

ANL/CES/TE 78-9

LA. 2607
ANL/CES/TE 78-9

633
5-24-79
Special Distribution +
Stack
No. 7115 in full size



WIND TURBINES

by

John C. Yeoman, Jr.

MASTER

TECHNOLOGY EVALUATIONS

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Prepared by:

Oak Ridge National Laboratory
Operated by Union Carbide Corporation
for the U. S. Department of Energy

Prepared for:

Argonne National Laboratory
Operated under Contract W-31-109-Eng-38
with the U. S. Department of Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy \$5.25; Microfiche \$3.00

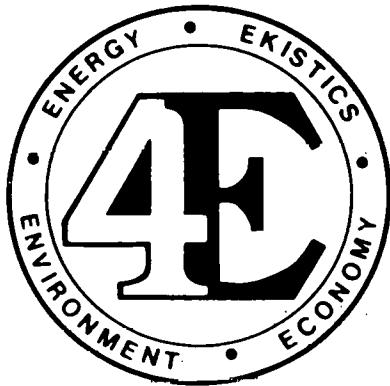
WIND TURBINES

by

John C. Yeoman, Jr.
Oak Ridge National Laboratory

Project Manager
Thomas J. Marcinia
Energy and Environmental Systems Division
Argonne National Laboratory

December 1978


Prepared for
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

by

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
Operated by
Union Carbide Corporation
for the
U. S. Department of Energy

The four E's of the cover logo embody the goals of the Community Systems Program of the Department of Energy, DOE, namely:

- to conserve *Energy*;
- to preserve the *Environment*; and
- to achieve *Economy*.
- in the design and operation of human settlements (*Ekistics*).

CONTENTS

	<u>Page</u>
FOREWORD.....	v
ABSTRACT.....	vii
DATA SUMMARY.....	I.F.1
1 INTRODUCTION.....	1
1.1 PURPOSE AND SCOPE.....	1
1.2 ORIGIN OF WIND.....	1
1.3 TYPES OF WIND TURBINES.....	2
1.3.1 Horizontal-Axis Wind Turbines.....	3
1.3.2 Vertical-Axis Wind Turbines.....	4
1.4 SELECTION CRITERIA.....	5
2 STANDARD PRACTICE.....	6
2.1 STANDARD RATINGS.....	6
2.2 MANUFACTURERS' DATA.....	6
3 MATERIALS BALANCE.....	7
3.1 HORIZONTAL-AXIS MATERIALS INPUTS.....	7
3.2 VERTICAL-AXIS MATERIALS INPUTS.....	8
3.3 WIND TURBINE LAND REQUIREMENTS.....	9
4 ENERGY BALANCE.....	12
4.1 PRIMARY ENERGY INPUTS.....	12
4.2 WIND TURBINE SITING.....	14
5 ENVIRONMENTAL EFFECTS.....	18
5.1 THERMAL DISCHARGE.....	18
5.2 NOISE ATTENUATION.....	18
5.3 AESTHETICS.....	18
5.4 CLIMATIC INFLUENCE.....	18
5.5 COMMUNICATIONS INTERFERENCE.....	18
6 OPERATING REQUIREMENTS.....	20
6.1 OPERATING RANGES.....	20
6.2 OPERATING PROCEDURES.....	24
7 MAINTENANCE AND RELIABILITY.....	25
7.1 MAINTENANCE.....	25
7.2 RELIABILITY.....	25
7.3 EXPECTED LIFE.....	25
8 COST CONSIDERATIONS.....	26
8.1 CAPITAL COSTS -- HORIZONTAL-AXIS WIND TURBINES.....	26
8.2 CAPITAL COSTS -- VERTICAL-AXIS WIND TURBINES.....	30
8.3 CAPITAL COST SENSITIVITY.....	30
8.4 WIND TURBINE OPERATING COSTS.....	31
9 STATUS.....	32
REFERENCES.....	33

LIST OF FIGURES

<u>Number</u>	<u>Title</u>	<u>Page</u>
DS-1	Mean Annual Wind Power.....	I.F.5
1.1	Horizontal-Axis Wind Turbine with Rated Capacity of 100 kW..	3
1.2	Internal Mechanisms of Horizontal-Axis Wind Turbine.....	4
1.3	Vertical-Axis Wind Turbine.....	5
3.1	Total Weight of Horizontal-Axis Turbines.....	7
3.2	Steel Requirements of Horizontal-Axis Turbines.....	8
3.3	Aluminum Requirements of Horizontal-Axis Turbines.....	8
3.4	Concrete Requirements of Horizontal-Axis Turbines.....	8
3.5	Copper Wire Requirements of Horizontal-Axis Turbines.....	8
3.6	Effect of Separation Distance and Number of Units on Individual Turbine Efficiency.....	9
3.7	Effect of Separation Distance and Number of Units on Group Efficiency.....	10
3.8	Power Density Ratios for Multi-Turbine Installations with at Least 15 Blade Diameters between Turbines.....	11
4.1	Windstream Power Vs Wind Speed.....	12
4.2	Effect of Elevation on Windstream Power at Constant Wind Speed.....	12
4.3	Effect of Temperature on Windstream Power at Constant Wind Speed.....	12
4.4	Power Coefficients of Various Wind Turbines.....	13
4.5	Mean Annual Wind Power.....	14
4.6	Season of Maximum Wind Power.....	15
4.7	Winter Average Wind Power.....	15
4.8	Spring Average Wind Power.....	16
4.9	Summer Average Wind Power.....	16
4.10	Fall Average Wind Power.....	17
6.1	Interaction of Wind Turbine Characteristics and Wind Statistics to Produce the Wind Turbine Power Frequency Distribution.....	20
6.2	Percent Down Time.....	22
6.3	Percent Time Running at Rated Velocity.....	23
8.1	Installed Capital Costs of Small Horizontal-Axis Wind Turbine Generating Systems.....	26

ICES TECHNOLOGY EVALUATION

LIST OF FIGURES (CONT'D)

<u>Number</u>	<u>Title</u>	<u>Page</u>
8.2	Installed Capital Costs of Large Horizontal-Axis Wind Turbine Generating Systems.....	27
8.3	Horizontal-Axis Wind Turbine Component Costs (Generator, Foundation, Transportation, Turbine Controls).....	28
8.4	Horizontal-Axis Wind Turbine Component Costs (Hub, Blades, Drive System, Platform, Gearbox).....	29
8.5	Horizontal-Axis Wind Turbine Component Costs (Tower, Yaw Control, Assembly and Erection, Power Conditioning, Site Preparation).....	29
8.6	Capital Costs of Vertical-Axis Wind Turbines.....	30

ICES TECHNOLOGY EVALUATION

LIST OF TABLES

<u>Number</u>	<u>Title</u>	<u>Page</u>
DS-1	Operating Costs of Wind Turbines.....	I.F.9
2.1	Manufacturers of Horizontal-Axis Wind Turbines and Specifications for Equipment.....	6
6.1	Values of Normalized Rayleigh Distribution.....	21
8.1	Operating Costs, of Wind Turbines.....	31

ICES TECHNOLOGY EVALUATION

FOREWORD

The Community Systems Program of the Division of Buildings and Community Systems, Office of Energy Conservation, of the United States Department of Energy (DOE), is concerned with conserving energy and scarce fuels through new methods of satisfying the energy needs of American Communities. These programs are designed to develop innovative ways of combining current, emerging, and advanced technologies into Integrated Community Energy Systems (ICES) that could furnish any, or all, of the energy-using services of a community. The key goals of the Community System Program then, are to identify, evaluate, develop, demonstrate, and deploy energy systems and community designs that will optimally meet the needs of various communities.

The overall Community Systems effort is divided into three main areas: (a) Integrated Systems, (b) Community Planning & Design, and (c) Implementation Mechanisms. The *Integrated Systems* work is intended to develop the technology component and subsystem data base, system analysis methodology, and evaluations of various system conceptual designs which will help those interested in applying integrated systems to communities. Also included in this program is an active participation in demonstrations of ICES. The *Community Planning & Design* effort is designed to develop concepts, tools, and methodologies that relate urban form and energy utilization. This may then be used to optimize the design and operation of community energy systems. *Implementation Mechanisms* activities will provide data and develop strategies to accelerate the acceptance and implementation of community energy systems and energy-conserving community designs.

This report, prepared by Oak Ridge National Laboratory, is part of a series of Technology Evaluations of the performance and costs of components and subsystems which may be included in community energy systems and is part of the Integrated Systems effort. The reports are intended to provide sufficient data on current, emerging and advanced technologies so that they may be used by consulting engineers, architect/engineers, planners, developers, and others in the development of conceptual designs for community energy systems. Furthermore, sufficient detail is provided so that calculational models of each component may be devised for use in computer codes for the design of Integrated Systems. Another task of the Technology Evaluation activity is to

ICES TECHNOLOGY EVALUATION

devise calculational models which will provide part-load performance and costs of components suitable for use as subroutines in the computer codes being developed to analyze community energy systems. These will be published as supplements to the main Technology Evaluation reports.

It should be noted that an extensive data base already exists in technology evaluation studies completed by Oak Ridge National Laboratory (ORNL) for the Modular Integrated Utility System (MIUS) Program sponsored by the Department of Housing and Urban Development (HUD). These studies, however, were limited in that they were: (a) designed to characterize mainly off-the-shelf technologies up to 1973, (b) size limited to meet community limitations, (c) not designed to augment the development of computer subroutines, (d) intended for use as general information for city officials and keyed to residential communities, and (e) designed specifically for HUD-MIUS needs. The present documents are founded on the ORNL data base but are more technically oriented and are designed to be upgraded periodically to reflect changes in current, emerging, and advanced technologies. Furthermore, they will address the complete range of component sizes and their application to residential, commercial, light industrial, and institutional communities. The overall intent of these documents, however, is not to be a complete documentation of a given technology but will provide sufficient data for conceptual design application by a technically knowledgeable individual.

Data presentation is essentially in two forms. The main report includes a detailed description of the part-load performance, capital, operating and maintenance costs, availability, sizes, environmental effects, material and energy balances, and reliability of each component along with appropriate reference material for further study. Also included are concise data sheets which may be removed for filing in a notebook which will be supplied to interested individuals and organizations. The data sheets are colored and are perforated for ease of removal. Thus, the data sheets can be upgraded periodically while the report itself will be updated much less frequently.

Each document was reviewed by several individuals from industry, research and development, utility, and consulting engineering organizations and the resulting reports will, hopefully, be of use to those individuals involved in community energy systems.

ABSTRACT

This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

ICES TECHNOLOGY EVALUATION

TECHNOLOGY EVALUATION SUMMARY SHEET OF WIND TURBINES

By: John C. Yeoman, Jr., ORNL

December, 1978

1 INTRODUCTION

Wind, a form of solar energy, is caused primarily by unequal heating of the earth's surface by the sun. Wind turbines convert the kinetic energy of the air into shaft power which, in turn, is converted into electric power by generators.

Wind turbines are divided into two categories: (1) horizontal-axis wind turbines for which the axis of rotation is parallel to the direction of the wind stream, and (2) vertical-axis wind turbines for which the axis of rotation is perpendicular to both the surface of the earth and the direction of the windstream. Horizontal-axis wind turbines are lift devices that usually have two blades and must have a yaw mechanism to rotate the blades to face the wind. Vertical-axis wind turbines also are lift devices but do not need any mechanism to direct the blades to face the wind. The Darrieus system is the most common type of vertical-axis wind turbine; however, it is not self-starting.

2 MATERIALS BALANCE

Wind turbines require fabrication materials as primary material inputs. The availability of basic raw stock, such as steel, aluminum, concrete, and copper wire is critical for the development of wind turbines. Equations DS-1 through DS-4 give, respectively, the amounts of steel, aluminum, concrete, and copper wire needed to fabricate horizontal-axis wind turbines of various rated capacities and rated windspeeds.

ICES TECHNOLOGY EVALUATION

$$W_S = B_1 + B_2X + B_3X^2 + B_4Y + B_5Y^2 \quad (\text{Eq. DS-1})$$

where:

W_S = Amount of Steel (metric tons)

X = Rated Capacity (kW)

Y = Rated Wind Speed (m/s)

$B_1 = .747240 \times 10^3$ $B_4 = .0705491$

$B_2 = -.154333 \times 10^3$ $B_5 = .156045 \times 10^{-5}$

$B_3 = 7.95833$

Standard error: $.392176 \times 10^2$

$1000 \leq X \leq 10,000$

$5 \leq Y \leq 9$

$$W_A = B_1 + B_2X[\tan(B_3 + B_4Y + B_5Y^2)] \quad (\text{Eq. DS-2})$$

where:

W_A = Amount of Aluminum (metric tons)

X = Rated Capacity (kW)

Y = Rated Wind Speed (m/s)

$B_1 = -.708108$ $B_4 = -.477637$

$B_2 = .927263 \times 10^{-2}$ $B_5 = .0260486$

$B_3 = 2.43678$

Standard Error: $.617298$

$1000 \leq X \leq 10,000$

$5 \leq Y \leq 9$

$$W_C = B_1 + B_2X + B_3X^2 + B_4X^3 + B_5X^4 + B_6Y + B_7Y^2 + B_8Y^3 + B_9Y^4 \quad (\text{Eq. DS-3})$$

where:

W_C = Amount of Concrete (metric tons)

X = Rated Capacity (kW)

Y = Rated Wind Speed (m/s)

$B_1 = .405701 \times 10^3$	$B_6 = -.0568232$
$B_2 = -.117217 \times 10^3$	$B_7 = .454368 \times 10^{-4}$
$B_3 = .508074 \times 10^2$	$B_8 = -.697293 \times 10^{-8}$
$B_4 = -8.28520$	$B_9 = .345011 \times 10^{-12}$
$B_5 = .428183$	

Standard Error: $.271913 \times 10^2$

$1000 \leq X \leq 10,000$

$5 \leq Y \leq 9$

$$W_{Cu} = B_1 + B_2X + B_3X^2 + B_4Y + B_5Y^2 \quad (\text{Eq. DS-4})$$

where:

W_{Cu} = Amount of Copper Wire (metric tons)

X = Rated Capacity (kW)

Y = Rated Wind Speed (m/s)

$B_1 = 6.19951 \quad B_4 = .794344 \times 10^{-3}$

$B_2 = -1.16667 \quad B_5 = .640270 \times 10^{-7}$

$B_3 = .0597222$

Standard Error: $.418536$

$1000 \leq X \leq 10,000$

$5 \leq Y \leq 9$

A vertical-axis wind turbine requires about 30% less copper wire than its horizontal-axis counterpart of the same size. It also will require less steel and concrete. The amount of aluminum required will be the same for both horizontal-axis and vertical-axis wind turbines.

The distance between wind turbines affects their efficiency; the minimum distance between wind turbines should be 15 blade diameters. Moreover, no more than three wind turbines should be aligned in any one direction.

3 PERFORMANCE

The total power available from the wind passing through a unit area normal to the wind is:

$$P = 1/2 \rho V^3 \quad (\text{Eq. DS-5})$$

where:

P is the power in W/m^2 ,

ρ is the atmospheric density in kg/m^3 , and

V is the wind speed in m/s.

The amount of power delivered by a wind turbine divided by the total power available in the windstream is defined as the efficiency or power coefficient, C_p , of the wind turbine. From fluid theory it can be shown that the C_p is limited to a value of 0.593 or less. Equation DS-6 gives the power coefficient for a horizontal-axis wind turbine as a function of the blade tip-to-wind speed ratio, and Eq. DS-7 gives the power coefficient of a vertical-axis wind turbine as a function of the blade-tip-to-wind speed ratio.

$$C_p = B_1 + B_2 X + B_3 X^2 \quad (\text{Eq. DS-6})$$

where:

C_p = Two Blade Power Coefficient

X = Tip-to-Wind Speed Ratio

$B_1 = -.377463$ $B_3 = -.0298519$

$B_2 = .319277$

Standard Error: $.519951 \times 10^{-2}$

$3.7 \leq X \leq 6.8$

$$C_p = B_1 + B_2 X + B_3 X^2 \quad (\text{Eq. DS-7})$$

where:

C_p = Darrieus Rotor Power Coefficient

X = Tip-to-Wind Speed Ratio


$$B_1 = -2.48503 \quad B_3 = -0.0825923$$

$$B_2 = .970120$$

$$\text{Standard Error: } .677752 \times 10^{-2}$$

$$4.6 \leq X \leq 6.8$$

The location of wind turbines is important. Wind turbines should be located where the wind speed is high for maximum power generation. Figure DS-1 shows the mean annual wind speed across the United States. Maximum wind power is available in New England, the Plains, and Pacific Northwest. Wind power is at a maximum in the winter and spring. On a daily basis, wind power is greatest between noon and 2:00 p.m., local standard time.

Mean Annual Wind Power (W/m^2) Estimated at 50 m Above Exposed Areas.
Over mountainous regions (shaded areas), the estimates are lower
limits expected for exposed mountain tops and ridges.

Fig. DS-1 Mean Annual Wind Power

4 ENVIRONMENTAL EFFECTS

The major problem with wind turbines concerns aesthetics. Wind turbines are relatively large and highly visible; however, special choice of paint colors can soften the visual impact.

Wind turbines also can interfere with television reception for several miles. Interference is worse on the upper UHF channels.

5 OPERATION AND MAINTENANCE

Wind turbines usually "cut-in" when the wind speed reaches 50% of the rated speed, and the power output increase until it reaches the rated output at the rated wind speed. The power output then remains constant as the wind speed increases.

Wind turbines will have control circuitry to provide fully automatic operation and to protect the system. Human intervention will be needed only for periodic inspections, maintenance, and repairs.

It is estimated that maintenance will require that the wind turbine be non-operational for 3% of the time. Wind conditions usually are such that most wind turbines operate only 60% of the time; therefore, scheduled maintenance will not require shutting down.

The expected operational life of a wind turbine is 30 yr.

6 COST CONSIDERATIONS

To estimate costs, horizontal-axis wind turbines are categorized into two groups: one ranges in size from 1 kW to 30 kW; the other from 100 kW to 10 MW. Because the wind turbines in each group are entirely different in design concepts, each group has different costs. Wind turbines between 30 and 100 kW have characteristics of both groups and thus cannot be specifically categorized.

The capital costs, in terms of \$/kW, include the cost for the manufacturing of the wind turbine components, transportation to the site, preparation of the site, and the assembly and erection of the wind turbine system. Land costs are not included.

It is estimated that a crew of 50 men would be required to erect a horizontal-axis wind turbine. One crew could erect 10.5 wind turbines per year.

Equation DS-8 gives the capital costs of a small horizontal-axis wind turbine as a function of rated capacity and rated wind speed; Eq. DS-9 gives the capital costs of a large horizontal-axis wind turbine as a function of rated capacity and rated wind speed. Costs are given in 1975 dollars.

Cost of a small horizontal-axis wind turbine as a function of rated capacity can be calculated as follows:

$$W = B_1 + B_2X + B_3X^2 + B_4X^3 + B_5X^4 + B_6Y + B_7Y^2 + B_8Y^3 + B_9Y^4 \quad (\text{Eq. DS-8})$$

where:

W = Capital Cost of a small horizontal-axis wind turbine (\$/kW)

X = Rated Capacity (kW)

Y = Rated Wind Speed (m/s)

$$B_1 = .605775 \times 10^3 \quad B_6 = .199046 \times 10^4$$

$$B_2 = -.77470 \times 10^3 \quad B_7 = -.380795 \times 10^3$$

$$B_3 = .108528 \times 10^3 \quad B_8 = .302233 \times 10^2$$

$$B_4 = -7.01642 \quad B_9 = -.864540$$

$$B_5 = .165035$$

$$\text{Standard Error: } .107341 \times 10^3$$

$$2 \leq X \leq 20$$

$$4 \leq Y \leq 12$$

Cost of a large horizontal-axis wind turbine as a function of rated capacity can be calculated as follows:

$$W = B_1 + B_2/X + B_3/X^2 + B_4/Y + B_5/Y^2 \quad (\text{Eq. DS-9})$$

where:

W = Capital Cost of a large horizontal-axis wind turbine (\$/kW)

X = Rated Capacity (kW)

Y = Rated Wind Speed (m/s)

$$\begin{aligned}
 B_1 &= .317403 \times 10^3 & B_4 &= .231098 \times 10^6 \\
 B_2 &= -.283282 \times 10^4 & B_5 &= -.714143 \times 10^7 \\
 B_3 &= .299949 \times 10^5
 \end{aligned}$$

$$\text{Standard Error: } .643768 \times 10^2$$

$$50 \leq X \leq 10,000$$

$$6 \leq Y \leq 12$$

Capital costs in 1977 dollars, of a two blade vertical-axis wind turbine are given in Equation DS-10. This design has a rated wind speed of 10 m/s and a height-to-diameter ratio of 1.0. The capital costs of vertical-axis wind turbines are less than those of horizontal-axis wind turbines because tower construction is simpler, the generator is located on the ground, and no yaw mechanism is needed.

$$W = B_1 + B_2X + B_3X^2 + B_4X^3 + B_5X^4 \quad (\text{Eq. DS-10})$$

where:

W = Capital Cost of Vertical-Axis Wind Turbines, (\$/kW)

X = Rated Capacity (kW)

$$B_1 = -1.62333 \times 10^3 \quad B_4 = 0.231821$$

$$B_2 = 2.34459 \times 10^2 \quad B_5 = -1.60027 \times 10^{-3}$$

$$B_3 = -11.4057$$

$$\text{Standard Error: } 0.0$$

$$70 \leq X \leq 600$$

Capital costs of wind turbines evaluated here are estimates based on assumed values of several parameters; they are sensitive to the values of these parameters; and they are liable to change. The parameters for which values had to be assumed included optimum wind turbine design, production level, the learning curve for production runs, and the costs of certain wind turbine components, particularly the blades.

The operating costs of wind turbines consist of insurance, maintenance, overhead, and other miscellaneous costs. Table DS-1 gives these costs, on an annual basis, as a percentage of the capital cost of the wind turbine.

Table DS-1 Operating Costs of Wind Turbines

Operating Item	% of Capital Cost
Insurance	0.2
Maintenance	2.0
Overhead	1.0
Other	0.4

The cost of energy will depend on the operating costs, the capital costs, the cost of money, depreciation, and taxes.

7 STATUS

Wind turbines can offer a reliable source of energy. Present technology can produce units that are capable of competing economically with conventional power sources.

The economics of wind turbines improve as the site mean wind speed increases, but the rate of improvement diminishes for wind speeds greater than 8 m/s. Thus, unique sites with exceptionally high wind speeds are not a requirement for wind turbine installations.

The energy cost of wind turbines is relatively insensitive to operation at off-design wind speeds, within a reasonable range. Therefore, it is likely that only a limited number of standard designs will be required for utility applications leading to the capability for routine factory production and the ensuing reduction in cost.

The largest uncertainty in wind turbine energy costs is the uncertainty in the capital costs of the first production units and the learning curve that should be applied to future units.

The economic characteristics of wind turbines may be improved by technical advances on the blade and hub assembly, but the likelihood of achieving such improvements and their effects is difficult to estimate.

Currently, both horizontal-axis and vertical-axis wind turbines are in the developmental stages. Several demonstration units have been, or are

being built to obtain performance data and to confirm the reliability and stability of large units.

Studies are needed to determine the optimum locations for wind turbine installations. Currently available wind data are insufficient for successful implementation of a large-scale wind energy program.

ICES TECHNOLOGY EVALUATION

TECHNOLOGY EVALUATION OF

WIND TURBINES

Prepared by John C. Yeoman, Jr., ORNL
Date December, 1978

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this technology evaluation is to provide information on the performance characteristics, costs, and other factors relevant to the commercialization of wind turbines. The evaluation divides wind turbines into two groups: horizontal-axis and vertical-axis. The rated capacity of the horizontal-axis wind turbine evaluated here ranges from 200 to 20,000 W for currently available models and from 10 kW to 10 MW for models that will be available soon. The rated capacity of the vertical-axis wind turbines evaluated here ranges from 70 to 700 kW. These will be available in the near future. The performance and cost data are in terms of kilowatts of electricity, rather than shaft horsepower because this is the accepted practice in the literature.

1.2 ORIGIN OF WIND

Wind, a form of solar energy, is caused primarily by unequal heating of the earth's surface by the sun. Air above bodies of water remains relatively cool during the day, while air over land is heated. The heated air over the land becomes less dense and rises. The heavier, cooler air over the water flows in to replace it, creating local breezes.¹

At night the process reverses. Air over land cools more rapidly than air over water. The cool land air moves to replace the rising, warmer air over water.

Circulating planetary winds are caused by the greater heating of the earth's surface near the equator than near the poles. This causes cold surface winds to blow from the poles to the equator to replace the hot air that rises in the tropics and moves in the upper atmosphere towards the poles.

ICES TECHNOLOGY EVALUATION

The rotation of the earth also affects the planetary winds. Inertia in the cold air moving near the surface toward the equator tends to twist it to the west, while the warm air moving in the upper atmosphere towards the poles tends to be turned towards the east. This causes large counter-clockwise circulation of the air around low pressure areas in the northern hemisphere and clockwise circulation in the southern hemisphere.

Because the earth's axis of rotation is inclined at an angle of 23.5° to the plane in which it moves around the sun, seasonal variations in the heat received from the sun result in seasonal changes in the strength and direction of the wind.

The manner in which the wind speed varies with height is important. A well established formula relating wind speeds at two levels, 1 and 2, is shown in Eq. 1.1:

$$V_1/V_2 = (h_1/h_2)^{\alpha} \quad (\text{Eq. 1.1})$$

where:

V_1 and V_2 are the wind speeds at levels h_1 and h_2 , and
 α = the wind profile exponent dependent on atmospheric stability and nature of the terrain upwind of the wind turbine.

Some typical values of α are:

0.16 for flat, open country,
0.28 for rough, wooded country, and
0.40 for urban areas.

The wind profile exponent is an important cost parameter because the blade hub is at least 50 meters above the ground. Wind energy must be integrated vertically over the blade disc to obtain an accurate projection of the wind turbine energy extraction.²

1.3 TYPES OF WIND TURBINES

Wind turbines are divided into two categories: (1) horizontal-axis for which the axis of rotation is parallel to the direction of the windstream, and (2) vertical-axis for which the axis of rotation is

perpendicular to both the surface of the earth and the direction of the windstream. Each category is discussed below.

1.3.1 Horizontal-Axis Wind Turbines

Horizontal-axis wind turbines can be either lift or drag devices. Lift devices are preferred, because they can generate more force than can drag devices. Moreover, a drag device cannot move faster than the wind speed. Consequently, lift devices can obtain higher tip-to-wind speed ratios and thus, a higher power output-to-weight ratio and subsequently a lower cost-to-power-output ratio. Systems can be designed with different numbers of blades, ranging from one-bladed devices with a counterweight, to devices with 50 or more blades.

Some horizontal-axis wind turbines are designed to be yaw-fixed, that is, they cannot be rotated around the vertical axis perpendicular to the windstream. Generally, this type would be used where the prevailing winds blow from one direction. Most types are yaw-active and will rotate so as to always face the wind.

Horizontal-axis wind turbines may be designed with either upwind or downwind rotors, depending on whether the blades rotate on the upwind or downwind side of the supporting tower.¹ Figure 1.1 shows a two-blade, downwind, horizontal-axis, wind turbine with a rated capacity of 100 kW.

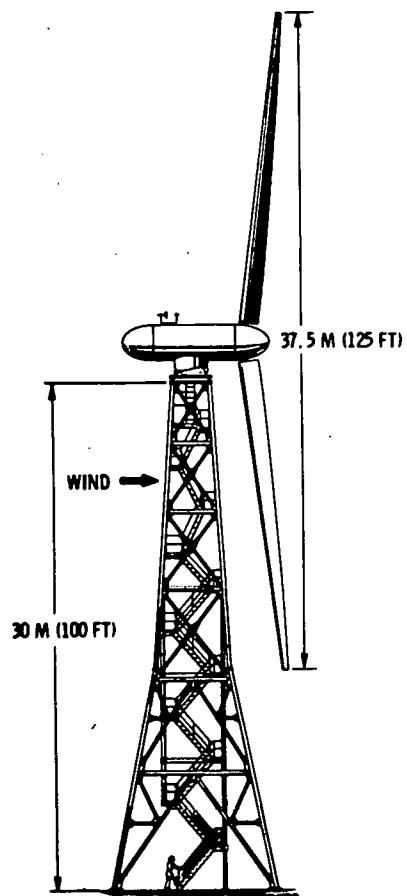


Fig. 1.1 Horizontal-Axis Wind Turbine with Rated Capacity of 100 kW

Figure 1.2 shows the internal mechanisms of a horizontal-axis wind turbine.³

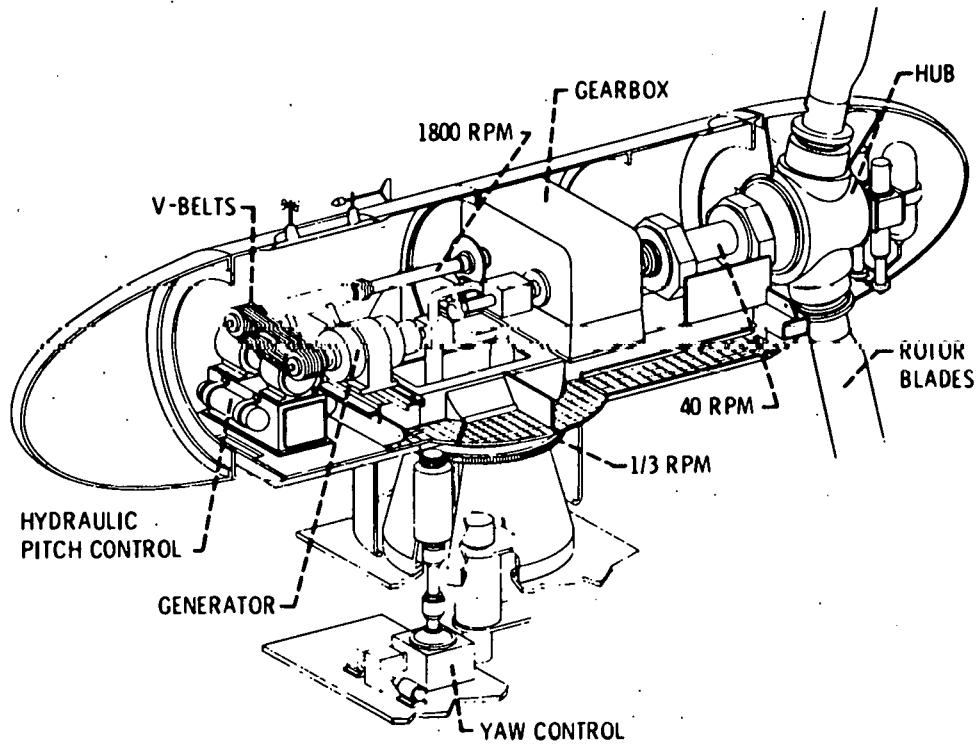


Fig. 1.2 Internal Mechanisms of Horizontal-Axis Wind Turbine³

1.3.2 Vertical-Axis Wind Turbines

Vertical-axis wind turbines also can be either lift or drag devices. Vertical-axis wind turbines have a major advantage over horizontal-axis wind turbines in that they do not have to be turned into the wind as the direction of the windstream changes. This reduces the design complexity of the system and eliminates gyro forces (due to blades yawing) that stress the blades, bearings, and other components in horizontal-axis systems.

The major vertical-axis wind turbine is the Darrieus system. Darrieus systems are lift devices, characterized by curved blades with

airfoil cross-sections. Darrieus wind turbines can be designed with one, two, three, or more blades. One drawback of Darrieus systems is that they are not self-starting. Figure 1.3 shows three-bladed Darrieus system.⁴

1.4 SELECTION CRITERIA

Selection criteria for wind turbines in the ICES program include:

- (1) power generation potential,
- (2) cost,
- (3) reliability and maintenance,
- (4) environmental effects, and
- (5) material requirements.

The performance, materials, and cost data are presented graphically and, as an aid to computer simulation, each graph is modelled empirically by an equation. Modelling was done with a computerized, unconstrained, unweighted, non-linear least-squares method. The particular form of equation for each graph was determined by trying several equations and selecting the one that gave the best results. The equations should not be used with values of the independent variables outside the indicated ranges. Therefore, the proper equations for each graph are given with the graph.

Standard error is presented to give an estimate of the accuracy of the model in terms of its ability to characterize designs not included in the original data set. The definition of standard error used in this evaluation is:⁵

$$\text{Standard Error} = \frac{[\sum (W - \bar{W})^2]}{N}^{1/2} \quad (\text{Eq. 1.2})$$

where:

W = actual value of the dependent variable

\bar{W} = calculated value of the dependent variable

N = degrees of freedom

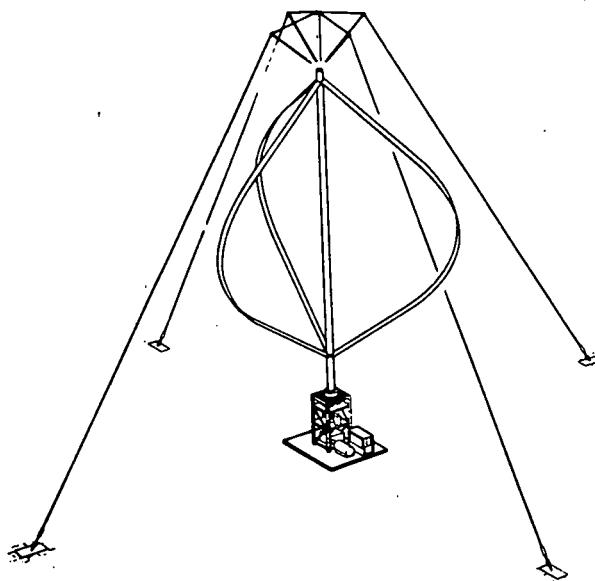


Fig.1.3 Vertical-Axis Wind Turbine

5

2 STANDARD PRACTICE

2.1 STANDARD RATINGS

Individual wind turbines are characterized by their rated capacity and rated wind speed. Rated capacity is defined as the full-load continuous power output. Rated wind speed is defined as that wind speed at which the wind turbine is designed to produce its rated capacity. Constant-speed operation is obtained by varying the pitch of the blades.

Because the power output of a wind turbine varies with air temperature and air density, the standard air temperature for the performance data is 25°C, and the standard air density corresponds to sea level air at 25°C.

2.2 MANUFACTURERS' DATA

Only horizontal-axis wind turbines are available at this time. Sizes range from 200 to 20,000 W. Table 2.1 gives various manufacturers and the specifications of their equipment.^{6,7,8,9} All the wind turbines listed come in kit form, and the prices do not include the cost of transportation or installation. The prices are in 1977 dollars and include the cost of the tower.

Table 2.1 Manufacturers of Horizontal-Axis Wind Turbines and Specifications for Equipment

Manufacturers	Rated Capacity (W)	Rated Wind Speed (m/s)	Weight (kg)	Rotor Size (m)	Cost (\$/kW)
Grumman	20,000	12.5	-	8.0	1,093
Kedco	1,200	9.4	91.6	3.6	1,912
	1,200	7.1	98.4	4.9	2,412
	2,000	11.2	114.3	3.6	1,297
	2,000	9.4	121.1	4.9	1,597
Sencenbaugh	500	11.1	110.2	1.8	4,400
	1,000	10.0	136.1	3.6	2,650
Winco	200	10.3	60.8	1.8	2,625

3 MATERIALS BALANCE

3.1 HORIZONTAL-AXIS MATERIALS INPUTS

Horizontal-axis wind turbines require fabrication materials as primary material inputs. The availability of basic raw stock such as steel, aluminum, concrete, and copper wire is critical for the development of wind turbines. Figures 3.2 through 3.5, respectively, show the amount of steel, aluminum, concrete, and copper wire estimated to be needed for construction of horizontal-axis wind turbines of various rated capacities and rated wind speeds.¹⁰ Figure 3.1 shows the total weight of horizontal-axis wind turbines of various rated capacities and rated wind speeds. The data in Fig. 3.1 were obtained by summing the data in Figs. 3.2 through 3.5.

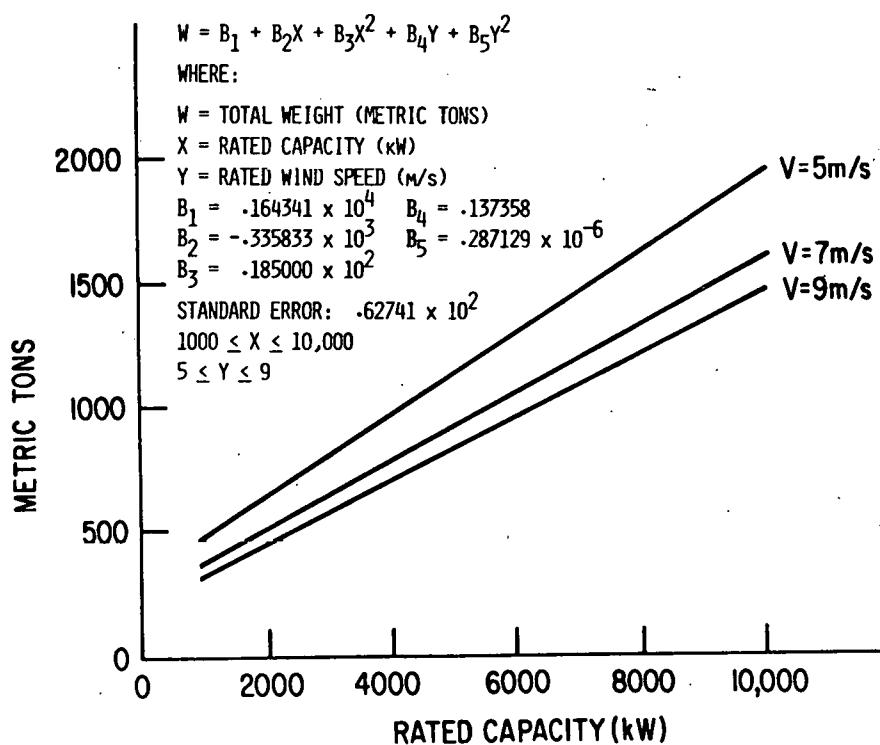


Fig. 3.1 Total Weight of Horizontal-Axis Turbines

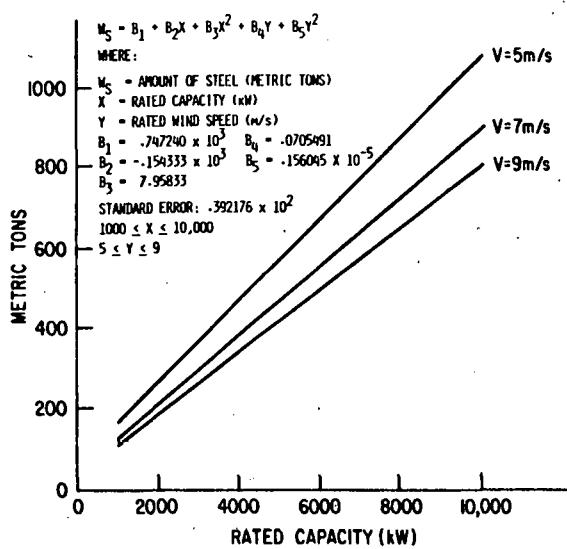


Fig. 3.2 Steel Requirements of Horizontal-Axis Turbines

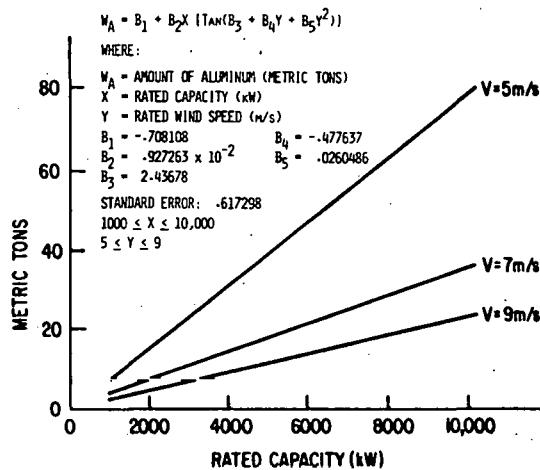


Fig. 3.3 Aluminum Requirements of Horizontal-Axis Turbines

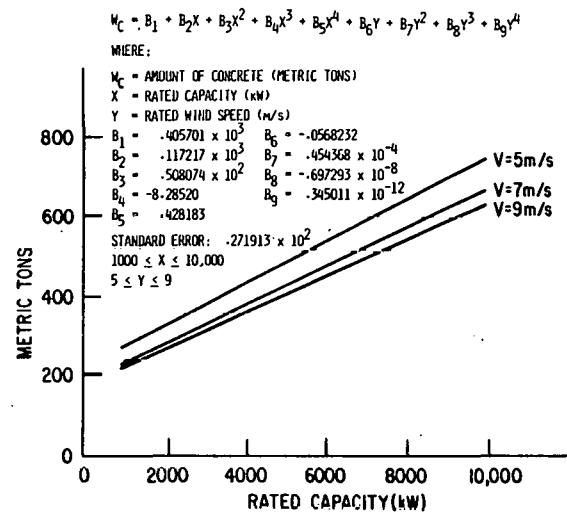


Fig. 3.4 Concrete Requirements of Horizontal-Axis Turbines

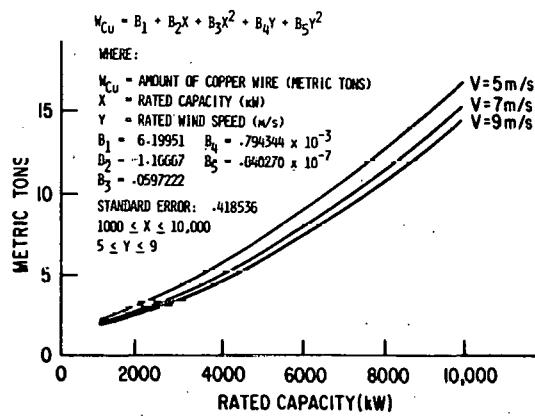


Fig. 3.5 Copper Wire Requirements of Horizontal-Axis Turbines

3.2 VERTICAL-AXIS MATERIALS INPUTS

Vertical-axis wind turbines also require fabrication materials as primary material inputs. Although the material requirements of vertical-axis wind turbines have not been analyzed as extensively as those of horizontal-axis wind turbines, several conclusions can be reached from characteristics of each type:

- (1) Vertical-axis wind turbines will require about 30% less copper wire than horizontal-axis wind turbines of the same size.¹⁰ This is because vertical-axis wind turbines do not need any yaw control.
- (2) Vertical-axis wind turbines will require less steel because of simpler tower construction.
- (3) Less concrete will be required because vertical-axis wind turbines will weigh less and thus require smaller foundations.
- (4) The amount of aluminum required will be about the same, because aluminum is used only in the blades in both systems.

3.3 WIND TURBINE LAND REQUIREMENTS

The distance between wind turbines affects their efficiency. Figure 3.6 shows the unit efficiency as a function of separation distance and the number of units in tandem.¹¹

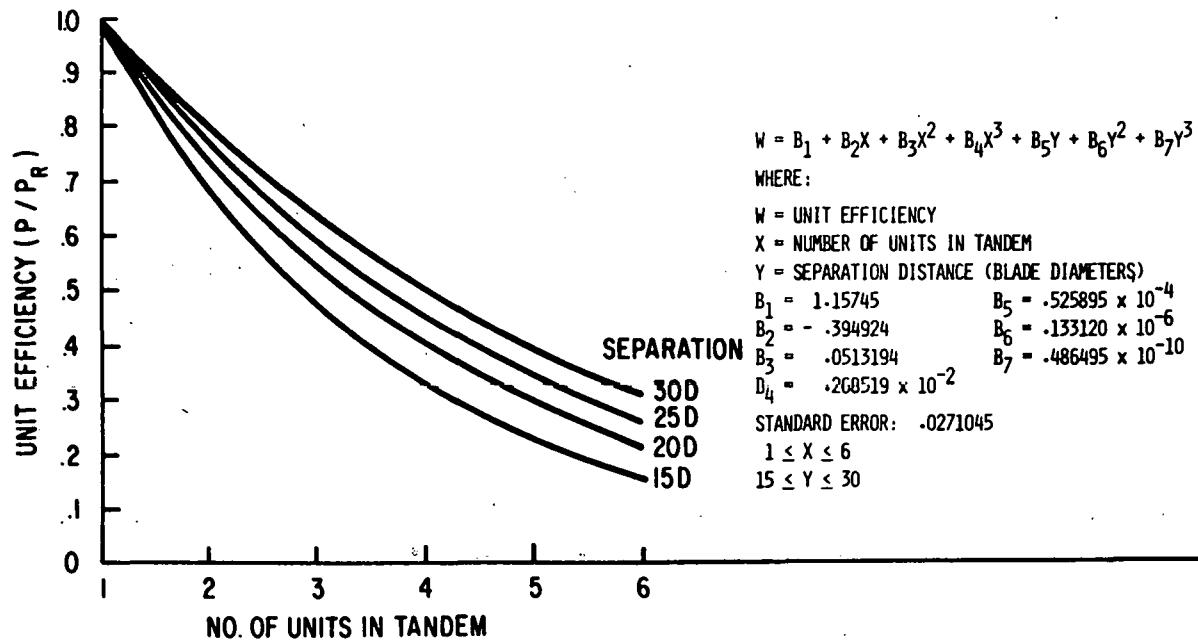


Fig. 3.6 Effect of Separation Distance and Number of Units on Individual Turbine Efficiency

Unit efficiency, P/P_R , is defined to be the power generated by a wind turbine (in a line of wind turbines) divided by the power that would have been generated had the wind turbine stood alone. The number of units in tandem is the number of wind turbines aligned along the direction of wind. For example, if five wind turbines, spaced 20 blade diameters apart, are in tandem, along the direction of the wind, the unit efficiency of the third unit is 0.59. In other words, the effect of the first and second units on the performance of the third unit is such that the third unit will produce 59% of the power it would have produced had it stood alone. Figure 3.7 shows group efficiency as a function of separation distance and the number of units in tandem.¹¹ Group efficiency is defined as the sum of the unit efficiencies of the units in a group divided by the number of units in the group.

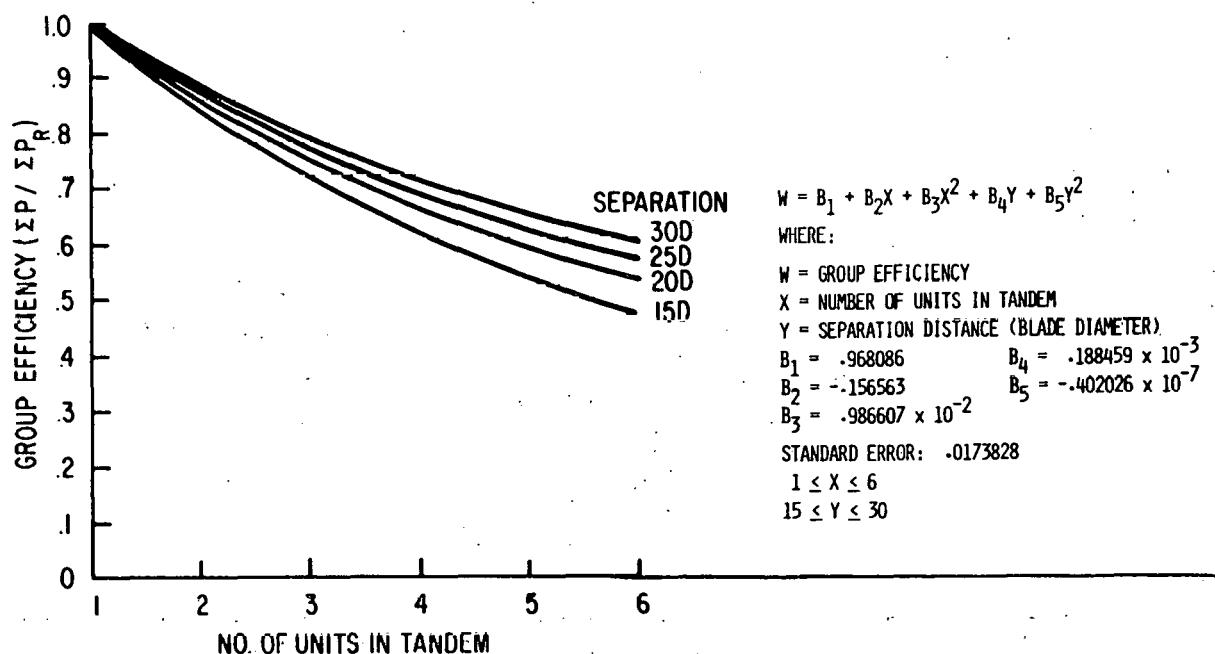


Fig. 3.7 Effect of Separation Distance and Number of Units on Group Efficiency

Figures 3.6 and 3.7 show that minimizing the number of units aligned in any one direction is much more important than the separation distance.¹¹

When wind turbines are grouped together, certain configurations minimize the amount of land required for the installation. The land-use factors of a configuration is a measure of the effectiveness of land use of an installation. The land-use density is defined as the total rated capacity of an installation divided by the land area it occupies. Figure 3.8 gives the land-use factors for multi-turbine installations.¹¹ The higher the land-use factor, the higher the land-use density. In each case, the configuration shown is optimum for that number of wind turbines. The land-use factors apply only to identical horizontal-axis or vertical axis wind turbines. In each case the minimum separation between turbines is 15 blade diameters. For example, with three units, each with an output of 1500 kW, blade diameters of 60 m, and a separation between turbines of 15 blade diameters, one would multiply the land-use factor, 6, by the output of one unit, 1500 kW and divide by the separation distance squared $810,000 \text{ m}^2 (60^2 \times 15^2)$ to get a land-use density of 11,000 kW/km².

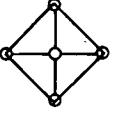
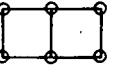
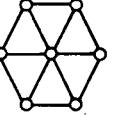
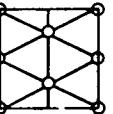




<u>CONFIGURATION</u>	<u>LAND-USE-FACTORS</u>
	3 UNITS 6
	4 UNITS 4
	5 UNITS 2.5
	6 UNITS 3
	7 UNITS 2.7
	8 UNITS 2.3

Fig. 3.8 Land-Use Factors for Multi-Turbine Installations with at Least 15 Blade Diameters between Turbines

4 ENERGY BALANCE

4.1 PRIMARY ENERGY INPUTS

The total power available from the wind passing through a unit area normal to the wind is given in Eq. 4.1.¹²

$$P = 1/2 \rho V^3 A \quad (\text{Eq. 4.1})$$

where:

P is the power in W
 ρ is the atmospheric density
 in kg/m^3 ; and
 V is the wind speed in m/sec.
 A is the windstream area in m^2 .

Because wind power is proportional to the cube of the wind speed, small increases in wind speed result in significant increases in wind power. Changes in the density of the atmosphere also affect the amount of wind power. Figure 4.1 shows the power available in one square meter of windstream vs wind-speed.¹¹ Figure 4.2 shows the effects of elevation on wind power,¹² and Fig. 4.3 shows the effects of temperature on wind power.¹²

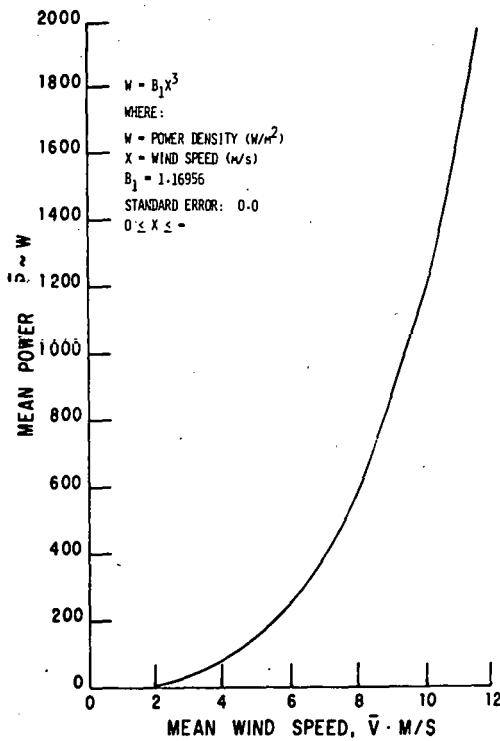


Fig. 4.1 Windstream Power
Vs Wind Speed

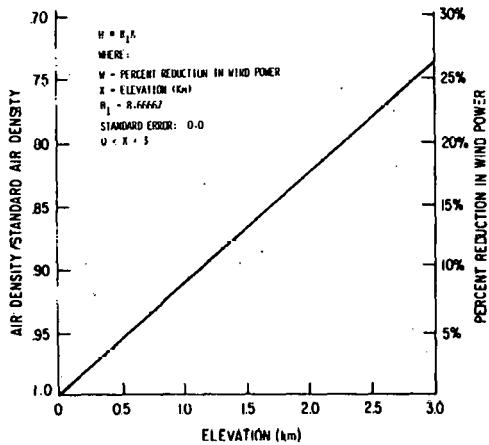


Fig. 4.2 Effect of Elevation in Windstream Power at Constant Wind Speed

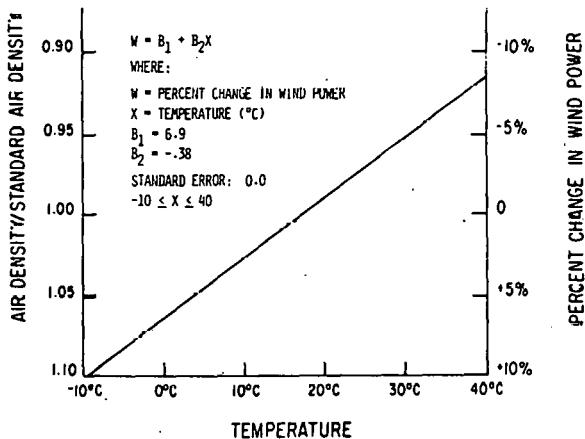


Fig. 4.3 Effect of Temperature on Windstream Power at Constant Wind Speed

The amount of power delivered by a wind turbine, divided by the total power available in the windstream, is defined as the efficiency or power coefficient, C_p , of the wind turbine. From fluids theory, it can be shown that C_p is limited to a value of 0.593.¹ Figure 4.4 shows the power coefficient of various wind turbines versus the ratio of the blade tip speed to wind speed.¹ The values were determined experimentally.

$$A. C_p = B_1 + B_2X + B_3X^2$$

WHERE:

C_p = IDEAL POWER COEFFICIENT

X = TIP-TO-WIND SPEED RATIO

B_1 = .278242

B_2 = .143804

B_3 = -.0162704

STANDARD ERROR: .0163397

$0 \leq X \leq 7$

$$B. C_p = B_1 + B_2X + B_3X^2$$

WHERE:

C_p = TWO BLADE POWER COEFFICIENT

X = TIP-TO-WIND SPEED RATIO

B_1 = -.377463

B_2 = .319277

B_3 = -.319277

STANDARD ERROR: $.519951 \times 10^{-2}$

$3.7 \leq X \leq 6.8$

$$C. C_p = B_1 + B_2X + B_3X^2$$

WHERE:

C_p = DARRIEUS ROTOR POWER COEFFICIENT

X = TIP-TO-WIND SPEED RATIO

B_1 = -.48503

B_2 = -.970120

B_3 = -.0825923

STANDARD ERROR: $.677752 \times 10^{-2}$

$4.6 \leq X \leq 6.8$

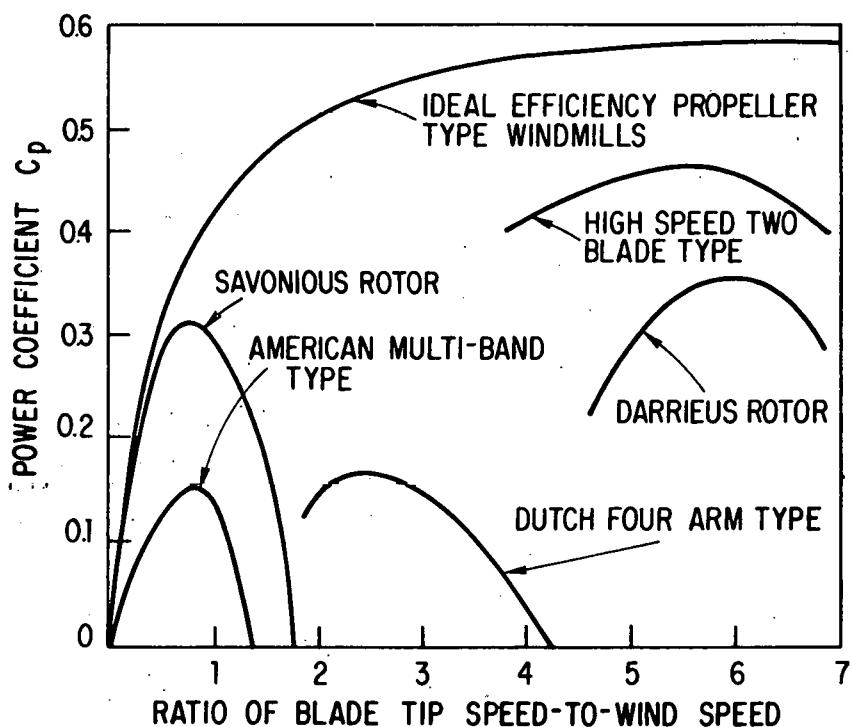
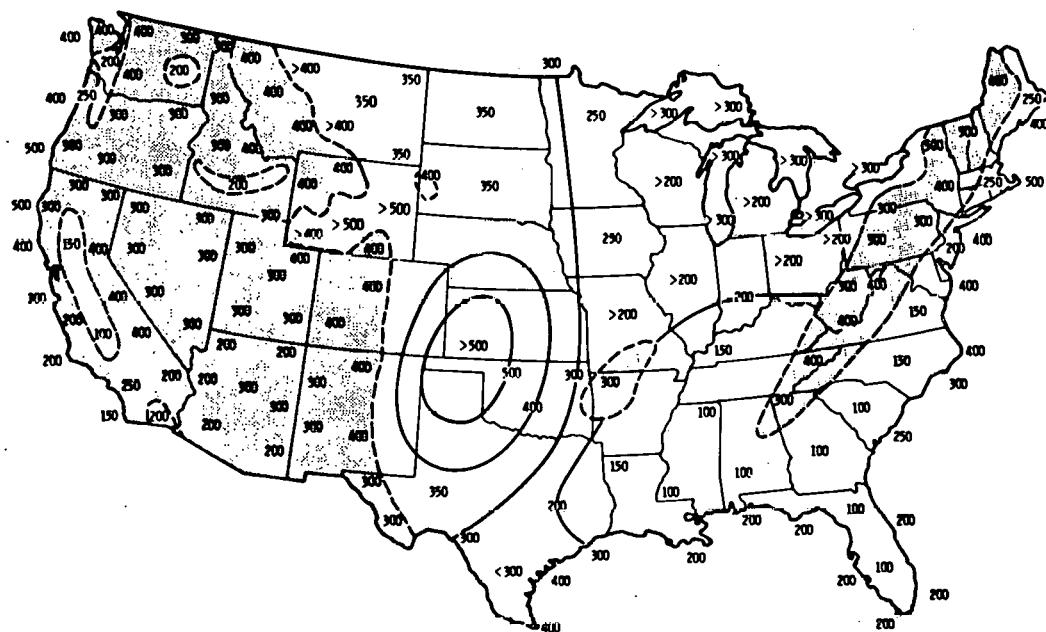
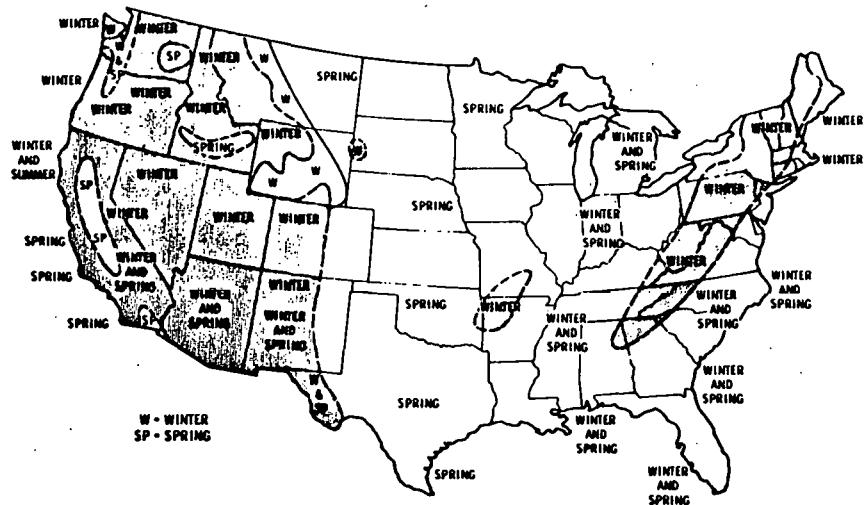



Fig. 4.4 Power Coefficients of Various Wind Turbines

Because individual wind turbines must turn at a constant speed, the blade tip speed must be constant. Thus, as the wind speed changes, the blade-tip-speed-to-wind speed ratio also will change. Wind turbines are designed so that the blade-tip-speed-to-wind speed ratio maximizes the power coefficient. This is done by gearing the drive mechanism so that the optimum blade tip speed produces the proper generator speed. The power coefficient of a wind turbine is a function only of the blade-tip-speed-to-wind-speed ratio and the blade design.

4.2 WIND TURBINE SITING


The peak and annual power generation of wind turbines is highly dependent on site-specific characteristics of wind. Figure 4.5 shows the mean annual wind power across the United States.¹²

Mean Annual Wind Power (W/m^2) Estimated at 50 m Above Exposed Areas.
Over mountainous regions (shaded areas), the estimates are lower
limits expected for exposed mountain tops and ridges.

Fig. 4.5 Mean Annual Wind Power

Figure 4.6 shows the seasons of maximum wind power across the United States.¹²

Season(s) of Maximum Wind Power. Over mountainous regions (shaded areas), the season(s) indicated is for exposed mountain sites. Seasons are abbreviated, where necessary, as follows: W = winter, SP = spring.

Fig. 4.6 Season of Maximum Wind Power

Figures 4.7 through 4.10 show the wind power available across the United States on a seasonal basis.¹²

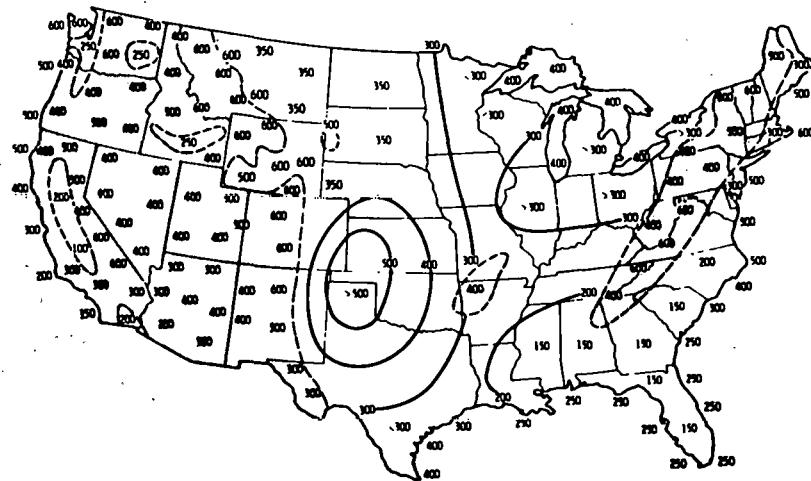
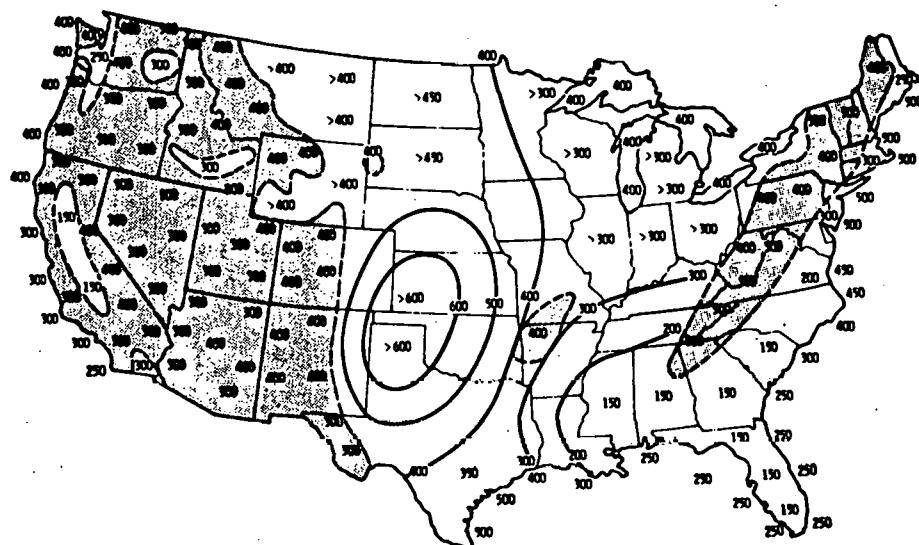
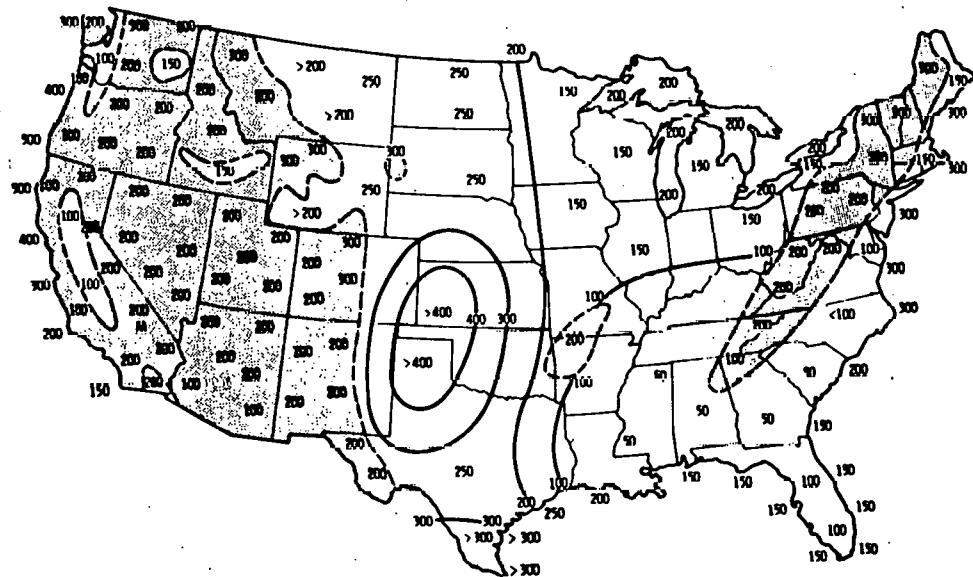
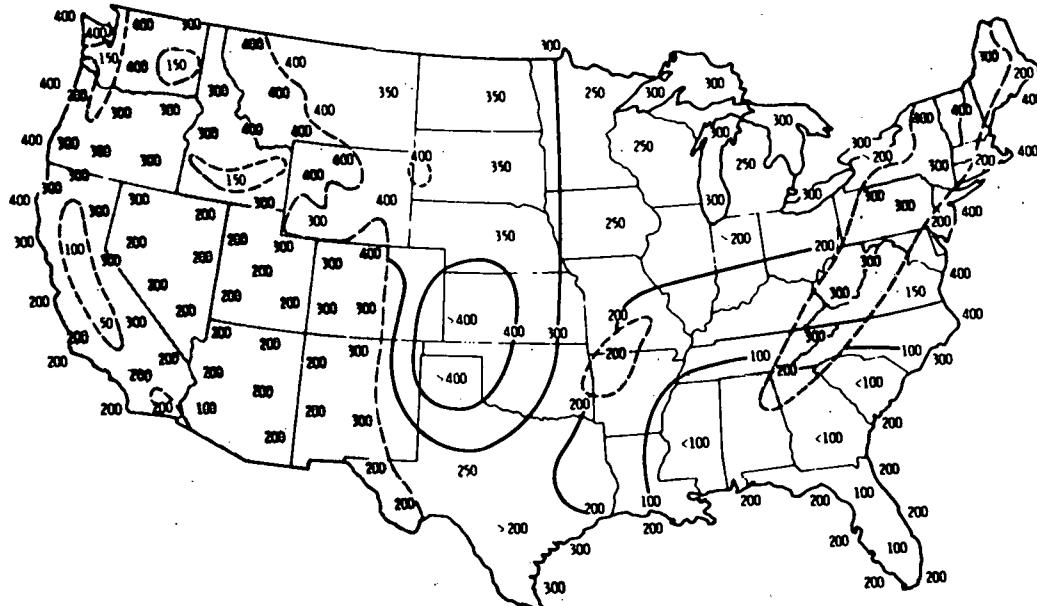




Fig. 4.7 Winter-Average Wind Power

Spring - Average Wind Power (W/m^2) Estimated at 50 m Above Exposed Areas.
Over mountainous regions (shaded areas), the estimates are lower limits
expected for exposed mountain tops and ridges.


Fig. 4.8 Spring Average Wind Power

Summer - Average Wind Power (W/m^2) Estimated at 50 m Above Exposed Areas.
Over mountainous regions (shaded areas), the estimates are lower limits
expected for exposed mountain tops and ridges.

Fig. 4.9 Summer Average Wind Power

ICES TECHNOLOGY EVALUATION

Fall - Average Wind Power (W/m^2) Estimated at 50 m Above the Exposed Areas.
Over mountainous regions (shaded areas), the estimates are lower limits
expected for exposed tops and ridges.

Fig. 4.10 Fall Average Wind Power

These figures show that the maximum wind power is available in New England, the Plains, and the Pacific Northwest. They also show that wind power is at its maximum in the winter and spring.

For maximum power generation, wind turbines should be located on flat ground with little or no surface vegetation. Wind turbine efficiency decreases as the terrain becomes hilly and vegetation increases. Care should be taken to locate wind turbines sufficiently far from buildings so that they do not encounter backflow caused by the separation of the boundary layer passing over the building.

Available wind power is a function also of the time of day. Wind power in the United States generally reaches a maximum somewhere between noon and 2:00 p.m. local standard time (LST). Wind power is at its minimum between midnight and 6:00 a.m. LST.¹¹ However, These are only general results. Wind power is very site-specific; so before any large wind turbines are built, much more detailed study will be necessary.

5 ENVIRONMENTAL EFFECTS

5.1 THERMAL DISCHARGE

Wind turbines do not discharge significant amounts of heat to the environment.

5.2 NOISE ATTENUATION

Noise is not a problem with wind turbines. Gear and generator noise is masked by proper enclosures, and means are available to make improvements, if necessary.¹⁰

5.3 AESTHETICS

Wind turbines are relatively large and highly visible. The largest horizontal-axis wind turbines will have towers over 65 meters high and blades of more than 120 meters in diameter. Ideally, wind turbines will be located in open flat areas which increase their visibility. If upwind rotors are installed, a wide choice of tower designs will be available to minimize aesthetic impact.²

5.4 CLIMATIC INFLUENCE

Wind turbines will represent such a small perturbation of the atmospheric energy balance as not to be a consideration in climatic changes.¹⁰ However, the downstream wake of a wind turbine may have an adverse effect on stack gases and other pollution sources.

5.5 COMMUNICATIONS INTERFERENCE

The rotating blades of a wind turbine can interfere with television reception by producing video distortions; however, there is no audio distortion.² Television interference is caused by the Doppler Effect when transmissions are bounced off the moving blades. Interference increases with increasing frequency and is therefore worse on the upper UHF channels. Interference decreases as distance from the turbine to the receiver

increases, but may be significant up to a few miles.¹⁹ The interference is site-specific, being dependent on the location of the transmitter, receiving antenna, and the wind turbine.

6 OPERATING REQUIREMENTS

6.1 OPERATING RANGES

A typical wind turbine performance curve is shown in Fig. 6.1(a). At a cut-in wind speed, A, the wind turbine begins to produce power and monotonically produces more power as the wind speed increases until it reaches the rated wind speed, B. Above this wind speed, the wind turbine's power output is constant until the wind turbine's cut-out wind speed, C, is reached. At wind speeds greater than the cut-out speed, the wind turbine does not produce power.

A typical wind speed frequency distribution is shown in Figure 6.1(b). Only a small percentage of time is spent at either the extremely low or high ends of the distribution. The convolution of the curves in Fig. 6.1(a) and 6.1(b) $T_p(v) \times p(v)$, yields the power frequency distribution of the wind turbine's output as a function of the wind speed, Fig. 6.1(c). The integral of the curve in Fig. 6.1(c) yields the average expected power output of the wind turbine.

The frequency distribution of the wind speed, Fig. 6.1(b) is seldom known. Usually only the annual mean

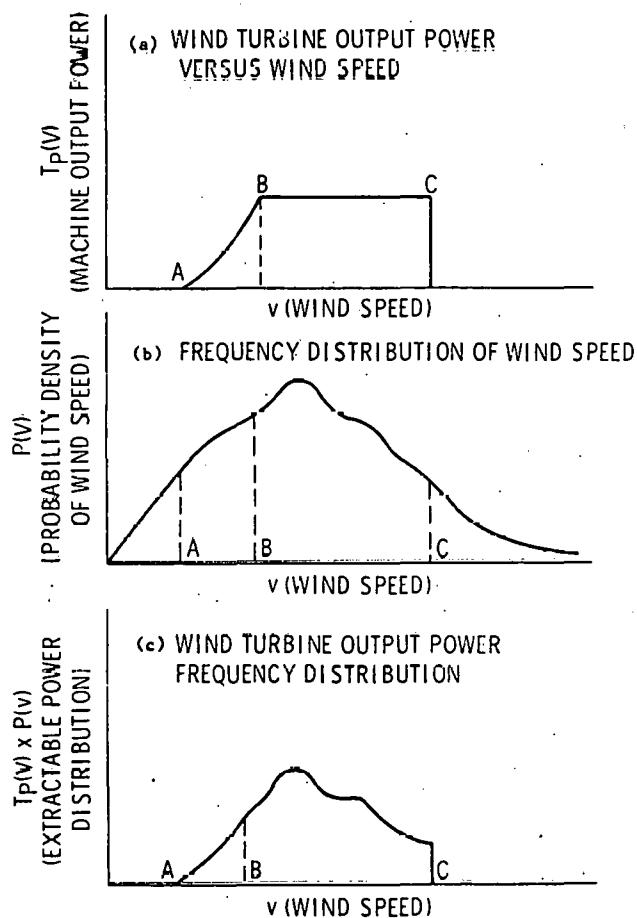


Fig. 6.1 Interaction of Wind Turbine Characteristics and Wind Statistics to Produce the Wind Turbine Power Frequency Distribution

wind speed is known for a particular location. The wind speed frequency distribution can be approximated by the Rayleigh distribution. Only the annual mean wind speed need be known to make the Rayleigh distribution approximation. Equation 6.1 gives the Rayleigh distribution of the wind speed frequency.

$$P(v) = \frac{v\pi}{2\bar{v}^2} e^{-\left(\frac{v^2\pi}{4\bar{v}^2}\right)} \quad (\text{Eq. 6.1})$$

where:

$P(v)$ is the frequency distribution of the wind speed;
 v is the wind speed; and
 \bar{v} is the annual mean wind speed.

The Rayleigh distribution is accurate when the annual mean wind speed exceeds 4.5 m/s.

Table 6.1 lists the values of $\bar{v} P(v)$ vs v/\bar{v} . This is the normalized Rayleigh distribution. As an example of how to use the normalized Rayleigh

Table 6.1 Values of Normalized Rayleigh Distribution

Rayleigh Distribution							
$\frac{v}{\bar{v}}$	$\bar{v}P(v)$	$\frac{v}{\bar{v}}$	$\bar{v}P(v)$	$\frac{v}{\bar{v}}$	$\bar{v}P(v)$	$\frac{v}{\bar{v}}$	$\bar{v}P(v)$
0.0	0.000	1.1	0.6680	2.1	0.1033	3.1	0.0026
0.1	0.1559	1.2	0.6083	2.2	0.0772	3.2	0.0016
0.2	0.3044	1.3	0.5415	2.3	0.0567	3.3	0.0010
0.3	0.4391	1.4	0.4717	2.4	0.0409	3.4	0.00061
0.4	0.5541	1.5	0.4025	2.5	0.0290	3.5	0.00036
0.5	0.6454	1.6	0.3365	2.6	0.0202	3.6	0.00021
0.6	0.7104	1.7	0.2759	2.7	0.0138	3.7	0.00012
0.7	0.7483	1.8	0.2219	2.8	0.0093	3.8	0.00007
0.8	0.7602	1.9	0.1752	2.9	0.0062	3.9	0.00004
0.9	0.7483	2.0	0.1358	3.0	0.0040	4.0	0.00002
1.0	0.7162						

distribution, assume that a given location has an annual mean wind speed, \bar{v} , of 10 m/s, and it is desired to know what percent of the time the wind speed, v , at this location will be 20 m/s. In this case, v/\bar{v} equals $20/10$ equals 2, so from Table 6.1 the normalized Rayleigh distribution, $\bar{v}P(v)$, is 0.1358 or, because $\bar{v} = 10$, $P(v) = 0.01358$. The wind speed will be 20 m/s (19.5 to 20.5) 1.358% of the time.

The percentage of time that the wind speed is below the wind turbine's cut-in speed plus the percentage of time the wind speed is above the cut-out speed is called the percent down time. The percent down time can be estimated using Eq. 6.2, derived from the Rayleigh distribution.

$$\text{Percent down time} = 1 - e^{-a^2/2\sigma^2} + e^{-c^2/2\sigma^2} \quad (\text{Eq. 6.2})$$

where:

a = cut-in wind speed

c = cut-out wind speed

$$\sigma^2 = 2\bar{v}^2/\pi$$

Figure 6.2 presents a graphical representation of Eq. 6.2, giving the percent down time as a function of the ratios of cut-in wind speed to

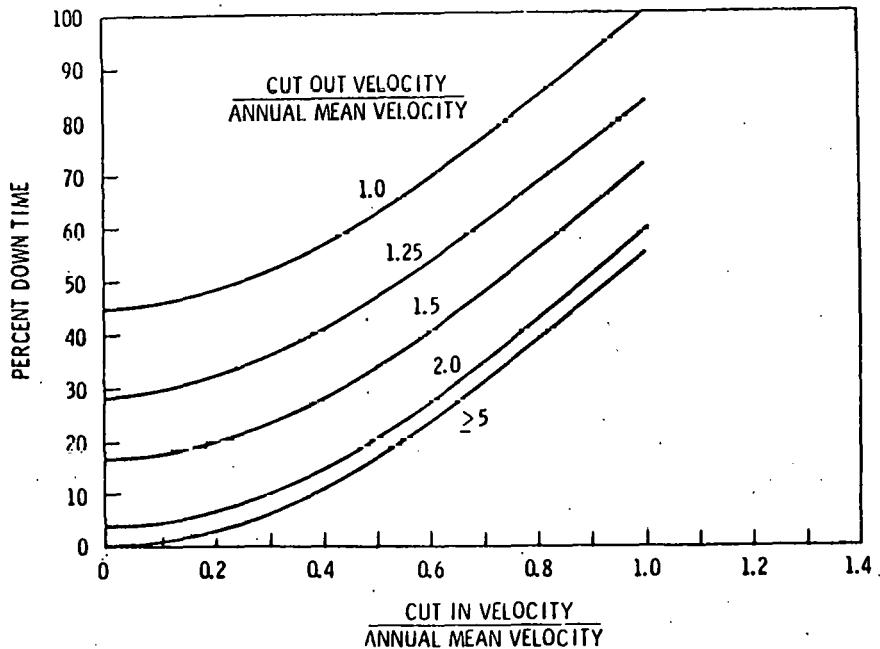


Fig. 6.2 Percent Down Time

mean wind speed and cut-out wind speed to mean wind speed. For a wind turbine with a given cut-in wind speed, a , and cut-out wind speed, c , the annual mean wind speed, \bar{v} , that will result in the minimum down time is given by Eq. 6.3.

$$\bar{v}_{\text{min down time}} = \frac{\pi}{4} \frac{(c^2 - a^2)}{(\ln c^2 - \ln a^2)}^{1/2} \quad (\text{Eq. 6.3})$$

Substitution of Eq. 6.3 into Eq. 6.2 yields Eq. 6.4, a formula for estimating the minimum percent down time for a wind turbine with a given cut-in wind speed, a , and cut-out wind speed, c .

$$\text{Minimum percent down time} = 1 - e^{-\frac{a^2(\ln c^2 - \ln a^2)}{c^2 - a^2} - \frac{c^2(\ln c^2 - \ln a^2)}{c^2 - a^2}} \quad (\text{Eq. 6.4})$$

The percentage of time a wind turbine operates at its rated output is the percentage of time the wind speed is between the rated wind speed and the cut-out wind speed. Equation 6.5 estimates the percentage of time a wind turbine will operate at its rated output.

$$\% \text{ time running at rated output} = e^{-b^2/2\sigma^2} - e^{-c^2/2\sigma^2} \quad (\text{Eq. 6.5})$$

where:

b = rated wind speed,

c = cut-out wind speed, and

$\sigma^2 = 2 \bar{v}^2/\pi$.

Figure 6.3 graphically represents Eq. 6.5.

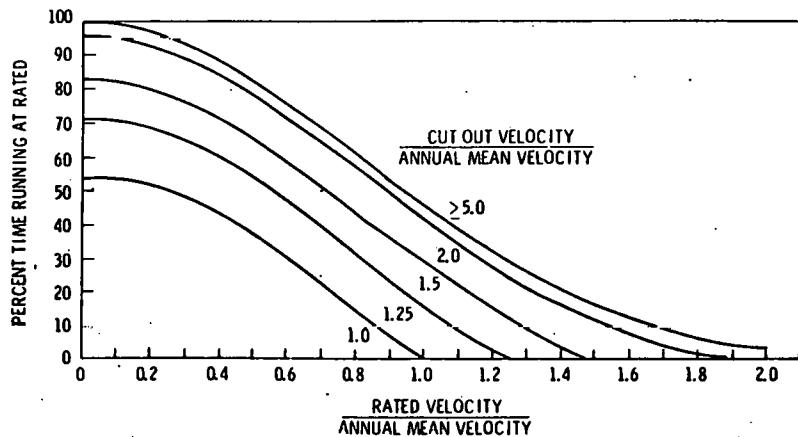


Fig. 6.3 Percent Time Running at Rated Velocity

6.2 OPERATING PROCEDURES

Wind turbines have control circuitry to provide fully automatic operation and to protect the system. Human intervention is needed only for periodic inspection, maintenance, and repairs.¹⁴

The starting sequence initiates after three verifications have been made. The first, adequate wind, is satisfied by the average wind speed being above a fixed value for about 2 min. The other two verifications are checks of the network and turbine conditions. Vertical-axis wind turbines are brought up to speed by induction motors.¹⁴ Horizontal-axis wind turbines are self-starting; the pitch control allows the blades to start if the wind speed is sufficient.

Two stopping modes are designated. An emergency stop is initiated by mechanical or electrical sensors indicating trouble, such as a loss of line voltage or excessive vibration.¹³ Vertical-axis wind turbines use spoilers for emergency stops. The setting on the spoilers is such that they will automatically deploy at a few rpm above the normal operating speed.⁴ Horizontal-axis wind turbines use a brake, placed close to the blades to minimize gearbox torque for emergency stops.¹⁵ A normal stop occurs when the wind speed drops below the "cut-in" speed or exceeds the maximum design speed.

Horizontal-axis wind turbines require pitch and yaw controls. The blade rpm and power output, under varying wind conditions, can be regulated by varying the pitch angle of the blades around their longitudinal axis.¹⁵ Yaw control is necessary to maintain the orientation of the blade plane perpendicular to the wind direction. Yaw control is accomplished by a hydraulic motor driving through a gear train. The gearbox is designed so that the turntable will be held rigidly against the wind load. The speed of the motor is limited to 1/3 rpm. This is required to limit gyroscopic forces. Yaw control is intended only to trim the system to the average wind direction, not to follow sudden wind direction changes.¹⁵

7 MAINTENANCE AND RELIABILITY

7.1 MAINTENANCE

Wind turbines require no special maintenance procedures. Typical maintenance requirements are lubrication and replacement of parts subject to wear. Maintenance will require that the wind turbine be unoperational for 3% of the time. Wind conditions are such that most wind turbines will operate only 60% of the time, so scheduled maintenance will not require shutting down.¹⁰

7.2 RELIABILITY

It is estimated that wind turbines will be operational 98% of the time that wind conditions are sufficient.¹⁰

7.3 EXPECTED LIFE

The expected operational life of either a horizontal-axis or vertical-axis wind turbine is 30 years.^{2,16}

8 COST CONSIDERATIONS

8.1 CAPITAL COSTS -- HORIZONTAL-AXIS WIND TURBINES

The capital costs, in terms of \$/kW, include the cost of manufacturing the wind turbine components, transportation to the site, preparation of the site, and the assembly and erection of the wind turbine system. Land costs and costs for connecting with the user are not included as part of the capital costs.¹⁰ All costs are in 1975 dollars.

Horizontal-axis wind turbines are categorized by size into two groups for estimating capital costs. One group ranges in size from 1 kW to 30 kW; the other from 100 kW to 10 MW. Sizes in between will have characteristics of both groups. Because wind turbines in each group are entirely different in design concepts, capital costs of each are based on different considerations. The capital costs shown are for production quantities of 10,000 units per year for each group.¹⁰

Figure 8.1 shows the capital cost and blade diameters of small horizontal-axis wind turbine systems as a function of rated capacity and rated wind speed.¹⁰

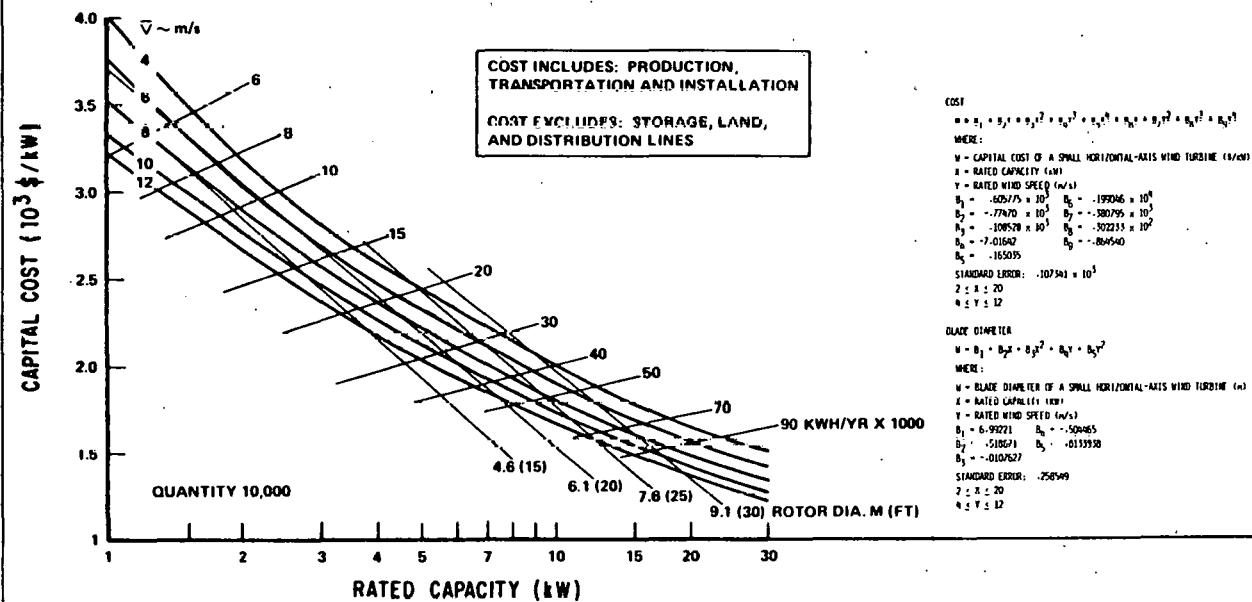


Fig. 8.1 Installed Capital Costs of Small Horizontal-Axis Wind Turbine Generating Systems

The capital costs and blade diameter of large horizontal-axis wind turbines are shown in Fig. 8.2 as a function of rated capacity and rated wind speed.¹⁰

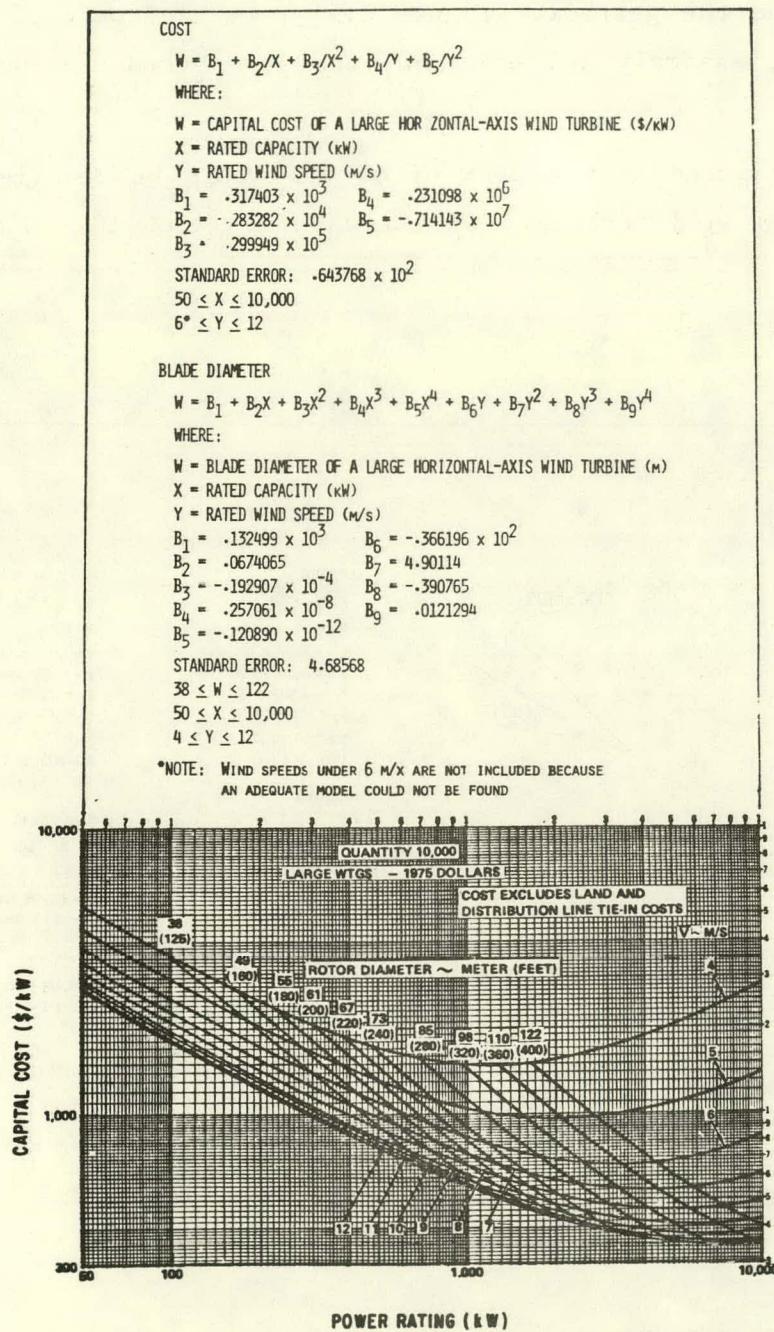


Fig. 8.2 Installed Capital Costs of Large Horizontal-Axis Wind Turbine Generating Systems

Figures 8.3 through 8.5 break down the capital costs of large horizontal-axis wind turbines. Figure 8.3 gives the costs of the generator, the foundation, transportation to the site, and the turbine controls. Figure 8.4 gives the cost of the hub, the blades, the drive system, the platform, and the gearbox. Figure 8.5 gives the costs of the tower, the yaw control, assembly and erection, the power conditioning, and site preparation.

It is estimated that a crew of 50 men would be required to erect a horizontal-axis wind turbine. One crew could erect 10.5 wind turbines per year.¹⁰

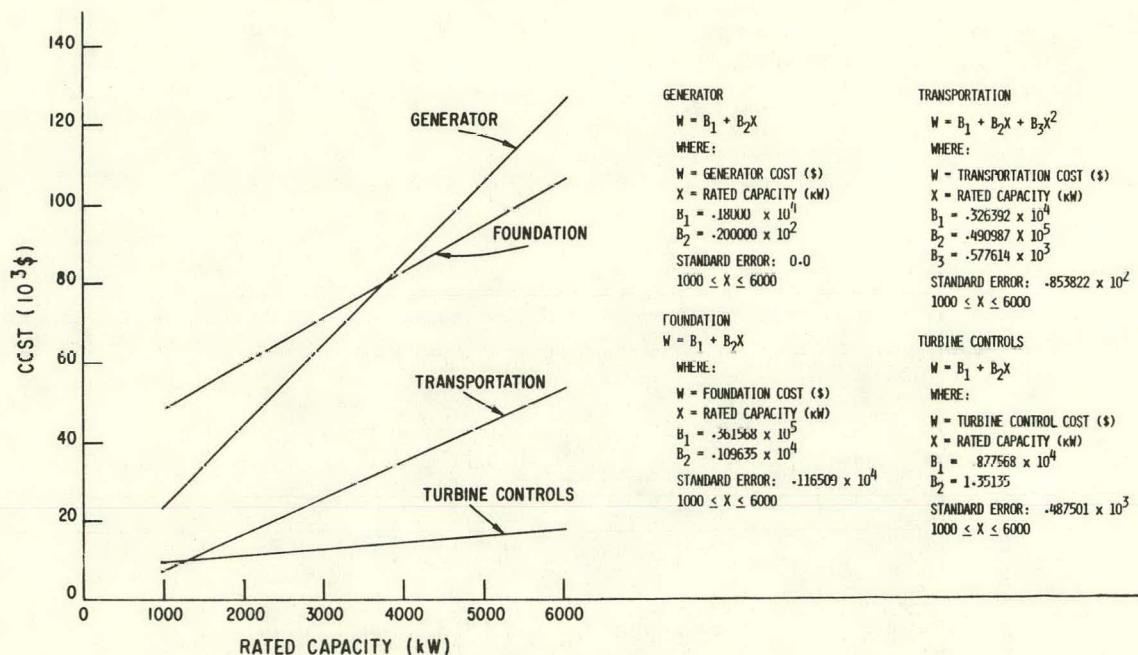


Fig. 8.3 Horizontal-Axis Wind Turbine Component Costs

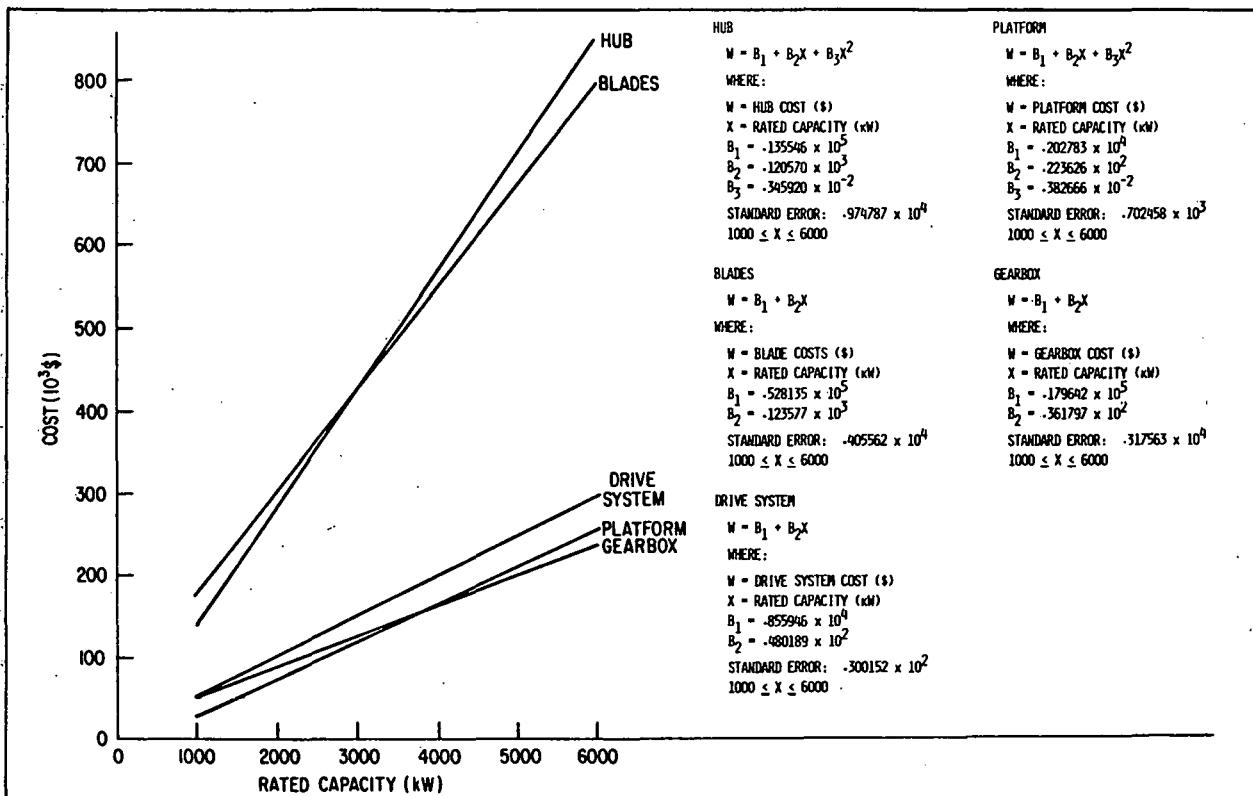


Fig. 8.4 Horizontal-Axis Wind Turbine Component Costs

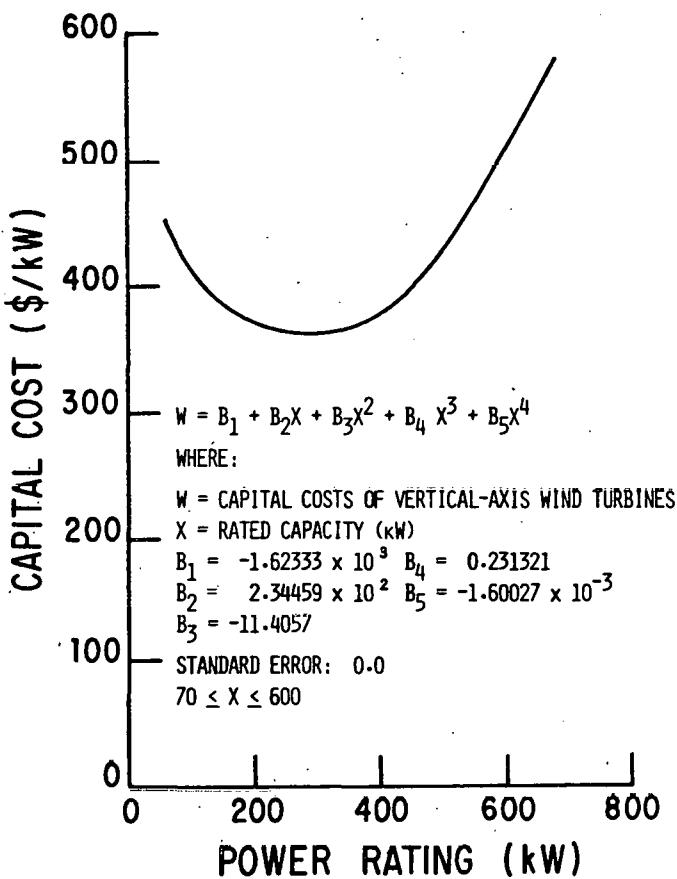



Fig. 8.5 Horizontal-Axis Wind Turbine Component Costs

8.2 CAPITAL COSTS -- VERTICAL-AXIS WIND TURBINES

The capital costs, in 1977 dollars, of a two blade vertical-axis wind turbine are given in Fig. 8.6 as a function of rated capacity.¹⁷ These data assume a rated wind speed of 10 m/s and height to diameter ratio of 1.0. The capital costs of vertical-axis wind turbines are less than those of horizontal-axis wind turbines because of the simpler tower construction, location of the generator at ground level, and preclusion of a yaw mechanism. However, the capital costs of this vertical-axis wind turbine design begin to increase above a rated capacity of 300 kW because of the need for struts and stronger blades.

8.3 CAPITAL COST SENSITIVITY

The capital costs of wind turbines evaluated here are estimates, based on assumed values of several parameters. The capital costs are sensitive to these assumed values and are subject to considerable uncertainty. Parameters for which values had to be assumed included optimum wind turbine designs, production level, the learning curve for production runs, and the costs of certain wind turbine components, particularly the blades.² The data presented on the capital costs of horizontal-axis wind turbines assumed production level of 10,000 units per year and a learning curve of

90%. An illustration of the uncertainty in the capital costs is given in the JBF study on wind energy system costs.² By combining and normalizing the results of six studies for 1.0 to 1.5 MW machines, the capital costs ranged from \$405 to \$889/kW. A 95% learning curve and a 100-unit/yr production rate were assumed.

8.4 WIND TURBINE OPERATING COSTS

The operating costs of wind turbines consist of insurance, maintenance, overhead, and other miscellaneous costs. Table 8.1 gives these costs, on a yearly basis, as a percentage of the capital cost of the wind turbine.

Table 8.1 Operating Costs of Wind Turbines

Operating Item	% of Capital Cost
Insurance	0.2
Maintenance	2.0
Overhead	1.0
Other	0.4

The cost of energy will depend on the operating costs, the capital costs, the cost of money, depreciation and taxes.

9 STATUS

Wind turbines can offer a reliable source of energy. Present technology can produce units that are capable of competing economically with conventional power sources.

As the site mean wind speed increases, the economics of wind turbines improve, but the rate of improvement diminishes for wind speeds greater than 8 m/s. Thus, unique sites with exceptionally high wind speeds are not needed for wind turbine installations.²

The energy cost of wind turbines is relatively insensitive to operation at off-design wind speeds, within a reasonable range. Therefore, it is likely that only a limited number of standard designs will be required for utility applications leading to the capability for routine factory production and the ensuing reduction in cost.²

The largest uncertainty in wind turbine energy costs is the uncertainty in the capital costs of the first production units and the learning curve that should be applied to future units.²

The economic characteristics of wind turbines may be improved by technical advances on the blade and hub assembly, but the likelihood of achieving such improvements and their effects is difficult to estimate.

Currently, both horizontal-axis and vertical-axis wind turbines are in the developmental stages. Several demonstration units have been, or are being, built to obtain performance data and to confirm the reliability and stability of large units.

Studies are needed to determine the optimum locations for wind turbine installations. Currently available wind data are insufficient for successful implementation of a large-scale wind energy program.

REFERENCES

1. Eldridge, F.R., *Wind Machines*, NSF-RA-N-75-051 (October, 1975).
2. JBF Scientific Corporation, *Summary of Current Cost Estimates of Large Wind Energy Systems*, DSE/2421-1 (February, 1977).
3. Puthoff, R.L., *100 kW Experimental Wind Turbine Generator Project*, Proc. of the Second Workshop on Wind Energy Conversion Systems, Washington, D.C., NSF-RA-N-75-050, pp. 21-36 (June 9-11, 1975).
4. Braasch, R.H., *Vertical-Axis Wind Turbine Program*, Vertical-Axis Wind Turbine Workshop, SAND76-5586, Albuquerque, New Mexico, p. 39 (May 17-20, 1976).
5. Steel, R.G., and J.H. Torrie, *Principles and Procedures of Statistics*, McGraw-Hill, New York, p. 169 (1960).
6. Grumman Energy Systems, Data sheet, W25-4-77 (October 25, 1977).
7. Kedco Incorporated, Wind Generator Data sheet (October 20, 1977).
8. Sencenbaugh Wind Electric, Data sheet (October 25, 1977).
9. Winco, Division of Dyna Technology, Inc., Data sheet, D181-R (October 28, 1977).
10. Coty, U.A., *Wind Energy Mission Analysis*, San-10-75-1 (September, 1976).
11. Garate, J.A., *Wind Energy Mission Analysis*, C00-2578-1 (February 18, 1977).
12. Elliott, D.L., *Synthesis of National Wind Energy Assessments*, BNWL/Wind-5 (July, 1977).
13. Seniec, T.B., et al, *TV and FM Interference by Windmills*, University of Michigan, C00/2846-76 (February, 1977).
14. Cliff, W.C., *The Effects of Generalized Wind Characteristics on Annual Power Estimates from Wind Turbine Generators*, Battelle Pacific Northwest Laboratories, PNL-2436, (October, 1977).
15. Jorgensen, G.E., et al, *Design, Economics, and System Considerations of Large Wind-Driven Generators*, IEEE Transactions on Power Apparatus and Systems, 95(3), p. 870 (May/June, 1976).
16. Weingarten, L.I., and L.V. Feltz, *Material and Manufacturing Considerations for Vertical-Axis Wind Turbines*, Sandia National Laboratory, Albuquerque, New Mexico (March, 1975).
17. Sullivan, W.N., Sandia Laboratories, personal communication (May 18, 1978).

DISTRIBUTION LIST

Internal:

J.G. Asbury	L.J. Hoover
B.A. Biederman	R.O. Ivins
D.C. Bingaman	I. Johnson
E.M. Bohn	A.S. Kennedy
L. Burris	A.B. Krisciunas
E.J. Croke	C.M. Lee
J.M. Calm	G. Leppert
A.A. Davis	K.S. Macal
S.A. Davis	T.J. Marciniak (75)
P.F. Donnelly	R.G. Matlock
R.J. Faddis	I.M. Pacl (25)
J. Fischer	J. Pascual
A.A. Frigo	E.G. Pewitt
B.T. Frost	W. Pferdehirt
C.H. Gartside	J.J. Roberts
E. Gentile	V.A. Rabl
R.M. Grasen	K.L. Uherka
B.L. Graves	N.P. Yao
D.V. Goetschel	ANL Contract Copy
P.R. Hirsch	ANL Libraries (5)
R.E. Holtz	TIS Files

External:

DOE-TIC (65)

Manager, Chicago Operations Office

Chief, Office of Patent Counsel, Chicago

President, Argonne Universities Association

Energy and Environmental Systems Division Review Committee:

T.G. Frangos, Madison, Wis.
J.H. Gibbons, U. Tennessee
R.E. Gordon, U. Notre Dame
W. Hynan, National Coal Association
D.E. Kash, U.S. Geological Survey, Reston, Va.
D.M. McAllister, U. California, Los Angeles
L.R. Pomeroy, U. Georgia
G.A. Rohlich, U. Texas, Austin
R.A. Schmidt, Electric Power Research Inst.
J.W. Winchester, Florida State U.

Abeles, Tom P., PhD., IE Associates, Minneapolis, Minn.

Abrams, R.N., V.P., Gilbert Associates, Inc., Reading, Penn.

A.C. Kirkwood & Associates, Kansas City, Mo.

Adamautiades, A.G., E.P.R.I., Washington, D.C.

Adamczyk, T.J., BRI Systems, Inc., Phoenix

Agree, Mr. Damon, Florida Energy Office, Tallahassee

Alvine, Raymond G., Raymond G. Alvine & Assoc., Omaha

American Association for Hospital Planning, Jefferson City, Mo.

American Society of Planning Officials, Chicago

Anderson, Brant, Lawrence Berkely Labs, Berkely, Calif.

Anderson, Paul A., Energy Resources Center, Honeywell, Inc., Minneapolis

Anderson, Robert B., Exec. V.P., Farm & Land Institute, Chicago
Anson, Mr. Bert III, Southwest Center for Urban Research, Houston
Anuskiewicz, Todd, Michigan Energy & Resource Research Assn., Detroit
Arnold, R.S., Carrier Air Conditioning, Syracuse
Askew, Alvin, Exec. Dir., The Governors Energy Advisory Council, Houston
Assur, Andre, U.S.A. Cold Region RES & Engr. Lab., Hanover, N.H.
Aungst, W.K., Assoc. Prof., Penn State U., Middletown, Penn.
Ayres, J. Marx, Pres., Ayres Associates, Los Angeles
Bain, Lewis J., Chief M.E., Keyes Assoc., Providence, R.I.
Baker, James L., President, DSI Resource Systems Group, Inc., Boston, Mass.
Balzhiser, R.E., Director, Elec. Power Research Institute, Palo Alto, Calif.
Barbee, Robert W. Jr., Allen & Hoshall, Inc., Memphis
Bartman, Jerome, Naval Air Develop. Center, Warminster, Penn.
Basilico, James V., Office of Research and Develop., EPA, D.C.
Beason, Fred, Energy Consultant, AFCEC/DEM, Tyndall AFB, Fla.
Becker, Mr. Burton C., Hittman Assc., Inc., Columbia, Md.
Beeman, Robert, Planner, Office of Economic Planning & Development, Phoenix
Beltz, Philip, Economist, Battelle, Columbus, Ohio
Benson, Glendon M., Energy Research & Generation, Inc., Oakland, Calif.
Benson, Harold, Acting Chief, NASA-JSC, Systems Analysis Office, Houston
Benson, Mr. Walter, Midwest Research Institute, Kansas City
Bertz, Edward J., Secretary, American Society for Hospital Engineering, Chicago
Bergwager, Sydney D., Federal Energy Administration, D.C.
Bernor, Stephen, Energy Systems Research Group, Albany, N.Y.
Best, W.C., U.S. Army Facilities Engineering Support Group, Fort Belvoir, Va.
Biederman, B.F., Eaton Corporation, Controls Division, Carol Stream, Ill.
Biederman, N.P., Institute of Gas Technology, Chicago
Biese, Robert J., Asst. Project Mgr., Gilbert Associates, Inc., Reading, Penn.
Bigler, Mr. Alexander, Alexander B. Bigler Associates, Oakton, Va.
Bishop, Fred, Environmental Protection Agency, Cincinnati
Bodzin, J.J., Michigan Energy & Resource Research Assn., Detroit
Boegly, William Jr., Engineer, Oak Ridge National Laboratory, Oak Ridge, Tenn.
Boehm, R., Prof. of Mech. Engr., University of Utah, Salt Lake City
Boney, David W., V.P., Atlantic City Electric Co., New Jersey
Boobar, M.G., Atomics Int'l Division, Canoga Park, Calif.
Boone, Mr. Richard, QES, Inc., Atlanta
Borda, Joseph R., Joseph R. Borda Consulting Engineers, Merchantville, N.J.
Bortz, Susan, Consultant, Bradford National Corporation, Rockville, Md.
Boughner, Richard T., Control Data Corporation, Knoxville, Tenn.
Bourne, J.G., Mgr. Thermal Engineering Group, Dynatech R/D Co., Cambridge, Mass.
Boyce, Dr. David E., University of Ill., Dept. of Civil Engr., Urbana, Ill.
Brandon, Robert E., Air Force Civil Engineer Center, Tyndall AFB, Fla.
Brasch, Mr. Ben F., Industrial Systems, Corp., Medina, Ohio
Breitstein, Leonard, Senior Staff Engineer, Dynalectron Corp., Bethesda, Md.
Brett, Dr. C. Everett, Dir., Natural Resources Center, University of Alabama
Breymann, Bernard H., Eco-Terra Corp., Chicago
Brodie, Mr. J.I., Genge Consultants, Los Angeles
Brodle, L.T., Bergstedt, Wahlberg, Berquist, Rohkohl, St. Paul
Broer, W., Development Analysis Assoc. Inc., Cambridge, Mass.
Browder, R.M., General Manager, Bristol Tenn. Electric System, Bristol, Tenn.
Brown, Dale H., Energy Systems Engineer, General Electric, Schenectady
Brown, Seymour, President, Michael Baker, Jr. of N.Y., Inc. New York, N.Y.
Bruns, D.D., University of Tennessee, Knoxville
Buehrer, Huber H., Buehrer & Strough, Toledo, Ohio
Bullens, D., Exec. Dir. of Energy Programs., American Inst. of Architects, D.C.

Burton, David, Supervisor Power Sys. Anal., Gilbert Assoc., Reading, Penn.
Buscemi, V.P., Consulting Engineer, Gibbs & Hill, New York, N.Y.
Buthmann, Mr. R.A., General Electric, D.C.
Bussiere, Loretta, Supervisor, Florida State Energy Office, Tallahassee
Cabel, John, Chief, Department of Energy, Washington, D.C.
Calvaresi, F.M., Energy Research Library, Gilbert Assoc., Inc., Reading, Penn.
Campbell, George W., Smith & Fass Consulting Engineers, Inc., D.C.
Carlsmith, R.S., Mgr., Oak Ridge National Laboratory, Oak Ridge, Tenn.
Carrol, R., Mgr., Lawrence Livermore Lab, U. of California
Carter, Lee, St. Louis, Mo.
Casberg, T.R., Office of the Deputy Assistant Secretary of Defense, D.C.
Cavanaugh, Gregory, U.S. DOE, D.C.
Cavros, S.N., Chief, Comm. Syst. Branch, Div. of Bldg. & Comm. Syst., DOE D.C.
Ceglia, Michael, President, MGC Electronics, Cherry Hill, N.J.
Chalmers, S.M., Salt River Projects, Phoenix
Chapman, Dr. Alan J., Dean of Engineering, Rice University, Houston
Cherry, Steve, Sr. Engr., KVB, Tustin, Calif.
Chmielewski, R., Catalytic, Inc., Philadelphia
Christensen, A.T., Mgr. Program Development, General Electric, D.C.
Cissna, Mr. Volney J. Jr., Office of the Governor, State of Mississippi
Clauder, Hersel, Systems Control Inc., Palo Alto, Calif.
Cohen, Sanford, Mgr., Teknetron, Inc., D.C.
Collins, R.N., C.F. Braun & Co., Alhambra, Calif.
Colm, Howard, Director, Colm Engineering, Cherry Hill, N.J.
Conrad, Mr. Tom, SCS Engineers, Reston, Va.
Conta, L.D., University of Rhode Island, Kingston
Costello, Milton, P.E., Consulting Engineer, Old Library, Amityville, N.Y.
Coxe, Mr. E.C., Reynolds, Smith and Hills, Jacksonville, Fla.
Coxe, E.F., PhD, P.E., Applied Energy Sciences, Inc., Atlanta, Ga.
Crane, David A., Pres., The Crane Design Group, Houston
Crawford, Russell, L., Solid Waste Coordinator, Commonwealth of Pennsylvania
Crawford, W. Donham, Edison Electric Institute, New York
Credle, K., Department of HUD, D.C.
Creel, Russel K., Exec. Sec., Comm. for Nat'l Land Development Policy, Chicago
Cuccinelli, Kenneth, American Gas Association, Arlington, Va
Cumali, Z., Pres., Consultants Computation Bureau, San Francisco
Cunningham, Walter, Senior Vice Pres., Engineering/Planning, Houston
Curron, Dr. H.M., Senior Principal Engineer, Hittman Assoc. Inc., Columbia, Md.
Daman, E.L., Vice Pres., Foster Wheeler Corporation, Livingston, N.J.
Dargan, C.E., Director, Energy Tech. Center, University of Wisconsin, Madison
Davis, Paul, Deputy Gen. Mgr., Gulf Coast Waste Disposal Authority, Houston
Dawson, Roland H. Jr., Board of Public Utilities, McPherson, Kansas
DeAngelis, R.F., Chief Librarian, Gibbs & Hill, Inc., N.Y.
Dechoim, Phil, Columbia Gas, Columbus, Ohio
DeLima, Henry, Booz, Allen & Hamilton, Bethesda, Md.
Derrah, William, Vice Pres., Larry Smith & Co., Ltd., Northfield, Ill.
Deyoung, J.Y., V.P., Pacific Gas & Electric Co., San Francisco
Dinwiddie, J.F., Office of Fossil Energy, DOE, D.C.
Dirienzo, A.C., Mech. Lab. Mgr., Foster Wheeler Corporation, Livingston, N.J.
Diskant, William, Exec. Vice Pres., American Hydrotherm Corp., New York
Dougan, David, UTC Corp., Houston
Doyle, Edward J. Jr., Greenwich, Conn.
Dubin, Mr. Fred, Dubin-Bloom Associates, New York
Dugas, Lester J., Commonwealth Edison Company, Chicago
Duker, P.A., Vice Pres., Customer & Marketing Policy, Detroit Edison Co.

Dunzer, J.B., Ultrasystems, inc., Irvine, Calif.
Eberhard, John P., Pres., AIA Research Corp., D.C.
Eckley, Robert C., San Diego
Edgerley, E., Rychkman, Edgerley, Tomlinson & Assoc., St. Louis
Eisenhammer, F., Electrical Supervisor, Copeland Systems Inc., Oak Brook, Ill.
Eley, Charles, Principal, Charles Eley Assoc., San Francisco, Calif.
Energy Research & Development Center, Director, University of Nebraska-Lincoln
Engstrom, Robert E., Pres., Robert Engstrom Assoc., Minneapolis
Faris, Frank, Pres., Interdevelopment, Inc., Arlington, Va.
Faulders, Charles, Atomics International - Rockwell, Canoga Park, Calif.
Fernandez, Bruce, Vice Pres., Energy Unlimited, New Britain, Conn.
Ferretti, Emmett, Dravo, Inc., Pittsburgh
Ferry, J., Energy & Environment, Temple Barker & Sloane, Wellesley Hills, Mass.
Finke, J., Dept. Mgr., Advanced Tech. Div., Kaiser Center, Oakland, Calif.
Finsen, Peter I., Architect, Arch. Design Branch--T.V.A., Knoxville, Tenn.
Fischer, William, Consulting Scientist, Gilbert Assoc. Inc., Reading, Penn.
Fleming, Duane, Dept. of Planning, City of Dayton
Flynn, D.C., Project Engr., RF Weston Inc., Westchester, Penn.
Fox, Richard, WED Enterprises, Glendale, Calif.
Fraas, A.P., Oak Ridge National Laboratory, Oak Ridge, Tenn.
Frank, C.B., Vice Pres., Nat'l. Assn. of Industrial Parks, Arlington, Va.
Frauel, H. Dean, National Assoc., of Govt. Engineers, D.C.
Freeman, S. David, Bethesda, Md.
Frumerman, Mr. Robert, Frumerman Associates, Pittsburgh
Furlong, D.A., Vice Pres., Combustion Power Company, Inc., Menlo Park, Calif.
Gallina, R.J., Senior Engineer, Baltimore Gas & Electric Co.
Gamze, Maurice G., V.P., Korobkin & Caloger, Inc., Chicago
Garcia, Carlos A., Energy Programs Department, IBM, White Plains, N.Y.
Gardner, Dr. Dwayne, Dir., Cnsl. of Educational Facility Planners, Columbus, Ohio
Gary, William, Supervisor, San Diego Gas & Electric Co.
Geiringer, Stefan L., Paul L. Geiringer & Associates, New York
Gibson, Mr. Urban, Texas Power & Light Co., Dallas
Given, Willard W., Willard Given & Associates, St. Louis
Glaser, Dr. Peter, Vice Pres., Arthur D. Little Co., Cambridge, Mass.
Glass, C.D., V.P., Gulf States Utilities Co., Beaumont, Texas
Glenn, Ms. Regina L., Technology Transfer Center, Tacoma, Wash.
Goble, Robert L., Clark University, Worcester, Mass.
Goldin, W.J., Vice Pres., Atlanta Gas & Light Co.
Goldschmidt, Victor, Ray W. Herrick Laboratories, West Lafayette, Ind.
Gordon, Mr. R.H., Gibbs & Hill, Inc., New York
Gorham, William, Pres., Urban Institute, D.C.
Green, Dr. Richard, Mgr., Jet Propulsion Lab, Pasadena
Greingard, R.L., Vice Pres., Ultrasystems Inc., Irvine, Calif.
Grifalconi, John W., Environs Associates, Kingston, R.I.
Griffin, Johnetta, Technical Librarian, Hittman Assoc., Inc., Columbia Md.
Gulati, Ripudaman, Consultants Computation Bureau, Oakland, Calif.
Gutstein, Martin, Nat'l. Aeronautics & Space Projects, Cleveland
Guyer, Eric, Principal Engineer, Dynatech R/D Co., Cambridge, Mass.
Hadden, Leonard D., Dir. of Contracted Rsrch., Billings Energy Corp., Provo, Utah
Hagler, Harold, Principal, Resource Planning Associates, D.C.
Halfon, Amos, President, Dubin-Bloome Assoc., P.C., New York
Haliff, B., Albert H. Haliff Associates, Inc., Dallas
Hamrick, John, V.P., Marketing, San Diego Gas & Electric Co.
Handy, D.G., Staff Dir., Illinois Energy Resources Commission, Springfield, Ill.

Hankinson, William B., Syska & Hennessey, Inc. Engineers, New York
Harrington, W.G., Nat'l. Assn. of County Engineers, Cedar Rapids, Iowa
Harris, B.L., Technical Dir., Edgewood Arsenal, Aberdeen Proving Ground, Md.
Harrigan, Raymond, Member of Technical Staff, Sandia Labs, Albuquerque
Hart, F. Donald, Pres., American Gas Association, Arlington, Va.
Hays, E.L., 106 Harborcrest Drive, Seabrook, Texas
Heimsath, Clovis, Pres., Clovis Heimsath Associates, Houston
Henry, John P. Jr., Dir., Stanford Research Institute, Menlo Park, Calif.
Hillenbrand, Bernard F., National Assoc. of Counties, D.C.
Hincks, Mr. Joel P., Gulf Oil Real Estate Development Co., Reston, Va.
Hines, Gerald B., Houston, Texas
Hirsch, Jeff, Lawrence Berkeley Lab., Berkeley, Calif.
Hittle, Douglas C., Dept. of the Army, Champaign, Ill.
Hoffer, Mr. Stu, Hamilton-Standard, Windsor Locks, Conn.
Hoffman, J.R., HDQT DAEN-FEP, D.C.
Holt, Charles F., Energy & Thermal Tech. Sect., Battelle Memorial Inst., Columbus
Holter, Marvin, Exec. Mgr., Environmental Research Institute, Ann Arbor, Mich.
Howell, John, Dir., University of Houston
Howell, Ronald H., University of Missouri-Rolla
Hufford, Paul E., Exec. V.P., Energy Ltd., Unlimited, New Britain, Conn.
Hullinger, Mr. E. Paul, Utah State University
Hunn, Bruce D., Los Almos Scientific Lab, N.M.
Hunt, Florine E., Public Serv. Elec. & Gas Co., Newark, N.J.
Iles, Mr. Tom, AiResearch Mfg. Co., Torrance, Calif.
Inselberg, Dr. A., Scientific Staff Member, IBM, Data Proc. Div., Los Angeles
Ingles, Joseph L., Adm. Sectetary, Committee of Consumer Services, Salt Lake City
Ingram, James M. Jr., Leo A. Daly Co., Omaha
Irvine Co., Newport Beach, Calif.
Jacobs, John F., Senior Vice Pres., Mitre Corp., Bedford, Mass.
Jacoby, Earl F., Ziel-Blossom & Associates, Inc., Cincinnati
Jaehne, Herb, Mech. Engr., Northern States Power Co., Minneapolis
Jarshaw, Bruce, City of Chicago, Dept. of Development & Planning
Jatana, S.C., Research Engineer, Columbia Gas System, Columbus, Ohio
Jaumotte, Joe, Dynatech R/D6, Northfield, Ill.
Johnson, Mr. Dale R., Pres., Nelson & Johnson Engineering, Inc., Boulder, Colo.
Johnson, Greg, Grad. Res. Asst., Ray W. Herrick Labs, W. Lafayette, Ind.
Johnson, Mr. Ralph J., NAUB Research Foundation Inc., Rockville, Md.
Johnson, William L., Hennington, Durham and Richardson, Des Plaines, Ill.
Jones, Mr. Harvey C., Reedy Creek Utilities Co., Inc., Lake Buena Vista, Fla.
Jones, Mr. Ron, Pres., Research & Planning Consultants, Austin, Texas
Jordan, Richard C., University of Minnesota, Minneapolis
Joyner, Fred, Tennessee Public Service Commission, Nashville
Kalkstein, Howard, International Council of Shopping Centers, New York
Katter, Lincoln B., Rocket Research Co., York Center, Redmond, Wash.
Katzel, J., Assoc. Editor, Municipal Publishing Company, Barrington, Ill.
Kelly, Michael, F., Pres., Dayton Hudson Properties, Minneapolis
Kepler, E.C., Program Mgr., United Tech. Research Center, E. Hartford, Conn.
Klett, M.G., Process Engineer, Gilbert Associates, Reading, Penn.
Killian, R.D., Mgr., Research & Develop., State of Illinois, Springfield
Kirkwood, Roderick R., John Graham & Co., Seattle
Kirmse, Dale W., University of Florida, Gainesville
Klein, E.L., Williams Research Corp., Walled Lake, Mich.
Kleinau, J.H., Vice Pres., Copeland Systems, Inc., Oak Brook, Ill.
Knipe, Edward C., Vice Pres., Gordon Associates, Corvallis, Ore.
Kohl, Bob, Mgr., Wtr. & Waste, Reedy Creek Util. Co., Inc., Lake Buena Vista, Fla.

Koski, Dr. J.A., Bechtel Corporation, San Francisco
Kranish, A., Editor, Trends Publishing, Inc., Washington, D.C.
Krause, Ed, Electrical Administrator, Garland, Texas
Kremer, Peter C., Exec. Vice Pres., Newhall Land & Farming Co., Valencia, Calif.
Kroner, Walter M., Rensselaer Polytechnic Institute, Troy, N.Y.
Kugelman, Irwin Jay, MERL-EPA, Cincinnati
Kurht, W.A., Vice Pres., Tech., United Technologies Corp., Hartford, Conn.
Kwok, C.F., U.S. Veterans Administration, D.C.
Laccetti, R., Analyst Proj. Mngr., Energy & Envir. Analysis Inc., Arlington, VA
Lagerstrom, J.E., Dir., Engineering Extension, U. of Nebraska, Lincoln
Lambert, Robert E., Environment Research Institute of Michigan, Ann Arbor
Landes, R., General Electric Company, Philadelphia
Landsberg, H., Dir., Resources for the Future, D.C.
LaRock, Ralph I., Director, NASA Headquarters, Solar Energy Div., D.C.
Lau, T.K., Office of Fossil Energy, DOE, D.C.
Leigh, Richard, Brookhaven National Laboratory, Upton, N.Y.
Leighton, G.S., Office of Conservation, DOE, D.C.
Leonard, Robert, Prof. of Mech. Engr., Virginia Polytechnic Inst. and St. University
LePera, Maurice, Woodbridge, Va.
Levinson, Joel, Levinson, Lebowitz & Zapravkis, Philadelphia
Lewis, Milt, U.S. Dept. of Health, Ed. & Welfare, D.C.
Liles, James, Federal Power Commission, D.C.
Linsteadt, G.F., Naval Weapons Center, China Lake, Calif.
Lockwood, Rodney, Pres., Rodney Lockwood & Co., Birmingham, Mich.
Loftness, Dr. Robert L., Electric Power Research Institute, D.C.
Lollar, Robert M., Technical Dir., Tanners' Council Lab, U. of Cincinnati (14)
Lorsch, Dr. Harold G., Franklin Inst. Research Labs., Philadelphia
Love, Nash M., Consulting Engineer, Nash M. Love & Assoc., D.C.
Lovely, Joseph D., St. Clair Shore, Mich.
Lovin, Glenn H., Edison Electric Institute, D.C.
Low, Dr. D.W., Los Angeles Data Processing Div., Scientific Center
Loyd, Harold L., Turner, Colie & Braden, Houston
MacDonald, Robert, Tech. Agent, Conference of Municipalities, New Haven, Conn.
Mackay, Mr. Robin, Garrett Corp., Los Angeles
Maffin, Robert W., Nat'l Assoc. of Housing & Redevelopment Officials, D.C.
Maggard, James E., Watkins and Associates, Inc., Lexington, Ky.
Magnus, D.E., KLD Associates, Inc., Huntington, N.Y.
Maloney, Laurence J., Love, Friberg & Assoc., Inc., Fort Worth
Manning, David, Stewart & Stevenson, Houston
Marcus, Genevieve, Exec. Dir., Experimental Cities, Pacific Palisades, Calif.
Marder, Sidney M., ESCOR, Inc., Springfield, Ill.
Martin, John H., Sheaffer & Rolan, Chicago
Martin, Joseph, Associate Dir., The University of Michigan, Ann Arbor
Mascenik, William, Prog. Mgr., Public Technology, Inc., Washington, D.C.
Maschke, H.H., Department of Defense, HQDA (DAEN-MCE-U) D.C.
Masella, Charles Y., Senior Assoc., Masella Associates, Washington, D.C.
Mason, J.L., V.P. Engineering, Garrett Corp., Los Angeles
Mavro, Robert L., Dir. of Energy Research, American Public Power Assn., D.C.
Mazarakis, Gus, Peoples Gas Light & Coke Co., Chicago
McBride, M.F., Owens Corning Fiberglas, Bldg. Research Lab., Granville, Ohio
McCleron, Dr. Mark F., Black & Veatch, Kansas City, Mo.
McClure, Charles J.R., Pres., McClure & Assoc., Inc., St. Louis
McCystal, Ms. Deirdre, Architectural Student, Boulder, Colo.
McGinty, Mr. John M., The McGinty Partnership, Houston

McPherson, Harry, Construction Battalion Center, Port Hueme, Calif.
Mendenhall, Mr. Jerry, Lloyd Jones Brewer, Houston
Meriwether, Ross F., Pres., Ross F. Meriwether & Assoc., Inc., San Antonio
Mermelstein, Mrs. Betty, The Futures Group, Glastonbury, Conn.
Mesko, Mr. John, Pope, Evans & Robbins, Inc., New York
Michaelson, William G., Mgr., Public Service Electric & Gas Co., Newark, N.J.
Milder, Nelson L., Mgr., Civil Systems Program, NASA Headquarters, D.C.
Miller, A.J., Knoxville, Tenn.
Mixon, W.R., Oak Ridge National Laboratory, Oak Ridge, Tenn. (75)
Mladinov, John K., NYS Dept. of Transportation, Albany, N.Y.
Moeller, Griswold L., Michael Baker Jr. of New York
Mollura, Frank J., Mech. Engr., Rome Air Dev. Center, Griffissafb, N.Y.
Montanerilli, Nicholas, National Science Foundation, D.C.
Morris, George L., Senior Vice Pres., Brown & Root, Inc., Houston
Morrison, Dr. David L., Battelle Columbus Laboratories, Columbus, Ohio
Morrison, J.E., DeLaureal Engineers, Inc., New Orleans
Mulf, Richard, U.S. Dept. of HUD, D.C.
Murphy, Timothy J., Engineering Mgr., Grumman Aerospace Corp., Bethpage, N.Y.
Murray, James, Project Engineer, Hittman Associates, Inc., Columbia, Md.
Myers, Edward A., Chairman EEI, Southern California Edison Co., Rosemead
Nakata, Clifford S., Clifford S. Nakata & Associates, Colorado Springs
Nash, Herbert D., Vice Pres., Pennsylvania Power & Light Co., Allentown
Nawrocki, A. David, Staff Consultant, Southwest Research Inst., San Antonio
Nayamark, Ronald, NPL, Inc., Campbell, Calif.
Neal, John, U.S. DOE, D.C.
Neff, N. Thomas, Vice Pres., Consulting Engineer, Cincinnati
Nield, William H., San Diego Gas and Electric Co., San Diego
Nelson, Ralph, Ch. Mech. Engr., Dana-Larson-Roubal, Omaha
Nelson, Dr. S.H., Energy Systems Research Group, Inc., Rochester, N.Y.
Newell, Mr. J.C., West Chester, Penn.
Nicholls, G.L., Energy Resources, Bellevue, Wash.
Nimmo, Morris, National Bureau of Standards, D.C.
Northrup, Lynn L. Jr., Pres., Northrup, Inc., Hutchins, Texas
Novinsky, M.H., Office of Planning and Development, Dept. of HEW-OFEPM, D.C.
O'Connor, W.G., Williams Research Corp., Walled Lake, Mich.
Olivieri, Joseph B., OEM Associates Inc., St. Clair Shores, Mich.
Olson, G. Perry, City of St. Cloud, City Hall, Minn.
Opperman, A. Peter, University of Michigan, Ann Arbor
Orlando, J., GKCO Consultants, Division of Gamze Korobkin Caloger, Inc., D.C.
O'Sullivan, Michael, Los Angeles
Overman, Mr. Jack, Hittman Assoc., Inc., Columbia, Md.
Parante, Mr. Emil J., Ralph M. Parsons Co., Pasadena, Calif.
Parker, Dr. Jerald, Professor, Aerospace & Mech. Engr. Dept., Stillwater, Okla.
Partridge, Robert D., Exec. V.P., Nat'l. Rural Electric Cooperative Assoc., D.C.
Paster, J.H., Inter-Technology Corp., Warrenton, Va.
Patten, Thomas W., V.P., M.C. Patten & Co., Inc., Costa Mesa, Calif.
Patterson, Mr. Neil, Mgr., The Trane Co., LaCrosse, Wis.
Pavle, James, Asst. Mgr., Applied Research Div., Dynalectron Corp., Bethesda, Md.
Peacock, Thomas, Mech. Engr., U.S. Navy, Millersville, Md.
Pearson, F.J., Chief Mech. Engr., Henry Adams, Inc., Baltimore
Perkins, Virginia, Corporate Librarian, Wisconsin Electric Power, Milwaukee
Perks, Ruth, Library, DOE, D.C.
Peters, G.T., United Tech. Res. Center, East Hartford, Conn.
Philadelphia Electric Co., Vice President for Planning

Phillips, C.W., National Bureau of Standards, D.C.
Piccirelli, Mr. Robert A., Michigan Energy and Research Assn., Detroit
Piper, James R., Piper Hydro, Anaheim, Calif.
Plunkett, Mr. J.D., Montana Energy and MHD Research and Develop. Inst., Inc.
Pollard, Thomas E., Mgr., Field Facilities Engr. & Operations, IBM, Chicago
Powell, William R., Johns Hopkins U., Laurel, Md.
Pozzo, R.J., Energy Analyst, State Energy Office, Tallahassee
Pripusich, J.F., Inter-Development, Inc., Arlington, Va.
Pritchard, Ms. Barbara, Librarian, Day & Zimmerman, Inc., Philadelphia
Pronk, Dick, U.S. General Service Admin., D.C.
Public Technology Inc., Washington, D.C.
Puri, Virender, M.E., The E/A Design Group, Burke, Va.
Qureshi, Mr. A.S., P.E., Asst. V.P., Michael Baker Jr. of New York, Inc.
Radin, Alex, Gen. Manager, American Public Power Association, D.C.
Rahm, Allen M., Consultant, Colts Neck, N.J.
Rajan, Mr. S.D., Mitre Corp, McLean, Va.
Rastelli, Dr. Leonard, Dir., Southwest Research Institute, San Antonio
Reese, Mr. William R., Interstate Development Corp., St. Charles, Md.
Reeves, George, Manager, Long Range Planning, Electric Energy Institute, N.Y.
Reich, Larry, Dir. of Planning, City of Baltimore
Reid, Robert O., Energy & Environmental Analysis, Inc., Washington, D.C.
Reikenis, Richard, Vice Pres., Century Engineer, Inc., Towson, Md.
Research and Tech. Support Div., DOE, Oak Ridge, Tenn.
Resources for the Future, Energy Library, Washington, D.C.
Restall, Wesley F., Keyes Associates, Waltham, Mass.
Riegel, Kurt, Chief, Department of Energy, Washington, D.C.
Riddle, William G., Riddle Engineering, Inc., Kansas City
Rippey, James, Project Engineer, NASA-JSC, Houston, Texas
Rienerth, Thomas, Dir., Delmarva Advisory Council, Salisbury, Md.
Rigo, H. Gregor, Principal, DSI Resource Systems Group, Inc., Boston, Mass.
Rittleman, Bernard, Burt, Hill & Assoc., Butler, Penn.
Robb, Tom H., Jr., Houston Lighting and Power Co.
Roberts, James S., First National Bank of Chicago
Rodgers, Paul, Nat'l. Assn. of Regulatory Utility Commissioners, D.C.
Rodousakis, John C., Program Manager, Community Systems Branch, DOE, D.C.
Rogan, James E., Branch Mgr., McDonnell Douglas Astronautics Co., Huntington Beach
Romancheck, Bob, Penna Power & Light Co., Allentown, Penn.
Romine, Thomas, B. Jr., Romine & Romine, Consulting Engineers, Fort Worth
Rose, L.J., Tech. Utilization Engr., NASA-Langley Research Ctr., Hampton, Va.
Rosenberry, Robert, Veterans Administration, D.C.
Rosoff, David, U.S. Dept. of HUD, D.C.
Ross, C.F., LTC, DAEN-FEU, Washington, D.C.
Ross, Donald K., Ross & Barruzzini, Inc., St. Louis
Rothenberg, J.H., HUD-MIUS, Program Manager, Dept. of HUD, D.C.
Roubal, James P., Dana, Roubal and Associates, Omaha
Rudy, William, Prof., University of Pittsburgh
Russell, May, Pres., Community Assoc. Institute, D.C.
Ryan, J.D., National Bureau of Standards, D.C.
Samos, John, Langley Research Center, Hampton, Va. (2)
Sander, Dr., Program Mgr., Thermo Electron Corp., Waltham, Mass.
Sarkes, Louis A., Director, A.G.A., Arlington, Va.
Sasso, John A., Nat'l. Model Cities Community Develop. Directors Assn., D.C.
Saunders, Walt, Office of Fossil Energy, Fossil Fuel Utilization, DOE, D.C.
Sayan, Michael, Rochester Public Utility, Minn.
Scause, James W., Scause & Associates, Phoenix

Schmalz, Mr. Arvid, IBM, Energy Research Project, Los Angeles
Schneider, Burkhard, H., Manager Planning & Research, Detroit Edison Co.
Schnizer, Arthur W., Tech. Dir., Day & Zimmerman, Inc., Philadelphia
Schoen, Richard, University of California, Los Angeles
Schramm, M.T., Consoer, Townsend, & Assoc. Ltd., Chicago
Schuster, Ray, Comm. Div., Electrical Power Research Inst., Palo Alto, Calif.
Schwendinger, D., P.E., Consultant Engr., Nuclear Services Corp., Campbell, Calif.
Schwinn, Gerald Allan, Librarian, Resource Planning Assoc., Washington, D.C.
Sebastion, E.J., Chief Mechanical Engr., DeLeuw, Cather & Company, Chicago
Sedlacek, Frank E., Pres., Fast Hills, Inc., Omaha
Shaffer, Richard, Combustion Power Co. Inc., Menlo Park, Calif.
Shah, R.P., Systems Engr., General Electric, Schenectady
Shane, E. Martin, Supervisor, Tech. Services, Philadelphia Electric Company
Shannon, Wayne E., Lockheed Missiles & Space Co., Palo Alto, Calif.
Sharp, E.G., The Mitre Corp., McLean, Va.
Sheffield, David G., The Architects Collaborative, Inc., Cambridge, Mass.
Sherfy, James D., Bristol Tennessee Electrical System, Bristol
Sherman, J., Department of HUD, D.C.
Shivers, Lyman T., Electrical Systems Analyst, Brown & Root, Inc., Houston
Siegel, A.R., Director, Dept. of HUD, D.C.
Sizemore, Michael M., Sizemore & Associates, Atlanta
Smith, Robert Lee, Pres., Experimental Cities, Pacific Palisades, Calif.
Smollen, William, Regional Planning Commission, New Orleans
Snyder, F.E., V.P., Eng., York-Shipley, Inc., York, Penn.
Soler, Martha E., Lawrence, Kansas
Spiegel, Walter F., W.F. Spiegel, Inc., Jenkintown, Penn.
Spielvogel, L.G., Engineer, Lawrence G. Spielvogel, Inc., Wyncote, Penn.
Stamper, D.E., Chairman, New Jersey Institute of Technology, Newark
Stautz, Mr. C. David, Director of Planning, Homart Development Co., Chicago
Steger, Wilbur A., Consad Research Corp., Pittsburgh
Steigelmann, Mr. William, Franklin Institute Research Labs, Philadelphia
Stenhouse, Douglas S., Los Angeles
Stoltz, Otto G., U.S. Dept. of HUD, D.C.
Sutz, Chief Conservation Section, Arizona State Fuel & Energy Office, Phoenix
Sykora, Mr. Don, Gen. Mgr., Houston Lighting and Power Co., Houston
Talwar, Rajesh, Research Assoc., Florida Solar Energy Center, Cape Canaveral
Tanner, Howard, Director, Department of Natural Resources, Lansing, Mich.
Tao, William K.Y., William Tao & Associates, St. Louis
Taravella, J.P., Westinghouse Electric Corp., Coral Spring, Fla.
Taussig, Robert T., Mathematical Sciences NorthWest, Inc., Bellevue, Wash.
Taylor, L.D., Prof. of Economics, University of Arizona, Tucson
Telkes, Dr. Maria, American Technical University, Texas
Tenza, R.M., V.P., BRI Systems, Inc., Phoenix
Terry, Gary A., Exec. Vice Pres., American Land Development Assoc., D.C.
Thomas, John P., National Assn. of County Admin., D.C.
Thompson, Mr. Russell G., Research for Growth and Transfer, Inc., Houston
Tiedman, Thomas, Program Mgr., Public Technology, Inc., Washington, D.C.
Todd, J.W., Presiding & Chief Operating Officer, Gulf Reston, Reston, Va.
Trevino, Mr. Alberto, Urban Interface Group, Laguna Beach, Calif.
Tully, Gordon F., Massdesign Architects & Planners, Inc., Cambridge, Mass.
Tumilty, Jack, Chairman, Consulting Engineer, Tulsa, Okla.
Turner, John B., Pres., Friendswood Development Co., Houston
Twombly, Carole E., Librarian, Keyes Assoc., Providence, R.I.
Uhl, Mr. Robert H., Watkins & Associates Inc., Lexington, Ky.

University of Tennessee, Engineering Library, Knoxville
U.S. Army Engineer R&D Laboratories Library, Fort Belvoir, Va.
Vandegriff, A.E., Midwest Research Institute, Minneapolis
U.S. Naval Civil Engineering Laboratories, Port Hueneme, Calif.
Van Horn, A.N., Supvr., Cons. Progs., Penn. Pwr. & Lt., Co., Allentown, Penn.
Ver Eecke, W., Supervisory Mech. Engr., Reynolds, Smith & Hills Jacksonville, Fla.
Vora, K.T., Resource Planning Associates, Cambridge, Mass.
Wade, D.W., P.E., Commty. Energy Syst. Branch, Georgia Tech Rsrch. Inst., Atlanta
Wagner, John, Research Analyst, South Dakota Office of Energy Policy, Pierre
Walker, Ina, Assoc., Librarian, Ohio Public Utilities Comm., Columbus
Wasel, Robert A., Solar Heating & Cooling Prog., Mgr., Washington, D.C.
Watson, R.S., Mgr., Corp. Energy Control, Anderson, Clayton & Co., Dallas
Weaver, Rose, Info. Asst., ORNL/EERC, Oak Ridge, Tenn.
Webb, Jerry L., Staff Engr., Public Service Commission of Indiana
Weinberg, A.M., Director, Institute of Energy Analysis, Oak Ridge, Tenn.
Werden, R.G., Consulting Engrs., Robert G. Werden & Assoc., Jenkinton, Penn.
Wheeler, Arthur E., Consulting Engineer, Henry Adams, Inc., Towson, Md.
White, Robert E., Loup River Public Power District, Columbus, Neb.
Widowsky, Arthur, NASA Headquarters, D.C.
Winders, Marvin S., Engineering Supervisor Co., Newport Beach, Calif.
Wolfe, Jack, Southwest Research Institute, San Antonio
Woodburn, James D., Public Service Department, Burbank, Calif.
Woolman, Clancy, Marketing Director, Cangas, Lincoln, Neb.
Wright, I.J., Principal Engr., Brown & Caldwell, Walnut Creek, Calif.
Yallaly, James G., Delta Engineering Consultants, Cape Girardeau, Mo.
Yarosh, M.M., Director, Florida Solar Energy Center, Cape Canaveral
Young, M.G., Caltex Petroleum Corp., Power and Utility Supervisor, N.Y.
Young, Thomas C., Exec. Director, Engine Manufacturers Assoc., Chicago
Yudow, Bernard, Assoc. Chem. Engr., Institute of Gas Technology, Chicago
Zaloudek, Bob, Larry Smith & Co., Ltd., Northfield, Ill.
Zaworski, Jeseph R., P.E., Chief Engr., Critter Engineering, Corvallis, Ore.
Zoues, Tom, Walt Disney World, Lake Buena Vista, Fla.
Zovich, John, WED Enterprises, Glendale, Calif.