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Different approaches to the formulation of relativistic many-body
dynamics yield different perspectives of nature and the magnitude of
"relativistic effects"”. The effects of Lorentz invariance appear to
be relatively unimportant. Important dynamical features of spinorial
many-body formalisms -are effects of subnuclear degrees of freedom
which are represented in the many-bcedy forces of the covariant nuclear

Hamiltonian.

I. INTRODUCTION %@

This talk is an attempt to gain a perspective of the apparent
success of recent "relativistic" many-body calculations.'™ Let me
start by listing minimal requirements of quantum mechanics and Lorentz
invariance. These requirements are:

1. There is a Hilbert space of states. States are represented by
functions for which a positive scalar product is defined.

2. The spectrum of the energy operator is positive.

3. Lorentz transformations and translations (Poincaré group) are
realized by unitary operators on the Hilbert space.

4. The generators of the space-time translations have the physical
significance of momentum and energy.

These requirements are included in the axioms of an axiomatic

formulation of field theoryé. Ordinarily the Hilbert space consists

of all square integrable functions of a complete set of dynamical

variables, but this is not a necessary feature. Alternatively the

physical Hilbert space may be a submanifold of functions embedded in a

larger function space. The interactions appear in the metric with

which the inner product of the Hilbert space is realized.’ These two

possibilities lead to two distinctly different approaches to the

formulation of relativistic many-body dynamics, which I will discuss

in Secs. III and IV. respectively. 1In Sec. II, I will give a capsule

review of some key features of the non-relativistic many-body theory

which provides the standard of comparison bv which "relativisric Ld
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Fig. 1 Diagrams illustrating the operators Sy, e and m.

Here Q is a projection operator that projects into particle states
above the Fermi level, e contains the single particle and single hole
energies andrn‘contains particle-hole, hole-hole, particle-hole-hole
and particle-particle-hole interactions. The operators e and are
functionals of Sp. In the Brueckner approximation is neglected and

Eq. (6) reduces to

E ~ <¢[H |&> + <e|G|e> . (10)

ol

The purpose of this brief sketch is to emphasize some features of
the norelativistic theory which should be kept in mind in comparing it
to relativistic calculations. 1) The two- and three-body interactions
in the many-body Hamiltonian are independent of the spectator
nucleons. 2) The validity of Eq. (10) depends on the fact that the
energy so calculated is demonstrably an approximation to the many-body
Schrodinger equation, and that necessary improvements can be obtained
from better approximations for Y] . Calculations with two-body forces
that fit ecattering data have been carried out with sufficient
accuracy to allow the conclusion that a realistic many-body

Hamiltonian must include three-body forces. 10



II. NONRELATIVISTIC MANY-BODY THEORY

Let [@) be the ground state of a noninteracting Fermi gas, which
satisfies the Schrodinger equation,
(Hy - Eg)|[e> = 0, (1
where
2
- gk (2)
i 2m
The ground state ’Y> of the complete Hamiltonian H,
=7 f + XY v+ T v, (3)
5 Im 7 iy 1 3T ijk ijk
normalized by <¢'1> = 1 , can be expressed in the form®
|v> = exp(] s ) |e> , (4)
n

is a linked operator that raises n nucleons above the Fermi

where S,
The operators S, are determined by coupled nonlinear equations

level.
that follow from the Schrodinger equation,

(H-E)J|»=0. (5)

Only S, and Sy are are needed to obtain the exact value of the energy
E from the Hamiltonian (3). 1In the absence of three-body forces 82

alone determines the energy E,

E = <o|Hy|#> + <o|V+VS,|e> . (6)

Formal elimination of the operators S, for n>2 from the coupled
cluster equations yields the Day equation9 for 52'

fesy) + qva + M (s))s, + qv(1-0) = 0 , (7)

which is equivalent to

s, = - 261-0) + 21 - ¢ YMs, . (8)

where
=1 +vly . coN



II1. CANONICAI. RELATIVISTIC OUANTUM MECHANICS

It is possible to satisfy the requirements listed in the
Introduction within the framework of canonical quantum mechanics.
This approach retains the salient features of conventional nuclear
dynamics.”‘13

The states of N nucleons are represented by square integrable

functions ¢(51,u1,...,ﬁN.uN). w;= % %. In the nonrelativistic theory

the function space as well as the unitary representations of
translations, rotations and Galilean boosts are the same with and

without interactions. In the relativistic case the structure of the

Poincaré group together with the assumption that the function space is
independent of the interactions require that other transformations
besides time translations depend on the interactions. This can easily
be seen by the following argument. Since energy and momentum

transform as a four-vector P,they must transform under the Lorentz

transformation A according to

ot (A)PYUCA) =AY pY (11)
It follows that the generators of the rotationless Lorentz trans-

formations, R, must satisfy the commutation relations
(R,P°] =i # and ([K.,P, ] = i6,, P° (12)
: ik jk *

If an interaction is added to PO then Eq. (12) requires that the
interaction shows up in other generators as well. A subgroup of the
Poincaré group may be chosen to be independent of the interactions

and this choice of a kinematic subgroup leads to different forms of
dynamics which are unitarily related to each other. The interaction
terms in the Poincaré generators have simple covariance properties
only for the kinematic transformations. If the Euclidean group (space
translations and rotations) is kinematic, the dynamics is called
"instant-form"14, because the Euclidean group leaves the instant
hyperplane t=0 invariant. For some purposes it is advantageous to

include some Lorentz transformations in the kinematic subgroup. In

the "front-form" dynamics13'15 the kinematic subgroup leaves the light

front x4+t=0 invariant.
In either form of relativistic dynamics it is possible to

construct a nuclear many-body Hamiltonian of the general form,



+ . . (13)

Vijk

2, 2 1 1
H=17 Vv pi+m + 53 V.. + 4
i i 2 ij ij 3! 15k

The Hamiltonian (13) has qualitatively the samc structure as the

nonrelativistic many-body Hamiltonian. The main new feature is that

the Lorentz invariance requires relations between the two-body

interactions and the many-body interactions. For nuclear many-body

sytems the required many-body forces are small and the dynamics is

still dominated by two-body interactions. The relativistic theory

formulated here clearly reduces to the conventional nuclear many-body
dynamics when all momenta are small compared to the nucleon mass.

Theére are no qualitative differences between relativistic and

Quantitative effects have been found to be

nonrelativistic dynamics.
16,17

smaller than rough estimates would indicate.

Canonical field theories of nucleons and mesons also belong to the

class of dynamical models discussed in this Section. The Fock space

is the same function space for free fields (free particles) as for

interacting fields. The Lagrangian formulation automatically

introduces the interactions into both the energy operator and the

dynamical Lorentz transformations in either the instant!® or the front

In this case the number of mesons and/or nucleon-antinucleon
Any truncation of the theory to a

form. 19
pairs is not Lorentz invariant.
definite number of particles destroys the Lorentz invariance.
"Relativistic effects" that are effects of the suppressed

antinucleon?® and meson degrees of freedom show up as features of the

nonrelativistic two- and three-body potentials. However the role of a

canonical nucleon-antinucleon field is hard to reconcile with the
quark structure of the nucleons and is not required either by Lorent:z
invariance or by the assumption that i(he underlying fundamental theory

is a quantum field theory.

IV. HILBERT SPACES OF COVARIANT WAVE FUNCTIONS

Let us assume that the underlying theory is a field theory of
quarks and glue in which there is a Poincaré invariant physical
vacuum state ,0). The Hilbert spsce of the physical states is
generated by functionals of the fields acting on the vacuum. It is
assumed that there exists a unitary representation U(A,a) on this
Hilbert space. Let ¥(x) be a covariant spinor functional of the

fundamental fields that creates color singlet states of baryon



number 1 when acting on the vacuum. The normalization of ¥(x) is

fixed by the condition

3 .
Glre]o> = @20 2 a@) P, (14)

where IO) is the physical vacuum, ,p) is a physical one-nucleon state

with the normalization <p'|p>=6(§'-§), and u(ﬁ) is the positive-energy

solution of the Dirac equation, (iy-p+m)u(p)=0, normalized according

to uf(ﬁ)u(ﬁ) = 1. The p and x dependences of the right hand side of"
(14) follow from the covariance of the field ¢(x).
With any smooth test function f of n space-time points Xq,ee00Xp

and n spinor indices PloessPy we can associate a state of baryon

number n by
= 4 4 = -
[£5 =T con fd¥%ena [ T (k) B () [0> £(xp 00X 000), (15)
Py P n
In the following I will always suppress the spinor indices.
product of two vectors ’f) and ’g) implies an inner product of the

1
The inner

functions f and g,
<@[£> = fa4xi...fd% [t ... [t RO, x )

W(Xn,...,x.l;x.i,-..,xl:)) f(xr'),"')x‘l) ? (16)

where
W(x1,...,x

n;xn1°'°x1) <Ol¢(x1)"'¢'>(xn)¢'(xn)"'*(x1),0> (17)
The inner product <f|f>, by construction, cannot be negative, but

it does vanish for many functions. We have thus a Hilbert space of

equivalence classes of covariant functions, where the metric is given
by the "quasi-Wightman function" W. Because of the covariance
properties of the field y¢(x) the inner product of the functions g

ana f defined in Eq. (16) is invariant under the transformation

£(Xy,eeex ) S (A;‘)...s (A;1)f(Ax1-a,...,Axn-a) (18)

of the functions f and g. The transformation (18) is therefore a
unitary representation of the Poincaré group on the function space.
It is easy to see that for free fields we recover exactly the

Hilbert space of Sec. III. Instead of introducing interactions by

modifying the representations of the Poincaré group as in Sec. III
one may try to construct dynamical models by generating a manifestly



covariant inner product of the wave functions that depends on the

interactions. For two particles (e.g. two nucleons or a nucleon and

a nucleus) this can be done easily by modifying the mass-shell con-
straints of free particles with covariant quasipot:ent:ials.”'21"24

In the limit in which the mass of one of the two particles tends to
infinity the two-body equation reduces to the Dirac equation with a

one-body potential and the physical Hilbert space is spanned by the

positive energy solutions of that equation. It should be clear from

the preceding derivation that covariant spinor wave functions need not
be interpreted in terms of a nucleon-antinucleon Fock space. The
"small components" of phenomenological Dirac wave functions need not

be associated with antinucleon probabilities.
The generalization of this approach to many-body systems is not
The problem of obtaining the correct cluster

straightforward.
In particular there is so far no model

properties remains unsolved.
of relativistic many-body dynamics which would justify "relativistic'

Brueckner calculations.
The dynamical role of the Hilbert-space metric may still be

important for systems where Lorentz invariance is unimportant. The

spinorial shell model can serve as an illustration of this point.

Consider the Hamiltonian

Ho= ] A, (8,00 (3P + ¢y + Bm+ag) ]; A (6, 00).
1

+% gj A (g dg) Ay 4y o 00U o 0y oy ag) Ay (dyudg) (19)

where A+(¢V,¢S) is the projector into the positive-energy states of

h1 Z aep + o4yt s(m+¢s) , {20)

¢y bg are shell-model potentials and Uij is a residual two-body

interaction. The physical Hilbert space is spanned by products of

the positive energy eigenfunctions of hy. The residual interaction

UijAcan be (and must be) chosen such that the spectrum of H is
This model satisfies all t':e minimal requirements listed in

positive.
For physical reasons such

the introduction except Lorentz invariance.
a spinorial shell model might well compare favorably with conventional

shell models.



V. CONCLUSIONS

Requirements of relativistic invariance leave a very large amount
of freedom in the formulation of dynamical nuclear models: The
conventional nonrelativistic nuclear many-body dynamics can be
generalized to satisfy the requirements of Poincaré invariance without
altering the space of functions which represent the states. On the
other hand quantum field theory suggests models in which the metric of
the Hilbert space is determined by the dynamics. This approach
naturally accommodates Dirac-spinor wave functions. While
antinucleons, composed of antiquarks, exist in the underlying field
theory the "small components" of the model wave functions are not
directly associated with antinucleon degrees of freedom.

The effects of Lorentz invariance on low-energy nuclear many-body

systems appear to be relatively unimportant. "Relativistic effects"

are primarily effects of subnucleon degrees of freedom, but they are
not convincing evidence for a dominant role of any particular degree

of freedom.
This work was supported by the U.S. Department of Energy, Nuclear

Physics Division, under contract W-31-109-ENG-38.

REFERENCES

1. B. D. Serot and J. D. Walecka, The Relativistic Nuclear Many-Body
Problem, Advances in Nuclear Eysics 16 (1985), J. W. Negele and
E. Vogt, eds. (Plenum Press).

2. C. J. Horowitz and B. D. Serot, Phys. Lett. 137B, 187 (1984).

3. R. Machleidt and R. Brockmann, Phys. Lett. 160B, 364 (1985).

4. L. S. Celenza and C. M. Shakin, Relativistic Nuclear Physics:
Theories of Structure and Scattering, World Scientific Publisher,
Singapore, to be published; Phys. Rep. 100C, 327 (1983).

S. M. Tamion, C. Mahaux and R. Rochus, Nucl. Phys. A365, 371 (1981);
Phys. Rev. 22

6. R. F, Streater and A. S. Wightman, PCT Spin and Statistics and
All That, (W. A. Benjamin 1964); N. N. Bogoliubov, A. A. Logunov
and I. T. Todorov, Introduction to Axiomatic Quantum Field
Theory, (W. A. Benjamin 1975).

7. W. N. Polyzou, Phys. Rev. D32, 995 (1985).

8. F. Coester, Lectures in Theoretical Physicg, Vol. B, (Gordon and
Breach, New York 1969); H. Kummel, K. W. Luhrmann and J. G.
Zabolitzky, Phys. Rep. 36C, 1 (1978).

9. D. B. Day, Revs. Mod. Phys. 50, 495 (1978); B. D. Day, Brueckner-
Bethe Calculations of Nuclear Matter, in Proceedings of the
International School of Physics, "Enrico Fermi", Varenna, Italy
(1980), A. Molinari ed. (North Holland, Amsterdam 1981).

10. B. D. Day, Phys. Rev. C 24, 1203 (1981); B. D. Day and R. B.
Wiringa, Phys. Rev. C 32, 1057 (1985).




11.

12.

13.

14,

15-‘

16.
17.
18.

19.
20.

21.

22.

23.
24.

F. Coester, Proceedings of the "Bates Users Theory Group
Workshop" (1985), F. Gross ed., to be published in AIP conference
proceedings.

F. Coestex and W. N. Polyzou, Phys. Rev. D26, 1348 (1982); S. N.
Sokolov, Dokl. Akad. Nauk. USSR 233, 575 (1977); Teor. Mat. Fiz.
36, 193 (1978); U. Mutze, Phys. Rev. D29, 2255 (1983) ; F. M.
Lev, J. Phys. A Math. Gen. 17, 2047 (1984).

B. L. G. Bakker, L. A. Kondratyuk and M. V. Terent'ev Nucl. Phys.
B158, 497 (1979); L. A. Kondratyuk and M. V. Terent'ev Yad. Fiz.
31, 1087 (1980); F. M. Lev, Fortschr. Physik 31, 75 (1983).

P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

H. Leutwyler and J. Stern, Ann. Phys. (N.Y.) 112, 94 (1978).

F. Coester, S. C. Pieper and F. J. D. Serduke, Phys. Rev. CI1, 1

(1975).

W. Glockle, T.-S. H. Lee and F. Coester,
J. Schwinger, Phys. Rev. 127, 324 (1962).
Shau-Jin Chang et al., Phys. Rev. D7, 1133 (1973).

B. D. Keister and R. B. Wiringa, Proceedings of the Bates Users
Theory Group Workshop (1985), F. Gross ed. To be published in

AIP conference proceedings.
I. T. Todorov, Relativistic Action at a Distance: Classical and

Quantum Aspects, J. Llosa, ed. (Springer,Berlin 71982) and

references quoted therein.
M. King and F. Rohrlich, Ann. Phys. (N.Y.) 130, 350 (1980); F.
Rohrlich Phys. Rev. D23, 1305 (1981); D25 , 2576 (1981); L. P.
Horwitz and F. Rohrlich, Phys.Rev. D24, 1528 (1981); D26, 2452

(1982).
H. W. Crater and P. Van Alstine, Ann. Phys. (N.Y.) 148, 57 1983;

Phys. Rev. Lett. 53, 1527 (1984); Phys. Rev. D30, 2585 (1984).
H. Sazdjian, Ann.—?hxﬁ. (N.Y.) 136, 136 (19871).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufactursr, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein dr not necessarily state or reflect those of the

United States Government or any agency thereof.

submitted to Phys. Rev. C.



