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ABSTRACT

This report establishes the data base for an experimental program to determine the 
compliance and friction stress of dry sawcuts in Topopah Spring tuff. Friction stresses 
and compliances of a rough joint are also included. For constant normal stress tests, the 
friction stress is approximately proportional to the normal stress over the normal stress 
range of 1 to 6 MPa. The proportionality constant (coefficient of friction), computed 
from the maximum friction stress at any normal stress, is sensitive to initial surface 
state and any nonuniformity in normal stress as a result of inexact alignment. This 
sensitivity to initial conditions raises the question of how best to acquire meaningful 
data from real joints.
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The data presented in this report was collected prior to the implementation of the 
Project Quality Assurance (QA) Plan at Sandia National Laboratories and, therefore, 
the QA Level of the data collection process is “TBD”. The report itself, however, was 
prepared under a QA Level 3 Activity within WBS element 1.2.4.2.1.3.
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1 INTRODUCTION

Capabilities for predicting the response of rock masses to thermomechanical loadings 
are being developed under the Yucca Mountain Project (YMP) for the design of an 
underground nuclear waste repository at Yucca Mountain on the Nevada Test Site 
(NTS). An important ingredient in the computer codes being used is the constitutive 
description of the mechanical discontinuities (mostly joints, but also bedding planes 
and faults). This report summarizes preliminary laboratory experimental data on the 
compliance and the friction stress of artificial joints in Topopah Spring tuff in the air- 
dry, room-temperature condition. Also, data for a laboratory-induced, clean tensile 
fracture are given.

Details of the analysis of the results are discussed in earlier reports [Olsson, 1987a,b]. 
Therefore, the reader is urged to judiciously use data in this report, consulting the earlier 
documents when necessary. This report is primarily a catalogue of experiments and a 
summary of results; hence, little further analysis is given.

Because of the exploratory nature of the investigation, a systematic data base was 
not developed for the variables (such as sliding velocity, amount of slip, and normal 
stress history) studied. The results suggest guidelines for further, more systematic, 
experimentation on fracture properties.

It is critical to clearly understand the nature of the data and their implication; 
therefore, in the next section the constitutive relations for a joint are defined and the 
methods for their determination are explained.

1.1 Constitutive Relations

Joint constitutive models are usually based on a displacement decomposition that 
separates recoverable (elastic) from nonrecoverable (plastic) slip. This leads to the 
supposition of a stiffness matrix [Goodman and Dubois, 1972; Thomas, 1982; Plesha, 
1985; Chen, 1986] or its inverse, the compliance matrix [Sun et al., 1985]. It is assumed 
that there exists a 3 X 1 matrix of relative elastic displacements, Si, one normal and two 
tangential components, caused only by the joint such that

6i = CijOj , (1)

where C.-y is a 3 x 3 matrix of compliances, and ay is the 3x1 matrix of stress. In the 
experiments the maximum resolved shear stress is coaxial with the maximum principal 
slip, and therefore only 2 components each of stress and relative displacement, one
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normal and one tangential, need to be considered. The compliance matrix then has 
only 4 nonzero components. For clarity let the 1 and 2 directions be denoted t and 
n for tangential and normal, respectively. The deformation of the intact rock between 
the joints is usually assumed to be an additive elastic component of the total rock-mass 
deformation. A slip condition that identifies states of stress for which slip occurs is also 
needed, along with some type of flow rule that governs slip in the plastic regime.

The experimental results for ground surfaces show that there is little elastic shear 
contribution from the joint, only nonrecoverable (plastic) relative shear displacement 
(slip). In contrast, a nonlinear elastic component predominates the plastic compo­
nent of the normal displacement. The above-mentioned type of constitutive model is 
convenient for computations, but from the viewpoint of an experimentalist, it lacks a 
complete description of known behavior. Therefore, to more adequately describe the 
observed response, it is necessary to explicitly introduce the slip condition into the 
stress-deformation law. To this end, it is useful to make an analogy with the devel­
opment of an elastic-plastic constitutive law for intact rock [Rice, 1975; Rudnicki and 
Rice, 1975]. The model developed below is not intended to supplant that being used in 
calculations, but rather to clearly define and identify what needs to be measured in the 
laboratory.

First, because both elastic and plastic joint deformations may occur, the displace­
ment increments should be decomposed as

where dSf and dS* are the tangential elastic and plastic increments, respectively. The 
normal displacement is

The plastic normal displacement is due to irreversible crushing of asperities and fric­
tional effects. The elastic components of displacements are related to the stresses by

where Ctet and C*n are the elastic shear and normal compliances, respectively. These 
are determined in elastic unloading cycles. The abbreviations at — t and an = o have 
also been introduced.

The plastic components of slip are related to stress as follows. Assume that the 
tangent to the slip condition at any normal stress is given by r = c + ii*o, where c is the 
stress-dependent cohesion and is the slope of the tangent. The elementary definition 
of the coefficient of friction is /a = tj/o. When the friction stress, tj, is zero at er = 0,

d8t = dbl + d8f , (2)

dSn = dS*+dSH. (3)

(4)
(5)
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fi* ~ /x for a —> 0. For the remainder of the paper, no distinction is made between /i* 
and fx because the data are nearly linear. In the stress-displacement diagram the inverse 
slope of the initial linear part is the elastic compliance Ctet. The plastic compliance, Cft, 
is such that the total compliance during slip hardening is Cu = C‘t + Cft. At constant 
normal stress, da = 0, and d8f = Cf( dr. Thus, when the stress state lies wholly within 
the slip condition, the elastic compliance describes the behavior; when the stress state 
lies on the slip condition, an added contribution to the displacement is given by the 
plastic compliance in conjunction with the quantity

dr — uda
{

<0,
>0,

elastic unloading 
slip with hardening . (6)

Normal joint displacements during shear are accounted for by introducing 0 = 
d6*/d6t, where /? is called the dilatancy factor. During slip, d6% = f3Cft(dT — fxda).

Substituting the expressions for stress into the displacement decomposition equa­
tions, 2 and 3, the constitutive equation reads

d6t = CttdT + Cft{dT - fida) (7)
d6n = j3Cft(dT - uda) + Cnn da . (8)

It is shown in the results section that Cft <C Cft. Contrary to the shear compliance, 
the normal compliance is mostly (nonlinear) elastic at stresses achieved in this study 
(about 6 MPa) such that C*n C£n [Olsson, 1987b].

The appropriate types of tests may be discerned from the constitutive law by rear­
ranging Equations 7 and 8 to

dSt = - fiCft da + (C* + Cft) dr
(9)

dSn = {-pCftfx + Cnn)da + (3Ctt dr ,

so that by holding a constant, for example, and varying r, one obtains C‘t, Cft, and /?.

The implications of Equation 9 can be understood by a term-by-term examination 
of the coefficients of the stresses on the right-hand side. The coefficient, fxC[t, gives 
the increment in slip, dSt, that results from an increment in a. It would evidently 
require a somewhat contrived surface geometry, such as a sawtooth shape with both 
surfaces having the same wavelength and slightly offset so that normal stress increments 
would cause a “downhill slide.” The direct effect of shear stress increments is given by 

+ As mentioned, evidence is presented later to show that Ctet « 0. Increments in
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normal stress are related to increments in normal displacement through —0CttiJ, + Cnn. 
The direct part, Cnn, is composed mostly of nonlinear elastic response with smaller 
contributions from plastic behavior at higher stress. The term admits the
possible occurrence of an additional normal closure increment caused by tangential slip. 
Finally, /?Cft is the dominant dilatancy coefficient. For smooth surfaces, this is likely to 
be negligible; it can be significant for rough surfaces.

Equation 9 suggests that there are 6 important coefficients (or functions) that need 
to be determined: /?, fi, Cft, Cft, Cfn, and C*n. This experimental program provided 
limited data on j3, which were reported earlier [O/sson, 1987b] and are not repeated 
here.

2 APPARATUS AND PROCEDURES

2.1 Test Machine

Tests were done in a rotary shear machine that consisted of a load frame containing 
a hydraulic rotary actuator in series with a hydraulic linear actuator. The maximum 
torque capacity was 7000 N-m and the maximum axial force was 900 kN. These actuators 
were independently servocontrolled by 410 function generators and 442 controllers from 
MTS Systems, Inc. Angle of rotation, axial load, and torque are calibrated yearly by 
MTS Systems, Inc.

In each test, the far-field twist angle, torque, and axial force were recorded by a 
data acquisition computer and stored on a floppy disk using software described by 
Holcomb and Jones [1983]. The data were transferred immediately to a mainframe 
computer where they are stored indefinitely for analysis and plotting. When analysis 
and reporting are completed, the data files are transferred to Sandia’s Integrated File 
Storage System.

2.2 Sample Preparation

The rock tested was densely welded Topopah Spring tuff collected from an outcrop 
at Busted Butte, near Yucca Mountain on the NTS.
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2.2.1 Shear Compliance Samples

Tuff samples began as short, hollow cylinders 44.45 mm long. Inner diameters were 
50.8 ± 0.13 mm and outer diameters were 88.9 ± 0.25 mm. Some of the samples were 
later remachined to lengths of 16.9 mm with inner diameters increased to 69.8 mm. 
This was done to study samples with a smaller wall-thickness-to-radius ratio. Samples 
that were used for basic friction studies were first glued to end pieces, either aluminum 
or steel, that could be bolted into the machine. Before mounting, the sample-endplate 
assembly was placed in a surface grinder and the surface of the sample was ground flat 
and parallel to the surface of the endplate. This procedure ensured that the joint would 
be perpendicular to the axis of rotation when mounted in the machine.

Samples to be studied for rough joint response were selected from precracked pieces 
described in the next section. These were already cemented to endplates as discussed 
below and were mounted in the rotary shear machine as they were after normal stiffness 
testing.

2.2.2 Normal Stiffness Samples

The original samples for normal stiffness testing were hollow cylinders 133.35 mm 
long with an 88.9 ± 0.25-mm outside diameter and a 50.8 ± 0.13-mm inside diameter. 
The ends were parallel to within 0.1 mm. Machined into the outside surface was a 
circumferential groove lying in a plane perpendicular to the cylinder axis. The groove 
was originally 1.6 mm wide and 3.175 mm deep with an approximately flat bottom. 
The groove dimensions and shape evolved through testing to the currently used depth 
of 6.35 mm with a V-shaped bottom having a radius of curvature of 0.127 mm. This 
change in depth and shape came about through attempts to create a fracture contained 
entirely within the machined groove. Metal endplates identical to those noted above 
were glued to the ends of the rock cylinder. Next, the endplate/rock/endplate assembly 
was mounted in the rotary shear machine and pulled in tension. After creating a fracture 
within the groove, the sample was ready for normal stiffness testing.

2.3 Test Procedures

2.3.1 Shear Compliance and Friction Stress

The relationship between friction stress and normal stress on the fracture was found 
by applying a known, constant, uniform normal stress to the fracture and then increasing
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the shear stress until sliding was established. In practice, the twist was increased until 
steady sliding conditions were achieved as evidenced by an essentially constant torque. 
Then, the torque was reduced to zero, and subsequently the normal stress was reduced 
to zero. Next, the sample was repositioned before the normal stress was increased to 
some new value and sliding was again established. This procedure was repeated several 
times.

2.3.2 Normal Stiffness

After introducing a tensile fracture in the rotary shear machine, the sample was 
removed to a standard compression frame where a hemispherical loading seat allowed 
the fracture surface to be in approximately uniform contact initially. Following the 
stress-closure test in a standard load frame, the sample was returned to the rotary 
shear machine where the shear response of this rough surface was measured.

The sample had strain gauges mounted on the inside and outside cylindrical surfaces 
at the ends of two orthogonal diameters. In addition, a linear variable displacement 
transducer (LVDT) measured total displacement from endcap to endcap. The sample 
was loaded in compression several times, both with the opposing fracture surfaces mated 
and unmated. Strains, displacement, and load were recorded continuously throughout 
the test.

3 DATA REDUCTION

3.1 Friction Stress

The friction stress, r/, is the shear stress, resolved into the plane of the fracture, 
that is needed for slip. There are two ways to calculate this value from the torque. The 
first uses the torque at the onset of slip. In the preslip, elastic range, the relationship 
between the tangential shear stress and the applied torque in the joint plane is found 
from elasticity theory [e.g., Timoshenko and Goodier, 1970]. If the torque at first slip 
is denoted To, the maximum shear stress denoted r0, and the radial coordinate denoted 
R0, then

RqTq

where J = (f)(-Ro — Rf) i® the polar moment for an annulus of inner and outer radii 
Ri and R0, respectively. The maximum elastic shear stress is also the friction stress, 
t0 = Tf, at the outer edge of the fracture.
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After establishing steady sliding, that is, when the torque is nominally independent 
from the rotation, the torque-stress relation has the same form as for a fully yielded 
plastic tube [Smith and Sidcbottom, 1969]; that is, the friction stress, tj, is found from

T/ 2jt(J2* - i?f) ’
3T/,

(11)

where the subscript fs denotes “fully sliding.” The underlying assumption in deriving 
Equation 11 is that a material element has a flat-topped stress-displacement diagram 
in direct shear, analogous to the perfect elastic-plastic assumption in the torsion of 
elastic-plastic tubes.

For an ideal, uniform frictional resistance, the values of tj calculated from T0 and 
Tft are identical. Further, the ratio of the fully sliding torque, T/s, to the torque at the 
onset of sliding, T0, is found to be

where X = Ri/R0 and 0 < A < 1. Thus, for a solid cylinder, A = 0 and Tfs/T0 = 4/3; for 
an increasingly thinner wall, A —► 1 and Tfs —► T0. Equation 12 is useful for estimating 
the variation in friction stress over a given test surface. This is because Tj, is a measure 
of the average friction stress over the entire test surface and is relatively insensitive to 
localized extrema. On the other hand, T0 is a function of the friction stress over a very 
thin annulus and, therefore, is more strongly influenced by localized fluctuations in the 
friction stress. Thus, departure of T0 from its value calculated from Tf, is a measure 
of the minimum friction stress occurring in the outermost annulus of the test surface. 
Therefore, the difference Tft — T0 is & measure of the range in friction stress on the test 
surface. This type of measure was also noted for plane strain joint deformation [Olsson, 
1984].

T0 is a measure of the shear stress at the onset of sliding rather than the steady-state 
sliding value computed from T/,. It should be noted that the coefficient of friction, fj,, 
calculated from Tft corresponds to the conventional value.

3.2 Compliances

It is important to isolate that part of the measured response that is due to the 
presence of the joint. There are several methods suitable for measuring the compliance 
of a joint:

(12)
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1. Subtract the intact rock compliance from the total compliance to obtain Clt. If 
it can be verified that the joint contributes negligible elastic contribution to the 
total deformation (t'.e., C*t = 0), then it can be assumed that the compliance of 
the elastic unloading line on a plot of torque versus twist angle is the sum of the 
machine compliance and the intact rock compliance.

2. Measure the compliance of a sample of intact rock. Introduce a fracture into 
this sample and repeat the compliance measurement. Subtract the displacements 
found in the two tests; the result is displacement as a result of the compliance of 
the joint. This method automatically removes any contribution to displacement 
of intact rock and machine compliances.

3. Measure the total displacement of a specimen already containing a fracture over 
a gauge length that includes the joint. Also, measure the strain of the intact part 
of the sample. Then, compute the elastic contribution to the overall displacement 
using strain x gauge-length. Subtract the elastic component to get the component 
resulting from the joint alone.

4. Measure displacement across the joint as in Method 3, but use the modulus deter­
mined in separate experiments to compute intact rock deformation [.Rosso, 1976]. 
This is a less accurate version of Method 3.

The compliance data reported below were obtained by the first method after veri­
fying, by measuring slip directly, that the slip was plastic. This was demonstrated by 
Olsson [1987b]. The compliance of the rough joint was also determined by the inverse 
of Method 2; that is, after the tensile fracture was formed, the shear test was done (Fig­
ures 12 and 13). Then, the fracture was cleaned and pressed together with the opposite 
sides fitted together. When twisted such that response remained in the preslip, linear 
range (Figure 14), the combined compliance of the rock cylinder plus the machine was 
obtained. This method, though not recommended, gave results identical to Method 1.

4 DISCUSSION OF RESULTS

Table 1 lists all experiments along with the sample number and the principal objec­
tive of each test. The figures are organized to show shear compliance, Cft, in Figures 
1-20; a slip condition in Figure 21; normal compliance, Cnn, in Figures 22-25; the ef­
fects of large displacement, hereinafter referred to as “run-in” in Figures 26-32; the 
effects of normal stress and normal stress history in Figures 33-81; and the effects of 
slip velocity in Figures 82-89. Table 1 also notes whether the experiment was discussed 
in the previous report [O/sson, 1987b].
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4.1 Shear Compliance,

Figures 1-21 show experiments that were run to measure Cft. Each figure contains 
four plots: torque against angle showing the total test; for the loading phase only, shear 
stress against slip; compliance, Cft, against shear stress; and a plot of the logarithm of 
shear stress against the logarithm of slip.

The onset of nonlinearity of the torque-angle relation on loading marks the beginning 
of slip. This has been shown to be, for practical purposes, identical to the establishment 
of fully slipping conditions [O/sson, 1987b]. Thus, Equation 11 was used to compute 
shear stress from torque. The slope of the linear portion of the first unloading line was 
used to compute the combined deformation of the machine and intact rock. This was 
subtracted from the measured angular displacement. Then, the circumference of the 
sample was used to calculate the maximum slip (referred to below as the slip) from the 
angle of rotation.

4.2 Slip Condition

For the current data set, the slip condition is adequately characterized by r = iio. 
For some circumstances, n shows some weak dependence on a. Figure 21 shows the 
values of friction stress computed from Equations 10 and 11 for Sample 16C-CC/16B- 
BB tested in several different runs. The triangles represent the onset of slip and the 
circles represent the maximum observed friction. The solid line is a linear regression 
to the maximum friction values that gives n = 0.609, representative of the ordinarily 
stated coefficient. The other two lines were drawn by eye and indicate the upper and 
lower bounds of the friction coefficient, possibly more usable numbers.

4.3 Normal Compliance, Cnn

Figures 22-24 show the results of normal compliance tests on a mated laboratory- 
induced tensile fracture in Sample 16D. Data for the same fracture in the unmated 
condition is shown in Figure 25. A much more compliant response was observed for the 
unmated fracture.
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4.4 Run-in

Run-in refers to the process of sliding the test surface until the stress becomes 
approximately constant. This usually took the form of successive torque-slip loops, 
with the accumulating gouge cleaned off the surfaces between loops. Typically, the 
friction increases with increasing total slip up to some definite value. Figures 26 and 27 
show run-in data for a sample that had been ground only, not sandblasted. After about 
16 mm of slip, friction achieves a steady value.

For a different sample, Figures 28-30 show that friction does not reach a steady value 
at all. Figure 31, for a sample that was ground before rather than after mounting to 
the endplates, shows the response for a surface that is probably not in uniform contact. 
In contrast, Figure 32 shows the response of a sample that was ground after mounting, 
which was the usual routine, and then lightly sandblasted to remove the sheen from the 
surface.

4.5 Normal Stress History

It is general knowledge that the friction stress is a strong function of the normal 
stress. However, it has recently been shown that friction stress is a functional of normal 
stress; that is, the friction stress can depend on the history of the normal stress. One 
difference between history independence and history dependence can be seen by con­
sidering the result of running a standard friction experiment with initially constant a. 
After establishing steady sliding conditions with constant friction stress, a is suddenly 
incremented. If Tf remains exactly proportional to a then, r is a direct function of a 
and does not depend on the history of a. If, however, there is a transient change in Tf, 
with a gradual approach to some new value, then Tf depends on the history of a.

The coefficient of friction, /z, is a sensitive indicator of the normal stress history 
effect and, therefore, all plots (Figures 33-81) of experiments on this effect are given as 
H versus slip.

4.6 Slip Velocity

Figures 82-89 show the effects of changes in slip velocity. The data were analyzed 
and discussed by Olsson [1987b].
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5 CONCLUSIONS

The analysis of the data indicates several conclusions that were stated by Olsson 
[1987b] and are reiterated here with some additions:

1. The coefficient of friction can vary from an initial value of about 0.3 to a steady- 
state value of about 0.8. This range can be found on an individual clean, smooth 
surface and appears to be related to initial conditions of surface preparation.

2. The elastic, preslip, shear stiffness of smooth and rough joints was found to be 
infinite when measured and calculated correctly.

3. All displacement attributable to slippage on the joint is plastic, that is, nonrecov­
erable.

4. The shear compliance varies smoothly from zero at the onset of slip to infinity 
when sliding is established. There is an approximately linear relation between log 
Tf and log St.

5. The normal joint stiffness is consistent with results in the literature in that it is 
a continuously increasing function of normal stress. The normal closure displace­
ment is composed of elastic (recoverable), plastic (non-recoverable), and frictional 
(recoverable but hysteretic) components.

6. Shear strength decreases by about 5% for each decade increase in slip velocity.

7. The effect of a sudden change in slip velocity can be interpreted in terms of 
hereditary integral or internal state variable descriptions.

8. There may exist a critical velocity. Below the critical velocity, a sudden increase in 
velocity causes an instantaneous increase in strength, which then decays gradually 
to a new, lower value. Above the critical velocity, there is no instantaneous increase 
in strength following a jump in velocity—just a smooth decrease.

9. The strength of the joint may increase with time of stationary contact.

10. Transient behavior in n is observed after sudden changes in o; that is, the coeffi­
cient of friction depends on the history of normal stress.

11. The stress-path to the slip condition has a measurable effect on the observed 
strength, thus indicating caution in the application of data from triaxial tests run 
at constant confining pressure.
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12. True slip-weakening for initially smooth surfaces may have been found in Topopah 
Spring tuff. This response is usually masked by inhomogeneous resistive stresses.

13. For the low normal stresses used in this study, the torque-twist curve appears 
to be a direct measure of the shear compliance of a joint; that is, there is no 
significant contribution from the radial growth of the slip zone. Thus, the rotary 
shear results should be directly comparable to those from other tests, such as 
direct shear and triaxial, insofar as these data are collected from similar stress 
and velocity histories.
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Table 1. Experimental conditions.

TEST ID SAMPLE ID TEST TYPE NOMINAL a 

(MPA)
SAND86-0177 COMMENTS

RFT001 16B-AA/16B-CC COMPLIANCE, C« 5 - GROUND, SANDBLASTED
RFT002 15C-CC/16C-CC 5 - GROUND, SANDBLASTED
RFT003 » » 5 -

RFT004 16B-BB / 16C-CC » 5 - GROUND, SANDBLASTED
RFT005 » 7) 5 -

RFT006 » V 5 - BAD DISPLACEMENT DATA
RFT007 » J9 5 -

RFT008 n V 2 -

RFT009 7! n 4 -

RFT010 7> 79 6 -

RFT011 » 77 4 -
RFT012 » 79 2 -

NST005 16D COMPLIANCE, O'™ 0-5 - MATED TENSILE FRACTURE
NST006 n » 0-3 - 79

NST007 w » 0-9 V
79

NST008 » 0-6
y/

UNMATED TENSILE FRACTURE
RFT013 COMPLIANCE, 2

>/

79

RFT014 » » 2 -
79

RFT015 79 2 - DATA LOST
RFT016 » 79 2 - MATED TENSILE FRACTURE
RFT017 16B-BB/16C-CC 79 2 - GROUND, SANDBLASTED
RFT018 » 79 4 -

RFT019 Ji 79 6 -

RFT020 » 79 4 -

RFT021 79 2 -

RFT022 » 79 6 -

RFT023 n STRESS HISTORY 2,4,6,4,2 -

RFT024 n 79 4,6 -

RFT025 » 79 4,6,4 -

RFT026 » 79 4,6
y/

RFT027 » 79 6,4,6 -

RFT028 n SLIDING VELOCITY 6 V
RFT029 » STRESS HISTORY 3,5,3,5 TORQUE CYCLED
RFT030 » 79 3 V TORQUE CYCLED



Table 1. Experimental conditions (continued).

TEST ID SAMPLE ID TEST TYPE NOMINAL a 
(MPA)

SAND86-0177 COMMENTS

RFT031 16B-BB/16C-CC STRESS HISTORY 3,4.5 - TORQUE CYCLED
RFT032 y> 9 DUAL RAMP -

RFT033 » 9 2.93,3.31 - a STEPPED
RFT034 » COMPLIANCE, Ctt 3.8 -

RFT035 » STRESS HISTORY 3.2,4.8,3.6 -

RFT036 » 9 3.1,3.5 - tr STEPPED
RFT037 » 9 3.95,4.1 - a STEPPED
RFT038 » SLIDING VELOCITY 5 -

RFT039 » STRESS HISTORY 5, 5.5 -

RFT040 » 9 4,4.5 - ALTERNATING a STEPS
RFT041 V 9 DUAL RAMP -

RFT042 y» 9 9
-

RFT043 9 SLIDING VELOCITY 5 V
RFT044 9 STRESS HISTORY 3.9, 4.7 - a STEPPED
RFT045 9 9 DUAL RAMP -

RFT046 9 9 9
V

RFT047 9 9 9 V
RFT048 9 9 9

-

RFT049 9 9 9
-

RFT050 9 9 9
-

RFT051 9 9 9 - 16B-BB CRACKED
RFT052 16B-AA/16C-CC 9 9

- GROUND
RFT053 9 9 9

-

RFT054 9 SLIDING VELOCITY 5 - UNSTEADY LOAD
RFT055 9 STRESS HISTORY 5, 5.5 - a STEPPED
RFT056 9 9 1,2,3,4,5,6 y/

tr STEPPED
RFT057 9 9 5 - a STEPPED, UNSTABLE
RFT058 9 RUN-IN 5 y/

RFT059 9 * 2,4,6,4
y/

RFT060 9 STRESS HISTORY 1,2,3,2,1 - £7 STEPPED



Table 1. Experimental conditions (concluded).

TEST ID SAMPLE ID TEST TYPE NOMINAL a 
(MPA)

SAND86-0177 COMMENTS

RFT061 16B-AA/16C-CC STRESS HISTORY 2,4,6,5,4,3,2,1 - a STEPPED
RFT062 » It 2,3,4,5,6,5,4,3,2,1 V a STEPPED
RFT063 n Jt DUAL RAMP V
RFT064 7i Ji 3.4, 4 V a STEPPED
RFT065 7> n 3.4,4 V <r STEPPED
RFT066 16C-AA/16C-AA1 1,2 - 16C-AA CUT INTO TWO, GROUND
RFT067 » RUN-IN 4 -

RFT068 4 -

RFT069 2,4,5 - ONE HALF BROKE
RFT070 16C-AA2/16B-AA RUN-IN 4 - NOT GROUND AFTER MOUNTING
RFT071 STRESS HISTORY 3.8 -

9

RFT072 16C-A A2 / 16C-CC RUN-IN 4.5 - GROUND, SANDBLASTED
RFT073 » STRESS HISTORY 1,2,3,4,5,6,5,4,3,2,1 - a STEPPED
RFT074 » Jl 1.5,2.6 - a STEPPED
RFT075 » 3.4, 4.5 -

9

RFT076 » » 1.5, 2.5 -
9

RFT077 » 9 1.4, 2.4 V 9

RFT078 » 9 DUAL RAMP V 9

RFT079 » 9 DUAL RAMP y/ 9

RFT080 16C-AA/16C-CC 9 3.5, 4.5 - <7 STEPPED, GROUND , SANDBLASTED
RFT081 It 9 3.3 - UNSTABLE LOAD
RFT082 9 3.3, 4.4 - a STEPPED, 16C-CC BROKE
RFT083 16C-AA/16C-AA SLIDING VELOCITY 1.5 - a STEPPED
RFT084 9 5 -
RFT085 It 9 5 - UNSTABLE
RFT086 16C-A A / 16C-BB 9 5 - UNSTABLE
RFT087 » 9 5 - DATA LOST
RFT088 » 9 ? - DATA LOST
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Figure 1: Experiment RFT001, shear compliance test.
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Figure 11: Experiment RFT012, shear compliance test.
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Figure 12: Experiment RFT013, shear compliance test.
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Figure 14: Experiment RFT016, rough surface, mated, shear compliance test.
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Figure 18: Experiment RFT020, shear compliance test.
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Figure 20: Experiment RFT022, shear compliance test.
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Figure 21: Slip condition for Sample 16C-CC/16B-BB.
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Figure 22: Experiment NST005, normal closure test on mated, rough joint.
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Figure 23: Experiment NST006, normal closure test on mated, rough joint.
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Figure 24: Experiment NST007, normal closure test on mated, rough joint.
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Figure 25: Experiment NST008, normal closure test on unmated, rough joint.
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Figure 26: Experiment RFT058, run-in test.
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Figure 27: Experiment RFT059, run-in test.
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Figure 28: Experiment RFT067, run-in test.
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Figure 29: Experiment RFT068, run-in test.
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Figure 30: Experiment RFT069, run-in test.
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Figure 31: Experiment RFT070, run-in test.
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Figure 32: Experiment RFT072, run-in test.
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Figure 33: Experiment RFT023, normal stress-history test.
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Figure 34: Experiment RFT024, normal stress-history test.
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Figure 35: Experiment RFT025, normal stress-history test.
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Figure 36: Experiment RFT026, normal stress-history test.
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Figure 37: Experiment RFT027, normal stress-history test.
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Figure 38: Experiment RFT029, normal stress-history test.
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Figure 39: Experiment RFT030, normal stress-history test
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Figure 40: Experiment RFT031, normal stress-history test.
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Figure 41: Experiment RFT032, normal stress-history test.
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Figure 42: Experiment RFT033, normal stress-history test.
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Figure 43: Experiment RFT034, normal stress-history test.
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Figure 44: Experiment RFT035, normal stress-history test.
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Figure 45: Experiment RFT036, normal stress-history test.
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Figure 46: Experiment RFT037, normal stress-history test.
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Figure 47: Experiment RFT039 normal stress-history test.
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Figure 48: Experiment RFT040, normal stress-history test.
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Figure 49: Experiment RFT041, normal stress-history test.
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Figure 50: Experiment RFT042, normal stress-history test.
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Figure 51: Experiment RFT044, normal stress-history test.
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Figure 52: Experiment RFT045, normal stress-history test.
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Figure 53: Experiment RFT046> normal stress-history test.
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Figure 54: Experiment RFT047, normal stress-history test.
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Figure 55: Experiment RFT048, normal stress-history test.
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Figure 56: Experiment RFT049, normal stress-history test.
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Figure 57: Experiment RFT050, normal stress-history test.
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Figure 58: Experiment RFT051, normal stress-history test.
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Figure 59: Experiment RFT052, normal stress-history test.
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Figure 60: Experiment RFX053, normal stress-history test.
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Figure 61: Experiment RFT055, normal stress-history test.
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Figure 62: Experiment RFT056, normal stress-history test.
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Figure 63: Experiment RFT057, normal stress-history test.
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Figure 64: Experiment RFT060, normal stress-history test.
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Figure 65: Experiment RFT061, normal stress-history test.
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Figure 66: Experiment RFT062, normal stress-history test.
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Figure 67: Experiment RFT063, normal stress-history test.
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Figure 68: Experiment RFT064, normal stress-history test.
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Figure 69: Experiment RFT065, normal stress-history test.
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Figure 70: Experiment RFT066, normal stress-history test.
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Figure 71: Experiment RFT071, normal stress-history test.
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Figure 72: Experiment RFT073, normal stress-history test.
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Figure 73: Experiment RFT074, normal stress-history test.
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Figure 74: Experiment RFT075, normal stress-history test.
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Figure 75: Experiment RFT076, normal stress-history test.



^.0^0

ANGLE (deg)

Figure 76: Experiment RFT077, normal stress-history test.
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Figure 77: Experiment RFT078, normal stress-history test.
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Figure 78: Experiment RFT079, normal stress-history test.
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Figure 79: Experiment RFT080, normal stress-history test.
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Figure 80; Experiment RFT081, normal stress-history test.
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Figure 81: Experiment RFT082, normal stress-history test.
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Figure 82: Experiment RFT028, velocity-history test.
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Figure 83: Experiment RFT038, velocity-history test.
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Figure 84: Experiment RFT043, velocity-history test.
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Figure 85: Experiment RFT054, velocity-history test.
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Figure 86: Experiment RFT083, velocity-history test.
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Figure 87: Experiment RFT084, velocity-history test.
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Figure 88: Experiment RFT085, velocity-history test.
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Figure 89: Experiment RFT086, velocity-history test.
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