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Abstract

The finite control volume method (FCVM) was successfully used to 
calculate both laminar and turbulent buoyancy driven flow of air in a 
square enclosure for Ra = 103 to 10s. For laminar flow, comparisons 
of the computed solution with both experimental data [15,17,18] and 
other numerical solutions [20] are in excellent agreement. Comparisons 
of selected velocities and average Nusselt numbers with a “benchmark” 
solution presented by deVahl Davis [20] are consistently within 4%. For 
turbulent flow, the agreement with another numerical solution [13] is 
generally good, considering the large difference in the number of nodes 
employed. The agreement with extrapolated experimental correlations 
for the average Nusselt number was acceptable.

1 Introduction

In 1978, Baliga [1] developed the FCVM using triangular elements for 
the solution of diffusion-convection and fluid flow/heat transfer prob­
lems. In 1979, Hogan and Blackwell [2] independently developed a 
transient FCVM for diffusion problems. The FCVM combines the ad­
vantages of both finite difference methods (FDM) and finite element 
methods (FEM). It has been used to solve many different fluid flow 
and heat transfer problems and the computed results compare well with 
other results.
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In many cases, the FCVM solutions for diffusion problems are up to 
two orders of magnitude more accurate than those computed by other 
methods [3,4,5]. For convection-diffusion problems, the “false” or “nu­
merical” diffusion associated with the FCVM is significantly less than 
with upwind difference FDM. Baliga and Patankar [6] show the FCVM 
error is less than the FDM using upwind, hybrid, and power law differ­
encing schemes. The use of an elemental coordinate system with a novel 
exponential differencing scheme based on the local flow conditions [7] 
reduces this error.

Fluid flow/heat transfer problems have been solved by the FCVM 
for laminar flows in closed domains. Hogan [8] used the FCVM to solve 
turbulent flows over both closed and open domains. This paper presents 
FCVM solutions for both laminar and turbulent buoyant motion of air 
in a square enclosure for Ra = IQ3 to 108. The FCVM applicability for 
buoyancy driven flows with variable fluid properties, in particular, for 
turbulent flows, is demonstrated.

2 Finite Control Volume Method

Mathematically, the FCVM is a subdomain method, a subclass of the 
FEM of weighted residuals with the weighting function unity over the 
“control volume” and zero elsewhere. Physically, it is an application of 
conservation principles for finite-sized control volumes. A representative 
convection-diffusion equation for a generalized field variable, <f>, in flux 
vector form is

^(^) + V-/=S^+Sc, (1)

where J = pV4> ~ F^V^. With the proper choice of <^, P^,, 5P, and 5C, 
Eq. (1) reduces to conservation of mass, linear momentum, energy, etc. 
Conservation of (f> over an arbitrary control volume is

lJ*dv + J
cv cs

J • n dA = J(Sp<f> + Sc) dV, 

cv
(2)

where CV and CS represent integration over the control volume and 
control surfaces, respectively.

As with FEMs, the domain of interest is divided into triangular el­
ements with cj) nodes at each of the vertices as shown in Fig. 1. For a 
2-D problem, integration over the control volume simplifies to an area 
integral (hashed area), and integration over the control surfaces sim­
plifies to a line integral (dashed lines). Profiles for p, 5P, and Sc are 
assumed constant and F^, and the velocities (convective terms) are as­
sumed linear over the element. The velocities are evaluated at the pre­
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Figure 1: Typical element and control volume configuration

vious iteration. Due to the convective nature of the flow, the <f> profile 
is assumed exponential in the stream wise (locally) direction and linear 
in the cross-stream direction [1]. Each element has contributions to the 
control volumes about each of its nodes. These contributions are com­
puted on an element-by-element basis and merged into a global matrix 
similar to the FEM.

3 Mathematical Formulation

For turbulent flow of an incompressible fluid with negligible viscous 
dissipation and no internal heat generation, the time-averaged equations 
(indicial notation) for conservation of mass, momentum, and energy in 
dimensionless form are

(3)

du* ~du* Id/ tdu*\ dP* Gr — 1 d /
~ Refajy'lh*) { + Red^X^d^j) ’

(4)
and _ __

dT* —dT* _ 1 _d_
dt* ^ dx* Re dx*

where v* = v* + v? and B* = g*(3*T is the buoyancy.
For laminar flow, Eqs. (3-5) are simplified using vt = 0.0 and 

v* — v*. For turbulent flow, they can be solved if the turbulent vis­
cosity and the turbulent Prandtl number are known. The turbulent 
heat flux is expressed using the Reynolds analogy between heat and 
mass transfer [9,10]. For the two-equation turbulence model, the turbu­
lent viscosity [11,9] is = C^Rek*2/e*. After simplification [9,12], the 
modeled form of the turbulent kinetic energy and the turbulent kinetic

a pt \ ui
\Pr (Tr) dx* . (5)
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energy dissipation rate equations are

dk*
df* + <

dk* _ j__a
dx* Re dx* V ah dx\

/Uj dk* \ 
* Vtrfc dxl / Re G*s — e* , (6)

anc
dj*
dt*

de* i d
dx* Re dx*; V <j dx

/ v? de* \ 
t V <j, dx* / + Re k* Gl ~ C2

where

G*C = + t)
dx*; / chc*

(7)

(8)

and o-fc and a( are the ratios of the turbulent viscosity to the diffusivity of 
turbulent kinetic energy and turbulent kinetic energy dissipation rate, 
respectively. Values for the empirical constants [13] are Ci = 1.44, 
C2 — 1-92, =■ 0.09, cry = 1.00, <Tk = 1.00, and crt = 1.314.

Boundary conditions are imposed by “jumping” or “bridging” the 
viscous sublayer, including its influence on the mean flow using the 
“wTall functions.” A typical boundary node is near, but not at, the wall. 
For this discussion, the r/+ coordinate refers to the “wall coordinate,” 
measured normal to and away from the wall and the u velocity refers to 
the velocity component parallel to the wall.

The momentum boundary conditions are imposed by specifing zero 
velocity normal to the wall. The velocity gradient (shear stress) parallel 
to the wall is imposed using the log-law relationship for a turbulent 
boundary layer. The location of the near-wall nodes must be outside 
the viscous sublayer or y+ > 11.5, where, y+ = yuT/v = y*u*Re. For 
the viscous sublayer, y+ < 11.5, and for the inertial sublayer [9,11], 
y+ > 11.5, the relationships are

u
•U, = and

\U K
u. ln[E yA (9)

respectively, where k = 0.419, and E = 9.793. For turbulent flow, all 
near-wall nodes must be in the inertial sublayer, y+ > 11.5. The bound­
ary condition for conservation of energy is imposed using the boundary 
heat flux

c = P’*• c; Re St Pr (T-- K) , (10)
which is a function of the temperature at the wall and the velocity, ve­
locity gradient, and temperature at the near-wall node. Assuming the 
turbulence is in local equilibrium near the wall, the boundary conditions 
for k* and e* are k* = \t*\/and e* = |t*,l1'5/^*, respectively. At 
the begining of each iteration, these boundary conditions are recalcu­
lated and respecifled using velocities, velocity gradients, and tempera­
tures from the previous iteration.
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Figure 2: Geometry and Typical Grid for Example Problems 

4 Example Problems

A common test problem is the buoyancy driven flow of air in a square 
enclosure. Figure 2 shows the basic enclosure geometry and a typical 
grid. A non uniform grid is used for all solutions. The horizontal walls 
are assumed to be adiabatic and the vertical are assumed isothermal. 
The wall at x* = 0.005 is maintained at T* = 1.0 and at x* = 0.995, 
T* = 0.0. The Rayleigh number is varied from 103 * to 108. The transition 
to turbulent flow has been observed at approximately Ra = 106 * [15,16], 
so the flow is assumed turbulent for Ra > 106.

For laminar flow, 21 x 21 and 31 x 31 nonuniform grids are used and 
for turbulent flow, (Ra = 108), 31 x 31 and 41 X 41 grids. The initial ve­
locities and temperatures are zero. The initial turbulence kinetic energy 
and turbulence kinetic energy dissipation rate are 1000 and 1, respec­
tively. Relaxation factors for u*, v*, T*, k*, e*, and P* are initially 0.5, 
0.5, 0.05, 0.5, 0.5, and 0.6, respectively. They are increased to 0.6, 0.6, 
0.4, 0.5, 0.5, and 0.7 as the solution progresses. Since this flow is buoy­
ancy driven, convergence is very sensitive to the temperature relaxation 
factor during the early iterations.

4.1 Computed Results

Figure 3 shows the vertical velocity profiles along a plane of
y* — 0.5. As the Rayleigh number increases the peak velocity increases,
its location moves towards the walls, and the size of the low velocity re­
gion increases. For Ra > 105, a flow reversal occurs near the interface of
the central core and the boundary layer. An analysis of the streamlines
[8] show the presence of vorticies at this interface. For turbulent flow, 
Ra = 108, the maximum velocities increase approximately an order of 
magnitude, the boundary layer is thinner, and velocity peaks are closer 
to the walls.
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Figure 3: Vertical velocity profiles along the horizontal mid-plane, 
y* = 0.5, for varying Rayleigh number.
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Figure 4: Temperature profiles along the horizontal mid-plane, y* — 0.5, 
for varying Rayleigh number.

Figure 4 shows the temperature profiles along a horizontal plane, 
y* = 0.5. For Ra = 103, the heat transfer is dominated by conduction, 
the horizontal temperature gradient is negative, and the temperature 
profile is almost linear. As the Rayleigh number increases, the gradients 
near both of the walls are increasingly negative, and the size of the 
isothermal region increases.

4.2 Comparison with Experimental Data

An important engineering parameter is the heat transfer across the en­
closure, characterized by the average Nusselt number. Table 1 shows a 
comparison of the computed Average Nusselt number and experiment al 
data for Ra = 103 to 108 [15,17,18]. Due to the lack of available ex-
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Table 1: Comparison of computed Nusselt number and experimental 
data of Elder [15], Jacob [17], and Eckert and Carlson [18].

Nu (% difference)
Ra FCVM [15] [17] [18]
103 1.102 1.413(-22.0) 1.102( 0 ) 1.046( 5.4)
104 2.212 2.513(-12.0) 1.960(12.9) 2.087( 6.0)
105 4.387 4.469( -1.8) 3.342(31.3) 4.163( 5.4)
106 8.503 7.947( 7.0) 7.200(18.1) 8.307( 2.4)
108 31.63 25.13( 25.9) 33.419( -5.4) 33.07(-4.4)

perimental data for Ra = 108, average Nusselt number are compared to 
extrapolated experimental data. The FCVM solution agrees within 6% 
of the data of Eckert and Carlson [18]. It agrees reasonably well with 
the data of Elder [15], but has a different Nu vs Ra slope.

4.3 Comparison with Other Numerical Results

A comparison and summary of many of the numerical solutions for this 
problem is presented by de Vahl Davis [19]. Table 2 compares the FCVM 
solution with a “benchmark” solution by de Vahl Davis [20] and a donor- 
cell differencing solution by Markatos and Pericleous [13].

For most cases, these comparisons show the FCVM solution agrees 
reasonably well with other numerical solutions. For Ra = 103, there is 
excellent agreement, with the velocities and the average Nusselt number 
within a maximum of —1.4% difference (with respect to the “bench­
mark” solution [20]). For Ra = 104, there is good agreement, with a 
—2.2% difference in vmax, and for Ra = 105, the largest percent differ­
ence is 3.1% in the velocity . For Ra = 106, the horizontal and 
vertical velocities also agree within 2.8% and —1.9%, respectively. The 
average Nusselt number is within —3.4%. For Ra = 108, the percent 
difference in r^aa. is 3.0%, and in the average Nusselt number, only 
— 1.3%. Although neither of these solutions is the absolute “correct” 
solution, the agreement in these two variables is acceptable, considering 
the FCVM solution only used 1681 nodes, compared to 7200.

5 Concluding Remarks

The FCVM was successfully used to calculate both laminar and turbu­
lent buoyancy driven flow of air in a square enclosure for Ra = 103 to
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Table 2: Comparison of FCVM Solution with Numerical Solution of de 
Vahl Davis [20] and Markatios & Pericleous [13]

Ra Ref. grid 0.5) Nu
103 [20] 41 x 41 3.649@0.813 3.697@0.178 1.118

FCVM 21 x 21 3.618@0.791 3.644@0.154 1.102
[13] 30 x 30 3.544@0.832 3.593@0.168 1.108

104 [20! 41 x 41 16.18@0.823 19.62@0.119 2.243
FCVM 21 x 21 16.14@0.846 19.18@0.100 2.212

[13] 30 x 30 16.18@0.832 19.44@0.113 2.201
105 [20] 81 x 81 34.73@0.855 68.59@0.066 4.519

FCVM 21 x 21 35.81@0.846 68.61@0.064 4.387
[13] 40 x 40 35.73@0.857 69.08@0.067 4.430

106 [20] 81 x 81 64.63@0.850 219.4@0.0379 8.799
FCVM 31 x 31 66.42@0.866 215.2@0.0318 8.503

[13] 40 x 40 68.81@0.872 221.8@0.0375 8.754

H
—
1 O
 

00 FCVM 31 x 31 382.0@0.952 1924.0@0.0158 31.724
FCVM 41 x 41 339.3@0.941 1867.0@0.0111 31.625

[13] 60 x 120 514.3@0.941 1812.0@0.0135 32.045

108. The computed results include both the vertical velocity and the 
temperature across the horizontal mid-plane and the average Nusselt 
number. Additional details and more results, including isotherms and 
streamlines, are presented in [8].

For both laminar and turbulent flow, the computed average Nusselt 
number agree well with both experimental data and other numerical so­
lutions. Selected velocities and the average Nusselt number are within 
4% of the other numerical solutions. Generally, comparisons show ac­
ceptable agreement with both experimental data and numerical solu­
tions that use considerably more nodes. This suggests the reduction in 
“false” diffusion associated with the FCVM is significant, resulting in 
comparable accuracy with fewer nodes.

Nomenclature

Ci, C2, CM
C/
c;

9i 
Gr 
h

turbulence model constants
coefficient of friction, C/ = 

cspecific heat, C* =P L ?0

gravity vector
Grashoff number, Gr = g—<>- 
length of cavity side
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k* 
h

Nu 
P*
Pr
•//*<lw
Ra 
Re
Sc 
sp
St 
t*
T* 
u*
< 
x*
Greek
a

(3
e*

K*
k*
u*

<f>

P*
CTx
K
Subscript
hi
c 
e
h 
T
o

Superscript

turbulent kinetic energy, k* = ^
outward normal unit vector

q”,hoNusselt number, Nu =
pressure. P* P+pogy-Pj

k0(Th-Tc)

pK
Prandtl number, Pr = 
heat flux, g"* =

PO

ko(Th-Tc)
Rayleigh number, Ra = GrPr
Reynolds number, Re = Po"° —
constant volumetric generation
phi dependent volumetric generation
Stanton number, St = CfPr~2/3
time, T = ^
temperature, T* =
velocities, u* = u;/u0
shear velocity, u*T = y/tJ
coordinates,

thermal diffusivity
coefficient of thermal expansion, f3 = 1/T 
turbulent kinetic energy dissipation rate, e* 
generalized diffusion coefficient 
thermal conductivity, K* = 
dynamic viscosity, p* 
kinematic viscostiy, u* = 
generalized field variable 
fluid density, p* = -^ 
turbulent Prandtl number 
wall shear stress, = tw/pu20

indicial notation 
cold wall 
effective 
hot wall 
turbulent 
reference variable

dimensionless quantity

the
3F

JL
MoV

Vo
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