.
50.
70.
100.
150.
200.
300.

400

00
00
00
00
00
00
00

.00
500.
600.
700.

00
00
00

(G/CM[2) (m|2 R/sr)
3.360 0.1798E- 17
5.600 0.2731E- 17
7.840 0.3468E- 17

11.200 0.4232E- 17
16.800 0.4769E-17
22.400 0.4675E- 17
33.600 0.3634E- 17
44,800 0.2425E- 17
56.000 0.1487E- 17
67.200 0.8653F- 18
78.400 0.4865E- 18

The last column lists any error codes
routines
integration performed by the code did not meet the confidence criteria,
and the accuracy of the reported exposure should be questioned.

in SILOGP.

If the error code
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ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:
ERROR CODE:

is nonzero,

DO OC OO

enerated by the integration
a numerical




vee

Concrete
i Shield

Detector

30 mto 700 m

Fig. D-1. Illustration of the problem geometry modeled by the sample input
file for SILOGP. The point source emits 1.25 MeV photons; air density is

1.12 mg/cm?, and concrete density is specified as 2.13 g/em?.



APPENDIX E
Sample Input and Output for the Program WALLGP

The following is a guide for preparation of input files for the
code WALLGP. In each execution of the code, information for any number
of problem. geometries are read from the input file, with information for
each problem on a separate line. The quantities required for each
problem include source photon energy, coordinates of the source and
detector with respect to the wall geparating them, concrete roof
thickness (if one is present), and densities of concrete and air. Also
required are the type of detector resporse to be computed, the maximum
distance in mean free paths which photons may travel, and a convergence
criterion for the adaptive integration subroutines.

Some restrictions apply to the input parameters. Since the source
and detector must be separated by the wall, the distances YS and YD of
the source and detector below the wall must not both be negative in the
same problem geometry. If no concrete roof is to be used, the roof
thickness and concrete density should beé specified as 0. All quantities
in each record should be separated by commas or spaces, but are not
otherwise restricted by format. For instance, a source-wall distance of
120 m may be expressed as "120", "120." or "1.2E+02."

THE FOLLOWING INPUTS ARE REQUIRED ON ONE LINE FOR EACH CASE:

E Source energy (MeV) (maximum energy 10 MeV

XS Source-wall distance normal to the wall (m

XD . Detector-wall distance normal to the wall (m)

YS Source distance below top of wall (m) (negative if source
is above the wall)

YD Detector distance below top of wall (m) (negative if
detector is above the wall

ZD 0ffset of detector from an axis normal to the wall
through source (m)

T Thickness of concrete slab above source and wall (m)

RC Density of concrete (g/cm?)

RAA Density of air (mg/cmd)

NRESP Response function desired:

1 = exposure (R/s)
2 = air kerma (rad/s)

3 = water kerma (rad/s)
4 = dose equivalent (rem/s)

DEL Absolute accuracy desired in integration routines
Recommended value in most cases = 0.01 (1%)]

CUTMEP aximum mean free path distance used in computations

(contributions from photons traveling farther than CUTMFP
are ignored; 40 mfp absolute maximuw

_ In the sample problem shown in Figure E-1, a cobalt-60 point source
is placed 3 m behind a wall and 3 m below its top edge. The point
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detector at which exposure rates are measured is placed on the other
side of the wall, 100 m from the wall (measured normal to the wall face)
and 3 m below the top of the wall. A referemce plane may be placed
through the source and normal to the wall; the detector lies 10 m from
this plane, measured parallel to the wall. A concrete slab shield 10 cm
thick is placed above the source, resting on the edge of the wall and
extending infirtely in directions behind the source and along the wall.

The two photons emitted by %Co with each decay, of energies 1.17
MeV and 1.33 MeV, are approximated by two 1.25 MeV photons for this

problem. -The concrete has a density of 2.35 g/cm®, while the air

density is 1.2 mg/cm®.  Exposure rates are to be computed at the
detector; a comnvergence criterion of DEL=.01 and a cutoff value of 40
mean free paths have been selected.

The record of the imput file which defines this example problem is
shown below. 1t may be found separately in the file SAMPLE-W.IN on this
distribution disk. -

1.250, 3.0, 100.0, 3.0, 3.0, 10.0, 0.10, 2.35, 1.2, 1,.01,40.

Results are given by WALLGP as the dose rate per second, with the
source normalized to a strength of one photon emitted per second. By
multiplying this result by the true source strength, the true response
rate may be obtained. The output created by the input file above is
shown below; this output is written by WALLGP to logical unit 9. The
output is listed separately in the distribution file SAMPLE-W.QUT.

CALCULATION OF SKYSHINE GAMMA-RAY NORMALIZED RESPONSE

Photon Fnergy (MeV) ..............ciilt. 1.250
Air Density (mg/cu.cm) ................. 1.200
Concrete Density (g/cu.cm) ............. 2.350
Mean Free Path Cutoff Criteriom ........ 40.000
Percent Error of Result ................ 1.000

X(8) X(D) Y(S) Y(D) Z(D) T

(m) (m) (m) (n) (n) ()

3.00 100.00 3.00 3.00  10.00 0.10
Normalized Exposure Response rate * d**2
3.8266E-21 (R/S) 4.0979E- 17 m**2*(R/S)

A second output file is created by WALLGP on logical unit 10. This
file contains data useful for plotting results om a graph. For each
problem, one line of outpu. .. cieated, containing in order:

1) the straight-line distance in meters between the source and
detector;
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2) the areal density (the product of distance and air density, in

g/cm?) separating the source and detector on a straight line;

3) the response rate, normalized to a source stremgth of one photon
per second from the source;

4) the response rate, multiplied by the square of the source-
detector distance. This value is sometimes useful in comparing results
of different problem geometries, since effects of inverse- square
attenuation are eliminated from the results.

The line of output in the plot data file created for this example case
is shown below, and in the file SAMPLE-W.PLT.

103.48 12.42 3.8266E-21 4.0979F-17
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Fig. E-1. [Illustration of the problem geometry modeled by the sample input
file for WALLGP. The point source emits 1.25 MeV photons; air density is

1.2 mg/em®, and concrete density is specified as 2.35 g/cm?.
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ABSTRACT

Two computer codes were developed to analyze gamma-ray skyshine, the scattering
of gamma photons by air molecules. A review of previous gamma-ray skyshine
studies discusses several Monte Carlo codes, programs using a single-scatter model,
and the MicroSkyshine program for microcomputers. A benchmark gamma-ray
skyshine experiment performed at Kansas State University is also described.

A single-scatter numerical model was presented which traces photons from
the source to their first scatter, then applies a buildup factor along a direct path
" from the scattering point to a detector. The FORTRAN code SKY, developed with
this model before the present study, was modified to use Gauss quadrature, recent
photon attenuation data and a more accurate buildup approximation. The resulting
code, SILOGP, computes response from a point photon source on the axis of a silo,
with and without concrete shielding over the opening.  Another program,
WALLGP, was developed using the same model to compute response from a point
gamma source behind a perfectly absorbing wall, with and without shielding
overhead.

Results of SILOGP were compared to measurements from the KSU
benchmark experiment. SILOGP underpredicted the experimental exposure rates
within 250 m of the source and overpredicted responses further away. Average
deviations of SILOGP from experiment ranged from 20% to 40%. Both SILOGP
and WALLGP were compared to an ANSI Standard problem involving a point
source in open air, and both were found to be in excellent agreement with reference
values. The two corles also agreed very well with results for a similsr problem based

on infinite-medium point—source buildup factors computed using the method of




moments.

SILOGP and the microcomputer code MicroSkyshine were applied to several
silo skyshine problems. SILOGP returned lower exposure estimates, within 30% of
MicroSkyshine values in the worst cases, but within 15% in others. MicroSkyshine
was also used to test WALLGP in comparisons which varied individual problem
parameters. WALLGP consistently predicted a response at least 20% lower than
that predicted by MicroSkyshine. Discrepancies between results of WALLGP and
MicroSkyshine were attributed in large measure to the deliberately conservative

approximations upon which the MicroSkyshine method was based.




