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Abstract

Geologic systems are inherently heterogeneous systems. Heterogeneity plays an
important role in scaling, creating regions of local saturation and channeling flow. Previous
modeling efforts of unsaturated flow at Yucca Mountain have used homogeneous models.
This report examines heterogeneity and develops two-dimensional numerical methods that
may be appropriate for calculation of ground water travel times. Numerical methods
investigated include geostatistics, adaptive grids, upscaling and flow modeling. The
numerical approaches are tested in a model predicting volumetric water contents at USW UZ-
16 for the Yucca Mountain test case of the INTRAVAL project. The predicted values of
volumetric water content generally compare well with the measured volumetric water
contents. Inclusion of heterogeneity in the two-dimensional models results in regions of local
saturation; such regions could result in channeling and fast paths important to ground water
travel time analyses. This report forms the technical basis for a two-dimensional
heterogeneous model to be used in future ground water travel time studies.
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Introduction

Purpose

The pre-waste-emplacement ground water travel time requirement is a regulatory
criterion that specifies ground water travel time to the accessible environment shall be
greater than 1,000 years. The Nuclear Regulatory Commission (1983) regulation states that
"The geologic repository shall be located so that pre-waste-emplacement groundwater travel
time along the fastest path of likely radionuclide travel from the disturbed zone to the
accessible environment shall be at least 1,000 years or such other travel time as may be
approved or specified by the Commission." A review of the implications of the ground water
travel time regulations is given in Kaplan, et al. (1989). Satisfying the ground water travel
time criterion for the potential repository at Yucca Mountain requires the study of fast travel
path formation in the unsaturated zone and development of models that simulate the
formation of fast paths.

Conceptual models for unsaturated flow that have been used for total-systems
performance assessment generally fall into the categories of composite-porosity or fracture
models. The composite-porosity models are based on the assumption of local capillary
pressure equilibrium in the rock matrix and fractures (Peters and Klavetter, 1988). With the
current magnitude of flux thought to occur at Yucca Mountain, composite-porosity models
exhibit matrix-dominated flow and slow travel times (Barnard, et al., 1991). Fracture-flow
models (Gauthier, et al., 1992 and Nitao and Buscheck, 1991) can exhibit very fast travel
times but either ignore imbibition of water into the matrix or require an unrealistic supply
of water at the upper boundary. The actual hydrologic conditions at Yucca Mountain are
thought to lie somewhere between the extremes of these two types of models. The current
study considers the effects of heterogeneities on composite-porosity models and seeks to
develop numerical methods (and models) that can produce locally saturated zones where
fracture flow can occur. The credibility of the model and numerical methods is investigated
by using test data from the INTRAVAL project (Swedish Nuclear Inspectorate, 1992) to
attempt to predict in-situ volumetric water content at specific locations in Yucca Mountain.
Work based on the numerical methods presented in this study is eventually intended to allow
the calculation of ground water travel times in heterogeneous media.

Prior ground water travel time calculations (Kaplan, 1993) used one-dimensional models

to describe the flow at Yucca Mountain. Although one-dimensional calculations are useful




due to their speed and utility in sensitivity analyses, the lack of a lateral dimension often
forces the flow through less permeable materials or into fractures in an unrealistic manner.
It is difficult, if not impossible, to include heterogenities into one-dimensional calculations.
Two-dimensional calculations provide a lateral dimension and alternate flow paths. While
it may eventually be necessary to perform three-dimensional calculations, reasonable
boundary conditions are difficult to obtain and the larger elements required to make three-
dimensional calculations computationally feasible would make resolution of some of the
geologic structure and physical processes more difficult. Thus, the effects of heterogeneities
are considered in terms of two dimensional flow models.

Uniformity of material properties in a unit suppresses preferential pathways and tends
to make two-dimensional calculations appear one-dimensional. Heterogeneity is a
fundamental part of the physical processes investigated since it allows development of
preferential pathways that are important in two-dimensional calculations. These pathways
or channels are important because of the nonlinear nature of unsaturated flow. For example,
studies of the influence of obstructions on meter-scale models shows that for some regions of
the moisture retention curve the average flux is nearly independent of the obstruction size
(Eaton, 1993), which implies a substantial decrease in travel times as the obstruction size
increases. Channeling may allow fast transport and is also important in initiating fracture
flow. Fast transport, which may imply failure to meet the ground water travel time criterion,
is unlikely under uniform flow, so it is important to allow, and not suppress, channeling in
the model if performance is to be evaluated. Studies involving meter-scale models of
heterogeneity show that for a 50% simple binary mix, the travel times may vary as much as
a factor of 8 due to channeling (Eaton, 1993). Although Eaton concludes that an effective
conductivity can be obtained, then only the average flux is calculated. Average flux is useful
in calculation of cumulative releases, but may greatly underestimate mechanical dispersion
which is important in dose calculations. For ground water travel time an average flux is of
little use in ascertaining fast paths.

Three aspects of heterogeneity are considered: location of hydrogeologic unit
boundaries, intraformational variation of hydrologic properties, and variation of hydrologic
properties due to scale. The geometry of the boundaries of the hydrogeologic units cannot be
captured in one dimension, yet this geometry is very important to the flow in two dimensions.
Because of lack of knowledge of unit boundaries at locations other than drill holes, it may
also be important to include geometric uncertainty in the flow models. Variation of

hydrologic parameters is based almost entirely on data collected at Yucca Mountain. Linear
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correlations between hydrologic parameters are used to model heterogeneities as realistically
as possible. Heterogeneity also introduces the problem of scale into the model. Upscaling
methods are used for deriving hydrologic property values at the computational scale from the
small core scale measurements at which the data were acquired.

Developing a model for flow in unsaturated heterogeneous media at Yucca Mountain
requires the development of numerical methods to carry out the modeling. Introducing
heterogeneity poses problems for flow codes currently used on Yucca Mountain. To describe
the geometry of the hydrogeologic boundaries and intraformational heterogeneities, adaptive
grids are required that often can be quite distorted. In addition, every element will have
different properties which creates problems for typical flow codes that require clustering of
nodes or elements near material interfaces. Most flow codes based on capillary pressure as
the primary variable require clustering of nodes or elements near channeling, which is
difficult when local zones of saturation are not known a priori. Flow codes deveioped for the
current work are based on the dual variable (Darcy fluxes) and avoid the latter two problems

without clustering of nodes or elements.

Numerical Methods for Heterogeneous Media

Geostatistical methods are used to model the location of hydrogeologic boundaries in
a systematic fashion that is consistent with the data. Several realizations of the
hydrogeologic units are constructed, which allows geologic uncertainty to be assessed. The
geometrj may servé to focus the flow and determine where lateral flow is forced downward
through less permeable layers.

Porosity is chosen as the fundamental hydrologic property. Probability distribution
functions are constructed for the hydrogeologic units or subunits. A deterministic trend is
also added into the model for one subunit. Most of the rest of the hydrologic properties are
generated using linear correlations with porosity.

The flow grid employed is coarser than the detailed grid used for geostatistics and
generation of material properties. In order to allow the geometry of the hydrogeologic units
to be captured by the flow grid, an adaptive grid is used. The adapted grid is fitted using the
criterion of minimizing heterogeneity. Porosity is used in the measure of heterogeneity,
although the technique can easily be extended to other hydrologic properties, such as
saturated hydraulic conductivity, or combinations of hydrologic properties. Minimizing
heterogeneity within flow elements allows the geometry to be captured and also reduces the

errors in upscaling the hydrologic properties from the geostatistical grid to the flow grid.

3




INTRAVAL Test Problem

Simple homogeneous test problems have been found to be of limited usefulness in
developing numerical methods for heterogeneous porous media. Modeling of simple problems
does not allow adequate allow testing of numerical approaches for nonlinearity, channeling
and scaling parameters from laboratory to computational dimensions. For example, an
adaptive grid that minimizes heterogeneity within elements is difficult to test on
homogeneous problems. Heterogeneous problems are inherently complex and the different
numerical methods are interdependent and cannot be easily tested alone. An example is that
testing a numerical flow code designed for heterogeneous media requires a numerical method
for adequately generating heterogeneous domains. Another example is that different aspects
of heterogeneity cannot be evaluated for sensitivity unless numerical flow simulations and
travel time calculations are available for heterogeneous media. Prior ground water travel
time analyses (Kaplan, 1993 and Prindle and Hopkins, 1990) used simple homogeneous
domains. The Yucca Mountain test case of INTRAVAL (discussed more fully below) offers
an opportunity to use an extensive data set to investigate both the data uncertainty and
heterogeneity issues.

The models employed emphasize wherever possible the use of data that actually can be
measured. The resulting models are then testable in that data can be collected that prove
or disprove the components of the models. For example, it is difficult and perhaps impossible
to measure flux; thus the models are based on saturation data for the boundary conditions.

Two test problems are included in the Yucca Mountain test case. The first problem is
intended for calibration of the models employed by the participants and is thus referred to
as the calibration problem. As mentioned above, the models employed in this study use
saturations for boundary conditions and thus they do not have to be calibrated by adjusting
the infiltration flux. The calibration problem covers only a small region which is useful for
initial development and testing of the numerical approaches.

The second test problem included in the Yucca Mountain test case involves the
prediction of volumetric water contents at drill hole USW UZ-16 and is called the INTRAVAL
problem. The model domain used in this study is a full two-dimensional cross section
running from Ghost Dance fault on the west to Bow Ridge fault on the east. Although
prediction of volumetric water contents is a simpler task than travel times, volumetric water
content describes the hydrologic state of the tuffs and thus is a necessary condition for

developing an adequate model that can eventually be used in ground water travel time



calculations. The results show that the heterogeneous models can reasonably simulatein-situ

volumetric water contents.

INTRAVAL Data

INTRAVAL is an international cooperative project focusing on evaluation of conceptual
and mathematical models for ground water flow and transport in the context of performance
assessment of geologic repositories. INTRAVAL consists of many test cases and involves 26
participating parties from 12 countries and 11 field experiments. The primary objective of
INTRAVAL is to increase scientific confidence in approaches to modeling flow and transport
in a variety of geologic settings. The first phase began in October 1987, consisting of both
numerical modeling and experimental work. The results of the first phase, completed in
September 1990, showed a need for closer collaboration between experiments and models.
The second phase began in October 1990 with modelers attempting to predict the results of
experiments. Comparisons of predictions with laboratory or field measurements are used to
evaluate the current scientific understanding of flow and transport and the conceptual models
employed.

The INTRAVAL data for the Yucca Mountain test case consisted of four data sets and
the final release of data from USW UZ-16. There was a great deal of interaction between the
U. S. Geological Survey (USGS) and other participants regarding usefulness of issued data
and desired data. Review of the data by the modelers led to some of the data being measured
again using a different laboratory technique. Also, the interaction among modelers and
experimentalists identified additional data needs beyond the initial data sets. The USGS,
where possible, augmented the data sets to respond to the needs of the modelers. The data
sets were released for use by participants in the Yucca Mountain test case but are considered
preliminary. Much of the data may eventually be officially released in a similar form for use
by the Yucca Mountain project.

The first data set was released on June 15, 1992 (Voss, 1992a). Data from a composite
surface transect were provided that covered surficial samples from all stratigraphic units
likely to be needed for modeling. Rock matrix properties provided were bulk density, porosity
available to water, particle density, saturated conductivity, relative-humidity-dried sorptivity
(sorptivity of a sample after it has been dried by long exposure to low humidity) and moisture
retention data. Additional data were provided from three drill holes. Properties from USW
GU-3 were bulk density, porosity, particle density and relative-humidity-dried sorptivity.
Drill holes USW UZN-54 and USW UZN-55 provided data using both relative-humidity-



drying and 105°C oven-drying. The properties measured were bulk density, porosity, particle
density, in-situ volumetric water content, and in-situ saturation (calculated). The lithology
was also provided. Also, the predicted stratigraphy for USW UZ-16 was included in the data
set.

The second data set was released October 30, 1992 (Voss, 1992b). A map was provided
of topographic regions thought to have different infiltration properties. An addition was
provided to the composite transect consisting of sorptivity measured at a higher saturation
value. For vitric caprock in the composite transect, porosity, particle density and bulk
density were provided. Data from USW UZN-53 were provided with the same properties
measured as for USW UZN-54 and USW UZN-55.

The third data set was released on February 15, 1993 (Voss, 1993a). The moisture
retention data for the composite transect were redone in response to criticism regarding lack
of data at higher suction pressures. Also, property data were provided for USW UZN-53 for
11 additional core samples.

The fourth data set was released on June 23, 1993 (Voss, 1993b). These data were from
USW UZ-16 and included bulk density, porosity and particle density. Also, the lithology was
included. The stratigraphy differed significantly from the predicted stratigraphy by including
a significant section of Prow Pass. On August 3, 1993 the final data set was released (Voss,
1993c). These data provided the in-situ volumetric water content and in-situ saturation
(calculated) for USW UZ-16.

Overview

A schematic outline of the modeling process used in this study is shown in Figure 1.
In the modeling process, two-dimensional heterogeneous numerical models are developed and
applied to an INTRAVAL test problem. The process begins by using geostatistical methods
to generate simulations of the stratigraphy at Yucca Mountain. Then the stratigraphic units
assigned to the grid nodes are used to randomly generate the corresponding porosities using
the appropriate probability distribution. For the calibration problem, geostatistical methods
are used to directly generate porosities. Observed correlations of matrix porosity with the
rest of the material property data are then used to generate the material properties. A two-
dimensional flow grid is overlaid on the cross section of porosity and adapted to the cross
section to minimize heterogeneity within each element. Element matrix properties are
obtained by upscaling the properties from the smaller scale used for geostatistics. The final

step is application of a flow code designed to model unsaturated heterogeneous flow.
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Geostatistical Simulation

Data from Yucca Mountain generally are obtained from drill holes that are sparsely
distributed on and around the mountain. The data from these drill holes convey information
about likely values of properties at nearby points. The range, or correlation length, is the
distance over which the data convey information; i.e., the uncertainty in the derived
properties increases with distance from the measurement location to a maximum uncertainty
associated with the distribution of possible values far from any data. The range, in general,
is not isotropic but, in three dimensions, is described by two anisotropy ratios and three
angles. Also required in a model of spatial continuity is a function describing how the
influence of the data deteriorates as the distance varies from 0 to the range.

Kriging uses the above model of spatial continuity and the data to arrive at the most
likely values for the properties at each node of a specified grid. The kriging process tends to
average values and underestimates heterogeneity (Journel and Alabert, 1989). In contrast,
geostatistical simulation constructs a probability density function based on a model of
spatial continuity and the data and then randomly samples to determine properties over a
specified grid. Simulation produces more realistic heterogeneity in the simulated values than
kriging and can easily produce multiple realizations that are equally probable given the input
information. Thus geological uncertainty can be incorporated by using a Monte Carlo
approach.

Geostatistical simulation begins by choosing the property to be simulated. Two types
of properties are considered: quantitative properties such as laboratory measurements of
hydrologic properties on core samples and qualitative properties such as -lithologic log
descriptions of core. Sequential Gaussian simulation is selected for use with quantitative
properties. For qualitative properties, sequential indicator simulation is used (Deutsch and
Journel, 1992).

The second step is defining a grid for the geostatistical simulation. The grid ideally
should be of a similar scale as that of the data for the hydrologic properties. Computational
limits still require some difference in the geostatistical scale and core scale but the potential
changes in hydrologic properties are much less than assuming core scale properties directly
apply at the computational flow scale. Also, the size of geologic features should be considered

in order that the grid can resolve those features.



The next step is to construct a model of spatial continuity. If there are sufficiently
detailed data, then the model can be matched to the data. If sufficient data are unavailable,
then deterministic models (models expressing the expected values of a property) may be
another source to obtain a spatial continuity model.

Next, the simulation is done by sampling all points in the grid. Both the Gaussian and
indicator simulations are sequential in order that the problem is computationally feasible.
A sequential simulation chooses a random path through the geostatistical grid. Then for each
node, a search is conducted for nearby data and a probability density function is constructed
based on the model for spatial continuity. The probability density function is then randomly
sampled to determine the value or category assigned to the node which then becomes part
of the data.

Sequential Gaussian Simulation

The quantitative property chosen for geostatistical simulation is porosity since it is a
commonly measured hydrologic property. The correlation length for porosity is a few hundred
meters (Rautman and Flint, 1992). Thus, sequential Gaussian simulation is appropriate for
regions where data are separated at most on the order of a few hundred meters. Gaussian
simulation allows for detailed spatial resolution of the geologic structure and excels at
complicated structures.

The INTRAVAL calibration problem, where in-situ saturations are provided for
calibrating the models, involves two drill holes (USW UZN-54 and USW UZN-55) in the
southeastern portion of Yucca Mountain, as shown in Figure 2. The drill holes are located
70.5 meters apart parallel to the predominant strike of the Yucca Mountain units; defining
a north-south cross section. The southern drill hole, USW UZN-54, is located in the alluvium
of a wash. The northern drill hole, USW UZN-55, is located on the adjacent south-facing
sideslope.

The two drill holes are 70 to 80 meters in depth penetrating the welded and nonwelded
tuffs of the Miocene Paintbrush Tuff as shown in Figure 8. The uppermost tuff is from the
welded Tiva Canyon member. It is underlain by a series of bedded and nonwelded tuffs that
are referred to as the Paintbrush nonwelded interval. The drill holes end in the ngded
Topopah Spring member.

Hydraulic properties were measured in the laboratory on core collected from the two
drill holes on average intervals of less than a meter. Thus, detailed vertical porosity profiles

are available at two locations as shown in Figure 4. Since the calibration cross section is less
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than the estimated horizontal correlation length of 150 meters (Rautman and Flint, 1992 and
Istok, et al., 1991) use of Gaussian simulation to generate several realizations of the
porosities throughout the cross section is appropriate. The vertical correlation length is 37
meters. The seven two-dimensional realizations are shown in Figure 5. Note that the welded
Topopah Spring is not laterally intact in simulations 2 and 7. Also, the Paintbrush
nonwelded interval varies in shape and thickness. There is a tendency for higher porosity

to show up in the center of the top of the figure due to lack of conditioning data on one side.

Sequential Indicator Simulation

Available drill holes in the vicinity of USW UZ-16 are shown in Figure 2. Many of the
drill holes do not reach the water table and the few drill holes east of USW UZ-16 are located
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dipping to the east. The overall percentages for the categories are 70% welded, 22% zeolitic,
and 8% nonwelded. The details regarding the development of the model of spatial cont-inuity
are given in TSPA 1993 (Wilson, et al., 1994). The lateral anisotropy is adjusted to 1.0 for
these simulations to allow the data on the west side of the cross section to propagate to the

east rather than emphasizing the data to the north and south. Note that this may overstate
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simulation. The eastings range from 171,405.96 to 173,539.56 meters. A range of 231,712.11
to 232,169.31 meters is used for the northings. For the elevations, a range of 730.00 to
1309.12 meters is used. The grid nodes are 140 x 30 x 190 with the 30 nodes in the north-
south direction used to help in identification of stratigraphic units. Horizontal node spacing

is 15.24 meters in both directions and the vertical spacing is 3.05 meters apart.
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Stratigraphy and Flow Grid

The flow simulation uses a flow grid that typically is coarser than the grid used for the
geostatistical simulations. In modeling unsaturated flow, one of the most important factors
is to correctly describe the geometry. The geostatistical simulations provide detailed
geometric information for each realization. Adaptive grids allow a great deal of the geometry
to be portrayed. The flow grid is adapted to make the heterogeneity in each element
proportional to the area of the element. By reducing heterogeneity within each element, the

error involved in upscaling material properties is greatly reduced.

Unit Stratigraphy

The indicator simulation produces layers of the three lithologic categories. The
categories have to be split up into stratigraphic units. The process begins by searching for
the Calico Hills and Prow Pass consisting of the vitric nonwelded or zeolitic nonwelded
categories. Starting from either a vitric nonwelded or zeolitic nonwelded node, all connecting
nodes from the same categories are identified as a potential unit. The search is repeated to
construct several potential units. The largest of these potential units is then selected as the
Calico Hills/Prow Pass and two units (vitric and zeolitic) are constructed. Nonwelded nodes
are converted into the Calico Hills vitric unit and the zeolitic nodes are converted into the
Calico Hills and Prow Pass nonwelded zeolitic unit. Then a sweep is made to find any welded
nodes appearing in the Prow Pass. Any nodes of the welded category falling 200 feet below
the top of the Calico Hills are converted to the welded Prow Pass unit.

The second step in the identification of units is to delineate the nonwelded Paintbrush.
The largest unit of contiguous nonwelded nodes is selected. Then the grid is checked for any
offset nonwelded nodes that may be due to a simulated fault. Each easting is checked for
nodes from the selected unit and, if none exist, a search is conducted for contiguous sets of
nonwelded nodes. The largest set is then added to the selected set. Any nonwelded nodes
or zeolitic nodes that are not part of the selected units are regarded as noise generated by
the geostatistical procedure and are converted to the welded category. The midpoint of the
nonwelded Paintbrush is determined and used to separate the welded Tiva Canyon and
welded Topopah Spring units.

The result is a stratigraphy of six units for three simulations shown in Figures 6

through 8. For geostatistical simulations where the units are not well formed due to
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insufficient data, the conversion process to stratigraphic units may be flawed but it is

objective and automatic. As more data are obtained the conversion process improves.

Generating Porosity Values

Porosity has- been chosen to be the fundamental hydrologic property in these
simulations. The stratigraphies must be converted into porosities before the flow grid is
adapted to the cross section. Statistics gathered for each unit are used. Also, deterministic
trends can be incorporated to allow detailed features of the stratigraphy to be added. The
generated porosities are not conditioned to the porosity data; the simulated porosity, in
general, will not exactly match the measured porosities of the core samples at the original
location of the core. Also, the spatial correlations for porosity are ignored since it is expected
the scale of the elements will be of the order of the correlation length of porosity.

The welded Tiva Canyon unit, vitric nonwelded Calico Hills unit, zeolitic nonwelded
unit and the Prow Pass welded unit are all treated as single units. The Topopah Spring
welded unit and nonwelded Paintbrush units are split into subunits. The Topopah Spring
welded unit has a densely welded vitric caprock at the top and a basal vitrophyre and shardy
base at the bottom. The basal vitrophyre is below the potential repository and may be
important to travel times. These subunits are too thin to be explicitly considered in the
geostatistical stratigraphy, thus the percentages are based on thicknesses at USW UZ-16
(Voss, 1993b). The top 1.10% below the nonwelded Paintbrush is considered vitric caprock.
The bottom 3.67% is considered nonwelded Topopah Spring shardy base and then above the
shardy base is the basal vitrophyre subunit with 5.60% of the thickness. The nonwelded
Paintbrush is split up into a bedded subunit (bottom 58.2%) and shardy base subunit (part
of the Tiva Canyon ash flow).

The porosity of the shardy base subunit is modeled with a deterministic linear vertical

change in porosity, ¢, similiar to Rautman, et al. (1993)

$=0.46653-0.289462+0.057025g(), &)
where z is the normalized elevation in the shardy base (bottom of shardy base is 0 while the
top has an elevation of 1) and g() is the unit Gaussian deviate (normal distribution with a
standard deviation of 1). The porosities for the other units and subunits are computed using
the expected value and the standard deviation computed from the INTRAVAL data and

shown in Table 1. Thus the scatter is assumed to be normally distributed. The results of the
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conversion are shown in Figures 9 through 11 (the grids shown are discussed later in the

section on adaptive grids). The sources for the porosity data used are listed in Table 2.

Table 1: Porosities

Unit (Symbol) Subunit Average Standard
Deviation

welded Tiva Canyon 0.0697 0.0302

(TCw) .

nonwelded Paintbrush shardy base 0.1771 see Equation (1)

(PTn)

nonwelded Paintbrush bedded 0.4504 0.1054

(PTn)

Topopah Spring (TSw) vitric caprock 0.0565 0.0393

Topopah Spring (TSw) welded main 0.1297 0.0369

Topopah Spring (TSw) basal vitrophyre 0.0641 0.0434

Topopah Spring (TSw) nonwelded shardy base 0.2363 0.0572

vitric nonwelded Calico 0.3664 0.0742

Hills (vitric)

zeolitic nonwelded 0.3053 0.0460

(zeolitic)

welded Prow Pass (PPw) 0.1941 0.0575

The average porosity for the welded Tiva Canyon and welded Topopah Spring units
were less than those in data developed for TSPA 1993 (Schenker, et al., 1994). One possible
reason is that older measurements included nonconnected pores and/or water bound up in
minerals. The variation of porosity for the zeolitic unit is significantly less than that used
for TSPA 1993. The average Prow Pass porosity is 0.1941 versus 0.292 for TSPA 1993 which
could be due to the small amount of data available, difficulty in clearly distinguishing the
vertical extent of the welded unit, and/or the variation in welding in Prow Pass in its

horizontal extent.

19



T# UOHEB[NWIS ‘WS[qoi] TVAVILNI U3 10J PLip peidepy pue sanisolod pa[resd(] ‘6 9InsLg




3# UoHE[NWIS ‘W[qo1d TYAVILNI Y3 10f pu) pejdepy pue senisoiod pafreja 0T ImSLg

(ste191N) Bunseq







Table 2: Porosity Data Sources

Unit

Subunit

Data Sources

welded Tiva Canyon

USW UZN-53 (Voss, 1992b and Voss, 1993a)
USW UZN-54 and USW UZN-55 (Voss, 1992a)
transect (Voss, 1992a and Voss, 1993a)

USW UZ-16 (Voss, 1993b)

nonwelded Paintbrush

shardy base

USW UZN-53 (Voss, 1992b and Voss, 1993a)
USW UZN-54 and USW UZN-55 (Voss, 1992a)
USW UZ-16 (Voss, 1993b)

nonwelded Paintbrush

bedded

USW UZN-53 (Voss, 1992b and Voss, 1993a)
USW UZN-54 and USW UZN-55 (Voss, 1992a)
transect (Voss, 1992a and Voss, 1993a)

USW UZ-16 (Voss, 1993b)

Topopah Spring

vitric caprock

USW UZN-53 (Voss, 1992b and Voss, 1993a)
USW UZN-54 and USW UZN-55 (Voss, 1992a)
USW GU-3 (Voss, 1992a)

transect (Voss, 1992b and Voss, 1993a)

USW UZ-16 (Voss, 1993b)

Topopah Spring

welded main

USW UZN-54 (Voss, 1992a)
transect (Voss, 1992a and Voss, 1993a)
USW UZ-16 (Voss, 1993b)

Topopah Spring

basal vitrophyre

transect (voss, 1992a and Voss, 1993a)
USW GU-3 (Voss, 1992a)
USW UZ-16 (Voss, 1993b)

Topopah Spring

nonwelded shardy

base

USW UZ-16 (Voss, 1993a)

vitric nonwelded Calico

Hills

USW GU-3 (Voss, 1992a)

zeolitic nonwelded

transect (Voss, 1992a and Voss, 1993a)
USW UZ-16 (Voss, 1993b)
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Table 2 continued

Unit Subunit Data Sources
welded Prow Pass USW UZ-16 (Voss, 1993b)
Adaptive Grid

An adaptive grid allows the elements used in the flow simulator to match the
geometrical features in the geostatistical simulation. Boundaries between geologic units do
not follow straight lines but adopt a more natural undulation or irregular contact surface.

The adaptive grid algorithm uses four fixed corner nodes and problem-defined
boundaries for the four sides. The grid adaption process begins by defining an initial mesh.
This initial grid is obtained by first equally spacing the nodes on a straight line along the left
and right sides and then adjusting them to fit the problem-defined boundaries. Then the x-
coordinates are equally spaced row by row between the respective nodes on either side. The
top and bottom row of nodes are adjusted to fit the problem-defined boundaries. The final
step equally spaces the y-coordinates between the respective top and bottom nodes.

A major goal of the adaptive grid is to reduce heterogeneity within elements in order
to reduce uncertainty in upscaling material properties. First, a measure of heterogeneity

must be introduced to allow grids to be compared. Minimization of the 2-norm

2
“Ga“fl:E (o.iai)z}u ’ (2)

i=1

when used to adapt a mesh attempts to make the standard deviation, o;, of porosity
proportional to the area, a;, of the element (Steinberg and Roache, 1985). This norm can be
minimized by either (1) reducing heterogeneity within elements by aligning the grid with the
geometric features, or (2) reducing the size of elements in areas of underlying heterogeneity.
Small, heterogeneous elements may be subject to upscaling errors but presumably the
smaller size reduces their importance to the flow calculations.

The key to the grid adaption process is that moving any flow grid node influences the
contribution to the overall norm by at most four elements. A local norm is defined and
calculated for each internal node by applying Equation (2) to the four neighboring elements.
Then, after sorting the flow grid nodes by their local norms, the grid is adjusted node by node
starting with the flow grid node with the highest local norm. The smallest adjustment that
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virtually guarantees a change in elements for some of the underlying geostatistical nodes is
the spacing of the geostatistical nodes. Also, the spacing of the underlying geostatistical
nodes gives a bound for the possible resolution in the flow grid. Thus each flow grid node is
adjusted in the x and y directions by positive and negative increments equal to the spacing
of the geostatistical nodes. The local norm is recomputed after each adjustment and the
adjustment accepted if the local norm decreases. A similar process is carried out for
boundary nodes using a local norm based on the two adjacent elements and always adjusting
the nodes to lie on the problem-defined boundary.

The grid adjustment can be carried out until a sweep of the nodes produces no changes.
At some point, however, the improvements are small relative to the computing time required.
Thus, grid adjustment is stopped when a reduction in the 2-norm of less than 0.5% is realized

after a sweep of the nodes.

Finite element methods map the

AT
elements from physical space to a master
(x 1 (X3¥5)

Y
element with local coordinates {€;} = (7). 474
The master element is centered at the
origin with -1<E <1 as shown in Figure

12. The Jacobian of the transformation,

|J|, from physical space to the master | < >
element must be greater than 0 to ensure

the mapping is one-to-one, i.e., not

degenerate. For quadrilateral elements

» *y » - - _1
with bilinear basis functions (see (x1,y1) \v/ (x2,y2)

Appendix A for more details) the Jacobian Figure 12. Master Element

1S
1T =g 47, E 47,1, 3
where
Jo=[(x )y -y ) (=2, )y ~y,)I/8,
Ji=loeg =2 )0y, —y5) (e, ~x,)(y -y /8, (4)

Jo=[ey—x)(y —y ) (o, )y, ~y,)1/8.

Thus the condition for avoiding numerical problems due to the grid in the flow simulation is
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Jo~ Ul =12[>0- (5)
A physical interpretation of Equation (5) is that the quadrilateral element with bilinear basis
functions must be convex; i.e., no angles of greater than 180°. Another situtation where
Equation (5) is violated is where one of the sides of the quadrilateral has zero length. The
grid adjustment checks Equation (5) to ensure that elements are not distorted too much. The
distorted elements that result could still cause numerical problems due to high condition
numbers if not handled properly by the flow code.
The results of applying the Geostatistical Adaptive Grid (GAG) code to the seven
simulations of the calibration cross section are shown in Table 3. The average improvement
in the 2-norm is 48%. For the maximum o,; of any element the average improvement is

64%. The final grids are shown in Figures 13 through 19.

Table 3: Adaptive Grid Results for the Calibration Problem

Seed Initial Final Initial Final
2-norm 2-norm max o,a; max c;q;

1711 222.49 99.420 60.944 21.316
1713 195.42 110.39 58.491 22.550
1715 242.79 112.21 61.141 20.044
1717 225.15 104.74 55.706 19.294
1719 220.43 127.04 58.035 23.132
1721 202.38 102.59 60.160 21.853
1723 213.69 125.64 59.128 19.759

The INTRAVAL problem (east-west cross section) has less geologic structure and a
larger scale that makes resolution of the features more difficult. The average reduction in
the 2-norm is 27% for the three grids. For the same grids, the maximum cg; of any element
is reduced an average 41%. The norms for the three grids are given in Table 4. The grids
are shown in Figures 9 through 11.
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Table 4: Adaptive Grid Results for the INTRAVAL Problem

Seed Initial Final Initial Final
2-norm 2-norm max o;a; max o,q;
69067 49005 35858 7801.5 5097.9
69069 44116 32019 8003.7 4609.0
69071 42623 30813 7805.3 42274
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Material Properties

Material properties are generated based on the unit and porosity data generated earlier.
In order to mimic Yucca Mountain as much as possible, the observed correlations in core data
are used. Thus the proper scale to generate matrix material properties is on the fine-scaled
geostatistics grid. The geostatistics grid is still a coarser scale than core scale but the
difference is much less than between the scale of the flow grid and core scale. Once the
matrix material properties are generated for the geostatistics grid, then the matrix element
properties are generated for the flow grid using various scaling rules depending on the
particular material property as discussed later in the section on upscaled properties.
Although the scaling rules are subject to considerable uncertainty, the potential for error is
greatly reduced by minimizing heterogeneity through use of the adaptive grid described

earlier.

Moisture Retention Curve

Two common models for the moisture retention curve are the Brooks and Corey (1966)

model and the van Genuchten (1978) model. The Brooks and Corey model is given by

3
1-s) ¥+, 1‘21
o= Ve Vel (6)
1 s Vi
L v,

where s is saturation, y<0 is pressure, and s,, ¥, and A are material parameters. Although
the sharp beginning of desaturation at y,, called the air entry pressure, is theoretically
appealing, the Brooks and Corey model suffers numerical problems since there is not a

unique pressure associated with a saturation of 1.0. The van Genuchten model is

wtirfigp) P

1+|ony]?

where s,, o and B are parameters for the material. The van Genuchten model, like the
Brooks and Corey model, originally was developed for soils. Fitting the van Genuchten model

to sparse data typical of rock matrix results in an poorly posed problem due to the nature of
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the van Genuchten parameters. Both o, the air entry parameter, and s,, the residual
saturation, are related to the tails of the distribution of pore pressures at which desaturation
occurs. The desaturation parameter, B, is related to the slope of the moisture retention curve
or the standard deviation of the distribution of pore pressures at which desaturation occurs.
For sparse data, the mean and standard deviation are the best fitting parameters while the
parameters related to the tails of the distribution are difficult to determine.

An alternative to the Brooks and Corey model and the van Genuchten model is based
on the gamma function. The gamma distribution is given by (Benjamin and Cornell, 1970)

_Mix) e ™ )
flx) e %20,

where a and A are the two gamma parameters and

I(a)= |e “u*'du. 9)
0
The incomplete gamma function is
o
e "udu

r (10)

Ie,Ar) _ o

F@)=|fx)dx=—"22"1 = ,
@ ofﬂx Ta)  T@)

where r is the pore size diameter. Since all pores of diameter greater than r are desaturated
(assuming no trapping of moisture, see Klavetter and Peters (1987) for a more detailed
discussion of the assumptions involved), then the incomplete gamma function is the moisture
retention curve corresponding to a particular gamma function. One of the advantages of the
gamma function is the ease with which it is possible to switch back and forth between the
pore size distribution and moisture retention curve. Another advantage is that since the two

gamma parameters are functions of the mean, r, and the standard deviation, o(r), given by

2
1]
o@) ’
A= r (12)
o(r)?

fitting the incomplete gamma function to sparse data is much better posed than fitting the

van Genuchten function.
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The incomplete gamma function can also be expressed in terms of pressure, v, using

y=E. . (13)
r

The constant c is given by

¢=272950 _1 4185x10 5 m?=1.3896210 ¢ mbar (14
pg

where y= 0.072 N/m is the surface tension, 6 = 15’ is the contact angle (Klavetter and Peters,
1986), p = 1000 kg/m?® is the density of water, and g = 9.806 N/kg is the gravitational

constant. Substituting Equation (13) into the incomplete gamma function

Ach
Jye “uye-ldy

cly

§ _Tahely)_ s
Flehy)= fa)dx= -
) of A T@)

(15)

Due to the inverse relationship between y and r, the incomplete gamma function is equal to
1 at a suction pressure of 0 and approaches 0 as the magnitude of the suction pressure
increases. In Figure 20 the moisture retention curve is plotted for fractures (discussed later
in the section on fracture properties) using an incomplete gamma function. A van Genuchten
curve has been fitted to the incomplete gamma function evaluated at 640 points and is also
shown. The incomplete gamma function does not round off the corner where desaturation
begins as much as the van Genuchten function. Thus, the incomplete gamma function is
closer to the Brooks and Corey (1966) moisture retention curve yet the inverse function still
exists.

Subroutines for the computation of the gamma function and the incomplete gamma
function are commonly available and quick to evaluate (Press, et al., 1988). The gamma
function takes a few logarithm calls and about 25 floating point operations (flops) which is
not much more than the standard trigonometric built-in functions. The incomplete gamma

function is easily computed from a rapidly converging continued fraction.

Core-Scale Properties

Developing correlations depends on the material property considered, its relationship
to other properties and the amount of available data upon which to base the correlation.
Lumping categories allows the correlations to be based on larger amounts of data and reduces

the influence of a few data that may not be representative of the actual material properties.

37




-t

Incomplete Gamma Function

o
©

Genuchten
0.8 Function
0.7
0.6

Saturation
o o o o
N (V] LN (4]

AR RN SRR RN RA R RSN NRENE NN KRN W e

o
—t

o

T T T T T T T T LA ML AL R L | i i LB N B N

0.01 0.1 1 10 100
Capillary Pressure (-meters)
Figure 20. Moisture Retention Curve Comparison for Fractures

However, splitting the data into a greater number of categories allows more tailoring of the
properties to a category that can otherwise be blurred by lumping. The approach taken in
this study is to use the fewest possible number of categories since the emphasis is on testing
the numerical approach.

Previous studies have shown that saturated hydraulic conductivity and porosity are
correlated for nonzeolitic materials at Yucca Mountain (Peters, et al., 1984). Figure 21 shows
saturated hydraulic conductivity versus porosity data for nonzeolitic materials. The formula

for generating saturated hydraulic conductivity shown by the regression line is
In k,=-27.042+26.526¢+2.6343g(), (16)

where g() is the unit gaussian deviate. There appears to be quite a bit of scatter for low
porosity samples due to measurement errors for low conductivities and microfractures for
some of the densely welded samples. A total of 180 data points from seven sources are used
with no obvious bias in any of the studies. The linear correlation coefficient is 0.85.
Saturated conductivity and porosity data for zeolitic materials are shown in Figure 22.
For zeolitic materials, saturated conductivity does not appear to be dependent on porosity but

is more likely dependent on the degree of zeolitization. The formula for zeolitic materials is
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In k,=-24.021+1.8973g().
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Figure 21. Saturated Conductivity: Nonzeolitic Materials
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Figure 22. Saturated Conductivity: Zeolitic Materials

The data from Peters, et al. (1984) and Rutherford, et al. (1992) show a bias towards lower

conductivities although it is possible the bias is due to how the samples were selected for

testing. The two data points from Rush, et al. (1983) may not be properly classifed as zeolitic.
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There are 46 data points, and considering the differences in the results of the 5 studies, there
still remains some uncertainty about zeolitic materials.

The data for average pore size are split up into the three categories used for the
indicator geostatistics. The welded and nonwelded materials are not lumped because then
it is difficult to accurately represent the entire range of porosity. Also, the regression then
appears very sensitive to outliers. In general, outliers are a problem as there are a few
samples in each category that have relatively high average pore sizes. For the welded
category, the outliers are probably samples with a significant volume of microfractures,
whereas the zeolitic outliers may not be "fully" zeolitic. The average pore size versus porosity
for the three materials is shown in Figures 23 through 25. The regression lines are given for

the welded, nonwelded, and zeolitic materials, respectively, by

7=0.033238+0.860680, (18)
7=-1.6086+8.67020, (19)
7=-0.094062+0.46144¢. (20)
0.5
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Figure 23. Average Pore Size: Welded Materials

The breakpoint between welded and nonwelded units for the calibration problem is taken to
be a porosity of 21%. The average pore size is a derived property obtained by fitting an
incomplete gamma function to moisture retention data. The scatter and outliers may be due

to errors or bias introduced in the fitting process.
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The standard deviation of the pore size distribution versus average pore size is shown
in Figure 26. There appears to be a strong relationship, although both parameters are
derived from moisture retention data and the relationship could be an artifact of the

numerical fit. The relationship is given by
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In 6(r)=0.27909+1.0537ln 7+0.42042g0). (21)

For zeolitic materials the data are shown in Figure 27 and the regression is given by

In o()=1.0196+1.18961n 7+0.13780g(). (22)
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Using the expected values for the average pore size and standard deviation of the pore
size, representative core-scale moisture retention curves are constructed and shown in Figure
28. Three curves for matrix materials are shown with each category represented. The
nonwelded Paintbrush bedded subunit desaturates first among the matrix materials while
the zeolitic unit desaturates at the highest suction pressures. The Topopah Spring main
subunit shows a steeper curve than the other two matrix materials. The corresponding
volume-weighted pore size distributions are shown in Figure 29. Although all three approach
infinity as the pore diameter decreases, the zeolitic unit has the smallest pores while the

nonwelded Paintbrush bedded subunit pore size distribution is weighted more toward large

pores.
1
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Figure 28. Representative Moisture Retention Curves

The unsaturated conductivity requires computation of k. = klk, where k is the

unsaturated hydraulic conductivity. The most common methods are due to Mualem (1976)
and Brooks and Corey (1966). The method due to Mualem requires integration of s = F(y)
which is computed analytically for the above form of the van Genuchten function but would
require numerical integration for the incomplete gamma function. The Brooks and Corey

method requires the Brooks-Corey constant ¢,,
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Klavetter and Peters (1986) estimated the Brooks-Corey constant for five nonzeolitic samples
from USW G-4 from the van Genuchten function. The sample from Prow Pass is included
in this group because it is partially welded, not noted as zeolitic, and fits with the other data

as can be seen in Figure 30. The regression for ¢, is

g,,=6.4835-5.3143¢+0.75144g(). (24) 77
Klavetter and Peters also examined one 6 3
zeolitic sample and determined a |«
@ 5
Brooks-Corey constant of g, = 6.4. |2
o -4
Representative unsaturated conductivity Ci 4 E
curves are shown in Figure 31 calculated g 3 e
] ] Q" + Nonzeolitic
using Equation (23) and the incomplete | £ 1
: 827
gamma function. 5 % Zeolitic

14
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The numerical flow code requires 0 01 02 03 04 05 06 07
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material properties for large-scale blocks Figure 30. Brooks-Corey Constant

44



in order to make the problem computationally tractable. The available data for rock matrix
properties are on small core samples in order to allow data to be collected in ra reasonable
time. For heterogeneous materials the properties are scale dependent and thus the issue of
upscaling properties from that of data collection to that used in flow simulation must be

addressed.

Upscaling material 1.0E-2

properties usually involves some
1.0E-4
type of averaging process. The

1.0E-6 Nonwelded Paintbrush: bedded

8m=4.09, ef=5.08)

proper scaling (averaging)
formula is dependent on the 1.0E-8

material property and for most
Zeolitic (em=6.40,

material properties there is |8 1.0E-10

uncertainty about an appropriate 1.0E-12

scaling formula. However, if the

range of values (the |§ “OF1

Unsaturated Conductivity (m/s)

Topopah Spring: main
(em=5.79, sf=5.08)

heterogeneity) can be reduced 1.0E-16

then there is less opportunity for 1 0EA8
.OE-
error in the averaging process and

more confidence in upscaling. 1.0E-20 ~—rrrrmr—rrrm——r )

1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3 1.0E+4
Capillary Pressure (-meters)

discussed earlier minimizes Figure 31. Representative Unsaturated Conductivity

Curves

The adaptive grid algorithm

heterogeneity within elements
and reduces the size of elements in highly heterogeneous areas. Reducing the size of
elements also increases confidence by limiting the area over which scaling errors may apply.

The upscaling procedure for porosity is to compute the linear average of all the
porosities within an element to get an element porosity. Results of the upscaling for the
seven realizations of the calibration problem (north-south cross section) are shown in Figure
32 and for the east-west cross section are shown in Figures 33 through 35. For saturated

conductivity, geometric averaging is used (Warren and Price, 1961)

i1

k:=exp[lzn: In (ks),]- (25)
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The upscaled saturated conductivities for the east-west cross section are shown in Figures
36 through 38. The average pore size upscaling uses a volume (porosity) weighted linear
averaging

—_ 1y, = (26)

=Y 0T

0°n i1
Using the similiarity of the computation of standard deviation with moment of inertia, then
the standard deviation of the pore size distribution can be scaled using the porosity-weighted
parallel axis theorem (Popov, 1976)
72

o913 olofry o7 ]

O°n i1

27

The random error term in the average pore size is best omitted in applications when
computing Equation (27) since the upscaling is very sensitive to the difference in the
parentheses. An implicit assumption made by the upscaling process is that the element pore
size distribution can be represented by a gamma function; e.g., the distribution is not
bimodal. The Brooks-Corey coefficient is volume averaged over the element. In addition,
scaling of the moisture retention curve results in an implicit scaling of the unsaturated

conductivity curve.

Fracture Properties
A composite-porosity model is employed in the flow simulator. The INTRAVAL data
set did not include data for fracture properties and there is considerable uncertainty due to

difficulties in measuring fracture properties in-situ. A linear regression of expected matrix

and fracture porosities from the first seven units of TSPA 1993 (Schenker, et al., 1994) yields
$,~0.0026192-0.0058455¢,,, $=>0. (28)

The regression is shown in Figure 39.

The fracture conductivities are obtained from bulk conductivities for TSPA 1993
(Schenker, ef al., 1994). The log base 10 expected values are averaged over the element to
account for elements with multiple units. For the calibration problem the geometric average
for the first three units (382 meters/year) is used. The expected values for apertures in TSPA
1993 do not vary much for the first seven units, so their average value of 7 = 178

micrometers is used. Examining the coefficients of variation shows they are all grouped near
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Fracture Porosity
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Figure 39. Fracture Porosity

1.0 which implies an exponential distribution. Then the gamma function parameters are a
= 1.0 and A = 0.00562 and the moisture retention curve is shown in Figure 28. Fitting a van
Genuchten curve to the incomplete gamma function (see Figure 20) results in o = 15.097,

=1.9638, and s, = 0. Following Klavetter and Peters (1986), then the Brooks-Corey constant

is calculated as & = 5.08.
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Flow Simulation

Solution of the partial differential equations governing flow through porous media
requires their approximation (discretization) on a finite dimensional space in order to allow
computation. Most approximations (finite elements and finite differences) involve the use of
a mesh in the discretization. As long as the consistency condition is satisfied, any of the
methods for discretization will converge to the solution of the partial differential equation as
the mesh becomes finer in an appropriate fashion. Thus, in this sense, all methods for
discretization are equivalent; however, in a finite-dimensional space each method for
discretization can preserve only some of the properties of the partial differential equation.
Understanding the goals of the modeling can allow the choice of a method of discretization
that preserves the important properties of the partial differential equation. A description of
the properties of the method of discretization are contained in the section on theory. A
derivation of the discretization method is contained in Appendix A.

The partial differential equations to be solved are nonlinear due to the dependence of
the unsaturated conductivity on pressure head. The nonlinear nature is often quite severe
and a source of problems for many flow codes. A discussion of the quasi-Newton method that
allows robustness and the nonlinear solvers is in the section on nonlinear solvers. The
nonlinear solvers each require linear solvers which are discussed in the linear solver section.

* Calibration of the modeling technique requires comparison of the model solutions with
measured data such as the in-situ saturations. The modeling technique employed eschews
the typical inverse approach of matching saturations, but attempts to use the saturation
measurements as data in a forward modeling approach.

Finally, the section on the east-west INTRAVAL problem discusses the solution
approach on a much larger domain. The initial results predicted saturations at USW UZ-16
before saturation data were made available. The results in this report have been further
debugged and cleaned up after the data were released, but no substantial changes in the

approach were made.

Theory

Consider a domain, Q, with a piecewise continuous boundary I". The steady state flow

problem is given by mass conservation and Darcy’s Law for a spatial dimension of by

V- {p(wkV(y+,)]-0, xeQ, (29)
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where p is the density, & is the unsaturated conductivity, y is the capillary pressure head and
x, is the elevation. The unsaturated conductivity is a function of pressure and the major
source of the nonlinearity. The second order partial differential equation can be split into

two coupled first order differential equations
q=-kWV(y+x,),

V'(Pq)=0,

(30)

where the first equation is Darcy’s Law and the second is conservation of mass. The

boundary conditions considered are a mix of Dirichlet and Neumann where I'=T, + I, and

Y=y, (%), XTI,
0 d (31)

qn=q,x), xeT,,

where q is the Darcy flux and n is the normal to the boundary.

Only the liquid phase is considered in the present approach. Gas and water vapor flow
are assumed to be primarily in the fractures. Where the liquid is located solely in the matrix,
entrapment of gas is unlikely. However, as the matrix becomes saturated and fracture flow
is initiated, gas entrapment may occur. If the zone of saturation is relatively small, it is
likely that other fracture pathways exist which bypass the locally saturated zone and gas
entrapment can be avoided. Vapor phase transport of water may be significant but should
not be sensitive to zones of local saturation as long as the zones are relatively small.

The first step in the numerical solution of porous media flow is discretization of the
differential equation. Finite element methods approximate the solution on elements in terms
of basis functions. In order to assemble the global matrices, the approximations must be
linked in terms of continuity of the solution between elements. Classical approaches enforce
continuity of p, the approximation of y+x,, which are called primal methods. Dual methods
enforce continuity of normal flux where q={g’,¢%} as shown in Figure 40. In the case of local
saturation of an element, saturations and pressures differ markedly between adjacent
elements. Enforcing continuity of pressure suppresses local saturation since the pressures
at the common nodes must represent both elements. Enforcing continuity of normal flux
allows discontinuous pressure across element boundaries which permits local saturation to
occur. Primal methods require nodes to be clustered near material interfaces and near
channeling (Dudley, et al., 1988). Furthermore, the nonlinearity in unsaturated conductivity

can cause two elements with very similar hydrologic properties to have widely different
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conductivities and act like a material interface. A

P4 P3Py P;
numerical method based on the dual approach is the
dual mixed finite element method (Robey, 1990 and
Roberts and Thomas, 1990). A special finite difference
method that avoids differencing across material P, PP Ps

interfaces (Morel, et al., 1990) may also be suited to this
(a) Continuity of Pressure

1

type of problem. .
L 1
For primal methods, the fluxes are approximated | 94 93=4g . q,

in a lower dimensional space than pressures. In the

dual approach, pressures are approximated in a lower

dimensional space than fluxes (see Appendix A). The 1

1_ 1 1
potential for higher accuracy in fluxes led to use of the % 9,=9g s

dual mixed finite element method in petroleum reservoir (b) Continuity of Normal Flux

problems (Ewing, et al., 1983). The dual mixed finite Figure 40. Assembling Global
element method has also been shown to produce Matrices

superior streamlines over pressure-based approaches (Kaasschieter and Huijben, 1992). A
flow code, DUAL, based on the dual mixed finite element method has been assembled from
an existing linear code for use in ground water travel time studies.

The highly nonlinear nature suggests the use of a nonlinear Newton solver. Flow codes
based on a nonlinear Newton solver often spend a major amount of time computing the
Jacobian matrix. Therefore, one area where significant effort was used to write new code was
in computing the Jacobian efficiently, which is detailed in the section on nonlinear solvers.
Another area of considerable computing expense for finite element codes is in setting up the
element matrices using Gaussian quadrature. For the mixed finite element method it is
possible to use analytical integration, which results in very simple expressions for the entries
of the element matrices (see Appendix A for details).

While the conductivity varies over the element, an assumption in the derivation of
simple expressions for the entries in the element matrices B¢ is that there is an effective
conductivity for the element. Computing an effective conductivity for use in the DUAL flow
code is an averaging process over the element. Since the conductivity may vary by orders of

magnitude across an element, geometric averaging is used

k) =expl_ L [In % “(p) d (32)
(o, ;) eXpLae f n £ "Yp) e},
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where a, is the area of element e. The standard approach in finite elements is to use

Gaussian quadrature to approximate the integral (Atkinson, 1978). Then

2 2
e s bl
where & = n = {-0.5773502692,0.5773502692} are the vectors of Gauss points used for
Gaussian quadrature on the master element shown in Figure 12. Note that the averaging
process becomes more suspect as the range of conductivities in an element increases. Also,
applying nonlinear optimization can result in the pressures at the four Gauss points being
driven such that an appropriate conductivity is achieved for the element. In particular, the
nonlinear optimization may drive part of the element into fracture flow to obtain
conductivities consistent with the rest of the model; the pressures within the element then
no longer have physical interpretations but represent a continuum between matrix flow and
fracture flow. Finer resolution of the flow grid is usually appropriate in such elements to

determine the occurrence of a locally saturated region (element).

Nonlinear Solver

The degree of nonlinearity in the unsaturated flow at Yucca Mountain is highly
dependent on the material parameters for the matrix and the fractures as well as the flow
regime encountered; i. e., the region of the unsaturated conductivity curve where the solution
lies. For example, often the point at which fracture flow is initiated possesses a large degree
of nonlinearity. Thus the success of a nonlinear solver is very problem dependent and the
nonlinear solver must be developed in conjunction with the models. The present goal is a
robust and efficient nonlinear solver that can be expected to perform well for most problems.

The nonlinear solver employed by DUAL is based on that used for the DYNAMICS
module in TOSPAC, a one-dimensional code (Dudley, et al., 1988) which has seen
considerable use on Yucca Mountain problems. Ground water travel time for pre-
emplacement calculations is typically considered a steady state problem since treating it as
a dynamic problem would introduce the unanswerable question of the proper initial condition.
For post-emplacement calculations, a dynamic problem is encountered; however, first a steady
state problem typically is solved for the initial condition. Moreover, it is not difficult to add
a time-stepping algorithm to DUAL. Solving the steady state problem corresponds to large
time steps for the dynamic problem and can be expected to be more demanding than the

dynamic problems. A Newton solver is employed with an optional Picard solver used for the
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initial guess. In addition, a line search method is used to adjust the Newton step to avoid
nonlinear instability.

The Picard solver is a simple fixed point method where the conductivity is determined
using the pressure at the previous iteration. From use with the one-dimensional TOSPAC,
the Picard solver often does not converge but is useful in providing an initial guess.
Presently DUAL uses the initial guess from the Picard solver until the initial residual of the
linear equations for the Newton step becomes large whereupon it is used on every other
Newton iteration. The nonlinear equations are linearized using the current unknowns at
step n and then the unknowns at step n+1 are determined using the equation (see derivation

in Appendix A)

Kp"B DT CT|q*||g
D 0 0 |p*'Fl0]
C 0 o |a1]|[f

(34)

The Newton method solves the equation _

Js=-F, (35)
where J is the Jacobian matrix, F is the current residual vector, and s is the Newton step.
The Newton solver uses a combination of analytical differentiation and central differencing
to calculate the Jacobian in a very efficient manner. Consider partial derivatives with

respect to the components of q

K(p)B DT CT|q||g| [KusP)B;
D o0 o/fpprof{ D; |
c o ofrllf]]| ¢

(36)
e

where the single j subscript on a matrix indicates the jth column. Thus the first column of
submatrices for the Jacobian matrix is identical to that of the Picard matrix. Similiar results

are obtained for A and the last column of submatrices. The nonlinearity is in terms of p so

IK
Kp)B DT CT|q||g BQ%*'(DT),-
=) D o o|pfof- (’) . @7
il ¢ o olalle .
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Thus the Jacobian matrix is obtained

J4 D o0 o} (38)
C (1 1)
where
(f) T) J.=Bqa_K(_Pl+D T, (39)
op;

DT is calculated using finite differences. Since D7 consists of 8x3 blocks, it only takes three
sweeps to compute all the differences.

The Newton method achieves very quick convergence near the solution. It is possible
to improve the global convergence of the Newton method using a quasi-Newton framework
(Dennis and Schnabel, 1983). Once the Newton step is computed, then the residual at the
new unknowns is computed and it is decided using global convergence criteria whether to
accept the new iteration. If not, then a search is conducted in the direction of the Newton
step. A one-dimensional minimization problem results. Currently, a cubic line search is used
to conduct the minimization until a solution is obtained that meets the global convergence
criteria. Convergence is theoretically guaranteed using a quasi-Newton approach. In
practice, very nonlinear problems may never achieve the quick convergence of the Newton

method and there also are other numerical difficulties that may occur.

Linear Solvers

The Picard iteration and Newton iteration both require linear solvers. The matrices
are often very poorly conditioned. In addition, often the region of interest is where the Darcy
fluxes are relatively small. Iterative solvers are often employed but they resolve only the
larger eigenvalues (large fluxes) with any accuracy. Thus experience dictates that it is
desirable to use a direct solver for resolving the small fluxes. DUAL uses an efficient direct
solver for the Picard iteration and an iterative solver for the Newton step.

Due to the high degree of nonlinearity often encountered, it is advantageous to only
approximately obtain the Newton step. Numerical experiments show a residual with relative
error of 0.1 to 0.5 often results in fewer nonlinear iterations than more accurate

approximations of the Newton step.
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The iterative solver used is a biconjugate gradient method for nonsymme.tric matrices
(Fletcher, 1976). More recent variants, conjugate gradients squared and stabilized
biconjugate gradients (van der Vorst, 1992) have been tried without success. Several simple
preconditioners have been tried without success since the matrix equations are not diagonally
dominant or positive definite. An incomplete LU preconditioner is used in similar
applications but is somewhat complicated to implement. Another possibility is to use the
Picard solver as a preconditioner to accelerate the biconjugate gradient method instead of just
for the initial guess. No preconditioner is used at present because the biconjugate gradient
method does not require very many iterations for most problems. This is especially true
during the early nonlinear iterations. Another type of iterative solver is a multigrid solver
for diffusion problems with highly varying diffusion coefficients (Molenaar, 1992) which may
be desirable for large problems.

The direct solver used by DUAL is a null space method (Heath, 1976 and Robey, 1992).

This solver is discussed in detail in Appendix B.

North-South Calibration Problem

The calibration problem involves a small cross section with detailed information located
between USW UZN-54 and USW UZN-55. The cross section is suitable for testing numerical
methods and studying infiltration into the Topopah Spring welded unit. Seven simulations
were conducted for the calibration problem.

The boundary conditions for the lateral boundaries are derived from the in-situ
saturation measurements obtained from the bounding drill holes USW UZN-54 and USW
UZN-55. The average moisture retention curve for the element (at a local scale) is used to
back out a pressure and the median of the pressures for the element is used for the boundary
condition. The top boundary is split into 15.24 meters width of alluvium in the arroyo and
the rest as sideslope. The alluvium is given the same pressure as the top element adjacent
to USW UZN-54 while the pressure from the top element bordering USW UZN-55 is taken
to represent the sideslope. The bottom boundary is a linear interpolation of the pressures
from the bottom corner elements. Note that two of the cross sections do not have an intact
Topopah Spring caprock for which the bottom boundary condition is improbable.

The matrix saturations for the north-south cross section are shown in Figure 41. The
welded material is 60% to 100% saturated while the nonwelded material is 33% to 66%
saturated. A capillary barrier is evident above the nonwelded interval in all ﬁve»simulations

where the Topopah Spring caprock is intact. Simulation 5 of Figure 41, which has a thinning
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of the nonwelded interval, shows less of a capillary barrier but is approaching saturation just
underneath the thinned out section.

The capillary pressures are shown in Figure 42. Simulations 3, 6 and 7 show elements
as white where the pressure at the center of the element is above zero (safurated). Note that
since the matrix saturation is averaged at the Gauss points the matrix saturation may not
be 1.0. Locally saturated regions are where fracture flow may be initiated. If the highest
pressure is above zero, it is shown in the legend. The value for simulation 3 appears rather
high but the others look reasonable given the grid resolution. None of the simulations have
a fracture saturation greater than about 75% (three of the four Gauss points saturated) and
may or may not remain saturated as the grid is resolved.

The unsaturated conductivities are plotted in Figure 43. Darcy fluxes are shown in
Figure 44. Simulations 2 and 7 where the Topopah Spring caprock is not intact show large
velocities through the breaks due to the bottom boundary condition. The rest of the
simulations show a few large fluxes near the lower left hand boundary probably reflecting
the lateral boundary condition. Otherwise, the largest fluxes are in the nonwelded interval
as expected. There does not appear to be any predominant flow direction which is not
unexpected since the cross section is perpendicular to the dip. The Darcy fluxes in the
Topopah Spring caprock, where it is intact, appear relatively uniform compared to the

nonwelded interval.

~ East-West INTRAVAL Problem
The INTRAVAL problem seeks to predict volumetric water content at USW UZ-16. The

model used in this study is a two-dimensional east-west cross section. The western boundary
is approximately at Ghost Dance Fault while the eastern boundary is near Bow Ridge Fault.
The cross section intercepts the location of USW UZ-16. The top boundary is the
topographical surface and the bottom is an elevation of 730.0 meters. In Nevada State Plane
coordinates the cross section covers eastings 171,405.96 to 173,539.56 meters and a northing
of 231,811.17 meters.

The lateral boundaries are faults and are handled as no-flow boundaries. The bottom
boundary is taken as the water table with zero pressure. The topographical surface is split
into three zones: alluvium, north and east facing slopes, and south and west facing slopes.
The three zones are represented respectively by data from drill holes USW UZN-54, USW
UZN-583, and USW UZN-55. Each of these drill holes have in-situ saturation and porosity‘

data of which the uppermost measurements are used. Using the deterministic relationships
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for generating moisture retention curves, a pressure can be calculated for each of the three
infiltration zones. From eastings 171,405.96 to 171,863.16 meters the top boundary is
designated as shaded sideslope. Eastings 172,548.96 to 172,922.34 meters are taken to be
sunny sideslope. The rest of the top boundary is classified as alluvium as shown in Figure
45. Pressure boundary conditions applied for each of the three infiltration zones are given
in Table 5.

1330
iy Sunny
] Alluvium i
1230 |  Shaded sideslope
i sideslope Alluvium
%1130
5] ]
g J
<1030 -
.8 .
S i
0 930
w ]
830
730 ] i ¥ I i l L i ) 1 I ) ] ] i l ] ] ' L I i ]
171370 171870 172370 172870 173370
Easting (meters)
Figure 45. Infiltration Zones
Table 5: Infiltration Zones
Zone Drill Hole Saturation Porosity Pressure
(%) (meters)
shaded sideslope | USW UZN-53 85.0 0.068 -717.9
alluvium USW UZN-54 69.0 0.09 -114
sunny sideslope | USW UZN-55 30.0 0.084 -519

The predictions for volumetric water content at USW UZ-16 are shown for three
realizations in Figure 46 along with the measured water contents. The computational results
are good considering the coarse mesh used for the model. Plotting the saturations somewhat
exaggerates the deficiencies in the model (Figure 47). The calculated volumetric water

content of the Topopah vitric caprock is not well resolved and the calculated values for the
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Figure 46. Volumetric Water Contents at USW UZ-16
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Figure 47. Saturations at USW UZ-16

region immediately below are not as dry as they should be. A finer geostatistical grid and
flow grid may help but it may be difficult to resolve such thin features. In the lower part of
the drill holes, the simulations do not follow the low wvolumetric water content in the

nonwelded Prow Pass. It is apparent that lumping the nonwelded Prow Pass and Calico Hills
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is the source of the problem. In view of these results, in future work the Prow Pass and
Calico Hills should be modeled separately and the material properties developed separately.
The spike at the Topopah vitric caprock is also not resolved as discussed earlier. The
Topopah basal vitrophyre is not completely resolved, but is due to the coarse flow grid. The
nonwelded Prow Pass can be seen to be quite different from the zeolitic Calico Hills unit.
The results of the flow simulation for the entire cross sections are shown in Figures 48
through 59. Note that average values for an element are plotted for each variable. The
saturations in the Topopah Spring member generally reflect the infiltration zones (Figures
48 through 50). Each of the simulations have seven or eight elements with saturated
fractures for at least one and as many as three of the four Gauss points. Refinement of the
grid is necessary to determine if these are actually locally saturated zones. The pressures
show the dry ridge as a result of the sunny sideslope boundary condition given in Table 5
(Figures 51 through 53). One element with a positive pressure appears in the first
simulation; however, the entire element is not saturated (Figure 51). The elements below
and to the left have much higher porosity, forming a capillary barrier. The element to the
right has slightly higher porosity and average pore size. In addition, the element with
positive pressure has a low matrix saturated conductivity compared to its neighbors. The
plots of Darcy fluxes show considerable lateral flux in the nonwelded Paintbrush (Figures 54
through 56). The Darcy fluxes below the nonwelded Paintbrush are fairly vertical although
the magnitudes vary depending on the saturation of the Topopah Spring member.
Exfiltration can be noted where the sunny sideslope boundary is located around the central
ridge. Unsaturated conductivity plots (Figures 57 through 59) show high conductivity in the

nonwelded Paintbrush and low conductivities near the central ridge.
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Conclusions

Compliance of a potential nuclear waste repository at Yucca Mountain with the ground
water travel time criteria will be determined by the amount of radioactive material that can
be transported along fast paths via fluid flow through fractured, porous media. Modeling fast
paths requires an understanding of how fracture flow is initiated in unsaturated media. In
this study, heterogeneity is investigated as a mechanism for creating locally saturated zones
where fracture flow may be initiated. The ability to create regions of local saturation under
natural or expected conditions rather than as arbitrary boundary conditions results in models
that more closely resemble observations at Yucca Mountain. A reasonable attempt to model
the unsaturated heterogeneous conditions at Yucca Mountain has been presented that
combines geostatistical methods, upscaling of laboratory scale measurements, and advanced
numerical flow modeling. For use in ground water travel time studies the model will require
the development of a method for calculating travel times. Once travel times can be calculated
these simulations will be suitable for use in more extensive testing of the numerical methods
and evaluating the effects on the other parts of the simulations.

Two geostatistical methods, Gaussian simulation and indicator simulation, are used to
generate models of heterogeneous media. While use of geostatistical methods for Yucca
Mountain is quite challenging, the results are an improvement over homogeneous media used
in virtually all previous modeling of Yucca Mountain since the simulations exhibit natural
variations in surfaces between hydrogeologic units. Furthermore,' a framework has been
established to test for sensitivity of flow simulations (and eventually calculation of travel
times) to different aspects of heterogeneity.

Use of the incomplete gamma function for the moisture retention curve is introduced.
The gamma function then is theoretically representative of the pore size distribution through
its relationship with the incomplete gamma function. Fitting the incomplete gamma function
to the sparse data characteristic of laboratory data on porous rock is better posed than fitting
the van Genuchten model.

The geostatistical adaptive grid procedure succeeds in producing flow grids that conform
well to the features of the finer gesostatistical grid based on minimizing heterogeneity within
each cell of the flow grid. Reductions in heterogeneity for the worst element averaged well
over 50%, which should have an impact on errors in upscaling properties. Constraints on

degenerate elements are incorporated into the adaptive grid algorithm.

82



There are two distinct upscalings considered in this report: from core scale to
geostatistical scale and geostatistical scale to computational flow scale. Although the
upscaling from core scale to geostatistical scale is minimized, laboratory measurements
should be performed to verify whether any adjustments are required to the parameter
distributions due to the change in scale. Theoretical formulas for upscaling from the
geostatistical scale to computational flow scale have been introduced including simple
methods for upscaling the incomplete gamma function. Since measurements of matrix
properties at the computational scale are probably not practical, numerical studies should be
conducted to verify the theoretical formulas presented. An adaptive grid technique has been
introduced to minimize heterogeneity in elements and reduce potential upscaling errors which
should minimize the number of numerical studies of upscaling required for verification.

A robust flow code has been assembled and applied to two-dimensional heterogeneous
problems. The use of heterogeneous material and a flow code that does not suppress
channeling results in locally saturated regions. The predictions of the volumetric water
contents at USW UZ-16 match the in—sif;u measurements quite well except in the nonwelded
part of the Prow Pass as discussed in the previous section on the results of the INTRAVAL
problem.

There remain opportunities for improving the geostatistical techniques such as
removing interfingering of geohydrological units in the indicator simulations. Knowledge
regarding relatively constant thickness of hydrogeologic units across faults or fault zones is
not incorporated into the geostatistics. Spatial correlations in porosities were not considered
in this study due to the size of the flow elements but should be considered in future work
especially if smaller flow elements are to be used. Better understanding and measurements
of the heterogeneity (spatial continuity) are important to obtain more accurate models of the
heterogeneity at Yucca Mountain.

Studies on additional constraints on distortion of the elements and the effects on flow
modeling could provide useful information. Also, a grid resolution study is necessary both
in terms of examining resolution of heterogeneity and convergence of the flow simulations.
A finer geostatistical grid and flow grid may improve the flow models; however, even with
fine grids it may be difficult to resolve thin features due to computational limitations. How
the locally saturated regions react to grid resolution is an important area that needs to be
examined.

In future work the Prow Pass and Calico Hills should be modeled separately and the

material properties developed separately. Comparison of measured properties on different
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scales at Yucca Mountain is necessary to validate the theoretical scaling formulas. There
remains some work in improving the robustness of the flow code, especially in regards to
longer execution times for a few of the simulations. Basic understanding of flow modeling
has been emphasized in this study and there are many opportunities for increased speed and
efficiency that remain.

Demonstrating the ability to produce locally saturated regions is an important step in
moving water into fractures where transport can occur relatively quickly. However, the
composite porosity model will quickly move the water back into the rock matrix as soon as
the water leaves the locally saturated region. Dual permeability models will allow more of
a delay in the water returning to the matrix. Maintaining fracture flow for a realistic time
period is the next important step after the current investigation of initiation of fracture flow
through locally saturated zones. A major difficulty for dual porosity models will be obtaining
data that allows the coupling between the matrix and fractures to be adequately

(realistically) modeled.
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Appendix A: Derivation of the DUAL Flow Code

Existence and uniqueness of a solution to the discretized equations is important to
avoid numerical problems that can cause a code to fail. It is necessary to ensure that the
nonlinear iterations are converging to something that is well defined, but it is also important
that each nonlinear iteration is well posed to prevent failure of the code to produce a solution.
Similiarly, it is important that as the discretization is made finer that the solutions converge
to a well defined solution of the partial differential equations.

It is necessary to define the space of functions to which the solution belongs in order
to consider the question of existence and uniqueness. The weak formulation of the
differential equations used in finite elements can be expressed in terms of inner products.
Existence and uniqueness require a complete inner product space which is called a Hilbert
space (Oden, 1979).

The Hilbert spaces that shall be used are now introduced. Let z = u(x) be an

arbitrary function. Then

Lz(Q)E{u: [u dQ<oo}, (A1)
where the integration is in the Lebesgue sense. Associated with L3(Q) is the inner product
WD) [ up dQ. (A.2)

The corresponding norm is
[ OR7 . (A.3)

The vector space [LAQ)])", where n is the spatial dimension of the problem, is the vector
analog of L%(Q). Forv, q € [LAQ)]" then

(V,q)[Lz(Q)]EfQV'q dQ, (A.4)

is the inner product. The corresponding norm is

ﬂVﬂ[sz( o ..E(V,V)[Lz(m]n. (A.B)

It will also be necessary to consider spaces of functions that possess some degree of

differentiability. The first Sobolev space is thus defined as
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H(@)=uvue[L2Q). (A.6)
The corresponding norm is
I = lee B Vil A7

For vector functions, an appropriate space possessing a higher degree of differentiability is
H(Q)={v:V ve LAQ)}. (A.8)
The corresponding norm is

IV @@V I g 1V Y lar (A.9)

The mixed finite element method uses the variational (or weak) form of Equations (30)

(IR (@), Vs H VW +2,), V=05 Vve HE(Q),

(A.10)
(Vpq),u) 40=0, YueLXQ),
where v and u are test functions. Green’s formula is
@,V V) 120y " (Vi V) =V D)y, (A11)
which in this case is simply integration by parts. Substituting (A.11) into (A.10)
([pk(w)]‘l(pq),v)[L,( Q)]n—(\p'+xn,v‘V)Lz(Q)=—(\l[o‘i-xn,V'n)Lz(rd), Vve H®(Q), a12)

v (pq),u)L,m)=0, YueL#(Q),
where pq € H*(Q) and y+x, € L¥Q) are the unknowns.
Theorem (Brezzi, 1974): Given Problem (A.12) with I = [, and vy, + x, € L%Q) and the

conditions

p(Wk(y) is bounded, (A.13)
inf sup
ueLAQ) ve [Lz(Q)] n (V ’(pV),U)Lz(g) >0, (A.14)
uz0 vz0 “u| L?(Q)'MI[Lz(m]"

then a unique, bounded solution exists. [J
For Condition (A.13), p is nearly constant and not of concern. k(y) is easily shown to be

bounded above by the maximum %,. The problem lies in bounding £(y) below. If there is no
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residual saturation then £(y) is not bounded below as y—-. However, since the differential
equation is elliptic then for the Dirichlet problem the maximum (minimum) occurs on the
boundary by the maximum principle. Thus y and %(y) are bounded as long as Y, and yy+x,
are bounded. Condition (A.14) is the LBB condition (Ladyzhenskaya, 1969; Babuska, 1971;
and Brezzi, 1974) and is of more concern after discretization. The discretization is achieved
by defining projection operators in terms of the basis functions ¢(x) and 6,(x) and the scalars

g, U, p;, and u;,

b
(pq k)h=z qiq)?(x)’ k=1r'-3n’

i=1

b
(0 9,=Y v4ix), k=1,.n,
i=1

(A.15)

(W+xn) h =E p iei(x)’

i=1

uy=y_ u8(X),

i=1

where b is the dimension of the basis functions for flux and ¢ is the dimension of the basis

functions for pressure. Substituting (A.15) into (A.12) and using

B0k 4t) s B=Loesn,

k
Djf=- ,.,ﬂ , k=1,..n,
9%y )i (A.16)

ng‘(‘lfo“xmnkq)?)Lz(rd), k=1,..,n,
E=diaglpk(p)]",
the following matrix equations are obtained
{KB D}E}H @
D o0 0

Corollary: Let P, c LAQ) and Q, c H**(Q) be the spaces defined by the projection onto the
basis functions. Given Problem (A.17) with I" = T, and y+x, € L*%Q) and the conditions
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p(p)k(p) is bounded, (A.18)
P,cV-Q,, (A.19)
then a unique solution exists. O
Proof: (Robey, 1990).
In addition there is a requirement for convergence as the mesh parameter h grows small
which is beyond the scope of this work.

The flux boundary conditions are more difficult to incorporate than the pressure
boundary condition. The normal fluxes at the boundary can be set to the desired value using
Lagrange multipliers; however, then the pressure at the boundary cannot be specified.
Currently, the pressure is not dealt with in the code. In special circumstances, a singular set
of equations can result. The direct solver employed is capable of solving the system despite
such a singularity (Robey, 1990).

An example of such a special circumstance is a two dimensional problem with a
rectangular grid, constant pressure boundary conditions at the top and bottom, and identical
constant flux boundary conditions on either side (one of those simple test problems).
Consider, for simplicity, that the hydraulic conductivities are constant. For the lateral flow,
then the lateral pressure drop is known and the coefficient of the x term of the basis
functions cannot be independently specified. No rank deficiency has been detected for any
of the adapted grids employed so far.

It is convenient to work at the element level. Let N, be the basis functions for the
hydraulic head and B, the basis functions for the Darcy fluxes. The integration in Equation
(A.16) is performed on a master element (see Figure 12) with local coordinates {£}=({€,n}. The

element matrices are given by

(8= [tokoN BB\ de, k=17,
(A.20)

)= (n, B, e, kel m,

¢ 0x,
where |J| is the Jacobian of the transformation from physical space to the master element
and where D° is a matrix whose entries are n-dimensional vectors.
Choice of the basis functions B, and N, determine the rate of convergence by which the

discretization approaches the solution of the partial differential equations. Since using more
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basis functions requires more work for each element, there is a trade-off of a coarser mesh
with more basis functions or a finer mesh with fewer basis functions. Also, choice of the
basis functions B; and N, are not independent; Equation (A.19) must be satisfied. The
optimum convergence rate is obtained where P, = V-Q,. The Raviart-Thomas basis functions
(Raviart and Thomas, 1977) meet this condition; however, they are limited to rectangular
grids which makes them unsuitable in this application. A finer mesh is more likely to be
better than a theoretically high convergence rate since the error in computing an effective
unsaturated conductivity, Equation (32), is probably a more important contributor to the
error term. Equally important is that smaller elements reduce errors due to heterogeneity
since all methods are first order if jumps in conductivity are located randomly relative to the
grid (Das, et al., 1993).

Two dimensional nodal basis functions for B, that allow second order convergence are

B/=(1-8)(1-n)/4,
BJf=(1+E)(1-n)/4,
(A.21)
B =(1+&)(1+n)/4,
B =(1-8)1+n)/4.

For the bilinear basis functions given by Equation (A.21), the Jacobian of the transformation
is given by Equations (3) and (4). The basis functions for N, that allow second order

convergence are
N,=1,
N,=¢, (A.22)
N,=n.

Then the integrations result in
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YaYe Y3 Vs Y2 Vs3
2 6 6
Y3 Ve Y3 Va1
2 6 6
Yo=Yy YoY1 Y1704
2 6 6
. T Y37V Y1V Y32
oy PV 2 8 8 (A.23)
(Dz)T Xy=X, Xy~Xg Xg=Ky |
2 6 6
Xg=X, Xg=Xy X7,
2 6 6
X=Xy X=Xy X%y
2 6 6
X=Xy Xp~X, Xy—Xg
2 6 6

B¢ can be evaluated using Gaussian quadrature or, by assuming an effective conductivity
exists, using analytical integration. In the absence of a clear difference, analytical

integration is used since there are advantéges when used with the current solver. The B°

matrix is
4jo_2j1'2j2 2j0_j2 jo 2jo"j1
gyl B GV %y 42
9 Jo 2jo*; 470+2j,+2j, 2otz
2jo_j1 jo 2jo+j2 4j0_2j1+2j2_

where j,, j;, and j, are defined in Equation (4).

The global matrices are obtained by assembling the element matrices (and thus
implicitly defining ¢ and 6 of Equations (A.15)). Equation (A.12) requires that pq be in
H*™(Q) or

V(pa)e LA(Q). (A.25)
Note that functions in H**(Q) are not as smooth as those in [HY(Q)]" since the sum of partial
derivatives must be in L*(Q) rather than each partial derivative belonging to L%Q). Since the

projection onto the element is the space of polynomials which is infinitely differentiable, the
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lack of smoothness must occur at the element boundaries. Let q,e H*™(Q) be possibly

discontinuous across an arbitrary element boundary. Then

{91, xeQ, (A.26)
g2, xe
where the superscript refers to the element. In the distributional sense, the partial

derivative in two dimensions is

aQ11 o€ +aQ11 om xe O°
’ 1
8752 ox, 8112 ox, (A.27)
og; o€ . dq4 o
9 dx; on ox,
(g 12 -q 11)n12, xely,

0q; 1

- e
axl b Xe QZ’

where n} is the first component of the normal to the ith element boundary. A similar
equation applies to the other component of q. For Equation (A.25) to be satisfied then the

following condition must be true

S(qi"—qf)nf+6(q2"’—q;)n;=o. (A.28)

This condition is simply continuity of normal flux across the element boundary.

There are several ways to set up the matrix equations with different solvers
applicable. One approach is to solve the first equation of Equation (A.17) for q and substitute
into the second equation to obtain

D(KB)-'Dp=-D(KB) lg. (A.29)
The matrix on the left hand side is symmetric and typically positive definite which allows
many linear solvers and preconditioners to be applied. However, the Jacobian may not be
easy to compute and it may be more difficult to take advantage of structure. Instead, DUAL
uses a variant of Equation (A.17) called the mixed hybrid method (Fraeijs de Veubeke, 1965)
where the assembly constraint for the Darcy flux is replaced with Lagrange multipliers. This
formulation results in a block diagonal B which can be factored element-by-element, a fact

that is used by the direct solver. The resulting equations are
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KB DT CT|q|lg
D 0 O |pFo0}
C 0 o0 |Ar]]|f

(A.30)

where f is due to flux boundary conditions. The matrix C is sparse, with entries consisting

of the components of the normal vectors of Equation (A.28).
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Appendix B: Direct Null Space Solver

The direct solver used is a null space method (Heath, 1976 and Robey, 1992). First
the equations are reformulated. Since B is block diagonal the Cholesky decomposition B =
LL” can be computed efficiently element by element. Since K is a diagonal matrix, then the
first row can be multiplied by L™ to obtain

K L'DT LCT||L7q| |Lg
DLT o o | p Hol B.1)
CLT 0 0 AL f

Define the matrices
AL DT Lc¢7,
s=Lq,

g=L7g,

i (B.2)
p
;\l-,
0
£]
Then the matrix equations can be expressed

kit

The matrix A is, in general, a rectangular mxp matrix with m greater than or equal
to p. The rank of Ais r <p. A sparse QR decomposition (Golub and Van Loan, 1983) of A

requires both row and column pivoting

P@Q 7K-ﬂ2A)n=[1; Iﬂ (B.4)

where R is an rxr upper triangular matrix and M has columns linearly dependent on the
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columns of R. P and Il are permutation matrices that represent row and column pivoting.

Partitioning of QP =" [ Y Z ] results in

K'”ZAH=Y[R M] (B.5)

Y has r columns which form a basis for the range space of A. Z is mx(m-r) and the columns
of Z form a basis for the null space of A”.

Since the columns of Y and Z form a basis for an m-dimensional space then any m-

dimensional vector can be expressed uniquely as a linear combination of the columns of Y

and Z. The m-dimensional vector KY2s can thus be expressed in terms of the unknowns y

and z
KY2s=Yy+Zz. (B.6)
The second row of Equation (B.3) can be written
(ATK-2)(K26)=f. (B.7)
Substituting Equations (B.5) and (B.6) results in
RTy=I1"f. (B.8)

y is easily determined since R’ is lower triangular. The first row of Equation (B.3) is
multiplied by K2 to obtain
KVs+K2At=K g, (B.9)
Multiplying by ZT results in
z=Z"K g, (B.10)
which easily obtains z. Then s can be calculated from Equation (B.6). Multiplying Equation
(B.9) by Y7 results in
[R MIN7t-Y7K2g-y. (B.11)
Let [v7 m7] = IT"t. Since m is the vector of coefficients of any modes that exist due to rank

deficiency of A, the modes can be eliminated by choosing m = 0 and

Rv=YTKg-y, (B.12)
and
hnH' (B.13)
0

Solving for v only requires a back substitution.
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Since A is sparse, Givens rotations are particularly attractive for performing the QR
decomposition. Let the Givens rotations be numbered dJ,,...,J, in the order they are

performed. Then

= T_‘ ‘ .
PJ -J,=PQ7= ,
and
J17...J7 PT=QP T—_[Y Z]_ (B.15)

Then Equation (B.15) is used to compute Equation (B.6) and Equations (B.10) and (B.11) are
computed using Equation (B.14). Therefore, it is never necessary to form Q.

The efficiency of the direct solver is dependent on the efficiency of the sparse QR
decomposition. While the final structure of R is solely dependent on the column ordering,
both the row and column ordering impact the amount of computation required to obtain the
QR decomposition. A general purpose sparse QR solver is used with a minimum degree
column ordering and a variable pair row ordering scheme (Robey and Sulsky, 1994). A
problem-specific nested dissection or nested domain decomposition column ordering would

probably be more efficient but will require more programming.
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Appendix C: RIB/GENISES Information

Information from the Reference Information Base
Used in this Report

This report contains no information from the Reference Information Base.
Candidate Information
for the
Reference Information Base
This report contains no candidate information for the Reference Information Base.
Candidate Information
for the
Geographic Nodal Information Study

and Evaluation System

This report contains no candidate information for the Geographic Nodal Information Study

and Evaluation System.
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