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ABSTRACT 

A method to repair — "blow-up" — the singularities of tbe Abclian (2,2) 

orbifolds to obtain the corresponding (2,2) Calabi-Yau manifolds is presented. 

This approach makes use of the fact that with each orbifold singularity there arc 

associated massless scalar Gelds — blowing-up modes — whose potential is flat to 

ail orders in the string perturbation theory. The zero vacuum expectation values 

(VEV'e) of the blowing-up modes correspond to the orbifold limit, while nonzero 

VEV's, jield the toiresponding Calabi-Yau manifold. One can then calculate 

explicitly, for such Calabi-Yau manifolds, the mass spectrum, Yukawa couplings, 

and all the other parameters of the effective Lagrangian by inserting successively 

all the background blowing-up modes with nonzero vacuum expectation value 

into the corresponding orbifold amplitudes. These results are exact at the string 

tree-level; however, they are perturbative in the blowing-up procedure. Mass 

spectra and Yukawa couplings for the blown-up Z$ and ZK orbifolds are explicitly 

calculated. In particular all the E§ singlets except the ones associated with the 

moduli-space of the blown-up orbifolds receive the mass; while the 27's and 27's 

do not pair up. 

• Worliupported by ttic Department ol Energy, contract DE-AC03-765FDDS1S. 
1 Invited talk presented al the International Workshop on Supeiclringt, Composite 

Structures, and Ca\n\o\o%y, University of Maryland, College Park, March l)-)8, 1987 
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A large variety of different compaclificalions of superHrinj theories have 

been proposed in the last few years. However, the compactifkationi whose 
four-dimensional effective field theories possess a realistic gauge group, N=l su-
pergravity and quarks and leptons as elementary fields, can be divided into two 
classes of candidates, which are believed to be cormislent supentring vacua to all 
finite orders in string perturbation theory: 

1. Compactifications of the E$ x E% heterotic string ' on a Calabi-Yau man­
ifold or a left-right symmetric orbifold. in which the ipin and gauge connections 
are identified. In these cases the theory possesses (2,2) worldaheet eupersymme­
try, i.e. there is both a left-moving (1) and a light-moving (r) N = 2 wortdsheet 
supticonformal algebra.' ' * 

2. More general compactifications of the heterotic string, which require only 
(super)conforma) invarianceof the worldsheet action, with the contribution of the 
matter fields to the Virasoro and auper-Virasoro central charges cancelling the 
ghost contribution, i.e. ?i = 26 and?, = 10, plus modular invariance or scattering 
amplitudes. * Space-time supersymmetric compactifications of this type — 
necessarily having at least (0,2) worldsheel supersymmctry — also appear to 
give rise to perturbatively stable vacua, ' Some of these constructions seem 
to be isolated vacuum solutions, i.e. one cannot tontinuously deform such a 
vacuum solution into another. Many of them can be explicitly constructed as 
asymmetric orbifolds. 

In this note we shall concentrate on the first class of models, from now on 
referred to as Calabi-Yau models and orbifold models. 

t In compictificitioiii of the type II • uperilrifif theory, it. t\ =- c t ~ 10, m u i l e " exciti* 
lion* cinnol be identified with the lUndtrd quirki, beciute muritil triplet* of SU(3) rod 
m u i l i u doublet* of SU[2) ire never pinent in the time model. Nate »lio thit cam-
pictVficitioai ot the feoiomc t lnni , with ?i = 7, = I E . <^ntit>l yield tptce-lime icimioni. 

$ Note that for (0,3) Ca!ibi-Ym b»ct|iound» ', i.t confifurtliom whcie the ipln and fkuge 
connections ire not identified, conformil jnvtrUnce ii leneiicilly spoiled by worldiheet 
init inloni ."' 1 1 ' 
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Orbifolds are especially attractive because interactions on orbifolds can be 
calculated exactly *t string tree level.3'"' Thus all the parameters of the tree-
level effective Lagrangian can be determined exactly, i.e. including contributions 
which an nonperturbative in the ratio •Ja'jR, where of is the string tension and 
R is the radius of the orbifold. For example, the effects ol worldshect instantons 
are automatically incorporated. 

On the other hand the methods for explicitly studying, ttiit.t interactions on 
Calabi-Yau manifolds is limited, partly due to the lack of an explicit metric. The 
field theory limit [y/tx'jR — 0) results ' *' elate that the numbers of particular 
types of rnasgless modes are determined by the Hodge numbers, the topologi­
cal invariants of the Calabi-Yau manifolds. Also, certain Yukawa couplings ' 
are determined by similar topological considerations. Nonperturbative contri­
butions to the effective Lagrangian for Calabi-Yau compaclifications have been 
explored by studying worldsheet instantons. One result of this a.. ilysis is 
that some parameters or the effective Lagrangian can be modified by worldslieet 
instanton contributions, which are proportional to exp(-.R a/a'). It has been 
shown ' that Yukawa couplings as welt as masses of the matter E6 singlets re­
ceive nonzero corrections in general, while 37 and 27 do not pair-up. However, 
the calculation Is not entirely explicit, due to the unknown metric. 

In this note we shall present a complementary approach to studying the 
complete tree-level effective Lagrangians for Calabi-Yau models by choosing a 
Calabi-Yau manifold which is constructed by repairing ('blowing-up') the singu-
laxities of an orbifold. This approach rnaVts -use of the fact that each orbifold 
singularity is associated with massless scalar fields — blowing-up modes — whose 
potential is flat to all orders in the string loop expansion. ' Thus any vacuum 
expectation value (VEV) of these modes corresponds to a vacuum solution to 
the string equations of motion, at least pcrlurbatively in the VEV's. The case 
with all blowing-up modes having zero VEV corresponds to the orbifold limit, 
while nonzero VEV'fi for the mode located at a particular singularity corresponds 
to repairing that singularity. Scattering amplitudes in the repaired Calabi-Yau 
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background — and hencu also parameters of the effective Lagrangian — <ui 
be calculated by inserting successively larger numbers of bnck$tom4 blowinj-up 
modes into orbifold amplitudes. Although this method is perturb&tive in the 
blowing-up VEV's, it enables one to obtain explicit values for parameters of the 
blown-up orbifolds, giving exact results at the string tree-tevel. 

In the fallowing we shall review the general properties of the Calftbi-Yau and 
the orbifold models, outline the calculation or the parameters of the effective 
lagrangian for the blown-uporbifolds, and present explicit results for Z\ and Z* 
blown-up orbifolds. 

CALABI-YAU AND ORBIFOLD MODELS 

Calabi-Yau models give rise to TV = 1 supergravity in four dimensions and 
gauge group" 

G = J? 6 x£V (1) 

The massk-ss, paTtttle spectivm consists of the gauge and the gravity superoiul-
tiplets as well as m o modes (moduli) of the Ricci-flat (to 0(a')) Calabi-Yau 
metric. In addition there are massless matter multiplets, 27's, 27's and 1't of 
Ed which are all singlets of £"». 

Due to the local light-moving, euperconfoimal in variance ' ' ' one can uw 
the picture-changing formalism, in which vertices for a given state appear with 
different ghost numbers for the bosonized right-moving supcrconforinal ghost $\ 
i.e. they appear in different 'pictures". ' Tree-level amplitudes involve col­
lections of vertices such that the total ghost number equals - 2 , ' The simplest 
form of the vertex operator for a space-time fermion is the - 1 / 2 picture, while 
that for & space-time boson is the - 1 picture. The picture-changing formalism 

* Spice-Lime tuperiyminetry impliet that (he Cilibl-Yiu tpin connection h«J Si!(2) halan-
amy; the orbifold ho'.oiismy (roup it • diiciele lubgroup of Sl>t3), In genera! the g»Uge 
group [1) could be broken further i t theeomj>»clific»tion ictle by employing the Wllior-
loop mechanism"' Howewer, this will not sflect the tiudy of the gencr»l structure of the 
effective Ligr»ngi»n. 
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enables one to obtain vertices in other pictures. For example, the vertex for a 
space-time boson in the 0 picture is obtained in the following way: ' 

Here (Vg(*))_i is the corresponding vertex operator in the - 1 picture and 

2> = 7>B l(A'\X', f\t) + dX»#> (3.a) 

is the worldsheet supersymmetry generator — the energy-momentum tensor. 
Here X Kid. t£ u c t t a siting besonic and feTtniomt cootilmales, respectively; the 
indices (i,i) » (1,2,3) and ft = (1,2,3,4) denote the three complex internal and 
the four space-time dimensions, respectively. Partial derivatives aTe with respect 
to the right-moving worldshcel coordinate z. For an orbifold model, Tj?* takes 
the simple form 

fp = dX'T + aXV- (3.4) 

The left- (right-) moving N = 2 supeialgebra of a (2,2) model incorporates 
a U(l)j (U(l)r) current algebra, generated l,y Jj = -i-^SHt (JT = -i-Jzdll,), 
where Ht[z) (H,(z)) is i free left- (right-) moving scalar field. Vertex operators 
can be classified according to their /fy,) charge. One can, for example, determine 
the HT charges for vertices for the massless chiral supermukiplets in various 
pictures. One finds that 

Hr = 1, - 1 picture, 
„ I 1 - t (") 
« , « = - - , --picture, 

far the four dimensional chiral superfield with positive chirality. 

Another feature of these eompaclifkaUons is that euery such vacuum can be 
continuously deformed to a nearby vacuum of the same (2,2) type . 1 B , " , 3 ? , a 7 ' In 
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field theoretical language this corresponds to * flat potential for masstass sealars 
which correspond to the 'moduli' of the compacttfied space. ' In the Calabi-
Yau case the moduli are identified with the iero modes of the metric. Namely, 
giving vacuum expectation values (VEV's) to the moduli in one conforrnally 
invariant background generates a nearby background configuration which is also 
a vacuum solution, at least perturbalively in these VEV's. This procedure can be 
carried out explicitly Tor the case of deforming an orbifold into the corresponding 
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Calabi-Yau manifold by giving VEV's to the 'blowing-up' modes ' ' and will 
be examined in detail later. 

Orbifalds as a special limit, of patticulai Calabi-Yau manifolds possess the 
following additional features: 

1. Enlarged gauge group. In addition to the gauge group (l) there is a gauge 
group Go C 5[7(3) which commutes with the discrete holonomy group of 
the oibifolds, e.g. the ZN holonomy group for a Zp orbifold. 

2. Enlarged summitry of (Ac tfftcttvt Lagrangian. A Zn orbifold possesses 
a Zfj symmetry which can be described as an additional selection rule on 
interactions. Blowing-up modes carry nonzero charge under these symme­
tries. Thus many nonzero parameters of the Calabi-Yau manifold become 
zero in the orbifold limit, including certain mass terms and Yukawa cou­
plings of matter mulliplets. 

3. Increased wortdshect symmtiry. tn particular, the 1/(1)|| |r) worldshect sym­
metry of the (Ijj-sectoi is enlarged to \V{\) x U[\) x t/(l)] { r, r) for a Zs 
orbifold. Thus, instead of the two conserved charges #(i, r) s £ i = i ^r,(i,r)i 
there are now six conserved charges Ht.{t,r)> "i,(t,r)t " nd ^3,(l,r)- This en-
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larged symmetry enables one to construct uaetlf/ ' the vertex operators 
for the emission of masslcss states at the string tree-level. 

CALCULATION OF THE AMPLITUDES FOR THE BLOWN-UP ORBIFOLDS 

The calculation or parameters of the effective Lagrangian in a particular 
theory reduces to the study of the corresponding amplitude of masstess particles 
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emitted from the string propagating in this particular background. For the blown-
vp orbifold this would correspond to calculating the corresponding amplitudes by 
including in the oriifold amplitudes a successive number of vertices corresponding 
to the blowing-up modus 6**, which now have nonzero VEV's. 

We shall concentrate on the following Yukawa»type n»point function: 

Here V>, and V*> denote the vertices for the emission of the m^ssless rermionic 
and bosonic mode respectively. 

This amplitude enables one to probe the parameters of the supcrpotenlial 
for the blown-up theory directly, unlike the amplitude for n-boscms*. Also the 
gaugino masses can be computed directly, thus determining the new gauge group 
in a direct way . 

The mass terms for the fermions ^ and û j arising from the chiral mulliplei 
is obtained by choosing the appropriate vertex operators VY, and Vp3 while a!) 
the bosonic vertices VB, correspond to the vertices for the blowing-up modes. 
On the other hand the mass term for the mixing between the fermions, -̂ ., and 
the gauginos can be obtained by inserting in (5) vertices for blowing-up modes 
as well as their complex conjugates, because this arises from the D-term as well. 

Yukawa couplings for two fermions and the boson of the chiral multiples are 
obtained from (5) by taking all but one bosonic vertices \'B, to be the vertices 
for the blowing-up modes. Similarly, one can calculate any higher point function 
in the superpotentiat, thus obtaining all the terms in the effective Lagrangian. 
We shall mainly concentrate on the masses and Yukawa couplings, while higher 
dimensional terms are explored elsewhere. ' 

• Note, that the in thi» cue one i» probing, the icalar potential, which it the mixture of the 
F- om/D-termi. 

1 The new gauge group can in principle be determined alto by calculating the laugc boion 
mute*. Howev«,thu appear' to be mote complicated. 
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With this procedure the value or the parameters in the tuperpotentiat can 
be determined in principle to all order* in the Mowing-tip procedure? *.«. by 
calculating the particular amplitude (5) for all the possible insertions of the DM 
vertices. 

Since nil the vertices are in the orbifold limit, they can be constructed ex-
*ctly. " In the - 1 picture of the r-sector (V«)„i is in general of the following 
form: 

(VD)-1 = «xp(~d^expf/*,,X")/(A *,d>X, *). untwisted sector (6.0) 

(VB}„ i ™ exp(-<£| J ] <7i«, exp(*fcMX | , ,)ff(6>tX,aIJ? ,

ti)t twisted Bettor (6.6) 
» 

Here i i s l , . . . , < and (t, t) — 1, . . . , 3 again refer to the four space-tune and the 
nix compactified dimensions, respectively. The bosonic twist fluids c* and the 
fcrmiouk twist fields s' correspond to the emission of the rnassless state from the 
propagating string with the twisted boundary conditions in the r-scctor for the 
bosonic A'* and the furmionie *!>' coordinates, respectively, Fermiank fields are 
presented in terms of the three besonie V{l)T charge: 

0' = exp[t(Jf.)r|, ^ = exp|-.-(W,)r] M 

a* m «p|i,k,/JV(J71)r]. J* *= exp|-iJt»/JV(«,)r| (7,t) 

The three separate charges {Hi)T ihould satisfy constraint {4)t namely Sr ~ 
£ . ( # . ) r » £ , kilN = 1. For example, for the Za orbifold Jfc./tf m | , j = i.a.J. 

t IK 0*e uifkcuytomeitR Itscoty u mm VMt it wtmttj Hut to kU otden in Vht iirmt i«>p 
coiicctiDiu, due to the non-renorm»lintion theorem '. 

$ One could »rf.u* that thh tcult it tbo ttott in the blowing-up procedure if *jŵ », *>»d 
not for example 1/>M'», cormpand to the representation of th< field* in the L»*.r»nji*n. 
Then, *iftcethe tuptfp«*n«Ulthoutd fee an *u*tytk faiwtien of itit fie!d§; i t the tetim 
in lfc* effective tvpet potential cannot Ike genert'td from interaction teim» which have a 
nonpcOynomi*! dependence on »M GeUi. Note, that (hit eUttmeni U not true for the 
guiglno mwicf and the chiral multiple feimionk mwiet which mix with giuginoi. In 
tbi* CMI thwe m«iei do sat uiie from the F laxm, thin the argument of the *ft*lytkltjf 
doee not apply. 
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On the other hand, functions / And g, which carry the information of the I-seetor, 
should be constructed explicitly, due to the lack of the loctl auperconformal 
invariancein the 1-seetor. Then the V[l)u charges corresponding to the fermionic 
fields, »', are determined by the lattice vector and the bosonic derivatives dtX 
are determined by the type of bosonic creation operators in the 1-sector. For 
example, a state of the twisted sector represented as 5!.^. i N [*i//*•', fci/JV.^i/W), 
would have a = di&S with * = exp [iki/N[Hi)i + ik2(N(H2)t + ik3/N(H*)t]? 

From (Vt)-i, (^B)O in the O-picture is obtained by using eq. (2). From the 
form (3) for Tf and eq. (7) one sees that in this case (VB)O consists in general 
of terms with Hr = 0,2, and — 1, respectively. 

For the fermionic vertices Vp one can also analogously use the picture chang-
ing formalism in the r-sector, while the structure of the 1-sector remains the 
same as in (6). For example ' the fermionic vertex for the untwisted and the 
singly twisted sector in the - 1 / 2 picture can be written in the following way: 

( V » - 1 / 3 = exp(-tf/2)«I]exp [ -H. /^^exp ( i f e , , * " ) / ^ ^ * , ^ ) , 

untwisted sector 

(»V)-i/a = « p ( - * / 2 ) u JJcr.-exp ( - i . , / 2 )* exp ( .Tr^^s^AT.^jf.S), 
i 

twisted sector. 
(8.b) 

Here u refers to the spinor of the four uncompactified dimensions. Analogously 

1 The function g lor the cue or the blowing'up mode* t w can be obtained in the fol-
lowinf way. It lutni out thai the vertex operator of t M for the 1-iector ia the ver­
tex operator in the 0-pkturt; i.e. thii Tertex it obtained by ucing (2). However, now 
all the notation eppl|es to the 1-tector. For example in the Z 4 oibifold one would get 

fi = Um,-*'£:d,X,$Y]) exp[.jfe y/*'(#,),) with kj(N = f The . t i le bM it in turn 
described u 

,o ),[ 5i, /.|-H.!),, S'., / 1 | |.-l.|) | + 1>.1„|i.i.-l) i]. 

0 



one can obtain the vertex operators for the other twisted sectors. Again the 
constraint (4) for Hr is satisfied, i.e. HT = ^ki/N - | = - I . 

With the explicit form of the vertices (6,3,8), one can now evaluate the am­
plitudes in the background of the blown-up orbifolds, i.e. (6M) 9 S 0- These 
amplitudes should obey the following selection rules. ' 

1. The total 4> charge equals -%, 

2. (ffi)r charges should be separately conserved. 

3. [Hi)i charges should be separately conserved. 

4. The amplitude should be twist invariant. By this one means that In the 
amplitude the twist numbers J, associated with the bosonic twist fields 0J' 
of the gJi twisted sectors should sum up to (OmodTV). 

5. The amplitude should be invariant under the automorphisms of the lattice. 
In general the amplitudes depend on the bosonic coordinates X'. Trans­
formations on these coordinates which are in the group automorphism of 
the lattice should certainly leave the amplitudes invariant. 

€. The location of the twist fields should Eatisfy the space group selection rules 
described in detail in ref. 23. They essentially determine the location of 
siring states, i.e. the location of the fixed points at which the particular 
states are located. 

Selection rules (1-4) can be in general trivially satisfied. The worldsheet 
ferrnionic degrees of freedom are taken care of by applying the selection rules (1-
3). Note also thai the (H,)t conservation essentially implies that the amplitude 
should be gauge invariant. Also some amplitudes could be determined to be zero 
by simply applying the selection rule S. 

When calculating the amplitudes (5) which probe the terms of the superpo-
tential, one sees that only the terms of (VB)O with H, = 0 contribute. Namely, 
using (4) (i.e. for V{-i/i (-j), HT = -J-,1, respectively), one sees that only the 
terms of (Vg)o proportional to dX'ip' survive in such amplitudes in order to 
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conserve the total Hr charge. Thus, the terms in (Vj»)o coming from cWV***. 
i.e. terms proportional to the four-dim»nsional external momenta Jf, do not 
contribute. Then such amplitudes assume the following form in general; 

(^i /sV_, /»V„ I r 0 . . . l 'b>«(a,Jf i fcX*,...,a^S) - (9) 

This in turn implies that the effective superpotential calculated in this way cannot 
be mimicked by a massless exchange of gauge or gravitational particles because 
the amplitudes of such exchanges would be proportional to fe5 which are absent 
in our case. This is a plausible result, since it only confirms that the interactions 
arising from the D-term cannot mimic the F-terms. Thus if one obtains a zero 
amplitude Tor a certain term, this is a genuine MID value of the corresponding 
term in the superpotcntial. On the other hand the first nonzero value for a 
certain amplitude in the blowing-up procedure would also directly determine the 
value of the corresponding term In the superpotential. 

EXPLICIT RESULTS- MASS SPECTRUM 

1. FouT'dimtnsionol N=J jupcrpraii'fy multipteti. We have explicitly verified 
that these multiples remain massless, thus confirming that preserving the 
superevjjvmeliy of the blown-up oibifolds remains intact. 

2. Gauge muHipltts. To the leading order in blowing-up procedure we checked 
explicitly that the additional gauge group Go is completely broken, thus 
leaving the gauge symmetry of the blown-up orbifold to be Eg x E6. The 
mass-term for the mixing between the gauginos and the Et, singlets 6/ of 
the twisted sector which have bosonic excitations in the I-scctor is in the 
leading order of the blowing-up procedure of the following form* 

» The mixing between the giuginui and (he smgleU without botonk utciUtiorw (in the 
l-eectot) | , ( which do ekilt In the Z4 oiblfsld lufM aut to be leto became the (election 
rule S it not aatiificd. 

t One abo noticea that the blowing-up model fa which ate a particular combination of tt 

model iatt not couplr to gauging*) in agreement wilh the otuervition that th«e model 
remain n m l n t alio after the blowing-up procedure. 
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(v-wVlWVivV)^^ «<M* 0(i) (io) 

3. 2727" pairing. We studied the question whether 272? pair-up for the Z\ 
orbifold. For the most genera! cubic Z* lattice we found that there is no 
pairing-up of 27 and 2? to all orders in the blowing-up procedure. This 
result is due to the selection rule 5. Namely, the amplitude for this mass 
term is proportional schematically to; 

m„jt*{dXj»») (11) 

Here the partial derivative is with respect to z and I. This equation is true 
for any number of the blowing-up mode insertions. One then notices that 
for the 2A orbifold one can independently rotate the third coordinate by 
180°. This in turn ensures the zero value of amplitude ( l l ) to all orders in 

l 
the blowing-up procedure. 

4. E$ singlets. 

(a) Modes corresponding to the moduli space. These are the modes cor­
responding to the moduli space of the six-torus and the blowing-up 
modes associated with the orbifold singularities. We checked explicitly 
that the modes have no mass terms" in the background of the blown-up 
orbifold. 

(b) Other E& ringlets. In general these modes acquire nonzero mass. For 
the Zz orbifold, for example, there are nine euch modes located at 27 

% Note, in the cue of Zs orbifold then arc no 37'a. AUo the pure fact thai the blown-up 
orbiMdt ate •upenymmelric cnturca thai there it no mat* term for IT'i, 

5 In ref. 27 we ihow that Uiit retult it icneraJ (or any orbifold or Calabi-Yau manifold 
barring nonperturbative erfcclt of the model corresponding to the moduli epace of the 
VEVV 

1 In rel. 27 we thew that this it « genera! feature; namely modet corresponding lo the 
moduli apace have flat potential for any orbifold or Calabi-Yau manifold, again barring 
nanperlurbativc effect! in the VEV't of the moduli. 
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fixed points, which we denote as- *{«*/„> *«tn (*.*'} <= 1,. -. ,3 and / a 

denoting a particular fixed point' In the teadtng order of the blowing-
up procedure the mass terms among these modes assume the following 
form: 

with the cosct ve-lors being determined as 

Here the rotation $ = exp(i2r;/3) and A is the lattice vector. Note 
that the blowing-up mode at the fixed point / a corresponds to: 

*M«=5>«/.)- (") 
9 

From the explicit form (12) one obviously concludes that these mass 
terms are in general nonzero, Also they are exponentially damped, 
thus indicating the nonperturbative instanton-type contribution. Note 
also, that the OJU'S do not possess any mixing term with any 6(.;</,)-

In the case of the ZA orbifold there are also singlets without bosonic exci­
tations in the 1-seetor, whose number is at least the number of 27." It turns 
out that there is no mass term among such singlets, because the corresponding 
amplitude is again proportional to the odd-powers of Xz derivatives, thus not 
being invariant under the automorphisms of the lattice. However, the analysis of 
the total singlet mass matrix reveals that c9 those singlets become massive due 
to the mixing mass terms between the singlet* with the bosonk exciutions and 
the ones without them which are in gcneial exponentially damped. 

• Not* «.j., *(,„,, = [«, x *'„!/» |-f, J,|),i (» = J.2.3), i«»t«d « /«. Ttn», bM = 

«w Nolt that the number of «uth £4 lingltU it bound from below by Ihe Hodge number 
* «I 
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EXPLICIT RESULTS- YUKAV/A COUPLINGS 

The phenomenologically interesting Yukawa coupling? are the couplings of 
three 27-plets, since these may determine the mass spectrum of the family gen­
erations, thus possibly shedding light on the fennion mass hierarchy problem. 
Another interesting Yukawa coupling to be determined is the one between the 
2727 and the Bit singlets. 

Also it is of general interest to calculate effective terms of the superpoten-
tial of dimension 4 or higher, since these terms may be relevant for the mecha­
nism to generate the intermediate scale. ' These calculations will be presented 
elsewhere. ' 

1. Vufcaum couplings of tne three 27'*. Some of these Yukawa couplings are 
nonzero already in the orbifold limit) in particular those couplings whose 
total twist number is zero. For example for the Z3 orbifold, the following 
Yukawa couplings are nonzero: 

*!»/.."*.»*] - 5>pM*r/(*vsi] (i5.6) 
with ir being defined in eq. (13). However, other Yukawa couplings be­
come nonzero after the blowing-up procedure. For the Z$ orbifolds one 
obtains the following explicit resulLs in the leading order of the blowing-up 
procedure: 

x cxp l-*\i>\3n2y/3)} (blkkM) iblu,J 

with v »gaim being defined in eq. (13). 27( t i.) with {i,V) = 1,2,3 refers 
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to the nine different 27-plets in the untwisted sector, while 27/ , refers to 
the 27-plet arising, from the siting state located at the fixed point fp. One 
sees from this explicit calculation that the blowing-up procedure can allow 
for an additional hierarchy in the Yukawa couplings. Namely, besides the 
exponentially damped terms oc exp ( - J i s / a ' ) i there is an additional hier­
archy a R2/a' x (fr**)- This DIBV be relevant for the understanding of the 
fermion mass hierarchy. The explicit calculation within other possibly phe-
nomenologically acceptable orbifolds is needed in order to further elaborate 
on this idea. 

2. Yukawa couplings of 2727 and singUts. We checked that all the 27-plets 
couple with all the 27-plets and a particular singlet without the besonic 
excitations in the leading order o( the blowing-up procedure for the Z« 
orbitald. Some of these Yukawa couplings are again nonzero already in the 
orbifold limit, while the rest of these Yukawa couplings become nonzero 
after the blowing-up procedure. The value of these terms is again damped 
exponentially. 

The explicit calculation of ihe mass terms and Yukawa couplings for the Z$ 
and Z4 blown-uporbifolds confirmed the general statement about the structure 
of the effective Lagrangian for the Calabi-Yau manifold. Using the above method, 
the values of parameters are (can) be obtained explicitly. 
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