SAND--88-2668C
DE89 001679

The epsilon Dataflow Processor *

V.G. Grafe G.S. Davidson

J.E. Hoch V.P. Holmes

October 18, 1988

Abstract

The epsilon dataflow architecture is designed for high
speed uniprocessor execution as well as for parallel
processing. The epsilon architecture directly matches
ready operands, thus eliminating the need for associa-
tive matching stores. epsilon also supports low cost
data fan out and critical sections. A 10 MFLOPS
CMOS/TTL processor prototype is running and its
performance has been measured with several bench-
marks. The prototype processor has demonstrated
sustained performance exceeding that of comparable
control flow processors running at higher clock rates
(three times faster than a 20 MHz transputer and
24 times faster than a Sun on a suite of arithmetic
tests, for example).

1 Introduction

The dataflow model of computation has been the sub-
ject of study for over twenty years. Although much
progress has been made, only a handful of dataflow
computers have actually been built [1].

In the dataflow model of computation, operations
proceed on the availability of datarather than the the
action of a program counter as in the von Neumann
model of computers. Dataflow research began in the
late 1960’s as a study of models of parallel computa-
tion by Karp and Miller (2] and by Rodrigues [3]. As
the dataflow model was further explored, researchers
began to see that hardware and computer languages
could be developed to directly execute computations
as specified by the model. The earliest machines exe-
cuted graphs that did not change as the computations
developed, ie., they did not dynamically unfold loops
or procedure calls. Dennis and Ackerman [4] pro-
posed such a static model, together with a dataflow

*This work supported by the U.S. Department of Energy
at Sandia National Laboratories under Contract DE-AC04-

76DP00789.
MASTER

language VAL and the MIT engineering model, an
experimental architecture [5]. Two other static ma-
chines were developed, one in the U.S.A by Texas
Instruments [6] and the LAU in France |7].

Arvind and Gostelow developed the dynamic
model and proposed a new language, Id, and the
Tagged Token Dataflow Architecture for executing
dynamic dataflow graphs [8]. The dynamic model
extends the concept of data token matching for an
instruction by including a portion of the match-
ing tag that dynamically changes for each loop in-
stance. Several dynamic dataflow machines have
been built, most notably the Manchester computer
in England [9] and more recently the Sigma-1 in
Japan [10]. In the United States, the research at MIT
continues with the development and construction of
the Monsoon computer {11]. While these dynamic
machines, and the languages that support them, can
potentially uncover more parallel work than the static
machines, they have the difficult task of managing
their finite collection of tags to avoid resource alloca-
tion deadlocks.

Davidson and Pierce used strictly software ap-
proaches [12] and special purpose hardware accelera-
tors (DFAM [13]) to apply static dataflow principles
to high performance, real-time embedded multipro-
cessor computing for aerospace applications. This
early work utilized the SANDAC multiprocessing
computer [14].

These early Sandia research efforts utilized the
static dataflow model by coupling it to an existing
traditional processor. The knowledge gained from
this approach was later incorporated into a much
more powerful and general purpose family of pure
dataflow supercomputer elements, the epsilon pro-
cessors. The first of these processors have continued
the DFAM tradition of extremely fast firing rules by
means of the direct matching approach, while incor-
porating dynamic binding mechanisms and abandon-
ing the earlier reliance on von Neumann processors.

While the overall research scope of our effort in-

A (]
SV gy Ridnielr i

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

cludes processors and languages for parallel compu-
tation systems, the focus of this paper will be on
one part of that system, the epsilon processor. The
epeilon architecture is described in Sections 2 and 3.
Detailed descriptions of the characteristics and fea-
tures of the prototype processor are first presented,
followed by performance measurements. Section 4 de-
scribes some of the current work being done with the
epsilon architecture given the lessons learned from
the prototype. The principal advances in epsilon are
then summarised in Section 5.

2 The Prototype Processor

The epsilon prototype was designed with several prin-
ciples in mind. Chief among these were scalability
and design simplicity. The design philosophy followed
some RISC-like ideas, such as simple control hard-
ware, single clock instruction execution (where possi-
ble), and the availability of ways in which to combine
simple functions into more complicated ones. The
goal of the development was a high speed dataflow
processing element, suitable for use in a parallel pro-
cessing supercomputer.

The architecture couples a fast ALU with a tagged
memory. Results are routed either back to the local
tagged memory or to an external target. The external
target could be the tagged memory of another pro-
cessor, a peripheral, or the host processor. A block
diagram of the prototype processor is shown in Fig-
ure 1. The tagged memory contains idle or partially
enabled instructions, only one of which may become
enabled during a given clock cycle. An instruction
may be the recipient of up to two data operands, the
A and B fields, whose arrival enables the instruction.
The result of performing the operation can then be
routed back to the local memory through the local
feedback FIFO, or to the external network through
the external output FIFO, or both. The addresses
for this routing come from the LOCAL and GLOBAL
fields of the instruction. The instruction tags serve
to indicate the presence of data operands.

There is a single, FIFO buffered port from the host
into the processor and another from the processor to
the host. Communication with the host (and eventu-
ally other processors and peripherals) is accomplished
with memory-mapped transfers through these two
ports. Another FIFO buffered path is provided for
local feedback of intermediate results, allowing the
epsilon processor to take advantage of locality in a

computation. Both the feedback and external input
data are passed through an input stage and written
into epsilon’s tagged memory. The writing of data
into the tagged memory causes the matching tags to
be checked and updated (in a single clock), and may
fire an instruction. The data from the memory is
sent to the arithmetic and address calculation units,
where it is processed. Results are then written to
one, both, or neither of the output ports based on
the action of the conditional unit.

The prototype processor is constructed as a five
stage, non-blocking pipeline (five clock cycles are re-
quired from the arrival of a data value until the result
of the instruction it fires is returned to the tagged
memory). The pipeline is guaranteed to be non-
blocking by the dataflow model of execution. The
pipeline is kept completely full as long as there is
at least five-fold parallelism, making epsilon efficient
even with low degrees of parallelism. This is a marked
departure from many of the earlier datafiow comput-
ers that required hundreds of ready instructions to
keep their pipelines full ([15]).

2.1 Tagged Memory

Each word of the TAGGED MEMORY has several in-
dependently addressable fields. They are:

A input parameter data field.
B input parameter data field.

OP operation code, made of various sub-fields that
control the operation of the ALU, the ADDRESS
calculation, and the CONDitional section.

LOCAL destination address for feedback results,
made of sub-fields that select destination word
and field, and control the repeat function.

GLOBAL destination address for external results,
made of sub-fields that select destination word
and field, and control the repeat function.

TAGS monitor the state of the input parameter slots,
fires instructions when both have arrived.

The two one bit TAGS associated with each word
of the memory track the arrival and presence of data
in the two parameter slots. Writing the opcode of a
word causes the two tags to be cleared, ie., no data
has arrived. Writes to the input data slots modify
the tags and can fire instructions, according to the
following rule:

INPUTS

EXTERNAL
INPUT PORT

|

LocaL [L

TAGGED MEMORY

FEEDBACK | |

A {B OP |LOCAL | GLOBAL ; TAGS

=

y

& o

ALU \ \

ADDRESS

COND

OUTPUT
PORT

Figure 1: The epsilon processor prototype.

if (other tag is set)
then fire op and clear both tags
else set this tag

In this way, writes to an instruction may fire it, but
the instruction need only be checked when one of its
operands is written (this is the only time its status
is changed). The tag manipulation is performed in
a single clock, so the dataflow overhead is no greater
than the program counter manipulation of a control
flow machine.

Constant values are handled with a slight modifi-
cation to the scheme described above. Two bits of
the opcode are used as sticky tags, one for each data
field. A sticky data item is defined to be one that,
once written, is always available (eg., constants). The
tag rule is then modified to replace the tags with the
sticky tags rather than clearing them. Sticky tags
thus remain set once initialised, and non-constant
values behave just as before. Constant values do not
have to circulate or be regenerated, another depar-
ture from previous dataflow machines.

An objection to many previous dataflow architec-
tures was their lack of ability to detect and prefer-
entially schedule critical operations. In epsilon, in-
structions are fired in the same time it would require
to follow a scheduling algorithm, making the dynamic
detection of critical path operations of no importance.

2.2 Arithmetic operations

The prototype epsilon processor supports a full com-
plement of arithmetic and logic operations in its
ALU section. These include floating point ADD,
SUBTRACT, MULTIPLY, DIVIDE, SQUARE ROOT,
ABSolute value, NEGATE, MIN/MAX, COMPARE,
and SCALEing. Similar arithmetic functions are
available for integer data types. Logical operations
include NAND, NOR, AND, OR, XOR, XNOR, SET,
CLEAR, and a full set of SHIFTs and ROTATEs. Con-
versions between data types are also supported. Iden-
tity operations are also allowed (denoted PASSA),
and are used to build many forms of control con-
structs. The operations supported are determined
by the implementation of the arithmetic execution
unit, and were chosen to support the needs of scien-
tific computing. Other types of operations could be
implemented if needed to support different types of
computing.

2.3 Address Calculation

Destination addresses are computed in the ADDRESS
calculation section. This operation proceeds in par-
allel with the arithmetic execution, similar to con-
trol low machines with separate address calculation
units. There are two sections to the address calcu-
lation unit, one for LOCAL FEEDBACK destinations
and one for the EXTERNAL port. Each section is sim-

Figure 2: Use of static target.

ilar in operation with two inputs and three possible
modes of address calculation. One mode is for static
addresses known at load time and the other two are
for run-time calculation of destination addresses. All
three modes execute at the same rate. Selection of a
particular mode is by a sub-field of the opcode.

One input is the hardcoded target (address) that
is loaded with the code. This allows for destina-
tions known at load time, as shown in Figure 2 where
z = (w*x) +y is being computed. The arc from the
multiplication to the addition is known at load time,
so the target destination is loaded with the appropri-
ate address. This is also shown in loader notation on
the figure, where the /2 signifies instruction number
2, and the /A signifies the A parameter. The mul
tiply executes when both w and x have arrived, and
writes the product to the first parameter location of
the subsequent add instruction.

The second mode allows run-time computation of
a destination address. The second input to each side
of the address calculation section is a data value from
the tagged memory, the A data value for local feed-
back and the B value for external addresses. This
data value can be used as the destination address.
An example of this is shown in Figure 3, where the
PASSA instruction passes the input data value in the
A field to the address written to the input B field.
The T=B notation specifies that the target address
is taken from the B input field.

In this example, a data value, data, is to be written
to some address computed by adding an offset to a
base address. The result of the addition is written
to the B parameter of the PASSA instruction, where
it is used as the destination. Thus, this instruction
writes data to address base -+ offset.

Figure 3: Run-time address computation.

data index

T=BASE+B

Figure 4: Run-time indexed address computation.

The third mode of address calculation is used when
one of the addends to an address is known at load
time, but the other is not. An example of this is
shown in Figure 4. In this case, data is written to the
data structure element index away from the structure
start address BASE. BASE is written into the des-
tination field at load time. At run-time, when data
and index have both arrived the instruction will fire
and pass data to the address formed by adding the B
parameter (index) to the constant BASE. This mode
allows traditional accesses such as arrays to proceed
with no address calculation overhead.

2.4 Conditionals

The CONDitional section is used to implement con-
ditional constructs — if-then-else, while, etc. This
section controls the writes to the EXTERNAL and

FEEDBACK FIFOs. Its inputs are the status flags
from the arithmetic unit and the sign bits (used as

(TEST B)
FALSE TRU

FAy KDR

Figure 5: Switch operation in epsilon

Figure 6: Conditional used as enable to computation
graph.

boolean values) of the two input parameters, and its
mode of operation is determined by a sub-field of
the opcode. Traditional SWITCHes may be built as
shown in Figure 5. In this example, a data value,
data, is to be written to FADR if the control signal,
control, is false, and to TADR if it is true. This is ac-
complished in epsilon by using a PASSA instruction
to pass data and making the outputs conditional on
control. When this instruction fires data will be writ-
ten to one of the two destinations based on the value
of control.

The status flags from the arithmetic unit may be
used to implement a different sort of conditional
graph as illustrated in Figure 6. In this example the
values of two parameters x and y are compared. I
they are equal, z will be set to 0.001. If they are not
equal, Z will be set to 100.0. This implementation
of conditionals can result in lower cost conditional
graphs than the typical SWITCH-based implementa-

Figure 7: Additional instructions required for data
fanout to multiple instructions.

tions for case-like constructs.

2.5 Input Handling and Data Fanout

The dataflow scheduling mechanism used in epsilon
requires that each instruction have its data written
into the tagged memory associated with the opcode.
This allows high speed scheduling and execution, but
requires that data be duplicated if it is needed by
several instructions. The straightforward approach is
shown in Figure 7. Here three extra instructions are
needed to write the value x to four locations. This du-
plication requires extra instructions to generate addi-
tional copies of the data, and adds additional pipeline
transit times to the latency of the computation. We
have observed this overhead to be as much as 30 to
40 percent of the instructions executed in some codes.

This problem is addressed in epsilon through a
repeat-on-input [16] in the INPUTS section. Ad-
dress/data pairs are read out of the FIFOs, and writ-
ten to the location specified by the address. The ad-
dress contains fields specifying a repeat count and a
repeat step, as well as selecting a2 word and field in
the tagged memory. If the count is sero, the next ad-
dress/data pair is read from the FIFO. If it is nonzero,
the step is added to the address, the repeat count is
decremented, the same data is written to the new ad-
dress, and the cycle repeated. The fanout shown in
Figure 7 is shown again in Figure 8 using this repeat
feature with a repeat step of two words. The .4:2
after the x signifies that x is to be written to four
words with a step between words of two. The over-
head of data fanout is now reduced to the four clocks
required to write the data. No additional instructions

X.4:2
x1 x2 x3 x4
4(0P7) 6(0P2) 8(0P3)100P4)

Figure 8: The previous data fanout example using re-
peats, repeat count equals four and repeat step equals
two.

are required, and nothing is added to the latency of
the computation. The restriction that instructions
in a repeat chain must be loaded fixed steps apart
is easily satisfied since the dataflow execution model
makes no assumptions about instruction location.

The repeat-on-input’s exploitation of the locality
inherent in parameter duplication gives it advantages
over both trees of instructions to duplicate parame-
ters, as required in some dataflow machines [11,15],
and destination lists, another proposed approach.
With destination lists the execution pipeline must
be stopped while the list of destinations is serially
traversed, degrading performance. Alternatively, the
execution pipeline may be insulated from the list pro-
cessing with buffers. This incurs extra hardware cost,
and adds latency to the computation because of the
transfers from the execution pipeline to the list hard-
ware. epsilon’s repeat-on-input does not add any-
thing to the computation’s latency, and does not force
the processor pipeline to idle while data is written to
multiple instructions.

Static critical path scheduling information can be
exploited with the repeat-on-input. The order of in-
structions in a repeat chain gives control over the or-
der of instruction firing. Operations on critical paths
are placed at the front of a repeat chain, ensuring that
they will execute before any of the other operations
in the chain.

2.6 Critical Sections

Computers limited resources are often managed
through critical secisons, code that must be executed
without interruption from other resource requesters.

addend

(from external
input port)

read

(through
feedback path)

Figure 9: Computing the sum of an arbitrary input
stream using isolate and repeat.

The synchronization mechanisms required to limit ac-
cess to these critical sections in control low comput-
ers have received much attention. While dataflow
computers have built in synchronization, the problem
of uninterruptible instruction streams has not been
addressed in previous dataflow designs.

Uninterruptible streams of instructions are sup-
ported in epsilon through a mechanism called sso-
late [17]. Any epsilon instruction may be declared
to be tsolated. No inputs are read from the EXTER-
NAL input FIFO as long as the processor is isolated.
The processor becomes isolated when it fires an iso-
lated instruction, and remains isolated until the result
of that instruction passes through the FEEDBACK
FIFO and is written into the tagged memory. If that
result immediately fires another isolated operation,
the processor will remain isolated, allowing chains of
isolated operations to be executed.

An example of the utility of this function is shown
in Figure 9, where the sum of an arbitrary input
stream is computed. The running sum is initialized
to sero. Addends are written to the A input of in-
struction 1. Each addend fires the add, causing the
processor to add the addend to the sum in isolation.
The processor remains isolated until the new sum is
written back to the B parameter of the add. The
sum is also repeated to another memory location for
later use (by writing the read parameter). The ad-
dition in isolation ensures that no addends are lost
or overwritten. Other local feedback data may still
fire instructions when the processor is isolated. The
isolated operation therefore may not incur any per-
formance penalty. In the worst case, it will incur the
single pipeline transit required to feedback the new

value of the sum.

The isolation mechanism gives the programmer
more explicit control over the execution of a program
graph. It can be used for controlling asynchronous
access to code segments as in the previous example,
and for dictating the relative order of instruction exe-
cution. Instructions that enable many other instruc-
tions can be isolated, thus guaranteeing that their
results are generated before any external inputs are
allowed into the instruction stream.

3 Measured Performance of
epsilon

Several benchmark codes have been implemented in
epsilon’s native graph representation and run on the
prototype processor. The measured performances are
compared here to several control flow processors. The
codes included simple arithmetic diagnostics, random
number generators, and scientific computing bench-
marks. The performance measurements provide ex-
perimental evidence that a datafiow computer’s per-
formance can rival or better that of comparable con-
trol low computers. This demonstration relegates
many architectural arguments to second order effects.

Since it is difficult to precisely define what charac-
teristics would make a control flow processor com-
parable to the epsilon dataflow processor, two ap-
proaches were taken here. The first two sets of bench-
marks compared epsilon’s performance to that of con-
trol flow processors performing the same function.
The control flow implementations are comparable to
the epsilon implementation in that single board com-
puters built with these architectures are available and
require about the same amount of board space as
epsilon, cost about the same amount, and are built
with the same level of technology. This compari-
son therefore gives a demonstration of the epsilon
dataflow processor’s performance relative to control
flow processors built with similar resources.

The last set of benchmarks are representative of
scientific problems, so comparable processors were
chosen to be those with similar performance goals as
epsilon. This set of comparisons gives a demonstra-
tion of epsilon’s absolute performance compared with
control flow processors optimised for scientific com-
puting. The inherent imprecision in defining compa-
rable dataflow and control flow processors makes the
performance comparisons less precise than would be
the case in comparing control flow vector processors,

for example.

There is a long held belief that dataflow comput-
ers require more instructions than comparable con-
trol flow computers. Much of this has been shown
to be an artifact of parallel processing, rather than
dataflow processing [18]. In the benchmarks imple-
mented for the epsilon uniprocessor prototype, the
number of epsilon instructions required was similar
to the number required for the control flow proces-
sors. Most of the differences, when present, were due
to the CISC nature of the control flow processor being
compared. Memory indirection and other multi-cycle
instructions count as only one instruction, but actu-
ally cost many clocks of latency. Counting clocks,
as the execution timings do, shows that the epsilon
dataflow uniprocessor requires fewer primitive (one
clock) operations than the control flow uniprocessors.

3.1 Arithmetic Bench-

mark

Diagnostic

The first benchmark is a set of simple arithmetic di-
agnostics originally developed for testing the float-
ing point units of control flow processors. These are
tight loops that compute a complicated function of
the loop index. The function algebraically reduces to
a known value (typically sero or one), so the result
of the computation can be checked in each iteration.
An example of such a loop is shown in Figure 10.
The performance on this type of diagnostic is pre-
sented to demonstrate epsilon’s high speed execution
on problems with low parallelism, and to show that
the epsilon dataflow processor executes faster than
comparable control flow machines. The diagnostic
also demonstrates the ability of a single epsilon pro-
cessor to exploit available parallelism.

Four of these diagnostic codes were run. They em-
phasised different arithmetic operations: square root,
multiply and divide, add and subtract, and a mix of
these. They were coded in C for the contro]l flow
processors, and directly translated to epsilon’s na-
tive graph representation. In fairness to the control
flow processors, epsilon was restrained by the cross-
iteration antidependencies [19] to execute only one it-
eration at a time. As the execution times in Figure 11
show, epsilon at 10 MHs is faster than the control flow
computers. This speed advantage is apparent even on
essentially serial codes, even though the control flow
processors were running at higher clock rates (the
Sun at 16.67 MHs and the T800 at 20 MHz). These
results suggest that dataflow uniprocessor computers

O
e 100
wn
N 85 sec.
Li 80—
=
- .
= 60 _]
Q -
'_
] 40 _
Q
L -
>
L 20 _]
. 10 sec.
%) 4 6.9 sec. [_____l
z o [l
EPSILON INMOS T800 SUN 3/260
PROTOTYPE 20MHz clock 16.7MHz clock
10MHz clock

PROCESSOR

Figure 11: Average execution times on four arithmetic diagnostics.

#define MAX 1000000

#define MAXERR 0.1

main()

{ int i;
float error,j,jsqdl, jsqd2,oneoverj,
shouldbej, shouldbeO;

error = 0;
for (i=0;i<MAX:;i++)
{j = (float)i;
jsqdl =3+
jsqd2 =§*3
oneoverj = j / jsqd2;
shouldbej = jsqdl * oneoverj;
shouldbe0 = shouldbej - j;
if (shouldbeO>MAXERR)
printf ("\nERR,i=¥%d",i);
if (shouldbeO>error)
error = shouldbeO;
}
printf("max error = %¥f",error);

}

Figure 10: Sample arithmetic diagnostic loop.

are not inherently slower than comparable control
flow computers, especially on problems with low de-
grees of parallelism.

The dataflow processor’s ability to exploit paral-
lelism, even in a uniprocessor configuration, is evident
when the four diagnostic loops were run together.
The execution times shown in Figure 12 demonstrate
that the control flow machines must execute the inde-
pendent loops in sequence. epsilon is able to execute
them in parallel, exploiting the parallelism to keep its
pipelines completely full. epsilon’s speed advantage
is now even more apparent. The epsilon dataflow
processor is able to exploit any degree of available
parallelism, unlike the control flow processors.

3.2 Bit Manipulation Benchmark

The second benchmark, like the first, was originally
developed for control flow processors. It uses various
bit manipulations to generate a sequence of random
numbers. The algorithm is shown in Figure 13. The
benchmark results are presented in Figure 14 as the
time to generate one million random numbers. Again
epsilon is faster than the control flow processor, even
on a code with a low degree of parallelism. This
benchmark demonstrates that epsilon’s performance
benefits over comparable control flow processors are
present on bit manipulation operations as well as the
floating point functions used in the first set of bench-

O
oy 400
wn
B 340 sec.
L) 320_]
=
= -
= 240}
O i
—
DO 160
@]
Ll .
>
Ll 80_
1 40 sec.
< 4
- o 14 sec. l |
O
— EPSILON INMOS 7800 SUN 3/260
PROTOTYPE 20MHz clock 16.7MHz clock
10MHz clock
PROCESSOR

Figure 12: Total execution times for executing all four diagnostics together.

20
. 18.35 sec.

(@] 18]
Ll
n 16 |
Ly 14 |
= 12|
[_

10 4
pd
C_) 8 7.4 sec.
—
) 6]
S 4
X 2

0

EPSILON SUN 3/260
PROTOTYPE 16.7MHz clock
10MHz clock
PROCESSOR

Figure 14: Time to generate one million random numbers.

float rand()
{
#define M 13 /+ # of bits to shift */
#define NmM 18 /+ 31 - N = 18 */
#define NAXrange 2147483647.0
/* 2%xx(31)-1*/

static int a=524287;

register int b;

b =a > N;

a=a" 1;

b = a << NmM;

a = abs(a ~ b);

return (float) a / MAXrange;

Figure 13: Random number generator used as a
benchmark.

marks.

3.3 Scientific Computing Benchmark

The other set of benchmarks presented are some of
the Livermore FORTRAN Kernels [20]. These are
a series of FORTRAN kernels taken to be represen-
tative of a scientific computing workload. The spe-
cific kernels used were chosen for the simplicity of the
function performed, with no attempt to either avoid
or favor vectorisable codes. In these benchmarks,
epsilon was allowed to execute several iterations in
parallel as long as the data dependencies were ob-
served. epsilon’s performance on 8ix of these kernels
is shown in Figure 15, along with that of the Convex-
C1. The control flow vector computer is significantly
faster than epsilon on the kernels where the algorithm
vectorizes well, but its performance falls drastically
when vector parallelism is not available. epsilon’s
performance is similar on all the kernels since it is
determined by the ratio of floating point operations
to integer and control operations. The control flow
vector computer demonstrates much more sensitiv-
ity to the type (vector) and amount of parallelism
present.

The sustained performance of these two machines
on these kernels gives a better indication of what
might be expected on a typical workload. Figure 16
shows the harmonic mean of the performances in Fig-
ure 15, along with that of the Cray-1S on the same
kernels. From these results we would expect that

one epsilon processor would sustain higher through-
put than the Convex-C1 and about one-fourth the
throughput of the Cray-1S for a work load accurately
represented by these kernels. It is important to note
that the epsilon processor is a single board, wire-
wrap, 10 MHx CMOS prototype. The vector ma-
chines are multi-board, high speed computers con-
structed with advanced technology and custom chips.
The epsilon dataflow processor is able to exploit more
types of parallelism than the control flow machines.
Its performance is therefore determined by the to-
tal parallelism in the algorithm rather than how that
parallelism is expressed.

4 Current Work

The epsilon processor prototype described above is
only part of what is required for a parallel processing
computer. The efficient storage of large data struc-
tures is particularly important for scientific comput-
ing. The epsilon memory structure seamlessly in-
corporates arrays, organized as in control flow ma-
chines or as I-structures [21]. The memory model also
extends to implement semaphores, providing direct
hardware support for resource control. The repeat-
on-input feature on the memory boards allows the
exploitation of vector parallelism on data structure
reads.

The processors and memory units of a complete
epsilon system are organised into a global address
space. A high performance packet switched multi-
stage communication network based on 16 x 16 cross-
bars is currently under investigation as a means of
interconnection. The necessary network bandwidth
per processor depends on the percentage of instruc-
tions that generate network bound results. If, as our
simulations indicate, 20 to 40 percent of instructions
generate network bound results, processors sustain-
ing 10 MIPS will require a network connection capa-
ble of 4 million tokens per second (0.4 + 10M).

The epsilon research is proceeding on a path to
allow the epsilon dataflow architecture to take ad-
vantage of static direction (compiler and program-
mer) for more efficient operation, without sacrificing
the benefits of dataflow processing. This same design
space between dataflow and von Neumann comput-
ing [22] may also be entered by providing dataflow
synchronisation and task switching for von Neumann
machines, sharing dataflow’s parallel processing ad-
vantages with more traditional execution units. Both

10

PERFORMANCE, MFLOPS

CONVEX C1 EPSILON PROTOTYPE

rated at 20MFLOPS roted ot 10MFLOPS
PROCESSOR
LFK1 — HYDRO FRAGMENT LFK3 — INNER PRODUCT
LFKS — TRIDIAGONAL ELIMINATION LFK 11 — FIRST SUM
LFK12 — FIRST DIFFERENCE HR (Fc24 - FIND FIRST MINIMUM

Figure 15: Measured performance on selected Livermore FORTRAN Kernels.

6
n
4 5.31
e 5]
|
o
= 4]
zZ
<C
w3
=
O
= 2]
S 1.25
5 . 1.05 -
x 1
T
CONVEX C1 ZPSILON CRAY 1S

roted at 20MFLOPS PROTOTYPE rated ot 160MFLOPS
rated ot 1OMFLOPS

PROCESSOR

Figure 16: Harmonic mean of performance on FORTRAN Kernels.

11

avenues are actively being explored.

5 Summary and Conclusions

The performance measurements suggest that a
dataflow computer’s performance under even a low
degree of parallelism can be competitive with com-
parable control flow computers. They also show the
dataflow computer’s ability to exploit parallelism,
even in a uniprocessor configuration.

epsilon’s execution pipeline is only five stages. It
has the additional benefit of being guaranteed to be
non-blocking — once an instruction has fired its re-
quired operands are, by definition, ready. Interlocks
often required to ensure correct operation of pipelined
computer are not required in a dataflow computer
such as espsilon. Because of this, the design of the
epsilon prototype processor is in fact simpler than
the design required to build a conventional five-stage,
pipelined processor with optimal pipeline control.

Pipelining along the critical path is inherent in
epsilon. The latency between instructions is five
clocks. Pipelined computers must have some latency
between instructions along a strictly serial thread,
but conventional architectures have much greater dif-
ficulty finding other ready operations to cover that
latency.

The principal result of this work has been the
demonstration of a dataflow processor whose sus-
tained performance exceeds that of comparable con-
ventional processors. This comparison of measured
performances shows that epsilon is more efficient than
the other processors. The comparison was done in
the realm where conventional computers were pre-
viously believed to have an architectural advantage
over dataflow computers — uniprocessor systems,
running codes with low degrees of parallelism.

The epsilon architecture benchmarks illustrate
that a dataflow processor can take advantage of lo-
cality in a code, previously thought to be an exclu-
sive property of control! flow machines. The prototype
processor exploited locality through its local feedback
path and the repeat function. Intermediate results
may be routed through the FEEDBACK FIFO, de-
creasing network traffic and latency between instruc-
tions. The repeat feature is also used to exploit lo-
cality by allowing fanout with strictly local feedback
and by allowing multiple uses of the same data to be
satisfied in the minimum time.

The performance measurements on the Livermore

12

FORTRAN Kernels demonstrated the dataflow com-
puter’s ability to find and exploit any parallelism in
the code. This is a distinct difference from traditional
computers which require that the parallelism be in a
specific form in order to be useful to the processor.
Difficult programming practices and time-consuming
algorithm changes are made to adapt the parallelism
to a particular control low machine’s mold. These
practices greatly complicate the task of obtaining ac-
ceptable sustained performance from the machine,
and are often not portable to the next generation of
computers.

References

[1) V.P. Srini. An architectural comparison of
dataflow systems. Computer, March 1986.

[2] R.M. Karp and R.E. Miller. Properties of a
model for parallel conventions: determinacy, ter-
mination, queueing. SIAM journal of applied
math, 1390-1411, November 1966.

J.E. Rodriguez. A grapk model for parallel com-
putations. Technical Report TR-64, Dept. of
Elect. Engr., Project MAC, MIT, September
1967.

[3]

W.B. Ackerman and J.B. Dennis. VAL — a
value-oriented algorithmic language: prelsminary
reference manual. Technical Report TR-218,
MIT Laboratory for Computer Scicnce, June
1979.

[4]

J.B. Dennis and D.P. Misunas. A preliminary
architecture for a basic data-flow processor. In
Proceedings of the Second Sympossum on Com-
puter Architecture, December 1974,

[5]

M. Cornish, D.W. Hogan, and J.C. Jensen. The
Texas Instruments distributed data processor.
In Proceedings of the Lousstana Computer Ez-
position, pages 189-193, March 1979.

(€]

[7] A. Plas et al. LAU system architecture: a par-
allel data-driven processor based on single as-
signment. In Proceedings of 1976 International
Conference on Parallel Processing, pages 293-
302, 1976.

[8] Arvind, K.P. Gostelow, and W. Plouffe. an
asynchronous programming language and com-
puting machine. Technical Report TR 114a,

Dept. of Information and Computer Science,
Univ. of California, Irbine, September 1978.

[9] J. Gurd and I. Watson. Data driven system for
high speed parallel computing — part 2: hard-
ware design. Computer Design, 97-106, July
1980.

[10] T. Shimada, K. Hiraki, K. Nishida, and S.
Sekiguchi. Evaluation of a prototype data flow
processor of the SIGMA-1 for scientific computa-
tions. In 13th Annual International Symposium

on Computer Architecture, June 1986.

[11] G.M. Papadopoulos. The Monsoon architecture.

notes for MIT summer course 6.83s, March 1988.

[12] G.S. Davidson. A practical paradigm for parallel
processing problems. Technical Report SANDS85-
2389, Sandia National Laboratories, March

1986.

[13] G.S. Davidson and P.E. Pierce. A multiproces-
sor data flow accelerator module. In Milstary
Computing Conference, Conference Proceedings,

1988.

C.R. Borgman and P.E. Pierce. A hard-
ware/software system for advanced development
guidance and control experiments. In Proceed-
sings AIAA Computers in Aerospace Conference,
pages 377-384, October 1983.

J.R. Gurd, C.C. Kirkham, and I. Watson. The
Manchester prototype dataflow computer. Com-
munications of the ACM, January 1985.

[16] V.G. Grafe and J.E. Hoch. Repeat on Input: a
New Approach to Data Fanout tn Dataflow Com-
puters. Technical Report SD-4621, Sandia Na-
tional Laboratories, 1988.

[14)

[15)

[17] V.G. Grafe and G.S. Davidson. Uninterruptible
Groups of Instructions in Dataflow Computers.
Technical Report SD-4592, Sandia National Lab-
oratories, 1988.

{18] K. Ekanadham, Arvind, and D.E. Culler. the
price of parallelism. Computation Structures
Group Memo 278, MIT Laboratory for Com-
puter Science, 1987,

[19] D.A. Padua and M.J. Wolfe. Advanced compiler
optimisations for supercomputers. Communsca-
tions of the ACM, December 1986.

13

[20] F. H. McMahon. The Livermore Fortran Ker-
nels: A Computer Test of the Numerical Perfor-
mance Range. Technical Report, Lawrence Liv-
ermore National Laboratory, December 1986.

[21] Arvind and R.H. Thomas. I-structures: An effi-
cient data type for functional languages. Techni-
cal Report TM-178, MIT Laboratory for Com-

puter Science, September 1980.

[22] R.A. Jannucci. A dataflow/von Neumann archi-
tecture. Technical Report TR-418, MIT Labora-

tory for Computer Science, May 1988.

