

CONF-790345--1

MASTER

ON MODELING FOR MOVING BOUNDARY PROBLEMS*

A. D. Solomon

Mathematics and Statistics Research Department
Computer Sciences Division
Union Carbide Corporation, Nuclear Division
Oak Ridge, Tennessee 37830

Sponsor: D. M. Eissenberg
Originator: A. D. Solomon

By acceptance of this article, the publisher or
agent, and in behalf of the U.S. Government, its
right to retain a non-exclusive, royalty-free
license in and to any copyright covering the
article.

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

*Research sponsored by the Division of Basic Energy Sciences and Division
of Energy Storage Systems, U.S. Department of Energy contract W-7405-eng-26
with the Union Carbide Corporation.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EHB

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ON MODELING FOR MOVING BOUNDARY PROBLEMS

A. D. Solomon
Mathematics and Statistics Research Department
Computer Sciences Division
Union Carbide Corporation, Nuclear Division
Oak Ridge, Tennessee 37830

ABSTRACT

An overview of the area of moving boundary problems emphasizing their appearance in latent heat storage is given.

INTRODUCTION

The classical problems in partial differential equations involve solving an equation within a fixed spatial region. However, when attempting to model such phenomena as melting and freezing, we find that as time varies the region in which, e.g., material in the liquid phase is present, will also vary and must be determined. Such problems--for which the solution of a partial differential equation is sought in a region which is itself varying in an unknown manner--are referred to as moving boundary problems.

The purpose of this note is to describe the current "state of the art" of moving boundary problems as it applies to the storage of heat as latent heat. Assuming that the storage concepts are known to the reader, we will stress the mathematical techniques currently available. We begin (in Section 1) with a quick overview of analytical techniques which are available for such problems in the context of one-dimensional melting of a semi-infinite slab. We then

turn to some simple "rule-of-thumb" approximations for such processes (in Section 2). When all else fails, one is driven to numerical methods; one such method is described in Section 3. Section 4 is devoted to the use of elementary bounds, while in Section 5 we remark on what really happens in a system and how this interacts with the mathematical models. We close with a bibliography of the field.

SECTION 1. SOME ELEMENTARY PROCESSES AND THEIR MODELS

Throughout this section we consider a semi-infinite slab of phase-change-material (PCM), occupying the interval $x > 0$. Initially, at time $t = 0$, the PCM is to be in its solid state at the melting temperature T_{cr} . Due to heat input at the surface $x = 0$ a melting front $x = X(t)$ propagates into the slab. At any time t , to its left ($x < X(t)$) we find liquid PCM, at temperatures above T_{cr} ; to its right ($x > X(t)$) the PCM is yet solid at temperature T_{cr} . Assume that the thermal parameters c , ρ , k , α are constants, and that the material undergoes a phase change at temperature T_{cr} with the latent heat H ; we find that in the liquid region

$$T_t = \alpha T_{xx} , \quad x < X(t) ; \quad (1a)$$

in the solid

$$T(x,t) = T_{cr} , \quad x > X(t) ; \quad (1b)$$

at the initial time,

$$T(x,0) = T_{cr} , \quad x > 0 ; \quad (1c)$$

at the phase boundary

$$T(X(t),t) = T_{cr} , \quad t > 0 \quad (1d)$$

and

$$\rho H X'(t) = - K T_x(X(t),t) . \quad (1e)$$

The boundary condition at $x = 0$ may be of a variety of forms. The following cases will be discussed:

$$T(0,t) = T_L > T_{cr} \quad (\text{Dirichlet B.C.}) \quad (2a)$$

$$- K T_x(0,t) = q_0 > 0 \quad (\text{flux B.C.}) \quad (2b)$$

$$- K T_x(0,t) = h(T_L - T(0,t)) \quad (\text{convection B.C.}) \quad (2c)$$

$$- K T_x(0,t) = \omega(T_L^4 - T(0,t)^4) \quad (\text{radiation B.C.}) \quad (2d)$$

Process 1. Dirichlet B.C. (2a)

In this case functions $X(t)$ and $T(x,t)$ satisfying (1a-e) and (2a) can be found in the form

$$X(t) = 2\lambda \sqrt{\alpha t} \quad (3a)$$

$$T(x,t) = T_L + (T_{cr} - T_L) \frac{\operatorname{erf}(x/2\sqrt{\alpha t})}{\operatorname{erf}(\lambda)} \quad (3b)$$

where λ is the root of the equation

$$\lambda e^{\lambda^2} \operatorname{erf}(\lambda) = \frac{c(T_L - T_{cr})}{H \sqrt{\pi}} \quad (3c)$$

In latent heat storage the righthand side of this equation is small (since the latent heat should dominate the sensible heat) and so

$$\lambda \approx \sqrt{\frac{c(T_L - T_{cr})}{2H}} \quad (3d)$$

where " \approx " denotes approximate equality.

Process 2. Flux B.C. (2b)

In this case the method of Megerlin yields the approximate relation

$$t \approx \frac{h\rho X}{2q_o} + \frac{H^2 \rho K}{12cq_o} \left\{ \left[1 + \frac{4X q_o c}{HK} \right]^{3/2} - 1 \right\} \quad (4a)$$

which for large H and small c implies

$$X(t) \approx q_o t / \rho H \quad (4b)$$

$$T \approx T_{cr} - \frac{HX'}{\alpha c} (x - X) + \frac{H}{2c} \left(\frac{X'}{\alpha} \right)^2 (x - X)^2 \quad (4c)$$

Comparison with numerical experiments shows the relations to be of high accuracy over the parameter ranges for thermal energy storage PCM's.

Process 3. Convection B.C. (2c)

Using a power-series expansion yields relations for X, T whose first few terms are

$$X(t) \approx \frac{ht(T_L - T_{cr})}{\rho H} - \frac{h^3 t^2 (T_L - T_{cr})^2}{2K(\rho H)^2} \left[1 + \frac{c(T_L - T_{cr})}{H} \right] \quad (5a)$$

$$T(x,t) \approx T_{cr} - \frac{hx(T_L - T_{cr})}{K} + \frac{h^2 (T_L - T_{cr})^2 t}{K\rho H} + \frac{h^2 (T_L - T_{cr})^2 x^2}{2\alpha K\rho H} \\ + \frac{h^3 (T_L - T_{cr})^2 xt}{K^2 \rho H} + \left[1 - 2 \frac{c(T_L - T_{cr})}{H} \right] \frac{h^4 (T_L - T_{cr})^3 t^2}{2(K\rho H)^2} \quad (5b)$$

Process 4. Radiation B.C. (2d)

With the help of a quasi-stationary approach, we find the approximations

$$T(x,t) \approx A(t) + (T_{cr} - A(t)) x/X(t) \quad (6a)$$

where

$$A = T_{cr} + \frac{\rho H X'}{K} \quad (6b)$$

and $X(t)$ solves the ordinary differential equation

$$\frac{\rho H X'}{\omega T_L^4} + \left(\frac{T_{cr}}{T_L} + \frac{\rho H X'}{K T_L} \right)^4 = 1 \quad (6c)$$

All of the approximation techniques are highly accurate so long as the dimensionless Stefan number

$$St = \frac{c\Delta T}{H} \quad (7)$$

is small (e.g., $St < 1$). Here ΔT is a typical system temperature drop.

SECTION 2. RULES OF THUMB

Under certain circumstances we would like to be able to obtain quick and easily computable (e.g., on a pocket calculator) estimates of the behavior of phase change processes. Thus a contractor might need only a rough estimate of how much PCM is required for a given hardware configuration, but he would like to derive it within minutes and if possible, at no cost. Using the methods of the last section, supported by computations, it is possible to derive such "rules of thumb" for simple configurations. Let us now describe one such result.

Consider again the process 3 with a convection B.C. (2c). Then it can be shown that the wall temperature

$$T_{wall} = T(0, t)$$

and the time t are related by

$$t = \frac{Kcp}{h^2} \left\{ .59 \left(\frac{T_{wall} - T_{cr}}{T_L - T_{wall}} \right)^{1.83} + \frac{1}{2St} \left[\left(\frac{T_L - T_{cr}}{T_L - T_{wall}} \right)^2 - 1 \right] \right\} \quad (144)$$

with a relative error below 10%, and in most cases less than 3%. Here

$$St = \frac{c(T_L - T_{cr})}{H}$$

Other similar relations can be found for a variety of cases.

SECTION 3. NUMERICAL METHODS

Since the early 1950's a variety of numerical methods for phase change processes have been developed. The need for special methods is clear since the key unknown in these processes is the phase boundary itself.

The numerical method which offers the best hope for dealing with general phase change processes is the "weak-solution" (or "enthalpy") approach. This is based on introducing the specific internal energy e as the key variable of the process. Choosing $e = 0$ as an arbitrary reference value, we associate "solid" with $e \leq 0$ and an "interphase state" with $0 < e < H$. The relation between e and T is

$$T = \begin{cases} T_{cr} + e/c_s, & e \leq 0 \\ T_{cr}, & 0 < e < H \\ T_{cr} + (e - H)/c_L, & e \geq H \end{cases}$$

Here the subscripts s, L refer to solid and liquid phases, respectively. Introduce the diffusivity function $\alpha = \alpha(e)$ as

$$\alpha(e) = \begin{cases} \alpha_s, & e \leq 0 \\ 0, & 0 < e < H \\ \alpha_L, & e \geq H \end{cases}$$

Then one may replace our original phase change process by the single equation

$$e_t = (\alpha(e)e_x)_x$$

with appropriate boundary and initial conditions. The equation can be discretized and e (and hence T) values computed. The phase boundary is located where $0 \leq e \leq H$ and is "smudged" to a region of very small width.

The method has been applied with success to a variety of problems, although further investigation is still needed.

SECTION 4. BOUNDS ON PROCESSES

One can often derive qualitative information about phase change processes without finding the temperature and the phase boundary. As an example, using a variety of analytical tools, we can show that for the convective B.C. process (2c), the phase boundary $X(t)$ obeys the inequalities

$$X(t) \leq \frac{th(T_L - T_{cr})}{\rho H}$$

and

$$X(t) \geq \frac{KSt}{h(1+St)} \left\{ e^{\alpha h^2 t / K^2} \operatorname{erfc} \left(\frac{h\sqrt{at}}{K} \right) + \frac{2h\sqrt{at}}{K\sqrt{\pi}} - 1 \right\}.$$

Such bounds are of value in sizing systems and as a confirmation of approximations as in Sections 1 and 2.

SECTION 5. REALITY

The models introduced in previous sections ignore some very real effects in phase change processes. These include for various materials in different configurations:

- a) natural convection
- b) property dependence on temperature
- c) additional phase transitions
- d) anisotropy of solid properties
- e) incongruent melting and degrading of H
- f) supercooling
- g) multidimensionality
- h) inhomogeneity of PCM's.

The precise quantitative understanding of a real storage system requires that one understand how to model these effects-albeit roughly. The limited references to them are given in the Bibliography.

NOMENCLATURE

c	specific heat	(KJ/Kg-°c)
e	specific internal energy	(KJ/Kg)
h	film coefficient	(KJ/m ² -s-°c)
H	latent heat	(KJ/Kg)
K	conductivity	(KJ/m-s-°c)
q	heat flux	(KJ/m ² -s)
t	time variable	(s)
T	temperature	(°c)
T _{cr}	melting temperature	(°c)
T _L	ambient flow temperature	(°c)
x	space variable	(m)
X(t)	phase boundary location at time t	(m)
α	thermal diffusivity	(m ² /s)
ρ	density	(Kg/m ³)

$$\omega = \frac{\sigma}{1 + \frac{1}{\epsilon_1} + \frac{1}{\epsilon_2}} \quad \text{for } \sigma \text{ the Stefan-Boltzmann constant and } \epsilon_1, \epsilon_2$$

the emissivities of surfaces in radiation processes (KJ/m²-s-°c⁴)

BIBLIOGRAPHY

Literally hundreds of papers dealing with phase change modeling have appeared in recent years. In the following lines we present a representative list of these references. Our list is divided roughly in accordance with the material of this report. However, references are also given to material that we have not discussed, including multidimensional phase change processes, and a spectrum of applications. The broad theoretical literature concerned with questions of well-posedness of the mathematical model is greatly under-represented, although the interested reader will find appropriate references in the recent symposium proceedings of Ockendon and of Wilson. Similarly, very recent work of Friedman and others on the use of variational concepts is not referenced here. Only one example of the extensive work of Boley is listed under the heading of "bounds." Similarly, the recent and growing attention to natural convection in melting processes is not well represented by works listed. We have not listed the individual papers of the Ockendon and Wilson proceedings, but we do point out that they include an extensive range of theoretical and applied results. In particular, we can indicate the papers on glass and related work on semi-transparent materials contained in Ockendon's work, and the papers on coupled processes (heat transfer and mass diffusion) given in that of Wilson. The interesting applications of phase-change modeling techniques to statistical decision processes is similarly mentioned among the references of the proceedings and not indicated by us.

I. Latent Heat Thermal Energy Storage

1. J. Bailey, et al., "A solar energy storage subsystem utilizing the latent heat of fusion of paraffin hydrocarbons: a progress report," *Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings*, ed. L. Lilleleht, NSF-Rann-75-041 (1975).
2. A Berlad, H. Lin, F. Salzano, and J. Batey, "Comfort range thermal storage," *Energy* 2 (1977) 161-169.
3. R. Caldwell, J. McDonald, and A. Pietsch, "Solar receiver with lithium-hydride heat storage," *Solar Energy* 9 (1965) 48-60.
4. D. Chahroudi and S. Wellesley-Miller, "Thermocrete heat storage materials: applications and performance specifications," *Sharing the Sun-Solar Technology in the Seventies*, ed. K. Boer, International Solar Energy Society (1976) 245-259.
5. S. Fixler, "Satellite thermal control using phase-change materials," *Journal of Spacecraft* 3 (1966) 1362-1368.
6. P. Grodzka, "Selection of solid-liquid phase-change materials for spacecraft thermal control," *Heat Transfer and Spacecraft Thermal Control*, ed. J. Lucas, The Massachusetts Institute of Technology (1971).
7. T. Johnson, "Lightweight thermal storage for solar heated buildings," *Solar Energy* 19 (1977) 669-675.
8. P. Kando, "Eutectic salts," *Solar Age* 3 (1978) 15.
9. J. Lammers, "Charging and discharging of latent heat storage systems," *Future Energy Production Systems, Volume 1*, ed. J. Denton and N. Afgan, Academic Press, New York (1976) 83-95.
10. H. Lorsch, "Latent heat and sensible heat storage for solar heating systems," Report No. NSF/RANN/SE/GI27976/TR72/20 (1974).
11. H. Lorsch, K. Kauffman, and J. Denton, "Thermal energy storage for solar heating and off-peak air conditioning," *Energy Conversion* 15 (1975) 1-8.
12. H. Maru, et al., "Molten salt thermal energy storage systems: system design," Institute of Gas Technology Report (February 1977).
13. K. Mathur, "Heat storage for solar energy space heating," *Solar Energy* 6 (1962) 110-112.
14. D. Morrison and S. Abdel-Khalik, "Effects of phase-change energy storage on the performance of air based and liquid based solar heating systems," *Solar Energy* 20 (1978) 57-67.
15. N. Shamsundar and E. M. Sparrow, "Storage of thermal energy by solid liquid phase change temperature drop and heat flux," *Journal of Heat Transfer* (1974) 541-543.

16. A. Solomon, "Criteria in pcm-wall design for thermal storage," *Energy* (1979).
17. M. Telkes, "Solar cooking ovens," *Solar Energy* 3 (1959) 1-11.
18. U.S. Department of Commerce, "Development of proposed standards for testing solar collectors and thermal storage devices," NBS Technical Note 899 (1976).
19. U.S. Department of Energy, "Proceedings of second annual thermal energy storage contractors' information exchange meeting," CONF-770955 (1977).

II. Phase Change Materials-Performance

1. R. Bain, F. Stermole, and J. Golden, "Gravity induced free convection effects in melting phenomena for thermal control," *Journal of Spacecraft* 8 (1971) 1000-1002.
2. N. Hale and R. Viskanta, "Photographic observation of the solid-liquid interface motion during melting of a solid heated from an isothermal vertical wall," *Letters in Heat and Mass Transfer* 5 (1978) 329-337.
3. W. Humphries, "Performance of finned thermal capacitors," NASA Technical Note TN D-7690, (1974).
4. P. Pujado, F. Stermole, and J. Golden, "Melting of a finite paraffin slab as applied to phase-change thermal control," *Journal of Spacecraft* 6 (1969) 280-283.
5. L. Thomas and J. Westwater, "Microscopic study of solid-liquid interfaces during melting and freezing," *Heat Transfer-Houston, Chemical Engineering Progress Symposium Series* 41 (1963) 155-164.
6. A. Ukanwa, F. Stermole, and J. Golden, "Phase change solidification dynamics," *Journal of Spacecraft* 8 (1971) 193-196.
7. N. Yoneda and S. Takanashi, "Eutectic mixtures for solar heat storage," *Solar Energy* 21 (1978) 61-63.

III. Phase Change Materials-Properties

1. H. Bennett, *Industrial Waxes*, Volume 1, *Natural and Synthetic Waxes*, Chemical Publishing Company, New York (1963).
2. D. Hale, M. Hoover, and M. O'Neill, "Phase change materials handbook," Lockheed Missiles and Space Company, Report No. NASA CR-61363 (1971).
3. Y. Touloukian, *Thermophysical Properties of Matter*, Plenum, New York (1970).

4. N. Vargaftik, "Tables on the thermophysical properties of liquids and gases," Second Edition, John Wiley and Sons, New York (1975).
5. R. Weast, Handbook of Chemistry and Physics, 48th ed., Chemical Rubber Co., Cleveland (1967).

IV. The Stefan Problem Proceedings and Surveys

1. H. Carslaw and J. Jaeger, "Conduction of heat in solids, Second Edition, Clarendon Press, Oxford (1959).
2. A. Mori and K. Araki, "Methods for analysis of the moving boundary-surface problem," *International Chemical Engineering* 16 (1976) 734-743.
3. J. Muehlbauer and J. Sunderland, "Heat conduction with freezing or melting," *Applied Mechanics Reviews* 18 (1965) 951-959.
4. J. Ockendon and W. Hodgkins, Editors, *Moving Boundary Problems in Heat Flow and Diffusion*, Clarendon Press, Oxford (1975).
5. L. Rubenstein, *The Stefan Problem*, American Mathematical Society, Providence (1971).
6. D. Wilson, A. Solomon, and P. Boggs, Editors, *Moving Boundary Problems*, Academic Press, New York (1978).

V. Exact Solutions and Similarity Variables

1. P. Chambre, "On the dynamics of phase growth," *Quarterly Journal of Mechanics and Applied Mathematics* 9 (1956) 224-233.
2. S. Cho, "An exact solution of the coupled phase change problem in a porous medium," *International Journal of Heat and Mass Transfer* 18 (1975) 1139-1142.
3. S. Cho and J. Sunderland, "Phase change problems with temperature-dependent thermal conductivity," *Journal of Heat Transfer* (1974) 214-217.
4. S. Cho and J. Sunderland, "Heat-conduction problems with melting or freezing," *Journal of Heat Transfer* (1969) 421-426.
5. F. Ham, "Shape-preserving solutions of the time-dependent diffusion equation," *Quarterly of Applied Mathematics* 17 (1959) 137-145.
6. G. Horvay, "Freezing into an undercooled melt accompanied by density change," *Proceedings of the 4th National Congress of Applied Mechanics*, ASME (1962) 1313-1325.

7. D. Langford, "New analytic solutions of the one-dimensional heat equation for temperature and heat flow rate both prescribed at the same fixed boundary (with applications to the phase change problem)," *Quarterly of Applied Mathematics* 24 (1967) 315-322.
8. D. Langford, "Pseudo-similarity solutions of the one-dimensional diffusion equation with applications to the phase change problem," *Quarterly of Applied Mathematics* 25 (1967) 45-52.
9. S. Lin, "The theorem of a constant heat flux ratio at the phase boundary of a geometric one-dimensional freezing or melting problem," *Letters in Heat and Mass Transfer* 2 (1975) 127-134.
10. S. Lin, "One-dimensional freezing or melting process in a body with variable cross-sectional area," *International Journal of Heat and Mass Transfer* 14 (1971) 153-156.
11. M. Mikhailov, "Exact solution for freezing of humid porous half-space," *International Journal of Heat and Mass Transfer* 19 (1976) 651-655.
12. J. Weiner, "Transient heat conduction in multiphase media," *British Journal of Applied Physics* 6 (1955) 361-363.
13. D. Wilson, "Existence and uniqueness for similarity solutions of one dimensional multi-phase Stefan problems," *SIAM Journal of Applied Mathematics* 35 (1978) 135-147.

VI. Moment-Type Methods

1. M. Biot and H. Daughaday, "Variational analysis of ablation," *Journal of the Aerospace Sciences* 29 (1962) 227-229.
2. J. Goodling and M. Khader, "Results of the numerical solution for outward solidification with flux boundary conditions," *Journal of Heat Transfer* (1975) 307-309.
3. T. Goodman, "Integral methods for nonlinear heat transfer, Advances in Heat Transfer, Volume I (1964) 51-122.
4. O. Griffin, "An integral method of solution for combined heat and mass transfer problems with phase transformation," *Heat Transfer 1974, Volume I, Proceedings of the Fifth International Heat Transfer Conference, The Japan Society of Mechanical Engineers* (1974).
5. O. Griffin, "An integral energy-balance model for the melting of solids on a hot moving surface, with application to the transport processes during extrusion," *International Journal of Heat and Mass Transfer* 20 (1977) 675-683.
6. P. Kosky, "Heat transfer during liquid to solid phase change," *Letters in Heat and Mass Transfer* 2 (1975) 339-346.

7. D. Langford, "The heat balance integral method," *International Journal of Heat and Mass Transfer* 16 (1973) 2424-2428.
8. F. Megerlin, "Geometrically unidimensional heat conduction in melting and solidification," *Forschung im Ingenieurwesen* 34 (1968) 40-46.
9. K. Mody and M. Ozisik, "Melting of a semi-infinite solid with nonlinear heat transfer at the boundary," *Letters in Heat and Mass Transfer* 2 (1975) 487-494.

VII. Expansion and Perturbation Methods

1. J. Cannon and C. Hill, "Remarks on a Stefan Problem," *Journal of Mathematics and Mechanics* 17 (1967) 433-442.
2. G. Evans II, E. Isaacson, and J. MacDonald, "Stefan-like problems," *Quarterly of Applied Mathematics* 8 (1950) 312-319.
3. L. Jiji and S. Weinbaum, "A nonlinear singular perturbation theory for non-similar melting or freezing problems," *Heat Transfer 1974, Volume I, Proceedings of the Fifth International Heat Transfer Conference, The Japan Society of Mechanical Engineers* (1974).
4. M. Ozisik and S. Guzeri, "A variable eigenvalue approach to the solution of phase-change problems," *The Canadian Journal of Chemical Engineering* 55 (1977) 145-148.
5. R. Pedrose and G. Domoto, "Perturbation solutions for spherical solidification of saturated liquids," *Journal of Heat Transfer* (1973) 42-46.
6. C. Pekeris and L. Slichter, "Problems of ice formation," *Journal of Applied Physics* 10 (1939) 135-137.
7. S. Weinbaum and L. Jiji, "Singular perturbation theory for melting or freezing in finite domains initially not at the fusion temperature," *Journal of Applied Mechanics* (1977) 25-30.

VIII. Numerical Methods

1. D. Atthey, "A finite difference scheme for melting problems," *Journal of the Institute of Mathematics and its Applications* 13 (1974) 353-366.
2. A. Cleland and R. Earlie, "The third kind of boundary condition in numerical freezing calculations," *International Journal of Heat and Mass Transfer* 20 (1977) 1029-1034.
3. A. Crowley, "Numerical solution of Stefan problems," *International Journal of Heat and Mass Transfer* 21 (1978) 215-219.

4. A. Haji Sheikh and E. Sparrow, "The solution of heat conduction problems by probability methods," *Journal of Heat Transfer* (1967) 121-131.
5. H. Landau, "Heat conduction in a melting solid," *Quarterly of Applied Mathematics* 8 (1950) 81-94.
6. W. Leech and E. Winter, "Analytical and experimental investigation of one-dimensional heat and mass transfer with multiple phase changes," *Heat Transfer 1974, Volume I, Proceedings of the Fifth International Heat Transfer Conference, The Japan Society of Mechanical Engineers* (1974).
7. M. Lotkin, "The calculation of heat flow in melting solids," *Quarterly of Applied Mathematics* 18 (1960) 79-85.
8. G. Meyer, "A numerical method for two-phase Stefan problems," *SIAM Journal of Numerical Analysis* 8 (1971) 555-568.
9. M. Rose, "A method for calculating solutions of parabolic equations with a free boundary," *Mathematics of Computation* 14 (1960) 249-256.
10. O. Sharma, M. Rotenberg, and S. Penner, "Phase-change problems with variable surface temperatures," *AIAA Journal* 5 (1967) 677-682.
11. A. Solomon, "Some remarks on the Stefan problem," *Mathematics of Computation* 20 (1966) 247-260.
12. L. Tao, "Generalized numerical solutions of freezing a saturated liquid in cylinders and spheres," *A.I.Ch.E. Journal* 13 (1967) 165-169.

IX. Rule of Thumb Approximations

1. S. Churchill and L. Evans, "Coefficients for calculation of freezing in a semi-finite region," *Journal of Heat Transfer* (1971) 234-236.
2. D. Glasser and J. Kern, "Bounds and approximate solutions to linear problems with nonlinear boundary conditions: solidification of a slab," *A.I.Ch.E. Journal* 24 (1978) 161-170.
3. J. Kern, "A simple and apparently safe solution to the generalized Stefan problem," *International Journal of Heat and Mass Transfer* 20 (1977) 467-474.
4. J. Kern and G. Wells, "Simple analysis and working equations for the solidification of cylinders and spheres," *Metallurgical Transactions B* 8B (1977) 99-105.
5. A. Solomon, "Melt time and heat flux for a simple PCM body," *Solar Energy* 22 (1979).
6. A. Solomon, "On effective approximations for low temperature latent heat storage," to appear.

7. A. Solomon, "A simple surface temperature versus time relation for a phase change process," to appear.
8. K. Stephan, "Melting and solidification of geometrically simple bodies," *Kälotechnik-Klimatisierung* 23 (1971) 42-46.

X. Bounds

1. B. Boley, "Upper and lower bounds in problems of melting or solidifying slabs," *Quarterly Journal of Mechanics and Applied Mathematics* 17 (1964) 253-269.
2. W. Kyner, "On a free boundary value problem for the heat equation," *Quarterly of Applied Mathematics* 17 (1959) 305-310.
3. M. Rose, "On the melting of a slab," *SIAM Journal of Applied Mathematics* 15 (1967) 495-504.

XI. Convection and/or Radiation

1. B. Chung and L. Yeh, "Solidification and melting of material subject to convection and radiation," *Journal of Spacecraft* 12 (1975) 329-333.
2. W. Heitz and J. Westwater, "Extension of the numerical method for melting and freezing problems," *International Journal of Heat and Mass Transfer* 13 (1970) 1371-1375.
3. L. Yeh and B. Chung, "Phase change in a radiating and convecting medium with variable thermal properties," *Journal of Spacecraft* 14 (1977) 178-182.

XII. Multidimensional Processes

1. H. Budhia and F. Dreith, "Heat transfer with melting or freezing in a wedge," *International Journal of Heat and Mass Transfer* 16 (1973) 195-211.
2. T. Cooper and G. Trezek, "Analytical prediction of a temperature field emanating from a cryogenic surgical cannula," *Cryobiology* 7 (1970) 79-93.
3. A. Friedman, "The Stefan problem in several space variables," *Transactions of the American Mathematical Society* 133 (1968) 51-87.
4. A. Lazaridis, "A numerical solution of the multidimensional solidification (or melting) problem," *International Journal of Heat and Mass Transfer* 13 (1970) 1459-1477.

5. G. Meyer, "Multidimensional Stefan problems," *SIAM Journal of Numerical Analysis* 10 (1973) 522-538.
6. G. Meyer, "Alternating direction method for multi-dimensional parabolic free surface problems," *International Journal for Numerical Methods in Engineering* 11 (1977) 741-752.
7. G. Meyer, "An application of the method of lines to multidimensional free boundary problems," *Journal of the Institute of Mathematics and its Applications* 20 (1977) 317-329.
8. G. Poots, "An approximate treatment of a heat conduction problem involving a two-dimensional solidification front," *International Journal of Heat and Mass Transfer* 5 (1962) 339-348.
9. K. Rathjen and L. Jiji, "Heat conduction with Melting or Freezing in a Corner," *Journal of Heat Transfer* (1971) 101-109.
10. T. Saitoh, "An experimental study of the cylindrical and two-dimensional freezing of water with varying wall temperature," *Technology Reports, Tohoku University* 41 (1976) 61-72.
11. N. Shamsundar and E. Sparrow, "Analysis of multidimensional conduction phase change via the enthalpy model," *Journal of Heat Transfer* (1975) 333-340.
12. N. Shamsundar and E. Sparrow, "Effect of density change on multidimensional conduction phase change," *Journal of Heat Transfer* (1976) 550-557.
13. R. Siegel, "Shape of two-dimensional solidification interface during directional solidification by continuous casting," *Journal of Heat Transfer* (1978) 3-10.
14. L. Wellford, and R. Ayer, "A finite element free boundary formulation for the problem of multiphase heat conduction," *International Journal for Numerical Methods in Engineering* 11 (1977) 933-943.

XIII. Additional Applications

1. M. Bhatia and R. Cahn, "Recrystallization of porous copper," *Proceedings of the Royal Society of London, Series A* 362 (1978) 341-360.
2. S. Caspi, J. Lee, and T. Frederking, "Lambda-transition (He II-He I) during heat flow at supercritical pressures," *Journal of Heat Transfer* (1977) 479-482.
3. Y. Chang, "Analytical solution for heat conduction in anisotropic media in infinite, semi-infinite, and two-plane-bounded regions," *International Journal of Heat and Mass Transfer* 20 (1977) 1019-1028.

4. T. Cooper and G. Trezek, "Rate of lesion growth around spherical and cylindrical cryoprobes," *Cryobiology* 7 (1971) 183-190.
5. A. Grill, K. Sorimachi, and J. Brimacombe, "Heat flow, gap formation, and break-outs in the continuous casting of steel slabs," *Metallurgical Transactions B* 7B (1976) 177-189.
6. L. Gupta, "An approximate solution of the generalized Stefan's problem in a porous medium," *International Journal of Heat and Mass Transfer* 17 (1974) 313-321.
7. R. Harlan, "Analysis of coupled heat-fluid transport in partially frozen soil," *Water Resources Research* 9 (1973) 1314-1321.
8. B. Holzknecht, "An analytical model of the transient ablation of polytetrafluoroethylene layers," *International Journal of Heat and Mass Transfer* 20 (1977) 661-668.
9. J. Kallungal and A. Barduhn, "Growth rate of an ice crystal in subcooled pure water," *A.I.C.H.E. Journal* 23 (1977) 294-303.
10. C. Knight, "The freezing of supercooled liquids," D. Van Nostrand, Princeton, (1976).
11. C. Lin and J. Wheeler, "Simulation of permafrost thaw behavior at Prudhoe Bay," *Journal of Petroleum Technology* (1978) 461-467.
12. N. Seki, M. Sugawara, and S. Fukusako, "Radiative melting of a horizontal clear ice layer," *Wärme-und-Stoffübertragung* 11 (1978) 207-216.
13. R. Wiegel, "Solidification of low conductivity material containing dispersed high conductivity particles," *International Journal of Heat and Mass Transfer* 20 (1977) 1087-1089.
14. H. Simpson, G. Beggs, J. Nakamura, and A. Baxter, "The C-axis growth rate of ice crystals," *Desalination* 18 (1976) 219-230.
15. K. Stephan, K. Gentner, and B. Holzknecht, "Heat conduction in solidification coupled with phase transformations in the solid," Heat Transfer 1974, Volume I, Proceedings of the Fifth International Heat Transfer Conference, The Japan Society of Mechanical Engineers (1974).