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GMINC -~ A Mesh Generator for Flow Simulations
In Fractured Reservoirs

1. Introduction

GMINC is a pre-processor computer program for generating geometrical
meshes to be used in modeling fluid and heat flow in fractured porous media.

It is based on the method of "multiple interacting continua" (MINC) as developed
by Pruess and Narasimhan (1982a,b). The meshes generated by GMINC are in integral
finite difference form, and are compatible with the simulators SHAFT79 and MULKOM
(Pruess and Schroeder, 1980; Pruess, 1983a). Applications with other integral
finite difference simulators are possible, and require slight modifications in
input/output formats.

This report describes methodology and application of GMINC, including
preparation of input decks and sample problems. A rather comprehensive overview
of the MINC-method is also provided to make the presentation self-contained
as a guide for modeling of flow in naturally fractured media. However, actual
flow simulations are not discussed here; illustrative applications to geothermal
problems can be found in (Pruess and Narasimhan, 1982 a, bj Pruess, 1983b;

Bodvarsson et al., 1983).

2. Overview of the MINC-Method

2.1 Relationship to double-porosity approach

The method of "multiple interacting continua" (MINC) is conceptually similar
to, and is a generalization of, the well-known double-porosity approach (Barenblatt
et al., 1960; Warren and Root, 1963). In the double-porosity approach, a fractured
porous reservoir is partitioned into (1) a primary porosity, which consists of small
pores in the rock matrix, e.g. intergranular vugs or vesicles, and (2) a secondary

porosity, consisting of fractures and joints. Each of the two porosities is treated
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as a continuum, whose properties can be characterized by means of the customary
porous medium properties, i.e., permeability, porosity, and compressibility.
Flow within each continuum is assumed to be porous flow, governed by Darcy's

law.

-t

The important feature of the double-porosity approach is the treatment
of "interporosity" flow between rock matrix and fractures. The classical
double-porosity work employed a quasi-steady approximation, in which separate
averages for the thermodynamic state of the pore fluid are considered in the rock
matrix and in the fractures. The rate of interporosity fluid flow within each
reservoir subdomain was assumed to be proportional to the difference in average
pressures, Pl—Pz, between primary porosity and fractures. The quasi-steady
approximation has been used to develop approximate analytical solutions (Warren
and Root, 1963), and it has been incorporated in numerical simulators for
flow in naturally fractured reservoirs (Kazemi et al., 1976). This approximation
has later been improved by using time-dependent analytical solutions for flow
from matrix blocks which are subjected to time-dependent changes in boundary
conditions (deSwaan, 1976; Duguid and Lee, 1977; Evans, 1981; Lai et al., 1983).
A similar methodology has also been used for modeling the migration of chemical
pollutants in fissured rock (Bibby, 1981).

The quasi-steady as well as the analytical approximation to interporosity
flow are applicable only to fluids with small and constant compressibility.
Analytical approximations can give a more accurate description of interporosity
flow, but they are available only for regularly shaped matrix blocks (e.g.,
slabs, cubes, or spheres). The MINC-method overcomes these restrictions by treating
interporosity flow entirely by numerical methods. This makes possible a fully
transient description of interporosity flow, which is applicable to problems with

coupled fluid and heat flow, and to multiphase, multicomponent fluids with large

and varying compressibilities, such as steam-water mixtures. Also, the MINC-method

5
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is applicable to flow systems with irreqular and stochastic fracture distributions.

Before going further it should be mentioned that several authors have

‘previously presented a numerical treatment of interporosity flow (Kazemi,

1969; Coats, 1977; Gilman and Kazemi, 1982). This has substantiated the
approximations made in earlier analytical treatments, while overcoming some of
the limitations. However, the numerical work was limiied to highly idealized‘
regular distributions of a small number of fractures, or to highly symmetrical .
fracture pattefns. Accurate description of interporosity flow requires a resolu-
tion of the pressure- and temperature-gradients at the matrix/fracture interface.
In the numerical approaches mentioned above this was achieved by explicit parti-
tioning of the flow domain into "small" simply-connected grid blocks, as in
conventional porous medium simulators. This type of approach is unsuitable for
naturally fractured reservoirs with ubiquitous fractures, whére it would lead to
excessively large numbers of grid blocks.

The MINC-method emploYs a'novel.concept forlpartitioning of the rock
mat;ix into computational volume elements, whicH is suitable for flow systems
with fractures too numerous to be accounted for individually and explicitly.
The metﬁod follows the double-porosity épproach in assuming that global flow in
the reservoir occurs only through the sysfem of interconnected fractures, which,
furthermore, is approximated as a continuum. Long et al. (1982) have shown that
networks of finite fraétures may exhibit characteristics quite different from
those of a porous medium. From a phenomenological viewpoint, however, there is
some justification in characterizing a fracture system by méans of customary

porous medium parameters. This is the approach adopted in the MINC-method. The

~ fracture system and the matrix blocks are each represented as a porous medium-type

continuum. To obtain a fine resolution of gradients which drive interporosity
flow, the matrix continuum is further partitioned into a series of sub-continua,

whereby the double-porosity approach is extended to a method of multiple inter-
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acting continua. We shall now proceed to explain the partitioning method in

detail.

Rt mnx‘:w (B

2.2 The partitioning scheme

l"’?

The crucial point of the MINC-method is the partitioning (or discretiza-
tion) procedure adopted for interporosity Fiow. We shall here present a
fundamental principle on which partitioning must be based, and shall then
proceed to apply the principle to naturally fractured flow systems.

In order to numerically model flow processes in geothermal reservoirs
(or, for that matter, in any subsurface flow systems), it is necessary to
partition the system under study into a number of volume elements V, (n =1, 2,
..oy N). Then the appropriate conservation equations for mass, energy, and
moment um can be written down for each volume element (see Appendix A). These
equations hold true irrespective of size, shape, heterogeneities, etc. of the
volume elements V, (Narasimhan, 1982). This geometric flexibility can be most
fully exploited within an integral finite difference formulation, which is
locally one-dimensional, avoiding any.reference to a global coordinate system
(Edwards, 1972). However, the conservation equations in integral finite differ-
ence form are useful only if the allowable partitions Vo, (n = 1, ..., N) are
suitably restricted on the basis of geometric and thermodynamic considerations.
Indeed, to obtain practically solvable equations, we need to be able to relate
fluid and heat flow between volume elements to the accumulation of fluid and heat
within volume elements.

The accumulation terms for mass and heat (left hand sides of Equations
A.1, A.2) determine the average values of thermodynamic parameters within
volume elements. Fluid and heat flows are driven by gradients of pressure
and temperature, respectively, and these can be expressed in terms of average

values of thermodynamic variables if and only if there is approximate
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thermodynamic equilibrium within each volume element at all times. This leads us
to the following:

Principle of partitioning: For purposes of numerical modeling,

a flow domain must be partitioned, or discretized, in such a way

that there is approximate thermodynamic equilibrium in all volume

elements at all times.
In porousﬁmedia, thermodynamic conditions normally vary continuously and smoothly
with position, so that this principle will be satisfied if volume elements are
chosen as "sufficiently" small simply-connected regions. The situation can be
quite different in fractured media, where changes in thermodynamic conditions as
a consequence of boiling or cold water injection may propagate rapidly in the
fracture network, while migrating only slowly into the rock matrix. Thus,
thermodynamic conditions may vary strongly with position in the vicinity of the
fractures. Variations in thermodynamic conditions will be much less pronounced
in the direction of a fracture than perpendicular to it. This suggests that
changes in thermodynamic conditions in the matrix will locally depend primarily
upon the distance from the nearest fracture, with interporosity flow being
perpendicular to the fracture faces.

Based on these consideration, the MINC-method makes the approximation
to partition the rock matrix into sequences of nested volume elements, which
are defined on the basis of distance from the fractures. For the case of an
idealized fracture distribution as shown in Figure 1, this concept gives rise
to a computational mesh as shown in Figure 2. Modeling of fluid and heat
flow for such a system of nested volume elements, or interacting continua,
is straightforward within an integral finite difference formulation. The

® ,
matrix-fracture interaction is described in purely geometrical terms, and the

i
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relevant geometric quantities, i.e., element volumes, interface areas, and
nodal distances, can be easily obtained in closed form (Pruess and Narasimhan,
1982a) .
The partitioning concept based on distance from the nearest fracture .
can be readily extended to arbitrary irregular fracture distributions. Figure 3 ) .
illustrates this for a set of fractures of finite length. Depending upon the
problem at hand, it may first be necessary to eliminate the dead-end portions
of the fractures, which do not participate in global flow within the fracture
system (Figure 3b). The rock matrix can then be readily partitioned into several
continua with increasing distance from the fractures (Figure 3c). While the
general case of irreqular fractures is straightforward from the conceptual point
of view, it is not generally possible to obtain the.geometrical parameters for
the sub-continua in an explicit analytical fashion. As shown by Pruess and
Karasaki (1982), all geometric parameters for interporosity flow in systems with
irreqgular fractures can be computed numéerically from a scalar function, which
expresses the proximity of matrix material to the fractures, and is therefore
termed a "proximity function". This function can be easily calculated for any
given (regular or irregular) fracture distribution. Before we introduce the
concept of proximity function, it is desirable to further generalize the parti-

tioning scheme outlined above. This can be done by adopting a scaling procedure,

which in effect lumps several disjoint subcontinua together into one computational ’ ;_

volume element. -,

2,3 Scaling
Referring again to the basic MINC-partitioning as shown in Figure 2, one
can argue that often it may not be necessary to have separate volume elements

within each of the rock matrix blocks depicted in Figure 2. Depending on the
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scale of the blocks and on the distance from sinks or sources, thermodynamic
conditions in corresponding continua in neighboring blocks may be very similar.
Therefore it may be possible to lump corresponding continua from several blocks,
identified by index numbers in Figure 2, into one computaticnal volume element.
The geometric parameters pertaining to such a lumped partitioning can be readily
obtained from those for a single matrix block by means of a simple scaling
operation. For an idealized fracture distribution as shown in Figure 1, a domain
of volume V, contains ¢ = Vn/D3 matrix blocks. If corresponding continua
within the domain V, are lumped together, each sub-continuum appears ¢ times,
so that the total voluhe of continuum j becomes

Vj > VY=oV (1)
Here, Vj is the volume of continuum j in one matrix block, and V3 is the
volume of continuum j in the domain V.

Similarly, each interface area appears ¢ times in domain V, so that

A o

. .+ At .= A. . (2)

where Al1 . is the total interface area between continua j1 and jz in the
?

domain V,. Nodal distances, however, are independent of the number of

continua lumped together, so that

.. o+dl . o=d. (3)

d
From the way in which the scaling laws (1) through (3) were derived, they are
applicable and valid when an integral number of matrix blocks are lumped
(¢ = 1,2,3 ...). It is very convenient, however to generalize by applying
the same scaling laws to domains of arbitrary size or shape, including the
case where V, << D3,.i.e., o < 1. In this way it becomes possible to

associate a series of interacting continua to any reservoir subdomain,

including the limit V, » 0. As will be discussed below, the concept of

T
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scaling is even more important for stochastic than for reqgular fracture -

distributions. It makes it possible to refer all geometric parameters for

sub-continua to one single representative sub-domain of the reservoir, rather

et

than re-evaluating them for each volume element.

2.4 The mesh construction .

In the MINC-method, a computational mesh for a naturally fractured reservoir
is obtained in two steps. The first step is to construct a mesh just as would be
done for a porous medium-type system, based on considerations of global geometry,
symmetry, and desired overall spatial resolution ("primary mesh"). The primary
mesh is specified in integral finite difference form by means of a set of volume
elements Vp (n =1, ...y, N), interface areas Anms and nodal distances dpg.

The second step is to sub-partition each grid block V, of the primary mesh into

a sequence of interacting continua an (J =1, «aey J) based on some specific
characterization of the fracture distribution. Global flow ("interblock flow")
occurs exclusively in the fracture system, whereas rock matrix and fractures
interact locally within the grid blocks of the primary mesh ("intrablock flow").
Therefore, all "connections" (Anm, dpy) of the primary mesh are assigned to

the fracture system. Additional "intrablock" connections are generated to permit
flow between Vpj and Vp 41 (n=1, «.., N =1, .., 3 - 1). The complete
calculational mesh, containing all primary volume elements, the connections for
global flow in the fracture system, and all sub-continua and connections for S

interporosity flow, is referred to as the "secondary" mesh.



2.5 Concluding remarks

The MINC-method provides a rather substantial simplification of the complex
problem of flow in a nmaturally fractured rock mass. It is not a patent recipe,
but an approximation whose validity should be carefully evaluated before it is
applied to specific problems. The concept of partitioning the rock matrix
according to distance from the fractures is expected to be very accurate for
certain systems and processes, while giving adequate engineering accuracy in
others, but being poor or inapplicable in some areas.

At present, there is little quantitative information available regarding
the range of applicability of the MINC-method, and the accuracy which can be
achieved for different types of flow systems and processes. In this section we
present some considerations which should serve as a guide in applications.

The central approximation made in the MINC-method is that thermodynamic
conditions 'in the rock matrix are considered to depend only on the distance from
the nearest fracture. This is an approximation which, strictly speaking, will
almost mever be rigorously valid in actual flow problems. It is helpful, there-
fore, to discuss conditions under which the "distance only" approximation, though
not rtigorously valid, will nevertheless accurately predict interporosity flow.

A favorable case for the MINC-method exists when (i) initial thermodynamic
conditions in matrix blocks depend approximately only on the distance from the
fractures (an important special case is uniform initial conditions in matrix
blocks), and when (ii) imposed transient changes in thermodynamic conditions
in the fractures occur in such a way that matrix blocks are subjected to approxi-
mately uniform boundary conditions at all times. Even under these very restricted
conditions, the "distance only" approximation is not strictly valid. It breaks

down near fracture intersections, because effects of interporosity flow to or
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from several fractures overlap. For the MINC-method to be applicable, however,
actually something less than validity of the "distance only" approximation is
required. In fact, this approximation needs to be valid only "on the average",

in the sense that gradients of pressure and temperature, calculated on the basis
of the "distance only" approximation, will yield the proper total rates of fluid
and heat flow when fluxes are integrated over an interface area at a given
distance - from the matrix block faces. WNumerical and analytical studies performed-
by Lai et al. (1983) have shown that for a large class of problems this is indeed
the case.

Lai et al. examined the flow of heat or fluid with small and constant
compressibility from regularly shaped matrix blocks with uniform initial condi-
tions, which are subjected to a uniform step change in boundary conditions at the
surface. The analytical Fourier series solution available for this type of
problem yields curved isobaric or isothermal surfaces (Carslaw and Jaeger, 1959).
The MINC-method on the other hand approximates these surfaces as planes which are
parallel to the block faces, overpredicting thermodynamic parameters in some
parts of the surface, while underpredicting them in others. However, when total
flow rates across interfaces at a fixed distance from the block faces are computed,
by areal integration, these deviations average out to near zero, yielding rates

which are accurate to within a fraction of a percent. It is to be expected that

the MINC-method should yield similarly accurate predictions for interporosity N

flow rates in multiphase flow problems with capillarity and relative permeability
effects, as long as matrix blocks are subjected to approximately uniform boundary
conditions.

Matrix blocks will experience approximately uniform boundary conditions
if spatial variations of thermodynamic conditions in the fracture system are

insignificant over block dimensions. Generally speaking, therefore, conditions

~
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will be favorable for application of the MINC-method if matrix blocks are "small"
in comparison to characteristic dimensions of the problem at hand. Where this is
not the case, interporosity flow will be poorly predicted by the MINC-method.
The MINC-approximation may still be applicable in these cases, however, if only‘a
relatively small number of matrix blocks are subjected to non—uniform boundary
conditions at any given time, with most interporosity flow involving matrix
blocks having approximately uniform boundary conditions. This type of situatibn
may arise in problems with propagating phase fronts (or thermal fronts). If
matrix block dimensions are small in comparison to the spatial extent of zones
with different phase compositions (or different temperatures), the matrix
blocks at the phase (or temperature) front will make a small contribution to
interporosity flow, so that the MINC-approximation is valid for all egcept a few
matrix blocks.

Further insight can be gained by examining the forces which govern fluid
flow in fractured porous media. These are (i) externally applied pressures,
(ii) viscous friction, (iii) capillarity, and (iv) gravity. Of these, the
first three are compatible with approximating thermodynamic conditions’in the
matrix as depending on the distance from the fractures only. Gravity presents
special. problems, because it will introduce a directional dependence of inter-
porosity flow. Furthermore, it can cause thermodynamic conditions in matrix
blocks to depend on the vertical component of distance, and it gives rise to
phase segregation in the fractures, with non-uniform boundary conditions for some
matrix blocks.

It is easy to show that gravity effects on interporosity flow will vanish
for matrix blocks with no internal phase segregation, which are subjected to
uniform boundary conditions by the surrounding fractures. The gravity contri-

bution to the interporosity flow for phase B in this case is (see equation A.3):

Sy PR
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dv (4)
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Here the mobility terms could be pulled in front of the integral, because it had
been assumed that thermodynamic conditions in the matrix would depend only on the

distance from the surface. This is of course an oversimplification, because in

f‘\
'

mult iphase systems with different phase densities gravity will induce segregation
both inside matrix blocks and in the fractures. Favorable conditions for applica-
tion of the MINC-method will still exist if matrix block thickness is small in
comparison to the thickness of layers with different phase composition.
This discussion may be summarized as follows:
- The MINC-approximation is expected to be most accurate for flow
systems with ubiquitous fractures and "small" matrix blocks, in
which most blocks experience approximately uniform boundary
conditions at all times. |
- Generally favorable for application of the MINC-method are single-phase
flow problems, or problems with low matrix perm;ability, where inter-
porosity flow is mostly heat conduction. In these cases gravity
effects on interporosity flow will be either absent or small.
-~ Multiphase systems can be handled if matrix block dimensions are
small in comparison to dimensions of regions with different phase
compositions, or if density differences between the phases are "not
too large". B
- Transport of chemical species in fractured rock masses should be
amenable to a MINC-type representation, as species migration between
matrix and fractures should be little affected by gravity. This

will hold for chemical pollution in fissured systems, and for
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processes of ore formation in veins. Wall rock alterations in
hydrothermal mineral systems are known to often depend primarily‘on
the distance from the veins.

- An attractive area of application may be in the chemical processing
industry for heterogeneous reactions between a solid granular material,
and fluids or gases (Rasmuson and Neretnieks, 1980).

- The MINC-approximation is not applicable for systems with large matrix
blocks which are subjected to non-uniform boundary conditions for extended
time periods. This situation may arise in certain fractured petroleum
reservoirs.

-~ The MINC-approximation is not valid for processes operating on a very
long time scale, for which the matrix acts as an avenue for through-flow
rather than one-way flow. An example of this would be a steady-state

flow field in the matrix/fracture system.

3. Proximity Functions

3.1 The concept

For any given reservoir subdomain with known fracture distribution, a
function V(x) can be defined, which represents total matrix volume V within
a distance x from the fracture faces. Note that the volume V will generally
consist of a finite number of disjoint multiply-connected regions, representing
a quite complex topological structure (see Figure 3c). If Vg is the volume
of the subdomain, and ¢1 is the volume fraction (average porosity) of the
fracture system, the volume of the fracture continuum within V4 is
Vq = ¢1.V0. It is convenient to introduce a "proximity function
PROX(x), which expresses, for a given reservoir subdomain Vg, the total
fraction of matrix volume within a distance x from the fractures. Noting

that the total matrix volume in domain Vg is

A n:Tm-rm‘.; [
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vm = (1—¢1) VO (5)
we have
V(x) Vix)
PROX(x) = = (6)
vm (1-¢1) vO

3.2 Relationship to discretization

In the MINC-method, a discretization is adopted for the rock matrix
(see Figure 4) whereby all matrix volume within a distance xo from the
fracture faces will be lumped into one computational volume element (or
subcontiﬁuum) Vo; matrix volume within a distance larger than xp but less
than x3 will be lumped into V3, etc. This is illustrated in Figure 4 for a
regular fracture network, but it is evident that the same procedure can be
applied to arbitrary irreqular fracture distributions, see Figure 3c. To
define flow towards or away from the fractures, it is necessary to specify
inter face areas and nodal distances between the matrix sub-continua. From
the definition of the proximity function as given above, the interface area
for flow at distance x is simply

dav d PROX (x)
dx =~ (1_¢1) Vo dx (7)

Alx) =
In conventional porous medium-type simulation methods with simply-
connected grid blocks, the computational nodes are points, usually located
at the center of a volume element. For the multiply-connected volume
elements of the MINC-method, the element nodes become nodal surfaces, which
are located half-way between the inner and the outer surface of an element.
(Note that the interfaces between elements will not in general be halfway

between neighboring nodal surfaces). A discretization based on distance

from the fractures can be uniquely specified by means of a set of volume

A~
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fractions 9 (J=1s eouy 3). Here ¢q is the average fracture porosity, and the
$2y «++y ¢3 denote volume fractions in the matrix at increasing distance from

the fractures. Obviously we must have

J :
DT 1 : (8) %

j=1

Apart from this constraint, the ¢ (j=2, ..., J) are arbitrary, but for

best accuracy the volume fractions near the fractures (¢7, ¢3, ...)

should be chosen not "too" large. The volumes of the sub-partitioning are

simply
V.=V .6. (9)

so that

an =V (10)

J
n
=1

J

In the "secondary" mesh {an; n=1, «e.y N3 j=1, ...,J} each of the primary
grid blocks V41 (representing fractures) interacts with its neighbors
through the fracture continuum, and with a one-dimensional string Vp2,
Va3yeees Vg of nested grid "blocks " in the matrix (see Figure 5). The
distances X3 to which the an extend can be simply obtained by inverting

the proximity function. We have, for j=2, 3, ..., J

J
ORI D (1)
PROX(x.) = ‘ T
J b 1'¢1
j'=2

The interface area between elements Vnj and Vpj.q is simply A(Xj) as given
by equation (7), with V5 replaced by the volume V., of the primary element:

= (1-¢1) V., d—fﬂ%—(—’i)— ‘. (12)

J

A . .
nj, nj+1
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It should be noted that Equation (12) implies an application of the "scaling"
concepts, as outlined in section 2.3. The proximity function of a flow

system is defined once and for all for a certain representative domain Vg,

and is normalized to unit matrix volume [cf. Equation (6)]. Therefore, the :

.
7
1

derivative dPROX/dx gives an interface area per unit matrix volume, which in
Equation (12) is properly scaled to the matrix volume present in V,.

While this procedure is practically convenient, it is recognized that
naturally fractured systems may exhibit "scale effects" (Long et al.,
1982); i.e., average properties may depend on the scale of observation. The
use of one single proximity function for a flow system as implied in Equation
(12) ignores scale effects. If it is desired to take such effects into account,
one could use a different proximity function PROX,(x) for each volume element
Vi, of the primary mesh.

Nodal distances are given by (j=2, ..., J-2)

X . - X, X, = X.
d #1753 Jd g
nj, nj+1 2 2

1 (13)
=7 X1 7 %51

The fracture nodes are placed at the fracture-matrix interface, so that

q X2 (14)
nl, n2 = 2

The innermost nodal distance requires special consideration. Writing

X - X .
J-1 J-2 A
dnJ—1, i=— =z ° DJ (15)

we introduce the distance Dj of the nodal surface with index J from the
innermost interface area, Anj-q, nJ. DJ should be chosen in such a way that 1

the finite difference approximation for pressure - and-temperature - gradients



-17-

give the most accurate estimate for the actual gradient at interface An3-1, nds

so that flow between V,j_1 and V,3j will be described accurately. In a trans-

ient problem, Dj will be a function of time. The "best" time-independent
estimate for Dj uses the value appropriate for quasi-steady flow. This
depends upon the dimensionality of the problem, and on the average linear
dimensions of the innermost grid block. The following table holds for

rectangular matrix blocks (cf. Warren and Root, 1963):

Table 1. Quasi-steady flow distances for rectangular matrix blocks.

Dimensions of Dimensions of Average linear
Case matrix blocks innermost blocks dimension of D3
innermost block

1-D a  uza-2x3_q L =u : /6
2-D a uza-2x3j.1
~ L= 2uv. /8
v=b-2x3_1 U+v
3-D a u=8a-2x7_1
_ Suvw
v=b-2x3.1 T UVHVWHUW #/10
c W=C-2XJ.1

GMINC uses these values for Dj irrespective of the shape of the matrix blocks.
This approximation will be accurate provided the discretization is not too

coarse (i.e., ¢j should not be much larger than ¢3_1).

4. General Description of Program GMINC

GMINC carries out the numerical operations necessary to transform a porous
medium-type "primary" mesh, into a "secondary" mesh which incorporates global
flow in the fracture system, and local "interporosity" flow between fractures and

rock matrix.
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The input toc GMINC consists of:

(a) a "primary" mesh, as would commonly be used to model transport in
porous media. The primary mesh is specified in integral finite
difference form by means of a set of volume elements V, (n=1, ..., N),
interface areas Ay, and nodal distances dpg.

(b) parameters or functions which characterize fracture distributions.
GMINC contains a proximity function routine "PROX(x)", which offers
a choice of several different proximity functions and parameters
for reguiarly shaped matrix blocks. Generally speaking, the user
will have to write his/her own proximity function subprogram,
appropriate for the fracture distribution at hand, and incorporate
it‘into GMINC. Appendix B gives some illustrative examples.

(c) a set of parameters specifying the discretization procedure to be
applied for the fractured system. As discussed above, this is
done in terms of a set of volume fractions ¢j (§=1y veey Iy
with J denoting the total number of interacting continua.

GMINC has a very simple main program, which calls three subroutines:
PRIMESH, GEOMINC, and MINCME. PRIMESH reads all input data, namely, the
parameters of the "primary" mesh, and the parameters for the volume fractions
of the sub-partitions. GEOMINC computes all geometric parameters (element
volumes, interface areas, nodal distances) for the secondary mesh, normalized
to a domain of unit volume. MINCME works sequentially through the volume
elements of the primary mesh and, using the scaling procedure outlined in
section 2.3, scales the parameters generated by GEOMINC to generate the
secondary mesh. Routine GEOMINC uses the proximity function subprogram
PROX(x), and a subroutine INVER, to solve equations (11) and (12) for nodal

distances and interface areas, respectively. Inversion of PROX(x) is

T PR |
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carried out by means of a sequence of bisecting nested intervals (subroutine
INVER).

Three disk files are used by the program. TAPE4 holds a list of primary
volume elements, TAPE14 holds the output of volume elements as obtained from
the MINC partitioning process, and TAPE15 holds all interface areas and nodal
distances of the secondary mesh. TAPE14 and TAPE15 are compatible with
SHAFT79 or MULKOM input formats; merged together they make up the "MESH"
file required by these simulators.

Volume elements are referred to by five charactér "names", with the following
convention. The first two characters are arbitrary (alphanumeric). Character #3
is alphanumeric on input, and on output is changed into "1" (for fracture elements)
or "A" through "Z" (for matrix elements). Here "A" signifies the matrix element
which is closest to the fractures, "B" is the second closest element, etc. The
last two characters of an element name are numbers. Examples will be given in

Section 6.
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5. Preparation of Input Decks for GMINC

The input of GMINC is organized in "blocks", as indicated in the following

table.

Table 2. Input Data Blocks

Block Description
EL EME List of elements of primary mesh.
CONNE List of interfaces (connections) of primary
mesﬁ.
PART Parameters for defining the partitioning procedure.
ENDMI One card closing the GMINC input deck.

(Last card)

The data blocks "ELEME", "CONNE", and "PART" can be provided in arbitrary
order. A sequence of identical elements or connections can be specified on a
single data card. Figure 6 summarizes the input data; the detailed descrip-

tion of inmput is as follows.

L]

ELEME introduces element information.

Card ELEME.1 Format (A3, 12, 2I5, A3, A2, E10.4) )
EL, NE, NSEQ, NADD, MA1 MA2, VOLX

El, NE 5-character code name of an element. The first three characters
are arbitrary, the last two characters must be numbers.



NSEQ

NADD

MA1, MA2

VOLX

Card ELEME.2

CONNE

Card CONNE.1

EL1, E1, NET
EL2, E2, NE2

NSEQ

NAD1

NAD2

-21-

number of additional elements having the same volume and -
belonging to the same reservoir domain.

increment between the code numbers of two successive elements.
(Note: the maximum permissible code number NE + NSEQ * NADD F

a five character identifier specifying the reservoir domain to
which the element belongs. The first character must not be an
"M". On output, the fractured medium is assigned the same
domain identifier as was input. For rock matrix elements,

the first character of the material identifier is changed intc
lIMH .

element volume (m3).
Repeat card ELEME.1 for any number of elements desired.

A blank card closes the ELEME data block.

introduces information for the connections (interfaces)
between elements.

Format (A2, A1, 12, A2, A1, 12, 415, 4E10.4)

EL1, €1, NE1, EL2, E2, NE2, NSEQ, NAD1, NAD2, ISOT, D1, D2,
AREAX, BETAX

code name of the first element.

code name of the second element.
number of additional connections in the sequence.

increment of the code number of the first element between
two successive connections.

increment of the code number of the second element between
two successive connections.
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D1
b2

AREAX

BETAX

Card CONNE.2

Note:

22~

set equal to 1, 2, or 3; specifies absolute permeability

to be PER(ISOT) for the materials in elements (EL1, E1,NE1)

and (EL2, E2, NE2), where PER is read in block ROCKS in

SHAFT79 or MULKOM. This allows assignment of different
permeabilities, e.g., in the horizontal and vertical direction.

Distance (m) from center of first and second element, respec-
tively, to their common interface.

inter face area (m2)

cosine of the angle between the gravitational acceleration
vector and the line between the two elements.

Repeat card CONNE.1 for any number of connections desired.

a blank card closes the CONNE data block.

If no interblock connections are desired, it is still
necessary to input the data block "CONNE". In this case the
card "CONNE" would be followed immediately by a blank card.

PART TYPE  introduces information on the partitioning procedure, and selects
the type of proximity function to be used.

PART

TYPE

Format (2A5)
PARTbH, TYPE

identifier of data block with partitioning parameters.

a five-character word for selecting one of the six differ-
ent proximity functions provided in GMINC.

ONE-D: a set of plane parallel infinite fractures with matrix
block thickness between neighboring fractures equal to
PAR(1).




TWO-D:

THRED:

STANA:

STANB:

STANT ¢
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two sets of plane parallel infinite fractures, with
arbitrary angle between them. Matrix block thickness is
PAR (1) for the first set, and PAR (2) for the second
set. If PAR (2) is not specified explicity, it will be
set equal to PAR(1).

three sets of plane parallel infinite fractures at right
angles, with matrix block dimensions of PAR(1), PAR(2),
and PAR(3), respectively. If PAR(2) and/or PAR(3) are
not explicity specified, they will be set equal to PAR(1)
and/or PAR(2), respectively.

average proximity function for rock loading of Stanford
large reservoir model (see appendix B).

proximity function for the five bottom layers of Stanford
large reservoir model.

proximity function for top layer of Stanford large reservoir

model.

Note: a user wishing to employ a different proximity
function than provided in GMINC needs to replace the
function subprogram PROX(x) with a routine of the
form:

FUNCTION PROX(x)
PROX = (arithmetic expression in x)

RETURN

END

It is necessary that PROX(x) is defined even when x exceeds the maximum
possible distance from the fractures, and that PROX = 1 in this case. Also,
when the user supplies his/her own proximity function subprogram, the parameter
TYPE has to be chosen equal to ONE-D, TWO-D, or THRED, depending on the dimen-
sionality of the proximity function. This will assure proper definition of
innermost nodal distance (see section 3.2).
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Card PART.1 Format (213, A4, 7E10.4)

J, NVOL, WHERE, (PAR(I), I=1,7)
J total number of multiple interacting continua (J < 25).

NVOL total number of explicitly provided volume fractions (NVOL < 3J,
see section 3.2). If NVOL < J, the volume fractions with indices
NVOL+1, ..., J will be internally generated; all being equal and
chosen such as to satisfy Equation (8).

WHERE  specifies whether the sequentially specified volume fractions
begin with the fractures (WHERE=0UTbH) or in the interior of
the matrix blocks (WHERE = INbb).

PAR(I), I=1,7 holds parameters for fracture spacing (see above).

Card PART.2.1, 2.2, etc.
Format (8E10.4)
(VOL(I), I = 1,NVOL)
VOL(I). volume fraction (between 0 and 1) of continuum with index I
(for WHERE = 0OUTh) or index J+1-1 (for WHERE = INbb). NVOL
volume fractions will be read. For WHERE = OUTh, I = 1 is the

fracture continuum, I = 2 is the matrix continuum closest to the
fractures, I = 3 is the matrix continuum adjacent to I-2, etc.

ENDMI  closes the GMINC input deck.

7

IR T
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6. Sample Calculations

The problems presented in this section are intended to illustrate applica-
tions of GMINC. It was pointed out befoge that the partitioning scheme for a é
fractured reservoir mesh works sequentially through the volume elements of
the primary mesh on a grid-block-by-grid-block basis. The calculational
procedure is the same irrespective of whether the primary mesh has a few or
many grid blocks, and irrespective of the dimensionality-of the primary mesh.

Therefore, it is sufficient to consider small primary meshes in the following

examples.

(a)  One-block problem

The GMINC input deck for this example is given in Figure 7 (the
file "GMINCG" used here is a compiled version of GMINC). The primary mesh
consists of just one grid block, with no primary (interblock) connections
present. It is partitioned into 10 continua, with volume fractions increasing
away from the block faces. The type of proximity function chosen ("THRED")
corresponds to three orthogonal fracture sets. Matrix block dimensions are
PAR(1) = PAR(2) = PAR(3) = 50 m, with PAR(2) and PAR(3) assigned default
values, as these entries are left blank on the data card. Figure 8 shows the
table of geometry data as generated by GMINC, scaled for a domain of unit
volume. The interface data are always printed between the two volume ele-
ments to which they correspond. The complete secondary mesh file is shown in
Figure 9. It was obtained by merging the files TAPE14 (holding elements) and
TAPE15 (holding connections). On the element header card there appears same
information on the partitioning. The mesh file is compatible with SHAFT79 or

MULKOM input formats.
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(b) Vertical Column

The primary mesh in this example consists of a vertical column of
five grid blocks with 100 m thickness and 1 km2 cross sectional area (see
Figure 10). There are two fracture sets, with fracture faces separated by 20
and 40 m distance, respectively. Sub-partitioning is made into 6 continua, -
with volume fractions for continua #5 and 6 assigned by default. Figure 11
shows the geometry data as generated by GMINC, and Figure 12 gives the com-
plete mesh file for this case.
(c) Radial flow
Figure 13 shows an input deck for a one-dimensional radial mesh of
H = 100 m thickness. The first grid block has a radius Rq{ = 1 m, and subsequent
radial spacings are incremented according to ARnp1 = a ° AR, with o =
2.2326074, so that Rg = Rq (o8-1)/(a-1) = 500 m. Sub-partitioning is made
into 5 continua, assuming one set of plane parallel fractures with matrix
block thickness of 10 m between fracture faces. The geometry data computed by
GMINC are shown in Figure 14, and Figure 15 gives the complete secondary mesh
file. Note that, because of the one-dimensional fracture geometry, all interface
areas within a given volume are equal. A schematic graphic representation of

the secondary mesh is shown in Figure 5.
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Nomenclature

a dimension of matrix block (m)

A interface area (m2)

b  dimension of matrix block (m)
c dimension of matrix block (m)
C specific heat (J/kg°C)

d nodal distance (m)

D fracture spacing (m)

Dy nodal distance for continuum J (m)

f  mass flux (kg/m2 - s)

g gravitational acceleration vector (9.81 m/s2)
G heat flux (W/m2)

h  specific enthalpy (J/kg)

J  number of interacting continua

k absolute permeability (m2)

K heat conductivity (W/m°C)

kg relative permeability for phase 8, dimensionless
n unit normal vector

N number of volume elements; also number of Monte
Carlo points

P  pressure (Pa)

g volumetric rate of mass generation (kg/m3 + s)
Q@ volumetric rate of heat generation (I/m3 - s)
R radial distance (m)

T temperature (°C)

u specific internal energy (J/kq)

U volumetric internal energy (3/m3)
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Nomenclature (continued)

T TR |

V. volume (m3)
Vo reference domain (m3)
x distance from matrix block face (m) E
§ fracture aperture (m) “
¢ volume fraction
I surface area (mZ)
o density (kg/m3)
o number of matrix blocks in domain Vp
ug Vviscosity of phase g (Pa -+ s)
Subscripts

cap capillary

f‘

fracture

index number of interacting continuum
liquid

matrix; also index number of volume element
index number of volume element

rock

vapor

phase (8 = liquid, vapor)
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Appendix A: Mass - and energy - balances

" The simulators SHAFT79 and MULKOM solve discretized versions of

the following mass-and energy-balance equations:

%’E f dpdv = [ F.ndr + / qdv (A.1)
v T v :
n n n

%ﬁ' [ Udv = [ G.ndr + dev | ‘ (A.2)

' v T v
n n n

Mass flux is approximated by Darcy's law, which expresses a momentum balance

with negligible inertial force

k
- - - B - '
£=5" Ep=-ky, L o (B - o9 (A.3)
B =1iquid, B
vapor

Here we have written mass flux as a sum over liquid and vapor contributions, as is
appropriate for the geothermal case. However, MULKOM can handle flow problems with
any number of phases and components, incorporating suitable generalizations of the

equations presented here.

Energy flux contains conductive and convective terms

G = - KvT +§ hBFg (A.4)

B

and the volumetric internal energy of the rock/fluid mixture is

U= ¢pu + (1—¢)pRCRT (A.5)
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The main assumptions made in the above formulation are as follows: (1)

T

the reservoir system is approximated as a mixture of rock and single-component

R

fluid in liquid and vapor form. (2) Liquid, vapor and rock are in local thermo-

dynamic equilibrium, i.e., at the same temperature and (bulk) pressure, at all

times. (The effective pressure in phase g is the sum of bulk phase and capillary

pressure, Pg = P + P a5 g.) S
It is to be noted that the equations given above hold for porous and frac-

tured media alike. Experimental work has established that fracture flow cbeys

Darcy's law, with fracture permeability related to fracture aperture as

(Witherspoon et al., 1980),

ke = 62/12 (A.6)

[
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Appendix B. Examples of proximity functions

(a) One fracture set

The simplest case is a one—dimensional set of plane, parallel, equidistant,
infinite fractures with aperture & and spacing D. The thickness of matrix
blocks between neighboring fractures is: a = D-8 (=PAR(1) on input, card PART.j).
To obtain the prokimity function, we consider a symmetry element of unit thicknéss,
centered about one fracture. The total matrix volume in this domain is, per unit
fracture length, V, = a. The matrix volume within a distance x from the

fracture faces is V(x) = 2x, so that

V(x) _ 2x

v - for x < a/2
PROX(x) = m (B.1)_

1 for x > a/2

(b)Y Two fracture sets

For two perpendicular sets of plane, parallel, equidistant, infinite
fractures the matrix blocks have a rectangular cross section with lengths a
and b (corresponding to input parameters PAR(1) and PAR(2), respectively, on
card PART.1) The matrix volume per block, per unit of thickness, is Vp =
ab, Within a distance x from the fracture faces, the matrix volume is
V(x)=za*b -(a-2x)+(b-2x) = 2(a+b)x - 4x2.

Therefore, the proximity function is

2
a+b X .
2-575 X - 4-535 for 2x< min (a,b)

PROX(x) = (B.2)

1 for 2x> min (a.b)
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The same formula holds when the two fracture sets intersect at an arbitrary
angle. In that case, a and b are the matrix block dimensions perpendicular
to the fracture sets.

(¢) Three fracture sets

For three perpendicular sets of plane, parallel, equidistant, infinite .
fractures, the matrix blocks are parallelepipeds with dimensions a, b, and c
(corresponding to input parameters PAR(1), PAR(2), and PAR(3), respectively,
on card PART.1). The matrix volume within a distance x from the fractures
is, per block, V(x) = abc - (a-2x)*(b-2x)+(c-2x). Defining u=2x/a, v=2x/b,
and w=2x/c, the proximity function can be written

uvw={uv+uw+vw) +(u+v+w) for 2x<min(a,b,c)
PROX(x) = ‘ (B.3)

1 for 2x>min(a,b,c)

(d) Stanford large reservoir model

For a number of years a laboratory model of a geothermal reservoir has
been used at Stanford university for heat extraction experiments (Irequi et
al., 1978). The system consists of a large pressure vessel which presently
holds a loading of regularly shaped granite blocks (Hunsbedt et al., 1982).
There are six layers, each of which has five rectangular blocks and four blocks
whose cross sections are isosceles rectangular triangles. For the rectangular
blocks, the proximity function is given by (B.3). For the triangular blocks, a
straight forward calulation gives

3 N
(3+2ﬁ) ﬂ_X_Z_ - [6+4\é_2- + 4(2+ \/z—)i, ><2 +<4+2'/E + —§—>x L

ab b ab b

PROX, (x) = for x & —2 (B.4)
2+ﬁ

b
1 for x 2 2+VG{

Here a is the height of the triangular blocks, and b2/2 is their cross sectional

area.
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For heat transfer modeling it is convenient to consider averaged proximity
functions in each layer. Denoting the proximity function for the rectangular

blocks by PROX (x), the average is

2

5
PRDXrt(X) =5 PRUXr(x)+ = PROXt(x) (B.5S)

These functions are plotted in Figure 16.

(e) Stochastic fracture distributions

In the general case of arbitrary irregular fracture distributions, proximity
functions can be computed by means of Monte Carlo techniques. The method as
developed by Pruess and Karasaki (1982) can be summarized as follows. First
it is necessary to obtain a specific realization of the stochastic distribution
for a domain V5, and to eliminate isolated and dead-end portions of fractures.
This is accomplished with the methods developed by Long et al. (1982). Then
a large number N of random points is generated in Vy. For each point, the
minimum distance from the fractures is calculated, and all N points are
sorted in order of increasing distance. The value of the proximity function
for a certain distance x is proportional to the number of points, N(x), with

a distance less or equal to x from the fractures. Specifically,

PROX(x) = N§X) (B.6)

The Monte Carlo procedure provides a discontinuous definition of the prox-
imity function. Before this can be input to GMINC it must be smoothed, e.g.
by fitting with a succession of cubic splines. Figure 17 shows an example of
a two-dimensional stochastic fracture distribution. The smoothed proximity

function obtained with 100,000 random points is shown in Figure 18.
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GMINC Program Listing
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PROGEAM GMINC(INPUT,OUTPUT,TAPE4,TAPEI4,TAPE1S) -

AT LAWRENCE BERKELEY LABORATORY. *¥&xskkxkkkx

THE PROGRAM GENERATES ONE~, TWO~, OR THREE-DIMENSIONAL MESHES :
FOR FLOW SIMULATIONS IN FRACTURED POROUS MEDIA. £

GMINC IMPLEMENTIS THE METHOD OF
MULTIPLE INTERACTING CONTINUA (MINC)
AS DEVELOPED BY PRUESS AND NARASIMNHAN.

REFERENCESJ

(1) K. PRUESS AND T.N. NARASIMHAN, A PRACTICAL METHOD FOR
MODELING FLUID AND HEAT FLOW IN FRACTURED PORGUS MEDIA,
PAPER SPE~10509, PRESENTED AT THE SIXTH SPE-SYMPOSIUM ON
RESERVOIR SIMULATION, NEW ORLEANS, LA. (FEBRUARY 1982).

{2) K. PRUESS AND T.N. NARASIMHAN, ON FLUID RESERVES AND THE
PRODUCTICN OF SUPERHEATED STEAM FROM FRACTURED, VAPOR-
DOMINATED GEOTHERMAL RESERVOIRS, J. GEOPHYS. RES. 87 (B11),
9329-9339, 1982.

{3) K. PRUESS AND K. KARASAKI, PROXINITY FUNCTIONS FOR MODELING
FLUID AND HEAT FLOW IN RESERVOIRS WITH STOCHASTIC FRACTURE
DISTRIBUTIONS, PAPER PRESENTED AT EIGIH STANFORD WORKSHOP
ON GEOTHERMAL RESERVOIR ENGINEERING, STANFORD, CA.
(DECEMBER 1982).

(4) K. PRUESS, GMINC - A MESH GENERATOR FOR FLOW STMULATIONS IN
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LBL-15227, 1983.
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C
C
{-=----READ INPUT DATA AND PREPKOCESS MESH FILE FOR SEQUENTIAL ELEMENTS-~
C
CALL PRIMESH
C .
C===--~GENERATE INTRABLOCK GEOMETRICAL QUANTITIES FOR A DOMAIN
C OF UNIT VOLUME ==---
CALL GEOMINC
C
c- GENERATE COMPLETE MESH FILE ~-—-==-—=-——=- e ——————— ————— ————
C

a6

CALL MINCHE

STOP
END
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SUBROUTINE PRIMESH

COMMON/HMINCDAT/J,NVOL, WHERE, VOL (25) ,A (25) ,D (25)

. . COMMON/PECXI/L,TYPE (10) ,PAK({7)

COMMON /CON/ABC (26)
DIMENSION VER(4),WORD(5,16)

W

DATA VEEK /SHELEME,SHCONNE,SHPART ,5HENDMI/
DATA TYPE/SHONE-D,5HI%0~D,5HTHRED,SHSTANA,SHSTANB,5HSTANT/
DATA ABC/1HA,1UB, 1HC, 14D, 1HE, 1HF, 1HG, 1HH, 1HI, 14J, 18K, 1HL, 1HN, 1HN,
X140, 18P, 180, 18R, 1HS, 14T, 1HU, 1HV, 1HW, 1HX, 1Y, 1HZ/
C
IK=0
5019 IK=IK+1
READ 5020, (WORD (IK,I),I=1,16)
5020 FORMAT (16A5)
c
DOY0O K=1,i
900 IF (WORD(IK,1).EQ.VER(K)) GOT0920
PRINT 901, WORD (IK,1)

901 FORMAT (# HAVE READ UNKNOKN BLOCK LABEL "#,A5,#" --- ASSUME ALL#,
X# NEEDED DATA HAVE BEEN READ AND RETUKN 70 MAIN PROGRAM#)
RETURN

C

920 GOTO(1100,1200,1300,1400),K
C
Ck¥xkxREAD ELEMENT DATA.¥%riokkk stk gk khkkrkhkkkrkdk ik iokionkkdokkks kg
o

1100 WRITE{(4,1101) (WORD (IK,I),I=1,16)

1101 FORMAT (16A5)

1102 READ 10,EL,NE,NSEQ,NADD,#A1,MA2,VOLX

10 FORMAT (A3,12,2I5,43,A2,E10.4)
IF (EL. EQ.3H  .AND.NE.EQ.0) GOTO40

C
NSEQI1=NSEQ+1
C .
C===-=--GENLEATE FILE OF ELEMENT DATA.
po113 1=1,H8S5&Q1
N=NE+ {I-1)*%NADD
113 WKRITE(4,114) BL,N,MAT,MA2,VOLLX
114 FORMAT (A3,12,10XA3,A2,E10.4)
GGTG1102
C
(e = END OF ELEMNENT DATA.--=~-—=~- - m———— v e o e o e  n -
- @
40 WRITE(4,41)
41 FORMAT (# #)
GLTOS5019
C

CHREFARREAD CONNECTION DATA L% %k sk ook ok e ok e ok o 2k e e ok e o e ok ok ook ook o ook Aok ko

~

™
1200 WRITE(15,1201)
1201 FCRMAT (#CONNE#)
NOCGNT=0

R i
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1202 READ 20,EL1,E1,NE1,EL2,E2,NE2,NSEQ,NAD1,NAD2,ISOT,D1,D2,AREAX
X,BETAX
20 FORMAT {A2,A1,I2,A2,A1,12,41I5,4E10.4)
IF(EL1.EY.2H .AND.E1.EQ.1H .AND.NE1.EQ.0) GOT05019
IF (EL1.EQ.2H++) GOT05019

C
NSEQ1=NSEQ+1
C
Cmmm== GENERATE FILE OF CONNECTION DATA.
C
D023 I=1,NSEQ1
NOCONT=NOCONT+
N1=NE1# (I-1) *NAD1
N2=NE2+ {I-1) *NAD2
23 WRITE(15,24) EL1,N1,EL2,N2,ISOT,D1,D2,AREAX,BETAX
24 FORMAT (A2,1H1,12,A2,1H1,12,15XI5,4E10.4)
GOT01202
C
Commmmm END OF CONNECTION DATAw==—mm e e o e e e e o e e
c

CxxxkxREAD DATA FOR MULTIPLE LINTERACTING CONTINUA. ¥Rxdksokskiojokkkkkiokkikikk
c :
C¥x*xx %J¥x IS THE NUMBER OF MULTIPLE INTERACTING CONTINUA.

Cx

Cx*x¥x%xx *NVOL* (.LE.J) IS THE NUMBER OF EXPLICITLY SPECIFIED VOLUME
C* FRACTIONS.

C*

CHkxkknx XYHERE* SPECIFIES WHETHER EXPLICITLY PROVIDED VOLUME FRACTIONS
C ARE GIVEN STARTING AT THE OUTSIDE (FRACTURE) OR INSIDE (MATRIX).
Cx

C*%¥%% %PAR* IS AN ARKAY WITH PARAMETERS FOR SPECIFYING FRACTURE
o DISTRIBUTIONS.
C
1300 CONTINUE
D0Y02 L=1,10
IF (WORD {IK,2)-EQ.TYPE(L)) GOTO 903
902 CONTINUE
PRINT 904,WORD (IK,2)
Y04 FORMAT (# HAVE READ UNKNOWN PROXIMITY FUNCTION IDENTIFIER *#A5,#%

£---  STOP EXECUTION#)
STOP
C
903 CONTINUE
C-----INDEX *L* LABELS THE TYPE OF PROXIMITY FUNCTION SELECTED.
C
C
READ 1,J,NVOL, WHERE, (PAR(I),I=1,7)
1 FORMAT (2I3,A4,7E10.4)
c
C-m=== READ A SET OF VOLUME FRACTIONS-----

IF (WHERE.EQ.4HOUT ) READ 2, (VOL (M) ,M=1,NVOL)
I1F (WHERE. EQ. 4HIN ) READ 2, (VOL{J+1-M) ,M=1,NVOL)
2 FORMAT (8E10.4)

gt ‘M:FGT”
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HAVE NOT

-

N

Cmmmm- END OF MINC-DATA === s o e e e e e e e e e e
C
IF{(L.EQ.2 .OR. L.EQ-3) .AND. PAR{2).EQ.0.) PAR{(2)=PAR(1)
IF (L.EQ.3 -AND. PAR(3).EQ.0.) PAR(3)=PAR(2)
GGT05019
C
1400 RETURN
END
C
C
C
SUBROUTINE GEOMINC
C
DIMENSION X (25)
COMMON/HINCDAT/J, NVOL, WHEKE, VOL (25) ,A (25) , D (25)
COMMON/PROXI/L, TYPE({10) ,PAR(7)
COMMON /CON/ABC (26)
DATA DELTA/1.E-8/
C
IF(NVOL.GE.J) GOTO3
c
C-----COME HERE TO ASSIGN EQUAL VOLUMINA TO SUBDIVISIONS WHICH
C BEEN EXPLICITLY SPECIFLED-----
C
VEX=0.
DG4 M=1,NVOL
IF {(WHERE.EQ. 4HOUT ) VEX=VEX+VOL (¥)
4 IF (WHERE.EQ.4HIN ) VEX=VEX+VOL(J+1-H)
C VEX IS THE TOTAL EXPLICITLY ASSIGNED VOLUME FRACTION.
C
IF(VEX.GE.1.) GOTO10
C
VFP=(1.-VEX) /FLOAT (J-NVOL)
C-----VF IS THE VOLUME FRACTION FOR PARTITIONS WHICH ARE NOT
C EXPLICITLY ASSIGNED.
NVOL1=NVOL+1
DC5 M=NVOL1,J
IF (WHERE.EQ.4HCUT ) VOL(M)=VF
5 IF (WHERE.EQ.UHIN ) VOL(J+1-M)=VF
GOTO3
C
10 CONTINUE
C--=-=--COME HERE IF EXPLICITLY ASSIGNED VOLUMINA EXCEED 100%----
PKINT 11,VEX
11 FORMAT (# PROGRAM STOPS BECAUSE TOTAL VOLUME VEX = #E12.6,

X# > 100% ~—--- NEED TO CORRECT INPUT DATA#)

STGP
3 CONTINUE

C

C~=---NOW FIND DISTANCES FROM FRACTURES WHICH CORRESPOND TO

C DESIRED VOLUME FRACTIONS.

C INDEXING STARTS AT THE CUISIDE; I.E. *1% IS THE OUTERMOST
C

VOLUME ELEMENT, AND *J% 15 THE INNERMOST ONE.

R

SR o i "
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C
C-----INITIALIZE TOTAL VOLUME FRACTION.
TVOL=0.
C
Cmmmmm FIRST INTERFACE WILL BE AT FRACTURE FACE.
X(1)=0.
D{1)=0.
A(1)=(1.-VOL (1)) *PROX(1.E-10) /1.E-10
C
C
C===~=INITIALIZE SEARCH INTERVAL.
c
XL=0.
XB=VOL (2) /A (1)
C
C
DO 30 M=2,J
C
~---~COMPUTE TOTAL FRACTION OF MATRIX VOLUME.
TVOL=TVOL+VOL {#) /(1.~VOL (1))
IF(M.EQ.J) TVOL=1.-1.E-9
C
CALL INVER (TVOL,XMID,XL,XR)
C
X (M) =XMID
'
XMD=XMID*DELTA :
A(M)=(1.-VOL (1)) * (PROX (XMID+X¥D)-PROX (X#HID-XMD)) /(2. *XMD)
C
D(M)= (X (M)~X(M-1)) /2.
C
C~----PUT LEFT END OF NEXT ITERATION INTERVAL AT PRESENT X.
XL=XMID
C
30 CONTINUE
C
C |
Cmmmmm COME HERE TO COMPUTE A QUASI-STEADY VALUE FOR INNERMOST
c NODAL DISTANCE.
C
GOTO (41,42,43,44,45,46,47,48,49,50),L
C
41 CONTINUE
Cmmmmm ONE-D CASE..
D(J) = (PAR{1) =2« *¥X (J-1)) /6.
GOTU 40
C

42 CONTINUE
Cmmmmm TWO-D CASE.
U=PAR (1) ~2.*X {J-1)
V=PAR(2) -2.*X {J-1)
D(J)=U*V/ (4.*(U+V))
GOTO 40

IR mvm‘r e ]
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43 CONTINUE
C==-=-- THRED CASE.
U=PAR{1)=2%X (J-1)
V=PAR(2)-2*X (J-1)
W=PAR (3)-2%X {J-1)
D(J) =3.%U*V¥W/ (10.% (U*V+VEW+U*W))

GOTO 40 _'§
C
44 CONTINUE -
45 CONTINUE .
46 CONTINUE
47 CONTINUE
48 CONTINUE
49 CONTINUE
50 CONTINUE
D{J)=(X(J)-X(J-1)) /5.
C
40 CONTINUE
C
C----=PRINT OUT GEOMETRY DATA.
PRINT 27
27 FORMAT (1Hl,/% =====z=============== GEOMETRY DATA, NORMALIZED TO A
XDOMAIN OF UNIT VOLUME :::::::':::::'::::.:::::::::#/'/)
C
PRINT 23
23 FORMAT (# CONTINUUM IDENTIFIER VOLUME NODAL DISTANC
XE INTERFACE AREA INTERFACE DISTANCE#)
PRINT 24
24 FGRMAT (84X, #FROM FRACTURES#/)
PRINT 25,VOL{1),D(1)
25 FPORMAT (26H 1-FRACTURES %1% ,2 (4XE12.6))
PRINT 26,A(1),X{1) )
26 FORMAT (66XE12.6,7XE12. 6)
C

DO 100 M=2,J
PRINT 101,M,ABC (4-1),VOL(4),D(4)

101 FORMAT (* *I2,1H-*MATRIX*9X1H%*,A1, 1H*,8XE12.6,4XE12.6)
IF(H.NE.J) PRINT 102,4(M),X(H) _

102 FORMAT (66XE12.6,7XE12.6)

100 CONTINUE

C

PRINT 103
103 FORMAT (/100 (1ii=))

C .
RETURN -
END

C

C

C

FUNCTION PROX (X)

MATRIX VOLUME [VM=(1.-VOL{1))*v0) WITHIN A DOMAIN VO] WHICH

C
C==--=-THE PROXIMITY FUNCTION PRCX(X) HEPBRZSLNTS THE FRACTION OF
C
C I5 WITHLIN A DISTANCE X FRO# THE FRACIIJLRES.

?

AR
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COMMON/PROXI/L,TYPE (10) ,PAR{7)

NOW ASSIGN DATA FOR STANFORD LARGE RESERVOIR MODEL.
DATA A,B,C,D/.263398,.190754,.2032,.191262/

GOTO (1,2,3,4,4,4,1,1,1,1),L

CONTINUE

--~ ONE-D CASE.

PROX=2.%*X/PAR{1)
IF (X-GE.PAR(1) /2.) PKOX=1.
RETURN

CONTINUE

-~ TWG-D CASE.

THE MATRIX BLOCKS HAVE THICKNESS OF PAR{1) AND PAR(2),
RESPECTIVELY, MEASURED PERPENDICULAR TC THE FRACTURES.
THE PROXIMITY FUNCTION IS VALID FOR ARBITHKARY ANGLE
BETWEEN THE FRACTURE SETS.

PROX=2.% (PAR (1) +PAR(2) ) *X/ (PAK (1) *PAR (2))
X-4.%X*¥X/ (PAR (1) *PAR (2))

IF (X.GE.PAR(1) /2. .OR. X.GE.PAR(2)/2.) PROX=1.

RETURN :

CONTINUE

--- THREE DIMENSIONAL CASE.

U=2.*X/PAR (1)

V=2.%X/PAR (2)

W=2.*X/PAR (3)

PROX=UXV¥N- (UkV+U*H+VEW) +U+V+Y

IF(UeGEels .OK. V.GE.1. .OR. W.GE.1.) PROX=1.
RETURN ?

4 CONTINUE
CHh¥xkx MATRIX OF STANFORD LARGE RESERVOIR MODEL *%**&x

RECTANGULAR BLOCKS IN LAYERS B1,B2,M1,42,T1.
VR=8.%X*%3= (B, %D+, kA) *X+#%2+ (4. € A*B+ 2, ¥Bk%2) *X
IF (X-GE.B/2.) VR=A*B%B

TRIANGULAR BLOCKS IN LAYERS B1,B2,M1,42,T1.

VT= (6. +4.%SQKT (2.) ) *X**3
X= (A% (6o +Uo¥SQRT{24)) /242 #B* (2. +SQRT (2.} ) ) ¥X*%2
X+ (A¥B* (2. +SQRT (2.) ) +B*B) *X

IF (XaGE.B/ (2. +SCRT (2.))) VT=A%B*B/2.

RECTANGULAR BLOCKS IN LAYER T2.
VRT2=8. %X*k%3= (8. %D+, ¥C) XX #% 2+ (4. ¥CKD+2, *D*%2) X
IF (X«GE.D/2.) VRT2=C¥D*D

TRIANGULAR BLOCKS IN LAYER T2.
VIT2=(bae+4.*SQRT (2.) ) ¥X**]
= (C*¥ (6.+4,*¥SQRT (2.)) /2.+2.%D% (2. +SQRT (2.)) ) ¥X*%2

wmu:“:‘vnvvwr\ P
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K+ (C*D#* (2. +SQRT (2.) ) +D*D) *X
IF (X.GEaD/ (2.+SQRT (2.))) VTT2=C*D*D/2.

c
IF(L.EQ.4) GOTO 14
IF(L.EQ.5) GOTO 15
IF {L.EQ.6) GOTC 16

C

CH¥%xkx NOW COMPUTE TC1AL MATRIX VOLUME WITHIN DISTANCE X.
T4 V=5.%(5.%VR+U4 . *VT) +5. % VRT2+4 . *VTT2

Commmmm AVERAGE PROXIMIYTY FUNCTION FOR ENTIRE ROCK LUADING.
C
VIOT=35.%A%B*% 247, kCkD* ¥
C VOLUME FXACTION.
PROX=V/VTOT
RETURN
C
15 PROX= (5~ *VR+4.*VT) /(7. *A%B*B)
C----=-PROXIMITY FUNCTION FOR FIVE BOTTOM LAYERS.
RETURN
~
16 PROX=(5.%VRI2¢4.%VTT2) /(7. *C*D%D)
C--=---PROXIMITY FUNCTION FOR TOP LAYER.
EETURN
c
C
END
C
C
c
SUBROUTINE INVEK(F,X,XL,XR)
{
C===== THIS ROUTINE INVERTS THE PROXIMITY FUNCTION, TC GIVE A
C DISTANCE *X# FRCM FRACIURE FACES FOR A DESIRED FKRACTION *Fx
C MATRIX VOLUME. ‘
C
DATA TOL/1.E-10/
¢
Cmmmm- CHECK AND ADJUST UPPER LIMIT OF SEARCH INIERVAL.
22 Fk=PROX (XR)
IF (FR.GT.F) GOTG 20
XR=2.%XR
GOTG 22
c
Commmm = PERFORM ITEKATIVE BISECTING, TO OBTAIN A SEQUENCE OF NESTED
¢ AINTERVALS CONTAINING THE DESIKED POINT, X
20 XMID= (XR+XL)/2.
IF (XR-%L.LE.TOL*XR) GOTO 21
FMID=PROX (XAID)
IF (FMID.LE.F) XL=XMID
IF (FMID.GE.F) XR=XMID
GCTIO 20
C

21 CONTINUE
Commm—- COME HERE FOR CONVERGENCE.

i
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X=XM1ID
RETURN
END

"“”““W“"\‘""T!‘”*"‘\' [

SUBROUTINE HMINCHME

= THIS ROUTINE WORKS SEQUENTIALLY THROUGH THE ELEMENIS OF THE

PRIMARY MESH, ASSIGNING ALL SECONDARY ELEMENTS AND INTRA-BLOCK
CONNECTIONS.

COMMON/MINCDAT/J, NVOL, WHERE, VOL (25) ,A (25) ,D {25)
COMMON/PROXI/L,TYPE(10),PAR(7)
COMMON/CON/ABC (26)

DIMENSION DENT (16)

REWIND 4
READ(4,1) (DENT(I),I=1,16)

FORMAT (16A5)

WRITE(14,2) {DENT (I),I=1,12),J,NVOL,WHERE,TYPE(L)
FORMAT (12A5,5H *%*%* ,213,A4,A5) '

READ (4, 10) EL1,ELZ,NE,MAO,MA1,MA2,VOLX

FORMAT (A2,A1,12,10XA1,A2,A2,E10.4)

IF(EL1.EQ.2H .AND.EL2.EQ.1H .AND.NE.EQ.0) GOTO40

-FOR EACH PRIMARY ELEMENT, ASSIGN *J% SECONDARY ELEMENTS.

DO11 M=1,J

V=VOL (M) *VOLX

IF {M.EQ.1) WRITE(14,14) EL1,M¥,NE,MAO,MA1,MA2,V

IF (M.NE.1) WRITE{14,15) EL1,ABC(M-1),NE,MA1,MA2,V
FORMAT (A2,I1,12,10XA1,A2,A2,E10.4)

FORMAT (A2,A1,I2,10X1HM,A2,A2,E10.4)

IF (1.EQ.1) GOTO100

-COGME HERE 70 WRITE INTRA-BLOCK CONNECTIONS-=-~—-

AREA=VOLX*A {M~-1)

M1=M-1

IF (M.EQ.2) WRITE(15,104) EL10,M1,NEO0,EL1,ABC(#-1),NE,D(H-1),
XD (M) ,AREA

FURMAT (A2,I1,I12,A2,A1,12,19X1H1,3E10.4)

IF (M. NE.2)
XWRITE(15,102) EL10,ABC(M1-1) ,NEO,EL1,ABC(M-1) ,NE,D(M-1),D(#),AREA
FORMAT (2(A2,A1,12),19X1H1,3E10.4)

EL10=EL1
EL20=EL2
NEO=NE

CONTINUE

GOTO9



40 WRITE(14,103)
WRITE(15,103)
103 FORMAT (# #)
C
RETURN
END

46
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Figure 1. Idealized model of a fractured porous medium.
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XBL 813

¢ computational mesh for a fractured porous medium.

Basi

Figure 2.
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‘a. Fractures

Figure 3.

DA S

b.Connected fractures

MINC-concept for an arbitrary two-dimensional
fracture distribution.

¢.MINC partitioning

xBL 8211-2610
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Figure 4. MINC-partitioning for an idealized fracture
system.
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Figure 5. Schematic diagram of a MINC-mesh for a radial flow problem.
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GHIN,07,63.466601,PRUESS

*INPUT 65600B 10.55.42 10 FEB 83 VIA KP0000O

*HOLDOUT
eesaesDIABLC,EGHINCesa.s
LIBCOPY,DIABLO,LGO,GHINCG.
REWIND,LGO.

LINK,X.

COPY,TAPE14/RB, ORXR, TAPE15/RB,0RXR, NESH.

COPYSBF, NESHE,0UTPUT.
EXIT.

pusp,0.

FIN.

REWIND,INPOT.
COPYSBF,INPUT,OUTPUT.

ELEME
F 1 ROCK 100.

CONNE

PART THRED
10 90UT 50.
-01E-2 - 09E-2 «93E-2
20.E-2
ENDM1

Figure 7. GMINC input deck for

one-block

10.E~2

problem

20.E-2

30.E-2

vmm:"'{‘\?u"wprm ERI



CONTINUUH

1-FRACTURES
2-MATRIX
3-MATRIX
4-MATRIX
5-MATRIX
6-MATRIX
7-MATRIX
8-MATRIX
9-MATRIX

10-MATRIX

IDENTIFIER VOLUME
1% .100000£-03
®A¥ -9C00G0E-03
*B* -900000E-02
*C* -200000E-01
* D .400000E-01
*E* .100000E+00
*F* -200000E+00
®G* -300000E+00
®H* .200000E+00
* Tk

GECMETRY DATA, NORMALIZED TO A DOMAIN OF UNIT VOLUME ==s==s======s=z============

NODAL DISTANCE INTERFACE AREA  INTERFACE DISTANCE
FROM FRACTURES
0-
-119988E+00 0.
<375150E-02
-119916E+00 .750300E-02
-376395E-01 \
-119195E+00 -827821E-01 v
.B44677E-01 |
-117584E+00 -251718E+00
- 172484E+00
-114329E+00 -596686E+00
<454020E+00
-105979E+00 - 150473E+01
-103151E+01
.881848E-01 -356774E+01
-207781E+01
-573028E-01 .772337E+01
.230586E+01
-307937E-01 -123351E+02
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L2 Y]

;3

ELENE
F11
F Al
F B 1
FC1
F D1
FE1
FF 1
FG 1
Fiil
FIA1
CONNE
P 11F A1
F A IF B 1
FBIFCI1
FCI1FD 1
FDIFEN
F EIF F1
FFI1FG1
F G 1F H1
PHIFI 1
Figure 9.

ROCK
MOCK
NOCK
MOCK
MOCK
MOCK
MOCK
MOCK
MOCK
MOCK

-55-

- 1000E-01
«9000E-01
-9000E+00
«2000E+01
<4000E+01
«1000E+02
-2000E+02
«3000E+02
«2000E+02
- 1300E+02

10. «3752E-02 .1200E+02

1

«3752E~02 <3764E-01 .1199E+02
«3764EB-01 .B8447E-01 .1192E+02
«8447E-01 . 1725E+00 .1176E+02
«1725E+00 .4540E+00 .1143E+02
«4540RB+00 .1032E+01 .1060E+02
- 1032E+01 .2078E+01 .B8818E+01
«2078E+01 .2306E+01 .5730E+01
«2306E+01 .2533E+01 .3079E+01

Secondary mesh for one-block problem.
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BBBB,07,63.466601,PRUESS

*#INPUT 6600B 10.59.48 10 FEB 83 VIA KP0000O

*HOLDOUT
eseesDIABLO,BBBBeccace
LIBCOPY,DIABLO,LGO,GMINCG.
REWIND,LGO.

LINK,X.
CoPY,TAPEl4/RB, ORXR, TAPE15/RB,0RKR, BESH.
COPYSBF, MESH,OUTPUT.

EXIT.

buxp,0.

FIN.

REWIND,INPUT.
COPYSBF,INPUT,OUTPUT.

ELEME
coL 1 4 1GRAYW 1.E8

CONNE
COL 1COL 2 3 1 1 3 50.
PART TWO-D

6 4oUT 20. 40.

1.E-2 4.E-2 10.E-2 25.E-2

ENDMI

50.

1.E6 1.

Figure 10. GMINC input deck for vertical columnr



CONTINUUY

1-FRACTURES
2-MATRIX
3-MATRIX
4-MATRIX
5~MATRIX

6-MATRIX

===== GEOMETRY DATA, NORMALIZED TO A DOMAIN OF UNIT VOLUMNE ======
IDENTIFIER VOLUME NODAL DISTANCE INTERFACE AREA
* 1% .100000E-01 0.
| . 148500E+00
* % .400000E-01 . 135912E+00 _
| . 145809E+00
* B .100000E+00 ' .351293E+00
.138853E+00
®C ¥ .250000E+00 .966885E+00
| | -119709E+00
*D * .300000E+00 .141973E+01
.915983E-01
* EX g

-300000E+00 «163758E+01

s - — o i D - —n D A e

INTERFACE DISTANCE
FROM FRACTURES

0.
«271823E+00

-974410E+00

-290818E+01

-574765E+01

e e R e e e e e R e R e  E ab e

Figure 11. Geometry data for MINC-partitioning of vertical column.
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ELEME

co1
coa
coB
cocC
cob
COE
co1
COA
coB
cocC
coD
COE
col
COA
coB
cocC
caop
COE
col
COA
CoB
cocC
cob
COE
co1l
COA
coB
coc
CoD
COE

DU RV UNEEEELI T WWWWWWNNRNNNRD o «@ w e e -

CONNE

co1
col
co1
co1
cot
COA
coB
cocC
CcoD
co1
COA
COB
cocC
COoD
col
CoA
COB
coC
CoD
co1l
COoA
CcoB
coc
coD
co1
COA
CoB

CoD

1co1
2co1
3co1
4Co01
1COA
1C0B
1cocC
1CoD
1COE
2CO0A
2COB
2coc
2C0D
2COE
3coA
3coB
3coc
3cop
3COE
4CoA
4CoB
4coc
4COD
4COE
5C0A
5CoB
5CocC
5C0D
5COE

MUV VME EERFWWWWWNNNONNm awaoansEWwN

GRAYW
MRAYW
MRAY®
MBAYW
MRAYW
MRAYW
GRAYW
MBRAYW
MBAYW
MRAYW
MRAY®
MRAYW
GRAYW
MBAYR
MRAYW
MBAYW
MRAYW
MRAYW
GRAYW
BRAYN
MRAYW
MRAYN
MRAY®W
MRAYW
GRAYW
MRAYW
MBAYW
MBRAYW
MBAYW
MBAYIW

~-58-

-1000E+07
«4000E+07
-1000E+08
«2500E+08
«3000E+08
-3000E+08
- 1000E+07
~4000E+07
.1000E+08
-2500E¢08
«-3000E+08
.3000E+08
-1000E+07
~-4000E+07
- 1000E+08
-2500E+08
«3000E+08
.3000E+08
-1000E+07
-4000E+07
. 1D00E+08
«2500E+08
.3000E+08
«3000E+08
~1000E#+07
+4000E+07
-1000E+08
.2500E+08
-3000E+08
.3000E+08

3 .5000E+02 .5000E+02 .1000E+07 .1000E+01
3 .5000E¢02 .5000E¢02 .1000E+07 .1000E+01
3 .5000E+02 .5000E+02 .1000B+07 .1000E+01

3 .5000E+02 .5000E+02 .1000E+07 .1000E+01

10.

1 .1359E+00
1 .3513E+00
1 .9669E+00
1 . 1420E+401
10.

1 <1359E+00
1 .3513E+00
1 .9669E+00
1 . 1420E+01
10.

1 «1359E+00
1 .3513E+00
1 -9669E+00
1 . 1420E+01
10.

1 .1359E+00
1 .3513E+00
1 .9669E+00
1 1420E+01
10.

1 .1359E+00
1 .3513E+00
1 .9669E+00
1 . 1420E+01

-1359E+00
«3513E+00
-9669E+00
- 1420E+01
+1638E+01
-1359E+00
«3513E+00
«9669E+00
«1420E+01
.1638E+01
-1359E+¢00
-3513E+00
«9669E+00
- 1420E+01
- 1638E¢01
«1359E400
«3513E+00
«9669E+00
«1420E+01
.1638BE+01
« 1359E+00
«3513E+00
-9669E+00
. 1420E+01
- 1638E+01

. 1485E+08
« 1458E+08
«1389E+08
- 1197E+08
«9160E+07
- 1485E+08
- 1458E+08
.1389E+08
«1197E+08
-93160E+07
- 1485E+08
. 1458E+08
- 1389E+08
- 1197E+08
«9160E+07
- 1485E+08
« 1458E+08
«1389E+08
~1197E+08
«-9160E¢07
~- 1485E+08
. 1458E+08
- 1389E+08
- 1197E+08
«9160E+07

Figure 12. Secondary mesh for vertical column.
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cccc,07,63.466601, PRUESS
*INPUT 66008 11.01.27 10 FEB 83 VIA KP0000O
*HOLDOUT

eeeseDIABLO,CCCCancana

LIBCOPY, DIABLO,LGO,GMINCG.

REWIND, LGO.

LINK,X.
CoPY,TAPE14/RB, ORXR, TAPE15/RB, ORXR, MESH.
COPYSBF, NESH,OUTPUT.

EXIT.

puKPe,0.

FIN.

BREWIND,INPUT.

COPYSBE, INPUT,0UTPUT.

ELENE
ap 1 1 .3142E+03
AA 2 1 .2969E+04
AA 3 1 .1793E+05
AL 4 1 .9636E+05
AA 5 1 .4959E+06
AA 6 1 .2507E+07
A 7 1 .1257E+08
Ar 8 1 .6285E+08
CONNE
AA taa 2 1 .5000E+00 .1116E+01 .6283E+03
AR 2Ar 3 1 .1T116E+01 L2492E+01 .2031E+04
AR 3AA 4 1 2492E+01 .5564E+01 .5163E+04
AA 4AA 5 1 -5564E+01 .1242E+02 .1216E+05
AA 5AA 6 1 «1242E+402 .2774E+02 .2777E+05
AR 6AA 7 1 .2774E+02 .6192E+02 .6262E+05
AA 7ARr 8 1 .6192E+02 .1382E+03 . 1404E+06
PART ONE-D

5 20UT 10.

2.E-2 8.E-2

ENDMI

Figure 13. GMINC input deck for radial flow system.
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———————————————————— GEOMETRY DATA, NORKALIZED TO A DOMAIN OF UNIT VOLUME ========z======z==z=z==z=====

CONTINUUN IDENTIFIER VOLUME
1-FRACTURES *ix -200000E-01
2 Z—MATRIg ;‘*A* -.800000E-01
B—MATRIx *B* ~300000E+00
4-MATRIX *C* -300000E+00
5-MATRIX *Dx -300000E+00

NODAL DISTANCE

0.
-204082E+00
- 765306E+00
- 765306E+00

-510204E+00

INTERFACE AREA INTERFACE DISTANCE
FROM FRACTURES

- 196000E+00 0.

-196000E+00 -408163E+00
-196000E+00 -193878E+01
-196000E+00 -346939E+01

ot - o - —_ — b - Tt i o e e e Yo A e T i s i T o e i W o e A e o g by M i e A i i T o o o W e W e ot o e o fte . i > e S o S o all
et i oo i fioore i e~ e ool oo e i oG i RSB — o o g oot e

Figure 14. Geometry data for MINC-partitioning of radial flow system.
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I T

ELEME *kx 5 2007 OME-D
AAl 1 1 +6284E+01

AAR 1 ] 1 .2514E+02

AAB 1 ] 1 .9426E+02

AAC 1 N 1 .9426E+02

AAD 1 -] 1 .9426E+02

AA1 2 1 .5938E+402

AAA 2 ] 1 .2375E403

AAB 2 .| 1 .8907E+03

AAC 2 N 1 .8907E¢03

AAD 2 .| 1 .8907E+03

aAtl 3 1 .3586E+03

Ad2 3 .| 1 1434E+04

AAB 3 .| 1 .5379B+04

AAC 3 ] 1 .5379E+04

AAD 3 ] 1 .5379E+04

.Y ) 1 .1927E+04

AdA 4 n 1 .7709E+04

AAB &4 -} 1 .2891E+05

AAC 4 .| 1 .2B891E+05

AAD 4 [} 1 .2891E+05

AAl 5 1 -9918E+04

AAA S ] 1 .3967E+05

AAE 5 L} 1 .1488E+06

AAC 5 .} 1 .1488E+0e

AAD 5 .| 1 .1488E+06

ARl 6 1 .5014E+05

AAA b [} 1 .2006E+06

AAB 6 M 1 .7521E+06

AAC 6 a 1 .7521E+06

AAD 6 ] 1 .7521E406

AAY 7 1 .2514E+06

AAA 7 ] 1 .1006E+07

AAB 7 L.} 1 .3771E+07

AAC 7 .} 1 .3771E+07

AAD 7 .| 1 <3771E+07

Apl1 8 1 .1257E+07

AAA 8 .} 1 .5028E+07

AAB 8 -} 1 .1886E+08

AAC 8 N 1 .1886E+08

AAD B8 L.} 1 .1886E+08

CONNE

AAT 1321 2 1 .S5000E+00 .1116E+01 .6283E+03~.0
AA1 23A7 3 1 .1116E+01 L2492E+01 .2031E+04-.0
AAT1 3AA1 4 1 .2492E+01 .5564E+01 .5163E+04-.0
AAT 4AAT1 S 1 .5564E+01 ,1242E+02 .1216E+05-.0
AA1 S5AAT1 6 1 - 1282E+02 .2774E+¢02 .2777E405-.0
ARl 6AAY 7 1 .2774E+02 .6192E+02 .6262E+05-.0
AA1 7AA1 8 1 .6192E+02 . 1382E+03 .1404E+06-.0
AA1 1AAA 1 10. «2041E+¢00 .6158E+02
AAA 1AAB 1 1 .2041E+00 .7653E+00 .6158E+02
ARB 1AXC 1 1 .7653E+00 .7653E+00 .6158E+02
AAC 1AAD 1 1 .7653B+00 .5102E+00 .6158E+02
AAl 24AA 2 10. «2041E+00 .5819E+03
AAL 2AAB 2 1 .2041E+00 .7653E+00 .5819E+03
AAB 2AAC 2 1 .7653E400 .7653E+00 .5819E+03
AAC 2AAD 2 1 .7653E+00 .5102E+00 .5819E+03
AA1 3AaAAr 3 10. <2041E+00 .3514E+04
AAd 3AAB 3 1 .2041E+400 .7653E+00 .3514E+04
AAB 3AAC 3 1 .7653E+00 .7653E+00 .3514E+04
AAC 3JAAD 3 1 .7653E+00 .5102E+00 .3514E+04
AA1 4AAA 4 10. «2041E+00 . 1889E+0S
AAA 4AAB U 1 -2041E+400 .7653E+00 .1889E+05
AAB 4AAC 4 1 .7653E+00 .7653E+¢00 . 18B9E+05
AAC &AAD 4 1 <7653E+00 .5102E400 .1889E+05S
AA1 5A8A 5 10. «2041E+00 .9720E+05
AAA 5AAB 5 1 .2041E+00 .7653E+00 .9720B+05
AAB 5AAC 5 1 «7653E400 .7653E¢00 .9720E+05
AAC 52AD 5 1 .7653E+00 .5102E+00 .9720E+05
ALl 6AAA © 10. «2041E400 .4914E+06
AAA 6AAB 6 1 .2041E+00 .7653E+00 .4914E+00
AAB 6AAC 6 1 .7653E400 .7653E+00 .4914E+06
AAC 6AAD 6 1 .7653E+400 .5102E+00 .4914E+06
AAT 7AMA 7 10. «2041E+400 .2464E+07
AAA 7AAB 7 1 -2041E+00 .7653E400 .2464E+07
AAB 7AAC 7 1 «7653B¢00 .7653E+00 .2464E+07
AAC 7AAD 7 1 .7653E+00 .5102E+00 .2464E+07
AAT 8AAA 8 10. .2041E¢00 . 1232E+08
AMR BAAB 8 1 .2041E+00 .7653E+00 . 1232E+08
AAB BAAC 8 1 .7653E+00 .7653E+00 .1232E+08
AAC 8AAD 8 1 .7653E+400 .5102E+00 . 1232E+08

Figure 15.

Secondary mesh for radial flow system
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Triangular blocks
80 |- Rectangular blocks .
- 60 _
s Bottom layers
S
S 40 -
o
*20 -
() 1 1 | | | 1 1
0 I 2 3 4 5 6 7 8 9 o)
Distance from rock surface (cm)
XBL 8211~ 2646

Figure 16. Proximity functions for Stanford large reservoir model.
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Figure 17. Two-dimensional stochastiec fracture distribution.
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Figure 18. Proximity function for stochastic fracture distribution.
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