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ABSTRACT 

This paper discusses the chrono log ica l  sequence o f  events and 

support ing ana lys i s  dur ing  a t o t a l  l oss  o f  a l l  coo lan t  c i r c u l a t i o n  i n  

the GCFR w i t h  top supported core. Redundant and d i ve rse  coo l i ng  

systems provided f o r  decay heat removal reduce the  p r o b a b i l i t y  o f  

t h i s  pos tu la ted  event below the range o f  p l a n t  design bases. It i s  

nevertheless considered t o  i n v e s t i g a t e  the p o t e n t i a l  f o r  consequence 

m i t i g a t i c n  and containment margin. Two d i s t i n c t  phases o f  the 

sequence are  discussed: 1) the  core  response t o  a t o t a l  l oss  o f  

coolant  c i r c u l a t i o n  and 2 ) . t h e  c a p a b i l i t y  o f  the  PCRV t o  r e t a i n  

molten f u e l  debr is .  GCFR s p e c i f i c  design fea tures  t o  prevent 

r e c r i t i c a l i t y  and f u e l  vapor iza t ion  due t o  f u e l  slumping a r e  under 

i nves t i ga t i on .  A n a l y t i c a l  and experimental  work i s  i n  progress t o  

evaluate the f e a s i b i l i t y  o f  such e a r l y  acc ident  te rminat ion  mechanisms. 

Several concepts f o r  pos t  acc ident  f u e l  containment have been i d e n t i f i e d  

and appear t e c h n i c a l l y  f eas ib le .  

Prepared under Department o f  Energy .Contract No. EY-76-C-03-0167, 
P ro jec t  Agreement No. 23. 



INTRODUCTION 

The sa fe ty  phi losophy adopted f o r  the GCFR demonstration p l a n t  

includes two bas ic  elements. F i r s t ,  s a f e t y  systems a re  developed which 

assure tha t  the occurrence o f  a p l a n t  c o n d i t i o n  exceeding the core 

sa fe ty  l i m i t s  i s  so remote tha t  a l l  acc idents leading t o  l oss  o f  coo lab le  

core geometry a re  beyond the p l a n t  design basis  envelope. Th i s  o b j e c t i v e  

i s  accomplished through a comprehensive design, design ana lys i s  and 

experiment support program, where the  design adequacy i s  es tab l ished 

against  sa fe ty  c r i t e r i a  which inc lude both sa fe ty  l i m i t s  f o r  core  

temperatures and r e l i a b i l i t y  t a r g e t s  f o r  t he  prevent ion  o f  core  damage. 

Secondly, pos tu la ted  accident  sequences which lead t o  core  damage a r e  

inves t iga ted  i n  s p i t e  o f  design p rov i s ions  t h a t  remove these sequences 

from the design bas is  envelope. The o b j e c t i v e  i s  t o  i n v e s t i g a t e  the  

consequences from these low p r o b a b i l i t y  events i n  o r d e r . t o  assess i f . ,  

adequate containment margins e x i s t  t o  adequately l i m i t  the  r i s k .  Th i s  

i s  accomplished through mechanist ic  analyses o f  the  accident  progression 

from event i n i t i a t i o n  through the  core damage phase, the post acc ident  

f u e l  containment phase, the  containment response and the  r a d i o l o g i c a l  

and environmental consequences. Experimental programs support the 

development o f  ana lys i s  methods where l a r g e  u n c e r t a i n t i e s  e x i s t  i n  the  

phys ica l  phenomena involved o r  i n  the  r e l a t i v e  t i m i n g  o f  the p r i n c i p a l  

acc ident  phenomena.   his' paper d i scusses t h e  sequence o f  events i n s i d e  

the PCRV du r ing  a pos tu la ted  t o t a l  loss  o f  f l o w  i n  the shutdown GCFR. 

This acc ident  sequence i s  r e f e r r e d  t o  as Protected Loss o f  Flow (PLoF). 

Two d i s t i n c t  phases a r e  addressed: 1) The core  wide heatup, me1 t i n g  

and r e l o c a t i o n  o f  core ma te r ia l s  du r ing  t h e  i n i t i a l  damage phase and 

2) the containment o f  molten f u e l  and s t e e l  on the  f l o o r  o f  the  c e n t r a l  

PCRV c a v i t y .  



CORE RESPONSE D U R I N G  A PROTECTED LOSS OF FLOW EVENT 

Protected loss o f  f low (PLOF) i s  i n i t i a t e d  by a pos tu la ted loss  o f  

a l l  coolant  c i r c u l a t i o n  i n  the  shutdown reactor .  I t s  p r o b a b i l i t y  o f  

occurrence i s  p red ic ted  t o  be very  low, but  h igher  than unprotected 

t r a n s i e n t  undercool i n g  and t r a n s i e n t  overpower events [ ~ e f  . 11 . Some 

conceptual work on t h i s  accident  has been p rev ious l y  reported [Refs. 2 ,  

3 1 .  This  paper presents analyses o f  t he  core-wide progression o f  t he  

event sequence and i d e n t i f i e s  the key phenomena associated w i t h  i t  i n  

a top  supported core w i thout  l a t e r a l  o r  bottom core r e s t r a i n t .  

The phenomenological event sequence f o r  PLOF shown i n  F igure  1 

r e f l e c t s  the  cur rent .unders tand ing o f  t h e  sequence and has been updated 

from Ref. 4 t o  r e f l e c t  the r e s u l t s  o f  analyses performed s ince 1976. 

The two most s i g n i f i c a n t  mod i f i ca t i ons  r e l a t e  t o  the  re f reez ing  o f  

molten s tee l  i n  the  lower a x i a l  b lanket  which i s  now considered very  

l i k e l y  and the  p o s s i b i l i t y  o f  f u e l  column crumbl ing f o l l o w i n g  decladding. 

Furthermore, the  event sequence i s  s u b s t a n t i a l l y  the  same whether the  

reac to r  i s  t r i p p e d  by t h e  p l a n t  p r o t e c t i o n  system o r  i s  a l ready shutdown 

when c i r c u l a t o r  coastdown begins. However, t he  length  o f  t ime between 

each s i g n i f i c a n t  event i n  F igure  1 i s  extended as the  l oss  o f  f l o w  i s  

delayed a f t e r  shutdown. 

The PLOF event proceeds i n  phenomenologically and c h r o n o l o g i c a l l y  

d i s t i n c t  phases. Ana lys is  o f  the f i r s t  phase p r e d i c t s  t h a t  t he  c ladd ing 

mel ts ,  re loca tes  downward and ref reezes i n  the lower a x i a l  b lanket .  The 

lower a x i a l  b lanket  coolant  channels a r e  expected t o  be blocked by t h i s  

process. Next the  assembly w a l l s  begin t o  mel t  due t o  d i r e c t  thermal 

r a d i a t i o n  from t h e  declad f u e l  columns. The a x i a l  progression o f  me l t i ng  

a long the hexagonal assembly w a l l  f l a t  i s  g rea te r  than the  c i r c u m f e r e n t i a l  

progression [ ~ e f .  3 1 .  The added molten s t e e l  inventory  b a c k f i l l s  t he  

assembly coo lant  channels above the blockage u n t i l  s t e e l  can s p i l l  i n t o  

the interassembly spacing o r  u n t i l  c i r c u m f e r e n t i a l  duct m e l t i n g  induces 

duct fa l laway.  Th is  i s  chrono log ica l  compet i t ion  between c i r cumfe ren t ia l  



duct mel t ing,  molten s tee l  s p i l l o v e r  and fuel' crumbl ing. I f  duct  fa l laway 

precedes s t e e l  s p i l l o v e r  and f u e l  crumbling, the event sequence i s  

terminated e a r l y  and r e c r i t i c a l i t y  i s  prevented. A l t e r n a t i v e l y ,  i f  duc t  

fa l laway i s  delayed, s tee l  s p i l l o v e r  w i l l  cause a ref rozen s t e e l  blockage 

betlveen assemblies i n  the  lower a x i a l  b lanket  region, which I s  l i k e l y  t o  

prevent duct fal laway. The f u e l  m e l t i n g  phase commences a f t e r  most o f  

the  assembly w a l l s  have melted. Fue1,slumps onto  the  lower a x i a l  b lanket  

blockage and d isp laces t h a t  molten s t e e l  which has no t  s o l i d i f i e d .  

Remelting o f  the blockage by contac t  w i t h  molten f u e l ,  subsequent f u e l  

drainage, and the p o t e n t i a l  f o r  hanging assemblies t o  drop ou t  o f  t he  

core a r e  c r i t i c a l i t y  p revent ing  phenomena which c h r o n o l o g i c a l l y  compete 

w i t h  the bu i ldup of a c r i t i c a l  mass. Another mode o f  f u e l  r e l o c a t i o n  

which may r e s u l t  i n  r e c r i t i c a l i t y  i s  t he  crumbling and compacting o f  f u e l  

columns. One cause o f  crumbl ing may be st resses induced by bowing o f  

f u e l  columns near the assembly w a l l s  and by.mechanica1 i n t e r a c t i o n .  o f  

f u e l  columns w i t h  the w a l l  and each other.  

The cladding, duct wa l l  and f u e l  me l t i ng  r a d i a l  progression across 

a GCFR core i s  shown i n  F igure  2. I t  was assumed f o r  t h i s  ana lys i s  t h a t  

the e l e c t r i c  d r i v e  hel ium c i r c u l a t o r s  i n e r t i a l l y  coastdown such t h a t  f l o w  

ceases i n  230 seconds when the  Reynolds number i n  the h o t t e s t  channel 

reaches 2300. The reac to r  i s  t r i p p e d  when c i r c u l a t o r  power i s  l o s t .  

I n c i p i e n t  c ladding,  assembly w a l l  and f u e l  me l t i ng  would occur a t  370, 

490 and 650 seconds, respect lve ly .  I n  con t ras t ,  I f  PLOF would occur 

one week a f t e r  shutdown, i n c i p i e n t  c ladding,  assembly wa l l  and f u e l  

me l t i ng  would occur a t  1050, 1600 and 2900 seconds, respect ive ly .  These 

r e s u l t s  have been generated by a new computer program c a l l e d  SCORIA 

(slumped - - Core - Integra ted  Analys is) .  SCORIA i s  e s s e n t i a l l y  a lumped - 
heat capaci ty ,  thermal network a n a l y s i s  t o o l  which inc ludes conduction, 

forced convect ion and r a d i a t i o n  heat t r a n s f e r  from one node t o  another 

and accounts f o r  the change o f  phase o f  s t e e l  and fue l .  Cur ren t ly ,  

i t  solves the  heat t r a n s f e r  problem i n  one dimension and has the  

c a p a b i l i t y  t o  model many a x i a l  l o c a t i o n s  a l though the  a x i a l  components 

o f  conduct ion and r a d i a t i o n  a r e  neglected. SCORIA a l s o  inc ludes a 



model which accounts f o r  the  bu i ldup o f  s t e e l  f rom the lower a x i a l  

b lanket  blockage, the b a c k f i l l  o f  t he  assembly coo lan t  channels by 

molten s tee l  t o  s p i l l o v e r  i n t o  the interassembly spacing, and the  

blockage bu i ldup i n  t he  interassembly spacing. A GCFR has been 

modeled rod by rod i nc lud ing  assembly w a l l s  from the  center  o f  t he  

core through the r a d i a l  b lanket  dur ing  a  PLOF. The t r a n s i e n t  model 

begins a t  steady s ta te ,  proceeds through c i r c u l a t o r  coastdown and 

reac tor  t r i p ,  t o  the ad iaba t i c  core heat-up cu lminat ing  i n  complete 

core mel t ing .  F igure  2 i s  representa t ive  o f  the r e s u l t s  on the core 

midplane. I t  i s  noted t h a t  c ladd ing  m e l t i n g  i n i t i a t e s  f a i r l y  un i fo rm ly  

throughout t he  core w i t h  an increas ing  delay i n  t he  ou te r  r i n g  o f  co re  

assemblies next  t o  the  r a d i a l  b lanket .  Th i s  i s  expla ined by the  

s t rong thermal coup l ing  between assemblies which subs tan t i . a l l y  reduces 

the more pronounced e f f e c t s  o f  t he  normal power p r o f i l e  du r ing  t h i s  

slow heatup. Duct m e l t i n g  i s  d i s t i n c t l y  delayed beyond c ladd ing  me l t i ng .  

Side t o  s ide  incoherence i n  duct  me l t i ng  i s  small i n  the  center  core  

region bu t  begins t o  increase i n  the outermost two r i n g s  o f  core  

assemblies. Fuel me l t i ng  i s  again d i s t i n c t l y  delayed beyond duct 

me l t i ng  i n  each assembly. 

As c ladd ing  and duct  w a l l s  me l t ,  molten s t e e l  i s  expected t o  d r i p  

o r  f l ow  by g rav i  t y  toward the  lower a x i a l  b lanket .  Th i s  process has 

been modeled as a  laminar f i l m  f low.  The molten s t e e l  cannot permanently 

r e s o l i d i f y  i n  the  core  because the  c ladd ing  mel t  f r o n t  progresses 

even tua l l y  t o  t h e  core bottom. The pene t ra t i on  o f  molten s t e e l  i n t o  

the lower a x i a l  b lanket  and the  bu i l dup  o f  a  s t e e l  c r u s t  which b locks 

the coolant  channels has been modeled. Th is  c a l c u l a t i o n  assumes con- 

duct ion heat t r a n s f e r  i n  the s o l i d i f i e d  s t e e l  l a y e r  and the  c ladding,  

convect ion heat t r a n s f e r  from the  f l ow ing  s t e e l ,  and Newton's Cool ing 

Law between the  c ladd ing  and the f u e l .  The model i s  s i m i l a r  t o  the  

i n t e g r a l  (prof i l e )  approach recommended by Epste in [Ref. 41. The 

major d i f f e r e n c e  i s  t h a t  the  cu r ren t  work models c ladd ing  as the  

" thermal ly  t h i n "  w a l l  o f  a  c y l i n d r i c a l  tube. The r e s u l t s  p r e d i c t  

t h a t  complete blockage o f  the coo lan t  channels i n  t he  lower a x i a l  



b lanket  and the  spacing between assemblies i s  expected t o  occur w i t h i n  

50 rrm below the  core bottom. The r a t e  o f  r a d i a l  bu i l dup  o f  a s o l i d i f i e d  

s tee l  l aye r  i n  the  channel i s  between 2 and 5 mrn per  second. 

The r a t e  o f  molten s t e e l  bu i l dup  on the  blockage r e l a t i v e  t o  the  

progression o f  duct m e l t i n g  i s  shown i n  F igure  3. I t  i s  noted t h a t  the  

s tee l  bu i l dup  r a t e  accelerates markedly when duct  m e l t i n g  begins and 

t h a t  sp i  1 l ove r  occurs about 80 seconds a f t e r  duct  m i d f l a t  me1 t i n g  and 

a t  the same t ime as duct corner mel t ing .  The 80 second delay i n  

duct  corner me l t i ng  r e l a t i v e  t o  the  m i d f l a t  i s  a d i r e c t  consequence 

of  the unfueled corner  support rods i n  t h e  assembly. I f  the  corner  

t i e  rods were replaced w i t h  normal f u e l  rods, the corner  m e l t i n g  delay 

would reduce t o  30 seconds and duct  fa l laway before  s t e e l  s p i l l o v e r  

would be pred ic ted .  

During the heatup t o  duct me l t i ng  a r a d i a l  temperature grad ien t  

develops i n  the f u e l  rods adjacent t o  t he  duct w a l l  which induces ' f ue l  

rod bowing. The d e f l e c t i o n s  have been analyzed assuming t h a t  the  

declad f u e l  rods a r e  f i x e d  a t  the  core/ lower a x i a l  b lanket  i n t e r f a c e  

due t o  molten s tee l  re f reez ing .  A t  t he  normal ly  co ld  i n t e r f a c e  between 

the  core and the upper a x i a l  b lanket ,  i t  i s  assumed t h a t  the f u e l  rods 

a r e  f ree  and o n l y  res t ra ined  by the duc t  w a l l  o r  by neighbor ing f u e l  

rods. Bonding between f u e l  pel  l e t s  i s  assumed t o  occur du r ing  normal 

ope ra t i on  and du r ing  heatup t o  c ladd ing  me l t i ng .  A l l  the  evidence 

from TREAT f u e l  me l t i ng  experiments i n d i c a t e  t h a t  even under much 

more rap id  heatup, f u e l  co l l apse  due t o  crumbl ing i s  n o t  a concern 

a l though f u e l  rods may break a f t e r  c ladd ing  mel t ing.  F igure  4 shows 

the  f u e l  rod d e f l e c t i o n  p r o f i l e s  a t  t he  t ime of duc t  m i d f l a t  me l t ing .  

The st resses ca l cu la ted  from these de f l ec t i ons  would cause the f i r s t  

two rods adjacent  t o  t h e  duct  wa l l  t o  break near t he  bottom. Fo l lowing 

such a break, temporary s t ress  r e l a x a t i o n  would occur and the  subse- 

quent behavior o f  the  rods i s  n o t  w e l l  understood a t  t h i s  t ime, however, 

ex tens ive  and core-wide crumbling o f  f ue l  be fore  duc t  m e l t i n g  i s  no t  



c u r r e n t l y  expected. Fuel s w e l l i n g  under these accident  cond i t i ons  w i l l  

be subs tan t i a l  and w i l l  tend t o  s t a b i l i z e  the  declad f u e l  rods, f u r t h e r  

reducing the ex ten t  o f  f u e l  crumbling. I n  o rder  f o r  r e c r i t i c a l i t y  t o  

occur, over 50% bf  the core f u e l  would be requ i red  t o  crumble i n t o  a  , 

packing f r a c t i o n  o f  60%. Fuel s w e l l i n g  alone, i f  f u l l y  e f f e c t i v e ,  

would prevent r e c r i t i c a l i t y  from f u e l  crumbl ing. 

Fuel me l t i ng  and slumping, there fore ,  remains the  p r i n c i p a l  concern 

f o r  r e c r i t i c a l i t y .  S u f f i c i e n t  f ue l  t o  cause r e c r i t i c a l i t y  has melted 

about 320 seconds a f t e r  f i r s t  f ue l  m e l t i n g  s t a r t s  o r  about 480 seconds 

a f t e r  duct  me l t i ng  s t a r t s .  Th is  t ime i n t e r v a l  i s ,  thus, a v a i l a b l e  t o  

e f f e c t  f u e l  removal by f u e l  mel tout  o r  duct fa l laway t o  ave r t  r e c r i t i -  

c a l i t y .  The Duct M e l t i n g  and Fallaway Test Program a t  Los Alamos 

S c i e n t i f i c  Laboratory has as i t s  o b j e c t i v e  t o  exper imenta l l y  i n v e s t i -  

gate the behavior o f  molten c ladding and duct  w a l l s  and t o  d e f i n e  the  

cond i t i ons  requ i red  f o r  duct fa l laway.  The f i r s t  p a r t i a l  s i z e  experiment 

(FLs-1) consis ted o f  a  F u l l  Length Subgroup o f  37 e l e c t r i c a l  l y  heated 

rods i nc lud ing  a x i a l  b lankets .  I t  was completed i n  June 1978 and t h e  

next experiment i s  scheduled f o r  May 1979. The f i r s t  f u l l  s i z e  

experiment i s  scheduled f o r  the  f a l l  o f  1979. The p r i n c i p a l  o b j e c t i v e  

o f  the FLS-experiment se r i es  i s  t o  q u a l i f y  t he  e l e c t r i c a l l y  heated rods 

f o r  use i n  the f u l l - s i z e  t e s t s .  However, s i g n i f i c a n t  in format ion was 

der ived from the FLS-1 t e s t ,  most no t i ceab ly  the  observa t ion  t h a t  

na tu ra l  convect ion w i t h i n  the rod bundle i s  an effective a x i a l  hcet  

t ranspor t  mechanism, which caused duct  m e l t i n g  i n  the FLS-1 experiment 

a t  an e l e v a t i o n  25 cm higher  than expected. This  e f f e c t  cou ld  

s i g n i f i c a n t l y  enhance duct fa l laway by de lay ing  the t ime o f  molten 

s tee l  s p i l l o v e r .  

I n  the event t h a t  duct  fa l laway cou ld  n o t  be conc lus i ve l y  demon- 

s t ra ted ,  backup s o l u t i o n s  t o  the  prevent ion  o f  r e c r i t i c a l i t y  a r e  be ing  

i nves t i ga ted  t o  e f f e c t  mol ten f u e l  removal from the core reg ion  p r i o r  

t o  r e c r i t i c a l  i t y .  



POST ACCIDENT FUEL CONTAINMENT FOLLOWING A PLOF ACCIDENT 

The Gas-Cooled Fast Reactor (GCFR) u t i l i z e s  a Prestressed Concrete 

Reactor Vessel (PCRV) which conta ins the  core and a1 1 pr imary heat 

t ranspor t  equipment. The PCRV i s  l i n e d  w i t h  a s tee l  l i n e r  t h a t  i s  

cooled by coo l i ng  tubes attached t o  the  concrete s ide  o f  t he  l i n e r .  

Thermal and r a d i a t i o n  sh ie ld ing  i s  located on the i ns ide  o f  t he  l i n e r .  

The normal ly  cooled l i n e r  and s h i e l d i n g  presents a b a r r i e r  f o r  the  

containment o f  molten f u e l  i n  the GCFR. To e s t a b l i s h  the degree t o  

which t h i s  b a r r i e r  could conta in  molten f u e l ,  several conceptual 

design opt ions  have been evaluated because o f  the space l i m i t a t i o n  

imposed by the l i n e r  dimension and because o f  the absence o f  a l i q u i d  

coolant  t h a t  can absorb t h e  upward f l o w i n g  heat from a molten f u e l  

poo 1 . 

The a n a l y t i c a l  methods used f o r  the  evaluat. ion o f  a l t e r n a t e  concepts 

inc lude Baker's [ ~ e f .  61 empi r ica l  model f o r  two dimensional heat t rans-  

f e r  i n  i n t e r n a l l y  heated pools, conduct ion heat t r a n s f e r  through the  s ide  

and bottom s t ruc tu res  and convect ive and r a d i a t i v e  heat t rans fer  from the 

pool sur face t o  the PCRV i n t e r n a l  s t ruc tu res .  

Post accident  fuel  containment concepts f o r  the GCFRs have been 

developed i n  ~ e r m a n ~  [ ~ e f .  71 and i n  the  U.S. [ ~ e f .  81. Among the  many 

concepts, the  ceramic c r u c i b l e ,  t he  borax bath, the  uranium metal bath 

and the s tee l  bath concepts have been studied f o r  t h e  GCFR. These 

concepts have been evaluated and compared. 

The ceramic c r u c i b l e  u t i l i z e s  a bu i ldup o f  r e f r a c t o r y  m a t e r i a l s  

forming a c r u c i b l e  i ns ide  the  l i n e r  t o  conta in  the  molten core debr i s  

w i thout  mel t ing  o r  chemical a t t a c k  t o  the  c r u c i b l e  sur face and a t  t he  

same t ime provide the required s h i e l d i n g  f o r  normal operat ion.  Previous 

ana lys is  [ ~ e f .  31 f o r  a 300 MWe GCFR have shown t h a t  t h i s  concept can be 

app l ied  t o  the cu r ren t  GCFR design w i t h  some mod i f i ca t i ons .  The t h i c k  

c r u c i b l e  wa l i  provides a stored heat capac i ty  t h a t  can l a s t  some 30 hours 



a f t e r  core meltdown. The peak heat f l u x  which even tua l l y  reaches the  

c a v i t y  l i n e r  i s  s u f f i c i e n t l y  low t h a t  an enhanced l i n e r  coo l i ng  capac i ty  

could remove the e n t i r e  downward f l ow ing  heat. However, because o f  the  

t h i c k  c r u c i b l e  w a l l ,  t h e  deb r i s  pool temperature reaches 3200°C and the  

margin f o r  f u e l  b o i l i n g  under depressurized cond i t i ons  i s  smal l .  Also, 

most o f  the core deb r i s  decay heat i s  d r i v e n  upward which makes t h i s  con- 

cept depend on upward heat  removal. The delayed s t a r t u p  o f  a  s i n g l e  CACS 

loop i s  s u f f i c i e n t  t o  remove a l l  the upward f low ing decay heat even a t  

f u l l y  depressurized cond i t i ons .  Furthermore, a  res idua l  pressure o f  6 atm 

i n  the PCRV i s  s u f f i c i e n t  f o r  upward heat removal by n a t u r a l  convect ion i n  

the CACS loops. Even i f  no convect ion, forced o r  na tu ra l  .cou ld  be estab-  

l i s h e d  i n  the CACS loops, the m e l t i n g  o f  subs tan t i a l  po r t i ons  o f  the  

c e n t r a l  c a v i t y  i n t e r n a l s  i s  delayed by approximately 24 hours. The 

a d d i t i o n  o f  these i n t e r n a l s  t o  the deb r i s  pool represents a  subs tan t i a l  

incremental heat capac i ty  t h a t  would depress pool temperatures f o r  a  

subs tant ia l  t ime per iod ,  f o l l o w i n g  which the  reduced upward f l ow ing  heat 

may be removed through the l i n e r  i n s u l a t i o n  t o  the  l i n e r  c o o l i n g  i n  the  

upper p o r t i o n  o f  the c e n t r a l  c a v i t y .  Therefore, ma in ta in ing  PCRV l i n e r  

i n t e g r i t y  f o l l o w i n g  a  core  meltdown appears t e c h n i c a l l y  f e a s i b l e  bu t  

requ i res  design a t t e n t i o n  f o r  the unique aspects o f  a  core meltdown 

cond i t i on ,  such as l i n e r  coo l i ng  capab.i, l i . ty, PCRV penet ra t ions ,  c r u c i b l e  

ma te r i a l  f l o t a t i o n ,  e t c .  

The BORAX ba th  concept was proposed by Dal l e  Donne, e t  a l  [ ~ e f .  91 
f o r  the GCFR. Steel  boxes f il l'ed w i t h  borax ( N ~ ~ B ~ O , )  a r e  i n s t a l  l e d  i n  

the lower reac to r  c a v i t y .  Fol lowing a  core  meltdown, the  ox ide  f u e l  i s  

expected t o  d i sso l ve  i n  t he  l i q u i d  borax t o  form a  compound s o l u t i o n  

pool.  The d i sso l v ing 'p rocess  i s  c o n t r o l l e d  by s t e e l  box m e l t i n g  so that' 

the l i q u i d  borax i s  a l ready  a t  the  m e l t i n g  p o i n t  o f  s t e e l  where a  f a s t  

d i s s o l v i n g  r a t e  may be achieved. Tho low b o i l i n g  p n i n t  o f  hnrax ( 1 7 0 0 " ~ )  

may cause a  borax vapor b lanket  t o  form a t  the  fuel -borax i n t e r f a c e  so 

t h a t  the f u e l  and s t e e l  may s i n k  through the borax bed w i thou t  d i s s o l v i n g  

the f u e l .  I n  add i t i on ,  the borax pool may become separated from the  f u e l  

by an in termediate s t e e l  l aye r  t o  i n t e r r u p t  t he  d i s s o l v i n g  process. 



Small scale s imu la t i on  t e s t s  performed by D a l l e  Donne, e t  a1 [Ref. 21 

i n d i c a t e  the  UO d i s s o l u t i o n  can be accomplished i n  the  presence o f  
2 

s tee l  and l a r g e r  experiments a re  c u r r e n t l y  i n  progress. Only 20 t o  

30% o f  the decay heat f lows upward because o f  the low pool temperature. 

Sideward and downward heat f l uxes  a r e  increased but  t he  peak heat f l u x  

does not  occur u n t i l  about 10 hours. 

The heavy metal bath concept u t i l i z e s  a l a r g e  mass o f  h igh  dens i t y ,  

low me l t i ng  p o i n t  uranium metal a l l o y  i n s t a l l e d  i n s i d e  the  lower reac to r  

c a v i t y .  Fol lowing a core  meltdown, a low temperature pool o f  the uranium 

a l l o y  i s  expected t o  form w i t h  s o l i d  f u e l  fragments i n  suspension. The 

molten pool i s  contained by the  unmelted s o l i d  edge o f  the  heavy metal .  

The p r i n c i p a l  advantage o f  t h i s  concept i s  i t s  s e l f - s e a l i n g  fea tu re .  

Gaps between s t r u c t u r a l  a l l o y  b locks w i l l  become f i l l e d  by the  melted 

uranium a l l o y  which i s  o f  h igher  d e n s i t y  than U02, thereby prevent ing  the 

penet ra t ion  o f  molten U02 i n t o  s t r u c t u r a l  gaps and cracks, which o t h e r -  

wise can l o c a l l y  increase the heat f l u x  t o  the  c a v i t y  l i n e r .  A heat 

t r a n s f e r  study [Ref. 101 f o r  a 1500 MWe GCFR has shown t h a t  heat 

removal from the  heavy metal bath i s  f e a s i b l e  w i t h  a wide range o f  

s u i t a b l e  pool temperatures. Disadvantages o f  t h i s  concept inc lude 

the h igh  cos t  o f  uranium mate r ia l s ,  t he  p o t e n t i a l  f o r  metal water 

reac t ions  i f  the  l i n e r  i s  breached and the p o s s i b i l i t y  o f  c r u s t i n g  on 

top o f  the  heavy metal t h a t  could suspend a s i g n i f i c a n t  f r a c t i o n  o f  the 

UO above the  pool.  Uranium a l l o y s  a l s o  have a low heat  capac i t y  
2 

r e q u i r i n g  a 2 m t h i c k  l a y e r  f o r  a 4-hour heat capaci ty .  

A s tee l  ba th  concept employs a l a r g e  mass o f  s t a i n l e s s  s t e e l  p l a t e s  

t h a t  w i l l  me l t  f o l l b w i n g  a core meltdown t o  form a " l i g h t  metal bath". 

This  concept i s  s i m i l a r  t o  t he  uranium ba th  except t h a t  the  core  deb r i s  

i s  heavier  than the pool ma te r i a l  and w i l l  be c o l l e c t e d  a t  the bottom o f  

the s t e e l  pool .  A r e f r a c t o r y  l aye r  placed between the  s t e e l  and the  

c a v i t y  l i n e r  i s  thus needed t o  p r o t e c t  the l i n e r  from p o t e n t i a l  ho t  spot  

e f f e c t s .  Ana lys is  o f  t h e  s t e e l  ba th  heat t r a n s f e r  [Ref. 111 has shown 

t h a t  a s tee l  core r e t e n t i o n  system has a g rea te r  s tored heat e f f e c t  than 



the  uranium system and there fore  the l i n e r  heat f l u x  and temperatures a r e  

lower. S im i l a r  t o  the  ceramic c r u c i b l e  concept, th ' i s  concept can be 

accommodated w i thout  a la rge  cost  o r  s i g n i f i c a n t  design changes. 

As a comparison o f  t he  f o u r  concepts, the  important  parameters a re  

l i s t e d  i n  Table 1 and each concept i s  evaluated aga ins t  these parameters. 

The ceramic c r u c i b l e  i s  the  s implest  concept but  i s  most dependent on 

upward heat removal; whereas the  borax ba th  and the  uranium bath  concepts 

o f f e r  b e t t e r  performance but  would r e q u i r e  major design changes and 

experimental development. The s tee l  ba th  concept appears t o  be an 

i n t e r e s t i n g  compromise concept. Furthermore, a combination o f  the  

essen t i a l  fea tures  o f  two concepts, i .e.  a heavy metal base w i t h  an 

ove r lay ing  s tee l  bath, may o f f e r  f u r t h e r  concept improvements. It i s  

concluded t h a t  several d iverse  concepts f o r  molten f u e l  containment 

i ns ide  the PCRV appear promising t o  e x p l o i t  the normal ly  provided cooled 

1 i n e r  b a r r i e r  f o r  post  acc ident  f u e l  containment. 

A l l  in-vessel molten f u e l  containment concepts depend on the  

a v a i l a b i l i t y  o f  l i n e r  coo l i ng  f o r  the  i n d e f i n i t e  r e t e n t i o n  o f  molten 

f u e l .  The t ime decay a v a i l a b l e  f o r  the r e s t o r a t i o n  o f  l i n e r  coo l i ng  

depends on the heat capac i ty  provided by the s t r u c t u r a l  ma te r i a l  i n  the  

lower c a v i t y  region and i s  t y p i c a l l y  i n  the. range o f  4 t o  10 hours. 

Since the p r o b a b i l i t y  o f  r e s t o r i n g  o f f s i t e  power i n  2 hours i s  t y p i c a l l y  

90%, the dependence on l i n e r  c o o l i n g  i s  n o t  unreasonable. Nevertheless, 

the consequences o f  a longer l oss  o f  l i n e r  coo l i ng  was i nves t i ga ted  i n  

order  t o  determine l i k e l y  f a i l u r e  modes o f  the  PCRV. Three s p e c i f i c  

f a i l u r e  modes have been i d e n t i f i e d  and analyzed: 1.) F a i l u r e  o f  PCRV 

tendons due t o  sideward growth o f  t he  f u e l  pool pene t ra t i ng  i n t o  the 

concrete slab, 2) f a i l u r e  o f  t he  r e f u e l  i ng  pene t ra t i on  by molten fue l  

penet ra t ion  i n t o  the clearance between the p lug  and the  PCRV base and 

3) molten f u e l  pene t ra t i on  through the  concrete base mat o f  the  PCRV. 

F a i l u r e  t imes f o r  these f a i l u r e  modes a re  shown i n  Table 2. F a i l u r e  

o f  the f i r s t  row o f  a x i a l  p res t ress ing  tendons a t ,  31 hours a f t e r  core  

meltdown i s  p red i c ted  as the  e a r l i e s t  f a i l u r e  mode, Th i s  f a i l u r e  mode 



would o n l y  be o f  importance i f  the  PCRV i s  s t i l l  pressur ized,  a very 

u n l i k e l y  cond i t ion ,  because a pressure reduct ion  would e i t h e r  be expected 

through the PCRV r e l i e f  valves o r  through the  f a i l e d  l i n e r .  I n  add i t i on ,  

s u f f i c i e n t  t ime f o r  manual depressur iza t ion  f o l l o w i n g  l i n e r  f a i l u r e  i s  

ava i lab le .  PCRV concrete f a i l u r e  near the top o f  the  r e f u e l i n g  pene- 

t r a t i o n  occurs a t  about 40 hours and near the lock ing  r i n g  a t  about 

80 hours. For the cu r ren t  p lug  support concept, the most l i k e l y  p lug  

f a i  l u r e  would occur a t  80 hours and i t  may be poss ib le  t o  f u r t h e r  

delay the f a i l u r e  t o  more than 200 hours. F a i l u r e  by PCRV bottom 

head penet ra t ion  requires even longer times. I t  i s  concluded t h a t  

i t  appears feas ib le  t o  delay the  c u r r e n t l y  ind ica ted f a i l u r e  t ime o f  

80 hours t o  more than 200 hours i f  necessary. 
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Table 1. Comparison o f  Molten Core Retent ion Concepts 

-- -- ~ 

Parameter 

Pool temperature 

Cav i ty  l i n e r  temperature 

Time o f  maximum l i n e r  
heat f l u x  

F rac t i on  o f  upward heat 
remova 1 

Request f o r  design 
changes 

Need f o r  experimental 
wo r k  

Pool manageabi l i ty  

Fuel penet ra t ion and 
ma te r ia l  f l o t a t i o n  

Scaleabi 1 i t y  

Cost 

Ceramic 
Cruc ib le  

High 
(>3000°C) 

Low 
(I 50-200°C) 

Long 
(28-40 h rs )  

High 
(0.6-0.8) 

M i nor 

Low 

Med i urn 

Yes 

High 

Low 

Molten Core Retent ion 

Borax 
Bath 

Low 
(1 427 '~ )  

High 
( ~ ~ o - ~ o o ~ c )  

Med i um 
( ' ~ 1 0  h rs )  

Low 
(0.2-0.3) 

Major 

High 

Low 

Yes 

Low 

Med i um 

Concepts 

Uran i urn 
Bath 

Low 
(> 1 2Oo0C) 

High 
(280-350°c) 

Short 
(3-4 h rs )  

Med i um 
(0.3-0.4) 

Major 

High 

High 

N o 

Med i um 

High 

Steel 
Bath 

Low 
(> 1 5 0 0 " ~ )  

High 
( ~ ~ o - ~ o o ~ c )  

Med i um 
(6-10 h rs )  . 

Low 
(0.1-0.3) 

Minor 

Med i um 

High 

Yes 

Med i um 

Low 



Table 2. Comparison o f  t he  PCRV F a i l u r e  Modes 

Cause o f  PCRV F a i l u r e  
Time o f  F a i l u r e  

( ~ f  t e r  Core Me1 tdown) 

F a i l u r e  o f  1s t  row o f  PCRV 
tendons - 

F a i l u r e  o f  PCRV concrete 
(near f u e l  i n  r e f u e l i n g  gap) 

F a i l u r e  o f  PCRV concrete 
(near l ock ing  r i n g  o f  the  
r e f u e l  ing p lug)  

F a i l u r e  o f  t he  lower shoulder 
o f  the  r e f u e l i n g  p lug  

F a i l u r e  ,o f  t he  l ock ing  r i n g  
o f  the r e f u e l i n g  p lug  

Me l t  penet ra t ion  through 50% 
o f  the  lower PCRV head 

Mel t  pene t ra t i on  through the 
f u l l  PCRV head 

31 hours 

40 hours 

80 hours 

>200 hours 

>200 hours 

256 hours 

48 days 
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