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ABSTRACT

This report establishes the data base for an experimental program to determine the
compliance and friction stress of dry sawcuts in Topopah Spring tuff. Friction stresses
and compliances of a rough joint are also included. For constant normal stress tests, the
friction stress is approximately proportional to the normal stress over the normal stress
range of 1 to 6 MPa. The proportionality constant (coefficient of friction), computed
from the maximum friction stress at any normal stress, is sensitive to initial surface
state and any nonuniformity in normal stress as a result of inexact alignment. This

sensitivity to initial conditions raises the question of how best to acquire meaningful
data from real joints.
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The data presented in this report was collected prior to the implementation of the
Project Quality Assurance (QA) Plan at Sandia National Laboratories and, therefore,
the QA Level of the data collection process is “TBD”. The report itself, however, was
prepared under a QA Level 3 Activity within WBS element 1.2.4.2.1.3.
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1 INTRODUCTION

Capabilities for predicting the response of rock masses to thermomechanical loadings
are being developed under the Yucca Mountain Project (YMP) for the design of an
underground nuclear waste repository at Yucca Mountain on the Nevada Test Site
(NTS). An important ingredient in the computer codes being used is the constitutive
description of the mechanical discontinuities (mostly joints, but also bedding planes
and faults). This report summarizes preliminary laboratory experimental data on the
compliance and the friction stress of artificial joints in Topopah Spring tuff in the air-
dry, room-temperature condition. Also, data for a laboratory-induced, clean tensile
fracture are given.

Details of the analysis of the results are discussed in earlier reports [ Olsson, 1987a,b).
Therefore, the reader is urged to judiciously use data in this report, consulting the earlier
documents when necessary. This report is primarily a catalogue of experiments and a
summary of results; hence, little further analysis is given.

Because of the exploratory nature of the investigation, a systematic data base was
not developed for the variables (such as sliding velocity, amount of slip, and normal
stress history) studied. The results suggest guidelines for further, more systematic,
experimentation on fracture properties.

It is critical to clearly understand the nature of the data and their implication;
therefore, in the next section the constitutive relations for a joint are defined and the
methods for their determination are explained.

1.1 Constitutive Relations

Joint constitutive models are usually based on a displacement decomposition that
separates recoverable (elastic) from nonrecoverable (plastic) slip. This leads to the
supposition of a stiffness matrix [Goodman and Duboss, 1972; Thomas, 1982; Plesha,
1985; Chen, 1986] or its inverse, the compliance matrix [Sun et al., 1985]. It is assumed
that there exists a 3 X 1 matrix of relative elastic displacements, §;, one normal and two
tangential components, caused only by the joint such that

5,' = C,‘jO’j N (1)

where C;; is a 3 X 3 matrix of compliances, and o; is the 3 X 1 matrix of stress. In the
experiments the maximum resolved shear stress is coaxial with the maximum principal
slip, and therefore only 2 components each of stress and relative displacement, one
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normal and one tangential, need to be considered. The compliance matrix then has
only 4 nonzero components. For clarity let the 1 and 2 directions be denoted t and
n for tangential and normal, respectively. The deformation of the intact rock between
the joints is usually assumed to be an additive elastic component of the total rock-mass
deformation. A slip condition that identifies states of stress for which slip occurs is also
needed, along with some type of flow rule that governs slip in the plastic regime.

The experimental results for ground surfaces show that there is little elastic shear
contribution from the joint, only nonrecoverable (plastic) relative shear displacement
(slip). In contrast, a nonlinear elastic component predominates the plastic compo-
nent of the normal displacement. The above-mentioned type of constitutive model is
convenient for computations, but from the viewpoint of an experimentalist, it lacks a
complete description of known behavior. Therefore, to more adequately describe the
observed response, it is necessary to explicitly introduce the slip condition into the
stress-deformation law. To this end, it is useful to make an analogy with the devel-
opment of an elastic-plastic constitutive law for intact rock [Rice, 1975; Rudnicki and
Rice, 1975]. The model developed below is not intended to supplant that being used in
calculations, but rather to clearly define and identify what needs to be measured in the
laboratory.

First, because both elastic and plastic joint deformations may occur, the displace-
ment increments should be decomposed as

dé, = db; + db? 2)

where d6; and dé; are the tangential elastic and plastic increments, respectively. The
normal displacement is

db, = db% + dé? . (3)

The plastic normal displacement is due to irreversible crushing of asperities and fric-
tional effects. The elastic components of displacements are related to the stresses by

dé; = Cgdr (4)
dé; = C;,do, (5)

where C}, and C;, are the elastic shear and normal compliances, respectively. These
are determined in elastic unloading cycles. The abbreviations o; = r and 0, = ¢ have
also been introduced.

The plastic components of slip are related to stress as follows. Assume that the
tangent to the slip condition at any normal stress is given by 7 = ¢+ u*o, where ¢ is the
stress-dependent cohesion and u* is the slope of the tangent. The elementary definition
of the coefficient of friction is 4 = 74/0. When the friction stress, 7y, is zero at ¢ =0,
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u* ~ p for 0 — 0. For the remainder of the paper, no distinction is made between u*
and u because the data are nearly linear. In the stress-displacement diagram the inverse
slope of the initial linear part is the elastic compliance Cf,. The plastic compliance, C¥,,
is such that the total compliance during slip hardening is Cy, = Cf, + C},. At constant
normal stress, do = 0, and dé = CJ; dr. Thus, when the stress state lies wholly within
the slip condition, the elastic compliance describes the behavior; when the stress state
lies on the slip condition, an added contribution to the displacement is given by the
plastic compliance in conjunction with the quantity

<0, elastic unloading
> 0, slip with hardening .

dr — udo { (6)

Normal joint displacements during shear are accounted for by introducing 8 =
d6? /d6f, where f is called the dilatancy factor. During slip, d6% = BCY,(dr — udo).

Substituting the expressions for stress into the displacement decomposition equa-
tions, 2 and 3, the constitutive equation reads

dés = Cydr+ Ch(dr — pdo) (7
d§, = BCL(dr — pdo) + Condo . (8)

It is shown in the results section that Cf, < C},. Contrary to the shear compliance,
the normal compliance is mostly (nonlinear) elastic at stresses achieved in this study
(about 6 MPa) such that C¢, > CP_ [Olsson, 1987b].

The appropriate types of tests may be discerned from the constitutive law by rear-
ranging Equations 7 and 8 to

dé, = — uCh do + (Cf+ CF)dr

(9)
dé, = (—BCHu+ Crn) do + BCE dr ,

so that by holding o constant, for example, and varying 7, one obtains Cf,, Cf, and g.

The implications of Equation 9 can be understood by a term-by-term examination
of the coefficients of the stresses on the right-hand side. The coefficient, uC%, gives
the increment in slip, dé;, that results from an increment in o. It would evidently
require a somewhat contrived surface geometry, such as a sawtooth shape with both
surfaces having the same wavelength and slightly offset so that normal stress increments
would cause a “downhill slide.” The direct effect of shear stress increments is given by
(C&+CH). As mentioned, evidence is presented later to show that Cf ~ 0. Increments in
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normal stress are related to increments in normal displacement through —8CHu + Cpa.
The direct part, Cp,, is composed mostly of nonlinear elastic response with smaller
contributions from plastic behavior at higher stress. The term —ACHu admits the
possible occurrence of an additional normal closure increment caused by tangential slip.
Finally, BC}; is the dominant dilatancy coefficient. For smooth surfaces, this is likely to
be negligible; it can be significant for rough surfaces.

Equation 9 suggests that there are 6 important coefficients (or functions) that need
to be determined: 3, u, C}, C§, CE,., and C;,. This experimental program provided
limited data on 8, which were reported earlier [Olsson, 1987b] and are not repeated
here.

2 APPARATUS AND PROCEDURES

2.1 Test Machine

Tests were done in a rotary shear machine that consisted of a load frame containing
a hydraulic rotary actuator in series with a hydraulic linear actuator. The maximum
torque capacity was 7000 N-m and the maximum axial force was 900 kN. These actuators
were independently servocontrolled by 410 function generators and 442 controllers from
MTS Systems, Inc. Angle of rotation, axial load, and torque are calibrated yearly by
MTS Systems, Inc.

In each test, the far-field twist angle, torque, and axial force were recorded by a
data acquisition computer and stored on a floppy disk using software described by
Holcomb and Jones [1983]. The data were transferred immediately to a mainframe
computer where they are stored indefinitely for analysis and plotting. When analysis
and reporting are completed, the data files are transferred to Sandia’s Integrated File
Storage System.

2.2 Sample Preparation

The rock tested was densely welded Topopah Spring tuff collected from an outcrop
at Busted Butte, near Yucca Mountain on the NTS.
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2.2.1 Shear Compliance Samples

Tuff samples began as short, hollow cylinders 44.45 mm long. Inner diameters were
50.8 + 0.13 mm and outer diameters were 88.9 + 0.25 mm. Some of the samples were
later remachined to lengths of 16.9 mm with inner diameters increased to 69.8 mm.
This was done to study samples with a smaller wall-thickness-to-radius ratio. Samples
that were used for basic friction studies were first glued to end pieces, either aluminum
or steel, that could be bolted into the machine. Before mounting, the sample-endplate
assembly was placed in a surface grinder and the surface of the sample was ground flat
and parallel to the surface of the endplate. This procedure ensured that the joint would
be perpendicular to the axis of rotation when mounted in the machine.

Samples to be studied for rough joint response were selected from precracked pieces
described in the next section. These were already cemented to endplates as discussed
below and were mounted in the rotary shear machine as they were after normal stiffness
testing.

2.2.2 Normal Stiffness Samples

The original samples for normal stiffness testing were hollow cylinders 133.35 mm
long with an 88.9 + 0.25-mm outside diameter and a 50.8 + 0.13-mm inside diameter.
The ends were parallel to within 0.1 mm. Machined into the outside surface was a
circumferential groove lying in a plane perpendicular to the cylinder axis. The groove
was originally 1.6 mm wide and 3.175 mm deep with an approximately flat bottom.
The groove dimensions and shape evolved through testing to the currently used depth
of 6.35 mm with a V-shaped bottom having a radius of curvature of 0.127 mm. This
change in depth and shape came about through attempts to create a fracture contained
entirely within the machined groove. Metal endplates identical to those noted above
were glued to the ends of the rock cylinder. Next, the endplate/rock/endplate assembly
was mounted in the rotary shear machine and pulled in tension. After creating a fracture
within the groove, the sample was ready for normal stiffness testing.

2.3 Test Procedures
2.3.1 Shear Compliance and Friction Stress

The relationship between friction stress and normal stress on the fracture was found
by applying a known, constant, uniform normal stress to the fracture and then increasing
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the shear stress until sliding was established. In practice, the twist was increased until
steady sliding conditions were achieved as evidenced by an essentially constant torque.
Then, the torque was reduced to zero, and subsequently the normal stress was reduced
to zero. Next, the sample was repositioned before the normal stress was increased to
some new value and sliding was again established. This procedure was repeated several
times.

2.3.2 Normal Stiffness

After introducing a tensile fracture in the rotary shear machine, the sample was
removed to a standard compression frame where a hemispherical loading seat allowed
the fracture surface to be in approximately uniform contact initially. Following the
stress-closure test in a standard load frame, the sample was returned to the rotary
shear machine where the shear response of this rough surface was measured.

The sample had strain gauges mounted on the inside and outside cylindrical surfaces
at the ends of two orthogonal diameters. In addition, a linear variable displacement
transducer (LVDT) measured total displacement from endcap to endcap. The sample
was loaded in compression several times, both with the opposing fracture surfaces mated
and unmated. Strains, displacement, and load were recorded continuously throughout
the test.

3 DATA REDUCTION

3.1 Friction Stress

The friction stress, 77, is the shear stress, resolved into the plane of the fracture,
that is needed for slip. There are two ways to calculate this value from the torque. The
first uses the torque at the onset of slip. In the preslip, elastic range, the relationship
between the tangential shear stress and the applied torque in the joint plane is found
from elasticity theory [e.g., Timoshenko and Goodier, 1970]. If the torque at first slip

is denoted T, the maximum shear stress denoted 7,, and the radial coordinate denoted

R,, then

RaTO
J b

where J = (5)(R: — R{) is the polar moment for an annulus of inner and outer radii

R; and R,, respectively. The maximum elastic shear stress is also the friction stress,

7o = Tf, at the outer edge of the fracture.

To =

(10)




After establishing steady sliding, that is, when the torque is nominally independent
from the rotation, the torque-stress relation has the same form as for a fully yielded
plastic tube [Smith and Sidebottom, 1969]; that is, the friction stress, 7y, is found from

3T},
= —— 1
= 2R - RY)’ (11)

where the subscript fs denotes “fully sliding.” The underlying assumption in deriving
Equation 11 is that a material element has a flat-topped stress-displacement diagram
in direct shear, analogous to the perfect elastic-plastic assumption in the torsion of
elastic-plastic tubes.

For an ideal, uniform frictional resistance, the values of 7; calculated from T, and
Ty, are identical. Further, the ratio of the fully sliding torque, TY,, to the torque at the
onset of sliding, T,, is found to be

Trs 4 (1-X8
T, 25(1—,\4> ’ (12)

where A = R;/R, and 0 < A < 1. Thus, for a solid cylinder, A = 0 and Ty,/T, = 4/3; for
an increasingly thinner wall, A — 1 and Ty, — T,. Equation 12 is useful for estimating
the variation in friction stress over a given test surface. This is because T}, is a measure
of the average friction stress over the entire test surface and is relatively insensitive to
localized extrema. On the other hand, T, is a function of the friction stress over a very
thin annulus and, therefore, is more strongly influenced by localized fluctuations in the
friction stress. Thus, departure of T, from its value calculated from Ty, is a measure
of the minimum friction stress occurring in the outermost annulus of the test surface.
Therefore, the difference Ty, — T, is a measure of the range in friction stress on the test

surface. This type of measure was also noted for plane strain joint deformation [Olsson,
1984].

T, is a measure of the shear stress at the onset of sliding rather than the steady-state
sliding value computed from Ty,. It should be noted that the coefficient of friction, u,
calculated from Ty, corresponds to the conventional value.

3.2 Compliances

It is important to isolate that part of the measured response that is due to the
presence of the joint. There are several methods suitable for measuring the compliance
of a joint:



1. Subtract the intact rock compliance from the total compliance to obtain Cf;. If
it can be verified that the joint contributes negligible elastic contribution to the
total deformation (s.e., Cf, = 0), then it can be assumed that the compliance of
the elastic unloading line on a plot of torque versus twist angle is the sum of the
machine compliance and the intact rock compliance.

2. Measure the compliance of a sample of intact rock. Introduce a fracture into
this sample and repeat the compliance measurement. Subtract the displacements
found in the two tests; the result is displacement as a result of the compliance of
the joint. This method automatically removes any contribution to displacement
of intact rock and machine compliances.

3. Measure the total displacement of a specimen already containing a fracture over
a gauge length that includes the joint. Also, measure the strain of the intact part
of the sample. Then, compute the elastic contribution to the overall displacement
using strain xgauge-length. Subtract the elastic component to get the component
resulting from the joint alone.

4. Measure displacement across the joint as in Method 3, but use the modulus deter-
mined in separate experiments to compute intact rock deformation [Rosso, 1976].
This is a less accurate version of Method 3.

The compliance data reported below were obtained by the first method after veri-
fying, by measuring slip directly, that the slip was plastic. This was demonstrated by
Olsson [1987b]. The compliance of the rough joint was also determined by the inverse
of Method 2; that is, after the tensile fracture was formed, the shear test was done (Fig-
ures 12 and 13). Then, the fracture was cleaned and pressed together with the opposite
sides fitted together. When twisted such that response remained in the preslip, linear
range (Figure 14), the combined compliance of the rock cylinder plus the machine was
obtained. This method, though not recommended, gave results identical to Method 1.

4 DISCUSSION OF RESULTS

Table 1 lists all experiments along with the sample number and the principal objec-
tive of each test. The figures are organized to show shear compliance, C};, in Figures
1-20; a slip condition in Figure 21; normal compliance, C,,,, in Figures 22-25; the ef-
fects of large displacement, hereinafter referred to as “run-in” in Figures 26-32; the
effects of normal stress and normal stress history in Figures 33-81; and the effects of
slip velocity in Figures 82-89. Table 1 also notes whether the experiment was discussed
in the previous report [Olsson, 1987b|.



4.1 Shear Compliance, Cf§

Figures 1-21 show experiments that were run to measure C},. Each figure contains
four plots: torque against angle showing the total test; for the loading phase only, shear
stress against slip; compliance, C};, against shear stress; and a plot of the logarithm of
shear stress against the logarithm of slip.

The onset of nonlinearity of the torque—angle relation on loading marks the beginning
of slip. This has been shown to be, for practical purposes, identical to the establishment
of fully slipping conditions [Olsson, 1987b]. Thus, Equation 11 was used to compute
shear stress from torque. The slope of the linear portion of the first unloading line was
used to compute the combined deformation of the machine and intact rock. This was
subtracted from the measured angular displacement. Then, the circumference of the
sample was used to calculate the maximum slip (referred to below as the slip) from the
angle of rotation.

4.2 Slip Condition

For the current data set, the slip condition is adequately characterized by r = po.
For some circumstances, 4 shows some weak dependence on 0. Figure 21 shows the
values of friction stress computed from Equations 10 and 11 for Sample 16C-CC/16B-
BB tested in several different runs. The triangles represent the onset of slip and the
circles represent the maximum observed friction. The solid line is a linear regression
to the maximum friction values that gives u = 0.609, representative of the ordinarily
stated coefficient. The other two lines were drawn by eye and indicate the upper and
lower bounds of the friction coefficient, possibly more usable numbers.

4.3 Normal Compliance, C,,

Figures 22-24 show the results of normal compliance tests on a mated laboratory-
induced tensile fracture in Sample 16D. Data for the same fracture in the unmated
condition is shown in Figure 25. A much more compliant response was observed for the
unmated fracture.



4.4 Run-in

Run-in refers to the process of sliding the test surface until the stress becomes
approximately constant. This usually took the form of successive torque-slip loops,
with the accumulating gouge cleaned off the surfaces between loops. Typically, the
friction increases with increasing total slip up to some definite value. Figures 26 and 27
show run-in data for a sample that had been ground only, not sandblasted. After about
16 mm of slip, friction achieves a steady value.

For a different sample, Figures 28-30 show that friction does not reach a steady value
at all. Figure 31, for a sample that was ground before rather than after mounting to
the endplates, shows the response for a surface that is probably not in uniform contact.
In contrast, Figure 32 shows the response of a sample that was ground after mounting,
which was the usual routine, and then lightly sandblasted to remove the sheen from the
surface.

4.5 Normal Stress History

It is general knowledge that the friction stress is a strong function of the normal
stress. However, it has recently been shown that friction stress is a functional of normal
stress; that is, the friction stress can depend on the history of the normal stress. One
difference between history independence and history dependence can be seen by con-
sidering the result of running a standard friction experiment with initially constant o.
After establishing steady sliding conditions with constant friction stress, o is suddenly
incremented. If 7; remains exactly proportional to ¢ then, 7 is a direct function of o
and does not depend on the history of 0. If, however, there is a transient change in 4,
with a gradual approach to some new value, then 7; depends on the history of o.

The coefficient of friction, u, is a sensitive indicator of the normal stress history

effect and, therefore, all plots (Figures 33-81) of experiments on this effect are given as
u versus slip.

4.6 Slip Velocity

Figures 82-89 show the effects of changes in slip velocity. The data were analyzed
and discussed by Olsson [1987b)].
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5

CONCLUSIONS

The analysis of the data indicates several conclusions that were stated by Olsson
[1987b] and are reiterated here with some additions:

10.

11.

The coefficient of friction can vary from an initial value of about 0.3 to a steady-
state value of about 0.8. This range can be found on an individual clean, smooth
surface and appears to be related to initial conditions of surface preparation.

The elastic, preslip, shear stiffness of smooth and rough joints was found to be
infinite when measured and calculated correctly.

All displacement attributable to slippage on the joint is plastic, that is, nonrecov-
erable.

The shear compliance varies smoothly from zero at the onset of slip to infinity
when sliding is established. There is an approximately linear relation between log
74 and log é;.

The normal joint stiffness is consistent with results in the literature in that it is
a continuously increasing function of normal stress. The normal closure displace-
ment is composed of elastic (recoverable), plastic (non-recoverable), and frictional
(recoverable but hysteretic) components.

Shear strength decreases by about 5% for each decade increase in slip velocity.

The effect of a sudden change in slip velocity can be interpreted in terms of
hereditary integral or internal state variable descriptions.

There may exist a critical velocity. Below the critical velocity, a sudden increase in
velocity causes an instantaneous increase in strength, which then decays gradually
to a new, lower value. Above the critical velocity, there is no instantaneous increase
in strength following a jump in velocity—just a smooth decrease.

The strength of the joint may increase with time of stationary contact.

Transient behavior in u is observed after sudden changes in o; that is, the coeffi-
cient of friction depends on the history of normal stress.

The stress-path to the slip condition has a measurable effect on the observed
strength, thus indicating caution in the application of data from triaxial tests run
at constant confining pressure.

11



12.

13.

True slip-weakening for initially smooth surfaces may have been found in Topopah
Spring tuff. This response is usually masked by inhomogeneous resistive stresses.

For the low normal stresses used in this study, the torque-twist curve appears
to be a direct measure of the shear compliance of a joint; that is, there is no
significant contribution from the radial growth of the slip zone. Thus, the rotary
shear results should be directly comparable to those from other tests, such as
direct shear and triaxial, insofar as these data are collected from similar stress
and velocity histories.
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Table 1. Experimental conditions.

TEST ID

SAMPLE ID

TEST TYPE

NOMINAL ¢
(MPA)

SAND86-0177

COMMENTS

RFT001

16B-AA/16B-CC

COMPLIANCE, Cy

GROUND, SANDBLASTED

RFT002
RFT003

15C-CC/16C-CC

GROUND, SANDBLASTED

RFT004
RFT005
RFT006
RFT007
RFT008
RFT009
RFTo010
RFTo11
RFT012

16B-BB/16C-CC

s ¥ ¥ ¥ ¥ ¥ 9

¥ ¥ ¥ 3 ¥ ¥ ¥ ¥ 3

GROUND, SANDBLASTED

BAD DISPLACEMENT DATA

NST005
NST006
NST007
NSTo008
RFTO013
RFTO14
RFTO15
RFTO016

it
o

3 3 3 3 3 3 3O

COMPLIANCE, C,,
»

n

COMPLIANCE, Cy,
»

MATED TENSILE FRACTURE
»

UNMATED TENSILE FRACTURE

”

DATA LOST
MATED TENSILE FRACTURE

RFTO17
RFTO018
RFTO019
RFT020
RFT021
RFTo022
RFTO023
RFT024
RFTo025
RFTO026
RFTO027
RFT028
RFTo029
RFT030

16B-BB/16C-CC

¥ ¥ ¥ ¥ 3 ¥ ¥ ¥ ¥ ¥ ¥ ¥ 3

3 ¥ 3% ¥ 3 ¥ ¥ ¥

STRESS HISTORY

”

SLIDING VELOCITY
STRESS HISTORY

»

W0 W o>

GROUND, SANDBLASTED

TORQUE CYCLED
TORQUE CYCLED
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Table 1. Experimental conditions (continued).

TEST ID | SAMPLE ID TEST TYPE NOMINAL ¢ | SAND86-0177 COMMENTS
(MPA)

RFT031 | 16B-BB/16C-CC | STRESS HISTORY 3,4.5 - TORQUE CYCLED

RFT032 » n DUAL RAMP -

RFT033 » n 2.93,3.31 . o STEPPED

RFT034 » COMPLIANCE, C, 3.8 -

RFT035 » STRESS HISTORY 3.2,4.8,3.6 ,

RFT036 » n 3.1,3.5 - o STEPPED

RFT037 » » 3.95,4.1 . o STEPPED

RFT038 » SLIDING VELOCITY 5 -

RFT039 » STRESS HISTORY 5, 5.5 -

RFT040 n » 4,4.5 - ALTERNATING o STEPS

RFT041 » » DUAL RAMP -

RFT042 » ” » -

RFT043 » SLIDING VELOCITY 5

RFT044 n STRESS HISTORY 3.9, 4.7 - o STEPPED

RFT045 n d DUAL RAMP -

RFT046 » " . v

RFT047 » d » v

RFT048 » » » .

RFT049 » » » -

RFT050 » » » -

RFTO51 n » » - 16B-BB CRACKED

RFT052 | 16B-AA/16C-CC » » - GROUND

RFT053 n » - .

RFT054 » SLIDING VELOCITY 5 - UNSTEADY LOAD

RFT055 n STRESS HISTORY 5, 5.5 . o STEPPED

RFT056 » » 1,2,3,4,5,6 v o STEPPED

RFT057 n » 5 - o STEPPED, UNSTABLE

RFT058 » RUN-IN 5 v

RFT059 » » 2,4,6,4 v

RFT060 n STRESS HISTORY 1,2,3,2,1 - o STEPPED
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Table 1. Experimental conditions (concluded).

TESTID | SAMPLE ID TEST TYPE NOMINAL ¢ | SAND86-0177 COMMENTS
(MPA)
RFT061 | 16B-AA/16C-CC | STRESS HISTORY 2,4,6,5,4,3,2,1 N o STEPPED
RFTO062 » » 2,3,4,5,6,5.4,3,2,1 v o STEPPED
RFT063 » » DUAL RAMP i
RFT064 » » 3.4, 4 v o STEPPED
RFT065 » » 3.4,4 v o STEPPED
RFT066 | 16C-AA/16C-AA1 1,2 - 16C-AA CUT INTO TWO, GROUND
RFT067 » RUN-IN 4 -
RFT068 » » 4 -
RFT069 » » 2,4,5 - ONE HALF BROKE
RFT070 | 16C-AA2/16B-AA RUN-IN 4 - NOT GROUND AFTER MOUNTING
RFTO071 4 STRESS HISTORY 3.8 - »
RFT072 | 16C-AA2/16C-CC RUN-IN 15 : GROUND, SANDBLASTED
RFTO073 » STRESS HISTORY | 1,2,3,4,5,6,5,4,3,2,1 - o STEPPED
RFTO074 " » 1.5,2.6 - o STEPPED
RFTOT75 » » 3.4, 4.5 - »
RFTO076 » » 1.5,2.5 - »
RFTO77 » » 1.4, 2.4 v »
RFTO078 » » DUAL RAMP v »
RFTO079 » » DUAL RAMP v »
RFT080 | 16C-AA/16C-CC " 3.5, 4.5 - o STEPPED, GROUND , SANDBLASTED
RFTO081 n » 3.3 - UNSTABLE LOAD
RFTO082 " » 3.3, 4.4 - o STEPPED, 16C-CC BROKE
RFT083 | 160-AA/16C-AA | SLIDING VELOCITY 1.5 n o STEPPED
RFT084 » » 5 -
RFT085 d » 5 - UNSTABLE
RFT086 | 16C-AA/16C-BB » 5 - UNSTABLE
RFT087 » » 5 - DATA LOST
RFT088 » » ? - DATA LOST
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Figure 3: Experiment RFTO003, shear compliance test.
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Figure 11: Experiment RFTO012, shear compliance test.
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Figure 20: Experiment RFT022, shear compliance test.
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Figure 22: Experiment NSTO005, normal closure test on mated, rough joint.
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Figure 23: Experiment NST006, normal closure test on mated, rough joint.
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Figure 24: Experiment NSTO007, normal closure test on mated, rough joint.
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Figure 25: Experiment NST008, normal closure test on unmated, rough joint.
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Figure 26: Experiment RFT058, run-in test.
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Figure 27: Experiment RFTO059, run-in test.
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Figure 28: Experiment RFTO067, run-in test.
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Figure 29: Experiment RFTO068, run-in test.
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Figure 30: Experiment RFT069, run-in test.
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Figure 31: Experiment RFTO070, run-in test.
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Figure 32: Experiment RFT072, run-in test.
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Figure 33: Experiment RFT023, normal stress-history test.
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Figure 34: Experiment RFT024, normal stress-history test.
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Figure 35: Experiment RFT025, normal stress-history test.
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Figure 36: Experiment RFT026, normal stress-history test.
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Figure 37: Experiment RFTO027, normal stress-history test.

54

-l
o



1.00

0.90

0.80

0.70

060

3.0.50

040

0.30

0.20

0.10

0.00

- .
:
[] 1 1 I (1 L [] [] J [ L1 1 I 1 1 L L 1 :
2 4 6 8
ANGLE  (deg)

Figure 38: Experiment RFT029, normal stress-history test.
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Figure 39: Experiment RFT030, normal stress-history test.
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Figure 40: Experiment RFTO031, normal stress-history test.
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Figure 41: Experiment RFT032, normal stress-history test.
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Figure 42: Experiment RFT033, normal stress-history test.
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Figure 43: Experiment RFT034, normal stress-history test.
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Figure 44: Experiment RFTO035, normal stress-history test.
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Figure 45: Experiment RFT036, normal stress-history test.
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Figure 46: Experiment RFT037, normal stress-history test.
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Figure 47: Experiment RFT039 normal stress-history test.
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Figure 48: Experiment RFT040, normal stress-history test.
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Figure 49: Experiment RFTO041, normal stress-history test.
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Figure 50: Experiment RFT042, normal stress-history test.
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Figure 51: Experiment RFT044, normal stress-history test.
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Figure 52: Experiment RFT045, normal stress-history test.
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Figure 53: Experiment RFT046, normal stress-history test.
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Figure 54: Experiment RFT047, normal stress-history test.
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Figure 55: Experiment RFT048, normal stress-history test.
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Figure 56: Experiment RFT049, normal stress-history test.
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Figure 57: Experiment RFT050, normal stress-history test.
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Figure 58: Experiment RFTO051, normal stress-history test.
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Figure 59: Experiment RFT052, normal stress-history test.
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Figure 60: Experiment RFT053, normal stress-history test.
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Figure 61: Experiment RFTO055, normal stress-history test.
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Figure 62: Experiment RFT056, normal stress-history test.
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Figure 63: Experiment RFT057, normal stress-history test.
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Figure 64: Experiment RFTO060, normal stress-history test.
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Figure 65: Experiment RFT061, normal stress-history test.
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Figure 66: Experiment RFT062, normal stress-history test.
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Figure 67: Experiment RFT063, normal stress-history test.
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Figure 68: Experiment RFTO064, normal stress-history test.
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Figure 69: Experiment RFTO065, normal stress-history test.
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Figure 70: Experiment RFT066, normal stress-history test.
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Figure 71: Experiment RFT071, normal stress-history test.
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Figure 72: Experiment RFT073, normal stress-history test.
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Figure 73: Experiment RFT074, normal stress-history test.
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Figure 74: Experiment RFTO075, normal stress-history test.
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Figure 75: Experiment RFT076, normal stress-history test.
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Figure 76: Experiment RFT077, normal stress-history test.
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Figure 77: Experiment RFTO078, normal stress-history test.
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Figure 78: Experiment RFT079, normal stress-history test.
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Figure 79: Experiment RFT080, normal stress-history test.
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Figure 80; Experiment RFTO081, normal stress-history test.
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Figure 81: Experiment RFT082, normal stress-history test.
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Figure 82: Experiment RFTO028, velocity-history test.
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Figure 83: Experiment RFTO038, velocity-history test.
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Figure 84: Experiment RFT043, velocity-history test.
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Figure 85: Experiment RFTO054, velocity-history test.
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Figure 86: Experiment RFTO083, velocity-history test.
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Figure 87: Experiment RFT084, velocity-history test.
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Figure 88: Experiment RFTO085, velocity-history test.
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Figure 89: Experiment RFT086, velocity-history test.
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