

LA-11517-M
Manual

LA--11517-M
DE89 014386

UC-15
Issued: June 1989

HEU Drum Monitor Manual
(for Confirmatory Measurements)

J. K. Sprinkle, Jr.
L. A. Stovall

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EB

Los Alamos Los Alamos National Laboratory
Los Alamos, New Mexico 87545

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONTENTS

ABSTRACT	1
INTRODUCTION	2
GENERAL	2
AUDIENCE	2
OTHER DOCUMENTATION	3
PURPOSE	3
MEASUREMENT TECHNIQUE	3
SYSTEM OVERVIEW	5
GENERAL	5
BLOCK DIAGRAMS	5
PHOTOS	6
SOFTWARE	8
HOW TO TURN IT ON AND OFF	10
POWER UP	10
POWER DOWN	10
INITIAL SETTINGS	11
NIM Units	11
Regions of Interest	11
Parameters	12
ROUTINE OPERATION	15
OVERVIEW	15
NOMENCLATURE	16
OPERATOR OPTIONS	16
OUTPUT	18
Short Output from V Option	18
Medium Output from V Option	19
Long Output from V Option	20
Short Output from RC Option	21
Medium Output from RC Option	21
Long Output from RC Option	21

SUPERVISOR OPTIONS	22
CHANGING PARAMETERS	23
CALIBRATION	24
MEASUREMENT CONTROL	25
TROUBLESHOOTING	27
HARDWARE	27
SOFTWARE	27
ERROR MESSAGES	27
RT-11 and FORTRAN	27
Program	27
SOFTWARE	29
RT-11 OPERATING SYSTEM	29
System Rebuild	33
Necessary Files	33
OUTPUT FILES	35
TEST PROGRAMS	37
PROGRAM MODIFICATION	38
Overview	38
Subroutine Summary	40
Invocation Summary	44
VAX Communications	56
HARDWARE	57
COMPUTER CONFIGURATION	57
DLV11-J BOARD	57
SAMPLE/DETECTOR GEOMETRY	59
RADIOACTIVE SOURCES	59
PREVENTATIVE MAINTENANCE	60
REFERENCES	61

**HEU DRUM MONITOR MANUAL
(FOR CONFIRMATORY MEASUREMENTS)**

by

J. K. Sprinkle, Jr., and L. A. Stovall

ABSTRACT

This manual describes the operation of the highly enriched uranium (HEU) drum monitor. The drum monitor measures the passive gamma-ray emissions from a sealed shipping container of HEU. These emissions are from ^{235}U and from daughters of ^{238}U and ^{232}U . These radiations span a wide range of energy; consequently, each is susceptible to attenuation and shielding to a different degree. The combination of these measured gamma-ray rates with a weight measurement provides a unique signature for each item. These unique signatures can be determined with similar instruments at both ends of a material transfer between Department of Energy facilities. A consistent result from the two instruments indicates material control has been achieved, specifically that no material was lost or diverted. An additional objective of this instrument is to separate the material control issue from the measurement control issue. This is achieved by not calibrating the instrument and by reporting count rates instead of masses. Consequently, the results do not include calibration uncertainties, and therefore they are more precise. In addition, there are no sampling errors. A signal unique to the special nuclear material (SNM) is obtained non-destructively from the entire item. This instrument complements traditional containment and surveillance techniques by providing a precise measurement of an attribute unique to the SNM in the sample.

GENERAL

This manual describes the operation of the highly enriched uranium (HEU) drum monitor. The drum monitor provides a confirmatory measurement result that can help resolve shipper/receiver differences between Department of Energy (DOE) facilities.¹ The special nuclear material (SNM) items to be transferred are measured at both facilities with similar instruments while they are sealed in the shipping containers (typically a 30- or 55-gal. drum). Consistent measurement results demonstrate that the same SNM was in the shipping container for both measurements. However, these results do not accurately quantify how much SNM was in the container. That issue is addressed by traditional materials accounting measurements, which have much better accuracy, but can not be cost-effectively performed in such a timely fashion. This concept has been described as separating the materials control function (performed by this drum monitor) from the measurement control function (the most accurate materials accounting measurement).

AUDIENCE

This manual is intended for the instrument custodian who will be the resident expert for the HEU confirmatory measurement instrument. The subsections on routine use may be extracted for the instrument operators.

OTHER DOCUMENTATION

Several other documents might be useful:

- RT-11* system manuals
- DEC* FORTRAN manual
- Canberra FTXX73 software manual
- Canberra Series 35+ manual
- Assorted manufacturer's nuclear instrument module (NIM) unit manuals
- File Y12.DOC on the system disk

PURPOSE

This instrument measures the distinctive gamma-ray emissions from a shipping container of HEU. If the material is being received, the instrument will then compare the measured count rates with the values determined before shipment. If any statistically significant differences are found, the item is identified as requiring further investigation. This comparison will provide a high degree of confidence that an item was unchanged during shipment by measuring an attribute unique to the HEU. It should complement the various physical security measures that are also applied to each shipping container.

MEASUREMENT TECHNIQUE

Gamma rays from four isotopes are measured.² The instrument determines the emission rate of the 185.7-keV gamma ray of ^{235}U , the 413.7-keV gamma

*Digital Equipment Corporation, Maynard, Massachusetts.

MEASUREMENT TECHNIQUE

(cont)

ray of ^{239}Pu , the 1001-keV gamma ray emitted by a daughter of ^{238}U , and the 2614-keV gamma ray emitted by a daughter of ^{232}U . These radiations span a wide range of energy; consequently, they are each susceptible to attenuation and shielding to a different degree. The combination of these four measured intensities with the gross weight of the shipping container creates a signature that is unique to each item and is virtually impossible to duplicate with a bogus sample.

GENERAL

The measurement head resides in a heavily shielded counting room. The 2-ft-thick concrete walls attenuate the 2614-keV gamma ray by 2 orders of magnitude. The 4-in.-lead collimators reduce the 2614 keV by another 2 orders of magnitude. The gamma rays of lower energy are attenuated more severely than the 2614-keV gamma ray by this shielding. Consequently, the HEU drum monitor is not affected by SNM movement in the neighboring facility.

The electronics rack may be located up to 50 ft away from the detectors in the measurement head. (Longer distances require new cables for the detector hv and signals.) The system console terminal will reside with the electronics rack. The user console(s) may be placed up to 200 ft away from the rack in a location convenient for the operator.

BLOCK DIAGRAMS

Figure 1 shows the analog-signal processing connections.

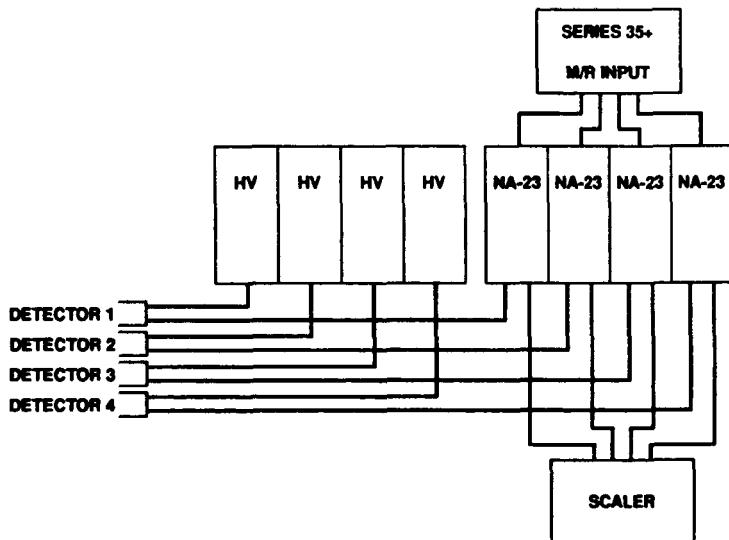


Fig. 1. The analog-signal processing connections.

PHOTOS

Figure 2 shows the measurement head with the side covers on before painting. Figure 3 shows the measurement head with the side covers removed. The four lead collimators are on their shelves. Figure 4 shows the third collimator in position on its shelf. Notice the two lifting eyes in the 1000-lb collimator. Figure 5 shows the third collimator being placed in position on its shelf.

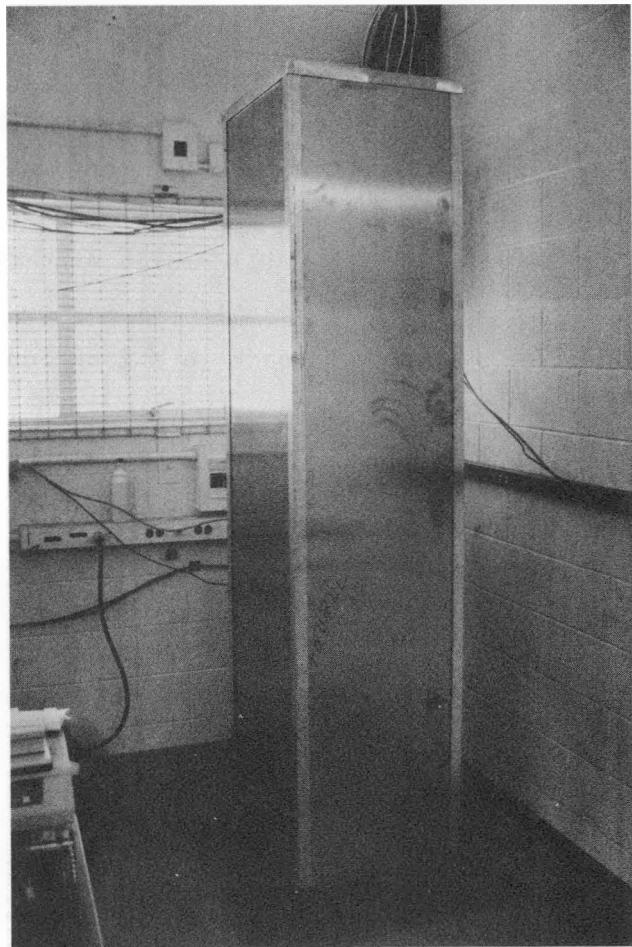


Fig. 2. The measurement head with unpainted side covers.

PHOTOS

(cont)

Fig. 3. The measurement head without side covers. Note the four collimators.

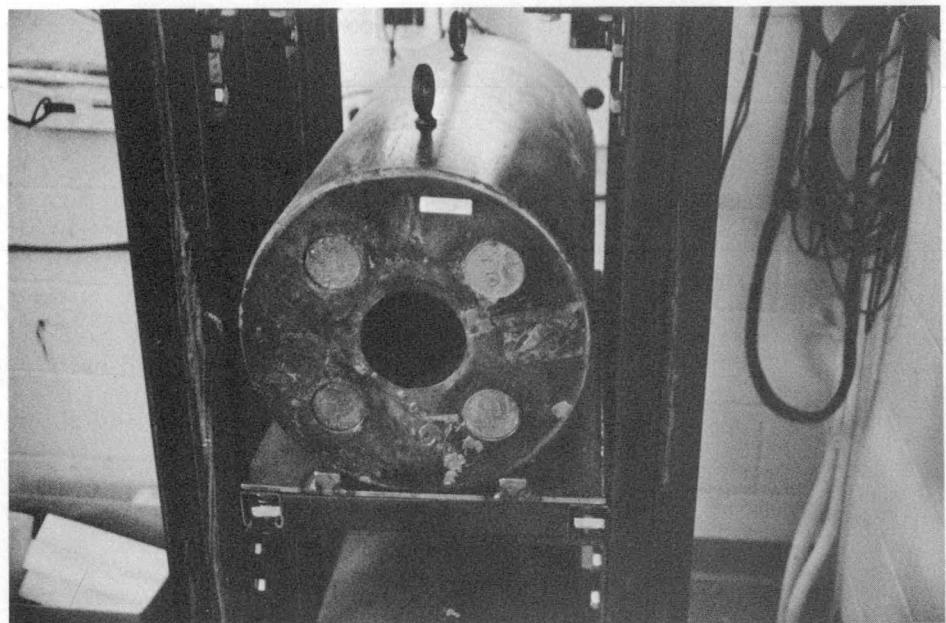
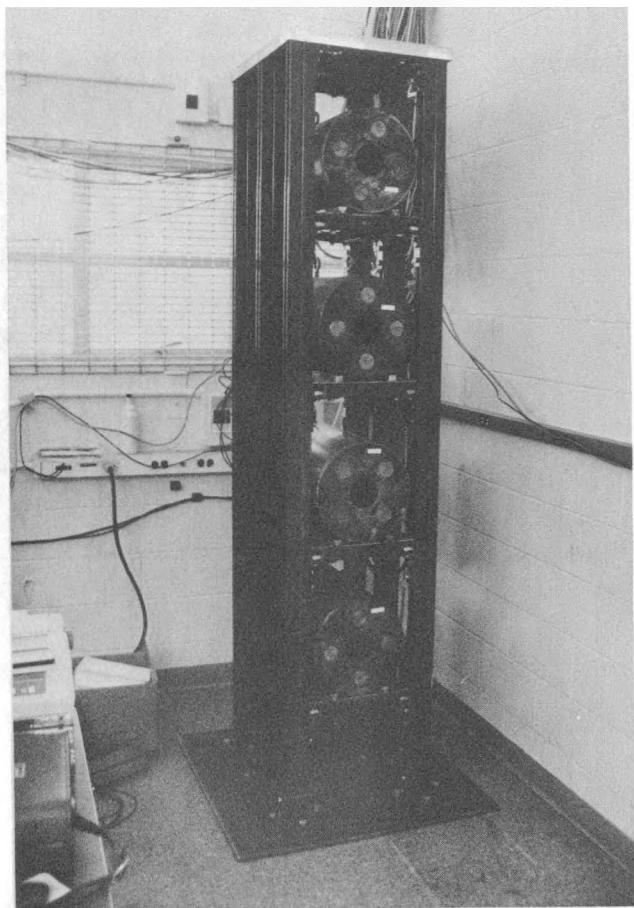



Fig. 4. A single lead collimator in place in the measurement head.

PHOTOS

(cont)

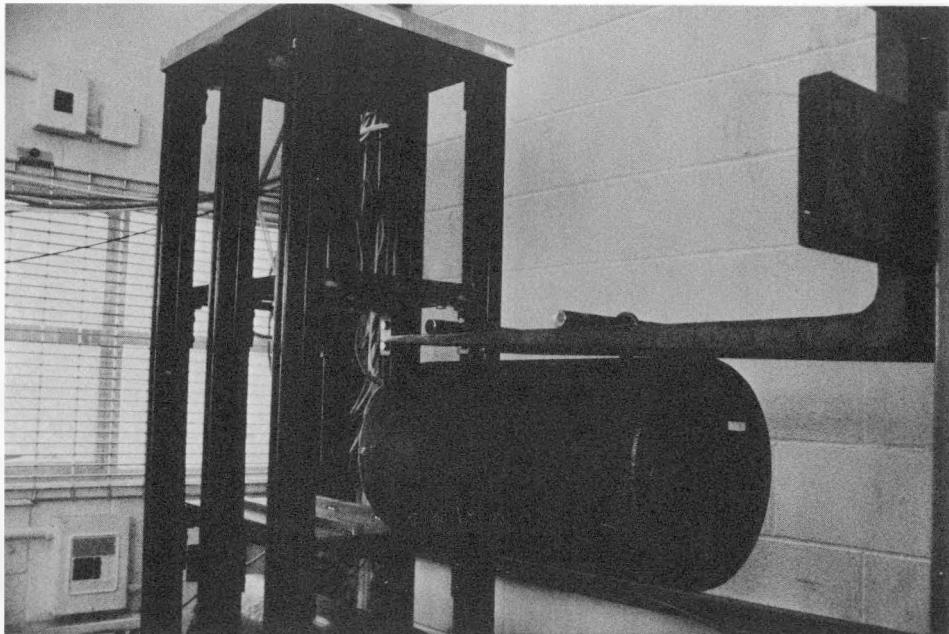


Fig. 5. A lead collimator being placed into the measurement head.

SOFTWARE

The software for the HEU drum monitor runs under the Digital Equipment Corporation (DEC) RT-11, Version 5.02, operating system in the extended memory (XM) environment. The overlaid and structured software package, Y12, written in FORTRAN and MACRO software routines, is menu driven. The operator selects an option from a menu of available options that is presented on the terminal. Each option is a subroutine that calls the routines needed to execute the option. In addition to performing assays, there are options to assay data from disk files or to review log files of the instrument's activity. Routine operation requires the use of only four options.

The Micro-11 contains 128 16-bit words, with each task limited to a 32-k word boundary. The software

SOFTWARE

(cont)

to run the HEU drum monitor resides on a 10-Mbyte disk, as do the data and log files. The Micro-11 also contains dual 8-in. floppy disk drives that can be used for data transfer.

There is a separate program for the HEU drum monitor named CHNY12, which is run to change the default parameters used in the main software package. This parameter change routine can only be executed by the instrument supervisor. It is typically run from the main console. The parameters accessed by this program can greatly influence the operation of the system and should only be changed by a knowledgeable person.

POWER UP

1. If the unit was shipped,
 - a. Release the RL02 disk head protection and remove the floppy disk head protection.
 - b. Connect an hv cable and a signal cable to each detector.
2. Turn on electronics rack power.
3. Turn on each electronics module, with the computer being last. (The RL02 fault light will come on until the computer is on.) Once the Series 35+ multichannel analyzer (MCA) is on, the operator must answer a date/time question at the MCA before the MCA will communicate correctly with the computer.
4. The NIM units should not require adjustment. Up to 24 h may be required for temperature stabilization of the detectors in the lead shields.
5. The computer should boot from the RL02. If it is necessary to boot from the 8-in. floppy, leave the RL02 off-line, place the BOOTABLE floppy in drive 0, and type "P" when the boot process halts (indicated by an "@" at the console).
6. The start-up file "STARTX.COM" will end with @Y12, which is a command file to start the main program at user terminal 1.

POWER DOWN

1. In case of an emergency, the main power cord to the wall can be pulled for a complete shutdown. We do not recommend this practice except for emergencies such as fire or life-threatening situations. (It could destroy the system disk.)

POWER DOWN

(cont)

2. A more relaxed shutdown starts when the user program is idle (waiting at the "Enter Option" point) or when the user program X (exit) option has been exercised.

a. Turn off the computer, NIM bin, RL02, and MCA.

(Do NOT turn down the hv to zero.)

b. Turn off the terminals and line printer.

c. Turn off the electronics rack.

INITIAL SETTINGS**NIM Units**

The hv settings for the NaI detectors are quite sensitive. A small change will probably remove the pulser peak from stabilization.

	<u>Det 1</u>	<u>Det 2</u>	<u>Det 3</u>	<u>Det 4</u>
High voltage	670	705	694	674
Amp CG	40	40	40	40
Amp FG	0.60	0.60	0.55	0.56
Delta E	1.0	1.0	1.0	1.0
E	6.40	6.41	5.14	6.23

Regions of Interest

All four detectors have similar regions of interest. The optimal region of interest for the 185.7-keV gamma ray is 161-211 keV for the peak region. The next region is used for both the ^{133}Ba measurement control source and ^{239}Pu . The optimal peak region is 300-485 keV, with background regions of 230-265 keV and 490-510 keV. Strong ^{228}Th sources with very little self-absorption have peaks that interfere with these

Regions of Interest
(cont)

background regions (at 238 keV and 511 keV). The americium seed peak is positioned at approximately 1700 keV so as not to interfere with either the 1001 keV or the 2614 keV.

Parameters

A recent listing of the CHNY12 parameter file follows:

5-MAR-88 09:12:23

PARAMETER FILE

SY:PARMTR.HEU JUL 1 1987
Written 10-MAR-88 14:41:53 by SPRINKLE

Peak	Isotope	Energy	Windows....
		Detector #1	
1	PULSER	1700.0	480 - 500 563 - 735 740 - 750
2	U-235	185.7	59 - 62 63 - 79 80 - 83
3	PU-239	413.7	100 - 108 110 - 171 173 - 181
4	U-238	1001.0	328 - 345 348 - 399 405 - 420
5	U-232	2614.0	880 - 895 901 - 1005 1010 - 1023
		Detector #2	
6	PULSER	1700.0	2530 - 2545 2616 - 2776 2780 - 2790
7	U-235	185.7	2105 - 2108 2109 - 2125 2126 - 2129
8	PU-239	413.7	2148 - 2156 2158 - 2219 2221 - 2229
9	U-238	1001.0	2370 - 2385 2389 - 2438 2443 - 2458
10	U-232	2614.0	2913 - 2928 2933 - 3033 3043 - 3058
		Detector #3	
11	PULSER	1700.0	4545 - 4555 4560 - 4680 4744 - 4760
12	U-235	185.7	4153 - 4156 4157 - 4173 4174 - 4177
13	PU-239	413.7	4196 - 4204 4206 - 4267 4269 - 4277
14	U-238	1001.0	4416 - 4426 4436 - 4482 4492 - 4502
15	U-232	2614.0	4959 - 4969 4979 - 5059 5069 - 5079
		Detector #4	
16	PULSER	1700.0	6631 - 6641 6703 - 6863 6868 - 6878
17	U-235	185.7	6202 - 6205 6206 - 6222 6223 - 6226
18	PU-239	413.7	6244 - 6252 6254 - 6315 6317 - 6325
19	U-238	1001.0	6469 - 6479 6489 - 6536 6546 - 6556
20	U-232	2614.0	7009 - 7019 7029 - 7120 7130 - 7140

SY:BACKGR.HEU
Written 26-FEB-88 11:57:26 by 88267 200. Secs.

Peak	Isotope	Energy	Area	% Err
		Detector #1		
1	PULSER	1700.0	214441.7500	0.23
2	U-235	185.7	233.2500	72.35
3	PU-239	413.7	-1359.5557	-15.35
4	U-238	1001.0	-135.2822	-58.51
5	U-232	2614.0	182.1555	13.97

Parameters

(cont)	Detector #2				
	6	PULSER	1700.0	203569.2344	0.23
	7	U-235	185.7	-56.1250	-234.14
	8	PU-239	413.7	-1624.6621	-12.00
	9	U-238	1001.0	-149.3953	-49.79
	10	U-232	2614.0	84.1837	28.91
Detector #3					
11	PULSER	1700.0	225281.4219	0.23	
12	U-235	185.7	-59.5918	-284.88	
13	PU-239	413.7	-1911.6924	-11.15	
14	U-238	1001.0	-109.5916	-85.90	
15	U-232	2614.0	36.4090	73.12	
Detector #4					
16	PULSER	1700.0	222969.7656	0.22	
17	U-235	185.7	-274.3750	-50.00	
18	PU-239	413.7	-1882.4814	-10.39	
19	U-238	1001.0	-194.5454	-42.78	
20	U-232	2614.0	81.5455	33.17	

ENERGY CALIBRATION - for each detector

E-Slope =	2.800	E-Offset =	-37.600
Energy keV =	185.700	Centroid =	71.000
Energy keV =	1700.000	Centroid =	850.000

MEASUREMENT CONTROL -		Bias	Precision		
Interval(DAYS) =		7.00000	30.0000		
Cycles =		15			
Sample ID =		MCBIAS	MCPREC		
		det #1	det #2	det #3	det #4
Reference Value for Bias =		415.000	218.000	211.000	301.000
Standard Dev. =		25.0000	25.0000	25.0000	25.0000

BACKGROUND -

Interval(DAYS)=		1.0	Preset time =		200.0 sec
lower limit	-----	Upper limits	-----	>	
Area(rate/loss)	Norm(186)	Norm(414)	Norm(1001)	Norm(2614)	
0.20000E+06	0.20000E-02	0.20000E-02	0.00000	0.20000E-02	
0.20000E+06	0.20000E-02	0.20000E-02	0.00000	0.20000E-02	
0.20000E+06	0.20000E-02	0.20000E-02	0.00000	0.20000E-02	
0.20000E+06	0.20000E-02	0.20000E-02	0.00000	0.20000E-02	

DEFAULT CALIBRATION IS # 1, OXIDE

Calibration Constants -		Material type: OXIDE		
Pulser	185-keV	414-keV	1001-keV	2614-keV
0.54430E-05	1.5000	0.28000E-01	87.660	1.0000
0.10000E-02	1.5000	0.28000E-01	87.660	1.0000
0.18872E-27	1.5000	0.28000E-01	87.660	1.0000
0.00006	1.5000	0.28000E-01	87.660	1.0000

Calibration Constants -		Material type: METAL		
Pulser	185-keV	414-keV	1001-keV	2614-keV
0.00006	2.0800	0.38000E-01	114.40	1.0000
0.00000	2.0800	0.38000E-01	114.40	1.0000
0.00000	2.0800	0.38000E-01	114.40	1.0000
0.00000	2.0800	0.38000E-01	114.40	1.0000

Parameters

Calibration Constants - Material type: NOT-USED				
(cont)	Pulser	185-keV	414-keV	1001-keV
	0.00000	0.00000	0.00000	0.00000
	0.00000	0.00000	0.00000	0.00000
	0.00000	0.00000	0.00000	0.00000
	0.00000	0.00000	0.00000	0.00000

PRESET TIME for each VERIFICATION = 200.0

Number of sigma allowed in S/R Verification Comparison

	Warning limit	Action limit
for each peak	3.42000	4.25000
for each item	2.14000	3.50000 (N = 16)
for each item	2.14000	3.50000 (stat signif peaks)

Systematic error component for S/R comparison = 0.490 %

Conveyor status is T

Timeout is 20 seconds

Instrument # 1 status is - F

2 is - F

3 is - T

DIAGNOSTICS ARE FOR 186 KEV AND PULSER

Diagnostic max = 16

	Value	Limit
Detector #1		
Centroid	71.000 +/- 3.000	
FWHM	22.000 + 2.000	
Centroid	655.500 +/- 5.000	
FWHM	69.000 + 2.000	
Detector #2		
Centroid	2117.000 +/- 3.000	
FWHM	22.000 + 3.000	
Centroid	2705.000 +/- 5.000	
FWHM	73.000 + 2.000	
Detector #3		
Centroid	4166.000 +/- 3.000	
FWHM	20.000 + 2.000	
Centroid	4629.000 +/- 5.000	
FWHM	66.000 + 2.000	
Detector #4		
Centroid	6214.000 +/- 3.000	
FWHM	21.000 + 2.000	
Centroid	6784.000 +/- 5.000	
FWHM	68.000 + 2.000	

OVERVIEW

The HEU drum monitor has two modes of operation, routine and supervisor. Routine operation includes the usual verification and measurement control (MC) options. In this context, MC refers to a regular demonstration that the instrument response has not drifted.⁴ (Not to be confused with MC of the materials accounting system referred to on pp. 1 and 2.) It is expected that the regular operators will become familiar with four options available in the routine mode, which includes performing the prompted MC. Supervisor mode requires the use of a password to perform additional options. The instrument was shipped with the password disabled. It is expected that the supervisor mode will not be needed very often. When it is, the resident expert will use this mode to gain more control of the instrument. The supervisor has one more level of control over the instrument--the parameter change program CHNY12. This program can be run from the system console and allows access to all parameters used in the Y12 program. CHNY12 is described in the PARAMETER CHANGE section on p. 24.

If the HEU drum monitor is ready for use, the prompt

ENTER OPTION ->

will be displayed as the last line of output. If the drum monitor is executing an option, it will print out its status or activities on the user cathode-ray tube (CRT) display.

NOMENCLATURE

If the monitor is idle, the "ENTER OPTION" prompt is displayed as the last line of text on the user terminal. Otherwise, the last line gives some indication of what the instrument is doing or it is a user prompt that needs a response. The response may be to follow an instruction or it may be to type an answer on the terminal. Four types of input may be required. Integer input is indicated by (I) at the end of the prompt. Real numbers need a decimal point and are indicated by (F) at the end of the prompt. Alphanumeric input is indicated by (A), and Boolean variables are indicated by (Y/N).

OPERATOR OPTIONS

The four options used in routine operation are

V - Perform a confirmatory measurement as a shipper or as a receiver.

B - Run a background (no sample) count (daily).

MB - Measurement control for bias (daily/weekly).

This is a periodic check that tests the stability of the instrument's response. A known item is remeasured, and the result is compared to a historical value. Two thresholds are used in this test. A warning limit is set at 2σ and an action limit is set at 3σ .

The first action that is suggested for a failed comparison is to check the instrument and parameters carefully and then repeat the measurement. The instrument was supplied with four ^{133}Ba sources for use with this option.

OPERATOR OPTIONS

(cont)

MP - Measurement control for precision (monthly).

This is a statistical check that tests whether the random error is correctly predicted by counting statistics. This test is accomplished by counting a sample 5 or 15 times. Then the observed and predicted variances are compared. Any item (including background) can be the sample.

Two thresholds are used in this test. A warning limit is set at 2σ and an action limit is set at 3σ . The first action that is suggested for a failed comparison is to check the instrument and parameters carefully and then try to repeat the failure.

One other option may be useful:

RC - Read confirmatory data file.

This option has a different format depending on whether short, medium, or long printout is the default. Three are shown for a short file.

Los Alamos recommends that the B, MP, and MB options be performed on a regular basis to verify the proper operation of the instrument. Reasonable repetition rates are noted parenthetically above.

You can be reminded of your possibilities at any time by using

H - Help (list the available options).

OPERATOR OPTIONS
(cont)

During a data acquisition, three options are available:

- Q - Quit the data acquisition without calculating a result.
- S - Suspend the data acquisition temporarily. Acquisition is restarted when the operator answers the prompt at the terminal.
- T - Terminate the assay or autocycle early, but compute the results anyway.

OUTPUT

The main program has three levels of detail in the output. Short printout gives only the final result, unless an error condition is detected. Medium printout gives some intermediate results, and the long printout is primarily a developmental or diagnostic tool.

Short Output from V

Option

Y12 - HEU Confirmatory Measurement - Run Type: Receiver

Sample ID: BAU Current Date: 18-FEB-88 07:23:58
 Operator ID: JIM Backgrd. Date: 17-FEB-88 09:49:28
 Data file: OUT:BAU.Y00
 Constants File: SY:PARMTR.HEU Constants Date: 17-FEB-88 15:34:32
 Live time (sec): 200. Clock time (sec): 235.

* * * * *

This comparison is for :

Shipper : BAU : 12-FEB-88 : 10:35:56
 Receiver : BAU : 18-FEB-88 : 07:19:59

**** ERROR # 95

*** Shipper / Receiver comparison failed ***

Single Peak

Peak # 8 268.14 & 321.09 differ by -7.8 sigma (6.76)

**** ERROR # 95

*** Shipper / Receiver comparison failed ***

Single Peak

Peak # 14 89.552 & 101.17 differ by -5.8 sigma (1.99)

Reduced Chisquare (N=16) = 9.63 (exceeds 3.50, the action limit)

Red Chisquare (N <= 16) = 12.7 (exceeds 3.50, the action limit)

**** ERROR # 95

*** Shipper / Receiver comparison failed ***

BAU

Reduced Chisq = 9.634 (N=16) & 12.74 (N=12)

Medium Output from V Option

112 - HEU Commissary Measurement - Run type: Receiver

Sample ID:	FBA	Current Date:	17-FEB-88	16:42:01		
Operator ID:	JIM	Backgrd. Date:	17-FEB-88	09:49:28		
Data file:	OUT:FBA.Y00	Constants File:	SY:PARMTR.HEU	Constants Date:	17-FEB-88	15:34:32
Live time (sec):	200.	Clock time (sec):	222.			

* * * * * Spectrum retrieval completed -- 4096 channels written to DUT:FBA.Y00
Detector Energy Norm Count Rate

1	pulsar	0.21383E+06	+/-	489.89
	185.7	-6.6383	+/-	1.6647
	413.7	463.26	+/-	3.7729
	1001.0	0.24059	+/-	0.57577
	2614.0	0.44544E-01	+/-	0.17649
2	pulsar	0.20312E+06	+/-	478.08
	185.7	-2.5308	+/-	1.4977
	413.7	276.42	+/-	3.5667
	1001.0	-0.53666	+/-	0.53429
	2614.0	-0.28394	+/-	0.18196
3	pulsar	0.22527E+06	+/-	526.69
	185.7	1.0471	+/-	1.6165
	413.7	264.70	+/-	3.5138
	1001.0	-0.96697	+/-	0.67494
	2614.0	-0.51556E-01	+/-	0.17894
4	pulsar	0.22203E+06	+/-	499.92
	185.7	-8.3796	+/-	1.4338
	413.7	341.35	+/-	3.3350
	1001.0	-0.28751	+/-	0.58736
	2614.0	-0.34823E-01	+/-	0.19396

This comparison is for :
Shipper : FBA : 17-FEB-88 : 14:26:46
Recipient : FBA : 17-FEB-88 : 14:26:46

Number of standard deviations					Ratio	+-
-20	-10	0	+10	+20		
1 :		*			1.00003	0.00324
2 :		*			2.16194	-0.76566
3 :		*			0.97796	0.01127
4 :		*			0.50224	1.69604
5 :		*			0.13965	0.77218
6 :		*			1.00527	0.00334
7 :		*			1.53219	-1.28534
8 :		*			0.98384	0.01799
9 :		*			0.60111	-0.84620
10 :		*			1.55996	-1.42308
11 :		*			1.00141	0.00332
12 :		*			0.85070	1.85830
13 :		*			1.01493	0.01906
14 :		*			0.78979	-0.77676
15 :		*			0.51839	-2.52073
16 :		*			1.00628	0.00319
17 :	*				1.63262	-0.39573
18 :		*			1.01084	0.01399
19 :		*			-1.01301	2.91612
20 :		*			0.18592	-1.48576

Reduced Chisq = 0.8418 (N=16) & 0.9335 (N=13)
Verification successful for FBA

Long Output from V Option

Y12 - HEU Confirmatory Measurement - Run Type: Receiver

Sample ID: BAU Current Date: 16-FEB-88 11:26:29
 Operator ID: JAMES Backgrd. Date: 15-FEB-88 09:18:33
 Constants File: SY_PARMTR.HEU Constants Date: 12-FEB-88 10:23:38
 Live time (sec): 20. Clock time (sec): 23.

	Energy	Centroid	FWHM	Net Area	Background	Norm Count Rate
pulser	656.4	63.0	21261.7	\sim 158.2	215789.0	\sim 486.0
185.7	0.0	0.0	-138.3	\sim 133.5	99.9	\sim 132.8
413.7	137.4	34.5	9526.1	\sim 291.9	-1078.6	\sim 208.7
1001.0	373.0	46.7	1356.1	\sim 65.7	-209.8	\sim 81.3
2614.0	0.0	0.0	13.5	\sim 10.0	94.8	\sim 26.4
pulser	2707.5	68.9	19892.3	\sim 153.7	203076.7	\sim 473.1
185.7	0.0	0.0	147.6	\sim 122.2	-6.3	\sim 120.5
413.7	2180.0	29.7	6305.2	\sim 281.8	-1012.9	\sim 189.6
1001.0	2408.3	48.2	1282.2	\sim 51.4	-294.1	\sim 75.6
2614.0	0.0	0.0	14.7	\sim 6.4	63.1	\sim 26.7
pulser	4630.2	65.7	22070.2	\sim 177.3	225559.5	\sim 528.6
185.7	0.0	0.0	33.1	\sim 141.2	48.1	\sim 134.2
413.7	4228.6	32.6	5628.8	\sim 309.7	-882.2	\sim 205.7
1001.0	4457.4	40.3	1820.5	\sim 81.3	-307.9	\sim 97.0
2614.0	0.0	0.0	-5.1	\sim 9.9	94.9	\sim 25.1
pulser	6785.2	67.6	21995.8	\sim 160.8	221555.4	\sim 495.2
185.7	0.0	0.0	-55.2	\sim 118.9	78.6	\sim 118.6
413.7	6279.8	31.8	6818.3	\sim 270.8	-520.1	\sim 185.3
1001.0	6514.1	55.0	1425.6	\sim 68.7	-214.7	\sim 83.6
2614.0	0.0	0.0	25.8	\sim 6.9	100.7	\sim 27.0
185.7 keV	-2.5330	\sim 20.0				
413.7 keV	2203.3	\sim 45.5				
1001.0 keV	20282.	\sim 484.				
2614.0 keV	0.70926	\sim 0.901				

This comparison is for:
 Shipper : BAU : 12-FEB-88 : 10:35:56
 Receiver : BAU : 16-FEB-88 : 11:25:55

Peak #	Receiver Result	Shipper Result	Combined Sigma	Diff (# sig)	Ratio
1	0.2126E+05	0.2127E+06	524.6	-385.0	0.9995E-01
2	-7.515	3.044	7.194	-1.468	-2.469
3	488.8	492.3	16.14	-0.2170	0.9929
4	69.87	77.86	3.654	-2.188	0.8973
5	0.2127	-0.1012	0.5680	0.5527	-2.102
6	0.1980E+05	0.2008E+06	510.3	-354.1	0.9918E-01
7	7.567	11.35	6.627	-0.5713	0.6685
8	326.9	321.1	15.41	0.3778	1.0118
9	66.92	63.71	3.388	0.9483	1.050
10	0.4343	-0.2748	0.4062	1.746	-1.581
11	0.2207E+05	0.2210E+06	589.6	-337.5	0.9986E-01
12	1.452	14.73	7.647	-1.737	0.9857E-01
13	292.0	271.8	16.89	1.195	1.074
14	94.57	101.2	4.493	-1.469	0.9347
15	-0.7345	-0.3664E-01	0.5594	-1.140	7.600
16	0.2200E+05	0.2190E+06	536.4	-387.4	0.1004
17	-3.176	4.434	6.376	-1.194	-0.7181
18	346.4	354.5	14.69	-0.5536	0.9771
19	72.87	73.28	3.743	-0.1077	0.9945
20	0.7987	-0.3972	0.4391	2.719	-2.006
		Shipper Receiver Combined Sigma			
Peak # 1	sum to 0.8534E+06	0.8522E+05	\sim 0.11E+04		
Peak # 2	sum to 33.56	-1.672	\sim 14.		
Peak # 3	sum to 1440.	1454.	\sim 32.		
Peak # 4	sum to 316.0	304.2	\sim 7.7		
Peak # 5	sum to -0.8698	0.7093	\sim 1.0		

Number of standard deviations					
-20	-10	0	+10	+20	Ratio \sim
1 : <-		*			0.0995 0.00247
2 :		*			-2.46861 2.36307
3 :		*			0.39289 0.03278
4 :		*			0.89731 0.04693
5 :		*			-2.10250 -5.61383
6 : <-		*			0.09918 0.00254
7 :		*			0.56650 0.58373
8 :		*			1.31813 0.04901
9 :		*			1.05044 0.05319
10 :		*			-1.58075 -1.47830
11 : <-		*			0.09986 0.00287
12 :		*			0.09857 0.51904
13 :		*			1.07430 0.06213
14 :		*			0.93474 0.04441
15 :		*			7.60014 -5.78821
16 : <-		*			0.10042 0.00245
17 :		*			-0.71611 1.43772
18 :		*			0.97707 0.04143
19 :		*			0.99450 0.05108
20 :		*			-2.00581 -1.10555

Reduced Chisq = 1.797 (N=16) & 1.333 (N=11)
 Verification successful for BAU

Short Output from RC Option

Filename : DAT:12FEB.DAT

Entry # 2 ID: BAU	Date: 12-FEB-88 Time: 10:35:56
Entry # 3 ID: BA	Date: 16-FEB-88 Time: 11:36:48

Medium Output from RC Option

Filename : DAT:12FEB.DAT

	186 kev	414 kev	1001 kev	2614 kev	Pulser
Entry # 2 ID: BAU	Date: 12-FEB-88 Time: 10:35:56				
Detector #1 3.044	492.306	77.861	-0.101	212725.	
Detector #2 11.353	321.086	63.707	-0.275	200575.	
Detector #3 14.733	271.846	101.170	-0.097	221021.	
Detector #4 4.434	354.523	73.277	-0.397	219039.	
Entry # 3 ID: BA	Date: 16-FEB-88 Time: 11:36:48				
Detector #1 9.730	11.868	76.132	0.380	213407.	
Detector #2 8.965	12.596	63.604	0.224	201228.	
Detector #3 11.315	7.036	97.437	0.001	223781.	
Detector #4 6.161	1.900	72.563	-0.015	221925.	

Long Output from RC Option

Filename : DAT:12FEB.DAT

	186 kev	414 kev	1001 kev	2614 kev	Pulser
Entry # 2 ID: BAU	Date: 12-FEB-88 Time: 10:35:56				
Detector #1 3.044	492.306	77.861	-0.101	212725.	
+/- 2.321	5.078	1.200	0.216	500.	
Detector #2 11.353	321.086	63.707	-0.275	200575.	
+/- 2.152	4.807	1.109	0.201	487.	
Detector #3 14.733	271.846	101.170	-0.097	221021.	
+/- 2.436	5.283	1.443	0.201	562.	
Detector #4 4.434	354.523	73.277	-0.397	219039.	
+/- 2.103	6.035	1.247	0.232	512.	
Entry # 3 ID: BA	Date: 16-FEB-88 Time: 11:36:48				
Detector #1 9.730	11.868	76.132	0.380	213407.	
+/- 1.743	3.551	1.161	0.198	496.	
Detector #2 8.965	12.596	63.604	0.224	201228.	
+/- 1.627	3.309	1.075	0.191	486.	
Detector #3 11.315	7.036	97.437	0.001	223781.	
+/- 1.947	3.991	1.390	0.188	562.	
Detector #4 6.161	1.900	72.563	-0.015	221925.	
+/- 1.601	0.031	1.197	0.218	509.	

SUPERVISOR OPTIONS

The supervisor mode can be password protected. If it is, knowledge of the password is required to gain access to these options.

- A - The assay option gives the same results as the V option. In addition, it gives a mass result using a calibration summed over the four detectors.
- AC - Assay current data - generate results using the current data in the MCA.
- AD - Assay from disk - use a disk file to compute results.
- AU - Autocycle - perform repeated assays on a single sample.
- AUD - Autocycle from disk - use disk files to compute results.
- BD - Background from disk - use a disk file to compute results.
- D - Change a few default parameters:
 1. Long, medium, or short printout,
 2. Whether to write raw data to disk,
 3. Turn the terminal beep on/off,
 4. Change the preset assay time,
 5. Choose which calibration to use,
 6. Change the conveyor status, and
 7. Read another parameter file.
- LA - List the assay log file (contains the last 99 A, AU, and V results).
- LM - List the MC log file (contains the last 99 MC results).
- OU - Change the output device (terminal or line printer).
- R - Read a disk data file to the MCA.
- ST - Test the status of the conveyor interface.

SUPERVISOR OPTIONS

(cont)

W - Write the MCA data to a disk file.

X - Exit the program.

CHANGING PARAMETERS

The use of the parameter change program CHNLAS is a supervisory procedure requiring a password. Up to five parameter files are easily accessed within the Y12 and CHNY12 programs. We strongly recommend that changes in the parameter file be considered carefully and evaluated before the original file is altered. First, the supervisor must start the program at the system console.

@CHN

will run the program at the console. If the supervisor prefers to run the program at the user terminal, first abort the Y12 program with the X option at the user terminal, then at the system console type

UNL Y12

SRUN CHNY12/TERM:1.

The CHNLAS prompts the user with the present value of a parameter, then allows the user to enter the new value. A RETURN leaves the old value unchanged. It is important to enter integers or real numbers according to the prompt. Integers are indicated by (I) and real numbers are indicated by (F) in the prompt.

The CHNY12 options are

HE - Help (list all options)

IS - Isotope names and indices

CHANGING PARAMETERS

(cont)

EN - Peak energies (one for each index)
WI - Regions of interest (three for each index)
CC - Calibration constants
DD - Data diagnostic parameters
(peak centroids and widths)
EC - Energy calibration (keV for each channel)
HL - Half-life for MC sources
MC - Measurement control and background parameters
MB - Measurement control - bias
MP - Measurement control - precision
BG - Background parameters
PT - Preset count time
PW - Up to three different passwords can be used
RD - Read parameter file
LI - Output parameters
OU - Change output device (need an LP on system)
WR - Write parameter file
CO - Conveyor status
SR - Shipper/receiver comparison
EX - Exit from CHNLAS (with choice of writing a new file)

CALIBRATION

The primary purpose of the drum monitor is for shipper/receiver comparisons. These comparisons are performed between the two sets of uncorrected count rates obtained by the shipper and receiver respectively. The advantage of this method is that the comparison of two sets of results does not have the additional uncertainties associated with two independent calibrations.

A second potential use that we are exploring is inventory verification. Preliminary results indicate

CALIBRATION

(cont)

that this is a technique with the potential to provide rapid results of sufficient quality to assist the facility inspector.³ SNM of high value is often packaged in standard containers with similar loadings. Consequently, these samples have similar gamma-ray emission levels and attenuation properties. Careful segregation into appropriate material types allows the use of representative standards to derive the corresponding nonlinear calibration curve. In addition, once an inventory item has been verified the first time (or even received), this technique can omit the calibration exercise and verify with an extremely high confidence level whether the item has been altered while it resided in the SNM vault.

The program does not have a calibration option.

The operator must invert the equation by hand and calculate the appropriate constant(s) and then use the parameter change program to enter the calibration constants in the parameter file. The main program reads the new values on start-up or by exercising a feature under the D (default) parameter option.

MEASUREMENT CONTROL

The measurement control procedures for this instrument have been used successfully for many applications.⁴ Each spectrum is checked to ensure that the system gain and resolution are suitable. This check is primarily applied to the pulser peak from the ^{241}Am seed that is used for gain stabilization. In addition, three specific types of data acquisition are required on a regular basis. A

MEASUREMENT CONTROL
(cont)

daily background count verifies that the drum monitor is adequately shielded from other sources of gamma radiation. A periodic bias check demonstrates that the system response to a known item is consistent with the historical value. A less frequent precision check verifies that the random error in repeated measurements of any item is consistent with counting statistics. The frequency of each MC check can be adjusted to meet the facility-specific conditions.

HARDWARE

The oscilloscope is indispensable in diagnosing trouble in the analog electronics. When a defective module is located, it should be removed for repair and replaced. Several test programs are described in the SOFTWARE section that can test the Series 35+, the conveyor interface, and the scale interface separately. If the Canberra test routine UTL73 is aborted in the middle of a test, it may corrupt the battery-backed-up, random-access memory (RAM) on the (Central Processing Unit) CPU/RAM board. See page 131 in the Series 35+ Operator's Manual, Version 2, or contact a Canberra engineer for more information.*

SOFTWARE

The main program Y12 and the parameter change program CHNY12 have both been tested extensively. If either one does not run or function properly, it is an indication of a problem that lies elsewhere, typically in the hardware.

ERROR MESSAGES**RT-11 and FORTRAN**

These error messages are explained in the DEC manuals. If a system error occurs, it usually indicates a hardware problem. FORTRAN error messages can arise from both operator error and hardware problems.

Program

The following error messages are printed by the subroutine ERRMSG, which is called when a problem is diagnosed. These messages are self-explanatory, when read in the context of what the program was doing.

*Canberra Industries, Meridian, Connecticut.

Program

(cont)

```

100A THIS IS A JUNK MESSAGE
1A *** ERROR IN OPENING FILE ***
2A *** ERROR IN READING FILE ***
3A *** ERROR IN WRITING FILE ***
5A *** RECORD POINTER INVALID ***
6A *** Decode Error in ***
7A *** Verification output file already has 99 entries (FULL) ***
8A *** CLOSE error in ***
10 consequently we will create a new file
20 *** INPUT MUST BE A LETTER ***
22A *** Invalid Enrichment or Material Type ***
25 *** Can't turn S-90 keyboard ON/OFF ? ***
30A *** 185.7-keV Position Problem ***
31A *** pulser Position Problem ***
32A *** 185.7-keV Resolution Problem ***
33A *** pulser Resolution Problem ***
35 *** Maximum of 25 peaks allowed ***
36 *** Index greater than maximum index ***
37 *** Index 2 is less than Index 1 OR more than 128 channels ***
40 *** Background Pulser Rate is Wrong ***
41 *** Background (186) is too large ***
42 *** Background (1001) is too large ***
43 *** Background (2614) is too large ***
50 *** Precision Check Failed (Measurement Control) ***
51 *** Bias Check Failed (Measurement Control) ***
60 *** Invalid Choice ... must be 1, 2 or 3 ***
61 *** Put Series 35+ into remote, switch on rear ***
62 *** Series 35+ init failed 3 times, check AN handler ***
63A *** Answer date/time question at Series 35+ ***
70 *** Background result not within limits ***
72 *** Randomness test in MP outside warning limits ***
73 *** Randomness test in MP failed ***
74 *** Reduced Chisquare = 0.0 ***
75 *** PRECISION CHECK WARNING LIMITS EXCEEDED ***
76 *** PRECISION CHECK ACTION LIMITS EXCEEDED ***
77 *** BIAS CHECK WARNING LIMITS EXCEEDED ***
78 *** BIAS CHECK ACTION LIMITS EXCEEDED ***
80A *** Invalid instrument status, active = idle ***
81A *** Invalid conveyor status, moving = rotating ***
82A *** All rotaters out of service ***
83A *** All instruments out of service ***
85A *** Can not start count if not rotating ***
87A *** Invalid conveyor status ***
88A *** Rotater station #1 is not OK ***
90A *** No match with sample ID ***
95A *** Shipper / Receiver comparison failed ***
101 *** assay RESULT is SUSPECT, notify your supervisor now ***
102 *** SUPERVISOR NEEDS TO CORRECT PROBLEM ***
-999

```

RT-11 OPERATING SYSTEM

The drum monitor uses the XM version of RT-11. This version allows the programs to be slightly larger and multiple programs to run on a priority-based CPU sharing convention.

Under normal conditions, the hard disk will hold the last background spectral file, the last 99 assay/autocycle/calibration files, and the last MC bias file. To archive more than this, use the floppy diskettes. Each floppy diskette can hold 24 4-k data files and must be initialized before being used for the first time. Insert the new diskette into the drive (left drive is DY0:, right drive is DY1:). Then at the console type

INI/BAD DYn: (where n is the drive number).

RT-11 will prompt you to confirm the drive, then initialize the diskette and perform a bad-block check. Now define DYn: as the user device DK

ASS DYn: DK: .

The Y12 code writes spectral data to DK, but stores its other files on SY. The usual assignment for writing raw spectral data to disk is

ASS DL0: DK: .

It is also possible to use the RT-11 COPY command to copy files to a floppy diskette from the hard disk for archival storage. The copy command is described briefly below and in detail in the

RT-11 OPERATING SYSTEM
(cont)

RT-11 manuals. These commands are valid only at the system console and are provided here as a brief reminder. Detailed descriptions are in the RT-11 manuals. In the following, n refers to the drive number.

To perform a bad-block check on a disk:

DIR/BAD DUn:

To list the files on a disk (this is lengthy for the hard disk):

DIR DUn:

To list a single file (a check to see if it exists):

DIR DUn:LAS.SAV

To initialize a new disk (this could be hazardous for the system disk):

INI DUn:

We recommend that all disk initializations include a bad-block scan:

INI/BAD DUn:

To copy a file from file1 on drive #n to file2 on drive #m:

COP DUn:file1.ext DUm:file2.ext

RT-11 OPERATING SYSTEM

(cont)

To perform a fast copy of everything on a floppy diskette from DUn to DUm (the two devices must be identical):

COP/DEV DUn: DUm:

To delete a file:

DEL DUn:file.ext

To rename a file from input to output:

REN input.ext output.ext

To type an ASCII file on the terminal:

TYPE file.src

To assign a logical name DK to a physical device DUn:

ASS DUn: DK:

To deassign a logical name:

DEASS DK:

The show command displays several system characteristics:

SHO JOBS	Job status and priority
SHO MEM	Memory partitioning
SHO CONF	System configuration

RT-11 OPERATING SYSTEM

To set the system date and time:

(cont)

DATE 12-OCT-85

To mount a logical disk:

MOU LD2:

files? LAS.DSK

To dismount a logical disk:

DISM LD2:

To protect a file:

PRO file.ext

To unprotect a file:

UNPR file.ext

To run a program:

or

RUN DUn:file.sav file.sav is on DUn:

SRUN file.sav/TERM:1 Background job using terminal 1.

SRUN VBGEXE.SAV/NAME:LAS/TERM:1

Background job LAS.SAV

RT-11 OPERATING SYSTEM

(cont)

running under virtual
executive at terminal 1.**System Rebuild**

Read this section completely before starting. If the hard disk crashes and needs to be rebuilt, first copy any irreplaceable files to a floppy diskette, if possible. These files include:

SY:PARMTR.HEU
SY:BACKGR.HEU
SY:MCLOGF.HEU
SY:ASYLOG.HEU.

A set of four floppy diskettes labeled RT11XM system is available. The first diskette is bootable and can execute the copy command. Copy all four diskettes (with the /SYS option) to the new hard disk after it is initialized with a bad-block scan. Next, copy the two diskettes that contain the backup source code. Now rebuild the codes with BLDY12.COM (edit as necessary). Finally, copy the irreplaceable files (if they exist) back to the new hard disk, otherwise you will need to update the parameters.

Necessary Files

Several files are used by the HEU drum monitor programs. The parameter file must exist in order to run the programs. The other files can be created by an editor or by the codes if they do not exist. These files reside on the system device SY:.

Necessary Files

(cont)

ASYLOG.HEU - Contains last 99 assay results in a circular file.

- If not found, the program will create it.
- lslog.src and writlg.src read and write this file.

MCLOGF.HEU - Contains last 99 MC results in a circular file.

- If not found, B option will create it.
- lmclog.src and wtmclg.src read and write this file.

BACKGR.HEU - Most recent background results.

- Written (created) by B option.
- readb.src and writb.src read and write this file.

CONSTA.HEU - ASCII list of five possible parameter files.

- readnm.src reads this file.
- Create it with an editor.

ERRMSG.HEU - ASCII list of error messages.

- errmsg.src reads this file.
- Create or modify it with an editor.

PARMTR.HEU - Parameter storage file.

- readc.src and writc.src read and write this file.

OUTPUT FILES

Examples of the output from the log files follow.

Assay log as of 15-MAR-88 15:01:42

Entry	Date	Time	Sample	Operator	Filename:	Cycles	Result	Asy Err
					Id			Typ Flg
1.	26-FEB	12:10	PUPU	88267	None	1/1	1.6731	R T
2.	26-FEB	11:58	PUPU	88267	None	1/1	2.0081	R T
3.	26-FEB	11:47	PUPU	88267	None	1/1	0.92250	R T
4.	26-FEB	11:30	PUPU	88267	OUT:PUPU.Y00	1/1	0.76848	R T
5.	26-FEB	11:20	PUPU	88267	OUT:PUPU.Y00	1/1	-377.35	S T
6.	26-FEB	11:12	PUMETAL	JIM	OUT:PUMETA.Y00	1/1	3.7687	R T
7.	26-FEB	10:48	PUMETAL	JIM	OUT:PUMETA.Y00	1/1	4.7551	R T
8.	26-FEB	09:15	PUMETAL	SPRINKLE	OUT:PUMETA.Y00	1/1	0.92198	R T
9.	26-FEB	08:20	PUMETAL	SPRINKLE	OUT:PUMETA.Y00	1/1	-279.33	S T
10.	26-FEB	07:42	PUMETAL	88267	OUT:PUMETA.Y00	1/1	182.72	R T
11.	25-FEB	16:29	MT	SPRINKLE	OUT:MT.Y05	5/5	-136.67	A F
12.	25-FEB	16:25	MT	SPRINKLE	OUT:MT.Y04	4/5	-216.92	A F
13.	25-FEB	16:20	MT	SPRINKLE	OUT:MT.Y03	3/5	-82.038	A F
14.	25-FEB	16:16	MT	SPRINKLE	OUT:MT.Y02	2/5	-266.19	A F
15.	25-FEB	16:12	MT	SPRINKLE	OUT:MT.Y01	1/5	-218.80	A F
16.	25-FEB	16:04	MT	SPRINKLE	OUT:MT.Y01	1/5	-161.00	A F
17.	25-FEB	15:45	MT	SPRINKLE	OUT:MT.Y00	1/1	-160.32	S F
18.	25-FEB	14:31	PUMET	SPRINKLE	OUT:PUMET.Y09	9/10	-381.72	A T
19.	25-FEB	14:26	PUMET	SPRINKLE	OUT:PUMET.Y08	8/10	-297.97	A T
20.	25-FEB	14:20	PUMET	SPRINKLE	OUT:PUMET.Y07	7/10	-166.05	A T
21.	25-FEB	14:14	PUMET	SPRINKLE	OUT:PUMET.Y06	6/10	-272.71	A T
22.	25-FEB	14:07	PUMET	SPRINKLE	OUT:PUMET.Y05	5/10	-303.51	A T
23.	25-FEB	14:01	PUMET	SPRINKLE	OUT:PUMET.Y04	4/10	-250.21	A T
24.	25-FEB	13:55	PUMET	SPRINKLE	OUT:PUMET.Y03	3/10	-244.25	A T
25.	25-FEB	13:49	PUMET	SPRINKLE	OUT:PUMET.Y02	2/10	-84.033	A T
26.	25-FEB	13:43	PUMET	SPRINKLE	OUT:PUMET.Y01	1/10	-496.29	A T
27.	25-FEB	08:48	BA	SPRINKLE	OUT:BA.Y10	10/10	-119.85	A F
28.	25-FEB	08:44	BA	SPRINKLE	OUT:BA.Y09	9/10	-221.89	A F
29.	25-FEB	08:39	BA	SPRINKLE	OUT:BA.Y08	8/10	-100.75	A F
30.	25-FEB	08:35	BA	SPRINKLE	OUT:BA.Y07	7/10	-211.60	A F
31.	25-FEB	08:30	BA	SPRINKLE	OUT:BA.Y06	6/10	-191.37	A F
32.	25-FEB	08:26	BA	SPRINKLE	OUT:BA.Y05	5/10	-224.14	A F
33.	25-FEB	08:21	BA	SPRINKLE	OUT:BA.Y04	4/10	-208.94	A F
34.	25-FEB	08:17	BA	SPRINKLE	OUT:BA.Y03	3/10	-138.23	A F
35.	25-FEB	08:12	BA	SPRINKLE	OUT:BA.Y02	2/10	-93.977	A F
36.	25-FEB	08:08	BA	SPRINKLE	OUT:BA.Y01	1/10	-232.02	A F
37.	25-FEB	07:48	BA	SPRINKLE	OUT:BA.Y00	1/1	-296.62	S F
38.	24-FEB	17:11	MTMT	88267	OUT:MTMT.Y10	10/10	-229.11	A T
39.	24-FEB	17:06	MTMT	88267	OUT:MTMT.Y09	9/10	-238.61	A T
40.	24-FEB	17:02	MTMT	88267	OUT:MTMT.Y08	8/10	-226.62	A T
41.	24-FEB	16:58	MTMT	88267	OUT:MTMT.Y07	7/10	-163.43	A T
42.	24-FEB	16:53	MTMT	88267	OUT:MTMT.Y06	6/10	-352.31	A T
43.	24-FEB	16:49	MTMT	88267	OUT:MTMT.Y05	5/10	-157.27	A T
44.	24-FEB	16:45	MTMT	88267	OUT:MTMT.Y04	4/10	-202.88	A T
45.	24-FEB	16:40	MTMT	88267	OUT:MTMT.Y03	3/10	-355.29	A T
46.	24-FEB	16:36	MTMT	88267	OUT:MTMT.Y02	2/10	-288.26	A T
47.	24-FEB	16:31	MTMT	88267	OUT:MTMT.Y01	1/10	-273.24	A T
48.	23-FEB	07:39	MT	88267	OUT:MT.Y05	5/10	-512.28	A F
49.	23-FEB	07:35	MT	88267	OUT:MT.Y04	4/10	-305.96	A F
50.	23-FEB	07:31	MT	88267	OUT:MT.Y03	3/10	-220.67	A F

OUTPUT FILES

(cont)

Measurement control log as of 15-MAR-88 15:02:14

Ent	Date	Time	Operator	Ty	MB-Result	-Frac	Error	-Std	Value	#	VX	Er	Live	
					MP-Chisq	-Mn	Sq	Suc	Diff	--	Run	Fg	Fg	Time
					B	-Result	-Frac	Error	--					
1.26-FEB	11:53	88267	BG		-588.814	-0.282				1	F	F	200.	
2.25-FEB	07:59	SPRINKLE	MB		1132.554	0.006		1145.000		1	F	F	200.	
3.25-FEB	07:53	SPRINKLE	MB		1146.000	0.006		1439.000		1	F	T	200.	
4.25-FEB	07:20	SPRINKLE	BG		-850.654	-0.195				1	F	F	200.	
5.25-FEB	07:11	SPRINKLE	BG		-441.877	-0.369				1	F	T	200.	
6.25-FEB	06:46	SPRINKLE	BG		-409.289	-0.400				1	F	T	200.	
7.24-FEB	16:26	SPRINKLE	BG		-755.436	-0.220				1	F	T	200.	
9.23-FEB	06:56	SPRINKLE	BG		-931.027	-0.180				1	F	F	200.	
10.19-FEB	09:28	SPRINKLE	BG		-559.525	-0.297				1	F	F	200.	
11.18-FEB	15:38	SPRINKLE	BG		-224.758	-0.741				1	F	T	200.	
12.18-FEB	09:59	SPRINKLE	BG		-665.412	-0.254				1	F	F	200.	
13.17-FEB	17:15	JIM	MP		0.936	-1.299				5	F	F	200.	
14.17-FEB	09:45	JIM	BG		-354.040	-0.472				1	F	F	200.	
15.16-FEB	09:14	JIM	BG		-1026.416	-0.165				1	F	F	200.	
16.12-FEB	14:13	JIM	MB		1413.941	0.007		1439.000		1	F	F	200.	
17.12-FEB	10:26	JIM	MB		1409.478	0.007		1439.000		1	F	T	200.	
18.12-FEB	10:17	JIM	MB		1417.663	0.007		1439.000		1	F	T	200.	
19.12-FEB	09:54	JIM	MB		-1375.697	-0.043		1439.000		1	F	T	200.	
20.12-FEB	09:05	JAMES	MB		1396.176	0.007		1439.000		1	F	T	200.	
21.12-FEB	08:29	JIM	MB		1414.555	0.007		1439.000		1	F	T	200.	
22.12-FEB	08:12	JIM	MB		1418.748	0.007		1439.000		1	F	T	200.	
23.12-FEB	08:01	JIM	MB		1440.202	0.007		1270.000		1	F	T	200.	
24.12-FEB	07:48	JIM	BG		-1063.356	-0.176				1	F	F	200.	
25.12-FEB	07:40	JIM	BG		-760.495	-0.243				1	F	T	200.	
26.12-FEB	06:49	JIM	BG		-1108.887	-0.169				1	F	T	200.	
27.11-FEB	17:17	JIM	BG		-710.373	-0.261				1	F	T	200.	
28.25-JAN	07:25	JAMES	BG		-1458.263	-0.128				1	F	F	200.	
29.25-JAN	07:18	JAMES	BG		-1078.429	-0.170				1	F	T	200.	
30.25-JAN	07:02	JAMES	BG		-906.675	-0.203				1	F	T	200.	
31.25-JAN	06:54	JAMES	BG		-790.408	-0.233				1	F	T	200.	
32.25-JAN	06:47	JAMES	BG		-1094.153	-0.170				1	F	T	200.	
33.20-JAN	15:11	SPRINKLE	MP		1.093	-0.941				5	F	F	200.	
34.20-JAN	14:40	SPRINKLE	MB		1309.241	0.008		1270.000		1	F	F	200.	
35.20-JAN	14:10	SPRINKLE	BG		-776.152	-0.241				1	F	F	200.	
36.20-JAN	14:04	SPRINKLE	BG		-446.936	-0.415				1	F	T	200.	
37.20-JAN	13:58	SPRINKLE	BG		-908.262	-0.204				1	F	T	200.	
38.19-JAN	17:10	JIM	MB		1322.211	0.023		1270.000		1	F	T	20.	
39.19-JAN	14:57	SPRINKLE	MB		1275.408	0.022		1270.000		1	F	T	0.	
40.19-JAN	14:55	SPRINKLE	MB		1283.412	0.022		1270.000		1	F	T	0.	
41.19-JAN	14:53	SPRINKLE	MB		1251.258	0.022		1270.000		1	F	T	0.	
42.19-JAN	14:50	JIM	BG		-74.512	-0.866				1	F	T	0.	
43.19-JAN	14:49	JIM	BG		6165.171	0.024				1	F	T	0.	
44.19-JAN	14:16	JIM	MP		0.932	0.146				5	F	F	0.	
45.19-JAN	14:11	JIM	MB		1326.780	27.616		460.000		1	F	F	0.	
46.19-JAN	11:21	JIM	MB	17474024.000		0.000		460.000		1	F	T	0.	
47.19-JAN	11:00	SPRINKLE	MB	17614832.000		0.000		460.000		1	F	T	0.	
48.19-JAN	10:57	JIM	MB	17163984.000		0.000		460.000		1	F	T	0.	
49.19-JAN	10:48	JIM	MB	17427828.000		0.000		450.000		1	F	T	0.	
50.19-JAN	10:44	SPRINKLE	MB	17741562.000		0.000		450.000		1	F	T	0.	

OUTPUT FILES

(cont)

Other than the log files for the measurement results, the program can write raw spectral data and the results from the confirmatory measurements. The different logical devices can be assigned to appropriate physical devices (See ASS command in the RT-11 OPERATING SYSTEM section).

OUT:BCKGRD.HEU - Raw data from last background measurement.

- Written by get90.src.

DAT:namexx.Ynn - Raw data from assays.

- Single assays nn = 00.
- For autocycle runs, nn is a counter from 01 to 99.
- Written and read by get90.src and put90.src.

OUT:namyyy.yyy - Results from V option (confirmatory results).

- Written and read by wrtdat.src and reddat.src.

TEST PROGRAMS

A few test programs are available for this system.

- DEC test routines (not supplied by LANL)

- UTL73 (Canberra-supplied test routine for the MCA)

- TESTCO (To test the conveyor interface)

TEST PROGRAMS

(cont)

- VERIFY (Reads the asylog file or the confirmatory results file as shipper or receiver and then compares 1 to 4 detectors.)

PROGRAM MODIFICATION**Overview**

It is LANL's expectation that this set of codes will be adequate for the needs of Y12. However, the user may decide to alter the software. If this becomes a necessity, the following information is provided.

The Y12 and CHNY12 programs are unnecessarily complex because of the memory limits of RT-11. We strongly recommend caution in attempting modifications and the frequent backing up of original and altered code. It may be prudent to consult with the Safeguards Assay Group at Los Alamos for additional advice.

The FORTRAN source code is the *.SRC files, and the common blocks are *.CMN files. The utility INC will include the common blocks in the source code to make *.FOR files as input to the compiler. Each subroutine can have a command file, name.COM, which will include and compile the subroutine:

```
INC name.FOR=name.SRC
FORT/WARN/NOLINE name/LIST
DEL name.FOR.
```

The /noline option must be used on most of the source compilation to keep the link file small enough to run. By deleting the *.FOR files, space

Overview**(cont)**

is preserved on the disk and the user will not accidentally compile an old version. Several command files exist to help recompile and link.

INCY12.COM - Includes common
blocks in all routines

CMPY12.COM - Compiles all routines (FORTRAN
and MACRO)

LNKY12.COM - Links the overlaid main program
Y12

LNKCHN.COM - Links the parameter change
program CHNY12

BLDY12.COM - Will do the above and more

All command files are ASCII and easy to edit. The command files are invoked by typing

\$@name <CR>.

A program can be aborted two ways. A clean exit is provided by the exit option. A second alternative is to type <CTRL C> twice. The latter approach can leave the system such that file I/O or the MCA communications still need to be reset; consequently, use the first alternative if possible. Another clean way to terminate the user program on the remote terminal consists of typing

ABO name<CR>

Overview**(cont)**

at the console terminal, where name is the program name. If available computer memory is an issue,

UNL name<CR>

will remove the halted job "name" from memory.

Subroutine Summary

The HEU drum monitor is provided with the source code. Seventy-six subroutines are used in its programs. This section starts with a brief description of each subroutine's function and ends with an invocation summary. The invocation summary is an invaluable aid in determining "how did it get there/change that/do what it did."

ACQR90 - Routine to preset count time, start MCA, wait until acquisition is finished

ADATE - Updates assay date/time in common

AEVAX - Notifies VAX assay has ended (not used)

ANALYZ - Does analysis of net peak area data (and uncertainty)

AREA - Determines net peak area

ASOPT - Directs A and V options

ASSAY - Called by each option to get data, reduce it, etc.

AUTCYC - Directs AU and AUD options

BACKGR - Directs B option

BEEP - Sends CRTL-G to user terminal 1

CALIB - Not used

CHANGE - Directs parameter change program

Subroutine Summary

(cont)

CHK90 - Upon return from MCA commands, checks if command succeeded

CHNGRL - General routine to input a real number to a prompt, also includes CHNGIN (integer input) and CHNGAL (alphanumeric input)

CHNPRT - Lists parameter values at terminal or line printer

CHNY12 - Dummy calling routine for virtual overlays (not used)

CMPLTN - Types out estimated MCA completion time

COMM - Main routine for VAX communications (not implemented)

COMPAR - Compares shipper and receiver values

CURDTA - Directs AC option

DATA90 - Gets raw spectral data from MCA or disk file

DATTIM - Sets or reads system date/time

DDIAG - Compares data diagnostics (full width at half maximum and centroid)

DIALOG - Dialogue with operator for each assay option

ERRMSG - Prints error messages from errmsg .heu file

EXEC - Controls Y12 program

FRDSK - Directs AD option

GETOP - Gets operator ID

GETSMP - Gets sample ID from operator

GET90 - Writes spectral data from MCA to disk

HEADER - Writes output header for assay options

HELP - Prints available options in Y12 code

Subroutine Summary

(cont)

INDEX - Correlates peak indices with energiesto allow generic coding of analysis sections

INIT90 - Initializes MCA

INTFLG - Initializes some logical flags before an option is exercised.

ISONAM - Correlates peak indices with isotopic names to allow generic coding of analysis sections

JULDAT - Julian day/time routine

LGMENU - Menu print and selection for both log files

LHEAD - Writes header for assay log listing

LMCLOG - Lists selected portion of MC log file

LSLOG - Lists selected portion of assay log file

MCBIAS - Directs MB option

MCCHK - Checks MC log file to ensure MC is current

MCHEAD - Writes header for MC log file listing

MCPREC - Directs MP option

NEWNAM - Increments file name for writing raw data to disk (AU option)

NOCALI - Dummy stub for C option

NOSTAT - Dummy stub for conveyor communications (not used)

PASS - Checks for valid password (deactivated at delivery; see pass.com and CMPY12.COM)

PEAKS - Calls AREA and RESGN as appropriate

PRIFIN - Closes line printer to empty buffer

PRINTS - Writes summary information for AU and MP options

Subroutine Summary
(cont)

PRINT1 - Writes short, medium, or long output
for assay options

PUT90 - Reads spectral data from disk to MCA

READB - Reads background results file

READC - Reads parameter file

READNM - Reads list of available parameter
files

REDDAT - Reads confirmatory results file

RESET - At start-up, initializes some
variables. Directs D option

RESGN - Computes resolution and centroids of
peaks

ROI90 - Intensifies regions of interest on
MCA

SLEEP - Program will wait specified time
without monopolizing the CPU

START - Initializes some devices at start up
of Y12 program

STATUS - Communicates with conveyor

TESTCO - Executive program for testing
conveyor communications

TEST90 - Executive program for testing MCA
routines

VAXINI - Initializes VAX communications (not
used)

VERIFY - Executive program for testing
comparison analysis

WRITB - Writes background results file

WRITC - Writes parameter file

WRITLG - Writes assay log file

WRTDAT - Writes confirmatory results file

WTMB - Reads MC log file, writes MB results
to another file (not used)

Subroutine Summary

(cont)

WTMCLG - Writes MC log file

YESNO - Prompts user with ASCII string,

function to set logical*1 to true or
falseY12 - Dummy calling program for Y12 to use
virtual overlays**Invocation Summary**

The invocation summary from RXVP80 follows. The complete RXVP80 static analysis was provided on a micro-VAX streaming tape.

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS				
<hr/>					
ABS	WHICH IS UNDEFINED				
	IS CALLED BY - INDEX	MCBIAS	MCPREC	SCALE	
ACQR90	IS CALLED BY - ASSAY				
	AND CALLS - ADCOFF	CDAT	CHK90	CMPLTN	
	COLL	CTIM	DATTIM	ERRMSG	
	FROMCA	INQADC	IPEEK	IPGKE	
	ITTINR	PSET	SLEEP	STATUS	
	YESNO				
ADATE	IS CALLED BY - AUTCYC	MCBIAS			
	AND CALLS - DATTIM				
ADCOFF	WHICH IS UNDEFINED				
	IS CALLED BY - ACQR90	INIT90			
AEVAX	IS CALLED BY - -NONE-				
	AND CALLS - COMM				
AINT	WHICH IS UNDEFINED				
	IS CALLED BY - JULDA1				
AMOD	WHICH IS UNDEFINED				
	IS CALLED BY - CMPLTN				
ANALYZ	IS CALLED BY - ASSAY				
	AND CALLS - SQRT	WRTDAT			
AREA	IS CALLED BY - PEAKS				
	AND CALLS - DATA90	SQRT			

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS				
ASOPT	IS CALLED BY -	Y12			
	AND CALLS -	ASSAY GET90 WRITLG	BEEP MCCHK	COMPAR PRIFIN	DIALOG PRINT1
ASSAY	IS CALLED BY -	ASOPT FRDSK	AUTCYC MCBIAS	BACKGR MCPREC	CURD1A
	AND CALLS -	ACQR90 DDIAG	ANALYZ ERRMSG	DATA90 HEADER	DATTIM PEAKS
AUTCYC	IS CALLED BY -	Y12			
	AND CALLS -	ADATE HEADER PRINT1	ASSAY MCCHK PRINTS	DIALOG NEWNAM SQRT	GET90 PRIFIN WRITLG
BACKGR	IS CALLED BY -	Y12			
	AND CALLS -	ASSAY PASS SQRT	DIALOG PRIFIN WRITB	ERRMSG PRINT1 WTMCLG	GET90 READB YESNO
BEEP	IS CALLED BY -	ASOPT	START		
	AND CALLS -	KPOKE			
CALIB	WHICH IS UNDEFINED				
	IS CALLED BY -	Y12			
CDAT	WHICH IS UNDEFINED				
	IS CALLED BY -	ACQR90			
CHANGE	IS CALLED BY -	CHNY12			
	AND CALLS -	CHAR CHNPRT GETOP READNM	CHNGAL DATTIM INDEX WRITB	CHNGIN ERRMSG READB WRITC	CHNGRL EXIT READC YESNO
CHAR	WHICH IS UNDEFINED				

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS		
	IS CALLED BY	-	CHANGE
			NEWNAM
CHK90	IS CALLED BY	-	ACQR90 PUT90
	AND CALLS	-	-NONE-
CHNGAL	IS CALLED BY	-	CHANGE
	AND CALLS	-	LENGTH
CHNGIN	IS CALLED BY	-	CHANGE
	AND CALLS	-	LENGTH
CHNGRL	IS CALLED BY	-	CHANGE
	AND CALLS	-	LENGTH
CHNPRT	IS CALLED BY	-	CHANGE
	AND CALLS	-	CHNGIN
			ISONAM
			PRIFIN
CHNY12	IS CALLED BY	-	-NONE-
	AND CALLS	-	CHANGE
CLOS80	WHICH IS UNDEFINED		
	IS CALLED BY	-	PUT90
CMPLTN	IS CALLED BY	-	ACQR90
	AND CALLS	-	AMOD
COLL	WHICH IS UNDEFINED		
	IS CALLED BY	-	ACQR90
COMM	WHICH IS UNDEFINED		
	IS CALLED BY	-	AEVAX
COMPAR	WHICH IS UNDEFINED		

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS
	IS CALLED BY - ASOPT VERIFY
CROI	WHICH IS UNDEFINED
	IS CALLED BY - ROI90
CTIM	WHICH IS UNDEFINED
	IS CALLED BY - ACQR90
CURDTA	IS CALLED BY - Y12
	AND CALLS - ASSAY DIALOG PRINT1
DATA90	IS CALLED BY - AREA ASSAY
	AND CALLS - CHK90 ERMSG FROMCA MOD
DATE	WHICH IS UNDEFINED
	IS CALLED BY - DATTIM
DATTIM	IS CALLED BY - ACQR90 CMPLTN ADATE LHEAD ASSAY MCHEAD CHANGE Y12
	AND CALLS - DATE SETTIM JULDAT TIME SETDAT SETDT
DDIAG	IS CALLED BY - ASSAY
	AND CALLS - ERMSG
DIALOG	IS CALLED BY - ASOPT FRDSK AUTCYC MCBIAS BACKGR MCPREC CURDTA
	AND CALLS - GETOP YESNO GETSMP NEWNAM PASS
EROI	WHICH IS UNDEFINED
	IS CALLED BY - ROI90

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS				
ERRMSG	IS CALLED BY -	ACQR90 DATA90 INIT90 MCCHK PRINT1 READNM STATUS WRITLG	ASSAY DDIAG LMCLOG MCPREC PUT90 REDDAT VERIFY WRITB	BACKGR GET90 LSLOG PASS READB SCALE WRITB WTMCLG	CHANGE GETSMP MCBIAS PRIFIN READC START WRITC
	AND CALLS -	-NONE-			
EXIT	WHICH IS UNDEFINED				
	IS CALLED BY -	CHANGE Y12	INIT90	TESTSC	VERIFY
FLOAT	WHICH IS UNDEFINED				
	IS CALLED BY -	RESGN			
FRDSK	IS CALLED BY -	Y12	DIALOG	PRINT1	WRITB
	AND CALLS -	ASSAY YESNO			
FROMCA	WHICH IS UNDEFINED				
	IS CALLED BY -	ACQR90	DATA90	GET90	
GET90	IS CALLED BY -	ASOPT	AUTCYC	BACKGR	Y12
	AND CALLS -	CHK90	ERRMSG	FROMCA	
GETOP	IS CALLED BY -	CHANGE	DIALOG		
	AND CALLS -	-NONE-			
GETSMP	IS CALLED BY -	DIALOG	REDDAT	SCALE	
	AND CALLS -	ERRMSG			
HEADER	IS CALLED BY -	ASSAY	AUTCYC	MCPREC	

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS

	AND CALLS - -NONE-
HELP	IS CALLED BY - Y12
	AND CALLS - -NONE-
IDETCH	WHICH IS UNDEFINED
	IS CALLED BY - INIT90
IFIX	WHICH IS UNDEFINED
	IS CALLED BY - RESGN
IFREEC	WHICH IS UNDEFINED
	IS CALLED BY - PUT90 READNM
IGETC	WHICH IS UNDEFINED
	IS CALLED BY - PUT90 READNM
INDEX	IS CALLED BY - CHANGE Y12
	AND CALLS - ABS
INIDL	WHICH IS UNDEFINED
	IS CALLED BY - START TESTSC
INIMSG	WHICH IS UNDEFINED
	IS CALLED BY - VAXINI
INIT	WHICH IS UNDEFINED
	IS CALLED BY - INIT90

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS	CHK90	ERRMSG	EXIT
INIT90	IS CALLED BY - START AND CALLS - ADCOFF IDETCH	INIT	INQADC	
INQADC	WHICH IS UNDEFINED IS CALLED BY - ACQR90	INIT90		
INTFLG	IS CALLED BY - RESET AND CALLS - -NONE-	START	Y12	
IPEEK	WHICH IS UNDEFINED IS CALLED BY - ACQR90	PASS		
IPOKE	WHICH IS UNDEFINED IS CALLED BY - ACQR90	PASS		
IRDL	WHICH IS UNDEFINED IS CALLED BY - SCALE			
ISLEEP	WHICH IS UNDEFINED IS CALLED BY - SLEEP			
ISONAM	IS CALLED BY - CHNPRT AND CALLS - -NONE-			
ITTINR	WHICH IS UNDEFINED IS CALLED BY - ACQR90	PASS		
JULDAT	IS CALLED BY - DATTIM	LMCLOG	LSLOG	MCCHK

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS				
	AND CALLS - AINT				
KBON	WHICH IS UNDEFINED				
	IS CALLED BY - Y12				
KPEEK	WHICH IS UNDEFINED				
	IS CALLED BY - STATUS				
KPOKE	WHICH IS UNDEFINED				
	IS CALLED BY - BEEP	STATUS			
LENGTH	IS CALLED BY - CHNGAL	CHNGIN	CHNGRL		
	AND CALLS - RCTRLO				
LGMENU	IS CALLED BY - LMCLOG	LSLOG			
	AND CALLS - RCTRILO				
LHEAD	IS CALLED BY - LSLOG				
	AND CALLS - DATTIM				
LMCLOG	IS CALLED BY - Y12				
	AND CALLS - ERRMSG	JULDAT	LGMENU	MCHEAD	
LSLOG	IS CALLED BY - VERIFY	Y12			
	AND CALLS - ERRMSG	JULDAT	LGMENU	LHEAD	
MCBIAS	IS CALLED BY - Y12				
	AND CALLS - ABS ERRMSG SQRT	ADATE MCCHK WTMCLG	ASSAY PRIFIN YESNO	DIALOG PRINT 1	
MCCHK	IS CALLED BY - ASOPT	AUTCYC	MCBIAS		

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS			
	AND CALLS	-	ERRMSG	JULDAT
MCHEAD	IS CALLED BY	-	LMCLOG	YESNO
	AND CALLS	-	DATTIM	
MCPREC	IS CALLED BY	-	Y12	
	AND CALLS	-	ABS HEADER YESNO	ASSAY PRINT1
				DIALOG SQRT
MOD	WHICH IS UNDEFINED			ERRMSG WTMCLG
	IS CALLED BY	-	DATA90	
NEWNAM	IS CALLED BY	-	AUTCYC	DIALOG
	AND CALLS	-	CHAR	
OPEN80	WHICH IS UNDEFINED			
	IS CALLED BY	-	PUT90	
PASS	IS CALLED BY	-	BACKGR Y12	DIALOG
	AND CALLS	-	ERRMSG	IPEEK
PEAKS	IS CALLED BY	-	ASSAY	IPOKE
	AND CALLS	-	AREA	ITTINR
PRIFIN	IS CALLED BY	-	ASOPT MCBIAS	RESGN
	AND CALLS	-	ERRMSG	AUTCYC Y12
PRINT1	IS CALLED BY	-	ASOPT FRDSK	BACKGR MCBIAS
	AND CALLS	-	ERRMSG	CHNPRT
				CURDTA

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS				
PRINTS	IS CALLED BY - AUTCYC				
	AND CALLS - -NONE-				
PSET	WHICH IS UNDEFINED				
	IS CALLED BY - ACQR90				
PUT90	IS CALLED BY - Y12				
	AND CALLS - CHK90 IGETC	CLOS80 OPEN80	ERRMSG WRIT80	IFREEC	
RCTRLO	WHICH IS UNDEFINED				
	IS CALLED BY - LENGTH	LGMENU	Y12	YESNO	
READB	IS CALLED BY - BACKGR	CHANGE	RESET		
	AND CALLS - ERRMSG				
READC	IS CALLED BY - CHANGE	RESET			
	AND CALLS - ERRMSG				
READNM	IS CALLED BY - CHANGE	RESET			
	AND CALLS - ERRMSG	IFREEC IGETC	YESNO		
REDDAT	IS CALLED BY - GETSMP	VERIFY	Y12		
	AND CALLS - ERRMSG	PASS	YESNO		
RESET	IS CALLED BY - Y12				
	AND CALLS - INTFLG ROI90	READB STATUS	READC YESNO	READNM	
RESGN	IS CALLED BY - PEAKS				
	AND CALLS - FLOAT	IFIX			
ROI90	IS CALLED BY - RESET				

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS			EROI	SLEEP
	AND CALLS	-	CHK90 YESNO	CROI	
SCALE	IS CALLED BY	-	GETSMP	TESTSC	
	AND CALLS	-	ABS	ERRMSG	IRDL
SECNDS	WHICH IS UNDEFINED				YESNO
	IS CALLED BY	-	CMPLTN		
SETDAT	WHICH IS UNDEFINED				
	IS CALLED BY	-	DATTIM		
SETDT	WHICH IS UNDEFINED				
	IS CALLED BY	-	DATTIM		
SETERR	WHICH IS UNDEFINED				
	IS CALLED BY	-	START		
SETTIM	WHICH IS UNDEFINED				
	IS CALLED BY	-	DATTIM		
SLEEP	IS CALLED BY	-	ACQR90	ROI90	START
	AND CALLS	-	ISLEEP		
SPRPAR	WHICH IS UNDEFINED				
	IS CALLED BY	-	VAXINI		
SQRT	WHICH IS UNDEFINED				
	IS CALLED BY	-	ANALYZ MCBIAS	AREA MCPREC	AUTCYC
					BACKGR

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS					
START	IS CALLED BY -	Y12				
	AND CALLS -	BEEP INTFLG	ERRMSG SETERR	INIDL SLEEP	INIT90 STATUS	
STATUS	IS CALLED BY -	ACQR90 Y12	RESET	START	TESTCO	
	AND CALLS -	ERRMSG YESNO	KPEEK	KPOKE	PASS	
TESTCO	IS CALLED BY -	-NONE-				
	AND CALLS -	STATUS	YESNO			
TESTSC	IS CALLED BY -	-NONE-				
	AND CALLS -	EXIT	INIDL	SCALE	YESNO	
TIME	WHICH IS UNDEFINED					
	IS CALLED BY -	DATTIM				
VAXINI	IS CALLED BY -	-NONE-				
	AND CALLS -	INIMSG	SPRPAR			
VERIFY	IS CALLED BY -	-NONE-				
	AND CALLS -	CHNGRL LSLOG	COMPAR REDDAT	ERRMSG YESNO	EXIT	
WRIT80	WHICH IS UNDEFINED					
	IS CALLED BY -	PUT90				
WRITB	IS CALLED BY -	BACKGR	CHANGE	FRDSK		
	AND CALLS -	ERRMSG				
WRITC	IS CALLED BY -	CHANGE				
	AND CALLS -	ERRMSG				

Invocation Summary

(cont)

INVOCATION SUMMARY

ENTRY	LISTS OF CALLS				
WRITLG	IS CALLED BY -	ASOPT	AUTCYC		
	AND CALLS -	ERRMSG			
WRTDAT	IS CALLED BY -	ANALYZ			
	AND CALLS -	ERRMSG	YESNO		
WTMCLG	IS CALLED BY -	BACKGR	MCBIAS	MCPREC	
	AND CALLS -	ERRMSG			
Y12	IS CALLED BY -	-NONE-			
	AND CALLS -	ASOPT CURDTA GET90 KBON MCPREC RCTRLO STATUS	AUTCYC DATTIM HELP LMCLOG PASS REDDAT	BACKGR EXIT INDEX LSLOG PRIFIN RESET	CALIB FRDSK INTFLG MCBIAS PUT90 START
YESNO	IS CALLED BY -	ACQR90 FRDSK READNM SCALE VERIFY	BACKGR MCBIAS REDDAT STATUS WRTDAT	CHANGE MCCHK RESET TESTCO	DIALOG MCPREC RO190 TESTSC
	AND CALLS -	RCTRLO			
** THE FOLLOWING ENTRIES ARE NOT CALLED **					
		AEVAX VAXINI	CHNY12 VERIFY	TESTCO Y12	TESTSC

COMPUTER CONFIGURATION

The computer interface information is shown below.

<u>Device</u>	<u>Address</u>	<u>Vector</u>	<u>Interface Board</u>	<u>Baud</u>	<u>Comments</u>
System console	177560	60	Multifunction board	300	VT220
Line printer	176500	300	Multifunction board		
			port A1		
Series 35+ MCA	176100	120	Canberra 8673V	19 k	
User term #1	176540	340	DLV	Chan 0	9600 VT220 (RS-232)
User term #2	176550	350	DLV	Chan 1	9600 Not used (RS-232)
User term #3	176560	360	DLV	Chan 3	9600 Not used (RS-232)
Toledo scale	176570	370	DLV11-J	Chan 3	9600 RS-422 11 data bits
Conveyor	167770	70	DRV11		

The Canberra interface conflicts with Ethernet. We suggest using the vector 130 for Canberra if Ethernet is added to this machine.

DLV11-J BOARD

The DLV11-J device, vector addressing, serial word formats, baud rates, and interface type are selected by installing and/or removing jumpers. The DLV11-J is configured to non-DEC factory standard. The device base address is 776540 and the vector base address is 340. Channel 3, which is normally the console port, is now disabled as the console port. The board is configured as follows (refer to Fig. 6):

- Baud rate is set to 9600.
- For base address of 776540, change "A5" from X0 to X1.

DLV11-J BOARD

(cont)

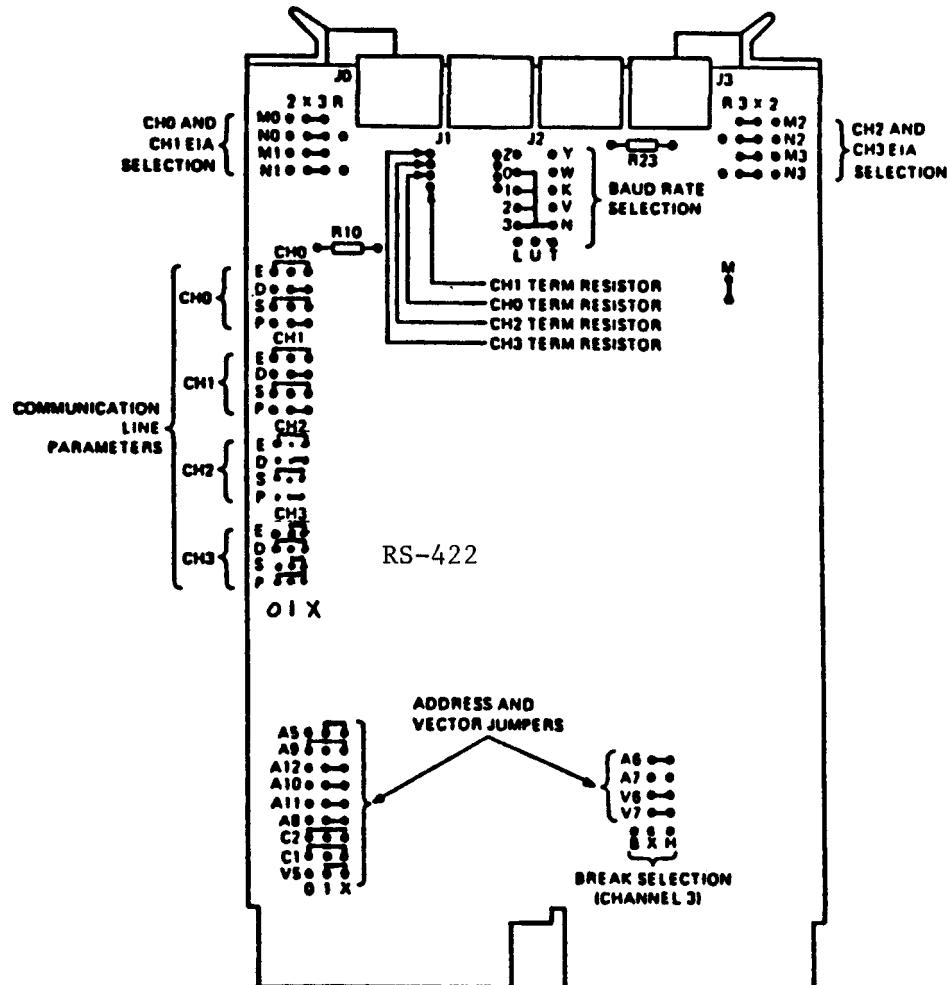


Fig. 6. DLV11-J jumper locations.

- For base vector address of 340, change "V5" from X0 to X1.
- To disable Channel 3 as console so it can now be in sequence with the other three channels, change "C1" from X1 to X0 and "C2" from X1 to X0. See Fig. 6 for jumper location.

DLV11-J BOARD

(cont)

- RS-422 requires different jumpers and a $100-\Omega$ resistor.
- Disable the BREAK option by removing X to H.

See Digital Memories and Peripherals Handbook 1978-79, pp. 2-148, for detailed configuration description.*

SAMPLE/DETECTOR GEOMETRY

The best compromise between higher response and less sensitivity to sample positioning errors is based on a detector-to-sample center distance of 27 in. This compromise assumes that each detector is recessed 3 in. into its lead collimator and that the collimator is 24 in. from the barrel center. We aligned the bottom detector with the lowest possible SNM height. Then we used a nominal 20-in. spacing between the detector center lines.

RADIOACTIVE SOURCES

Each of the low-resolution detectors has a small ^{241}Am seed embedded in the detector crystal. This seed creates pulses that can be used for analog stabilization. The gamma-equivalent energy of the seed pulses is specified to be 1.7 ± 0.2 MeV. Four 1 μC ^{133}Ba sources were supplied with the HEU drum monitor. They are doubly encapsulated in 1- by 1- by 1/2-in. plastic cases. They are to be used for measurement control assays.

*Digital Equipment Corporation, Maynard, Massachusetts.

PREVENTATIVE MAINTENANCE

Keep the rack fan filters clean.

Periodically verify that the various cooling fans
are still functional.

REFERENCES

1. C. Alton Coulter, "Safeguards Uses of Confirmatory Measurements" *Nucl. Mater. Manage.* XIV (3), (1985), p. 613.
2. J. K. Sprinkle, Jr., "A Confirmatory Measurement Technique for Highly Enriched Uranium," Los Alamos National Laboratory report LA-11021-MS (July 1987).
3. R. Marshall and F. Hsue, Los Alamos National Laboratory Group OS-2, private communication, July (1985).
4. S. -T. Hsue, K. Campbell, and G. Barlich, "Measurement Control Program for New Special Recovery," Los Alamos National Laboratory report LA-10974-MS (April 1987).