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BLOWN-UP ORBIFOLDS™'
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ABSTRACT

A method to repair — “blow-up” — the singularities of the Abelian (2,2)
orbilolds to obtain the corresponding {2,2) Calabi-Yau manifolds is presented.
This approach makes use of the fact that with each orbifold singularity there are
associated massless scalar fields — blowing-up modes — whose potential is fiat 10
all orders in the string perturbation theory. The zero vacuum expectation values
(VEV’s) of the blowing-up mades correspond to the orbifold limit, while nonzero
VEV's yield the corresponding Calabi-Yau manifold. One can then calculate
explicitly, for such Calabi-Yau manifolds, the mass spectrum, Yukawa couplings,
and all the other parameters of the effective Lagrangian by inserting successively
all the background blowing-up wodes with nonzero vacuum expectation value
into the corresponding orbifold amplitudes. These results are exacf at the string
tree-level; however, they are perturbative in the blowing-up procedure. Mass
specira and Yukawa couplings for the blown-up Z3 and Z, orbifolds are explicitly
calculated. In particular all the Es singlets excepl the ones associated with the

moduli-space of the blown-up orbifolds receive the mass; while the 275 and 27's
dao not pair up.

» Work supported by the Department of Energy, contract DE-ACO3-765F00515.
1 Invited 120k presented st the Intesnational Workshop on Superstrings, Composite
Structures, and Cosmelogy, University of Maryland, College Park, March 1)-18, 1937
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A large variely of different compaciifications of supesstring theories have
been prapnsedl_“l in the last few years. However, the compactifications whose
four-dimensional ¢ffective ficld theories possess a realistic gauge group, N=1 su-
pergravity and quarks and leptons as elementary fields, can be divided into two
classes of candidates, which are believed to be consistent supersiring vacua to all
finite orders in string perturbation theory:

1. Compaclifications of the Eg x Eg heterotic string ona Calabi-Yau man-
ifald or a left-right symmetric orbilold, in which the spin and gauge connections
are identified. In these cases the theory possesses {2,2) worldsheet supersymme-
try, i.e. there is both a left-moving (1) end a right-moving (1) ¥ = 2 worldsheet

1,14,38
superconformal algebra. ' ' !

2. More general compactifications of the heterotic string.: which require only
(super)conformal invariance of the worldsheet sction, with the cortribution of the
matter fields to the Virasoro and super-Virasoro central charges cancelling the
ghost contribution, 1.e. € = 26 and €, = 10, plus modular invariance ol scattering
llmplil.udes.“"'."i Space-time supersymmetric compactifications of this type —
necessarily having at least {0,2) worldsheet supersymmetry — also appear ta
give rise 1o perturbatively stable vacua!®"M! Some of these constructions seem
10 be isolated vacuum solutions, %.e. one cannol continuously deform such a
vacuum solution inte another. Many of them can be explicitly constructed 18] as

asysinmetric orbifolds* ™

In this note we shall concentrate on the first class of models, from now on

referred to as Calabj-Yau models and orbifold models.

t In compactifications of the type Il supentring theory, ie. § = ¢ = 10, masslens excita.
tions cannot be identified with the standard quarks, because maseless triplets of SU(3) and
massless doublels of S1/{2) are never present in the same mode!'®! Nate slsa that com-
pactifications of the bosonic siring, with T = &y = 25, cannol yield space-lime fermiona.

§ Note that for {D,2) Calabi-Yau ba:illounds’l. i.¢ configurations where the spin and gange

connections are not identified, conformal invatiance is generically spoiled by worldsheel

inst lntom."'"l
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Orbifolds ate especially atiractive because interactions on orbifolds can be
calculated ezoctly at string tree lew.vel."'“l Thus all the parameters of the tree-
jeve) effective Lagrangian can be determined exactly, i.¢. including contributions
which are nonperturbative in the ratio va'/ R, where o’ is the string tension and
R is the radius of the orbifold. For example, the effects of worldsheet instantons
are automatically incarporated.

On the other hand the methods for explicitly studying string interactions on
Calabi-Yau manifolds is limited, pastly due 10 the lack of an explicit metric. The
field theory limit (\/F/R - 0) results ! state that the numbers of particular
types of massless modes are determined by the Hodge numbers, the topologi-
cul invariants of the Calabi-Yau manifolds. Also, certain Yukawa couplings #8.16]
are determined by similar topological considerations. Nonperturbative contri-
butione to the eflective Lagrangian for Calabi-Yau compactifications have been
explored"l by studying worldsheet instantons. One gesult of this a:ysis is
that sorne parameters of the efflective Lagrangian ean be modified by worldsheet

instanton contributions, which are proportiona) to exp(—RB?/a’). 1t has been

18)

shown' ' that Yukawa couplings as well as masses of the matler Eg singlets re-

ceive nonzero cotrections in general, while 27 and 27 do not pair-up. However,

the ealculation is not entirely explicit, due 1o the unknown metric.

In this note we ghall present 2 complementary approach to studying the
complele tree-level effective Lagrangians for Calabi-Yau models by choosing a
Calabi-Yau manifold which is construcled by repairing ('blowing-up') the singu-
larities of an orbifold®”) This approach makes use of the fact that each orbifold
singularity is associated with massless scalar fields — blowing-up modes — whose
potential is flat to all orders in the string loop ex pansion.n'“] Thus any vacuum
expectation value (VEV) of these modes corresponds to a vacuum solution to
the siring equations of motion, at leas! perturbatively in the VEV's. The case
with all blowing-up modes having zero VEV correspends to the erbifold limit,
while nonzero VEV's for the mode located at a particular singularity corresponds

to repairing that singulasity. Scattering amplitudes in the repaired Calabi-Yau



background — and hence also parameters of the effective Lagrangian — can
be calculated by inserting successively larger numbers of background blowing-up
modes into arbifold amplitudes. Although this method is perturbative in the
blowing-up VEV's, it enables one to ohtain ezplicit values for parameters of the

blown-up orbifalds, giving ezact results at the string tree-level,

In the following we shall review the general properiias of the Calabi-Yau and
the orbifold models, outline the calculation of the parameters of the effective

Lagrangian [or the blown-up orbifolds, and present explicit results for Zs and 2,
blown-up orbifolds.

CALABI-YAU AND ORBIFOLD MODELS

Calabi-Yau models give rise to N = 1 supergravity in four dimensions and
gauge group'

G = Eg x Ey. {1}

The masshens particle specitum consists of the gavge and the gravity supermu)-
tiplets as well as 2ero modes (moduli) of the Ricci-flat (to O(a’)) Calabi-Yau
metric. In addilion there are massless matter multiplets, 27's, 27's and L’s of

Es which are all ginglets of Ey.

Due to the local right-moving superconformal invariamel'"'m One can use
the picture-changing formalism, in which vertices for a given state appear with
different ghost numbess for the bosonized right-moving superconformal ghost ¢;
i.¢. they appear in different “pictures” 3839 Tree.level amplitudes involve col-
lections of vertices such that the total ghost number equals —2.“' The simplest
form of the vertex operator for a space-time fermien is the -1/2 picture, while

that for & space-time boson is the —1 picture. The picture-changing formalism

» Space-lime supersymmetry implies that the Calabl-Yau spin connection has SU(2) holon-
amy; the orbifold holosamy goup i a discrete subgroup of SU(3). In general the gauge
group (1) could be broken further al the compactification scale by employing the Wilson-
loop mechanism?¥ However, this will not affect the study of the general structure of the
effective Lagrangian.
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enables one to obtain vertices in other pictures. For example, the vertex for a
space-time boson in the O picture is oblained in the following way:l ¥l

(Va(2))o = Iim exp(¢)Tr(w)(Va(2))-. (2)
Here (Va(z))-1 is the corresponding vertex operator in the —1 picture and
Tp = THX, X, 5, 9') + 3X7 ¢ (3.0

is the worldsheet supersymmetry gemramrul — the energy-momentum {ensor,
Here X and y ave the stiing bosonic and fermionic cocrdinates, respectively; the
indices (i,3) = (1,2,3) and z = {1,2,3,4) denote the three complex internal and
the four space-time dimensions, Tespectively. Partial derivatives are with respect
to the right-moving worldsheet coordinate z. For an orbifold model, Tt takes
the simple form

-

T = 0X9 + 3%y, (3.4)

The left- (right-) moving N = 2 superalgebra of a (2,2) model incorporates
s UQ1); (UQ1)y) current algebra, generated Ly Ji = —iv33H, (J, = —i/381,),
where H(Z) (He(2)} is a free lefi- (right-) moving scalar field. Vertex operators
can be classified according to their H,) charge. One can, for example, determine
the H, charges for vertices for the massless chiral supermultiplets in various
pictures., One finds that

H, =1, - 1 picture,

(4)

1 | S
H = - ~3 picture,

for the four dimensional chital superfield with paositive chirality.

Another fealure of these compactificalions is that every such vacuum can be

continuously delormed to & nearby vacuum of the same (2,2) type.“'“'ﬂ'“] In



field theoretical language this corresponds to a flat potential for massless gealars
which correspond to the ‘moduli’ of the compactified space”” In the Calabi-
Yau case the moduli are identified with the zero modes of the metric, Namely,
giving vacuym expectation values (VEV') to the moduli in one conformally
invariant background generales a nearby backgrovnd configuration which is also
a vacuuin solution, at least perturbatively in these VEV's, This procedure can be
carried out explicitly for the case of deforming an orbifold inlo the corresponding
Calabi-Yau manifuld by giving VEV's to the ‘blowing-up' modes*? and will

be examined in detail later.

Orbifalds as & special limit of particular Calabi-Yau manifolds possess the
following additionel features:

1. Enlarged gauge group. In rddilion to the gauge group (1} there is a gauge
group Go € SU(3) which commutes with the discrete holonomy group of
the orbifolds, e.g. the Zx holonomy group for a Zx orbifold.

2. Enlarged symmetry of the effective Lagrangian, A Zy otbifold passesses
8 Zp symmeiry which can be described as an additional selection rule on
interactions. Diowing-up modes carry nonzero charge under these symme-
triezs. Thus many nonzerc parameters of the Calabi-Yau manifold become
zero in the orbifold limit, including certain mass terms and Yukawa cou-
plings of matter multiplets.

3. Increased worldsheet symmelry. In particular, the U(1); ;) worldsheet sym-
metry of the {),r)-sector is enlarged to [U(1} x U(1) x U{1))(1,) for & Zn
orbifold. Thus, instead of the two conserved charges Hy; o) = 2?=, Hi e
there are now six conscrved charges Hy 1,0y, Hz,01,vy, and Hj (1). This en-
larged symmetry enables ane {o constroct zzac!ly“'“l the veriex operators

for the emission of massless states at the string troe-level.

CALCULATION OF THE AMPLITUDES FOR THE BLOwWN-UP ORBIFOLDS
The calculstion of paramelers of the eflective Lagrangian in a partienlar

theory reduces to the study of the corresponding amplitude of massless particles

&




emitted from the string propagating in this particular background. For the blown-
up orbifold this would correspond to caleulating the cortesponding amplitudes by
including in the ordsfold ampliiudes a successive number of vertices corresponding
to the blowing-up moodes bpg, which now have nenzero VEV's,

We shall concentrate on the following Yukawa-type n-point function:
(VF,V;-,Va. .e 'Vau-n} (5)

Here Vp, and Vp, denote the vertices for the emission of the mussless fermionic
and bosonic mode yespectively.

This amplitude enables one to probe the parameters of the superpotential
for the blown-up theory direetly, unlike the amplitude for n-bosons™. Also the

gaugino masses can be computed directly, thus determining the new gauge group

in a direct way !,

‘The mass terms for the fermlons ¢, and 2 arising from the c¢hiral multiplet
is obtained by cliovsing the appropriate vertex operators Vp, and Vg, while all
the bosonic vertices ¥p, correspond to the vertices for the blowing-up modes.
On the other hand the mass term for the mixing between the farmions, %, and
the gauginos can be obtained by inserting in (5} vertices for blowing-up modes

as well as their complex conjugates, because this arises from the D-term as well.

Yukawa couplings for two fermions and the boson of the chiral multiplets are
obtained from (5) by taking all but one bosonic vertices Vp, to be the vestices
for the blawing-up modes. Similatly, one can calculate any higher point function
in the superpotential, thus obtaining all the terms in the effective Lagrangian.
We shall mainly concentrate on the masses and Yukawa couplings, while higher

dimensional lerms are explored elsewhere”!

= Note, that the in this case one iv probing the scalar potential, which is the mixture of the
F- and D-terms.

1 The new gauge group can in principle be detesmined also by calenlating the gauge bozon
masses. However, this appears Lo be mote complicated,

7



With this procedure the value of the parameters in the superpotential can
be determined in principle to all crders in the blowing-up pro:ednref f.e. by

calculating the particular amplitude (5) for all the possible insertions of the bar
§

vertices.

Since nll the vertices are in the orbifold limit, they can be constructed ex-

actly?"”' In the ~1 pictuse of the r-sector (Vg)..1 1s in general of the fallawing
form:

(Vo)== exp(~¢lé exp(ik, X#) (9 X, 2 %, ), untwisted sector  (6.0)
(V). = exp{~4) Ha;s;exp{ik,X”)g(&.X X, 38), twisted pector (6.5)

Here g = 1,...,4 and {{,7)} = 1,...,3 again refer to the four space-time and the
six compactified dimensions, respectively. The bosonic twist ficlds ¢f and the
fermionic twist fields &' correspond to the emission of the massless state {rom the
propagating string with the twisted boundary conditions in the r-sector for the
bosonic XY and the fermionic ¢* coordinates, respcctivuly? A Fermianic Relds are
presented in terms of the three bosonic U{1), charges:

W o= expli(H),), 9 = expl-i(H)] (1.0)
o = expliky/N(H),), & = expl-iki/N(H\)y] (1)

The three separate charges {H;), should satisfy constraint {4}, namely H, =
Y (H)e = T, ki/¥ = 1. For example, for the Z; orbifold &;/N = §, i =1,2.3.

1 In the aupessymaettic theory as aurs this is atteatly troe to o8l crdens in the siring loop
correclions, due 1o the non-renormalization thecrem ",

§ One could argue that this resalt s also czoct in the blowing-up procedure if bay's, and
not for example 1/8ss%, correspand Lo Lhe representation of the fields in the Lagrangian.
Then, singe the superpotential should be an analytic function of the fieldy; ie. the feems
in the efiective soperpolentinl cannot be generered feom interaction terms which have a
nonpolynomial dependence on by Gelds. Note, that this ststement is not Lrue for the
gaughnio masscs and the chiral multiplet fexmionic masses which mix with gaugines. In

this case Ltheae masses do not atise from the F tazm, thus the argument of the analyticity
docs not apply.



On the othet hand, functions f and g, which carry the information of the l-scctor,
should be constructed explicitly, due to the lack of the local superconformal
invariance in the Fsector. Then the U(1);; charges corresponding to the fermionic
fields, 5, are determined by the lattice vector and the bosonic derivatives 83X
are determined by the type of bosonic crealion operators in the l-sector. For
example, a state of the twisted sector represented as a;_,‘..m ks /N, k2 /N, ksfN),
would have g = 35 X735 with 5 = exp [iky /N (Hy)s + ikz/N(Ha)t + iks/N(Ha)i} !

From (Vy)-1, (V8)o in the O-picture is obtained by using eq. (2). From the
form (3) for Tr and eq. (7) one sees that in this case {Vg)o consists in genera)
of terms with Ky = 0,2,and — 1, respectively.

For the farmionic vertices Vi one can also analogously use the picture chang-
)

ing formalism in the r-snet:h:u',ﬁl while the structure of the l-sector remains the
same as in (6). For examploa:ml the fermionic vertex for the untwisted and the

singly twisted sector in the —1/2 picture can be wrilten in the following way:

(VF)-1/z = exp (= ¢/2)u ] [ exp (- H;/2)" exp (ika X*) /(36 X, 01 X, §), 60)
5 K

uniwisted sector

(VF)-172 = exp(—¢/2)u Ha.- exp (—H;/2)s; exp (ik . X*)g(8s X, 03 X, 5),

twisted sector.
(8.5)
Here u refers to the spinor of the four uncompactified dimensions. Analogously

§ The function g Yor the case of the blowing.up modes by can be obtained in the fol-
Jowing way. It turnu oul thal tlie vertex operator of bpy for the l-sector Is the ver-
tex operalar jn the Q-picture; i.e. this verlex is obtained hy using (#). Hawever, now
all the notatien spplics to the Lsector, For example in the Z3 oabilold one would get

=% - -
=m0 X'y T1, explik; 7N (H;),) with k; /N = 1. The atate bps is in turn

described as
211 P 21 i1l 2
0 5, 5 1-2, 2 _) =3 I_ = ,.) 3 L2
”x[a Wt/ A3 ,'“3‘”’ 33 Al




one can obtain the vertex operatora for the other twisted sectors. Again the

constraint (4) for H, is satisfied, i.e. H, = 5, k;/N — 3 = -4,

With the explicit form of the verticas {6,3,8), one can now evaluate the am-
plitudes in the backgronnd of the blown-up orbifolds, i.e. {bps} ¥ 0. These

amplitudes should obey Lhe following selection rules.mI
1. The total ¢ charge equals -2,
2. (H;), charges should be separately conserved.
8. (H:}i charges should be separately conserved.

4. The amplitude should be twist invariant. By this one means ihat in the
amplitude the twist numbers J; associated with the bosonic twist felds o
of the g* twisied sectors should sum up to (OmedN).

5. The amplitude should be invariant under the automorphisms of the lattice.
In general the amplitudes depend on the bosonic coordinates X'. Trans-
ferm=iions on these coordinates which are in the group automorphism of
the lattice should certainly leave the amplitudes invariant.

6. The location of the twist fields should satisfy the space group selection rules
described in detail in ref. 23, They essentially determine the location of

siring states, i.c. the location of the fixed points at which the particular
stales are |ocated.

Selection rules (1-4) can be in general trivially satisfied. The worldsheet
fermionic degrees of freedom are taken care of by applying the selection rules {1-
3). Note also that the {H;); conservation essentially implies that the amplitude
should be gauge invariant, Also some smplitudes con'd be determined to be zero

by simply applying the selection rule 5.

When calculating the amplitudes (5) which probe the terms of the superpo-
tential, one sees that only the terms of (Vp)o with H, = 0 contribute. Namely,
using (4) (i.e. for Vi_\/2,—y), Hr = ~1,1, respectively), one sees that only the
terms of (Vg)o proportional to @X¢¥ survive in such amplitudes in order to

10



conserve the total H, charge. Thus, the terms in (Vn)o coming from aX*y»,
i.e. terms proportional to the four-dimensional external momenta k#, do not
contribute. Then such amplitudes assume the foliowing fotm in general:

(VaapVorpaVorVo. Vo) o (B,X0.... 000 ..., B0 XF) (9)

of1.o0fn

This in turn implies that the effective superpotential caleulated in this way cannot
be mimicked by a massless exchange of gauge or gravitational particles because
the amplitudes of such exchanges would be propertional ta k? which are absent
in our case., This is 8 plausib)e result, since it only confirms 1hat the interactions
arising from the D-term cannot mimic the F-terms, Thus if one cblains a zero
amplitude for a certain term, this Is a genuine zero value of the corresponding
term in the superpotential. On the other hand the first nonzero value for a
certain amplitude in the blowing-up proredure would also directly determine the
value of the corresponding term in the superpotential,

EXPLICIT RESULTS- MAsSs SPECTRUM

1. Four-dimensional N=1 supergravity multipleta. We have explicitly verificd
that these multiplets remain massless, thus confirming that preserving the
supersymmetsy of the blown-up orbifolds remains intact.

2. Gauge multiplets. To the leading order in blowing-upprocedure we checked
explicitly that the additional gauge group Go i5 completely broken, thus
leaving the gauge symmetry of the blown-up orbifold to be Eg x Eg. The
mass-term for the mixing between the gaugines and the Eg singlets by of
the twisted sector which have bosonic excitations in the l-seclor is in the
leading ordes of the blowing-up procedure of the following form? 1

= The mizing between the gaugines and he ainglets without bosonic excitations (in the
t-seclor] 1,, which do exist in the Z4 orbifold turnt out 10 be sero because the aelection
rule § is not satishied.

t One also notices that the blowing-up modes bys which aze a particular combination of b;

modes does nol couple 1o gauginos, in agreement with the ebservation that these modes
temain messless alsa after the blowing-up proceduce.

11



(VARVhavE) ., o () O1) (10)

3. 2727 pmiring. We studied the question whether 2727 pair-up for the 3,
orbifold? For the most generai cubic 2, Jattice we found that there is no
pairing-up of 27 and 27 to all orders in the blowing-up procedure. This
result is due to the selection rule 5. Namely, the amplilude for this mass
term is proportional schematjcally to;

My gy % (8Xa*"1) (1)

Here the partial derivative is with respect to 2z and £, This equation is true
for any number of the blowing-up mode inscriions. One then notices that
for the Z, orbifold one can independently rotate the third coordinate by

180°. This in turn ensures the zero value of amplitude (11) to all orders in

the Llowing-up prm:u‘:durc.'.i

4. E; singlets,

(a) Adodes corresponding do the moduli space. These are the modes cor-
responding to the moduli spare of the six-torus and the blowing-up
modes associated with the orblfold singularitios. We checked explicitly

that the modes have no mass terms Y in the background of the blown-up
orbifold.

(b) Other Eg singlets, In general these modes acquire nonzero mass. For
the Zj osbifold, for example, there are nine such modes lacated at 27

$ Nolx, in the case of Zg orbifold there are no 37'a. Also the pure fact that the blowa-up
orbilvlds are supetsymmetric ensures that there is no mass term for 37'.

§ In ref. 27 we show that this result is general for any orbilold or Calabi-Yau manilold
barring nonperturbative effects of the modes corresponding to the modull space of the
YEV's.

9§ In rel. 27 we show that this is & general featuce; namely modes corrasponding Lo the
moduli apace have flof potentia) for any orbilold ot Calabi-Yau manifold, agsin barring
nonperiurbative effects in the VEV' of the maduli,



fixed puints, which we denote as by ) with (i,4") = 1,...,3 and [,
denoting a particular fixed point.” In the leading order of the blowing-

up procedure the mass terms among these modes assume the following
form:

Migiirg, ), (it I} = z v exp |35 F(2v3)) (buaes,)}  (12)
¥ 3

with the coset ve-tors being determined as®%

D€ 16/~ fy+8). {13}

Here ihe rotation 6 = exp{i2#/3) 2nd A is the lattice vecior. Note
that the blowing-up mode at the fixed peoint f, corresponds to:

by = Z b(i"!"]. {14}
i

From the explicit farm (12) one obviously concludes that these mass
terms are in gencral nonzero, Also they are exponentially damped,
thus indicating the nonperiurbative instanton-type contribution. Note
also, that the bas's do not possess any mixing term with any by, ).

In the case of the 24 orbifold there are also ginglets without bosonic exci-
tations in the J-sector, whose number is at least the number of 7.7 It turns
out that there is no mass term among such singlels, because the corresponding
amplitude is again proportional 1o the odd-powers of X3 derivatives, thus not
being invariant under the automorphisms of the laitice, However, the analysis of
the fotal singlet mass malrix reveals that off those singlets become massive due
to the mixing mass terms between the singlets with the bosonic excitations and
the ones without them which are in geneial exponentially damped,

* Note eg., by, ) = 10}, % &hays |m§,§,§};; (i = 1,2,3), located st fo. Thut, by =
H a
for, x {&las |-2.1.3) + 820 [3.- 1. 3) 4 B2up 15, 3.-3))-
»s Nole g!:i‘t the number of such Ey singlels is bound from below by the Hodge number
bz

13



EXPLICIT RESULTS- YUKAVA COUPLINGS

The phenomenologically interesting Yukawa couplings are the couplings of
three 27-plets, since these may determine the mass spectrum of the family gen-
erations, thus passibly shedding light on the fermion mass hierarchy problem.

Ancther interesting Yukawa coupling 1o be determined is the one between the
2727 and the Ea singlets,

Also it is of general interest to calculate effective terms of the superpoten-
tial of dimension 4 or higher, since these terms may be relevant for the mecha-

nism to generate the intermediate scale™ These calculations will be presented
elsewhere’ !

1. Yukawa eouplings of the three 2%, Some of these Yukawa couplings are
nenzero already in the erbifold limit, in particular those couplings whose
tetal twist number is zero. For example far the Z; orbifald, the following

. : 23
Yukawa couplings are nonzero! |

h[37“,|l.'.'Th-,-lpi'f“u,] = "'J’kll"j'*' (ls.ﬂ)

hlaty, a7y 21| = 2 ex0 717/ (2v3)] (15.)

with © being defined in eq. (13). However, other Yukawa couplings be-
come nonzero after the blowing-up procedure. For the Zj orbifolds cne

obtains the following explicit resulls in the leading order of the blowing-up
procedure:

Rlay, o337,a1,,) = 2 Siborlial® expl=alBP/12v3)) (b sy} (25.)
()

Mty 3730070 = (5:‘)(1 = &) B BionbnSyl@al il (i54)
x exp [= 202/ (2V3)] {biax 1)) (Beus))

with & again being defined in eq. {13). 27y with (i,d') = 1,2,3 refers

"



to the nine different 27-plets in the untwisted sector, while 27, refers to
the 27-plet arising from the string state located at the fixed point fg. One
sees from this explicit calculation that the blowing-up procedure can allow
for an additional hierarchy in the Yukawa couplings. Namely, besides the
exponentially damped terms o exp (—R?/a’), there is an additional hier-
archy &« R?fa’ x {bas). This mey be relevant for the enderstanding of the
fermion mass hierarchy. The explicit calenlation within other possibly phe-
nomenologically acceplable orbifolds is needed in order to further elaborale

on this idea.

2. Yukawa couplings of 2727 and singlets. We checked that all the 27-plets
couple with alf the 2ZT-plets and a particular singlet without the besonic
extcitations in the leading order of the blowing-up procedure for the Z,
orbifold. Scme of these Yukawa couplings are again nonzero already in the
orbifold limit, while the rest of these Yukawa couplings become nonzero
after the blowing-up procedure. The value of these terms is again damped

exponentially.

The explicit calculation of Lhe mass terms and Yukawa couplings for the Z,
and Z, blown-up orbifolds confirmed the general statement ™ about the tructure
of the effective Lagrangian for the Calabi.Yau manifold. Using the above methad,

the values of parameters are (can) be obtained explicitly.
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