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ABSTRACT

Time-Domain Electromagnetic{ EM) codes are increasingly being applied to coupling prob—
lems in order to supplement and complement the experimental efforts in this area. Both
Finite-Difference Time-Domain (FDTD) and Finite-Element Time~Domain (FETD) tech-
niques are employed to calculate the fields and currents inside of a shielding body. The
size of the relevant detail in realistic systems, however, currently limits the usefullnes of
these codes. This detail problem is investigated, and a number of proposed solutions to
it are evaluated. Finally, some example problems, representative of current modelling
capabilities, are presented.

INTRODUCTION

Numerical modelling is increasingly being used to complement linear-coupling exper-
iments. There are a number of reasons for this. As interest moves from simple “generic”
objects to realistic military systems, analytic solutions become intractable. Codes also
have the distinct advantages over experiment that arbitrary incident fields may be applied
and field quantities may be sampled at any point or volume. Once the model has been
validated with experiment, changes and parameter studies are usually easier with software
than with experiment. These facts combine to make simulation codes a powerful tool for
understanding the physics involved in coupling to a particular geometry.

Despite these pluses, codes also have many limitations. As applied to realistic coupling
problems, these can be summed into a single word: DETAIL. The size of most systems of
interest in comparison to their smallest relevant features can be many orders of magnitude.
Coupling problems are particularly difficult, since the two main features of interest are
entrance slots and seams of millimeter dimensions and internal cavities of up to meter
dimensions. This is the single biggest problem in coupling modelling and is
pushing the state—~of-the—art. The following sections discuss the various problems this
introduces. Following this is a discussion of current research directions.

It should be noted that this discussion is equally true for both finite-difference and
finite-element codes. In both cases, we are assuming time-domain modelling, since EMP-
type applications require results for a broad frequency range. A frequency-domain ap-
proach requires a different code run for each data-point and becomes much too slow for
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THE PROBLEM OF DETAIL

As a typical problem for the following discussions, consider a missile in which the
electronics area is to be modeled. The whole area is 30 by 30 by 60 cm. The major
coupling path is a circumferential slot that is about 1 mm high. Interior bulkheads also
have slots of this dimension.

The first obvious problem is one of computer memory. For a finite-difference code with
uniform gridding (ref. 1), the cells must be a maximum of 1 mm. This yields a minimum
of 54 million cells. Add in some boundary cells for a radiation condition and the number
approaches 60 million cells. This is a big problem. Bigger than virtually any machine can
now solve.

The size of details is not the only constraint on cell size. Sampling criterion demand
that the cell size be less than the smallest wavelength of interest; a current rule of thumb
is 10 cells per wavelength. So, for the problem above, if the simulation is to run to 18 Ghz,
there is a minimum cell size of 1.7 mm. This requires 12 million cells independent of the
smallest detail in the problem.

An obvious solution to the detail problem is to use finite~element and its variable grid—
size capability. This does not really solve the problem. To avoid reflections, the grid size
can not change too quickly and there are limits to how small a cell can be made. Also, the
high amount of overhead memory required for finite—element works against you. Thirdly,
the limit on cells size due to wavelength still remains. And lastly, finite—element is actually
worse for the next major problem: Time.

The Courant stability condition requires that no field be able to propagate further
than one cell in a single time step. Thus.the upper limit on the time step is determined
by the smallest cell in the entire problem. Therefor, as the size of the interesting detail
decreases, the time step also decreases, and longer and longer runs are needed to get the
same frequency content. Finite-element solvers must also obey this limit and have the
added drawback of being less efficient than finite~difference routines. Finite-element also
suffers more heavily in the third problem of detail: mesh generation. _

For large, detailed systems, some sort of computer assisted model generation is a must
(ref. 2). One of the most promising of these is “solids modelling” which is used extensively
by the mechanical-engineering community. In this method, the user combines canonical
shapes in an abstract space to build the desired complex shape. High quality graphics
present the abstract “solid model” for review. This model is then “meshed”: the actual FD
or FE grid is generated from the solid model. This final step is actually quite difficult, even
for the simple rectangular grid of finite~difference, and is an area of continuing research.

Once models are generated, some sort of computer assisted verification and analysis is
also very important. With large models, it is very difficult to know if you have a correct
representation of reality, but the simulation code can easily produce answers that look
reasonable. High quality graphics tools can present the finite difference model and display
problems. Automatic analysis is a fairly new field in which the computer itself attempts to
find mistakes in the mesh. As more complex objects are modeled and mesh sizes increase,
this tool will become increasingly necessary.

In summary, highly complex coupling problems introduce three difficulties. First, small
aperture dimensions require small cell sizes and large amounts of memory. Second, these
small cell sizes create small time steps and cause long computer runs. Third, complex ge-

2



DT TN
LIS S |

\

|
ometri"es have gone beyond the ability of humans to mesh “by hand” and demand computer
assistance. Mesh generation is an active research topic at LLNL and elsewhere and looks
to be soluble. Any effort to do serious coupling modelling, however, must solve the first
two problems as well. The next section is a brief overview of several proposed solutions.

METHODS OF SOLUTION?

One of the most appealing methods of solution is that of “sub-gridding”. In this
procedure, the area containing the offending detail is worked almost as a separate finite—-
difference problem, with its own resolution and time step. To interface with the larger
problem, the grid size and time step must be integer fractions of the larger problem.
To avoid large numerical reflections at the interface, the grid size must not change too
drastically. Yee and Kasher have demonstrated a 2 to 1 sub—grid for finite-difference that
works fairly well for a single propagation direction (ref. 3).

In applying sub—gridding to EM coupling problems, however, one must remember the
very small size of important details in real systems. In our example problem, if you set the
cell size at 1 cm for a reasonable 54 thousand cells, 4 levels of sub—griding are necessary to
represent the slot. Besides the extreme difficulty in writing a general code to keep track of
all these separate grids, it is likely that spurious reflections would dominate the solution.

Another method of solution is to coarsely mesh the entire problem, at 1 centimeter
say, so that the slot area is entirely contained in a single cell. A special algorithm may
then be created that describes the physics of the slot in that cell. This algorithm is then
applied instead of the regular finite—difference routine. Yee, Pennock, and Kasher (ref. 4)
have demonstrated this technique for a 30 x 30 x 100 cm square box for slot dimensions
down to .38 mm. The results are quite promising.

The disadvantage with the “thin-slot algorithm” approach is that a different algorithm
is necessary for each new slot geometry encountered. Lapped joints, screw lids, or slots
that twist in three dimensions seem to occur in different combinations in every problem
and each requires a new algorithm. While this is not an insurmountable difficulty, it
means that each new project must include development and verification time for the new
algorithm.

An entirely different approach is that of applying integral equation methods to the
coupling problem. Integral equations have shown great success in solving slot in screen
problems. The idea, then, is to represent an incoming wave on a “simple” conducting
body containing a slot using time-domain integral equations. The internal cavities are
then solved by finite~difference time—domain methods, driven by the slot.

This method would have several advantages. It is no longer necessary to grid the exte-
rior of the object or to compute radiation boundary conditions. This frees up a significant
amount of memory and computation time. Also, integral equations methods have been
demonstrated to give very good solutions to the slot problem.

On the other hand, there are several problems. Integral equation methods require a
Green’s function for the space they operate in. Deriving the Green’s function for a missile
with several coupling paths is not impossible, but may prove difficult ~ and it must be
done for each new problem.. Deriving the Green’s function for the interior of a body
is intractable and thus, internal slots (inter-cavity) must be modeled with some other
method. Finally, the effort to integrate these two methods is probably not trivial.
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CURRENT APPLICATIONS TO COUPLING

Work is progressing at Livermore and elsewhere to apply current modelling capabilities
to coupling problems as well as to extend these capabilities using the methods described
above. Following are descriptions of three “sample problems” that are exemplary of current
work in the Livermore coupling modelling effort. These are not state~of-the—art problems,
rather they are the type of problem that is far enough behind state—of-the—art that one
can have good confidence in the results.’

A current project at Livermore is modelling coupling into a land-mine. As a first step,
we meshed and experimentally measured the mine-case with a simplified lid. The grid and
results are shown in figure 1. This is a very coarse mesh, being only 22 x 22 x 10 cells of
dimension .575 cm. Agreement is very good for such a “quickie” test.

The second sample experiment is a simple rectangular box with a circumferential seam.
This is an idealized object for studying similar seams in missiles and RVs. The box is 10
x 10 x 33 cells, each 3.048 cm on a side. The gap is the minimum size allowable without
special algorithms, 1 cell. The mesh and results are shown in figure 2. Note the very good
agreement in both location and Q factors of the resonances.

Finally, the same box was modeled using the thin-slot algorithm of Yee and Kasher
(refs. 3,4). In this case, the slot is .78 mm high in a 1.54 mm thick wall. The results are
quite good (figure 3), still predicting resonances and Q’s very well. Note that the ratio of
cavity height to gap width is 1300, a significant difference.

SUMMARY

In applying numerical modelling techniques to EM coupling experiments, the complex-
ity and detail of the objects cause many difficulties. In particular, the size of important
coupling paths such as slots and seams can be many orders of magnitude smaller than
important volumes such as internal cavities. These features require large amounts of com-
puter memory, cause small time steps and long computer runs, and demand specialized
software to assist in model creation. Solid modelling techniques look promising to solve
the latter difficulty, but no general method is yet available to solve the thin slot prob-
lem. Several methods, including sub-gridding, thin-slot algorithms, and integral equation
techniques, look promising, but each needs work to be a general solution to the problem.

Current workers in coupling modelling routinely model “generic” objects such as cylin-
drical cans or square boxes. These are used to understand the basic physics, mode struc-
tures, and coupling paths in their more complex analogs. At present, this is the strength
of EM modelling in coupling physics. The modelling of complex real systems must wait
for the future.
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Figure 2a: Box Mesh
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Figure 3: Box Data with Thin Slot
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