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Different approaches to the formulation of relativistic many-body

dynamics yield different perspectives of nature and the magnitude of

"relativistic effects". The effects of Lorentz invariance appear to

be relatively unimportant. Important dynamical features of spinorial

many-body formalisms 'are effects of subnuclear degrees of freedom

which are represented in the many-body forces of the covariant nuclear

Hamiltonian.

I. INTRODUCTION

This talk is an attempt to gain a perspective of the apparent

success of recent "relativistic" many-body calculations. Let me

start by listing minimal requirements of quantum mechanics and Lorentz

invariance. These requirements are:

1. There is a Hilbert space of states. States are represented by

functions for which a positive scalar product is defined.

2. The spectrum of the energy operator is positive.

3. Lorentz. _trans_fprnatio_njB and translations (Poincard group) are

realized by unitary operators on the Hilbert space.

4. The generators of the space-time translations have the physical

significance of momentum and energy.

These requirements are included in the axioms of an axiomatic

formulation of field theory . Ordinarily the Hilbert space consists

of all square integrable functions of a complete set of dynamical

variables, but this is not a necessary feature. Alternatively the

physical Hilbert space may be a submanifold of functions embedded in a

larger function space. The interactions appear in the metric with

which the inner product of the Hilbert space is realized.' These two

possibilities lead to two distinctly different approaches to the

formulation of relativistic many-body dynamics, which I will discuss

in Sees. Ill and IV. respectively. In Sec. II, I will give a capsule

review of some key features of the non-relativistic many-body theory

which provides the standard of comparison bv which "relativistic



s2:

Fig. 1 Diagrams illustrating the operators S2. e and JYl

Here Q is a projection operator that projects into particle states

above the Fermi level, e contains the single particle and single hole

energies and/Y\ contains particle-hole, hole-hole, particle-hole-hole

and particle-particle-hole interactions. The operators e and are

functionals of S2. In the Brueckner approximation is neglected and

Eq. (6) reduces to

E <*|H0|*> + <*|G| •> . (10)

The purpose of this brief sketch is to emphasize some features of

the norelativistic theory which should be kept in mind in comparing it

to relativistic calculations. 1) The two- and three-body interactions

in the many-body Hamiltonian are independent of the spectator

nucleons. 2) The validity of Eq. (10) depends on the fact that the

energy so calculated is demonstrably an approximation to the many-body

Schrodinger equation, and that necessary improvements can be obtained

from better approximations for Yfl . Calculations with two-body forces

that fit scattering data have been carried out with sufficient

accuracy to allow the conclusion that a realistic many-body

Hamiltonian must include three-body forces.



II. NONRELATIVISTIC MANY-BODY THEORY

Let I*> be the ground s ta te of a noninteracting Fermi gas, which

s a t i s f i e s the Schrodinger equation,

(HQ - Eo)|*> = 0 , (1)

where

2

Ĥ  = 5" TT̂  . (2)
0 v 2m

The ground state If> of the complete Hamiltonian H,

p 2

» " I 55 + 7 I vlj + 3T J k
 vljk • »>

normal ized by <*|T> = 1 , can be expressed in the form0

I T> = exp(£ S ) |*> , (A)
n

where Sn is a linked operator that raises n nucleons above the Fermi

level. The operators Sn are determined by coupled nonlinear equations

that follow from the Schradinger equation,

(H - E)|T> - 0 . (5)

Only S2 and S3 are are needed to obtain the exact value of the energy

E from the Hamiltonian (3). In the absence of three-body forces S 2

alone determines the energy E,

E - <*|H0|#> + <#|V+VS2|#> . (6)

Formal elimination of the operators S n for n>2 from the coupled

cluster equations yields the Day equation^ for S2,

{e(S2) + QVQ +W)(S2)}S2 + QV(I-Q) - 0 , (7)

which is equivalent to

io . (8)

where
a = (i + v P-



III. CANONICAL RELATIVISTIC OUANTUM MECHANICS

It is possible to satisfy the requirements listed in the

Introduction within the framework of canonical quantum mechcinicSc

This approach retains the salient features of conventional nuclear

dynamics.''""' 3

The states of N nucleons are represented by square integrable

functions <j>(p\ , u- , ... .jL, uN) , v^ ± T>« I" t h e nonrelativistic theory

the function space as well as the unitary representations of

translations, rotations and Galilean boosts are the same with and

without interactions. In the relativistic case the structure of the

Poincare" group together with the assumption that the function space is

independent of the interactions require that other transformations

besides time translations depend on the interactions. This can easily

be seen by the following argument. Since energy and momentum

transform as a four-vector P.they must transform under the Lorentz

transformation A according to

Uf(A)PuU(A) = Al)
vP

v (11)

It follows that the generators of the rotationless Lorentz trans-

formations, £, must satisfy the commutation relations

[*,P°] = if and [KjfPk] = i6jk P° . (12)

If an interaction is added to P^ then Eq. (12) requires that the

interaction shows up in other generators as well. A subgroup of the

Poincarfi group may be chosen to be independent of the interactions

and this choice of a kinematic subgroup leads to different forms of

dynamics which are unitarily related to each other. The interaction

terms in the Poincare" generators have simple covariance properties

only for the kinematic transformations. If the Euclidean group (space

translations and rotations) is kinematic, the dynamics is called

"instant-form"'\ because the Euclidean group leaves the instant

hyperplane t=0 invariant. For some purposes it is advantageous to

include some Lorentz transformations in the kinematic subgroup. In
•I Q 4 C

the "front-form" dynamics the kinematic subgroup leaves the light

front x3+t-=0 invariant.

In either form of relativistic dynamics it is possible to

construct a nuclear many-body Hamiltonian of the general form.



H - I / p2 + m
2 + 1 I V +ij- I V + ... . (13)

1 lj J ljk J

The Hamiltonian (13) has qualitatively the same structure as the

nonrelativistic many-body Hamiltonian. The main new feature is that

the Lorentz invariance requires relations between the two-body

interactions and the many-body interactions. For nuclear many-body

sytems the required many-body forces are small and the dynamics is

still dominated by two-body interactions. The relativistic theory

formulated here clearly reduces to the conventional nuclear many-body

dynamics when all momenta are small compared to the nucleon mass.

There are no qualitative differences between relativistic and

nonrelativistic dynamics. Quantitative effects have been found to be

smaller than rough estimates would indicate. '

Canonical field theories of nucleons and mesons also belong to the

class of dynamical models discussed in this Section. The Fock space

is the same function space for free fields (free particles) as for

interacting fields. The Lagrangian formulation automatically

introduces the interactions into both the energy operator and the
1 &

dynamical Lorentz transformations in either the instant or the front

form. y In this case the number of mesons and/or nucleon-antinucleon

pairs is not Lorentz invariant. Any truncation of the theory to a

definite number of particles destroys the Lorentz invariance.

"Relativistic effects" that are effects of the suppressed

antinucleon*" and meson degrees of freedom show up as features of the

nonrelativistic two- and three-body potentials. However the role of a

canonical nucleon-antinucleon field is hard to reconcile with the

quark structure of the nucleons and is not required either by Lorentz

invariance or by the assumption that Lhe underlying fundamental theory

is a quantum field theory.

IV. H1LBERT SPACES OF C0VAR1ANT WAVE FUNCTIONS

Let us assume that the underlying theory is a field theory of

quarks and glue in which there is a Poincare" invariant physical

vacuum state |o>. The Hilbert spree of the physical states is

generated by functionals of the fields acting on the vacuum. It is

assumed that there exists a unitary representation U(A,a) on this

Hilbert space. Let *(x) be a covariant spinor functional of the

fundamental fields that creates color singlet states of baryon



number 1 when acting on the vacuum. The normalization of iji(x) is

fixed by the condition

_3

> = (2*)~2 fi(p) e-^'* , (14)

where |0> is the physical vacuum, |p> is a physical one-nucleon state

with the normalization <p'|p>=5(p'-p), and u(p) is the positive-energy

solution of the Dirac equation, (iY*p+ni)u(p)=0 , normalized according

to u (p)u(p) = 1. The p and x dependences of the right hand side of

(14) follow from the covariance of the field <j>(x) .

With any smooth test function f of n space-time points Xi,...,xn

and n spinor indices p.,...,p we can associate a state of baryon

number n by

|f> =.I ...I /d 4x r../d
4x n^ (x^...* (xn)|0> f(xn.pn xl>Pi),(15)

PJ pn 1 n

In the following I will always suppress the spinor indices. The inner

product of two vectors |f> and |g> implies an inner product of the

functions f and g,

<g|f> = /d4x'.../d4x]^/d
4xl.../d

AxnI(x1 ,....xn;

W(xn>... ,x1;xj,...,x^) f(x^,...,xj) , (16)
where

j) | ) ( ^ |> (17)

The inner product <f|f>, by construction, cannot be negative, but

it does vanish for many functions. We have thus a Hilbert space of

equivalence classes of covariant functions, where the metric is given

by the "quasi-Wightman function" W. Because of the covariance

properties of the field *(x) the inner product of the functions g

ana f defined in Eq. (16) is invariant under the transformation

f(x1 xn) - S (A~1)...S (A~1)f(Axl-a,...,Axn-a) d 8)

of the functions f and g. The transformation (18) is therefore a

unitary representation of the Poincare' group on the function space.

It is easy to see that for free fields we recover exactly the

Hilbert space of Sec. III. Instead of introducing interactions by

modifying the representations of the Poincare* group as in Sec. Ill

one may try to construct dynamical models by generating a manifestly



covariant inner product of the wave functions that depends on the

interactions. For two particles (e.g. two nucleons or a nucleon and

a nucleus) this can be done easily by modifying the mass-shell con-

straints of free particles with covariant quasipotentials.*'»21"24

In the limit in which the mass of one of the two particles tends to

infinity the two-body equation reduces to the Dirac equation with a

one-body potential and the physical Hilbert space is spanned by the

positive energy solutions of that equation. It should be clear from

the preceding derivation that covariant spinor wave functions need not

be interpreted in terms of a nucleon-antinucleon Fock space. The

"small components" of phenomenological Dirac wave functions need not

be associated with aatinucleon probabilities.

The generalization of this approach to many-body systems is not

straightforward. The problem of obtaining the correct cluster

properties remains unsolved. In particular there is so far no model

of relativistic many-body dynamics which would justify "relativistic"

Brueckner calculations.

The dynamical role of the Hilbert-space metric may still be

important for systems where Lorentz invariance is unimportant. The

spinorial shell model can serve as an illustration of this point.

Consider the Hamiltonian

where A+(4v,4»o) is the projector into the positive-energy states of

) , (20)

4>v,*s are shell-model potentials and \]i- is a residual two-body

interaction. The physical Hilbert space is spanned by products of

the positive energy eigenfunctions of h^. The residual interaction

UJJ can be (and must be) chosen such that the spectrum of H is

positive. This model satisfies all t::e minimal requirements listed in

the introduction except Lorentz invariance. For physical reasons such

a spinorial shell model might well compare favorably with conventional

shell models.



V. CONCLUSIONS

Requirements of relativistic invariance leave a very large amount

of freedom in the formulation of dynamical nuclear models: The

conventional nonrelativistic nuclear many-body dynamics can be

generalized to satisfy the requirements of Poincare* invariance without

altering the space of functions which represent the states. On the

other hand quantum field theory suggests models in which the metric of

the Hilbert space is determined by the dynamics. This approach

naturally accommodates Dirac-spinor wave functions. While

antinucleons, composed of antiquarks, exist in the underlying field

theory the "small components" of the model wave functions are not

directly associated with antinucleon degrees of freedom.

The effects of Lorentz invariance on low-energy nuclear many-body

systems appear to be relatively unimportant. "Relativistic effects"

are primarily effects of subnucleon degrees of freedom, but they are

not convincing evidence for a dominant role of any particular degree

of freedom.
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