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Abstract
The epsilon dataflow architecture is designed for high 
speed uniprocessor execution as well as for parallel 
processing. The epsilon architecture directly matches 
ready operands, thus eliminating the need for associa­
tive matching stores, epsilon also supports low cost 
data fan out and critical sections. A 10 MFLOPS 
CMOS/TTL processor prototype is running and its 
performance has been measured with several bench­
marks. The prototype processor has demonstrated 
sustained performance exceeding that of comparable 
control flow processors running at higher clock rates 
(three times faster than a 20 MHz transputer and 
24 times faster than a Sun on a suite of arithmetic 
tests, for example).

1 Introduction
The dataflow model of computation has been the sub­
ject of study for over twenty years. Although much 
progress has been made, only a handful of dataflow 
computers have actually been built [l].

In the dataflow model of computation, operations 
proceed on the availability of data rather than the the 
action of a program counter as in the von Neumann 
model of computers. Dataflow research began in the 
late 1960’s as a study of models of parallel computa­
tion by Karp and Miller [2] and by Rodriguez [3]. As 
the dataflow model was further explored, researchers 
began to see that hardware and computer languages 
could be developed to directly execute computations 
as specified by the model. The earliest machines exe­
cuted graphs that did not change as the computations 
developed, ie., they did not dynamically unfold loops 
or procedure calls. Dennis and Ackerman [4] pro­
posed such a static model, together with a dataflow
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language VAL and the MIT engineering model, an 
experimental architecture [5]. Two other static ma­
chines were developed, one in the U.S.A by Texas 
Instruments [6] and the LAU in France [7].

Arvind and Gostelow developed the dynamic 
model and proposed a new language, Id, and the 
Tagged Token Dataflow Architecture for executing 
dynamic dataflow graphs [8]. The dynamic model 
extends the concept of data token matching for an 
instruction by including a portion of the match­
ing tag that dynamically changes for each loop in­
stance. Several dynamic dataflow machines have 
been built, most notably the Manchester computer 
in England [9] and more recently the Sigma-1 in 
Japan [10]. In the United States, the research at MIT 
continues with the development and construction of 
the Monsoon computer [11]. While these dynamic 
machines, and the languages that support them, can 
potentially uncover more parallel work than the static 
machines, they have the difficult task of managing 
their finite collection of tags to avoid resource alloca­
tion deadlocks.

Davidson and Pierce used strictly software ap­
proaches [12] and special purpose hardware accelera­
tors (DFAM [13]) to apply static dataflow principles 
to high performance, real-time embedded multipro­
cessor computing for aerospace applications. This 
early work utilized the SANDAC multiprocessing 
computer [14].

These early Sandia research efforts utilized the 
static dataflow model by coupling it to an existing 
traditional processor. The knowledge gained from 
this approach was later incorporated into a much 
more powerful and general purpose family of pure 
dataflow supercomputer elements, the epsilon pro­
cessors. The first of these processors have continued 
the DFAM tradition of extremely fast firing rules by 
means of the direct matching approach, while incor­
porating dynamic binding mechanisms and abandon­
ing the earlier reliance on von Neumann processors.

While the overall research scope of our effort in-
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eludes processors and languages for parallel compu­
tation systems, the focus of this paper will be on 
one part of that system, the epsilon processor. The 
epsilon architecture is described in Sections 2 and 3. 
Detailed descriptions of the characteristics and fea­
tures of the prototype processor are first presented, 
followed by performance measurements. Section 4 de­
scribes some of the current work being done with the 
epsilon architecture given the lessons learned from 
the prototype. The principal advances in epsilon are 
then summarised in Section 5.

2 The Prototype Processor

The epsilon prototype was designed with several prin­
ciples in mind. Chief among these were scalability 
and design simplicity. The design philosophy followed 
some RISC-like ideas, such as simple control hard­
ware, single clock instruction execution (where possi­
ble), and the availability of ways in which to combine 
simple functions into more complicated ones. The 
goal of the development was a high speed dataflow 
processing element, suitable for use in a parallel pro­
cessing supercomputer.

The architecture couples a fast ALU with a tagged 
memory. Results are routed either back to the local 
tagged memory or to an external target. The external 
target could be the tagged memory of another pro­
cessor, a peripheral, or the host processor. A block 
diagram of the prototype processor is shown in Fig­
ure 1. The tagged memory contains idle or partially 
enabled instructions, only one of which may become 
enabled during a given clock cycle. An instruction 
may be the recipient of up to two data operands, the 
A and B fields, whose arrival enables the instruction. 
The result of performing the operation can then be 
routed back to the local memory through the local 
feedback FIFO, or to the external network through 
the external output FIFO, or both. The addresses 
for this routing come from the LOCAL and GLOBAL 
fields of the instruction. The instruction tags serve 
to indicate the presence of data operands.

There is a single, FIFO buffered port from the host 
into the processor and another from the processor to 
the host. Communication with the host (and eventu­
ally other processors and peripherals) is accomplished 
with memory-mapped transfers through these two 
ports. Another FIFO buffered path is provided for 
local feedback of intermediate results, allowing the 
epsilon processor to take advantage of locality in a

computation. Both the feedback and external input 
data are passed through an input stage and written 
into epsilon’s tagged memory. The writing of data 
into the tagged memory causes the matching tags to 
be checked and updated (in a single clock), and may 
fire an instruction. The data from the memory is 
sent to the arithmetic and address calculation units, 
where it is processed. Results are then written to 
one, both, or neither of the output ports based on 
the action of the conditional unit.

The prototype processor is constructed as a five 
stage, non-blocking pipeline (five clock cycles are re­
quired from the arrival of a data value until the result 
of the instruction it fires is returned to the tagged 
memory). The pipeline is guaranteed to be non- 
blocking by the dataflow model of execution. The 
pipeline is kept completely full as long as there is 
at least five-fold parallelism, making epsilon efficient 
even with low degrees of parallelism. This is a marked 
departure from many of the earlier dataflow comput­
ers that required hundreds of ready instructions to 
keep their pipelines full ([15]).

2.1 Tagged Memory
Each word of the TAGGED MEMORY has several in­
dependently addressable fields. They are:

A input parameter data field.

B input parameter data field.

OP operation code, made of various sub-fields that 
control the operation of the ALU, the ADDRESS 
calculation, and the CONDitional section.

LOCAL destination address for feedback results, 
made of sub-fields that select destination word 
and field, and control the repeat function.

GLOBAL destination address for external results, 
made of sub-fields that select destination word 
and field, and control the repeat function.

TAGS monitor the state of the input parameter slots, 
fires instructions when both have arrived.

The two one bit TAGS associated with each word 
of the memory track the arrival and presence of data 
in the two parameter slots. Writing the opcode of a 
word causes the two tags to be cleared, ie., no data 
has arrived. Writes to the input data slots modify 
the tags and can fire instructions, according to the 
following rule:
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Figure 1: The epsilon processor prototype.

if (other tag is set)
then fire op and clear both tags 
else set this tag

In this way, writes to an instruction may fire it, but 
the instruction need only be checked when one of its 
operands is written (this is the only time its status 
is changed). The tag manipulation is performed in 
a single clock, so the dataflow overhead is no greater 
than the program counter manipulation of a control 
flow machine.

Constant values are handled with a slight modifi­
cation to the scheme described above. Two bits of 
the opcode are used as sticky tags, one for each data 
field. A sticky data item is defined to be one that, 
once written, is always available (eg., constants). The 
tag rule is then modified to replace the tags with the 
sticky tags rather than clearing them. Sticky tags 
thus remain set once initialised, and non-constant 
values behave just as before. Constant values do not 
have to circulate or be regenerated, another depar­
ture from previous dataflow machines.

An objection to many previous dataflow architec­
tures was their lack of ability to detect and prefer­
entially schedule critical operations. In epsilon, in­
structions are fired in the same time it would require 
to follow a scheduling algorithm, making the dynamic 
detection of critical path operations of no importance.

2.2 Arithmetic operations
The prototype epsilon processor supports a full com­
plement of arithmetic and logic operations in its 
ALU section. These include floating point ADD, 
SUBTRACT, MULTIPLY, DIVIDE, SQUARE ROOT, 
ABSolute value, NEGATE, MIN/MAX, COMPARE, 
and SCALEing. Similar arithmetic functions are 
available for integer data types. Logical operations 
include NAND, NOR, AND, OR, XOR, XNOR, SET, 
CLEAR, and a full set of SHIFTs and ROTATES. Con­
versions between data types are also supported. Iden­
tity operations are also allowed (denoted PASS A), 
and are used to build many forms of control con­
structs. The operations supported are determined 
by the implementation of the arithmetic execution 
unit, and were chosen to support the needs of scien­
tific computing. Other types of operations could be 
implemented if needed to support different types of 
computing.

2.3 Address Calculation
Destination addresses are computed in the ADDRESS 
calculation section. This operation proceeds in par­
allel with the arithmetic execution, similar to con­
trol flow machines with separate address calculation 
units. There are two sections to the address calcu­
lation unit, one for LOCAL FEEDBACK destinations 
and one for the EXTERNAL port. Each section is sim-
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Figure 2: Use of static target.

base offset

1 ADD

Figure 3: Run-time address computation.

ilar in operation with two inputs and three possible 
modes of address calculation. One mode is for static 
addresses known at load time and the other two are 
for run-time calculation of destination addresses. All 
three modes execute at the same rate. Selection of a 
particular mode is by a sub-field of the opcode.

One input is the hardcoded target (address) that 
is loaded with the code. This allows for destina­
tions known at load time, as shown in Figure 2 where 
z = (w * x) + y is being computed. The arc from the 
multiplication to the addition is known at load time, 
so the target destination is loaded with the appropri­
ate address. This is also shown in loader notation on 
the figure, where the /2 signifies instruction number 
2, and the /A signifies the A parameter. The mul­
tiply executes when both w and x have arrived, and 
writes the product to the first parameter location of 
the subsequent add instruction.

The second mode allows run-time computation of 
a destination address. The second input to each side 
of the address calculation section is a data value from 
the tagged memory, the A data value for local feed­
back and the B value for external addresses. This 
data value can be used as the destination address. 
An example of this is shown in Figure 3, where the 
PASSA instruction passes the input data value in the 
A field to the address written to the input B field. 
The T=B notation specifies that the target address 
is taken from the B input field.

In this example, a data value, data, is to be written 
to some address computed by adding an offset to a 
base address. The result of the addition is written 
to the B parameter of the PASSA instruction, where 
it is used as the destination. Thus, this instruction 
writes data to address base + offset.

index

1 (PASSA

Figure 4: Run-time indexed address computation.

The third mode of address calculation is used when 
one of the addends to an address is known at load 
time, but the other is not. An example of this is 
shown in Figure 4. In this case, data is written to the 
data structure element index away from the structure 
start address BASE. BASE is written into the des­
tination field at load time. At run-time, when data 
and index have both arrived the instruction will fire 
and pass data to the address formed by adding the B 
parameter (index) to the constant BASE. This mode 
allows traditional accesses such as arrays to proceed 
with no address calculation overhead.

2.4 Conditionals
The CONDitional section is used to implement con­
ditional constructs — if-then-else, while, etc. This 
section controls the writes to the EXTERNAL and 
FEEDBACK FIFOs. Its inputs are the status flags 
from the arithmetic unit and the sign bits (used as
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Figure 6: Conditional used as enable to computation
graph.

boolean values) of the two input parameters, and its 
mode of operation is determined by a sub-field of 
the opcode. Traditional SWITCHes may be built as 
shown in Figure 5. In this example, a data value, 
data, is to be written to FADR if the control signal, 
control, is false, and to TADR if it is true. This is ac­
complished in epsilon by using a PASSA instruction 
to pass data and making the outputs conditional on 
control. When this instruction fires data will be writ­
ten to one of the two destinations based on the value 
of control.

The status flags from the arithmetic unit may be 
used to implement a different sort of conditional 
graph as illustrated in Figure 6. In this example the 
values of two parameters x and y are compared. If 
they are equal, z will be set to 0.001. If they are not 
equal, z will be set to 100.0. This implementation 
of conditionals can result in lower cost conditional 
graphs than the typical SWITCH-based implementa-

i(passa)

2 (PASSA) 3(PASSA)

xl^ \ x2 x3^ \ x4
(gpjDCOPj) <OP3)QP4)

Figure 7: Additional instructions required for data 
fanout to multiple instructions.

tions for case-like constructs.

2.5 Input Handling and Data Fanout
The dataflow scheduling mechanism used in epsilon 
requires that each instruction have its data written 
into the tagged memory associated with the opcode. 
This allows high speed scheduling and execution, but 
requires that data be duplicated if it is needed by 
several instructions. The straightforward approach is 
shown in Figure 7. Here three extra instructions are 
needed to write the value x to four locations. This du­
plication requires extra instructions to generate addi­
tional copies of the data, and adds additional pipeline 
transit times to the latency of the computation. We 
have observed this overhead to be as much as 30 to 
40 percent of the instructions executed in some codes.

This problem is addressed in epsilon through a 
repeat-on-input [16] in the INPUTS section. Ad­
dress/data pairs are read out of the FIFOs, and writ­
ten to the location specified by the address. The ad­
dress contains fields specifying a repeat count and a 
repeat step, as well as selecting a word and field in 
the tagged memory. If the count is sero, the next ad­
dress/data pair is read from the FIFO. If it is nonzero, 
the step is added to the address, the repeat count is 
decremented, the same data is written to the new ad­
dress, and the cycle repeated. The fanout shown in 
Figure 7 is shown again in Figure 8 using this repeat 
feature with a repeat step of two words. The .4:2 
after the x signifies that X is to be written to four 
words with a step between words of two. The over­
head of data fanout is now reduced to the four clocks 
required to write the data. No additional instructions
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Figure 8: The previous data fanout example using re­
peats, repeat count equals four and repeat step equals 
two.

are required, and nothing is added to the latency of 
the computation. The restriction that instructions 
in a repeat chain must be loaded fixed steps apart 
is easily satisfied since the dataflow execution model 
makes no assumptions about instruction location.

The repeat-on-input’s exploitation of the locality 
inherent in parameter duplication gives it advantages 
over both trees of instructions to duplicate parame­
ters, as required in some dataflow machines [11,15], 
and destination lists, another proposed approach. 
With destination lists the execution pipeline must 
be stopped while the list of destinations is serially 
traversed, degrading performance. Alternatively, the 
execution pipeline may be insulated from the list pro­
cessing with buffers. This incurs extra hardware cost, 
and adds latency to the computation because of the 
transfers from the execution pipeline to the list hard­
ware. epsilon’s repeat-on-input does not add any­
thing to the computation’s latency, and does not force 
the processor pipeline to idle while data is written to 
multiple instructions.

Static critical path scheduling information can be 
exploited with the repeat-on-input. The order of in­
structions in a repeat chain gives control over the or­
der of instruction firing. Operations on critical paths 
are placed at the front of a repeat chain, ensuring that 
they will execute before any of the other operations 
in the chain.

2.6 Critical Sections
Computers limited resources are often managed 
through critical sections, code that must be executed 
without interruption from other resource requesters.

addend read

feedback path)

Figure 9: Computing the sum of an arbitrary input 
stream using isolate and repeat.

The synchronization mechanisms required to limit ac­
cess to these critical sections in control flow comput­
ers have received much attention. While dataflow 
computers have built in synchronization, the problem 
of uninterruptible instruction streams has not been 
addressed in previous dataflow designs.

Uninterruptible streams of instructions are sup­
ported in epsilon through a mechanism called iso­
late [17]. Any epsilon instruction may be declared 
to be isolated. No inputs are read from the EXTER­
NAL input FIFO as long as the processor is isolated. 
The processor becomes isolated when it fires an iso­
lated instruction, and remains isolated until the result 
of that instruction passes through the FEEDBACK 
FIFO and is written into the tagged memory. If that 
result immediately fires another isolated operation, 
the processor will remain isolated, allowing chains of 
isolated operations to be executed.

An example of the utility of this function is shown 
in Figure 9, where the sum of an arbitrary input 
stream is computed. The running sum is initialized 
to sero. Addends are written to the A input of in­
struction 1. Each addend fires the add, causing the 
processor to add the addend to the sum in isolation. 
The processor remains isolated until the new sum is 
written back to the B parameter of the add. The 
sum is also repeated to another memory location for 
later use (by writing the read parameter). The ad­
dition in isolation ensures that no addends are lost 
or overwritten. Other local feedback data may still 
fire instructions when the processor is isolated. The 
isolated operation therefore may not incur any per­
formance penalty. In the worst case, it will incur the 
single pipeline transit required to feedback the new
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value of the sum.
The isolation mechanism gives the programmer 

more explicit control over the execution of a program 
graph. It can be used for controlling asynchronous 
access to code segments as in the previous example, 
and for dictating the relative order of instruction exe­
cution. Instructions that enable many other instruc­
tions can be isolated, thus guaranteeing that their 
results are generated before any external inputs are 
allowed into the instruction stream.

3 Measured Performance of 
epsilon

Several benchmark codes have been implemented in 
epsilon’s native graph representation and run on the 
prototype processor. The measured performances are 
compared here to several control flow processors. The 
codes included simple arithmetic diagnostics, random 
number generators, and scientific computing bench­
marks. The performance measurements provide ex­
perimental evidence that a dataflow computer’s per­
formance can rival or better that of comparable con­
trol flow computers. This demonstration relegates 
many architectural arguments to second order effects.

Since it is difficult to precisely define what charac­
teristics would make a control flow processor com­
parable to the epsilon dataflow processor, two ap­
proaches were taken here. The first two sets of bench­
marks compared epsilon’s performance to that of con­
trol flow processors performing the same function. 
The control flow implementations are comparable to 
the epsilon implementation in that single board com­
puters built with these architectures are available and 
require about the same amount of board space as 
epsilon, cost about the same amount, and are built 
with the same level of technology. This compari­
son therefore gives a demonstration of the epsilon 
dataflow processor’s performance relative to control 
flow processors built with similar resources.

The last set of benchmarks are representative of 
scientific problems^ so comparable processors were 
chosen to be those with similar performance goals as 
epsilon. This set of comparisons gives a demonstra­
tion of epsilon’s absolute performance compared with 
control flow processors optimised for scientific com­
puting. The inherent imprecision in defining compa­
rable dataflow and control flow processors makes the 
performance comparisons less precise than would be 
the case in comparing control flow vector processors,

for example.
There is a long held belief that dataflow comput­

ers require more instructions than comparable con­
trol flow computers. Much of this has been shown 
to be an artifact of parallel processing, rather than 
dataflow processing [18]. In the benchmarks imple­
mented for the epsilon uniprocessor prototype, the 
number of epsilon instructions required was similar 
to the number required for the control flow proces­
sors. Most of the differences, when present, were due 
to the CISC nature of the control flow processor being 
compared. Memory indirection and other multi-cycle 
instructions count as only one instruction, but actu­
ally cost many clocks of latency. Counting clocks, 
as the execution timings do, shows that the epsilon 
dataflow uniprocessor requires fewer primitive (one 
clock) operations than the control flow uniprocessors.

3.1 Arithmetic Diagnostic Bench­
mark

The first benchmark is a set of simple arithmetic di­
agnostics originally developed for testing the float­
ing point units of control flow processors. These are 
tight loops that compute a complicated function of 
the loop index. The function algebraically reduces to 
a known value (typically sero or one), so the result 
of the computation can be checked in each iteration. 
An example of such a loop is shown in Figure 10. 
The performance on this type of diagnostic is pre­
sented to demonstrate epsilon’s high speed execution 
on problems with low parallelism, and to show that 
the epsilon dataflow processor executes faster than 
comparable control flow machines. The diagnostic 
also demonstrates the ability of a single epsilon pro­
cessor to exploit available parallelism.

Four of these diagnostic codes were run. They em­
phasised different arithmetic operations: square root, 
multiply and divide, add and subtract, and a mix of 
these. They were coded in C for the control flow 
processors, and directly translated to epsilon’s na­
tive graph representation. In fairness to the control 
flow processors, epsilon was restrained by the cross­
iteration antidependencies [19] to execute only one it­
eration at a time. As the execution times in Figure 11 
show, epsilon at 10 MHs is faster than the control flow 
computers. This speed advantage is apparent even on 
essentially serial codes, even though the control flow 
processors were running at higher clock rates (the 
Sun at 16.67 MHs and the T800 at 20 MHs). These 
results suggest that dataflow uniprocessor computers
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#define MAX 1000000 
#define MAXERR 0.1 
mainO 
{ int i;
float error,j,jsqdl,jsqd2,oneoverj, 
ahouldbej,shouldbeO;

error “ 0;
for (i“0;i<MAX;i++)
■f j - (float) i;

jeqdl - j * j;
jsqd2 - j * j;
oneoverj “ j / jeqd2;
ahouldbej - j aqdl * oneoverj; 
shouldbeO ■* ahouldbej - j; 
if (shouldbeO>MAXERR) 
printf("\nERR,i-Xd",i); 

if (ahouldbeO>error) 
error “ shouldbeO;

>
printf("nax error ” Xf,error);

Figure 10: Sample arithmetic diagnostic loop.

are not inherently slower than comparable control 
flow computers, especially on problems with low de­
grees of parallelism.

The dataflow processor’s ability to exploit paral­
lelism, even in a uniprocessor configuration, is evident 
when the four diagnostic loops were run together. 
The execution times shown in Figure 12 demonstrate 
that the control flow machines must execute the inde­
pendent loops in sequence, epsilon is able to execute 
them in parallel, exploiting the parallelism to keep its 
pipelines completely full, epsilon’s speed advantage 
is now even more apparent. The epsilon dataflow 
processor is able to exploit any degree of available 
parallelism, unlike the control flow processors.

3.2 Bit Manipulation Benchmark

The second benchmark, like the first, was originally 
developed for control flow processors. It uses various 
bit manipulations to generate a sequence of random 
numbers. The algorithm is shown in Figure 13. The 
benchmark results are presented in Figure 14 as the 
time to generate one million random numbers. Again 
epsilon is faster than the control flow processor, even 
on a code with a low degree of parallelism. This 
benchmark demonstrates that epsilon’s performance 
benefits over comparable control flow processors are 
present on bit manipulation operations as well as the 
floating point functions used in the first set of bench-
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float randQ
{
♦define M 13 /* # of bits to shift */
♦define NmM 18 /* 31 - M - 18 */
♦define NAXrange 2147483647.0 

/* 2**(31)-1*/ 
static int a-524287; 
register int b; 
b ■ a » M; 
a “ a “ 1; 
b • a « NmM; 
a “ abs(a * b); 
return (float) a / MAXrange;

>

Figure 13: Random number generator used as a 
benchmark.

marks.

3.3 Scientific Computing Benchmark
The other set of benchmarks presented are some of 
the Livermore FORTRAN Kernels [20]. These are 
a series of FORTRAN kernels taken to be represen­
tative of a scientific computing workload. The spe­
cific kernels used were chosen for the simplicity of the 
function performed, with no attempt to either avoid 
or favor vect oris able codes. In these benchmarks, 
epsilon was allowed to execute several iterations in 
parallel as long as the data dependencies were ob­
served. epsilon’s performance on six of these kernels 
is shown in Figure 15, along with that of the Convex- 
Cl. The control flow vector computer is significantly 
faster than epsilon on the kernels where the algorithm 
vectorises well, but its performance falls drastically 
when vector parallelism is not available, epsilon’s 
performance is similar on all the kernels since it is 
determined by the ratio of floating point operations 
to integer and control operations. The control flow 
vector computer demonstrates much more sensitiv­
ity to the type (vector) and amount of parallelism 
present.

The sustained performance of these two machines 
on these kernels gives a better indication of what 
might be expected on a typical workload. Figure 16 
shows the harmonic mean of the performances in Fig­
ure 15, along with that of the Cray-IS on the same 
kernels. FYom these results we would expect that

one epsilon processor would sustain higher through­
put than the Convex-Cl and about one-fourth the 
throughput of the Cray-lS for a work load accurately 
represented by these kernels. It is important to note 
that the epsilon processor is a single board, wire- 
wrap, 10 MHs CMOS prototype. The vector ma­
chines are multi-board, high speed computers con­
structed with advanced technology and custom chips. 
The epsilon dataflow processor is able to exploit more 
types of parallelism than the control flow machines. 
Its performance is therefore determined by the to­
tal parallelism in the algorithm rather than how that 
parallelism is expressed.

4 Current Work
The epsilon processor prototype described above is 
only part of what is required for a parallel processing 
computer. The efficient storage of large data struc­
tures is particularly important for scientific comput­
ing. The epsilon memory structure seamlessly in­
corporates arrays, organized as in control flow ma­
chines or as I-structures [21]. The memory model also 
extends to implement semaphores, providing direct 
hardware support for resource control. The repeat- 
on-input feature on the memory boards allows the 
exploitation of vector parallelism on data structure 
reads.

The processors and memory units of a complete 
epsilon system are organized into a global address 
space. A high performance packet switched multi­
stage communication network based on 16 x 16 cross­
bars is currently under investigation as a means of 
interconnection. The necessary network bandwidth 
per processor depends on the percentage of instruc­
tions that generate network bound results. If, as our 
simulations indicate, 20 to 40 percent of instructions 
generate network bound results, processors sustain­
ing 10 MIPS will require a network connection capa­
ble of 4 million tokens per second (0.4 * 10M).

The epsilon research is proceeding on a path to 
allow the epsilon dataflow architecture to take ad­
vantage of static direction (compiler and program­
mer) for more efficient operation, without sacrificing 
the benefits of dataflow processing. This same design 
space between dataflow and von Neumann comput­
ing [22] may also be entered by providing dataflow 
synchronisation and task switching for von Neumann 
machines, sharing dataflow’s parallel processing ad­
vantages with more traditional execution units. Both
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avenues are actively being explored.

5 Summary and Conclusions
The performance measurements suggest that a 
dataflow computer’s performance under even a low 
degree of parallelism can be competitive with com­
parable control flow computers. They also show the 
dataflow computer’s ability to exploit parallelism, 
even in a uniprocessor configuration.

epsilon’s execution pipeline is only five stages. It 
has the additional benefit of being guaranteed to be 
non-blocking — once an instruction has fired its re­
quired operands are, by definition, ready. Interlocks 
often required to ensure correct operation of pipelined 
computer are not required in a dataflow computer 
such as epsilon. Because of this, the design of the 
epsilon prototype processor is in fact simpler than 
the design required to build a conventional five-stage, 
pipelined processor with optimal pipeline control.

Pipelining along the critical path is inherent in 
epsilon. The latency between instructions is five 
clocks. Pipelined computers must have some latency 
between instructions along a strictly serial thread, 
but conventional architectures have much greater dif­
ficulty finding other ready operations to cover that 
latency.

The principal result of this work has been the 
demonstration of a dataflow processor whose sus­
tained performance exceeds that of comparable con­
ventional processors. This comparison of measured 
performances shows that epsilon is more efficient than 
the other processors. The comparison was done in 
the realm where conventional computers were pre­
viously believed to have an architectural advantage 
over dataflow computers — uniprocessor systems, 
running codes with low degrees of parallelism.

The epsilon architecture benchmarks illustrate 
that a dataflow processor can take advantage of lo­
cality in a code, previously thought to be an exclu­
sive property of control flow machines. The prototype 
processor exploited locality through its local feedback 
path and the repeat function. Intermediate results 
may be routed through the FEEDBACK FIFO, de­
creasing network traffic and latency between instruc­
tions. The repeat feature is also used to exploit lo­
cality by allowing fanout with strictly local feedback 
and by allowing multiple uses of the same data to be 
satisfied in the minimum time.

The performance measurements on the Livermore

FORTRAN Kernels demonstrated the dataflow com­
puter’s ability to find and exploit any parallelism in 
the code. This is a distinct difference from traditional 
computers which require that the parallelism be in a 
specific form in order to be useful to the processor. 
Difficult programming practices and time-consuming 
algorithm changes are made to adapt the parallelism 
to a particular control flow machine’s mold. These 
practices greatly complicate the task of obtaining ac­
ceptable sustained performance from the machine, 
and are often not portable to the next generation of 
computers.
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