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Abstract

ADAMS provides a mechansim for applications programs, written 
in many languages, to define and access common persistent data­
bases. The basic constructs are element, class, set, map, attribute, 
and codomain. From these the user may define new data structures 
and new data classes belonging to a semantic hierarchy that sup­
ports multiple inheritance.



Table of Contents
1. Overview....................................................................................................... 1

1.1. Goals of ADAMS................................................................................... 1
1.2. General Philosophy................................................................................ 3
1.3. Basic Constructs .................................................................................... 3
1.4. ADAMS Statements.........................................................   4
1.5. Running Examples................................................................................. 5

1.5.1. Relational ........................................................................................ 6
1.5.2. Semantic........................................................................................... 6
1.5.3. Scientific ......................................................................................... 7

2. CODOMAIN..... ............................................................................................ 8
2.1. General Description ............................................................................... 8
2.2. Syntax ..................................................................................................... 8
2.3. Semantics................................................................................................ 9
2.4. Examples................................................................................................ 11
2.5. Discussion............................................................................................... 12

3. ATTRIBUTE ................................................................................................. 13
3.1. General Description ............................................................................... 13
3.2. Syntax ..................................................................................................... 13
3.3. Semantics................................................................................................ 13
3.4. Examples................................................................................................. 14
3.5. Discussion............................................................................................... 14

4. MAP............................................................................................................... 16
4.1. General Description ............................................................................... 16
4.2. Syntax ..................................................................................................... 16
4.3. Semantics................................................................................................ 16
4.4. Examples................................................................................................. 16
4.5. Discussion............................................................................................... 17

5. CLASS........................................................................................................... 18
5.1. General Description ............................................................................... 18
5.2. Syntax ..................................................................................................... 18

5.2.1. Class Syntax..................................................................................... 18
5.2.2. Predicate Syntax ............................................................................. 19

5.3. Semantics................................................................................................ 19
5.3.1. Class Semantics .............................................................................. 19
5.3.2. Predicate Semantics........................................................................ 21

5.4. Examples................................................................................................. 21
5.5. Discussion.............................................................................................. 22

6. SET ................................................................................................................ 24
6.1. General Description ............................................................................... 24
6.2. Syntax ..................................................................................................... 24

6.2.1. Set Denotation................................................................................. 24
6.2.2. Set Manipulation............................................................................. 24



6.3. Semantics............................................................................................... 25
6.3.1. Set Denotation................................................................................. 25
6.3.2. Set Manipulation............................................................................. 25

6.4. Examples.... ............................................................................................ 27
6.5. Discussion.............................................................................................. 28

7. Attribute and Map Inverses........................................................................... 29
7.1. General Description ............................................................................... 29
7.2. Syntax ................................................................................   29
7.3. Semantics ............................................................................................... 29
7.4. Examples................................................................................................ 30
7.5. Discussion.............................................................................................. 30

8. Names and Designators................................................................................. 31
8.1. General Description ............................................................................... 31
8.2. Syntax ..................................................................................................... 31
8.3. Semantics................................................................................................ 32
8.4. Examples................................................................................................. 33
8.5. Discussion.............................................................................................. 34

9. Dictionary ...................................................................................................... 35
9.1. General Description ............................................................................... 35
9.2. Syntax ..................................................................................................... 35
9.3. Semantics................................................................................................ 36
9.4. Discussion............................................................................................... 36

10. Transactions ................................................................................................ 38
10.1. General Description ............................................................................. 38
10.2. Syntax ................................................................................................... 38
10.3. Semantics.............................................................................................. 38
10.4. Examples.............................................................................................. 39
10.5. Discussion............................................................................................ 39

11. System Procedures...................................................................................... 41
11.1. Dictionary Interrogation ...................................................................... 41
11.2. Class Functions.................................................................................... 41

11.2.1. SET Functions.............................................................................. 42
11.3. Other Predicates................................................................................... 42
11.4. Discussion............................................................................................ 42

12. References.................................................................................................... 42

ii



Table of Examples

Relational Database Examples:
Declaration of FACULTY, STUDENT tuples and relations........................ 21
Generic (parameterized) tuple and relation declaration................................. 34

Semantic Database Examples:
Declaration of maps ....................................................................................... 16
Declaration of FACULTY_REC using inheritance....................................... 21
Association of attributes and maps in STUDENT_REC............................... 21
Intersection classes, multiple inheritance ...................................................... 22
STUDENT_REC with predicate restriction .................................................. 22
Looping over the ’undergrad’ set................................................................... 27
Inverse of major attribute............................................................................... 30
Generic (parameterized) map declarations .................................................... 34
Locking a set of entities ................................................................................. 39

Scientific Database Examples:
Inverse attribute to find zero elements........................................................... 30
Generic (parameterized) declaration of m-by-n matrices.............................. 34

iii



1. Overview
Oh my God! Not another database language. Well, yes and no. The ADAMS language has 

been created because we perceive a need that is not fulfilled by existing database languages. But 
ADAMS is not intended to be a complete language by itself. Instead it has been designed to pro­
vide a clean database interface for existing programming languages, such as Ada, C, Fortran, and 
Pascal.

The reasons for undertaking the ADAMS project are described in the following paragraphs
(1) The relational model, which provides the basis of most current database systems has proven 

itself extremely valuable for the representation the kinds of data used in most business 
operations. But deficiencies appear if one tries to use it in data fusion kinds of applications. 
Foremost, is its inability to adequately represent scientific data using array configurations. 
In some systems, there have been ad hoc fixes, such as the definition of "array" data types, 
to circumvent this problem. However, such an approach violates the relational model, for 
example, one can not join relations over such array attributes.

(2) A characteristic of most database systems, is that the data sets (relations) belong to distinct 
separate databases. Data sets in one database can seldom be used in conjunction with data 
sets of another database, for fear of violating internal implementation constraints. This 
effectively fragments an organization’s data. All the available data ought to be conceptu­
ally accessible by any process, subject only to limitations imposed by security or privacy.

(3) Existing database languages were designed for large centralized processors, with more 
recent modifications to accommodate very loosely coupled distributed networks of proces­
sors. To fully exploit the potential of tightly coupled parallel processing, one needs a 
language that encourages parallel database access and processing.

(4) Finally, wc note the awkward status of read/write statements in traditional programming 
languages. In many languages, such as Algol and Pascal [JeW75], they are a kind of step­
child which is explicitly disavowed by the parent language In others, only inherently 
sequential stream I/O is supported. None, with the possible exception of persistent Pascal 
[BuA86, CAD87], employ a computational model in which the process is coequal with a 
permanent database from which specific data items are directly accessible.
ADAMS was created in response to these kinds of perceived deficiencies. This report 

represents the combined design efforts of its authors over a three month period. It builds on 
several earlier reports, notably [PSF87] which was later presented at the 1988 Hypercube Confer­
ence as [PSF88], [PFW88], and [Klu88]. Each of these has presented fragments of ADAMS syn­
tax. But, much of this early syntax has been modified in the light of trial usage, especially of the 
prototype interpreter described in [Klu88]. The reader is warned to use only this, most recent, 
version of ADAMS.

1.1. Goals of ADAMS
The overriding goal in designing ADAMS was to create a flexible database system that 

would actually be used by a large number of applications programmers. This, in turn, translated 
into a number of more specific goals which are detailed below.

Flexibility: Data comes in many forms, for use in many different applications. For example, 
one may want to represent
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scientific arrays,
images and topographic data, and 
inference networks.

It was our intention that ADAMS should be able to describe at least all of these different 
data forms, as well as others we had not considered.

Simplicity: One of the strengths of the relational model is its conceptual simplicity. It is rela­
tively easy to leam and to implement A common problem that arises when older com­
putational forms are extended is that they become quite complex. There are special cases 
to leam, and more importantly, to implement. An example is Galileo [AC08S], a 
strongly typed interactive language which embraces many pre-defined special types.

Our goal has been to keep the number of basic constructs to a minimum. To this end, we 
envision sets as the basic aggregation concept

Embeddability: We would describe a new language as embedded, if its constructs are clearly 
delimited and can be treated as if they were comment statements in the host language. 
The host language compiler is untouched and host language statements need not be 
parsed to interpret ADAMS statements. In contrast, a new language is an extension if its 
constructs become integral components of one, or more, of the host language constructs. 
A language extension requires a much more sophisticated pre-processor or modification 
of the host language compiler itself.

ADAMS is deliberately designed as an embedded language. A pre-processor converts 
ADAMS statements into host language statements. There is no modification of the host 
language itself. For example, host language variables can be used in ADAMS state­
ments, but ADAMS variables may not appear in host language constructs.

Parallelizability: The language paradigm of existing database systems is based on sequential 
processes running on a single processor. Given a parallel operating environment, one can 
implement utility processes in parallel as in [DGS88], but there is seldom facilities for a 
programmer to exploit the inherent possibility of parallel data access at the applications 
level. ADAMS is not specifically a parallel processing language; but since we are imple­
menting it on the Institute’s two hypercube configurations it includes fine grained data 
denotation which permits the application programmer to designate individual subsets of a 
distributed database.

Portability: A database system must be capable of operating cm different kinds of hardware 
under different operating systems. The ease with which this is accomplished is the tradi­
tional sense of "portability". By keeping its basic constructs "simple", ADAMS supports 
this kind of portability. It is being concurrently implemented in a traditional multi­
processing environment, and in a parallel processing environment.

Another aspect of "portability" is its ability to be used by several different programming 
languages in the same hardware environment. For this kind of portability a "real" value 
when read from the persistent database must be converted to a "retd" type that is 
appropriate for the individual language.

Efficiency: This has not been a primary goal; at least we have not sought efficiency in the cus­
tomary sense. For example, we have not optimized storage structures so that block data 
transfers can be facilitated.
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It is our firm belief that the major speed up in data handling will come from the parallel 
processing of data sets; and that this in turn will be facilitated by flexible storage mechan­
isms and flexible naming conventions which may be slow by single processor standards. 
In ADAMS the database implementor is able to make effective use of parallel processors 
and storage devices. This will be the source of its efficiency.

1.2. General Philosophy
ADAMS is based on what may be called the entity database model [Pfa88]. That is, its fun­

damental units of organization are "entities", or "objects", or as ADAMS calls them "elements"T. 
Every ADAMS element is uniquely identifiable. One may loosely say that ADAMS is "object 
oriented"; and in a somewhat different context one might be inclined to call its elements, objects. 
The difference between ADAMS and other object-oriented databases is largely one of degree. 
For example, ADAMS does not hide the logical structure of the data that it represents—instead 
its primary function is to publically describe a logical structure. (However, much of the fine- 
grain implementation structure is hidden.) And, although there exist mechanisms for associating 
methods with instance elements of particular classes, such methods are neither the sole, nor even 
the primary, interface mechanism as they are in true object-oriented systems.

ADAMS "elements" are the basis for representing the logical structure of the data. Actual 
stored data values are drawn from user definable codomains. It is possible to create sets of ele­
ments in ADAMS, but not sets of data values.

Every ADAMS element must belong to a class. The class system supports multiple inheri­
tance [Car84]. In this regard, and in its syntax and usage, ADAMS is a semantic database system 
in the sense of [HuK87].

Probably the most important aspect of ADAMS is its treatment of names. Although there 
are many different ways of referencing desired data elements and their values [KhC86], at some 
fundamental data access depends on the ability to name elements, or sets of elements, in the data­
base. A familiar paradigm is the use of names to identify variables and procedures in traditional 
programs. However, the scope of these names is always limited to the program itself. The same 
name can be repeatedly used in different programs. In contrast, the names of elements in a per­
sistent database must themselves be persistent. And they must be unique. This requires a much 
larger "name space" and much more sophisticated naming conventions than most programmers 
are accustomed to.

ADAMS employs a segmented hierarchical name space which allows a programmer to both 
construct private data names as well as shared, common data names. It also supports the indexing 
of names, an important mechanism for extending a name space, without the usual connotation 
that the indexed names denote an array structure.

It should be emphasized that the introduction of persistent names introduces a level of com­
plexity that is completely missing in traditional programming languages; but which must be 
addressed in any treatment of persistent database access.

1.3. Basic Constructs
ADAMS has only five basic constructs: they are codomain, class, set, attribute, and map.
All computing systems must have a primative (or atomic) level in which the meaning of a 

sequence of bits is defined by convention. These are data values. In ADAMS the conventional 
meaning of a sequence of bits is known as a codomain. For example, one may have a codomain 
consisting of "real" numbers, or of nine digit social security numbers, or of all strings beginning

t In this report we will use "element", "entity", and less often "object" as synonyms.
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with the letter T\ In many programming languages, these would be called "data types”. In the 
relational model, they would be called simply "domains". We use our terminology because they 
actually serve as "codomains" to attribute functions.

The concept of class is fundamental to ADAMS. Every nameable entity must belong to a 
class. A class represents a generic entity—its structure and its properties. All individual entities, 
or instances, within the class share the same structure and properties. All classes are declared and 
named by the user, except for the three pre-defined classes set, attribute and map classes.

In most database processing we work with sets of data items, not just single entities, for 
example, the set of "all computer science students with grade point average greater than 3.2". 
Such sets must themselves be entities. They belong to a pre-defined class of type set.

Functions can be defined on ADAMS entities. They are distinguished according to their 
image spaces. An attribute is a single valued function whose domain consists of entities in one, 
or more classes, and whose image space, or codomain is a codomain. In contrast, a map is a sin­
gle valued function whose domain consists of entities in one, or more classes, and whose image 
space, or codomain is a class.

In other words, the functional value of an attribute function a on a particular entity x, 
denoted by x.a will be an atomic data value from a codomain, while the functional value of a 
map, denoted by x.m will be another entity, say y.

We would re-emphasize that any entity instance belonging to either a user defined class or 
to a user defined attribute, map, or set class can be named. It has an "independent" existence. 
Specific values in a codomain can not be named. They have no independent existence, save as 
the current value of an attribute function acting on an entity instance.

1.4. ADAMS Statements
Since ADAMS is an embedded language, every ADAMS statement is clearly delimited— 

just like a comment We use the delimiters « and », but clearly any other set of delimiters 
could serve as well. Thus the basic ADAMS syntax is:

<ADAMS_statement> ::= <b_delimiter> <statement_body> <e_delimiter>

<b_delimiter> ::= «

<e_delimiter> ::= »

The <statement_body> denotes any of 33 ADAMS statements. These statements may be 
generally grouped into five general types: those declaring generic codomains and classes; those 
establishing entity instances; those manipulating sets; those accessing elements and data values; 
and finally, a few miscellaneous statements. We enumerate all of the different ADAMS state­
ment types below. A more detailed expansion of each will be found in the sections indicated to
the right of each statement.

<statement_body> ::= <open_ADAMS_stmt> 1.4
ccodom ain_decl_stmt> 2.2
<subscript.pool__decl_stmt> 2.2
<add_codomain_method> 2.2
<attribute_decl_stmt> 3.3
<attribute_instance_stmt> 3.3
<map_decl_stmt> 4.2
<map_instance_stmt> 4.2
<class_decl_stmt> 5.2.1
<elem_instance_stmt> 5.2.1
<nemove_element_stmt> 5.2.1
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<variable_decl_stmt> 8.2
<set_decl_stmt> 6.2.1
<set_instance_stmt> 6.2.1

<fetch_statement> 3.2
<store_statement> 3.2
<looping_statement> 6.2.2
<end_loop_statement> 6.2.2
<set_copy_statement> 6.2.2
<set_assign_statement> 6.2.2
<make_empty_stmt> 6.2.2
<insert_statement> 6.2.2
<erase_statement> 6.2.2
<union_statement> 6.2.2
<intersect_statement> 6.2.2
<complement_statement> 6.2.2
<rescope_statement> 9.2
<transaction_statement> 9.2
<abort_trans_statement> 10.2
<end_trans_statement> 10.2
<lock_statement> 10.2
<unlock_statement> 10.2
<close_ADAMS_stmt> 1.4

There is no well-formed ADAMS program, because the program concept exists only in the 
host language. ADAMS simply consists of one or more ADAMS statements embedded in a host 
language program or procedure. However, any sequence of ADAMS statements must be pre­
ceded with an <open_ADAMS_stmt> and eventually terminated with a <close_ADAMS_stmt>. 
These have the syntactic structure:

<open_ADAMS_stmt> ::= open_ADAMS (<job_id>)

<close_ADAMS_stmt> ::= close_ADAMS (<job_id>)

These statements open and close, respectively, various ADAMS dictionaries. They need be 
issued only by the main program executing on any processor. The <job_id> is used to co­
ordinate execution on multiple processors.

Any ADAMS statement can fail for a variety of reasons. The open_ADAMS statement 
creates a statement status word, called A$STATUS, which can, and should be, tested after execut­
ing any ADAMS statement. In Fortran programs this is located in labelled common /ADAMS/.

1.5. Running Examples
To provide examples of the ADAMS statements described in the following sections, we 

will establish two running database examples. The first is designed to illustrate and exercise 
those features which are used in relational and semantic database models. It was describe in 
[PSF88] and served as a prototype implementation test vehicle in [Klu88]. The second database 
will be used to illustrate scientific usage.

A practice used by the ADAMS group, is to capitalize the names of generic sets, such as 
codomains and classes, and to represent specific entity instances in lower case letters. While this 
seems to be a valuable convention, it is not an ADAMS rule.
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1.5.1. Relational
ADAMS is designed to be more flexible than familiar relational database systems. 

Nevertheless, relational databases are a fundamental way of structuring information. In Figure 1, 
we show an entity-relationship diagram for a traditional "students", "faculty", "courses" type 
database that we will use as a running example to illustrate various ADAMS features.

FACULTY: (name, rank, dept)

advisoi tructor

STUDENTS: (name, major, s.nbr)- » COURSES: (c_nbr, c.name, term)

Entity-Relationship Diagram 
Figure 1.

One running example will implement this structure as a 3NF relational database. It will contain 
the following four relations that one would expea in such an implementation.

Schema Keys

FACULTY: (fname, rank, dept )
STUDENT: (sname, major, s_nbr, fname) 
COURSE: (c_nbr, c_name, term, fname) 
ENROLL: (sname, c_nbr, term, grade)

fname
sname
c_nbr, term 
sname, c nbr, term

Here the attribute fname in the STUDENT and COURSE schema implements the single valued 
advisor and instructor relationships respectively. We will find, however, that it is difficult to cap­
ture all aspects of the relational model in an entity based mode. Projection, for example, will not 
be easy.

1.5.2. Semantic
ADAMS is a database system that is actually based on the semantic model, not the rela­

tional model. One consequence of this distinction is that a "relation" is an instance set of "tuple" 
entities, not a flat table as in Codd’s original formulation. Thus FACULTY and STUDENTS 
denote classes of entities, not specific instances. In Figure 2, one has two different FACULTY 
"relations" called tenured and untenured, and two different STUDENT "relations" called under­
grad and graduate. Moreover, the advisor and instructor relationships are represented as maps, 
not as tuple attributes.
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tenured untenured

instructor
advisor,

undergraduategraduate courses

student
•course

enrollment

Semantic Database Schema 
Figure 2.

1.5.3. Scientific
The running example from the scientific domain is simply a doubly subscripted real array, 

or matrix. Any programming language can handle such matrices as an aggregate data type. Few 
database models handle multiply subscripted arrays in a flexible manner. The simplest example 
will be just a real 3x5 array

xl,l Xl, 2 X1.3 X1.4 Xl.»

X2,l X2,2 X2,3 X2,4 X2, 5

X3.1 X3.2 X3.3 X3.4 X3.5
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2. Codomains

2.1. General Description
A data value is a finite string of bits which has meaning when interpreted with respect to the 

conventions of some programming environment. An ADAMS codomain is an abstract set of all 
possible values which can be so interpreted. In this sense, an ADAMS codomain is very similar 
to the more familiar data type, such as "real", "integer", "float", "REALM", "boolean", "LOGI­
CAL", etc. The data type "real", used in a Pascal environment on a 8080 chip, specifies how 32 
bits should be subdivided so they can be interpreted as the sign, mantissa, and exponent of a real 
number.

But ADAMS is not concerned with the interpretation of values in a programming environ­
ment. It is concerned with the storage of such values in a form which admits later access. As 
such it is quite concerned with mechanisms for converting (or coercing) values in some storage 
format into forms that can be interpreted by the accessing process in its own processing environ­
ment. It is also concerned with the integrity of the database. Therefore, it is concerned drat 
values stored in the database actually belong to that abstract set specified by the codomain 
definition.

Consequently, an ADAMS codomain definition has a three-fold purpose:
(1) specification of the form which any value in the codomain will have;

(2) specification of processes to coerce (or convert) values from the storage format used by 
ADAMS to a form that will be interpretable by the accessing process in its own 
environment—and, inversely, the conversion of "internal" values back into the ADAMS 
storage format;

(3) specification of values to be returned (or stored) when an actual value is

Codomains can be regarded as similar to primative classes in strictly object-oriented 
languages; however, they are not used to build up higher level classes in the same way.

2.2. Syntax

(a) undefined, or
(b) unknown.

ccodomain decl stmt> ::= <codomain_name> isa CODOMAIN
<membership_clause>
[ <access_method_clause > ] 
[ <other_method> ]
[ <undefined_clause> ]
[ <unknown_clause> ]
[ <scope_clause> ]

<codomain_name> ::= 

<membership_clause> ::= consisting of #<regular_expression># | 
validated by <codomain_method_def>

<actual_name>

<access method clause> ::= fetch: ccodom ain_method_def> 
store: <codomain_method_def>

t In this syntactic notation, [... ] denotes an optional construct; [... ]* denotes that it can be repeated indefinitely.
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<other_codomain_method> ::= 

<undefined_clause> ::= 

<unknown_clause> ::= 

<literal_value> ::= 

<codomain_method_def> ::=

<method_name>: <codomain_method_definition>

udf = <literal_value>

ukn = <literal_value>

’ <codomain_value> ’

<extem_def_codomain_method> | 
<locally_def_codomain_method>

<extern_def_codomain_inethod> ::= 

<locally_def_codomain_method> ::= 

<value_desig> ::=

<subscript_pool__decl_stint> ::=

<sequence_name> ::= 

odd codomain method> ::=

EXTERNAL <name>

<host_language_proc>

<element_desig>.<attribute_desig>

<sequence_name> denotes a SUBSCRIPT POOL 
of <codomain_name> values 
[ <consisting_of_clause> ]

<actual_name>

add method to <name> CODOMAIN
<method_name>: <codom ain_method_def>

2.3. Semantics
(1) A <codomain_decl> declares a generic set of data values defined in terms of the member­

ship clause; and assigns <codomain_name> as the name of this set. This name is entered 
into the dictionary, together with its associated information. This definition declares the 
form that these values will take in ADAMS storage—it does not indicate how they will be 
represented in any particular computing environment.

(2) To insure database integrity, all codomain values are validated before committing them to 
permanent storage. A value is validated either by comparing it with the 
<regular_expression> or by invoking the user supplied boolean <codomain_method>. This 
latter can be used to provide user-defined run-time consistency checking, or to circumvent it 
altogether by having it always return true.

(3) ADAMS assumes as its general paradigm that all codomain values are stored as variable
length ASCII strings. Therefore, in general, it will be necessary to define
<codomain_method>s which convert values between their ADAMS storage format and the 
corresponding internal computational representation. These format conversion (or coer­
cion) routines are declared in the <access_method_clause>.

Notice that if either a "fetch", or "store" method is declared, then both must be declared.

(4) The presumption that the stored version will be an ASCII string can be changed by provid­
ing access methods which convert (or do no conversion) into any user specified form. If no 
<access_method_clause> is provided, the default assumption is that the internal representa­
tion of the value is a string (NULL terminated in Q, and treated accordingly.

(5) All <codomain_method>s are assumed to be procedures with two fixed parameters, the first 
denoting an internal representation, the second an ADAMS <value_desig>nator. That is, 
they have the form

9



<name> (int_rep, value_desig)
<type> *int_rep; 
char value_desig;

in C. In Fortran, the form would be
SUBROUTINE <name> (int_rep, value_desig)

<type> int__rep;
CHAR*<n> value_desig

(6) There exist two pre-defined ADAMS access procedures of the form
adamsSf (buffer, buf_len, value_deaig) 
untyped *buffer; 
int buf_len;
char *value_deaig;

and
adamaSa (buffer, buf_len, value_deaig) 
untyped *buffer;
int buf_ien;
char *value_deaig;

which f(etch) (or s(tore» the designated value into (or from) the designated buffer without 
modification.

(7) A subscript pool is a sequential enumeration of codomain values that can be used as sub­
script values. There is no provision in ADAMS for changing the members of the pool. 
Only additional values can be added to the pool.

The codomain values of a pool must be distinct.

(8) There may be several fetch and store methods associated with a single codomain. For 
example, a different version of "fetch" will normally be required by each host language 
used to access the ADAMS database. Similarly, different hardware architectures may 
require different conversion routines. Hidden by the ADAMS interpreter is a run-time 
environment status consisting of (<host_language>, <hardware_system>).

An <add_codomain_method> statement permits the addition of codomain methods, 
appropriate to new host environments, to an already existing CODOMAIN declaration 
made in a different environment.

(9) If the <literal value> of either the <undefined_clause> or the <unknown_clause> is not a 
member of the regular set defined by the <membership_clause>, it is added to the set (finite 
union).

The udf value is returned by ADAMS whenever a <value_desig> has not been defined in 
ADAMS storage. A ukn value must have been previously assigned by the user to 
<value_desig>.

The default udf value is an octal zero, or NULL.
(10) Note that all literal codomain values must be quoted, even if they are numeric. This is in 

contrast to ADAMS literals which are unquoted.
(11) Codomain and subscript pool names are <actual_name>s, consequently they can be neither 

subscripted nor parameterized.
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2.4. Examples
One would expect most of the commonly used codomains (or types) to be globally declared 

with SYSTEM scope. Below are samples declaring a REAL codomain for both C and Fortran 
host languages.
C host language:

REAL isa CODOMAIN
consisting of #( | + |~) [0-9] *. [0-9] *♦ 
fetch:

fetch (dest, value_desig)
float *dest;
char *value_desig;

{

char I0_buf[20]
adams$f (IO_buf, 20, value_desig) ; 
if (*IO_buf ’ ')

sscanf (IO_buf, "%f", dest) ;
else

*dest - 0.0;
}

store:
store (source, value_desig) 
float *source; 
char *value_desig;

{
char 10 buf[20]
sprintf (IO_buf, 20, source); 
if (*IO_buf !- ' ')

adams$s (IO_buf, 20, value_desig);
}udf - 0.0 

with scope SYSTEM
Fortran host language:

REAL Isa CODOMAIN
consisting of #( | +1-) [0-9] *. [0-9] ** 
fetch:

SUBROUTINE FETCH (DEST, VALUE) 
REAL DEST 
CHAR*30 VALUE 

CHAR*20 BUFFER
CALL adams$f (BUFFER, 20, VALUE)
IF (LEN(BUFFER) .GT. 0) THEN

READ (BUFFER, '(F20.10)') DEST
ELSE

DEST - 0.0
END IF 
END

11
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store:
SUBROUTINE STORE (SOURCE, VALUE)

REAL SOURCE 
CHAR*30 VALUE 

CHAR*20 BUFFER
WRITE (BUFFER, '(F20.10)') SOURCE 
CALL adams$s (BUFFER, 20, VALUE)
END

udf - 0.0 
with scope SYSTEM

The subscript pool concept allows the kind of "enumerated subscript" that occurs in Pascal. 
For instance, if we wanted to subscript ADAMS names with various makes of automobiles we 
could declare:
« autos denotes_a SUBSCRIPT POOL of STRING values

consisting of ( 'Chevrolet', 'dodge', 'ford', 'plymouth' } 
scope is USER »

We can never eliminate ’ford’ from the pool or change its spelling; it may have been used to sub­
script some permanent name. But we can add to a subscript pool as in
« add 'toyota' to autos POOL »
Readily the most commonly used subscripts are integer, and we want to declare such a pool 

of subscripts. We name this pool Zahlen, the German word for the natural numbers, that is often 
used in mathematics. This pool, which we will use repeatedly in our matrix examples, we make a 
SYSTEM concept.
« Zahlen denotes_a SUBSCRIPT POOL of INTEGER values, 

scope is SYSTEM »
This subscript pool is empty. The following bit of C-code inserts the first n non-negative integers 
in their natural order.

i - 0;
while (i <- n)

{
« add i to Zahlen POOL »

++i;
}

2.5. Discussion
The functions of a "codomain" and a subscript "pool" are orthogonal in ADAMS. The 

former provides values for attribute functions. The latter provides values that can be used to sub­
script names. The subscript "pool’ concept is associated with codomains and included in the sec­
tion simply because fetch and store conversion methods must be defined for codomains. This 
allows subscript operations to piggyback on them.
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3. Attributes

3.1. General Description
An ADAMS attribute is a single valued function defined on instances of a class whose 

range, or codomain, is a codomain. The attribute is itself an ADAMS entity belonging to a class 
of similar functions that map into the same codomain. For example, the attributes ’age’ and 
’nbr_of_dependents’ might both be instances in a class ’INTEGER_ATTR’.

3.2. Syntax
<attribute_decl_stmt> ::= [ var ] <attr_class_entry> isa ATTRIBUTE

with image ccodom ain_name>
[ <association_clause> ]
[ <restriction_clause> ]
[ <scope_clause> ]

<attr_class_entry> ::= <dict_class_entry>

<attribute_instance_stmt> ::= [ var ] <attr_entry> denotes a <attr_class>

<attr_entry> ::= <dict_instance_entry>

<fetch_statement> : := fetch into <host_variable> from <element_desig>.<attr_desig>

<store_statement> ::= store from <host_expression> into <element_desig>.<attr_desig>

3.3. Semantics
(1) Attributes exist as the functional link between ADAMS entities and their associated data 

values. What are traditional known as "data values" only exist as attribute images. Thus all 
"data" must be referenced by the applicative form

<element_desig>.<attr_desig>

(2) The "image_is_clause" is required in all attribute declarations.

(3) The clauses that may appear in an <attribute_decl> may be used in general class declara­
tions and are therefore treated in that section.

(4) The representation of attributes is best visualized as an associative "triple", whose com­
ponents are

(<element_id>, <attribute_id>, <attribute_value> ).
Specification of the first two components, as in <element_desig>.<attr_desig> yields the 
unique third component <attribute_value>. Specification of the second two components 
will, in general, yield the set of <element_id>s that appear as the first component in at least 
one such triple in ADAMS storage. The syntax for this is discussed in 7.2.

(5) Both designators of the <element_desig>.<attr_desig> of a <fetch_statement> are first 
evaluated. The designated attribute instance must be defined over the class of the desig­
nated instance element If it is, the corresponding triple (since all attributes are single 
valued, there can be but one), if any, is accessed for its <attribute_value>. The codomain to 
which this <data_value> belongs is known—it is the image space of the attribute class to 
which this instance belongs. Using the "fetch method" of the codomain declaration, this 
value is converted from its ADAMS storage format into its corresponding computational 
type and stored in (or assigned to) the <host_variable>.

If no such triple exists in ADAMS storage, then the undefined value, udf for that codomain

13



is returned as the value.
(6) The semantics of a <store_statement> are similar. However, in this case the current value 

of the <host_expression> is converted from its computational format to its ADAMS 
representation using the "store method" of the codomain. If a triple ( <element_desig>, 
<attr_desig>, <old_value> ) already exists, then the <old_value> is replaced by the 
ADAMS form of the <host_expression>. If no such triple exists (this is the first assignment 
to this attribute on this entity instance) then a new triple is created.

3.4. Examples
Three distinct steps must be followed before an attribute function can be used to store and 

access data. First, the codomain must be defined, as in
« DATE isa CODOMAIN

consisting of *[0-9]{2}/[0-9]{2}/88#
scope is SYSTEM »

Since no access method has been declared, the ASCII string is fetched and delivered as the data 
value.

Second, a generic class of attributes which map into this codomain must be declared, as in
« DATE_ATTR isa ATTRIBUTE with image DATE, scope is GROUP »

And finally, specific attributes (or instances) in this class must be declared, as in
« b_date denotes_a DATE_ATTR,scope is USER »
« date_last_moddenotes_a DATE_ATTR, scope is USER »

Now, if x is an entity designator (variable, literal name, etc.) and the attributes b_date and 
date last jnod have been defined on the class to which x belongs, one can use fetch and store 
commands of the form:
« fetch into birth_date from x.b_date »
« store from today() into x.date_last_mod »

3.5. Discussion
In earlier versions of ADAMS attributes were designated as either assigned (functional 

value explicitly established by a previous assignment statement) or computed (functional value 
computed on retrieval using other information). Associated with computed attributes was to have 
been a method, or procedure, for computing the attribute value at retrieval time. The problem is: 
"where does one define this associated computation method?". It makes no sense to declare it 
with a generic class of type ATTRIBUTE. Nor does the ADAMS paradigm permit its definition 
with a particular instance attribute. So it has been eliminated. The effect of a "computed attri­
bute" can be created by defining a method associated with a particular class.

The fact that attributes are themselves ADAMS elements is an important one. Internally, 
they are represented just like any other entity. Any attribute, or more accurately any class of 
ATTRIBUTE, may itself have associated attributes or maps (although we have not yet discovered 
any practical application of this level of generality). However, this has implications in the "dot" 
notation used to designate data values in ADAMS.

Suppose, for example, that x denotes an entity instance in some class on which the attribute 
instances/and a are both defined. Suppose further that the attribute a is defined on the class of 
attributes to which/belongs. Then, x/and x.a designate specific values in the codomains off 
and a, respectively. And fa denotes a value in the codomain of a. They are all <value_desig>s. 
But the expression x.fa is meaningless because the prefix x/is not an <element_desig>.

14



One implementation approach is to let every attribute instance entry in the dictionary have a 
pointer to its attribute index structure. (Actually this must be an indirect pointer to allow for sub­
scripts on the <actual_name>.) This index structure is used to access data values given an 
<element_desig>. A similar inverse index is used to access multiple elements which have a 
given <data_value>.

The syntax for fetch and store statements is admittedly cumbersome. A syntax such as
<host_variable> <- <element_desig>.<attr_desig>

would be much more "natural". These "wordy" fetch and store constructs may have the advan­
tage of emphasizing the nature of these operations; but we should probably consider simplifying 
the syntax.
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4. Maps

4.1. General Description
An ADAMS map is a single valued function defined on instances of a class whose range, or 

co_domain, is a class. Notice that the only difference between attributes and maps is that the 
image of the former is always a data value, while the image of the latter is an ADAMS entity, or 
element. A map is also itself an ADAMS entity that belongs to a class of all similar functions 
which map into the same class.

4.2. Syntax
<map_decl_stmt> ::= [ var ] <map_class_entry> isa MAP

with image <class_name>
[ <association_clause> ]
[ <restriction_clause> ]
[ <scope_clause> ]

<map_class_entry> ::= <dict_class_entry>

<map_instance_stmt> ::= [ var ] <map_entry> denotes_a <map_class>

<map_entry> ::= <dict_inst_entry>

4.3. Semantics
(1) A <map_type> is just a dictionary name (possibly parametrized) which belongs to the MAP 

class. A map instance must belong to a MAP class.

Similarly a <map_name> is just the literal name of a map instance.
(2) The "image_is_clause" is required in all map declarations.
(3) The clauses that may appear in an <map_decl> may be used in general class declarations 

and are therefore treated in that section.
(4) The representation of maps is best visualized as an associative "triple", whose components 

are

(<element_id>, <map_id>, <map_value>).

Specification of the first two components, as in <element_desig>.<map_desig> yields the 
unique third component <map_value> which is a unique element identifier. Specification 
of the second two components will, in general, yield the set of <element_id>s that appear as 
the first component in at least one such triple in ADAMS storage.

4.4. Examples
The following example is based on semantic network of figure 2 in section 1.5.2. Two 

maps are indicated from tire instance sets of graduate, undergrad, and courses to die instance sets 
tenured and untenured, which we will assume comprise entities from the class FACULTY_REC. 
This class we assume has already been declared. Then the three statements
« FACOLTY_MAP isa MAP with image FACULTY_REC, scope is USER »
« advisor denotes_a FACULTY_MAP, scope is USER »
« instructor denotes_a FACULTY_MAP, scope is USER »

establish these maps. The first ADAMS statement defines the class of FACULTY_MAP func­
tions. It asserts that the image of any such map function will be an entity from the class
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FACULTY_REC. advisor is then established as one instance of such a map; as is instructor.
Note that these map functions have been defined. They have not been associated with enti­

ties of type STUDENT_REC or COURSE_REC as yet.

4.5. Discussion
It is much easier to declare generic attribute and map classes using parameterized class 

declarations, as in Section 8.
Map functions can be implemented in a manner that is virtually identical to that of attri­

butes.
The possibility of having a <restriction_clause> in a map class has been provided, but it is 

difficult to envision appropriate restrictions at this time. It might be possible to define one-to-one 
maps by this mechanism.
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5. ADAMS Classes

5.1. General Description
An ADAMS class is a generic description of a collection of entities with the same, or simi­

lar, properties. Generally, the user defines classes that reflect the properties that he (or she) feels 
characterize the entities in his (or her) database. Since classes can be, and normally are, defined 
in terms of other classes, a hierarchical class structure arises, which is frequently described by the 
term class inheritance. In fact, the class structure of ADAMS is not really hierarchical since it 
supports multiple inheritance. Instead it is a lattice of classes.

The ATTRIBUTE and MAP classes described in the preceding section are special kinds of 
classes. They were treated first because of the important role that attributes and maps play in the 
user definition of classes. This section shows how an individual user can create new classes. The 
most important construct is the <association_clause> which declares that specific sets of attri­
butes and/or maps will be valid over elements of the class. The <restriction_clause> can be used 
to restrict membership in this class only to entities of the <super_class> which satisfy certain 
constraints.

5.2. Syntax
The syntax of class declaration is subdivided into to portions. The first describes the gen­

eral mechanisms for describing new classes; the second examines in detail how predicate restric­
tions are formed.

5.2.1. Class Syntax
<class_decl_stmt> ::= [ var ] <dict_class_entry> isa <super_class>

[ <class_decl_body> ]

<elem_instance_stmt> ::= [ var ] <dict_inst_entry> denotes a <class_name> [ AND <class_name> ]*

<super_class> ;:= CLASS |
<class_name> [ AND <class_name> ]*

<class_decl_body> ::=

<association_clause> ::= 

<synonym> ::= 

<association_set> ::=

<clustered_attr_enum> ::= 

<attr_cluster> ::= 

<restriction_clause> ::=

cremove element stmt> ::=

FORWARD |
[ <association_clause> ]*
[ <restriction_clause> ]
[ <scope_clause> ]

having [ <synonym> = ] <association_set>

<actual_name>

<set_desig> |
<clustered_attr_enum>

’ {’ <attr_cluster> [ <attr_cluster ]* ’} ’

(<attr_desig>) [, <attr_desig> ]*

provided # <predicate> # | 
provided <boolean_method>

remove <element_name>
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5.2.2. Predicate Syntax
The syntax for forming <predicate>s we treat in this separate section. Basically a <predi- 

cate> is an expression in the first order predicate logic which will evaluate to either true ot false. 
However, the rules are somewhat different to ensure that all such expressions are "safe", that they 
can be deterministically evaluated.

<predicate> ::= <disjunct> [ or <disjunct> ]*

<disjunct> ::= cconjunco [ and <conjunct> ]*

<conjunct> ::= <term> |
(<predicate>) |
<quantifier> T <predicate> ’]’

<term> ::= <equality_comparison> | 
<order_comparison>

<equality_comparison> ::= <element> <equality_test> <element> | 
<data_value> <equality_test> <data_value>

<order_comparison> ::= <data_value> <order_test> <data_value>

<element> ::= <logical_van> |
<element>.<map_desig>

<data_value> ::= <literal_value> |
<element>.<attr_desig>

<equality_test> ::= = 1 !=

<order_test> ::= < 1 <= 1 > 1 >=

<logical_var> ::= <bound_vai> |
<free_var>

<quantifier> ::= (all <bound_var> in <set_desig>)
(exists <bound_var> in <set_desig>)

<free_var> ::= $X | $x

5.3. Semantics

5.3.1. Class Semantics
(1) The most common superclass is simply CLASS. The next most common is a single 

<super_class>, in which case the class being declared inherits all of the associations and 
restrictions of its super class.

If multiple inheritance is specified with the AND option, then the declared class inherits all 
of the associations and restrictions of each of its super classes.

(2) If the var option is missing then the literal string constituting the <dict_class_entry> (or 
<dict_name_entry>) is the dictionary lookup string. If var precedes the declaration, then 
<dict_class_entry> (or <dict_name_entry>) is presumed to be a host language variable of 
type "string" whose current value is the corresponding dictionary name. See 5.6 for a dis­
cussion of the handling of literal and variable identifiers.
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(3) The FORWARD option for a <class_decl_body> is similar to that of Pascal, and for the 
same reason. In older to define a map one must first identify the class which is its image 
space. If the map is a function from a class back into itself, such as the "subpart_of rela­
tionship, this becomes difficult. The FORWARD construct conveys sufficient information 
to create the basic dictionary entry. Subsequently, a complete declaration must be pro­
vided.

(4) An <association_clause> associates an existing instance set of attributes or maps with the 
elements of the class. This set may be either named (presuming a previous instance 
declaration) or enumerated (implying creation of the instance at compile/run-time?).

There may be repeated <association_clause>s. This is necessary to associate both attributes 
and maps with a class. It also provides for the possibility of associating several different 
sets of attributes (or maps) with a class, thereby supporting a view concept.

It is also possible to provide an optional <synonym> for the association set This 
<synonym> may be used to access individual elements of the set The conventional 
synonyms attrs and maps are considered public. Any association sets so identified will be 
displayed on a request to describe the class. Association sets with other (or no) synonyms 
are treated as private.

(3) The clustered attribute enumeration permits a parenthesized enumeration of attributes, such 
as {(a, b, c) (d, e) (f)}. This "clustering" may, or may not, be used to optimize the retrieval 
of attribute values.

(6) The <predicate> or user supplied <boolean_method> or a restriction clause is evaluated 
whenever an instance of the class is created. If it evaluates false, then the ADAMS state­
ment fails.

At most one free variable is permitted in a predicate used for class declaration, and it is 
denoted by $x or $X. This free variable always denotes the current instance of the class 
which is being tested for class membership. It is completely analogous to the "SELF' con­
struct which is used in several object oriented languages.

(7) Declaration of an entity instance (element) via a "denotes_a" statement, or by any other 
ADAMS operation, will allocate the "next" unique id to identify the instance. It will also 
create the "instance body" which is a record consisting of at least

a. CLASS pointer,
b. set reference counter (set membership count)
c. removal bit
d. given name (if any)

This little stub representation is required to implement the class of and namejof system 
procedures (11.2), and the issue of element deletion (6.6).

(8) In as system that supports the representation of persistent data, the deletion of information 
can be much more difficult than its creation. In effect, the <remove_element> statement is 
the inverse of the <elem_instance> (or "denotes_a") statement; and the <erase_class> state­
ment is the inverse of the <class_decl> (or "isa") statement.

But care must be taken! Readily, a class can not be erased if there exist any instances of 
that class. Similarly, an element can not be removed if it exists in an existent set. These are 
two important examples of internal database consistency that must be maintained. The use 
of a set reference counter in every instance body can be used to protea against the latter. In 
addition, a removal bit must be included in the representation to support deferred removal.
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(See 6.4.) A reference counter which keeps track of all instances belonging to a class, and 
another recording all sub-class references, can also be exploited.

When a persistent element instance is created, its reference counter is set to one. The 
"remove" statement first decrements the reference counter, if it is then zero, the element is 
actually removed and its storage returned to the system.

What can not be assured, given the environment in which ADAMS exists, is that when a 
CLASS or an instance is deleted there will be no extant process that refers to it. This latter 
is a form of external consistency.

5.3.2. Predicate Semantics
(1) Atomic truth values are obtained only from equality or order comparisons. Elements can 

only be tested for equality; either they have the same unique id or they do not. Codomain 
values (e.g. <data_value>s) can also be tested for equality. In this syntactic formulation we 
have also allowed for order comparison, but whether this can be actually implemented is 
open to question.

(2) Quantification is always over existing set instances, never over an abstract class.
(3) Any named construct used in a class declaration, whether <super_class> or <set_desig> 

must have a scope equal to, or higher than, the current declaration. This dependence must 
be recorded with the named construct in its <reference_counter> so that it can not be inad­
vertently deleted, thereby making the declaration invalid.

5.4. Examples
The tuples and relations of the relational database illustrated in Figure 1 (section 1.5.1) 

could be declared as follows.
« FACULTYJTUPLE isa CLASS

having attrs « { name, soc_sec_nbr, b_date, rank, dept } »
« FACULTY_REL isa SET of FACULTYJTUPLE elements »
« faculty denotes_a FACULTY_REL »
« STUDENT JT UPLE isa CLASS

having attrs - { name, soc_sec_nbr, b_date, major, advisor }» 
« STUDENT_REL isa SET of STUDENTJTUPLE elements »
« students denotes a STUDENT REL »

The codomain of the advisor attribute is presumably the same as that of name so that student 
tuples can be joined with faculty tuples to obtain the advisor relationship. There are no maps in 
the relational model.

A much cleaner way of declaring relational schema, tuples, and relations is developed in 
Section 8 where parameterized class declaration is explored.

The following ADAMS statements use inheritance to create the FACULTY_REC class 
from a PERSON_REC class.
« PERSON_REC isa CLASS

having data_fields - { name, soc_sec_nbr, b_date }, 
scope is USER »

« FACULTY_REC isa PERSON_REC
having fac_data_fields - { rank, dept ), 
scope is USER »

Once the FACULTY_REC class has been declared, the advisor map can be declared, and it 
becomes possible to declare a STUDENT_REC entity which also inherits the basic properties of 
a PERSON_REC.
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« FACULTY_MAP isa MAP with image FACOLTY_REC, scope is USER »
« advisor denotes_a FACULTY_MAP, scope is USER »
« instructor denotes_a FACULTY_MAP, scope is USER »
« STUDENT_REC isa PERSON_REC

having stu_data_fields - { major }, 
having maps - { advisor },
scope is USER »

Notice that this latter declaration has two <association_clause>s, one for attributes and one for 
maps.

If faculty (or staff) members are also allowed to take courses, so that they are students as 
well, we might want to create the class
« PART_TIME_REC isa FACULTY_REC AND STUDENT_REC »

Entity instances in this class would inherit the attributes and maps of both super classes.
If a provision of being a "student" is that the individual have a declared major, we could add 

a <restriction_clause> as follows
« STUDENT_REC isa PERSON_REC

having stu_data_fields - { major }, 
having maps - { advisor }, 
provided # $x.major !- udf(dept) # 
scope is USER »

5.5. Discussion
The syntax for the <elem_instance_stat> permits the designation of an element that inherits 

the properties of two classes, even though the corresponding "intersection class" has not been 
explicitly created by means of a <class_decl_stat>. This follows the discussion in [Pfa88]. Per­
mitting statements such as
« x denotes_a DOCTOR AND PATIENT »

would undoubtedly be a convenient shorthand. But there are potential problems. Two imple­
mentation schemes are possible. One is to create an "unnamed" intersection class from the 
super-classes DOCTOR and PATIENT, to which x will not belong. The other is to support multi­
ple pointers out of the dictionary entry for x to all of its class memberships. The former seems 
much preferable, but correctly implemented it requires a search of the dictionary to discover 
whether any class which multiply inherits from DOCTOR and PATIENT already exists in either 
a named or unnamed form. This will eventually lead to the nasty problem of synonym detection 
and resolution.

It might be wise to leave this feature unimplemented for a while.

Implementing the <predicate> construct in frill generality at this time would seem to be 
quite difficult However, there does not appear to be any real syntactic or semantic limitations.

These examples graphically demonstrate how useful inheritance can be in simplifying the 
definition of classes.

The handling of literal and variable identifiers in ADAMS is quite different from traditional 
programming languages where it is customary to "quote" literal strings. For example, in the 
statement
« advisor denotes_a FACULTY_MAP, scope is USER»

both advisor and FACULTY MAP are literal strings. This can be quite confusing at first. In 
[Klu88] we suggested changing the syntax to read
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« "advisor" denotes_a "FACOLTY_MAP", scope is USER»
but this suggestion seems ill-advised. It would make the declaration of ADAMS names much 
clearer, but it would make their subsequent use more awkward. In particular, every map and 
attribute reference would have to be quoted, as in
« fetch into fac_name from x."advisor"."name" »

Observe that in most literal strings in traditional programming languages are not quoted. 
Numeric literals are not quoted because they can be recognized by their form. Literal function 
and procedure names are not quoted because they are declared, or are otherwise recognizable 
from the context The ADAMS policy has been to assume that every non-reserved string in an 
ADAMS statement is a literal; that is, it is the literal name of an ADAMS element, unless the 
string is explicitly declared to be a variable. The two ways that this is done are
(1) by using the ADAMS_var statement to declare the identifier to be a host language variable 

of type UNIQUEID; and
(2) prefixing a host language string variable with var in isa or denotes a declaration state­

ments.
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6. Sets

6.1. General Description
Sets are the fundamental ADAMS structure. Indeed, in keeping with our goal of simplicity, 

they are the only aggregation structure. Still there are significant semantic problems associated 
with their implementation. These arise primarily from (1) set operations over entities of different 
classes in the class hierarchy, and (2) entity deletion.

Sets are fundamental. But sets are not an easy concept to emulate.

6.2. Syntax
The Syntax of this section is broken into two sections, that of set denotation followed by 

that of set manipulation statements.

6.2.1. Set Denotation 
<set_decl_stmt> ::= <set_class_entry> isa SET

of <class_name> elements 
[ <association_clause> ]*
[ <restriction_clause> ]
[ <scope_clause> ]

<set_class_entry> ::=

<set_instance_stmt> ::=

<dict_class_entry>

<set_entry> denotesa <set_class>
[ <initial_clause> ]

<set_class> ::= <class_name>

<initial_dause> ::= consisting of <set_desig>

<set_desig> ::= <set_name> |
<enumerated_set> |
<association_set> |
<retrieval set> |
’NULLSET’

<association_set> ::= <element_name>-xset_name> | 
<element_name>-xsynonym>

6.2.2. Set Manipulation 
<looping_statement> ::= for_each <variable_name> in <set_desig> do 

[ <host_language_statement> ]*
[ <ADAMS_statement> ]*

<end_loop_statement> ::= exitloop

<set_assign_stateinent> ::= assignto <set_name> from <set_desig>

<set_copy_statement> ::= copyto <set_name> from <set_desig>

<make_empty_stmt> ::= makeempty <set_name>

<insert_statement> ::= insert <element_name> into <set_desig>
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<delete_statement>: := delete <element_name> from <set_desig>

<union_statement> ::= <set_name> is_union_of <set_desig> [, <set_desig> ]* 

<intersect_statement> ::= <set_name> isjntersection of <set_desig> [, <set_desig> ]* 

<complement_statement> ::= <set_name> is complement of <set_desig,> wrt <set_desig2>

6.3. Semantics

6.3.1. Set Denotation
(1) Only in the set instantiating statement is a initialization clause <initial_clause> permitted, 

which will initialize the newly denoted set to some existent set. The latter may be a named 
set, or it may be an enumerated set that is completely designated in the instantiating state­
ment, or it may be a created set in the form of a <retrieval_set>.

(2) NULLSET is the literal name of the empty set. Like all literals, it must be quoted.

6.3.2. Set Manipulation
(1) A set is implemented by a structure (possibly an O-tree) which denotes what elements (e.g. 

which unique id’s) constitute the set. It is a set of references to its constituent elements.

It is anticipated that the constituent elements of most sets will exist on distinct storage dev­
ices.

(2) To reference an association set, either the name of the set must be explicitly known, or a 
synonym, which was established in the class declaration, must be used.

(3) A set loop statement is a true iteration statement, it performs the enclosed set of statements 
for each element in <set_desig>. Behavior will be unpredictable if the composition of 
<set_desig> is altered in the course of the loop.

The initial for_each initializes a looping statement which sets the <variable_name> equal 
to each element in <set_name> in turn and then executes any following host language 
and/or ADAMS statements up to the closing <e_delim>"»".

(4) The loop variable, <variable_name>, need not be declared, since its class is completely 
specified by the class of elements in the existing <set_desig>.

(5) The exitjoop statement is exactly analogous to a "break" statement in C. It permits the 
immediate exit from the innermost set loop.

(6) The class of the destination <set_name> of a set assignment, or copy, statement must be the 
same as, or higher in the hierarchy, than the class of the source <set_desig>. Thus, if peo­
ple is a set of PERSON entities, then either

« asaign_to people from undergrad »
or

« copy_to people from tenured »
will succeed but
« copy_to undergrads from people »

and
« assign_to untenured from undergrad »

will fail. The last statement, in which the classes of untenured and undergrad are not
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comparable can not make semantic sense, since the elements in untenured would not have 
several FACULTY attributes defined over them, while having several STUDENT attributes 
defined. It would violate the class system.

The preceding "copy_to" statement, in which the destination <set_name> is lower in the 
hierarchy than the source <set_desig>, could be semantically interpreted to mean: "for each 
element of class PERSON in the set people, create a corresponding element of class STU­
DENT in the set undergrads. Duplicate all of the PERSON attributes from the source ele­
ment, and set all remaining STUDENT attributes to ’undefined’." However, no such 
interpretation would make sense for a set assignment with the same two operands; so we 
prefer apply the rule above to both statements.

(7) A set with persistent scope can not have members whose scope is LOCAL. Else persistent 
references would disappear when the creating process terminates.

Clearly, any set can have elements whose scope is higher that the scope of the set For 
example, a local set can reference persistent elements. Less obvious is whether a set should 
be allowed to reference persistent elements of lower scope. Such a mechanism could be 
viewed as compromising the security of USER elements. Or it could be viewed as a 
mechanism for exporting USER elements. Our implementation will assume the latter, and 
allow a set with persistent scope to include any elements of persistent scope.

(8) Insertion of an element of the set must

a) check that the element is of a class that can belong to the set,
b) check that the element has LOCAL scope if the set has LOCAL scope, and
c) increment the set reference counter of the element, if the set is persistent.

We employ the latter rule, so that on process termination, ADAMS will not have to decre­
ment the set reference counter of all elements that were included in temporary LOCAL sets. 
But it has a consequence discussed in section 6.5.

(9) Set assignment is a copy by reference. That is, the set of references constituting the source 
<set_desig> replaces the set of references that had constituted the destination <set_name>.

All elements of the destination set must be first "deleted", that is their set reference counters 
decremented, then replaced with pointers to the elements of the source set, each of whose 
reference counters are incremented. Note that reference counters of elements in LOCAL 
sets will not be altered.

(10) Set copy is a "shallow" copy. That is, for each element denoted by the source <set_desig>, 
an exact copy with a new unique id is created and "inserted" into the destination 
<set_name>. Any existing references in the destination set are lost.

If the source <set_desig> is the NULLSET, then this behaves as if it were a set assignment.
(11) Deletion of an element from a set does not in general remove the element from the system. 

It does, however, decrement the set reference counter of the element. If as a result the refer­
ence counter is zero, and if the removal bit has been set, then the element is physically 
removed, if the set has persistent scope.

(12) When a set instance is declared (with a "belongs_to" statement), it is automatically empty. 
The <make_empty> statement will delete any elements from an existing set. Note that the 
following three ADAMS sequences
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« make_empty S »

« assign_to S from NULLSET »

« for_each x in S do
« delete x from S »

»
are all equivalent.

(13) Like assign and copy, the set operators union, intersection, and complement must establish 
the class of the result within the class hierarchy. The result of a relative complement will 
belong to the same class as the class of <set_desig1>. The result of a union must belong to 
a class above in the class hierarchy, or the same, as the class of every argument 
<set_desig>. The result of a intersection must belong to a class below in the class hierar­
chy, or the same, as the class of every argument <set_desig>.

6.4. Examples
The example below is a horrible way of retrieving all undergraduate students who are 

majoring in CS. A <retrieval_set>, as described in the next section, would be much more 
efficient.

char data_value[20];

« cs_majors denotes_a STUDENT_SET »
« for_each x in undergrad do
« fetch into data_value from x.major »

if (strcmp (data_value, "CS") «« 0)
« insert x into cs_majors »

»

The following C code implements a rather inefficient set intersection operator. The system 
intersection operator employed by the <intersect_statement> is much better, we present this only 
to illustrate principles of set manipulation and ADAMS coding.

intersect (Z, X, Y)
« ADAMS_var Z, X, Y »

/*
** This procedures forms a set Z which denotes those elements 
** belonging to both the sets X and Y (i.e. their intersection).
*/
{

« ADAMS_var z »
« assign_to Z from X »
« for_each z in Z do

if(!member_of(z, Y))
« delete z from Z »

»
)

The O(n) algorithm is trivial; let Z initially be all of X and strike out those elements which are 
not also in Y. The member of function is described in section 11.

The treatment of element removal can be illustrated by the following example. Note that 
these statements need not occur in the same process!
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« x belongs_to Q »

« insert x into S »

« remove x »

« delete x from S »
If x and 5 have peisistent scopes, then on completion of the second statement the reference 
counter of the element x will be 1 (because of the insertion). Consequently, the following request 
to remove x as an element will be deferred, only its removal bit will be set When, subsequently 
the element is deleted from 5, its reference counter will have been decremented to zero and 
because its removal bit has been set, it will be actually removed.

6.5. Discussion
The implementation of sets is going to be dicey, as some of the following comments indi­

cate.

It is not clear how to represent a set in a distributed memory environment In a uni­
processor, or a shared memory, environment a set could be represented by a single element 
referencing structure. In a multi-memory, multi-device environment should the defining element 
membership structure of the set also be distributed?

Set assignment could be denoted by a more traditional assignment operator symbol, such as 
:=. Then we could have

<dest set> Oource set>
instead of

assign_to <dest_3et> from <source_set>
But is this wise? Does the different syntax serve to focus the user’s attention on the nature of the 
assignment, or is it just distracting?

This is the place to explore the implementation of a relational project operator, rix(ser). 
The problem really has to do with the class hierarchy. Elements in the set nx(ser) belong to class 
X, where X belongs somewhere between the class of "set elements" and the universal class 
CLASS. But how is such a class created and inserted into the hierarchy?

In the element removal example of the preceding section, the element x was not actually 
removed by the <remove_element> statement, because its set reference counter was non-zero. 
But if S was a LOCAL set that counter would not be incremented. The element x would be 
removed even though a reference to it still occurred. This is a clear anomaly. But, if the set 5 is 
LOCAL, die insert, remove, and delete statements must all occur in the same program—so it is a 
clear programmer error, not an ADAMS error!
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7. Attribute and Map Inverses

7.1. General Description
ADAMS attributes and maps are, by design, single valued. Expressions of the form 

<element_desig>.<attr_desig> and <element_desig>.<map_desig> denote a single data value or 
ADAMS element, respectively. But the essence of much database processing is the access to 
those elements, or entities, which have some specified attribute (or map) value. For example, we 
might want to access all STUDENT entities whose major is ’CS’. We want to denote the inverse 
image of the data value ’CS’ under the major attribute function. In general, the inverse image of 
any function is a set.

This section describes the syntax of such set denotation, which we will generally call a 
<retrieval_set>. This special form of set denotation could have logically been included in the 
preceding section, but there is sufficient material to treat it separately.

Regarding all attributes and maps as sets of triples of the form

(<element_id>, <attribute_id>, <data_value>)
or

(<element_id>, <map_id>, <element_id>)
specification of the first two components in each case will yield the unique (because both are 
functions) third component An inverse operation occurs whenever the last two triple com­
ponents are specified, as in

(x, major, ’CS’) 
or

( x, advisor, y)
where y is a unique faculty id. In both cases we want the set of all elements x for which the triple 
exists in the ADAMS database. The first case would yield all elements "who major in CS" as 
above.

One of the earliest treatments of data representation by means of ordered triples is the semi­
nal LEAP system [FeR69] which simulated associative memory by hash coding. However, this 
triple notation by itself is syntactically incomplete. The elements { je } of the inverse set must all 
belong to some class; and that class must be specified. To see that this is really a problems con­
sider an inverse of the form

(x, name, ’Chip’)

The inverse element, x, might denote a person, a dog, or even an electronic component whose 
"name" is ’chip’. To be well formed, the class of the inverse elements must be specified. To be 
safe, the inverse elements must be restricted to a finite set.

Inverse operations are specified using a predicate syntax, not a triple syntax.

7.2. Syntax
<retrieval_set> ::= ’ {’ <bound_var> in <set_desig> ’I’ <predicate> ’) ’

7.3. Semantics
(1) A retrieval set can only consist of elements. It is impossible to retrieve a set of "data 

values".

(2) The class of a retrieval set is well defined; it must be the same as <set_desig>.
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(3) Because all elements satisfying the predicate expression are restricted to membership in 
<set_desig>, this retrieval expression must be "safe" (p.247, [Mai83]).

7.4. Examples
The following straight forward example retrieves CS majors. It is equivalent to

{ X ' CS' .major-1 undargrad

that is, the inverse image of the major attribute restricted to the set under grad.
« cs_majors denotes_a STUDENT_SET »
« assign { x in undergrad | x.major 'CS' } to cs_majors »

The following is an interesting array inverse. It finds all zero elements of the array x.
« zeros denotes a REAL_ATTRIBUTE_SET »
« assign { f in x->attr | x.f - '0' } to zeros »

Note that zeros is a set of attributes. Assuming that we might like the identity of the zeros, we 
might expect to display their locations by
« for_each f in zeros do

printf ("%s0, name_of(f) );
»

7.5. Discussion
The issue of order comparisons, or inequalities, in predicate expressions is still very much 

in the air. Suppose, in the matrix example that we wanted the identity of all negative entries, as 
in:
« negative denotes a REAL_ATTRIBUTE_SET »
« assign { f in x->attr | x.f < '0' } to negative »

What does the ’<’ mean?, less than lexicographically? or less than numerically? The latter would 
require either creating the attribute index using numeric keys or fetching x.f, converting it to a 
numeric value, and performing the comparison in the host language.

30



8. ADAMS Names and Designators

8.1. General Description
A designator is a symbolic string which serves to designate a single ADAMS element; it 

may be a data value, an attribute, a map, an entity, or a set of entities. The most basic designator 
is a name. By an ADAMS name we mean a literal string that identifies an ADAMS element. In 
all host languages the literal sequence, -2.53, denotes the unique real value ’-2.53’, or more 
correctly the binary string whose conventional interpretation is that real value. In ADAMS, 
literals are names, each of which denotes a distinct entity, that are entered into the dictionary for 
subsequent use.

But simple "literal names" turn out to be inadequate for denoting and describing vast collec­
tions of persistent data. We find we want to be able to parameterize names and to be able to sub­
script them as well. Moreover, as noted by [KhC86] naming is not the only way of identifying 
objects. Objects, or entities, may be designated in a variety of ways. A variable may be used to 
designate different entities, depending on its current value. (In ADAMS, variables function 
effectively as pointers.) An entity may be designated by an expression, which is evaluated at 
run-time. A set entity may be designated by retrieval expression which both creates the set and 
denotes it as well.

This section details the various ways that ADAMS designators may be constructed. Since 
the designation, or identification, of data and sets of data, is central to ADAMS role in storing and 
accessing of large databases, this syntax is crucial. And since naming is a key form of designa­
tion, a flexible syntax for forming names is important

8.2. Syntax 
<char_seg> ::=

<param_seg> ::=

<pattern_seg> ::=

<dict_class_entry> ::=

<actual_name> ::=

<subscript_decl> ::=

<dict_instance_entry> ::=

<subscript> ::=

<subscripted_name> ::=

<class_name> ::=

<element_name> ::=

<ADAMS_var_name> ::=

<variablejist> ::=

<variable_decl_stmt> :;=

<string of letters and/or digits>

$<ordinal_number>

<char_seg> | <param_seg>

<pattem_seg> [ _<pattem_seg> ]*

<char_seg> [_<char_seg>]*

<subscript_pool_name> [, <subscript_pool_name> ]* 

<actual_name> |
<actual_name> ’[’ <subscript_decl> ’]’

<subscript_value> [ ,<subscript_value> ]*

<actual_name> ’[’ <subscript> T

<actual_name>

<actual_name> |
<subscripted_name>

<actual_name>

<ADAMS_var_name> [, <variable_list> ] 

ADAMSvar <variable_list>
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<element_desig> ::=

<attr_desig> ::= 

<map_desig> ::= 

<set_desig> ::=

<range>

<range_subscript> ::= 

<enumeration_elem> ::=

<enumerated_set> ::= 

<var_assign_stmt> ::=

<element_name> |
<variable_desig> |
<element_desig>.<map_desig>

<element_desig>

<element_desig>

<element_desig> |
<inverse_set> |
<enumerated_set>

<subscript_value> |
<subscript_vaiue>.. <subscript_vaiue>

crango [, <range> ]*

<element_name> |
<actual_name> ’ [ ’<range_subscript> ’ ] ’

’{’ [<enumeration_elem> [,<enumeration_elem> ]*]*’}’ 

<ADAMS_var_name> denotes <element_desig>

8.3. Semantics
(1) ADAMS names are composed of segments separated by underscore. The segment may 

consist of characters Getters and/or digits) or it may be a formal parameter of the form $n.

"Actual" names have no parameter segments. Similarly, "instance" names, which are used 
to actually denote entities in ADAMS storage, may have not parameter segments but may 
be subscripted. Codomain, subscript pool, and variable names may be neither parameter­
ized nor subscripted.

(2) A dictionary "class_name" is a pattern asserting that all names with this pattern have the 
declared properties of the class. Such dictionary names with parameter segments can be 
used only in class definition statements, such as

<char_seg>_$l_<char_seg> isa...
or

$l_<char_seg>_<char_seg>$2 isa...

The parameter segment, $n, can match any character segment, and that character segment 
(actual parameter) will replace the parameter segment (formal parameter) throughout the 
remainder of the definition, wherever it appears again. Note that a single (fonnal) parame­
ter segment can never be replaced by a segmented (actual) string.

These dictionary "class names" provide a mechanism for parameterized name formation. 
Only the pattern need be stored in the dictionary. Instantiation names can not be parameter­
ized.

Since, by itself a parameter segments such as $1 would match all (unsegmented names), a 
<dict_class_name> must contain at least one character segment

(3) All ADAMS variables in a program segment must be declared, otherwise the character 
string is assumed to be a instance name that exists in the dictionary.
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(4) To instantiate an entity using a "denotes_a" statement, one need only establish a one-to-one 
correspondence between the denoting name, which may be subscripted, and a unique ele­
ment id. There is no need to actually allocate storage for the entity. If the dictionary 
instance name is a simple <actual_name>, then a unique id is allocated for that name. If the 
instance name is subscripted, e.g. x[<subscript_poot>, <subscript_pool>], then as before a 
unique id is associated with the <actual_name>. This can be modified by a distinct integer 
suffix for each of its possible n subscript values. Thus the correspondence is defined impli­
citly, rather than explicitly.

Dictionary lookup of instance names, even if subscripted, is always by the initial 
<actual_name> portion.

(5) In ADAMS, even if a name is subscripted with values form several subscript pools, it is the 
n-tuple of all values that is treated as die "subscript".

(6) Since attributes, maps, and sets are all ADAMS elements (or entities), their designators all 
have the form of a general <element_desig>. However, there are situations, such as 
<value_desig>, where one must use a <attr_desig> as one of its components. Such con­
straints are not easily captured in the BNF syntax we are using.

(7) It is assumed that the compiler has access to the dictionary. It must, in order to verify 
instance names. Consequently, all instance names can be replaced with the corresponding 
unique id’s at compile time.

(8) It is also assumed that compilation creates the LOCAL version of the dictionary in the form 
of a loadable program unit. It has all the needed information. Consequently, sophisticated 
pattern matching will have no run-time penalty.
Where new names are declared with permanent scope (USER, GROUP, or SYSTEM) these 
are marked, and actually copied into those portions of the dictionary on successful comple­
tion of the program.

(9) An <enumerated_set> is just that, the enumeration of the literal names of zero, or more, 
constituent elements. For convenience, we also allow the use of a crango of subscript 
values in this construct as a simple way of declaring enumerated sets. This is the only use 
of the crango construct

Both csubscript_valuos of the crango must exist, and the first must precede the second in 
the subscript pool.

(10) A cADAMS_var_name> denotes a element (more particularly, its unique id). It is unneces­
sary to declare the class of a cADAMS_var_name> because it can be determined by the 
context (as in a set loop construct). Actually cADAMS_var_name>s will be typed in the 
host language, as in the C declaration

UNIQUEID <ADAMS_var_name>;
Thus variable names, and the variable assignment statement can be used to provide an inter­
face between ADAMS designations and host language procedures as in
« <ADAMS_var_name> denotes <set_deaig> »

CALL SORT (<ADAMS_var_name>)
The host language type, UNIQUEID, of cADAMS_var_name>s may be environment 
dependent.

8.4. Examples
The first three statements illustrate how ADAMS declares generic relations and relational 

tuples. The last two statements then use these SYSTEM declarations to define an instance
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relation,/acu/iy, as illustrated in section 1.5.1. This relation is initially empty.
« SCHEMA isa SET

of ATTRIBUTE elements, scope is SYSTEM »
« $1_TUPLE isa CLASS

having attributes - $1 , scope is SYSTEM 
provided #$l.class_of - 'SCHEMA'# »

« $l_RELATION isa SET
of $1_TUPLE elements, scope is SYSTEM »

« FACULTY denotes_a SCHEMA
consisting of { name, soc_sec_nbr, b_date, rank, dept }, 
scope is USER »

« faculty denotes_a FACULTY_RELATION, scope is USER »
In the example of Section 4.4, a map class with the class name FACULTY_MAP was 

declared so that instance maps called advisor and instructor of this class could be established. A 
parameterized class declaration, such as below, would have been preferable.
« $1_MAP isa MAP with image $1_REC, scope is USER »
« advisor denotes_a FACULTY_MAP, scope is USER »
« instructor denotes_a FACULTY_MAP, scope is USER »

While this offers no economy in the definition of these two specific maps, it does provide a 
mechanism for defining the student and course maps without having to additionally declare 
STUDENT_MAP and COURSE_MAP. The following instantiations would sufficient.
« student denotes_a STUDENT_MAP, scope is USER »
« course denotes_a COURSE_MAP, scope is USER »

In the following example we will use subscripting to declare (a) the class of all doubly sub­
scripted real arrays, or matrices, and (b) a particular 5x8 matrix denoted by x.
« $1_ATTRIBUTE isa ATTRIBUTE

with image $1,
scope is SYSTEM »

« val[Zahlen, Zahlen] denotes_a REAL_ATTRIBUTE,
scope is USER »

« REAL_$1_X_$2_MATRIX isa CLASS
having attr - { val[l..$l, 1..S2] },
scope is USER »

« x denotes_a REAL_5_X_8_MATRIX
scope is USER »

Subsequently, procedures can make use of the permanent data that is denoted by elements of x. 
For example,
« fetch into a[3, 5] from x.val[3.5] »

8.5. Discussion
Literals are much more important in ADAMS than in traditional languages. In host pro­

gramming languages, literal strings typically "denote themselves", whether they are numeric 
literals or quoted literals. In ADAMS, a literal string (or name) denotes a single identifiable 
object, or class. The dictionary is simply a mechanism for looking up the meaning of these literal 
names.
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It is important to note that instance names and variables have the same form, so that it is 
impossible to distinguish them within the context of a single ADAMS statement. This is not true 
in many other programming languages. In these languages, literals are recognizable because they 
are 1) numeric, 2) quoted, or 3) used in a definable context (e.g. procedure names). Two impor­
tant exceptions are named constants in Pascal and defined constants in C. Their literal nature is 
discoverable only by compilation. ADAMS employs this paradigm.

Name segments that are to function as "actual parameters" in a parameterized 
dictionary_name> are not distinguished as such. This makes the resulting names more natural, 
but it also can lead to problems. For example, which of the two dictionary name patterns, 
$l_RELATION or R_$l. should R_RELATION match? There are several, somewhat unelegant, 
ways of resolving this (e.g. actual parameter segments can not be capitalized) but I am inclined 
to wait and see how die present scheme works out

The syntax of this section has developed the differences between a <dict_class_entry>, a 
<dictjnst_entry>, a <class_name>, and a <element_name>. The first two represent the form of 
names as they are entered into the dictionary. The former can be parameterized with $n seg­
ments; the latter can specify subscript domains (or pools) that provide subscript values. The last 
two represent the form of names as they are used in a program to reference dictionary entries. An 
<element_name> can be subscripted, and <class_name> can not—it must be an <actual_name> 
comprised of character segments.

In the preceding sections, we have been careful to insure that the syntax conforms to these 
roles, but we have also used the words attr, map, and set to emphasize other aspects. The follow­
ing table summarizes the various synonyms we have used in preceding sections

Defined by Referenced by

<dict_class_entry>
<attr_class_entry>
<map_class_entry>
<set_class_entry>

<class_name>
<attr_class_name>
<map_class_name>
<set_class_name>

<dict_inst_entry>
<attr_entry>
<map_entry>
<set_entry>

9. The Dictionary

9.1. General Description
The dictionary has just two functions. To associate with each literal ADAMS name either 

(a) the properties of any entity in the class, if it is a CLASS name, or (b) the unique id 
corresponding to that literal name.

9.2. Syntax
The dictionary concept adds only one construct to the ADAMS syntax; that is the scope 

construct. But it also adds to essential dictionary manipulation statements.

<scope_clause> ::= scope is <scope>

<element_name>
<attr_name>
<map_name>
<set_name>
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<scope> ::= SYSTEM |
GROUP | 
USER | 
LOCAL

<rescope_stmt> ::= 

<erase_entry_stmt> ::= 

<dict_entry> ::=

rescope <name> as <scope> 

erase <dict_entxy>

<dict_class_entry> | 
<dict_inst_cntry>

9.3. Semantics
The semantics associated with the dictionary and dictionary maintenance are more fully dis­

cussed in [PFW88]. Here we only mention some of the highlights.
(1) Name scopes are hierarchical. Names declared to have SYSTEM scope are available to all 

users. Those declared GROUP are available to all members of the group, while USER 
names are private to that user. LOCAL names are not persistent; they exist only for the 
duration of the program.

(2) To a compiling, or executing, program the dictionary can be viewed as consisting of four 
sub-directories—its local, user, group, and system sub-directories. For name resolution, the 
local sub-directory is searched first, then the user, group, and system sub-directories, in that 
order. Consequently, a user can "redefine" any name declared at a higher scope.

(3) Insertion of a new <dictionary_name> into a sub-directory can succeed only if that 
<dictionary_name> does not already exist in that sub-directory or in any higher sub­
directory that is being referenced along a path through the sub-directory. This requires 
keeping track of name reference by user id’s.

(4) Dictionary names can not be deleted if they are currently being referenced by entries in 
other sub-directories.

(5) Rescoping a name can be viewed as a process of deleting and then adding it again; but not 
quite. It must be conducted with respect to all other users, ignoring the user issuing the 
command.

9.4. Discussion
All ADAMS statements which manipulate the dictionary, including

must appear in the same source file as the main program which will invoke them. This curious 
restriction is imposed by the a desire to optimize performance. But, before examining why we 
impose this restriction, lets consider its consequences. With this restriction, no isa or denotes_a 
statements creating either class or instance entries can appear in any separately compiled code, 
such as utility routines. This would seem to be a serious restrictioa But consider that no isa or 
denotes_a statement involving literal names can, in general, be executed twice! The names are 
persistent. Requiring such statements to be with (or even as) the main program involves little 
hardship. More general, parameterized isa or denotes a statements in which the <dict_entry> is 
a host language string variable would be precluded from pre-compilation, and this might be irk­
some. For example, one can imagine a general interactive class declaration module in which a 
user is prompted for various components needed to define the class.

<class_decl_statement>s
<elem_instance_statement>s
<rescope_statement>s
<erase_entry_statement>

isa
denotesa
rescope
delete

36



The reason for this restriction comes from the following. At run time, the open_ADAMS 
statement, among other initialization functions, attaches the working dictionary comprised of the 
three persistent user, group, and system sub-dictionaries, together with an empty local sub­
dictionary. In the course of execution the running ADAMS program may add entries to this 
local, temporary dictionary. It will save considerable run-time overhead if the compiler actually 
creates this local dictionary at compile time, and simply prepends it to the object code. It can 
then then be simply loaded by the initial open_ADAMS statement and the run-time equivalents 
of the declaration statements can be no-ops. Moreover, this pennits the compiler to replace all 
literal names with the corresponding element UNIQUID’s to eliminate most run-time dictionary 
lookups. If a persistent class, or entry, declaration is made the same procedure is followed, 
except that instead of a no-op the run-time equivalent becomes a rescope action which may, or 
may not, succeed at the time of execution. In order, to build such a local sub-dictionary at com­
pile time, the pre-processor must see all of the relevant declarations; hence they must be in a sin­
gle source code file, the same one which will issue the open_ADAMS command.

We have indicated that this restriction has been imposed for the sake of efficiency. We 
should note that it is also a necessity. The preprocessor would have to create some form of local 
dictionary to perform type checking on the ADAMS code it is scanning. Moreover, we could not 
allow reference to a non-local dictionary entry which has not yet been entered, but which will be 
entered by a separate module which will be run before the current code.
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10. Transactions

10.1. General Description
ADAMS provides the user with nested transactions based on the well-known model of 

Moss [Mos85]. These transactions are designed only to provide concurrency control. Fault 
tolerance and reliability control will be buried within the ADAMS implementation and will not 
be accessible to the user. However, the casual user need not become involved with either the 
transaction concept or concurrency control at all.

A transaction is an ADAMS element (entity or object) belonging to the system defined 
class TRANSACTION. A root transaction with LOCAL scope is created automatically by the 
<open_ADAMS_statement> and automatically committed (if possible) by the 
<close_ADAMS_statement>. None of the intervening ADAMS statements can modify the per­
sistent data space unless the final committment is successful. By creating nested sub-transactions 
the user can establish whether the intervening statements within the sub-transaction are committ- 
able. If a sub-transaction is not committable (i.e. the <end_trans_statement> fails) the user has 
the option of re-executing that sub-transaction or otherwise repairing the damage. If the sub­
transaction is committable (i.e. the <end_trans_statement> succeeds), it is known that none of its 
intervening statements can prevent commitment of the root transaction. But the actions of its 
statements will actually be committed if and only if the root transaction commits.

10.2. Syntax
<transaction statement ::= trstart <trans_desig>

([ <ADAMS_stmt> ] | [ <host_stmt> ] )* 
tr end

<abort_statement> ::= 

<Iock_statement> ::= 

cunlock statement ::=

abort <trans_desig> 

lock <element_desig> 

unlock <element_desig>

10.3. Semantics
The semantics of transactions depend on the following SYSTEM declarations
« TRSTATUS isa CODOMAIN

consisting of twho_knows_whatt, 
with scope SYSTEM »

« tr_status denotes_a to TRSTATUS_ATTRIBUTE
with scope SYSTEM »

« TRANSACTION isa CLASS forward »
« TRANSACTIONS isa SET of TRANSACTION elements

with scope SYSTEM »
« tr_parent denotes_a TRANSACTION_MAP »
« tr_subset denotes_a TRANSACTIONS_MAP »
« TRANSACTION isa CLASS

having attr - { tr_status, [others ?] }
having maps - { tr_parent, tr_subset, [others ?] )
tr_start:

<definition of tr_start method>
tr_end:

<definition of tr_end method> 
with scope SYSTEM »

(1) Note that the declarations of tr status, trjjarent, and tr subset above presume generic 
parameterized declarations of the form
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« $1_ATTRIBUTE iaa ATTRIBUTE 
with image $1
scope is SYSTEM »

« $1_MAP isa MAP
with image $1
scope is SYSTEM »

(2) The normal sequence to create a sub-transaction would be
« trl denotes_a TRANSACTION »
« tr_start trl »

The first statement creates a transaction element (entity or object). The second statement 
actually initializes it We separate these two functions, so that if the sub-transaction trl 
fails to be committable, it may be reused.

(3) The <open_ADAMS_statement> creates and initializes the root transaction. But the syntax 
does not provide a mechanism for returning its identity. It is a "hidden", implicit transac­
tion that is unavailable for user manipulation.

(4) The root transaction can not commit if any of its sub-transactions are uncommittable. But 
note that an ABORT(ed) sub-transaction is vacuously committable.

(5) ADAMS will always use time-stamping to passively enforce serializability. The optional 
use of a <lock_statement> pennits a user to guarantee that no time-stamp reference conflict 
can occur on the named entity.

If <element_desig> is a set, then the set itself and each of its constituent elements is also 
locked. This provides an easy mechanism for granting may locks in one fell swoop. But 
this is only a 1 level inclusion.

(6) A subtransaction must inherit the locks of its parent; a similar inheritance must also be 
implemented with respect to time-stamping.

(7) When a sub-transaction, or the root transaction, terminates entities locked in that transaction 
are automatically unlocked. The user initiated <unlock_statement> is strictly optional.

(8) To implement the above lock release, each transaction must have an associated <lock_set>. 
But this can not be an ADAMS set, because in general elements from distinct classes can be 
locked; it must be a system maintained "set".

10.4. Examples
The following example illustrates the process for granting a set of locks on "all the under­

graduate CS majors", presumably for the purpose of a massive update.
« C3_majors denotes_a STUDENT_SET »
« assign { x in undergrad | x.major - 'CS' } to cs_majors »
« lock cs_majors »

10.5. Discussion
There is no provision for deadlock detection in the ADAMS syntax. Should there be?
Is the "unlock" option unwise? Moss requires his nested transactions to retain the lock until 

the entire transaction terminates. Moreover, suppose a set of elements, such as cs majors is 
locked, and in the course of processing elements of the set are either inserted or deleted. How 
would an
« unlock cs_majors »

statement be interpreted? Would elements that have been deleted from the set be "unlocked"? 
Should elements that are inserted into a set be automatically locked, and those deleted
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automatically unlocked? Both seem risky. A reasonable approach might be to associate with 
each process an "invisible" global lockset consisting of all locks obtained by the process. An 
unlock command would remove all locks in the intersection of lockset and the set denoted in the 
unlock statement. All remaining locks in lockset would be automatically removed on process ter­
mination.

Moss requires that only leaf transactions modify the database? Is this a necessary charac­
teristic of nested transactions? Can it be enforced?



11.2.1. SET Functions

ismemberof (<ADAMS_element_var>, <ADAMS_set_var>);
returns true if the <element> is a member (or element) of the specified <set>. 

is empty (<ADAMS_set_var>);
returns true if the <set> is empty, and false otherwise, 

card (<ADAMS_set_var>);
returns the integer cardinality of the specified <set>.

11.3. Other Predicates
same_element ( <ADAMS_eIem_var>, <ADAMS_elem_var>) returns true if the two variables 

denote the same element 
ADAMS_success;

returns true if the last executed ADAMS statement succeeded.
ADAMSJail;

returns true if the last executed ADAMS statement failed.
This and the preceding function simply test the ADAMS_status register.

11.4. Discussion
Should all system procedures (or methods) be clearly identifiable, say with an embedded 

dollar sign, etc.
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11. System Procedures
The basic imbedded structure of ADAMS dictates that an ADAMS statement, denoted by 

its beginning and ending delimiter will be converted into corresponding host language code 
and/or procedure calls by the preprocessor. But in a complete interface there invariably arise 
occasions when a host language statement must invoke some predefined ADAMS procedure. 
These are typically of two forms: (1) to extract information from the dictionary for comparison, 
testing, or display: or (2) to test some aspect of the system. The latter will be boolean (or LOGI­
CAL) functions.

We call these "system procedures". It would be equally true to call them "methods", espe­
cially the latter functions which are clearly associated with specific ADAMS classes.

Since a system procedure (or method) is a host language construct, all formal and actual 
parameters must be recognized in die type structure of die host language. The ADAMS <vari- 
able> construct is important here. It is die only ADAMS construct which must have a predefined 
corresponding host language type. (The correspondence between codomains and host language 
types is not pre-defined. It is established with fetch and store methods.)

11.1. Dictionary Interrogation
Many of the procedures below return strings as their functional value—that is, a "string" in 

the sense of the host language. Others accept strings as their argument

class_of (<ADAMS_element_var>);
returns the class of the designated instance element, as a string. This function 
must be defined for all elements. 

name_of (<ADAMS_element_var>);
returns the name of the designated instance element, as a string. Note that most 
instances will be unnamed. 

unique_id_of (<ADAMS_eIement_var>);
returns the uniquejd identifying every ADAMS element in a printable string 
form.

classofmember (<ADAMS_set_var>);
returns the class of the members (elements) of the designated set. 

image_of (<ADAMS_ftmction_var>);
returns the class of image objects of the designated function, either attribute or 
map.

is_instance_natne (<string>);
returns true if the name denoted by the <string> is the name of an instance in the 
user’s dictionary. 

is_class_name (<string>);
returns true if the name denoted by the <string> is, or could be, a class name in 
the dictionary.
(Note: because of parameterized class naming, it is impossible to always know if 
a particular actual name is being used as a name.

112. Class Functions
The following functions each return scalar values that are typed according to the host 

language’s conventions, usually either integer or boolean; they are functions that are associated 
with a particular kind of ADAMS class (or derivative class).

Notice that in every case the arguments are ADAMS variables, that is entity identifiers 
which have been cast into a specific host language variable form.

r

41



[Klu88] C. Klumpp, A C Interpreter for the ADAMS Language, IPC Tech. Rep.-88-005, 
Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[Mai83] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville, 
MD, 1983.

[Mos85] J. E. B. Moss, Nested Transactions: An Approach to Reliable Distributed 
Computing, MIT Press, Cambridge, MA, 1985.

[PSF87] J. L. Pfaltz, S. H. Son and J. C. French, Basic Database Concepts in the ADAMS 
Language Interface for Process Service, IPC Tech. Rep.-87-001, Institute for Parallel 
Computation, Univ. of Virginia, Nov. 1987.

[Pfa88] J. L. Pfaltz,.Implementing Set Operators Over a Semantic Hierarchy, IPC Tech. 
Rep.-88-004, Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[PSF88] J. L. Pfaltz, S. H. Son and J. C. French, The ADAMS Interface Language, 4th 
International Hypercube Conference, Pasadena, CA, Jaa 1988.

[PFW88] J. L. Pfaltz, J. C. French and J. L. Whitlatch, Scoping Persistent Name Spaces in 
ADAMS, IPC Tech. Rep.-88-003, Institute for Parallel Computation, Univ. of 
Virginia, June 1988.

43


