
-r'?~

DOE/ER/25063—T2

DE89 010925

The ADAMS Database Language

John L. Pfaltz, James C. French
Andrew Grimshaw, Sang H. Son

Paul Baron, Stanley Janet, Albert Kim
Cathy Klumpp, Yi Lin, Lindsey Lloyd

IPC-TR-89-002
February 28, 1989

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

This research was supported in part by DOE Grant #DE-
FG05-88ER25063 and JPL Contract #957721

vy

QSSTHIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Abstract

ADAMS provides a mechansim for applications programs, written
in many languages, to define and access common persistent data­
bases. The basic constructs are element, class, set, map, attribute,
and codomain. From these the user may define new data structures
and new data classes belonging to a semantic hierarchy that sup­
ports multiple inheritance.

Table of Contents
1. Overview... 1

1.1. Goals of ADAMS... 1
1.2. General Philosophy.. 3
1.3. Basic Constructs .. 3
1.4. ADAMS Statements... 4
1.5. Running Examples... 5

1.5.1. Relational .. 6
1.5.2. Semantic... 6
1.5.3. Scientific ... 7

2. CODOMAIN..... .. 8
2.1. General Description ... 8
2.2. Syntax ... 8
2.3. Semantics.. 9
2.4. Examples.. 11
2.5. Discussion... 12

3. ATTRIBUTE ... 13
3.1. General Description ... 13
3.2. Syntax ... 13
3.3. Semantics.. 13
3.4. Examples... 14
3.5. Discussion... 14

4. MAP... 16
4.1. General Description ... 16
4.2. Syntax ... 16
4.3. Semantics.. 16
4.4. Examples... 16
4.5. Discussion... 17

5. CLASS... 18
5.1. General Description ... 18
5.2. Syntax ... 18

5.2.1. Class Syntax... 18
5.2.2. Predicate Syntax ... 19

5.3. Semantics.. 19
5.3.1. Class Semantics .. 19
5.3.2. Predicate Semantics.. 21

5.4. Examples... 21
5.5. Discussion.. 22

6. SET .. 24
6.1. General Description ... 24
6.2. Syntax ... 24

6.2.1. Set Denotation... 24
6.2.2. Set Manipulation... 24

6.3. Semantics... 25
6.3.1. Set Denotation... 25
6.3.2. Set Manipulation... 25

6.4. Examples.... .. 27
6.5. Discussion.. 28

7. Attribute and Map Inverses... 29
7.1. General Description ... 29
7.2. Syntax .. 29
7.3. Semantics ... 29
7.4. Examples.. 30
7.5. Discussion.. 30

8. Names and Designators... 31
8.1. General Description ... 31
8.2. Syntax ... 31
8.3. Semantics.. 32
8.4. Examples... 33
8.5. Discussion.. 34

9. Dictionary .. 35
9.1. General Description ... 35
9.2. Syntax ... 35
9.3. Semantics.. 36
9.4. Discussion... 36

10. Transactions .. 38
10.1. General Description ... 38
10.2. Syntax ... 38
10.3. Semantics.. 38
10.4. Examples.. 39
10.5. Discussion.. 39

11. System Procedures.. 41
11.1. Dictionary Interrogation .. 41
11.2. Class Functions.. 41

11.2.1. SET Functions.. 42
11.3. Other Predicates... 42
11.4. Discussion.. 42

12. References.. 42

ii

Table of Examples

Relational Database Examples:
Declaration of FACULTY, STUDENT tuples and relations........................ 21
Generic (parameterized) tuple and relation declaration................................. 34

Semantic Database Examples:
Declaration of maps ... 16
Declaration of FACULTY_REC using inheritance....................................... 21
Association of attributes and maps in STUDENT_REC............................... 21
Intersection classes, multiple inheritance .. 22
STUDENT_REC with predicate restriction .. 22
Looping over the ’undergrad’ set... 27
Inverse of major attribute... 30
Generic (parameterized) map declarations .. 34
Locking a set of entities ... 39

Scientific Database Examples:
Inverse attribute to find zero elements... 30
Generic (parameterized) declaration of m-by-n matrices.............................. 34

iii

1. Overview
Oh my God! Not another database language. Well, yes and no. The ADAMS language has

been created because we perceive a need that is not fulfilled by existing database languages. But
ADAMS is not intended to be a complete language by itself. Instead it has been designed to pro­
vide a clean database interface for existing programming languages, such as Ada, C, Fortran, and
Pascal.

The reasons for undertaking the ADAMS project are described in the following paragraphs
(1) The relational model, which provides the basis of most current database systems has proven

itself extremely valuable for the representation the kinds of data used in most business
operations. But deficiencies appear if one tries to use it in data fusion kinds of applications.
Foremost, is its inability to adequately represent scientific data using array configurations.
In some systems, there have been ad hoc fixes, such as the definition of "array" data types,
to circumvent this problem. However, such an approach violates the relational model, for
example, one can not join relations over such array attributes.

(2) A characteristic of most database systems, is that the data sets (relations) belong to distinct
separate databases. Data sets in one database can seldom be used in conjunction with data
sets of another database, for fear of violating internal implementation constraints. This
effectively fragments an organization’s data. All the available data ought to be conceptu­
ally accessible by any process, subject only to limitations imposed by security or privacy.

(3) Existing database languages were designed for large centralized processors, with more
recent modifications to accommodate very loosely coupled distributed networks of proces­
sors. To fully exploit the potential of tightly coupled parallel processing, one needs a
language that encourages parallel database access and processing.

(4) Finally, wc note the awkward status of read/write statements in traditional programming
languages. In many languages, such as Algol and Pascal [JeW75], they are a kind of step­
child which is explicitly disavowed by the parent language In others, only inherently
sequential stream I/O is supported. None, with the possible exception of persistent Pascal
[BuA86, CAD87], employ a computational model in which the process is coequal with a
permanent database from which specific data items are directly accessible.
ADAMS was created in response to these kinds of perceived deficiencies. This report

represents the combined design efforts of its authors over a three month period. It builds on
several earlier reports, notably [PSF87] which was later presented at the 1988 Hypercube Confer­
ence as [PSF88], [PFW88], and [Klu88]. Each of these has presented fragments of ADAMS syn­
tax. But, much of this early syntax has been modified in the light of trial usage, especially of the
prototype interpreter described in [Klu88]. The reader is warned to use only this, most recent,
version of ADAMS.

1.1. Goals of ADAMS
The overriding goal in designing ADAMS was to create a flexible database system that

would actually be used by a large number of applications programmers. This, in turn, translated
into a number of more specific goals which are detailed below.

Flexibility: Data comes in many forms, for use in many different applications. For example,
one may want to represent

relations.

scientific arrays,
images and topographic data, and
inference networks.

It was our intention that ADAMS should be able to describe at least all of these different
data forms, as well as others we had not considered.

Simplicity: One of the strengths of the relational model is its conceptual simplicity. It is rela­
tively easy to leam and to implement A common problem that arises when older com­
putational forms are extended is that they become quite complex. There are special cases
to leam, and more importantly, to implement. An example is Galileo [AC08S], a
strongly typed interactive language which embraces many pre-defined special types.

Our goal has been to keep the number of basic constructs to a minimum. To this end, we
envision sets as the basic aggregation concept

Embeddability: We would describe a new language as embedded, if its constructs are clearly
delimited and can be treated as if they were comment statements in the host language.
The host language compiler is untouched and host language statements need not be
parsed to interpret ADAMS statements. In contrast, a new language is an extension if its
constructs become integral components of one, or more, of the host language constructs.
A language extension requires a much more sophisticated pre-processor or modification
of the host language compiler itself.

ADAMS is deliberately designed as an embedded language. A pre-processor converts
ADAMS statements into host language statements. There is no modification of the host
language itself. For example, host language variables can be used in ADAMS state­
ments, but ADAMS variables may not appear in host language constructs.

Parallelizability: The language paradigm of existing database systems is based on sequential
processes running on a single processor. Given a parallel operating environment, one can
implement utility processes in parallel as in [DGS88], but there is seldom facilities for a
programmer to exploit the inherent possibility of parallel data access at the applications
level. ADAMS is not specifically a parallel processing language; but since we are imple­
menting it on the Institute’s two hypercube configurations it includes fine grained data
denotation which permits the application programmer to designate individual subsets of a
distributed database.

Portability: A database system must be capable of operating cm different kinds of hardware
under different operating systems. The ease with which this is accomplished is the tradi­
tional sense of "portability". By keeping its basic constructs "simple", ADAMS supports
this kind of portability. It is being concurrently implemented in a traditional multi­
processing environment, and in a parallel processing environment.

Another aspect of "portability" is its ability to be used by several different programming
languages in the same hardware environment. For this kind of portability a "real" value
when read from the persistent database must be converted to a "retd" type that is
appropriate for the individual language.

Efficiency: This has not been a primary goal; at least we have not sought efficiency in the cus­
tomary sense. For example, we have not optimized storage structures so that block data
transfers can be facilitated.

2

It is our firm belief that the major speed up in data handling will come from the parallel
processing of data sets; and that this in turn will be facilitated by flexible storage mechan­
isms and flexible naming conventions which may be slow by single processor standards.
In ADAMS the database implementor is able to make effective use of parallel processors
and storage devices. This will be the source of its efficiency.

1.2. General Philosophy
ADAMS is based on what may be called the entity database model [Pfa88]. That is, its fun­

damental units of organization are "entities", or "objects", or as ADAMS calls them "elements"T.
Every ADAMS element is uniquely identifiable. One may loosely say that ADAMS is "object
oriented"; and in a somewhat different context one might be inclined to call its elements, objects.
The difference between ADAMS and other object-oriented databases is largely one of degree.
For example, ADAMS does not hide the logical structure of the data that it represents—instead
its primary function is to publically describe a logical structure. (However, much of the fine-
grain implementation structure is hidden.) And, although there exist mechanisms for associating
methods with instance elements of particular classes, such methods are neither the sole, nor even
the primary, interface mechanism as they are in true object-oriented systems.

ADAMS "elements" are the basis for representing the logical structure of the data. Actual
stored data values are drawn from user definable codomains. It is possible to create sets of ele­
ments in ADAMS, but not sets of data values.

Every ADAMS element must belong to a class. The class system supports multiple inheri­
tance [Car84]. In this regard, and in its syntax and usage, ADAMS is a semantic database system
in the sense of [HuK87].

Probably the most important aspect of ADAMS is its treatment of names. Although there
are many different ways of referencing desired data elements and their values [KhC86], at some
fundamental data access depends on the ability to name elements, or sets of elements, in the data­
base. A familiar paradigm is the use of names to identify variables and procedures in traditional
programs. However, the scope of these names is always limited to the program itself. The same
name can be repeatedly used in different programs. In contrast, the names of elements in a per­
sistent database must themselves be persistent. And they must be unique. This requires a much
larger "name space" and much more sophisticated naming conventions than most programmers
are accustomed to.

ADAMS employs a segmented hierarchical name space which allows a programmer to both
construct private data names as well as shared, common data names. It also supports the indexing
of names, an important mechanism for extending a name space, without the usual connotation
that the indexed names denote an array structure.

It should be emphasized that the introduction of persistent names introduces a level of com­
plexity that is completely missing in traditional programming languages; but which must be
addressed in any treatment of persistent database access.

1.3. Basic Constructs
ADAMS has only five basic constructs: they are codomain, class, set, attribute, and map.
All computing systems must have a primative (or atomic) level in which the meaning of a

sequence of bits is defined by convention. These are data values. In ADAMS the conventional
meaning of a sequence of bits is known as a codomain. For example, one may have a codomain
consisting of "real" numbers, or of nine digit social security numbers, or of all strings beginning

t In this report we will use "element", "entity", and less often "object" as synonyms.

3

with the letter T\ In many programming languages, these would be called "data types”. In the
relational model, they would be called simply "domains". We use our terminology because they
actually serve as "codomains" to attribute functions.

The concept of class is fundamental to ADAMS. Every nameable entity must belong to a
class. A class represents a generic entity—its structure and its properties. All individual entities,
or instances, within the class share the same structure and properties. All classes are declared and
named by the user, except for the three pre-defined classes set, attribute and map classes.

In most database processing we work with sets of data items, not just single entities, for
example, the set of "all computer science students with grade point average greater than 3.2".
Such sets must themselves be entities. They belong to a pre-defined class of type set.

Functions can be defined on ADAMS entities. They are distinguished according to their
image spaces. An attribute is a single valued function whose domain consists of entities in one,
or more classes, and whose image space, or codomain is a codomain. In contrast, a map is a sin­
gle valued function whose domain consists of entities in one, or more classes, and whose image
space, or codomain is a class.

In other words, the functional value of an attribute function a on a particular entity x,
denoted by x.a will be an atomic data value from a codomain, while the functional value of a
map, denoted by x.m will be another entity, say y.

We would re-emphasize that any entity instance belonging to either a user defined class or
to a user defined attribute, map, or set class can be named. It has an "independent" existence.
Specific values in a codomain can not be named. They have no independent existence, save as
the current value of an attribute function acting on an entity instance.

1.4. ADAMS Statements
Since ADAMS is an embedded language, every ADAMS statement is clearly delimited—

just like a comment We use the delimiters « and », but clearly any other set of delimiters
could serve as well. Thus the basic ADAMS syntax is:

<ADAMS_statement> ::= <b_delimiter> <statement_body> <e_delimiter>

<b_delimiter> ::= «

<e_delimiter> ::= »

The <statement_body> denotes any of 33 ADAMS statements. These statements may be
generally grouped into five general types: those declaring generic codomains and classes; those
establishing entity instances; those manipulating sets; those accessing elements and data values;
and finally, a few miscellaneous statements. We enumerate all of the different ADAMS state­
ment types below. A more detailed expansion of each will be found in the sections indicated to
the right of each statement.

<statement_body> ::= <open_ADAMS_stmt> 1.4
ccodom ain_decl_stmt> 2.2
<subscript.pool__decl_stmt> 2.2
<add_codomain_method> 2.2
<attribute_decl_stmt> 3.3
<attribute_instance_stmt> 3.3
<map_decl_stmt> 4.2
<map_instance_stmt> 4.2
<class_decl_stmt> 5.2.1
<elem_instance_stmt> 5.2.1
<nemove_element_stmt> 5.2.1

4

r

<variable_decl_stmt> 8.2
<set_decl_stmt> 6.2.1
<set_instance_stmt> 6.2.1

<fetch_statement> 3.2
<store_statement> 3.2
<looping_statement> 6.2.2
<end_loop_statement> 6.2.2
<set_copy_statement> 6.2.2
<set_assign_statement> 6.2.2
<make_empty_stmt> 6.2.2
<insert_statement> 6.2.2
<erase_statement> 6.2.2
<union_statement> 6.2.2
<intersect_statement> 6.2.2
<complement_statement> 6.2.2
<rescope_statement> 9.2
<transaction_statement> 9.2
<abort_trans_statement> 10.2
<end_trans_statement> 10.2
<lock_statement> 10.2
<unlock_statement> 10.2
<close_ADAMS_stmt> 1.4

There is no well-formed ADAMS program, because the program concept exists only in the
host language. ADAMS simply consists of one or more ADAMS statements embedded in a host
language program or procedure. However, any sequence of ADAMS statements must be pre­
ceded with an <open_ADAMS_stmt> and eventually terminated with a <close_ADAMS_stmt>.
These have the syntactic structure:

<open_ADAMS_stmt> ::= open_ADAMS (<job_id>)

<close_ADAMS_stmt> ::= close_ADAMS (<job_id>)

These statements open and close, respectively, various ADAMS dictionaries. They need be
issued only by the main program executing on any processor. The <job_id> is used to co­
ordinate execution on multiple processors.

Any ADAMS statement can fail for a variety of reasons. The open_ADAMS statement
creates a statement status word, called A$STATUS, which can, and should be, tested after execut­
ing any ADAMS statement. In Fortran programs this is located in labelled common /ADAMS/.

1.5. Running Examples
To provide examples of the ADAMS statements described in the following sections, we

will establish two running database examples. The first is designed to illustrate and exercise
those features which are used in relational and semantic database models. It was describe in
[PSF88] and served as a prototype implementation test vehicle in [Klu88]. The second database
will be used to illustrate scientific usage.

A practice used by the ADAMS group, is to capitalize the names of generic sets, such as
codomains and classes, and to represent specific entity instances in lower case letters. While this
seems to be a valuable convention, it is not an ADAMS rule.

5

1.5.1. Relational
ADAMS is designed to be more flexible than familiar relational database systems.

Nevertheless, relational databases are a fundamental way of structuring information. In Figure 1,
we show an entity-relationship diagram for a traditional "students", "faculty", "courses" type
database that we will use as a running example to illustrate various ADAMS features.

FACULTY: (name, rank, dept)

advisoi tructor

STUDENTS: (name, major, s.nbr)- » COURSES: (c_nbr, c.name, term)

Entity-Relationship Diagram
Figure 1.

One running example will implement this structure as a 3NF relational database. It will contain
the following four relations that one would expea in such an implementation.

Schema Keys

FACULTY: (fname, rank, dept)
STUDENT: (sname, major, s_nbr, fname)
COURSE: (c_nbr, c_name, term, fname)
ENROLL: (sname, c_nbr, term, grade)

fname
sname
c_nbr, term
sname, c nbr, term

Here the attribute fname in the STUDENT and COURSE schema implements the single valued
advisor and instructor relationships respectively. We will find, however, that it is difficult to cap­
ture all aspects of the relational model in an entity based mode. Projection, for example, will not
be easy.

1.5.2. Semantic
ADAMS is a database system that is actually based on the semantic model, not the rela­

tional model. One consequence of this distinction is that a "relation" is an instance set of "tuple"
entities, not a flat table as in Codd’s original formulation. Thus FACULTY and STUDENTS
denote classes of entities, not specific instances. In Figure 2, one has two different FACULTY
"relations" called tenured and untenured, and two different STUDENT "relations" called under­
grad and graduate. Moreover, the advisor and instructor relationships are represented as maps,
not as tuple attributes.

6

tenured untenured

instructor
advisor,

undergraduategraduate courses

student
•course

enrollment

Semantic Database Schema
Figure 2.

1.5.3. Scientific
The running example from the scientific domain is simply a doubly subscripted real array,

or matrix. Any programming language can handle such matrices as an aggregate data type. Few
database models handle multiply subscripted arrays in a flexible manner. The simplest example
will be just a real 3x5 array

xl,l Xl, 2 X1.3 X1.4 Xl.»

X2,l X2,2 X2,3 X2,4 X2, 5

X3.1 X3.2 X3.3 X3.4 X3.5

7

r

2. Codomains

2.1. General Description
A data value is a finite string of bits which has meaning when interpreted with respect to the

conventions of some programming environment. An ADAMS codomain is an abstract set of all
possible values which can be so interpreted. In this sense, an ADAMS codomain is very similar
to the more familiar data type, such as "real", "integer", "float", "REALM", "boolean", "LOGI­
CAL", etc. The data type "real", used in a Pascal environment on a 8080 chip, specifies how 32
bits should be subdivided so they can be interpreted as the sign, mantissa, and exponent of a real
number.

But ADAMS is not concerned with the interpretation of values in a programming environ­
ment. It is concerned with the storage of such values in a form which admits later access. As
such it is quite concerned with mechanisms for converting (or coercing) values in some storage
format into forms that can be interpreted by the accessing process in its own processing environ­
ment. It is also concerned with the integrity of the database. Therefore, it is concerned drat
values stored in the database actually belong to that abstract set specified by the codomain
definition.

Consequently, an ADAMS codomain definition has a three-fold purpose:
(1) specification of the form which any value in the codomain will have;

(2) specification of processes to coerce (or convert) values from the storage format used by
ADAMS to a form that will be interpretable by the accessing process in its own
environment—and, inversely, the conversion of "internal" values back into the ADAMS
storage format;

(3) specification of values to be returned (or stored) when an actual value is

Codomains can be regarded as similar to primative classes in strictly object-oriented
languages; however, they are not used to build up higher level classes in the same way.

2.2. Syntax

(a) undefined, or
(b) unknown.

ccodomain decl stmt> ::= <codomain_name> isa CODOMAIN
<membership_clause>
[<access_method_clause >]
[<other_method>]
[<undefined_clause>]
[<unknown_clause>]
[<scope_clause>]

<codomain_name> ::=

<membership_clause> ::= consisting of #<regular_expression># |
validated by <codomain_method_def>

<actual_name>

<access method clause> ::= fetch: ccodom ain_method_def>
store: <codomain_method_def>

t In this syntactic notation, [...] denotes an optional construct; [...]* denotes that it can be repeated indefinitely.

8

r

<other_codomain_method> ::=

<undefined_clause> ::=

<unknown_clause> ::=

<literal_value> ::=

<codomain_method_def> ::=

<method_name>: <codomain_method_definition>

udf = <literal_value>

ukn = <literal_value>

’ <codomain_value> ’

<extem_def_codomain_method> |
<locally_def_codomain_method>

<extern_def_codomain_inethod> ::=

<locally_def_codomain_method> ::=

<value_desig> ::=

<subscript_pool__decl_stint> ::=

<sequence_name> ::=

odd codomain method> ::=

EXTERNAL <name>

<host_language_proc>

<element_desig>.<attribute_desig>

<sequence_name> denotes a SUBSCRIPT POOL
of <codomain_name> values
[<consisting_of_clause>]

<actual_name>

add method to <name> CODOMAIN
<method_name>: <codom ain_method_def>

2.3. Semantics
(1) A <codomain_decl> declares a generic set of data values defined in terms of the member­

ship clause; and assigns <codomain_name> as the name of this set. This name is entered
into the dictionary, together with its associated information. This definition declares the
form that these values will take in ADAMS storage—it does not indicate how they will be
represented in any particular computing environment.

(2) To insure database integrity, all codomain values are validated before committing them to
permanent storage. A value is validated either by comparing it with the
<regular_expression> or by invoking the user supplied boolean <codomain_method>. This
latter can be used to provide user-defined run-time consistency checking, or to circumvent it
altogether by having it always return true.

(3) ADAMS assumes as its general paradigm that all codomain values are stored as variable
length ASCII strings. Therefore, in general, it will be necessary to define
<codomain_method>s which convert values between their ADAMS storage format and the
corresponding internal computational representation. These format conversion (or coer­
cion) routines are declared in the <access_method_clause>.

Notice that if either a "fetch", or "store" method is declared, then both must be declared.

(4) The presumption that the stored version will be an ASCII string can be changed by provid­
ing access methods which convert (or do no conversion) into any user specified form. If no
<access_method_clause> is provided, the default assumption is that the internal representa­
tion of the value is a string (NULL terminated in Q, and treated accordingly.

(5) All <codomain_method>s are assumed to be procedures with two fixed parameters, the first
denoting an internal representation, the second an ADAMS <value_desig>nator. That is,
they have the form

9

<name> (int_rep, value_desig)
<type> *int_rep;
char value_desig;

in C. In Fortran, the form would be
SUBROUTINE <name> (int_rep, value_desig)

<type> int__rep;
CHAR*<n> value_desig

(6) There exist two pre-defined ADAMS access procedures of the form
adamsSf (buffer, buf_len, value_deaig)
untyped *buffer;
int buf_len;
char *value_deaig;

and
adamaSa (buffer, buf_len, value_deaig)
untyped *buffer;
int buf_ien;
char *value_deaig;

which f(etch) (or s(tore» the designated value into (or from) the designated buffer without
modification.

(7) A subscript pool is a sequential enumeration of codomain values that can be used as sub­
script values. There is no provision in ADAMS for changing the members of the pool.
Only additional values can be added to the pool.

The codomain values of a pool must be distinct.

(8) There may be several fetch and store methods associated with a single codomain. For
example, a different version of "fetch" will normally be required by each host language
used to access the ADAMS database. Similarly, different hardware architectures may
require different conversion routines. Hidden by the ADAMS interpreter is a run-time
environment status consisting of (<host_language>, <hardware_system>).

An <add_codomain_method> statement permits the addition of codomain methods,
appropriate to new host environments, to an already existing CODOMAIN declaration
made in a different environment.

(9) If the <literal value> of either the <undefined_clause> or the <unknown_clause> is not a
member of the regular set defined by the <membership_clause>, it is added to the set (finite
union).

The udf value is returned by ADAMS whenever a <value_desig> has not been defined in
ADAMS storage. A ukn value must have been previously assigned by the user to
<value_desig>.

The default udf value is an octal zero, or NULL.
(10) Note that all literal codomain values must be quoted, even if they are numeric. This is in

contrast to ADAMS literals which are unquoted.
(11) Codomain and subscript pool names are <actual_name>s, consequently they can be neither

subscripted nor parameterized.

10

2.4. Examples
One would expect most of the commonly used codomains (or types) to be globally declared

with SYSTEM scope. Below are samples declaring a REAL codomain for both C and Fortran
host languages.
C host language:

REAL isa CODOMAIN
consisting of #(| + |~) [0-9] *. [0-9] *♦
fetch:

fetch (dest, value_desig)
float *dest;
char *value_desig;

{

char I0_buf[20]
adams$f (IO_buf, 20, value_desig) ;
if (*IO_buf ’ ')

sscanf (IO_buf, "%f", dest) ;
else

*dest - 0.0;
}

store:
store (source, value_desig)
float *source;
char *value_desig;

{
char 10 buf[20]
sprintf (IO_buf, 20, source);
if (*IO_buf !- ' ')

adams$s (IO_buf, 20, value_desig);
}udf - 0.0

with scope SYSTEM
Fortran host language:

REAL Isa CODOMAIN
consisting of #(| +1-) [0-9] *. [0-9] **
fetch:

SUBROUTINE FETCH (DEST, VALUE)
REAL DEST
CHAR*30 VALUE

CHAR*20 BUFFER
CALL adams$f (BUFFER, 20, VALUE)
IF (LEN(BUFFER) .GT. 0) THEN

READ (BUFFER, '(F20.10)') DEST
ELSE

DEST - 0.0
END IF
END

11

j

store:
SUBROUTINE STORE (SOURCE, VALUE)

REAL SOURCE
CHAR*30 VALUE

CHAR*20 BUFFER
WRITE (BUFFER, '(F20.10)') SOURCE
CALL adams$s (BUFFER, 20, VALUE)
END

udf - 0.0
with scope SYSTEM

The subscript pool concept allows the kind of "enumerated subscript" that occurs in Pascal.
For instance, if we wanted to subscript ADAMS names with various makes of automobiles we
could declare:
« autos denotes_a SUBSCRIPT POOL of STRING values

consisting of ('Chevrolet', 'dodge', 'ford', 'plymouth' }
scope is USER »

We can never eliminate ’ford’ from the pool or change its spelling; it may have been used to sub­
script some permanent name. But we can add to a subscript pool as in
« add 'toyota' to autos POOL »
Readily the most commonly used subscripts are integer, and we want to declare such a pool

of subscripts. We name this pool Zahlen, the German word for the natural numbers, that is often
used in mathematics. This pool, which we will use repeatedly in our matrix examples, we make a
SYSTEM concept.
« Zahlen denotes_a SUBSCRIPT POOL of INTEGER values,

scope is SYSTEM »
This subscript pool is empty. The following bit of C-code inserts the first n non-negative integers
in their natural order.

i - 0;
while (i <- n)

{
« add i to Zahlen POOL »

++i;
}

2.5. Discussion
The functions of a "codomain" and a subscript "pool" are orthogonal in ADAMS. The

former provides values for attribute functions. The latter provides values that can be used to sub­
script names. The subscript "pool’ concept is associated with codomains and included in the sec­
tion simply because fetch and store conversion methods must be defined for codomains. This
allows subscript operations to piggyback on them.

i 12

3. Attributes

3.1. General Description
An ADAMS attribute is a single valued function defined on instances of a class whose

range, or codomain, is a codomain. The attribute is itself an ADAMS entity belonging to a class
of similar functions that map into the same codomain. For example, the attributes ’age’ and
’nbr_of_dependents’ might both be instances in a class ’INTEGER_ATTR’.

3.2. Syntax
<attribute_decl_stmt> ::= [var] <attr_class_entry> isa ATTRIBUTE

with image ccodom ain_name>
[<association_clause>]
[<restriction_clause>]
[<scope_clause>]

<attr_class_entry> ::= <dict_class_entry>

<attribute_instance_stmt> ::= [var] <attr_entry> denotes a <attr_class>

<attr_entry> ::= <dict_instance_entry>

<fetch_statement> : := fetch into <host_variable> from <element_desig>.<attr_desig>

<store_statement> ::= store from <host_expression> into <element_desig>.<attr_desig>

3.3. Semantics
(1) Attributes exist as the functional link between ADAMS entities and their associated data

values. What are traditional known as "data values" only exist as attribute images. Thus all
"data" must be referenced by the applicative form

<element_desig>.<attr_desig>

(2) The "image_is_clause" is required in all attribute declarations.

(3) The clauses that may appear in an <attribute_decl> may be used in general class declara­
tions and are therefore treated in that section.

(4) The representation of attributes is best visualized as an associative "triple", whose com­
ponents are

(<element_id>, <attribute_id>, <attribute_value>).
Specification of the first two components, as in <element_desig>.<attr_desig> yields the
unique third component <attribute_value>. Specification of the second two components
will, in general, yield the set of <element_id>s that appear as the first component in at least
one such triple in ADAMS storage. The syntax for this is discussed in 7.2.

(5) Both designators of the <element_desig>.<attr_desig> of a <fetch_statement> are first
evaluated. The designated attribute instance must be defined over the class of the desig­
nated instance element If it is, the corresponding triple (since all attributes are single
valued, there can be but one), if any, is accessed for its <attribute_value>. The codomain to
which this <data_value> belongs is known—it is the image space of the attribute class to
which this instance belongs. Using the "fetch method" of the codomain declaration, this
value is converted from its ADAMS storage format into its corresponding computational
type and stored in (or assigned to) the <host_variable>.

If no such triple exists in ADAMS storage, then the undefined value, udf for that codomain

13

is returned as the value.
(6) The semantics of a <store_statement> are similar. However, in this case the current value

of the <host_expression> is converted from its computational format to its ADAMS
representation using the "store method" of the codomain. If a triple (<element_desig>,
<attr_desig>, <old_value>) already exists, then the <old_value> is replaced by the
ADAMS form of the <host_expression>. If no such triple exists (this is the first assignment
to this attribute on this entity instance) then a new triple is created.

3.4. Examples
Three distinct steps must be followed before an attribute function can be used to store and

access data. First, the codomain must be defined, as in
« DATE isa CODOMAIN

consisting of *[0-9]{2}/[0-9]{2}/88#
scope is SYSTEM »

Since no access method has been declared, the ASCII string is fetched and delivered as the data
value.

Second, a generic class of attributes which map into this codomain must be declared, as in
« DATE_ATTR isa ATTRIBUTE with image DATE, scope is GROUP »

And finally, specific attributes (or instances) in this class must be declared, as in
« b_date denotes_a DATE_ATTR,scope is USER »
« date_last_moddenotes_a DATE_ATTR, scope is USER »

Now, if x is an entity designator (variable, literal name, etc.) and the attributes b_date and
date last jnod have been defined on the class to which x belongs, one can use fetch and store
commands of the form:
« fetch into birth_date from x.b_date »
« store from today() into x.date_last_mod »

3.5. Discussion
In earlier versions of ADAMS attributes were designated as either assigned (functional

value explicitly established by a previous assignment statement) or computed (functional value
computed on retrieval using other information). Associated with computed attributes was to have
been a method, or procedure, for computing the attribute value at retrieval time. The problem is:
"where does one define this associated computation method?". It makes no sense to declare it
with a generic class of type ATTRIBUTE. Nor does the ADAMS paradigm permit its definition
with a particular instance attribute. So it has been eliminated. The effect of a "computed attri­
bute" can be created by defining a method associated with a particular class.

The fact that attributes are themselves ADAMS elements is an important one. Internally,
they are represented just like any other entity. Any attribute, or more accurately any class of
ATTRIBUTE, may itself have associated attributes or maps (although we have not yet discovered
any practical application of this level of generality). However, this has implications in the "dot"
notation used to designate data values in ADAMS.

Suppose, for example, that x denotes an entity instance in some class on which the attribute
instances/and a are both defined. Suppose further that the attribute a is defined on the class of
attributes to which/belongs. Then, x/and x.a designate specific values in the codomains off
and a, respectively. And fa denotes a value in the codomain of a. They are all <value_desig>s.
But the expression x.fa is meaningless because the prefix x/is not an <element_desig>.

14

One implementation approach is to let every attribute instance entry in the dictionary have a
pointer to its attribute index structure. (Actually this must be an indirect pointer to allow for sub­
scripts on the <actual_name>.) This index structure is used to access data values given an
<element_desig>. A similar inverse index is used to access multiple elements which have a
given <data_value>.

The syntax for fetch and store statements is admittedly cumbersome. A syntax such as
<host_variable> <- <element_desig>.<attr_desig>

would be much more "natural". These "wordy" fetch and store constructs may have the advan­
tage of emphasizing the nature of these operations; but we should probably consider simplifying
the syntax.

15

4. Maps

4.1. General Description
An ADAMS map is a single valued function defined on instances of a class whose range, or

co_domain, is a class. Notice that the only difference between attributes and maps is that the
image of the former is always a data value, while the image of the latter is an ADAMS entity, or
element. A map is also itself an ADAMS entity that belongs to a class of all similar functions
which map into the same class.

4.2. Syntax
<map_decl_stmt> ::= [var] <map_class_entry> isa MAP

with image <class_name>
[<association_clause>]
[<restriction_clause>]
[<scope_clause>]

<map_class_entry> ::= <dict_class_entry>

<map_instance_stmt> ::= [var] <map_entry> denotes_a <map_class>

<map_entry> ::= <dict_inst_entry>

4.3. Semantics
(1) A <map_type> is just a dictionary name (possibly parametrized) which belongs to the MAP

class. A map instance must belong to a MAP class.

Similarly a <map_name> is just the literal name of a map instance.
(2) The "image_is_clause" is required in all map declarations.
(3) The clauses that may appear in an <map_decl> may be used in general class declarations

and are therefore treated in that section.
(4) The representation of maps is best visualized as an associative "triple", whose components

are

(<element_id>, <map_id>, <map_value>).

Specification of the first two components, as in <element_desig>.<map_desig> yields the
unique third component <map_value> which is a unique element identifier. Specification
of the second two components will, in general, yield the set of <element_id>s that appear as
the first component in at least one such triple in ADAMS storage.

4.4. Examples
The following example is based on semantic network of figure 2 in section 1.5.2. Two

maps are indicated from tire instance sets of graduate, undergrad, and courses to die instance sets
tenured and untenured, which we will assume comprise entities from the class FACULTY_REC.
This class we assume has already been declared. Then the three statements
« FACOLTY_MAP isa MAP with image FACULTY_REC, scope is USER »
« advisor denotes_a FACULTY_MAP, scope is USER »
« instructor denotes_a FACULTY_MAP, scope is USER »

establish these maps. The first ADAMS statement defines the class of FACULTY_MAP func­
tions. It asserts that the image of any such map function will be an entity from the class

16

r

FACULTY_REC. advisor is then established as one instance of such a map; as is instructor.
Note that these map functions have been defined. They have not been associated with enti­

ties of type STUDENT_REC or COURSE_REC as yet.

4.5. Discussion
It is much easier to declare generic attribute and map classes using parameterized class

declarations, as in Section 8.
Map functions can be implemented in a manner that is virtually identical to that of attri­

butes.
The possibility of having a <restriction_clause> in a map class has been provided, but it is

difficult to envision appropriate restrictions at this time. It might be possible to define one-to-one
maps by this mechanism.

17

5. ADAMS Classes

5.1. General Description
An ADAMS class is a generic description of a collection of entities with the same, or simi­

lar, properties. Generally, the user defines classes that reflect the properties that he (or she) feels
characterize the entities in his (or her) database. Since classes can be, and normally are, defined
in terms of other classes, a hierarchical class structure arises, which is frequently described by the
term class inheritance. In fact, the class structure of ADAMS is not really hierarchical since it
supports multiple inheritance. Instead it is a lattice of classes.

The ATTRIBUTE and MAP classes described in the preceding section are special kinds of
classes. They were treated first because of the important role that attributes and maps play in the
user definition of classes. This section shows how an individual user can create new classes. The
most important construct is the <association_clause> which declares that specific sets of attri­
butes and/or maps will be valid over elements of the class. The <restriction_clause> can be used
to restrict membership in this class only to entities of the <super_class> which satisfy certain
constraints.

5.2. Syntax
The syntax of class declaration is subdivided into to portions. The first describes the gen­

eral mechanisms for describing new classes; the second examines in detail how predicate restric­
tions are formed.

5.2.1. Class Syntax
<class_decl_stmt> ::= [var] <dict_class_entry> isa <super_class>

[<class_decl_body>]

<elem_instance_stmt> ::= [var] <dict_inst_entry> denotes a <class_name> [AND <class_name>]*

<super_class> ;:= CLASS |
<class_name> [AND <class_name>]*

<class_decl_body> ::=

<association_clause> ::=

<synonym> ::=

<association_set> ::=

<clustered_attr_enum> ::=

<attr_cluster> ::=

<restriction_clause> ::=

cremove element stmt> ::=

FORWARD |
[<association_clause>]*
[<restriction_clause>]
[<scope_clause>]

having [<synonym> =] <association_set>

<actual_name>

<set_desig> |
<clustered_attr_enum>

’ {’ <attr_cluster> [<attr_cluster]* ’} ’

(<attr_desig>) [, <attr_desig>]*

provided # <predicate> # |
provided <boolean_method>

remove <element_name>

18

r

5.2.2. Predicate Syntax
The syntax for forming <predicate>s we treat in this separate section. Basically a <predi-

cate> is an expression in the first order predicate logic which will evaluate to either true ot false.
However, the rules are somewhat different to ensure that all such expressions are "safe", that they
can be deterministically evaluated.

<predicate> ::= <disjunct> [or <disjunct>]*

<disjunct> ::= cconjunco [and <conjunct>]*

<conjunct> ::= <term> |
(<predicate>) |
<quantifier> T <predicate> ’]’

<term> ::= <equality_comparison> |
<order_comparison>

<equality_comparison> ::= <element> <equality_test> <element> |
<data_value> <equality_test> <data_value>

<order_comparison> ::= <data_value> <order_test> <data_value>

<element> ::= <logical_van> |
<element>.<map_desig>

<data_value> ::= <literal_value> |
<element>.<attr_desig>

<equality_test> ::= = 1 !=

<order_test> ::= < 1 <= 1 > 1 >=

<logical_var> ::= <bound_vai> |
<free_var>

<quantifier> ::= (all <bound_var> in <set_desig>)
(exists <bound_var> in <set_desig>)

<free_var> ::= $X | $x

5.3. Semantics

5.3.1. Class Semantics
(1) The most common superclass is simply CLASS. The next most common is a single

<super_class>, in which case the class being declared inherits all of the associations and
restrictions of its super class.

If multiple inheritance is specified with the AND option, then the declared class inherits all
of the associations and restrictions of each of its super classes.

(2) If the var option is missing then the literal string constituting the <dict_class_entry> (or
<dict_name_entry>) is the dictionary lookup string. If var precedes the declaration, then
<dict_class_entry> (or <dict_name_entry>) is presumed to be a host language variable of
type "string" whose current value is the corresponding dictionary name. See 5.6 for a dis­
cussion of the handling of literal and variable identifiers.

19

(3) The FORWARD option for a <class_decl_body> is similar to that of Pascal, and for the
same reason. In older to define a map one must first identify the class which is its image
space. If the map is a function from a class back into itself, such as the "subpart_of rela­
tionship, this becomes difficult. The FORWARD construct conveys sufficient information
to create the basic dictionary entry. Subsequently, a complete declaration must be pro­
vided.

(4) An <association_clause> associates an existing instance set of attributes or maps with the
elements of the class. This set may be either named (presuming a previous instance
declaration) or enumerated (implying creation of the instance at compile/run-time?).

There may be repeated <association_clause>s. This is necessary to associate both attributes
and maps with a class. It also provides for the possibility of associating several different
sets of attributes (or maps) with a class, thereby supporting a view concept.

It is also possible to provide an optional <synonym> for the association set This
<synonym> may be used to access individual elements of the set The conventional
synonyms attrs and maps are considered public. Any association sets so identified will be
displayed on a request to describe the class. Association sets with other (or no) synonyms
are treated as private.

(3) The clustered attribute enumeration permits a parenthesized enumeration of attributes, such
as {(a, b, c) (d, e) (f)}. This "clustering" may, or may not, be used to optimize the retrieval
of attribute values.

(6) The <predicate> or user supplied <boolean_method> or a restriction clause is evaluated
whenever an instance of the class is created. If it evaluates false, then the ADAMS state­
ment fails.

At most one free variable is permitted in a predicate used for class declaration, and it is
denoted by $x or $X. This free variable always denotes the current instance of the class
which is being tested for class membership. It is completely analogous to the "SELF' con­
struct which is used in several object oriented languages.

(7) Declaration of an entity instance (element) via a "denotes_a" statement, or by any other
ADAMS operation, will allocate the "next" unique id to identify the instance. It will also
create the "instance body" which is a record consisting of at least

a. CLASS pointer,
b. set reference counter (set membership count)
c. removal bit
d. given name (if any)

This little stub representation is required to implement the class of and namejof system
procedures (11.2), and the issue of element deletion (6.6).

(8) In as system that supports the representation of persistent data, the deletion of information
can be much more difficult than its creation. In effect, the <remove_element> statement is
the inverse of the <elem_instance> (or "denotes_a") statement; and the <erase_class> state­
ment is the inverse of the <class_decl> (or "isa") statement.

But care must be taken! Readily, a class can not be erased if there exist any instances of
that class. Similarly, an element can not be removed if it exists in an existent set. These are
two important examples of internal database consistency that must be maintained. The use
of a set reference counter in every instance body can be used to protea against the latter. In
addition, a removal bit must be included in the representation to support deferred removal.

20

r

(See 6.4.) A reference counter which keeps track of all instances belonging to a class, and
another recording all sub-class references, can also be exploited.

When a persistent element instance is created, its reference counter is set to one. The
"remove" statement first decrements the reference counter, if it is then zero, the element is
actually removed and its storage returned to the system.

What can not be assured, given the environment in which ADAMS exists, is that when a
CLASS or an instance is deleted there will be no extant process that refers to it. This latter
is a form of external consistency.

5.3.2. Predicate Semantics
(1) Atomic truth values are obtained only from equality or order comparisons. Elements can

only be tested for equality; either they have the same unique id or they do not. Codomain
values (e.g. <data_value>s) can also be tested for equality. In this syntactic formulation we
have also allowed for order comparison, but whether this can be actually implemented is
open to question.

(2) Quantification is always over existing set instances, never over an abstract class.
(3) Any named construct used in a class declaration, whether <super_class> or <set_desig>

must have a scope equal to, or higher than, the current declaration. This dependence must
be recorded with the named construct in its <reference_counter> so that it can not be inad­
vertently deleted, thereby making the declaration invalid.

5.4. Examples
The tuples and relations of the relational database illustrated in Figure 1 (section 1.5.1)

could be declared as follows.
« FACULTYJTUPLE isa CLASS

having attrs « { name, soc_sec_nbr, b_date, rank, dept } »
« FACULTY_REL isa SET of FACULTYJTUPLE elements »
« faculty denotes_a FACULTY_REL »
« STUDENT JT UPLE isa CLASS

having attrs - { name, soc_sec_nbr, b_date, major, advisor }»
« STUDENT_REL isa SET of STUDENTJTUPLE elements »
« students denotes a STUDENT REL »

The codomain of the advisor attribute is presumably the same as that of name so that student
tuples can be joined with faculty tuples to obtain the advisor relationship. There are no maps in
the relational model.

A much cleaner way of declaring relational schema, tuples, and relations is developed in
Section 8 where parameterized class declaration is explored.

The following ADAMS statements use inheritance to create the FACULTY_REC class
from a PERSON_REC class.
« PERSON_REC isa CLASS

having data_fields - { name, soc_sec_nbr, b_date },
scope is USER »

« FACULTY_REC isa PERSON_REC
having fac_data_fields - { rank, dept),
scope is USER »

Once the FACULTY_REC class has been declared, the advisor map can be declared, and it
becomes possible to declare a STUDENT_REC entity which also inherits the basic properties of
a PERSON_REC.

21

« FACULTY_MAP isa MAP with image FACOLTY_REC, scope is USER »
« advisor denotes_a FACULTY_MAP, scope is USER »
« instructor denotes_a FACULTY_MAP, scope is USER »
« STUDENT_REC isa PERSON_REC

having stu_data_fields - { major },
having maps - { advisor },
scope is USER »

Notice that this latter declaration has two <association_clause>s, one for attributes and one for
maps.

If faculty (or staff) members are also allowed to take courses, so that they are students as
well, we might want to create the class
« PART_TIME_REC isa FACULTY_REC AND STUDENT_REC »

Entity instances in this class would inherit the attributes and maps of both super classes.
If a provision of being a "student" is that the individual have a declared major, we could add

a <restriction_clause> as follows
« STUDENT_REC isa PERSON_REC

having stu_data_fields - { major },
having maps - { advisor },
provided # $x.major !- udf(dept) #
scope is USER »

5.5. Discussion
The syntax for the <elem_instance_stat> permits the designation of an element that inherits

the properties of two classes, even though the corresponding "intersection class" has not been
explicitly created by means of a <class_decl_stat>. This follows the discussion in [Pfa88]. Per­
mitting statements such as
« x denotes_a DOCTOR AND PATIENT »

would undoubtedly be a convenient shorthand. But there are potential problems. Two imple­
mentation schemes are possible. One is to create an "unnamed" intersection class from the
super-classes DOCTOR and PATIENT, to which x will not belong. The other is to support multi­
ple pointers out of the dictionary entry for x to all of its class memberships. The former seems
much preferable, but correctly implemented it requires a search of the dictionary to discover
whether any class which multiply inherits from DOCTOR and PATIENT already exists in either
a named or unnamed form. This will eventually lead to the nasty problem of synonym detection
and resolution.

It might be wise to leave this feature unimplemented for a while.

Implementing the <predicate> construct in frill generality at this time would seem to be
quite difficult However, there does not appear to be any real syntactic or semantic limitations.

These examples graphically demonstrate how useful inheritance can be in simplifying the
definition of classes.

The handling of literal and variable identifiers in ADAMS is quite different from traditional
programming languages where it is customary to "quote" literal strings. For example, in the
statement
« advisor denotes_a FACULTY_MAP, scope is USER»

both advisor and FACULTY MAP are literal strings. This can be quite confusing at first. In
[Klu88] we suggested changing the syntax to read

22

« "advisor" denotes_a "FACOLTY_MAP", scope is USER»
but this suggestion seems ill-advised. It would make the declaration of ADAMS names much
clearer, but it would make their subsequent use more awkward. In particular, every map and
attribute reference would have to be quoted, as in
« fetch into fac_name from x."advisor"."name" »

Observe that in most literal strings in traditional programming languages are not quoted.
Numeric literals are not quoted because they can be recognized by their form. Literal function
and procedure names are not quoted because they are declared, or are otherwise recognizable
from the context The ADAMS policy has been to assume that every non-reserved string in an
ADAMS statement is a literal; that is, it is the literal name of an ADAMS element, unless the
string is explicitly declared to be a variable. The two ways that this is done are
(1) by using the ADAMS_var statement to declare the identifier to be a host language variable

of type UNIQUEID; and
(2) prefixing a host language string variable with var in isa or denotes a declaration state­

ments.

23

6. Sets

6.1. General Description
Sets are the fundamental ADAMS structure. Indeed, in keeping with our goal of simplicity,

they are the only aggregation structure. Still there are significant semantic problems associated
with their implementation. These arise primarily from (1) set operations over entities of different
classes in the class hierarchy, and (2) entity deletion.

Sets are fundamental. But sets are not an easy concept to emulate.

6.2. Syntax
The Syntax of this section is broken into two sections, that of set denotation followed by

that of set manipulation statements.

6.2.1. Set Denotation
<set_decl_stmt> ::= <set_class_entry> isa SET

of <class_name> elements
[<association_clause>]*
[<restriction_clause>]
[<scope_clause>]

<set_class_entry> ::=

<set_instance_stmt> ::=

<dict_class_entry>

<set_entry> denotesa <set_class>
[<initial_clause>]

<set_class> ::= <class_name>

<initial_dause> ::= consisting of <set_desig>

<set_desig> ::= <set_name> |
<enumerated_set> |
<association_set> |
<retrieval set> |
’NULLSET’

<association_set> ::= <element_name>-xset_name> |
<element_name>-xsynonym>

6.2.2. Set Manipulation
<looping_statement> ::= for_each <variable_name> in <set_desig> do

[<host_language_statement>]*
[<ADAMS_statement>]*

<end_loop_statement> ::= exitloop

<set_assign_stateinent> ::= assignto <set_name> from <set_desig>

<set_copy_statement> ::= copyto <set_name> from <set_desig>

<make_empty_stmt> ::= makeempty <set_name>

<insert_statement> ::= insert <element_name> into <set_desig>

24

<delete_statement>: := delete <element_name> from <set_desig>

<union_statement> ::= <set_name> is_union_of <set_desig> [, <set_desig>]*

<intersect_statement> ::= <set_name> isjntersection of <set_desig> [, <set_desig>]*

<complement_statement> ::= <set_name> is complement of <set_desig,> wrt <set_desig2>

6.3. Semantics

6.3.1. Set Denotation
(1) Only in the set instantiating statement is a initialization clause <initial_clause> permitted,

which will initialize the newly denoted set to some existent set. The latter may be a named
set, or it may be an enumerated set that is completely designated in the instantiating state­
ment, or it may be a created set in the form of a <retrieval_set>.

(2) NULLSET is the literal name of the empty set. Like all literals, it must be quoted.

6.3.2. Set Manipulation
(1) A set is implemented by a structure (possibly an O-tree) which denotes what elements (e.g.

which unique id’s) constitute the set. It is a set of references to its constituent elements.

It is anticipated that the constituent elements of most sets will exist on distinct storage dev­
ices.

(2) To reference an association set, either the name of the set must be explicitly known, or a
synonym, which was established in the class declaration, must be used.

(3) A set loop statement is a true iteration statement, it performs the enclosed set of statements
for each element in <set_desig>. Behavior will be unpredictable if the composition of
<set_desig> is altered in the course of the loop.

The initial for_each initializes a looping statement which sets the <variable_name> equal
to each element in <set_name> in turn and then executes any following host language
and/or ADAMS statements up to the closing <e_delim>"»".

(4) The loop variable, <variable_name>, need not be declared, since its class is completely
specified by the class of elements in the existing <set_desig>.

(5) The exitjoop statement is exactly analogous to a "break" statement in C. It permits the
immediate exit from the innermost set loop.

(6) The class of the destination <set_name> of a set assignment, or copy, statement must be the
same as, or higher in the hierarchy, than the class of the source <set_desig>. Thus, if peo­
ple is a set of PERSON entities, then either

« asaign_to people from undergrad »
or

« copy_to people from tenured »
will succeed but
« copy_to undergrads from people »

and
« assign_to untenured from undergrad »

will fail. The last statement, in which the classes of untenured and undergrad are not

25

comparable can not make semantic sense, since the elements in untenured would not have
several FACULTY attributes defined over them, while having several STUDENT attributes
defined. It would violate the class system.

The preceding "copy_to" statement, in which the destination <set_name> is lower in the
hierarchy than the source <set_desig>, could be semantically interpreted to mean: "for each
element of class PERSON in the set people, create a corresponding element of class STU­
DENT in the set undergrads. Duplicate all of the PERSON attributes from the source ele­
ment, and set all remaining STUDENT attributes to ’undefined’." However, no such
interpretation would make sense for a set assignment with the same two operands; so we
prefer apply the rule above to both statements.

(7) A set with persistent scope can not have members whose scope is LOCAL. Else persistent
references would disappear when the creating process terminates.

Clearly, any set can have elements whose scope is higher that the scope of the set For
example, a local set can reference persistent elements. Less obvious is whether a set should
be allowed to reference persistent elements of lower scope. Such a mechanism could be
viewed as compromising the security of USER elements. Or it could be viewed as a
mechanism for exporting USER elements. Our implementation will assume the latter, and
allow a set with persistent scope to include any elements of persistent scope.

(8) Insertion of an element of the set must

a) check that the element is of a class that can belong to the set,
b) check that the element has LOCAL scope if the set has LOCAL scope, and
c) increment the set reference counter of the element, if the set is persistent.

We employ the latter rule, so that on process termination, ADAMS will not have to decre­
ment the set reference counter of all elements that were included in temporary LOCAL sets.
But it has a consequence discussed in section 6.5.

(9) Set assignment is a copy by reference. That is, the set of references constituting the source
<set_desig> replaces the set of references that had constituted the destination <set_name>.

All elements of the destination set must be first "deleted", that is their set reference counters
decremented, then replaced with pointers to the elements of the source set, each of whose
reference counters are incremented. Note that reference counters of elements in LOCAL
sets will not be altered.

(10) Set copy is a "shallow" copy. That is, for each element denoted by the source <set_desig>,
an exact copy with a new unique id is created and "inserted" into the destination
<set_name>. Any existing references in the destination set are lost.

If the source <set_desig> is the NULLSET, then this behaves as if it were a set assignment.
(11) Deletion of an element from a set does not in general remove the element from the system.

It does, however, decrement the set reference counter of the element. If as a result the refer­
ence counter is zero, and if the removal bit has been set, then the element is physically
removed, if the set has persistent scope.

(12) When a set instance is declared (with a "belongs_to" statement), it is automatically empty.
The <make_empty> statement will delete any elements from an existing set. Note that the
following three ADAMS sequences

26

« make_empty S »

« assign_to S from NULLSET »

« for_each x in S do
« delete x from S »

»
are all equivalent.

(13) Like assign and copy, the set operators union, intersection, and complement must establish
the class of the result within the class hierarchy. The result of a relative complement will
belong to the same class as the class of <set_desig1>. The result of a union must belong to
a class above in the class hierarchy, or the same, as the class of every argument
<set_desig>. The result of a intersection must belong to a class below in the class hierar­
chy, or the same, as the class of every argument <set_desig>.

6.4. Examples
The example below is a horrible way of retrieving all undergraduate students who are

majoring in CS. A <retrieval_set>, as described in the next section, would be much more
efficient.

char data_value[20];

« cs_majors denotes_a STUDENT_SET »
« for_each x in undergrad do
« fetch into data_value from x.major »

if (strcmp (data_value, "CS") «« 0)
« insert x into cs_majors »

»

The following C code implements a rather inefficient set intersection operator. The system
intersection operator employed by the <intersect_statement> is much better, we present this only
to illustrate principles of set manipulation and ADAMS coding.

intersect (Z, X, Y)
« ADAMS_var Z, X, Y »

/*
** This procedures forms a set Z which denotes those elements
** belonging to both the sets X and Y (i.e. their intersection).
*/
{

« ADAMS_var z »
« assign_to Z from X »
« for_each z in Z do

if(!member_of(z, Y))
« delete z from Z »

»
)

The O(n) algorithm is trivial; let Z initially be all of X and strike out those elements which are
not also in Y. The member of function is described in section 11.

The treatment of element removal can be illustrated by the following example. Note that
these statements need not occur in the same process!

27

« x belongs_to Q »

« insert x into S »

« remove x »

« delete x from S »
If x and 5 have peisistent scopes, then on completion of the second statement the reference
counter of the element x will be 1 (because of the insertion). Consequently, the following request
to remove x as an element will be deferred, only its removal bit will be set When, subsequently
the element is deleted from 5, its reference counter will have been decremented to zero and
because its removal bit has been set, it will be actually removed.

6.5. Discussion
The implementation of sets is going to be dicey, as some of the following comments indi­

cate.

It is not clear how to represent a set in a distributed memory environment In a uni­
processor, or a shared memory, environment a set could be represented by a single element
referencing structure. In a multi-memory, multi-device environment should the defining element
membership structure of the set also be distributed?

Set assignment could be denoted by a more traditional assignment operator symbol, such as
:=. Then we could have

<dest set> Oource set>
instead of

assign_to <dest_3et> from <source_set>
But is this wise? Does the different syntax serve to focus the user’s attention on the nature of the
assignment, or is it just distracting?

This is the place to explore the implementation of a relational project operator, rix(ser).
The problem really has to do with the class hierarchy. Elements in the set nx(ser) belong to class
X, where X belongs somewhere between the class of "set elements" and the universal class
CLASS. But how is such a class created and inserted into the hierarchy?

In the element removal example of the preceding section, the element x was not actually
removed by the <remove_element> statement, because its set reference counter was non-zero.
But if S was a LOCAL set that counter would not be incremented. The element x would be
removed even though a reference to it still occurred. This is a clear anomaly. But, if the set 5 is
LOCAL, die insert, remove, and delete statements must all occur in the same program—so it is a
clear programmer error, not an ADAMS error!

28

r

7. Attribute and Map Inverses

7.1. General Description
ADAMS attributes and maps are, by design, single valued. Expressions of the form

<element_desig>.<attr_desig> and <element_desig>.<map_desig> denote a single data value or
ADAMS element, respectively. But the essence of much database processing is the access to
those elements, or entities, which have some specified attribute (or map) value. For example, we
might want to access all STUDENT entities whose major is ’CS’. We want to denote the inverse
image of the data value ’CS’ under the major attribute function. In general, the inverse image of
any function is a set.

This section describes the syntax of such set denotation, which we will generally call a
<retrieval_set>. This special form of set denotation could have logically been included in the
preceding section, but there is sufficient material to treat it separately.

Regarding all attributes and maps as sets of triples of the form

(<element_id>, <attribute_id>, <data_value>)
or

(<element_id>, <map_id>, <element_id>)
specification of the first two components in each case will yield the unique (because both are
functions) third component An inverse operation occurs whenever the last two triple com­
ponents are specified, as in

(x, major, ’CS’)
or

(x, advisor, y)
where y is a unique faculty id. In both cases we want the set of all elements x for which the triple
exists in the ADAMS database. The first case would yield all elements "who major in CS" as
above.

One of the earliest treatments of data representation by means of ordered triples is the semi­
nal LEAP system [FeR69] which simulated associative memory by hash coding. However, this
triple notation by itself is syntactically incomplete. The elements { je } of the inverse set must all
belong to some class; and that class must be specified. To see that this is really a problems con­
sider an inverse of the form

(x, name, ’Chip’)

The inverse element, x, might denote a person, a dog, or even an electronic component whose
"name" is ’chip’. To be well formed, the class of the inverse elements must be specified. To be
safe, the inverse elements must be restricted to a finite set.

Inverse operations are specified using a predicate syntax, not a triple syntax.

7.2. Syntax
<retrieval_set> ::= ’ {’ <bound_var> in <set_desig> ’I’ <predicate> ’) ’

7.3. Semantics
(1) A retrieval set can only consist of elements. It is impossible to retrieve a set of "data

values".

(2) The class of a retrieval set is well defined; it must be the same as <set_desig>.

29

(3) Because all elements satisfying the predicate expression are restricted to membership in
<set_desig>, this retrieval expression must be "safe" (p.247, [Mai83]).

7.4. Examples
The following straight forward example retrieves CS majors. It is equivalent to

{ X ' CS' .major-1 undargrad

that is, the inverse image of the major attribute restricted to the set under grad.
« cs_majors denotes_a STUDENT_SET »
« assign { x in undergrad | x.major 'CS' } to cs_majors »

The following is an interesting array inverse. It finds all zero elements of the array x.
« zeros denotes a REAL_ATTRIBUTE_SET »
« assign { f in x->attr | x.f - '0' } to zeros »

Note that zeros is a set of attributes. Assuming that we might like the identity of the zeros, we
might expect to display their locations by
« for_each f in zeros do

printf ("%s0, name_of(f));
»

7.5. Discussion
The issue of order comparisons, or inequalities, in predicate expressions is still very much

in the air. Suppose, in the matrix example that we wanted the identity of all negative entries, as
in:
« negative denotes a REAL_ATTRIBUTE_SET »
« assign { f in x->attr | x.f < '0' } to negative »

What does the ’<’ mean?, less than lexicographically? or less than numerically? The latter would
require either creating the attribute index using numeric keys or fetching x.f, converting it to a
numeric value, and performing the comparison in the host language.

30

8. ADAMS Names and Designators

8.1. General Description
A designator is a symbolic string which serves to designate a single ADAMS element; it

may be a data value, an attribute, a map, an entity, or a set of entities. The most basic designator
is a name. By an ADAMS name we mean a literal string that identifies an ADAMS element. In
all host languages the literal sequence, -2.53, denotes the unique real value ’-2.53’, or more
correctly the binary string whose conventional interpretation is that real value. In ADAMS,
literals are names, each of which denotes a distinct entity, that are entered into the dictionary for
subsequent use.

But simple "literal names" turn out to be inadequate for denoting and describing vast collec­
tions of persistent data. We find we want to be able to parameterize names and to be able to sub­
script them as well. Moreover, as noted by [KhC86] naming is not the only way of identifying
objects. Objects, or entities, may be designated in a variety of ways. A variable may be used to
designate different entities, depending on its current value. (In ADAMS, variables function
effectively as pointers.) An entity may be designated by an expression, which is evaluated at
run-time. A set entity may be designated by retrieval expression which both creates the set and
denotes it as well.

This section details the various ways that ADAMS designators may be constructed. Since
the designation, or identification, of data and sets of data, is central to ADAMS role in storing and
accessing of large databases, this syntax is crucial. And since naming is a key form of designa­
tion, a flexible syntax for forming names is important

8.2. Syntax
<char_seg> ::=

<param_seg> ::=

<pattern_seg> ::=

<dict_class_entry> ::=

<actual_name> ::=

<subscript_decl> ::=

<dict_instance_entry> ::=

<subscript> ::=

<subscripted_name> ::=

<class_name> ::=

<element_name> ::=

<ADAMS_var_name> ::=

<variablejist> ::=

<variable_decl_stmt> :;=

<string of letters and/or digits>

$<ordinal_number>

<char_seg> | <param_seg>

<pattem_seg> [_<pattem_seg>]*

<char_seg> [_<char_seg>]*

<subscript_pool_name> [, <subscript_pool_name>]*

<actual_name> |
<actual_name> ’[’ <subscript_decl> ’]’

<subscript_value> [,<subscript_value>]*

<actual_name> ’[’ <subscript> T

<actual_name>

<actual_name> |
<subscripted_name>

<actual_name>

<ADAMS_var_name> [, <variable_list>]

ADAMSvar <variable_list>

31

<element_desig> ::=

<attr_desig> ::=

<map_desig> ::=

<set_desig> ::=

<range>

<range_subscript> ::=

<enumeration_elem> ::=

<enumerated_set> ::=

<var_assign_stmt> ::=

<element_name> |
<variable_desig> |
<element_desig>.<map_desig>

<element_desig>

<element_desig>

<element_desig> |
<inverse_set> |
<enumerated_set>

<subscript_value> |
<subscript_vaiue>.. <subscript_vaiue>

crango [, <range>]*

<element_name> |
<actual_name> ’ [’<range_subscript> ’] ’

’{’ [<enumeration_elem> [,<enumeration_elem>]*]*’}’

<ADAMS_var_name> denotes <element_desig>

8.3. Semantics
(1) ADAMS names are composed of segments separated by underscore. The segment may

consist of characters Getters and/or digits) or it may be a formal parameter of the form $n.

"Actual" names have no parameter segments. Similarly, "instance" names, which are used
to actually denote entities in ADAMS storage, may have not parameter segments but may
be subscripted. Codomain, subscript pool, and variable names may be neither parameter­
ized nor subscripted.

(2) A dictionary "class_name" is a pattern asserting that all names with this pattern have the
declared properties of the class. Such dictionary names with parameter segments can be
used only in class definition statements, such as

<char_seg>_$l_<char_seg> isa...
or

$l_<char_seg>_<char_seg>$2 isa...

The parameter segment, $n, can match any character segment, and that character segment
(actual parameter) will replace the parameter segment (formal parameter) throughout the
remainder of the definition, wherever it appears again. Note that a single (fonnal) parame­
ter segment can never be replaced by a segmented (actual) string.

These dictionary "class names" provide a mechanism for parameterized name formation.
Only the pattern need be stored in the dictionary. Instantiation names can not be parameter­
ized.

Since, by itself a parameter segments such as $1 would match all (unsegmented names), a
<dict_class_name> must contain at least one character segment

(3) All ADAMS variables in a program segment must be declared, otherwise the character
string is assumed to be a instance name that exists in the dictionary.

32

(4) To instantiate an entity using a "denotes_a" statement, one need only establish a one-to-one
correspondence between the denoting name, which may be subscripted, and a unique ele­
ment id. There is no need to actually allocate storage for the entity. If the dictionary
instance name is a simple <actual_name>, then a unique id is allocated for that name. If the
instance name is subscripted, e.g. x[<subscript_poot>, <subscript_pool>], then as before a
unique id is associated with the <actual_name>. This can be modified by a distinct integer
suffix for each of its possible n subscript values. Thus the correspondence is defined impli­
citly, rather than explicitly.

Dictionary lookup of instance names, even if subscripted, is always by the initial
<actual_name> portion.

(5) In ADAMS, even if a name is subscripted with values form several subscript pools, it is the
n-tuple of all values that is treated as die "subscript".

(6) Since attributes, maps, and sets are all ADAMS elements (or entities), their designators all
have the form of a general <element_desig>. However, there are situations, such as
<value_desig>, where one must use a <attr_desig> as one of its components. Such con­
straints are not easily captured in the BNF syntax we are using.

(7) It is assumed that the compiler has access to the dictionary. It must, in order to verify
instance names. Consequently, all instance names can be replaced with the corresponding
unique id’s at compile time.

(8) It is also assumed that compilation creates the LOCAL version of the dictionary in the form
of a loadable program unit. It has all the needed information. Consequently, sophisticated
pattern matching will have no run-time penalty.
Where new names are declared with permanent scope (USER, GROUP, or SYSTEM) these
are marked, and actually copied into those portions of the dictionary on successful comple­
tion of the program.

(9) An <enumerated_set> is just that, the enumeration of the literal names of zero, or more,
constituent elements. For convenience, we also allow the use of a crango of subscript
values in this construct as a simple way of declaring enumerated sets. This is the only use
of the crango construct

Both csubscript_valuos of the crango must exist, and the first must precede the second in
the subscript pool.

(10) A cADAMS_var_name> denotes a element (more particularly, its unique id). It is unneces­
sary to declare the class of a cADAMS_var_name> because it can be determined by the
context (as in a set loop construct). Actually cADAMS_var_name>s will be typed in the
host language, as in the C declaration

UNIQUEID <ADAMS_var_name>;
Thus variable names, and the variable assignment statement can be used to provide an inter­
face between ADAMS designations and host language procedures as in
« <ADAMS_var_name> denotes <set_deaig> »

CALL SORT (<ADAMS_var_name>)
The host language type, UNIQUEID, of cADAMS_var_name>s may be environment
dependent.

8.4. Examples
The first three statements illustrate how ADAMS declares generic relations and relational

tuples. The last two statements then use these SYSTEM declarations to define an instance

33

relation,/acu/iy, as illustrated in section 1.5.1. This relation is initially empty.
« SCHEMA isa SET

of ATTRIBUTE elements, scope is SYSTEM »
« $1_TUPLE isa CLASS

having attributes - $1 , scope is SYSTEM
provided #$l.class_of - 'SCHEMA'# »

« $l_RELATION isa SET
of $1_TUPLE elements, scope is SYSTEM »

« FACULTY denotes_a SCHEMA
consisting of { name, soc_sec_nbr, b_date, rank, dept },
scope is USER »

« faculty denotes_a FACULTY_RELATION, scope is USER »
In the example of Section 4.4, a map class with the class name FACULTY_MAP was

declared so that instance maps called advisor and instructor of this class could be established. A
parameterized class declaration, such as below, would have been preferable.
« $1_MAP isa MAP with image $1_REC, scope is USER »
« advisor denotes_a FACULTY_MAP, scope is USER »
« instructor denotes_a FACULTY_MAP, scope is USER »

While this offers no economy in the definition of these two specific maps, it does provide a
mechanism for defining the student and course maps without having to additionally declare
STUDENT_MAP and COURSE_MAP. The following instantiations would sufficient.
« student denotes_a STUDENT_MAP, scope is USER »
« course denotes_a COURSE_MAP, scope is USER »

In the following example we will use subscripting to declare (a) the class of all doubly sub­
scripted real arrays, or matrices, and (b) a particular 5x8 matrix denoted by x.
« $1_ATTRIBUTE isa ATTRIBUTE

with image $1,
scope is SYSTEM »

« val[Zahlen, Zahlen] denotes_a REAL_ATTRIBUTE,
scope is USER »

« REAL_$1_X_$2_MATRIX isa CLASS
having attr - { val[l..$l, 1..S2] },
scope is USER »

« x denotes_a REAL_5_X_8_MATRIX
scope is USER »

Subsequently, procedures can make use of the permanent data that is denoted by elements of x.
For example,
« fetch into a[3, 5] from x.val[3.5] »

8.5. Discussion
Literals are much more important in ADAMS than in traditional languages. In host pro­

gramming languages, literal strings typically "denote themselves", whether they are numeric
literals or quoted literals. In ADAMS, a literal string (or name) denotes a single identifiable
object, or class. The dictionary is simply a mechanism for looking up the meaning of these literal
names.

34

It is important to note that instance names and variables have the same form, so that it is
impossible to distinguish them within the context of a single ADAMS statement. This is not true
in many other programming languages. In these languages, literals are recognizable because they
are 1) numeric, 2) quoted, or 3) used in a definable context (e.g. procedure names). Two impor­
tant exceptions are named constants in Pascal and defined constants in C. Their literal nature is
discoverable only by compilation. ADAMS employs this paradigm.

Name segments that are to function as "actual parameters" in a parameterized
dictionary_name> are not distinguished as such. This makes the resulting names more natural,
but it also can lead to problems. For example, which of the two dictionary name patterns,
$l_RELATION or R_$l. should R_RELATION match? There are several, somewhat unelegant,
ways of resolving this (e.g. actual parameter segments can not be capitalized) but I am inclined
to wait and see how die present scheme works out

The syntax of this section has developed the differences between a <dict_class_entry>, a
<dictjnst_entry>, a <class_name>, and a <element_name>. The first two represent the form of
names as they are entered into the dictionary. The former can be parameterized with $n seg­
ments; the latter can specify subscript domains (or pools) that provide subscript values. The last
two represent the form of names as they are used in a program to reference dictionary entries. An
<element_name> can be subscripted, and <class_name> can not—it must be an <actual_name>
comprised of character segments.

In the preceding sections, we have been careful to insure that the syntax conforms to these
roles, but we have also used the words attr, map, and set to emphasize other aspects. The follow­
ing table summarizes the various synonyms we have used in preceding sections

Defined by Referenced by

<dict_class_entry>
<attr_class_entry>
<map_class_entry>
<set_class_entry>

<class_name>
<attr_class_name>
<map_class_name>
<set_class_name>

<dict_inst_entry>
<attr_entry>
<map_entry>
<set_entry>

9. The Dictionary

9.1. General Description
The dictionary has just two functions. To associate with each literal ADAMS name either

(a) the properties of any entity in the class, if it is a CLASS name, or (b) the unique id
corresponding to that literal name.

9.2. Syntax
The dictionary concept adds only one construct to the ADAMS syntax; that is the scope

construct. But it also adds to essential dictionary manipulation statements.

<scope_clause> ::= scope is <scope>

<element_name>
<attr_name>
<map_name>
<set_name>

35

<scope> ::= SYSTEM |
GROUP |
USER |
LOCAL

<rescope_stmt> ::=

<erase_entry_stmt> ::=

<dict_entry> ::=

rescope <name> as <scope>

erase <dict_entxy>

<dict_class_entry> |
<dict_inst_cntry>

9.3. Semantics
The semantics associated with the dictionary and dictionary maintenance are more fully dis­

cussed in [PFW88]. Here we only mention some of the highlights.
(1) Name scopes are hierarchical. Names declared to have SYSTEM scope are available to all

users. Those declared GROUP are available to all members of the group, while USER
names are private to that user. LOCAL names are not persistent; they exist only for the
duration of the program.

(2) To a compiling, or executing, program the dictionary can be viewed as consisting of four
sub-directories—its local, user, group, and system sub-directories. For name resolution, the
local sub-directory is searched first, then the user, group, and system sub-directories, in that
order. Consequently, a user can "redefine" any name declared at a higher scope.

(3) Insertion of a new <dictionary_name> into a sub-directory can succeed only if that
<dictionary_name> does not already exist in that sub-directory or in any higher sub­
directory that is being referenced along a path through the sub-directory. This requires
keeping track of name reference by user id’s.

(4) Dictionary names can not be deleted if they are currently being referenced by entries in
other sub-directories.

(5) Rescoping a name can be viewed as a process of deleting and then adding it again; but not
quite. It must be conducted with respect to all other users, ignoring the user issuing the
command.

9.4. Discussion
All ADAMS statements which manipulate the dictionary, including

must appear in the same source file as the main program which will invoke them. This curious
restriction is imposed by the a desire to optimize performance. But, before examining why we
impose this restriction, lets consider its consequences. With this restriction, no isa or denotes_a
statements creating either class or instance entries can appear in any separately compiled code,
such as utility routines. This would seem to be a serious restrictioa But consider that no isa or
denotes_a statement involving literal names can, in general, be executed twice! The names are
persistent. Requiring such statements to be with (or even as) the main program involves little
hardship. More general, parameterized isa or denotes a statements in which the <dict_entry> is
a host language string variable would be precluded from pre-compilation, and this might be irk­
some. For example, one can imagine a general interactive class declaration module in which a
user is prompted for various components needed to define the class.

<class_decl_statement>s
<elem_instance_statement>s
<rescope_statement>s
<erase_entry_statement>

isa
denotesa
rescope
delete

36

The reason for this restriction comes from the following. At run time, the open_ADAMS
statement, among other initialization functions, attaches the working dictionary comprised of the
three persistent user, group, and system sub-dictionaries, together with an empty local sub­
dictionary. In the course of execution the running ADAMS program may add entries to this
local, temporary dictionary. It will save considerable run-time overhead if the compiler actually
creates this local dictionary at compile time, and simply prepends it to the object code. It can
then then be simply loaded by the initial open_ADAMS statement and the run-time equivalents
of the declaration statements can be no-ops. Moreover, this pennits the compiler to replace all
literal names with the corresponding element UNIQUID’s to eliminate most run-time dictionary
lookups. If a persistent class, or entry, declaration is made the same procedure is followed,
except that instead of a no-op the run-time equivalent becomes a rescope action which may, or
may not, succeed at the time of execution. In order, to build such a local sub-dictionary at com­
pile time, the pre-processor must see all of the relevant declarations; hence they must be in a sin­
gle source code file, the same one which will issue the open_ADAMS command.

We have indicated that this restriction has been imposed for the sake of efficiency. We
should note that it is also a necessity. The preprocessor would have to create some form of local
dictionary to perform type checking on the ADAMS code it is scanning. Moreover, we could not
allow reference to a non-local dictionary entry which has not yet been entered, but which will be
entered by a separate module which will be run before the current code.

37

10. Transactions

10.1. General Description
ADAMS provides the user with nested transactions based on the well-known model of

Moss [Mos85]. These transactions are designed only to provide concurrency control. Fault
tolerance and reliability control will be buried within the ADAMS implementation and will not
be accessible to the user. However, the casual user need not become involved with either the
transaction concept or concurrency control at all.

A transaction is an ADAMS element (entity or object) belonging to the system defined
class TRANSACTION. A root transaction with LOCAL scope is created automatically by the
<open_ADAMS_statement> and automatically committed (if possible) by the
<close_ADAMS_statement>. None of the intervening ADAMS statements can modify the per­
sistent data space unless the final committment is successful. By creating nested sub-transactions
the user can establish whether the intervening statements within the sub-transaction are committ-
able. If a sub-transaction is not committable (i.e. the <end_trans_statement> fails) the user has
the option of re-executing that sub-transaction or otherwise repairing the damage. If the sub­
transaction is committable (i.e. the <end_trans_statement> succeeds), it is known that none of its
intervening statements can prevent commitment of the root transaction. But the actions of its
statements will actually be committed if and only if the root transaction commits.

10.2. Syntax
<transaction statement ::= trstart <trans_desig>

([<ADAMS_stmt>] | [<host_stmt>])*
tr end

<abort_statement> ::=

<Iock_statement> ::=

cunlock statement ::=

abort <trans_desig>

lock <element_desig>

unlock <element_desig>

10.3. Semantics
The semantics of transactions depend on the following SYSTEM declarations
« TRSTATUS isa CODOMAIN

consisting of twho_knows_whatt,
with scope SYSTEM »

« tr_status denotes_a to TRSTATUS_ATTRIBUTE
with scope SYSTEM »

« TRANSACTION isa CLASS forward »
« TRANSACTIONS isa SET of TRANSACTION elements

with scope SYSTEM »
« tr_parent denotes_a TRANSACTION_MAP »
« tr_subset denotes_a TRANSACTIONS_MAP »
« TRANSACTION isa CLASS

having attr - { tr_status, [others ?] }
having maps - { tr_parent, tr_subset, [others ?])
tr_start:

<definition of tr_start method>
tr_end:

<definition of tr_end method>
with scope SYSTEM »

(1) Note that the declarations of tr status, trjjarent, and tr subset above presume generic
parameterized declarations of the form

38

« $1_ATTRIBUTE iaa ATTRIBUTE
with image $1
scope is SYSTEM »

« $1_MAP isa MAP
with image $1
scope is SYSTEM »

(2) The normal sequence to create a sub-transaction would be
« trl denotes_a TRANSACTION »
« tr_start trl »

The first statement creates a transaction element (entity or object). The second statement
actually initializes it We separate these two functions, so that if the sub-transaction trl
fails to be committable, it may be reused.

(3) The <open_ADAMS_statement> creates and initializes the root transaction. But the syntax
does not provide a mechanism for returning its identity. It is a "hidden", implicit transac­
tion that is unavailable for user manipulation.

(4) The root transaction can not commit if any of its sub-transactions are uncommittable. But
note that an ABORT(ed) sub-transaction is vacuously committable.

(5) ADAMS will always use time-stamping to passively enforce serializability. The optional
use of a <lock_statement> pennits a user to guarantee that no time-stamp reference conflict
can occur on the named entity.

If <element_desig> is a set, then the set itself and each of its constituent elements is also
locked. This provides an easy mechanism for granting may locks in one fell swoop. But
this is only a 1 level inclusion.

(6) A subtransaction must inherit the locks of its parent; a similar inheritance must also be
implemented with respect to time-stamping.

(7) When a sub-transaction, or the root transaction, terminates entities locked in that transaction
are automatically unlocked. The user initiated <unlock_statement> is strictly optional.

(8) To implement the above lock release, each transaction must have an associated <lock_set>.
But this can not be an ADAMS set, because in general elements from distinct classes can be
locked; it must be a system maintained "set".

10.4. Examples
The following example illustrates the process for granting a set of locks on "all the under­

graduate CS majors", presumably for the purpose of a massive update.
« C3_majors denotes_a STUDENT_SET »
« assign { x in undergrad | x.major - 'CS' } to cs_majors »
« lock cs_majors »

10.5. Discussion
There is no provision for deadlock detection in the ADAMS syntax. Should there be?
Is the "unlock" option unwise? Moss requires his nested transactions to retain the lock until

the entire transaction terminates. Moreover, suppose a set of elements, such as cs majors is
locked, and in the course of processing elements of the set are either inserted or deleted. How
would an
« unlock cs_majors »

statement be interpreted? Would elements that have been deleted from the set be "unlocked"?
Should elements that are inserted into a set be automatically locked, and those deleted

39

r

automatically unlocked? Both seem risky. A reasonable approach might be to associate with
each process an "invisible" global lockset consisting of all locks obtained by the process. An
unlock command would remove all locks in the intersection of lockset and the set denoted in the
unlock statement. All remaining locks in lockset would be automatically removed on process ter­
mination.

Moss requires that only leaf transactions modify the database? Is this a necessary charac­
teristic of nested transactions? Can it be enforced?

11.2.1. SET Functions

ismemberof (<ADAMS_element_var>, <ADAMS_set_var>);
returns true if the <element> is a member (or element) of the specified <set>.

is empty (<ADAMS_set_var>);
returns true if the <set> is empty, and false otherwise,

card (<ADAMS_set_var>);
returns the integer cardinality of the specified <set>.

11.3. Other Predicates
same_element (<ADAMS_eIem_var>, <ADAMS_elem_var>) returns true if the two variables

denote the same element
ADAMS_success;

returns true if the last executed ADAMS statement succeeded.
ADAMSJail;

returns true if the last executed ADAMS statement failed.
This and the preceding function simply test the ADAMS_status register.

11.4. Discussion
Should all system procedures (or methods) be clearly identifiable, say with an embedded

dollar sign, etc.

12. References

[AC085] A. Albano, L. Cardelli and R. Orsini, Galileo: A Strongly Typed Interactive
Conceptual Lanugage, Trans. Database Systems 10,2 (June 1985), 230-260.

[BuA86] P. Buneman and M. Atkinson, Inheritance and Persistence in Database Programming
Languages, Proc. ACM SIGMOD Conf. 15,2 (May 1986), 4-15.

[Car84] L. Cardelli, A Semantics of Multiple Inheritance, in Semantics of Data Types,
Lecture Notes in Computer Science 173, Springer Veriag, June 1984,51-67.

[CAD87] R. L. Cooper, M. P. Atkinson, A. Dearie and D. Abderrahmane, Constructing
Database Systems in a Persistent Environment, Proc. 13th VLDB Conf., Brighton,
England, Sep. 1987,117-125.

[DGS88] D. J. DeWitt, S. Ghandeharizadeh and D. Schneider, A Performance Analysis of the
Gamma Database Machine, Proc. SIGMOD Corf., Chicago, June 1988, 350-360.

[FeR69] J. Feldman and P. Rovner, An Algol-based Associative Language, Comm, of the
ACM 14,10 (Oct. 1969), 439-449.

[HuK87] R. Hull and R. King, Semantic Database Modeling: Survey, Applications, and
Research Issues, Computing Surveys 19,3 (Sep. 1987), 201-260.

[JeW75] K. Jensen and N. Wirth, Pascal: User Manual and Report, Springer-Veriag, New
York, 1975.

[KhC86] S. N. Khoshafian and G. P. Copeland, Object Identity, OOPSLA ’86, Corf. Proc., ,
Sep. 1986,406-416.

42

11. System Procedures
The basic imbedded structure of ADAMS dictates that an ADAMS statement, denoted by

its beginning and ending delimiter will be converted into corresponding host language code
and/or procedure calls by the preprocessor. But in a complete interface there invariably arise
occasions when a host language statement must invoke some predefined ADAMS procedure.
These are typically of two forms: (1) to extract information from the dictionary for comparison,
testing, or display: or (2) to test some aspect of the system. The latter will be boolean (or LOGI­
CAL) functions.

We call these "system procedures". It would be equally true to call them "methods", espe­
cially the latter functions which are clearly associated with specific ADAMS classes.

Since a system procedure (or method) is a host language construct, all formal and actual
parameters must be recognized in die type structure of die host language. The ADAMS <vari-
able> construct is important here. It is die only ADAMS construct which must have a predefined
corresponding host language type. (The correspondence between codomains and host language
types is not pre-defined. It is established with fetch and store methods.)

11.1. Dictionary Interrogation
Many of the procedures below return strings as their functional value—that is, a "string" in

the sense of the host language. Others accept strings as their argument

class_of (<ADAMS_element_var>);
returns the class of the designated instance element, as a string. This function
must be defined for all elements.

name_of (<ADAMS_element_var>);
returns the name of the designated instance element, as a string. Note that most
instances will be unnamed.

unique_id_of (<ADAMS_eIement_var>);
returns the uniquejd identifying every ADAMS element in a printable string
form.

classofmember (<ADAMS_set_var>);
returns the class of the members (elements) of the designated set.

image_of (<ADAMS_ftmction_var>);
returns the class of image objects of the designated function, either attribute or
map.

is_instance_natne (<string>);
returns true if the name denoted by the <string> is the name of an instance in the
user’s dictionary.

is_class_name (<string>);
returns true if the name denoted by the <string> is, or could be, a class name in
the dictionary.
(Note: because of parameterized class naming, it is impossible to always know if
a particular actual name is being used as a name.

112. Class Functions
The following functions each return scalar values that are typed according to the host

language’s conventions, usually either integer or boolean; they are functions that are associated
with a particular kind of ADAMS class (or derivative class).

Notice that in every case the arguments are ADAMS variables, that is entity identifiers
which have been cast into a specific host language variable form.

r

41

[Klu88] C. Klumpp, A C Interpreter for the ADAMS Language, IPC Tech. Rep.-88-005,
Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[Mai83] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville,
MD, 1983.

[Mos85] J. E. B. Moss, Nested Transactions: An Approach to Reliable Distributed
Computing, MIT Press, Cambridge, MA, 1985.

[PSF87] J. L. Pfaltz, S. H. Son and J. C. French, Basic Database Concepts in the ADAMS
Language Interface for Process Service, IPC Tech. Rep.-87-001, Institute for Parallel
Computation, Univ. of Virginia, Nov. 1987.

[Pfa88] J. L. Pfaltz,.Implementing Set Operators Over a Semantic Hierarchy, IPC Tech.
Rep.-88-004, Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[PSF88] J. L. Pfaltz, S. H. Son and J. C. French, The ADAMS Interface Language, 4th
International Hypercube Conference, Pasadena, CA, Jaa 1988.

[PFW88] J. L. Pfaltz, J. C. French and J. L. Whitlatch, Scoping Persistent Name Spaces in
ADAMS, IPC Tech. Rep.-88-003, Institute for Parallel Computation, Univ. of
Virginia, June 1988.

43

