

ANL/CEN/FE-78-11

DR. 2479

ANL/CEN/FE-78-11

230
4-25-79

**A SLUG FLOW MODEL FOR COAL COMBUSTION
AND DESULFURIZATION IN FLUIDIZED BEDS:
THEORETICAL FORMULATION**

by

**S. C. Saxena, T. P. Chen,
and A. A. Jonke**

U of C-AUA-USDOE

MASTER

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

**Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

—NOTICE—

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Energy Research and Development Administration.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy \$4.50; Microfiche \$3.00

Distribution Category:
Coal Conversion and Utilization--
Direct Combustion of Coal
(UC-90e)

ANL/CEN/FE-78-11

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

A SLUG FLOW MODEL FOR COAL COMBUSTION
AND DESULFURIZATION IN FLUIDIZED BEDS:
THEORETICAL FORMULATION

by

S. C. Saxena,* T. P. Chen,†
and A. A. Jonke

Chemical Engineering Division

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

*Department of Energy Engineering, University of Illinois,
P. O. Box 4348, Chicago, Ill. 60680

†Bechtel Corporation, 50 Beale Street, San Francisco, Calif. 94119

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

TABLE OF CONTENTS

	<u>Page</u>
NOMENCLATURE	v
ABSTRACT	1
I. INTRODUCTION	1
II. DESCRIPTION OF THE SYSTEM	2
III. THE MODEL	3
A. The Gas-Flow Analysis	3
B. The Gas and Solids Reactant Balance	6
1. The Solids Reactant Balance	6
2. The Gas Reactant Balance	12
IV. GENERAL COMMENTS	15
ACKNOWLEDGMENTS	15
REFERENCES	15

NOMENCLATURE

A	bed cross-sectional area	Q_{se}	gas-exchange rate between the particulate and slug or bubble phases per slug or bubble
C_0	initial oxygen concentration in the fluidizing gas	q_c	mass flow rate of coal
\bar{C}_{O_2}	average concentration of oxygen in the bed, defined by Eq. 15	q_d	mass flow rate of fresh sorbent
C_{e,O_2}	concentration of oxygen in the emulsion phase	R	coal particle radius
C_{e,SO_2}	concentration of sulfur dioxide in the emulsion phase	R_c	coal particle radius in the feed
C_{s,O_2}	concentration of oxygen in the bubble or slug phase	R_d	sorbent particle radius in the feed
C_{s,SO_2}	concentration of sulfur dioxide in the bubble or slug phase	$R_c(R)$	combustion rate constant defined by Eq. 1
C_{O_2}	oxygen concentration in general	$R_d(X)$	combustion rate constant defined by Eq. 3
\bar{C}_{SO_2}	sulfur dioxide concentration in general	t	time
\bar{C}_{SO_2}	average concentration of sulfur dioxide in the bed, defined by Eq. 16	U_o	superficial gas velocity
D	bulk gas diffusion coefficient	U_s	bubble or slug velocity
D_c	bed diameter	U_{mf}	minimum fluidization velocity
d_b	bubble diameter	V_s	bubble or slug volume
d_{bo}	initial bubble diameter at the gas distributor surface	X	conversion of sorbent
d_{hm}	maximum attainable bubble diameter		
$E(t)$	solids residence time distribution function		
F	volumetric flow rate of solids through the bed		
F_c	volumetric feed rate of coal	γ_a	weight fraction of ash in the coal
F_d	volumetric feed rate of sorbent	γ'_a	weight fraction of ash in the char
f_a	volume fraction of ash in the bed	γ_c	weight fraction of carbon in the coal
f_c	volume fraction of coal in the bed	γ'_c	weight fraction of carbon in the char
f_d	volume fraction of sulfated sorbent in the bed	γ'_v	weight fraction of carbon in the volatiles released from coal
g	acceleration of gravity	γ_d	weight fraction of calcium compound in the sorbent
h	total bed height	γ_{II}	weight fraction of hydrogen in the coal
h_s	bed height in general	γ'_H	weight fraction of hydrogen in the char
h_s	the bed height above which slug flow regime prevails	γ_H	weight fraction of hydrogen in the volatiles released from coal
I	an integral along the slug surface	γ_N	weight fraction of nitrogen in the coal
L_s	slug length	γ'_N	weight fraction of nitrogen in the char
M_C	molecular weight of carbon	γ'_N	weight fraction of nitrogen in the volatiles released from coal
M_d	molecular weight of the calcium compound in additive	γ_O	weight fraction of oxygen in the coal
M_H	molecular weight of hydrogen	γ'_O	weight fraction of oxygen in the char
M_N	molecular weight of nitrogen	γ'_O	weight fraction of oxygen in the volatiles released from coal
M_O	molecular weight of oxygen	γ_S	weight fraction of sulfur in the coal
M_S	molecular weight of sulfur	γ'_S	weight fraction of sulfur in the char
n_d	number of orifices in the perforated gas distribution plate	γ'_S	weight fraction of sulfur in the volatiles released from coal
n_{O_2}	moles of oxygen	γ_v	weight fraction of volatiles in the coal
n_{SO_2}	moles of sulfur dioxide	ρ_c	coal particle density
$P_b(R)$	char particle size distribution function in the bed on volume basis	ρ'_c	char particle density
$P'_b(R)$	char particle size distribution function in the bed on particle number basis	ρ_d	sorbent particle density
$P_b(X)$	sulfur loading distribution function of sorbent particles in the bed on volume basis	δ	volume fraction of bubbles or slugs in the bed
$P'_b(X)$	sulfur loading distribution function of sorbent particles in the bed on particle number basis	ϵ_{mf}	bed voidage at minimum fluidization
		η_1	combustion efficiency defined by Eq. 52
		η_2	combustion efficiency defined by Eq. 53

Greek Letters

γ_a	weight fraction of ash in the coal
γ'_a	weight fraction of ash in the char
γ_c	weight fraction of carbon in the coal
γ'_c	weight fraction of carbon in the char
γ'_v	weight fraction of carbon in the volatiles released from coal
γ_d	weight fraction of calcium compound in the sorbent
γ_{II}	weight fraction of hydrogen in the coal
γ'_H	weight fraction of hydrogen in the char
γ_H	weight fraction of hydrogen in the volatiles released from coal
γ_N	weight fraction of nitrogen in the coal
γ'_N	weight fraction of nitrogen in the char
γ'_N	weight fraction of nitrogen in the volatiles released from coal
γ_O	weight fraction of oxygen in the coal
γ'_O	weight fraction of oxygen in the char
γ'_O	weight fraction of oxygen in the volatiles released from coal
γ_S	weight fraction of sulfur in the coal
γ'_S	weight fraction of sulfur in the char
γ'_S	weight fraction of sulfur in the volatiles released from coal
γ_v	weight fraction of volatiles in the coal
ρ_c	coal particle density
ρ'_c	char particle density
ρ_d	sorbent particle density
δ	volume fraction of bubbles or slugs in the bed
ϵ_{mf}	bed voidage at minimum fluidization
η_1	combustion efficiency defined by Eq. 52
η_2	combustion efficiency defined by Eq. 53

A SLUG FLOW MODEL FOR COAL COMBUSTION
AND DESULFURIZATION IN FLUIDIZED BEDS:
THEORETICAL FORMULATION

By

S. C. Saxena,* T. P. Chen,† and A. A. Jonke

ABSTRACT

A model is developed for coal combustion in fluidized beds including devolatilization under slugging conditions, with sulfur removal effected by a sorbent of limestone or dolomite. The gas-flow analysis is based on the slug flow theory of Hovmand and Davidson with modifications to account for the bubbling region below the point where slug formation starts. Solids are assumed to be back-mixed, and for this condition, char-size distributions and sorbent sulfate loadings in the bed are determined. The gaseous reactant balances are carried out for both oxygen and sulfur dioxide under plug flow conditions, with the reaction rates based on coal size and sorbent sulfate loading. The expressions for the combustion efficiency and sulfur reaction are derived.

I. INTRODUCTION

A new combustion process for coal is currently under extensive study by various organizations. It involves a fluidized-bed operation with *in situ* sulfur removal by limestone or dolomite sorbent. The feasibility of this process for reducing sulfur dioxide emission to an acceptable level, as well as for maintaining a sufficiently high combustion efficiency, has been demonstrated by several pilot-plant operations such as those discussed by Jonke *et al.*,¹ Ehrlich,² Hammons and Skopp,³ Hoke *et al.*,⁴ Rice and Coates,⁵ Combustion Power Company,⁶ and National Research and Development Corporation.⁷ The advantages of this fluidized-bed combustion process as opposed to the conventional pulverized-coal boiler have been discussed by Squires.⁸

Models have been proposed by Bethell *et al.*,⁹ O'Neill and Keairns,¹⁰ Jonke *et al.*,¹¹⁻¹³ Horio and Wen¹⁴ for sulfur removal by this process, assuming that the bed is composed entirely of sorbent particles. However, it is known that the bed may also contain a significant amount of coal-derived ash and uncombusted coal particles. Also, since these models do not consider simultaneous coal combustion, the sulfur dioxide generation patterns they assume remain open to question. A complete treatment of the reactions in the bed is given by Chen and Saxena¹⁵ and shall be applied here.

The effects of gas bypassing through bubbles on the reaction performance of the combustor have been investigated by Horio and Wen¹⁴ and Chen and Saxena.¹⁵⁻¹⁶ However, these analyses were limited to uniformly bubbling beds.

*Permanent address: Department of Energy Engineering, University of Illinois at Chicago Circle, Box 4348, Chicago, Illinois 60680.

†Bechtel Corporation, 50 Beale St., Box 3965, San Francisco, California 94119.

Because of the high gas-solids feed ratio required for coal combustion, the beds may frequently be slugging. Furthermore, Matsen and Tarmy¹⁷ pointed out that scale-up of slugging beds tends to be more successful and reliable than scale-up of uniformly bubbling beds.

A pertinent slug flow theory has been given by Hovmand and Davidson.¹⁸ Stewart and Davidson¹⁹ have discussed two types of slug flow, and the present work is confined to what they called type A, in which slugs rise through the bed of particles like large bubbles in a liquid. According to Stewart,²⁰ this type of slug flow is of more general interest and is likely to occur in gas-fluidized beds with $H/D > 1$ when $(U_{mf} - U_{mf})/0.35(gD)^{1/2}$ is greater than about 0.2. In the application of slug flow theory to this work, a modification is made to account for the bubbling region below the slug flow region. Since the gas-exchange rate of the bubbles with the emulsion phase is relatively large as compared to that of the slugs with the emulsion phase, a considerable difference in the rate of coal combustion will be observed in the two cases. The effects of physico-chemical changes of the coal and sorbent particles on the reaction rates of combustion and sulfation are also noted in this work.

II. DESCRIPTION OF THE SYSTEM

Typically the coal combustor is a fluidized bed, with coal and sulfur-removing sorbent fed continuously at the bed base at mass flow rates of q_c and q_d , respectively. The bed is fluidized by atmospheric or pressurized air at a velocity U_0 and oxygen concentration C_0 . The sorbents are usually limestone and/or dolomite, which differ from each other in relative concentrations of calcium carbonate and magnesium carbonate. They can be used either directly or pretreated to the half-calcined and fully calcined forms before being fed into the bed. Only the calcium compound in the sorbents is reactive toward sulfation, and its weight fraction is denoted here as γ_d .

Various grades of coal, ranging from lignite to bituminous coal, have been successfully combusted in this type of reactor. The weight fractions of volatile matter, ash, carbon, hydrogen, oxygen, sulfur, and nitrogen in the coal, as determined from proximate and ultimate analyses, are denoted γ_v , γ_a , γ_c , γ_H , γ_O , γ_S and γ_N , respectively. For most types of coal burned in fluidized beds, ash will strip off after its formation at the coal surface, resulting in shrinkage of the coal particle size from an initial radius, R_c . The sorbents, on the other hand, retain approximately the same particle size, R_d , during sulfation in the bed.

In many fluidized bed combustors, coal will quickly lose its volatile matter at the bottom region of the bed. The char so generated will become sparsely dispersed among the ash and sorbent particles in the bed because of its rapid combustion by combustion. This combustion environment is very similar to the ash bed investigated by Avedesian and Davidson.²¹ Their results give the molar consumption rate of oxygen by a coal particle of radius R as:

$$-\frac{dn_{O_2}}{dt} = C_{O_2} R_c (R) \\ = 8\pi DRC_{O_2} \quad (1)$$

The combustion of volatile matter released from coal in the gas phase proceeds much faster than that of char and therefore is assumed to be completed in a region close to the coal feed point. The char obtained from this devolatilization process is further assumed to retain the same particle size as the coal feed, and its content of ash, carbon, hydrogen, oxygen, sulfur, and nitrogen by weight fraction will be denoted by γ'_a , γ'_C , γ'_H , γ'_D , γ'_S , and γ'_N , respectively. Further, if the weight fractions of carbon, hydrogen, oxygen, sulfur, and nitrogen in the volatile matter released from coal are represented by γ'_C , γ'_H , γ'_O , γ'_S , and γ'_N , respectively, we have the following relations:

$$\begin{aligned}\gamma'_a &= \gamma_a / (1 - \gamma_v) \\ \gamma'_C &= (\gamma_C - \gamma_v \gamma'_C) / (1 - \gamma_v) \\ \gamma'_H &= (\gamma_H - \gamma_v \gamma'_H) / (1 - \gamma_v) \\ \gamma'_O &= (\gamma_O - \gamma_v \gamma'_O) / (1 - \gamma_v) \\ \gamma'_S &= (\gamma_S - \gamma_v \gamma'_S) / (1 - \gamma_v) \\ \gamma'_N &= (\gamma_N - \gamma_v \gamma'_N) / (1 - \gamma_v)\end{aligned}\quad (2)$$

and

$$\gamma'_N = (\gamma_N - \gamma_v \gamma'_N) / (1 - \gamma_v)$$

Numerous experimental studies have been made to investigate the sulfation kinetics. Some of these are Borgwardt,²² Keairns *et al.*,²³ Hubble *et al.*,²⁴ O'Neill *et al.*,²⁵ Yang *et al.*,²⁶ and Wen and Ishida.²⁷ The reaction is found to be first order with respect to the sulfur dioxide concentration, C_{SO_2} . Therefore, the molar consumption rate of sulfur dioxide for a sorbent particle of conversion level X can be written in the following form:

$$-\frac{dn_{SO_2}}{dt} = C_{SO_2} R_d(X) \quad (3)$$

A closed form is not given for the $R_d(X)$ in Eq. 3 because it has been observed to be largely dependent on the type of sorbent used. A good correlation of $R_d(X)$ with the sorbent chemical structure is not presently available. However, the value of $R_d(X)$ for a particular sorbent can be easily determined from the weight-change measurement of a given sample in a thermogravimetric analyzer. Although the gas-flow conditions encountered by the sorbent sample in such a measurement are usually not the same as in the combustor, the use of thermogravimetric analysis for finding the $R_d(X)$ is justified by the experimental evidence that the gas film diffusion is not the rate controlling step of the reaction.²²

III. THE MODEL

A. The Gas-Flow Analysis

Bubbles formed at the gas distribution surface coalesce and grow while rising through the bed. The bubble diameter, d_b , according to Mori and Wen,²⁸

varies with the bed height, h as:

$$d_b = d_{bm} - (d_{bm} - d_{bo}) \exp \left[-0.15h/\sqrt{(A/\pi)} \right] \quad (4)$$

Here A is the bed cross-sectional area, and d_{bo} and d_{bm} are the initial and maximum attainable bubble diameters, respectively, as given below:

$$d_{bo} = 0.347 [A(U_o - U_{mf})/n_d]^{2/5} \quad (5)$$

for a perforated gas distributor,

$$d_{bo} = 0.00376 (U_o - U_{mf})^2 \quad (6)$$

for a porous gas distributor, and

$$d_{bm} = 0.652 [A(U_o - U_{mf})]^{2/5} \quad (7)$$

where all quantities are expressed in the cgs unit system. U_{mf} and n_d are the minimum fluidization velocity and the number of orifices on the perforated gas distributor plate, respectively. Mori and Wen²⁸ made a simplification that $U_o - U_{mf} \ll 0.711 \sqrt{gd_{bm}}$ while expressing d_{bm} in the closed form given by Eq. 7. This simplification will not usually be valid in most fluidized-bed combustion operations because U_o is normally very large. Following their derivation, but without making this simplifying assumption, the following relation is derived for the determination of d_{bm} :

$$22.3d_{bm}^{2.5} + (U_o - U_{mf})d_{bm}^2 = 7.64 A(U_o - U_{mf}) \quad (8)$$

For small-diameter columns or high gas velocities, the bubble may grow to a size comparable to the column diameter D_c at a bed height h_s above the gas distributor. The resulting slug flow will then persist in the remaining upper portion of the bed. According to Davidson and Harrison,²⁹ h_s may be evaluated from Eq. 4 as that value of h which gives a value for d_b approximately equal to $1/3 D_c$. Therefore

$$h_s = 3.76 \sqrt{A} \ln \left\{ (d_{bm} - d_{bo}) / [d_{bm} - (D_c/3)] \right\} \quad (9)$$

A schematic representation of these two different gas-flow patterns is shown in Fig. 1.

According to Davidson and Harrison²⁹ and Stewart and Davidson,¹⁹ the bubble and slug velocities, both expressed as U_s , are given by Eqs. 10 and 11, respectively:

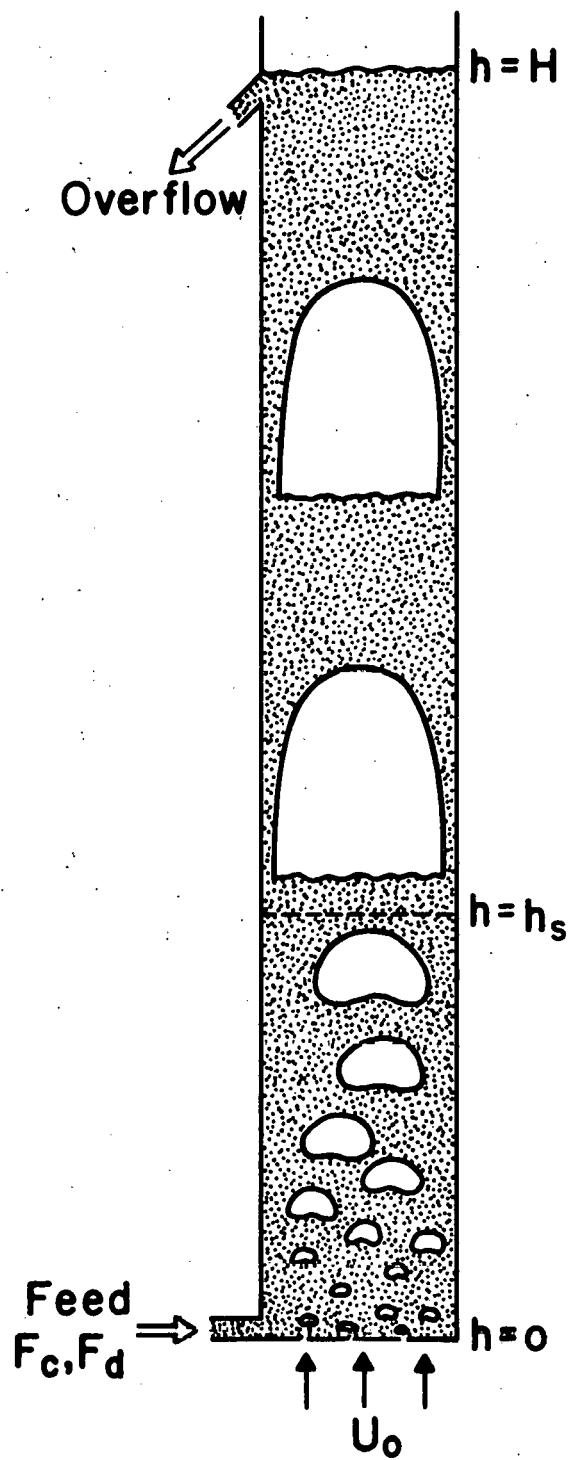


Fig. 1. Bubbling and Slugging Sections
in a Fluidized Bed

$$U_s = U_o - U_{mf} + 0.711(gd_b)^{1/2} \quad (10)$$

for $h < h_s$ or $d_b < (D_c/3)$

and

$$U_s = U_o - U_{mf} + 0.35(gD_c)^{1/2} \text{ for } h > h_s \text{ or } d_b > (D_c/3) \quad (11)$$

Following the two-phase theory²⁹ which asserts that gas in excess of that required for minimum fluidization passes through the bed as gas pockets, the volume fraction of bubbles or slug in the bed is:

$$\delta = (U_o - U_{mf})/U_s \quad (12)$$

B. The Gas and Solids Reactant Balance

Since gas mixing in fluidized-bed combustors which have internal components is not a very efficient process, it is assumed here that plug flow is a good representation for gases in both the emulsion and bubble/slug phases. The gaseous concentrations of oxygen and sulfur dioxide in these two phases then become dependent on bed height. On the other hand, for solids, a back-mix pattern is assumed for all particles in the bed, in view of the high frequency of rising bubbles and slugs at the high gas throughput of the coal combustor.

1. The Solids Reactant Balance

Three kinds of solids, *viz.*, the ash, unburned coal, and sorbent particles, exist in the bed, and their volume fractions at steady state may be denoted by f_a , f_c and f_d , respectively. Further,

$$f_a + f_c + f_d = 1 \quad (13)$$

Since these solids are in back-mix condition in the bed, each one has a residence-time distribution given by:

$$E(t) = \frac{1}{(AH/F)} \exp[-t/(AH/F)] \quad (14)$$

where F is the volumetric flow rate of solids through the bed.

For converting the residence-time distribution into the distributions of char-particle size and sorbent sulfate loading, relations of t with R , as well as with X , have to be determined from Eqs. 1 and 3. Since the combustion and sulfation reactions are carried out only in the emulsion phase, the linearity of Eqs. 1 and 3 in C_{O_2} and C_{SO_2} , respectively, leads to a convenient way of defining mean values of these quantities, *viz.*,

$$\bar{C}_{O_2} = \int_0^H c_{e,O_2} \frac{dh}{H} \quad (15)$$

and

$$\bar{C}_{SO_2} = \int_0^H c_{e,SO_2} \frac{dh}{H} \quad (16)$$

It can be shown that the terms on the left side of Eqs. 1 and 3 can be expressed in the following forms, respectively,

$$-\frac{dn_{O_2}}{dt} = \frac{d}{dt} \left[\frac{4\pi}{3} R^3 \rho_c' \left(\frac{\gamma'_C}{M_C} + \frac{\gamma'_S}{M_S} + \frac{\gamma'_H}{2M_H} - \frac{\gamma'_O}{M_O} \right) \right] \quad (17)$$

and

$$-\frac{dn_{SO_2}}{dt} = \frac{d}{dt} \left[4\pi R_d^3 \rho_d \gamma_d X / 3M_d \right] \quad (18)$$

Here, ρ' and ρ_d are the densities of char and sorbent particles, respectively. The quantities M_C , M_S , M_H , M_O and M_d are the molecular weights of carbon, sulfur, hydrogen, oxygen, and calcium compound, respectively. Equations 1 and 3 after substitution from Eqs. 15 through 18 assume the following forms:

$$\frac{dR}{dt} = -2D\bar{C}_{O_2} \left[R \rho_c' \left(\frac{\gamma'_C}{M_C} + \frac{\gamma'_S}{M_S} + \frac{\gamma'_H}{2M_H} - \frac{\gamma'_O}{M_O} \right) \right] \quad (19)$$

$$\frac{dX}{dt} = 3\bar{C}_{SO_2} R_d (X) M_d / (4\pi R_d^3 \rho_d \gamma_d) \quad (20)$$

On integration and rearrangement, the above two relations yield:

$$t(R) = \int_{R_c}^R \frac{R \rho_c'}{2D\bar{C}_{O_2}} \left(\frac{\gamma'_C}{M_C} + \frac{\gamma'_S}{M_S} + \frac{\gamma'_H}{2M_H} - \frac{\gamma'_O}{M_O} \right) dR \quad (21)$$

and

$$t(X) = \int_0^X \frac{4\pi R_d^3 \rho_d \gamma_d}{3\bar{C}_{SO_2} R_d(X) M_d} dX \quad (22)$$

Let $P_b'(R) dR$ and $P_b'(X) dX$ represent, respectively, the number fractions of char and sorbent particles in the bed over a size increment dR and a conversion increment dX . These probability distribution fractions can be obtained using Eqs. 14 and 19 through 22 and are as follows:

$$P_b'(R) = E[t = t(R)] \left| \frac{dt}{dR} \right|$$

$$= \frac{RF\rho_c'}{2AH\bar{C}_{O_2}} \left(\frac{\gamma_c'}{M_c} + \frac{\gamma_s'}{M_s} + \frac{\gamma_h'}{2M_h} - \frac{\gamma_o'}{M_o} \right)$$

$$\times \exp \left[\int_{R_c}^R \frac{RF\rho_c'}{2AH\bar{C}_{O_2}} \left(\frac{\gamma_c'}{M_c} + \frac{\gamma_s'}{M_s} + \frac{\gamma_h'}{2M_h} - \frac{\gamma_o'}{M_o} \right) dR \right] \quad (23)$$

$$P_b'(X) = E[t = t(X)] \left| \frac{dt}{dX} \right|$$

$$= \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH\bar{C}_{SO_2} R_d(X) M_d} \exp \left[- \int_0^X \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH\bar{C}_{SO_2} R_d(X) M_d} dX \right] \quad (24)$$

$P_b'(X)$ becomes a delta function at $X = 1$ because the corresponding residence time could extend from $t(X = 1)$ to infinity. This delta function can be obtained from the following:

$$\delta'(X = 1) = \int_{t(X = 1)}^{\infty} E(t) dt = \exp \left[\frac{-Ft(X = 1)}{AH} \right]$$

$$= \exp \left[\int_0^1 \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH\bar{C}_{SO_2} R_d(X) M_d} dX \right] \quad (25)$$

Let $P_b(R)$, $P_b(X)$ and $\delta(X = 1)$ represent, respectively, the distribution functions $P_b'(R)$, $P_b'(X)$, and $\delta'(X = 1)$ evaluated on a solids volume basis. The following interrelations are valid for these two types of distribution functions:

$$\frac{F f_c P_b(R) dR}{(4/3)\pi R^3} = \frac{q_c P'_b(R) dR}{(4/3)\pi R^3 \rho_c} \quad (26)$$

$$\frac{F f_d P_b(X) dX}{(4/3)\pi R_d^3} = \frac{q_d P'_b(X) dX}{(4/3)\pi R_d^3 \rho_d} \quad (27)$$

$$\frac{F f_d \delta(X = 1)}{(4/3)\pi R_d^3} = \frac{q_d \delta'(X = 1)}{(4/3)\pi R_d^3 \rho_d} \quad (28)$$

where ρ_c is the particle density of coal feed. Based on Eqs. 26-28 and other relations given above, we have

$$\begin{aligned} P_b(R) &= \frac{q_c R^3}{f_c F \rho_c R_c^3} P'_b(R) \\ &= \frac{R^4 q_c \rho_c \left[\left(\gamma'_c / M_c \right) + \left(\gamma'_s / M_s \right) + \left(\gamma'_h / 2M_h \right) - \left(\gamma'_0 / M_0 \right) \right]}{2D f_c AHC_{O_2} R_c^3 \rho_c} \\ &\times \exp \left\{ \int_{R_c}^R \frac{R F \rho_c \left[\left(\gamma'_c / M_c \right) + \left(\gamma'_s / M_s \right) + \left(\gamma'_h / 2M_h \right) - \left(\gamma'_0 / M_0 \right) \right]}{2AHDC_{O_2}} dR \right\} \end{aligned} \quad (29)$$

$$\begin{aligned} P_b(X) &= \frac{q_d}{f_d F \rho_d} P'_b(X) \\ &= \frac{4\pi R_d^3 \gamma_d q_d}{3AH\bar{C}_{SO_2} f_d R_d (X) M_d} \exp \left[- \int_0^X \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH\bar{C}_{SO_2} R_d (X) M_d} dX \right] \end{aligned} \quad (30)$$

$$\begin{aligned} \delta(X = 1) &= \frac{q_d}{f_d F \rho_d} \delta'(X = 1) \\ &= \frac{q_d}{f_d F \rho_d} \exp \left[- \int_0^1 \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH\bar{C}_{SO_2} R_d (X) M_d} dX \right] \end{aligned} \quad (31)$$

Further, it is known that

$$\int_0^{R_c} P_b(R) dR = 1$$

and

$$\delta(X = 1) + \int_0^1 P_b(X) dX = 1 \quad (33)$$

Therefore, from Eqs. 29 and 32, we obtain

$$f_c = \int_0^{R_c} \frac{R^4 q_c \rho_c \left[\left(\gamma'_C / M_C \right) + \left(\gamma'_S / M_S \right) + \left(\gamma'_H / 2M_H \right) - \left(\gamma'_0 / M_0 \right) \right]}{2DAHC \bar{O}_2 R_c^3 \rho_c} \times \exp \left\{ \int_{R_c}^R \frac{RF \rho_c \left[\left(\gamma'_C / M_C \right) + \left(\gamma'_S / M_S \right) + \left(\gamma'_H / 2M_H \right) - \left(\gamma'_0 / M_0 \right) \right]}{2HAD \bar{O}_2} dR \right\} dR \quad (34)$$

Similarly, from Eqs. 30, 31, and 33, we obtain

$$f_d = \frac{q_d}{F \rho_d} \exp \left[- \int_0^1 \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH \bar{C} \bar{S} O_2 R_d(X) M_d} dX \right] + \int_0^1 \frac{4\pi R_d^3 \gamma_d q_d}{3AH \bar{C} \bar{S} O_2 R_d(X) M_d} \times \exp \left[- \int_0^X \frac{4\pi R_d^3 \rho_d \gamma_d F}{3AH \bar{C} \bar{S} O_2 R_d(X) M_d} dX \right] dX \quad (35)$$

The ash residue stripped from the coal surface after combustion is much more compact than the coal feed. Assuming this compaction ratio to be about 1/6, we can relate the ash collected in the overflow stream to that generated in the bed as follows:

$$\begin{aligned}
 F f_a &= - \int_0^{R_c} \frac{A H f_c P_b(R) dR}{(4/3)\pi R^3} \cdot \frac{1}{6} \cdot \frac{d(4\pi R^3/3)}{dt} \\
 &= - \int_0^{R_c} \frac{A H f_c P_b(R) dR}{2R} \frac{dR}{dt}
 \end{aligned} \tag{36}$$

Substituting $\frac{dR}{dt}$ from Eq. 19 into Eq. 36, we obtain

$$F f_a = \int_0^{R_c} \frac{D \bar{C}_{O_2} A H f_c P_b(R)}{R^2 \rho_c \left[\left(\gamma'_c / M_c \right) + \left(\gamma'_s / M_s \right) + \left(\gamma'_h / 2M_h \right) - \left(\gamma'_0 / M_0 \right) \right]} dR \tag{37}$$

Replacing $P_b(R)$ in Eq. 37 by Eq. 29, we obtain

$$f_a = \frac{1}{F} \int_0^{R_c} \frac{R^2 q_c}{2R_c^3 \rho_c} \exp \left\{ \int_{R_c}^R \frac{R F \rho'_c \left[\left(\gamma'_c / M_c \right) + \left(\gamma'_s / M_s \right) + \left(\gamma'_h / 2M_h \right) - \left(\gamma'_0 / M_0 \right) \right]}{2 A H D \bar{C}_{O_2}} dR \right\} dR \tag{38}$$

substituting f_a , f_d , and f_c from Eqs. 38, 35, and 34 respectively, into Eq. 13, we obtain

$$\begin{aligned}
 1 &= \int_0^{R_c} \frac{R^2 q_c}{2R_c^3 \rho_c} \left\{ \frac{1}{F} + \frac{R^2 \rho'_c \left[\left(\gamma'_c / M_c \right) + \left(\gamma'_s / M_s \right) + \left(\gamma'_h / 2M_h \right) - \left(\gamma'_0 / M_0 \right) \right]}{D A H \bar{C}_{O_2}} \right\} \\
 &\quad \times \exp \left\{ \int_{R_c}^R \frac{R F \rho'_c \left[\left(\gamma'_c / M_c \right) + \left(\gamma'_s / M_s \right) + \left(\gamma'_h / 2M_h \right) - \left(\gamma'_0 / M_0 \right) \right]}{2 A H D \bar{C}_{O_2}} dR \right\} dR \\
 &\quad + \frac{q_d}{F \rho_d} \exp \left[- \int_0^1 \frac{4\pi R_d^3 \rho_d \gamma_d^F}{3 A H C_{SO_2} R_d(X) M_d} dX \right] \\
 &\quad + \int_0^1 \frac{4\pi R_d^3 \gamma_d \rho_d}{3 A H C_{SO_2} R_d(X) M_d} \exp \left[- \int_0^X \frac{4\pi R_d^3 \rho_d \gamma_d^F}{3 A H C_{SO_2} R_d(X) M_d} dX \right] dX
 \end{aligned} \tag{39}$$

The only unknown in Eq. 39 is F , which can therefore be determined by trial and error. The f_a , f_c , f_d , $P_a(R)$, $P_b(X)$, and $\delta(X = 1)$ can then be determined on the basis of the F value so obtained.

2. The Gas Reactant Balance

The gas exchange between the slugs and the particulate phase plays an important role in the redistribution of gaseous reactants in the bed. For the present process, the transfer of oxygen from slugs to the particulate phase can be expected to be a limiting step for the coal combustion since the combustion rate is usually greater than the gas-exchange rate. On the other hand, the poorer gas exchange generally observed in a slugging bed may impede the transfer of sulfur dioxide from the particulate phase into the bypassing gas stream in the slug phase, resulting in higher sulfur retention. The gas-exchange rate is known to be a function of the slug dimensions. Equations have been derived by Hovmand and Davidson¹⁸ for the slug length, L_s , and then the slug volume, V_s . These are:

$$\frac{L_s}{D_c} - 0.495 \left(\frac{L_s}{D_c} \right)^{1/2} \left[1 + \frac{(U_o - U_{mf})}{0.35(gD_c)^{1/2}} \right] + 0.061 - \frac{1.939(U_o - U_{mf})}{0.35(gD_c)^{1/2}} = 0 \quad (40)$$

$$V_s = \frac{\pi D_c^3}{4} \left[\frac{L_s}{D_c} - 0.495 \left(\frac{L_s}{D_c} \right)^{1/2} + 0.061 \right] \text{ for } h > h_s \quad (41)$$

The gas-exchange rate per slug, Q_{se} , based on the L_s obtained from Eq. 11, is now:¹⁸

$$Q_{se} = \frac{\pi D_c^2 U_s (1 - \delta)}{1.4(gD_c)^{1/2}} \left[U_{mf} + \frac{16\epsilon_{mf}^I}{1 + \epsilon_{mf}} \left(\frac{D}{\pi} \right)^{1/2} \left(\frac{d}{D_c} \right)^{1/4} \right] \text{ for } h > h_s \quad (42)$$

where I is a function of L_s/D_c , representing the surface integral along the slug surface. The values of I for various L_s/D_c have been tabulated by Hovmand and Davidson.¹⁸

The bubble volume and gas-exchange rate related to the bubbling stage below the point where slug formation starts, denoted as V_s and Q_{se} , respectively, are:³⁰

$$V_s = (\pi/6)d_b^3 \text{ for } h < h_s \quad (43)$$

$$Q_{se} = (3/4)\pi d_b^2 U_{mf} + 0.975 \pi D^{1/2} g^{1/4} d_b^{7/4} \text{ for } h < h_s \quad (44)$$

Since gas mixing is usually poor in fluidized beds, the gas in either the particulate phase or the slug or bubble phase is assumed to be in plug flow. Therefore, the oxygen and sulfur dioxide concentrations in the slug or bubble phase, $C_{s,0_2}$ and C_{s,SO_2} respectively, due to the gas exchange with the particulate phase would vary along the bed height as:

$$V_s U_s \frac{dC_{s,0_2}}{dh} = Q_{se} (C_{e,0_2} - C_{s,0_2}) \quad (45)$$

$$V_s U_s \frac{dC_{s,SO_2}}{dh} = Q_{se} (C_{e,SO_2} - C_{s,SO_2}) \quad (46)$$

where $C_{e,0_2}$ and C_{e,SO_2} are the oxygen and sulfur dioxide concentrations in the particulate phase.

The variations of the two gas concentrations in the particulate phase along the bed height result not only from the gas exchange but also from related reactions. The molar consumption rate of oxygen per unit volume of the expanded bed can be given as

$$- \int_0^{R_c} \frac{3(1 - \delta)(1 - \epsilon_{mf})f_c}{4\pi R^3} C_{e,0_2} R_c P_b(R) dR - \frac{3(1 - \delta)(1 - \epsilon_{mf})f_d}{4\pi R_d^3} \frac{1}{2} C_{e,SO_2} \int_0^X R_d(X) P_b(X) dX \quad (47)$$

The first term is the combustion contribution, and the second term is the sulfation reaction contribution. The numerical factor 1/2 corresponds to the stoichiometric relation that one-half mole of oxygen and one mole of sulfur dioxide are required for conversion of one mole of the additive to the sulfate product. The gaseous reactant balance for the oxygen in the particulate phase is then of the following form:

$$U_{mf} \frac{dC_{e,0_2}}{dH} = \frac{\delta}{V_s} Q_{se} (C_{s,0_2} - C_{e,0_2}) - \int_0^{R_c} \frac{3(1 - \delta)(1 - \epsilon_{mf})f_c}{4\pi R^3} C_{e,0_2} R_c P_b(R) dR - \frac{3(1 - \delta)(1 - \epsilon_{mf})f_d}{4\pi R_d^3} \frac{1}{2} C_{e,SO_2} \int_0^X R_d(X) P_b(X) dX \quad (48)$$

A similar formulation can be derived for C_{e,SO_2} , noting that the sulfur dioxide is generated from combustion and absorbed by the sorbent. Therefore,

$$\begin{aligned}
 U_{mf} \frac{dc_{e,SO_2}}{dh} &= \frac{\delta}{V_s} Q_{se} (C_{s,O_2} - C_{e,O_2}) \\
 &+ \frac{3(1 - \delta)(1 - \epsilon_{mf})f_c}{4\pi R^3} \left[\frac{\gamma_0/M_s}{(\gamma_s/M_s) + (\gamma_c/M_c) + (\gamma_h/2M_h) - (\gamma_0/M_0)} \right] \\
 &\times C_{e,O_2} R_c (R) P_b (R) dR - \frac{3(1 - \delta)(1 - \epsilon_{mf})f_d}{4\pi R_d^3} C_{e,SO_2} \int_0^X R_d (X) P_b (X) dX \quad (49)
 \end{aligned}$$

The boundary conditions of Eqs. 45-48, respectively, are as follows:

$$\text{at } h = 0, C_{s,O_2} = C_{e,O_2} = C_0 - \frac{q_c \gamma_v \frac{\gamma_c}{M_c} + \frac{\gamma_s}{M_s} + \frac{\gamma_h}{2M_h} - \frac{\gamma_0}{M_0}}{AU_0} \quad (50)$$

and

$$C_{s,SO_2} = C_{e,SO_2} = \frac{q_c \gamma_v \gamma_s}{M_s AU_0} \quad (51)$$

If the combustion efficiency is defined as the conversion of non-ash material in the coal, it can then be calculated from the following expression:

$$\eta_1 = 1 - \frac{Ff_c \rho_c (1 - \gamma_a)}{q_c (1 - \gamma_a)} \quad (52)$$

On the other hand, the sulfur retention, defined as the amount of sulfur dioxide absorbed by the sorbent as a percentage of that released during combustion, can be obtained from the following:

$$\eta_2 = \left[\frac{(q_d \gamma_d X)}{M_d} \right] \left/ \left(\frac{q_c \gamma_s - Ff_c \rho_c \gamma_s}{M_s} \right) \right. \quad (53)$$

IV. GENERAL COMMENTS

The above formulation allows calculation of coal combustion efficiency and sulfur retention for a fluidized-bed combustor operating in a combined bubbling and slugging mode under realistic assumptions for gas-flow and solids mixing. The phenomenon of coal devolatilization, usually neglected in modeling efforts, is included in this work as is also the char-particle size distribution function and the sulfur loading distribution function of sorbent particles in the bed. Numerical calculations are being planned to determine the predictions from this model for such quantities as: (1) the combustion efficiency and sulfur retention as a function of coal particle size and Ca/S ratio, (2) the concentration profiles of oxygen and sulfur dioxide in the particulate and slug phases, and (3) the volumetric fractions of ash, carbon, and sorbent along the bed height. Comparison of the calculated combustion efficiency and sulfur retention with the experimentally measured values at the 15.2 cm dia ANL fluidized-bed combustor will also be made as a check of the appropriateness of the theoretical model described above and other models which are being developed at MIT.³¹⁻³³

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

REFERENCES

1. A. A. Jonke, G. J. Vogel, E. L. Carls, R. Ramaswami, L. Anastasia, R. Jarry, and M. Haas, Amer. Inst. Chem. Engr. Symp. Ser., 68 (126), 241 (1972).
2. S. Ehrlich, Instn. Fuel Symp. Ser. No. 1: *Fluidized Combustion*, Paper No. C4-1 (1975).
3. G. A. Hammons and A. Skopp, Amer. Inst. Chem. Eng. Symp. Ser. No. 126, 68 (1972).
4. R. C. Hoke, L. A. Ruth, and H. Shaw, Amer. Soc. Mech. Engrs., Paper No. 74-PWR-6 (1975).
5. R. L. Rice and N. H. Coates, *Combustion of Coals in Fluidized Bed of Limestone*, presented at the Third International Conference on Fluidized-Bed Combustion, Oct. 29-Nov. 1, 1972.
6. Combustion Power Company, *Energy Conversion from Coal Utilizing CPU-400 Technology*, R&D Report No. 94, Interim No. 1 (September 1974).
7. National Research and Development Corporation, *Pressurized Fluidized Bed Combustion*, R&D Report No. 85, Interim No. 1 (1975).

8. A. Squires, *Science* 169 (1970).
9. F. V. Bethell, D. W. Gill, and B. B. Morgan, *Fuel* 52, 121 (1973).
10. E. P. O'Neill and D. L. Keairns, *Sulfur Emission Control with Limestone/Dolomite in Advanced Fossil-Fuel Processing Systems: Comparison of Fluidized-Bed Performance and Thermogravimetric Data*, Westinghouse Research Laboratory, Paper No. 74-233 (August 1974).
11. A. A. Jonke, E. L. Carls, R. L. Jarry, M. Haas, W. A. Murphy, and C. B. Schoffstoll, *Reduction of Atmospheric Pollution by the Application of Fluidized-Bed Combustion*, Argonne National Laboratory, Annual Report, ANL/ES-CEN-1001, July 1968--June 1969.
12. A. A. Jonke, E. L. Carls, R. L. Jarry, L. J. Anastasia, M. Haas, J. R. Pavlik, W. A. Murphy, C. B. Schoffstoll and G. N. Vargo, *Reduction of Atmospheric Pollution by the Application of Fluidized-Bed Combustion*, Argonne National Laboratory, Annual Report, ANL/ES-CEN-1002, July 1969--June 1970.
13. A. A. Jonke, G. J. Vogel, L. J. Anastasia, R. L. Jarry, D. Ramaswami, M. Haas, C. B. Schoffstoll, J. R. Pavlik, G. N. Vargo, and R. Green, *Reduction of Atmospheric Pollution by the Application of Fluidized-Bed Combustion*, Argonne National Laboratory, Annual Report ANL/ES-CEN-1004, July 1970--June 1971.
14. M. Horio and C. Y. Wen, *Fluidization Technology*, Proc. Int. Fluidization Conf., Vol. II, D. L. Keairns, Ed., McGraw-Hill, New York, p. 289 (1976).
15. T. P. Chen and S. C. Saxena, *Amer. Inst. Chem. Eng. Symp. Ser.* 74(176), 149 (1978).
16. T. P. Chen and S. C. Saxena, *Fuel* 56, 401 (1977).
17. J. M. Matsen, and B. L. Tarmy, *Chem. Eng. Prog. Symp. Ser.* 66(101), 1 (1970).
18. S. Hovmand and J. F. Davidson, *Fluidization*, J. F. Davidson and D. Harrison, Eds., Academic Press, London, Chapt. 5 (1971).
19. P. S. B. Stewart and J. F. Davidson, *Powder Technol.* 1, 61 (1967).
20. P. S. B. Stewart, *Ph.D. Thesis*, Cambridge University (1965).
21. M. M. Avedesian and J. F. Davidson, *Trans. Inst. Chem. Eng.* 51, 121 (1973).

22. R. H. Borgwardt, *Environ. Sci. Technol.* 4, 59 (1970).
23. D. L. Keairns, E. R. O'Neill, and D. H. Archer, *Sulfur Emission Control with Limestone/Dolomite in Advanced Fossil Fuel Processing Systems*, presented at the 67th Annual Meeting of the Air Pollution Control Association, June 9-13, 1974.
24. B. R. Hubble, S. Siegel, L. H. Fuchs, and P. T. Cunningham, Fourth International Conf. on Fluidized-Bed Combustion, McLean, Virginia, Dec. 9-11, 1975.
25. E. P. O'Neill, D. L. Keairns, and W. F. Kittle, *Kinetic Studies Related to the Use of Limestone or Dolomite as Sulfur Removal Agents in Fuel Processing*, presented at the Third International Conference on Fluidized-Bed Combustion, Hueston Woods, Ohio, Oct. 29--Nov. 1, 1972.
26. R. T. Yang, P. T. Cunningham, W. I. Wilson, and S. A. Johnson, *Kinetics of the Reaction of Half-Calcined Dolomite with Sulfur Dioxide*, *Adv. Chem. Ser.* 139(12), 149 (1975).
27. C. Y. Wen and M. Ishida, *Environ. Sci. Technol.* 7, 703 (1973).
28. S. Mori and C. Y. Wen, *Amer. Inst. Chem. Eng. J.* 21, 109 (1975).
29. J. F. Davidson and D. Harrison, *Fluidized Particles*, Cambridge University Press, London (1963).
30. D. Kunii and O. Levenspiel, *Ind. Eng. Chem. Fundam.* 7, 446 (1968).
31. S. E. Tung, J. Goldman, and J. F. Louis, *Proc. Fifth Int. Conf. Fluidized Bed Combustion*, December 12-14, 1977, Vol. III, 406 (1978). *date* ←
32. R. E. Baron, J. M. Beer, G. Borghi, J. L. Hodges, and A. F. Sarofim, *Proc. Fifth Int. Conf. Fluidized-Bed Combustion*, December 12-14, 1977, Vol. III, 437 (1978).
33. A. Bar-Cohen, L. Glicksman, and R. Hughes, *Proc. Fifth Int. Conf. Fluidized-Bed Combustion*, December 12-14, 1977, Vol. III, 458 (1978).

Distribution for ANL/CEN/FE-78-11Internal:

L. Burris	L. Cuba	D. S. Moulton
W. L. Buck	G. M. Kesser	D. S. Webster
F. Cafasso	E. G. Pewitt	W. I. Wilson
E. Carls	F. F. Nunes	J. Young
P. T. Cunningham	W. Podolski	R. Bane
J. Fischer	J. Royal	E. J. Croke
H. Huang	S. Siegel	J. D. Gabor
B. R. Hubble	J. W. Simmons	K. Jensen
I. Johnson (20)	G. W. Smith	N. Sather
A. A. Jonke (30)	R. B. Snyder	J. Shearer
J. A. Kyger	W. M. Swift	E. Smyk
R. V. Laney	F. G. Teats	C. B. Turner
S. Lawroski	S. Vogler	A. B. Krisciunas
S. H. Lee	E. M. Bohn	ANL Contract File
J. F. Lenc	R. G. Matlock	ANL Libraries (5)
W. A. Ellingson		TIS Files (6)

External:

DOE-TIC, for distribution per UC-90e (270)

Manager, Chicago Operations Office

Chief, Office of Patent Counsel, CH

V. H. Hummel, Chicago Operations Office

President, Argonne Universities Association

Chemical Engineering Division Review Committee:

C. B. Alcock, U. Toronto
 R. C. Axtmann, Princeton Univ.
 R. E. Balzhiser, Electric Power Research Institute
 J. T. Banchero, Univ. Notre Dame
 T. Cole, Ford Motor Co.
 P. W. Gilles, Univ. Kansas
 R. I. Newman, Allied Chemical Corp.
 G. M. Rosenblatt, Pennsylvania State Univ.
 S. Saxena, Univ. Illinois, Chicago
 D. H. Archer, Westinghouse Research Labs.
 E. C. Bailey, John Dolio and Associates
 S. Beall, Oak Ridge National Laboratory
 O. L. Bennett, West Virginia U.
 R. Bertrand, Exxon Research and Engineering (5)
 M. Boyle, Valley Forge Labs.
 J. A. Brooks, Amoco Oil Co.
 R. D. Brooks, General Electric Co.
 C. Busch, Spectron Development Laboratory, Inc.
 J. Chen, Lehigh U.
 D. Cherrington, Exxon Research and Engineering Co., Florham Park, NJ
 J. Clark, Tennessee Valley Authority
 D. Clarke, Stearns-Rogers
 N. Coates, The MITRE Corporation
 R. C. Corey, DOE-CCU
 R. Covell, Combustion Engineering, Inc.

G. Curran, Conoco Coal Development Co.
D. DeCousin, Fluidyne Engineering Co.
J. Dodge, Tetra Tech, Inc.
M. Dudukovic, Washington U.
S. Ehrlich, Electric Power Research Institute
M. Evans, Aerotherm Division of ACUREX Corporation
M. H. Farmer, Exxon Research & Engineering Co., Linden, NJ
C. Fisher, Univ. Tennessee
T. Fitzgerald, Oregon State U.
J. F. Flagg, Universal Oil Products Co.
H. B. Forbes, Stone & Webster Engineering Corp.
R. L. Gamble, Foster Wheeler Energy Corporation
D. E. Garrett, Garrett Energy Research and Engineering, Inc.
L. Gasner, U. Maryland
J. Geffken, DOE-CCU (5)
C. Georgakis, Massachusetts Inst. Technology
R. Glenn, Combustion Processes, Inc.
J. S. Gordon, TRW, Inc., McLean, VA
O. J. Hahn, Univ. Kentucky
W. Hansen, Babcock & Wilcox Co., Barberton, O.
M. J. Hargrove, Combustion Engineering, Inc.
R. D. Harvey, Illinois State Geological Survey
R. Helfenstein, Illinois State Geological Survey
R. G. Hickman, Lawrence Livermore Lab.
D. Huber, Burns and Roe, Inc., Paramus, NJ
F. D. Hutchinson, Gibbs and Hill
D. L. Keairns, Westinghouse Research Laboratories
W. E. Kramer, Fluidized Combustion Co.
C. B. Leffert, Wayne State University
A. M. Leon, Dorr-Oliver, Inc.
R. M. Lundberg, Commonwealth Edison Co.
J. J. Markowsky, American Electric Power Service Corp., New York City
M. J. Mayfield, Tennessee Valley Authority, Chattanooga
W. McCurdy, DOE-CCU
J. Mesko, Pope, Evans and Robbins (2)
T. A. Milne, Solar Energy Research Institute
W. G. Moore, Dow Chemical, USA
S. Moskowitz, Curtiss-Wright Corporation
W. Norcross, Combustion Engineering, Inc.
T. A. Pearce, Dow Chemical
W. A. Peters, Massachusetts Institute of Technology
C. Petty, Michigan State U.
R. Reed, Pope, Evans and Robbins, Inc.
A. F. Sarofim, Massachusetts Institute of Technology
R. D. Smith, Combustion Power Company, Inc.
C. Space, Reynolds, Smith & Hills, Jacksonville, FL
W. K. Stair, Univ. Tennessee
F. Staub, General Electric Corp., Schenectady
W. Steen, U. S. Environmental Protection Agency (16)
M. Steinberg, Brookhaven National Laboratory
W. Strieder, Univ. Notre Dame
S. E. Tung, Massachusetts Institute of Technology
V. Underkoffler, Gilbert Associates, Inc.
F. A. Walton, Combustion Power Co.

A. E. Weller, Battelle Columbus Labs.
T. D. Wheelock, Iowa State University
J. S. Wilson, Morgantown Energy Research Center
K. Yeager, Electric Power Research Inst.
D. Zallen, Energy and Environmental Research Corp., Santa Ana
R. E. Zoellner, Stearns-Roger
J. Highley, U.K. National Coal Board, England
H. R. Hoy, BCURA Ltd., England
H. Schreckenberg, Bergbau-Forschung GmbH, Germany
G. Moss, Esso Research Centre, England
B. A. Wiechula, Imperial Oil Enterprises, Canada