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Abstract

The finite control volume method (FCVM) was successfully used to
.calculate both laminar and turbulent buoyancy driven flow of air in a
square enclosure for Ra = 10° to 10°. For laminar flow, comparisons
of the computed solution with both experimental data [15,17,18] and
other numerical solutions [20] are in excellent agreement. Comparisons
of selected velocities and average Nusselt numbers with a “benchmark”
solution presented by deVahl Davis [20] are consistently within 4%. For
turbulent flow, the agreement with another numerical solution [13] is
generally good, considering the large difference in the number of nodes
employed. The agreement with extrapolated experimental correlations
for the average Nusselt number was acceptable.

1 Introduction

In 1978, Baliga [1] developed the FCVM using triangular elements for
the solution of diffusion-convection and fluid flow/heat transfer prob-
lems. In 1979, Hogan and Blackwell [2] independently developed a
transient FCVM for diffusion problems. The FCVM combines the ad-
vantages of both finite difference methods (FDM) and finite element
methods (FEM). It has been used to solve many different fluid flow
and heat transfer problems and the computed results compare well with

other results.
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In many cases, the FCVM solutions for diffusion problems are up to
two orders of magnitude more accurate than those computed by other
methods [3,4,5]. For convection-diffusion problems, the “false” or “nu-
merical” diffusion associated with the FCVM is significantly less than
with upwind difference FDM. Baliga and Patankar [6] show the FCVM
error is less than the FDM using upwind, hybrid, and power law differ-
encing schemes. The use of an elemental coordinate system with a novel
exponential differencing scheme based on the local flow conditions (7]
reduces this error.

Fluid flow/heat transfer problems have been solved by the FCVM
for laminar flows in closed domains. Hogan [8] used the FCVM to solve
turbulent flows over both closed and open domains. This paper presents
FCVM solutions for both laminar and turbulent buoyant motion of air
in a square enclosure for Ra = 10° to 10®. The FCVM applicability for
buoyancy driven flows with variable fluid properties, in particular, for
turbulent flows, is demonstrated.

2 Finite Control Volume Method

Mathematically, the FCVM is a subdomain method, a subclass of the
FEM of weighted residuals with the weighting function unity over the
“control volume” and zero elsewhere. Physically, it is an application of
conservation principles for finite-sized control volumes. A representative
convection-diffusion equation for a generalized field variable, ¢, in flux
vector form is

o .
5i(p9) + VT = 5,645, 1)

where J = de) — I'y V. With the proper choice of ¢,T,5,, and S,
Eq. (1) reduces to conservation of mass, linear momentum, energy, etc.
Conservation of ¢ over an arbitrary control volume is

%/PédVJr/f-ﬁdA: /(Sp¢+5c)dV, (2)
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where CV and CS represent integration over the control volume and
control surfaces, respectively.

As with FEMs, the domain of interest is divided into triangular el-
ements with ¢ nodes at each of the vertices as shown in Fig. 1. For a
2-D problem, integration over the control volume simplifies to an area
integral (hashed area), and integration over the control surfaces sim-
plifies to a line integral (dashed lines). Profiles for p, S,, and S, are
assumed constant and I'y and the velocities (convective terms) are as-
sumed linear over the element. The velocities are evaluated at the pre-
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Figure 1: Typical element and control volume configuration

vious iteration. Due to the convective nature of the flow, the ¢ profile
is assumed expontential in the streamwise (locally) direction and linear
in the cross-stream direction [1]. Each element has contributions to the
control volumes about each of its nodes. These contributions are com-
puted on an element-by-element basis and merged into a global matrix

similar to the FEM.

3 Mathematical Formulation

For turbulent flow of an incompressible fluid with negligible viscous
dissipation and no internal heat generation, the time-averaged equations
(indicial notation) for conservation of mass, momentum, and energy in
dimensionless form are
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where v* = v* + v} and B} = ¢!3*T  is the buoyancy.
For laminar flow, Egs. (3-5) are simplified using vr = 0.0 and

* *

v} = v*. For turbulent flow, they can be solved if the turbulent vis-
cosity and the turbulent Prandtl number are known. The turbulent
heat flux is expressed using the Reynolds analogy between heat and
mass transfer [9,10]. For the two-equation turbulence model, the turbu-
lent viscosity [11,9] is v} = C,Rek*’ /e*. After simplification [9,12], the

modeled form of the turbulent kinetic energy and the turbulent kinetic



energy dissipation rate equations are
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and o and o, are the ratios of the turbulent viscosity to the diffusivity of
turbulent kinetic energy and turbulent kinetic energy dissipation rate,
respectively. Values for the empirical constants [13] are C; = 1.44,
C; =192, C, =0.09, o7 = 1.00, 0. = 1.00, and o, = 1.314.

Boundary conditions are imposed by “jumping” or “bridging” the
viscous sublayer, including its influence on the mean flow using the
“wall functions.” A typical boundary node is near, but not at, the wall.
For this discussion, the y* coordinate refers to the “wall coordinate,”
measured normal to and away from the wall and the u velocity refers to
the velocity component parallel to the wall.

The momentum boundary conditions are imposed by specifing zero
velocity normal to the wall. The velocity gradient (shear stress) parallel
to the wall is imposed using the log-law relationship for a turbulent
boundary layer. The location of the near-wall nodes must be outside
the viscous sublayer or yt > 11.5, where, y* = yu./v = y*uiRe. For
the viscous sublayer, y* < 11.5, and for the inertial sublayer [9,11],
y* > 11.5, the relationships are

_ wod o = Ju* |k
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respectively, where k = 0.419, and £ = 9.793. For turbulent flow, all
near-wall nodes must be in the inertial sublayer, y* > 11.5. The bound-
“ary condition for conservation of energy is imposed using the boundary
heat flux

@ =p*u C, Re St Pr(T* - Ty), (10)
which is a function of the temperature at the wall and the velocity, ve-
locity gradient, and temperature at the near-wall node. Assuming the
turbulence is in local equilibrium near the wall, the boundary conditions
for k* and €* are k* = |7';[/\/C’_ﬂ and €* = |7}|"°/ky*, respectively. At
the begining of each iteration, these boundary conditions are recalcu-
lated and respecified using velocities, velocity gradients, and tempera-
tures from the previous iteration.
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Figure 2: Geometry and Typical Grid for Example Problems

4 Example Problems

A common test problem is the buoyancy driven flow of air in a square
enclosure. Figure 2 shows the basic enclosure geometry and a typical
grid. A nonuniform grid is used for all solutions. The horizontal walls
are assumed to be adiabatic and the vertical are assumed isothermal.
The wall at z* = 0.005 is maintained at 7* = 1.0 and at z* = 0.995,
T* = 0.0. The Rayleigh number is varied from 10° to 10%. The transition
to turbulent flow has been observed at approximately Ra = 10° [15,16],
so the flow is assumed turbulent for Ra > 10°.

For laminar flow, 21 x 21 and 31 x 31 nonuniform grids are used and
for turbulent flow, (Ra = 10®), 31 x 31 and 41 x 41 grids. The initial ve-
locities and temperatures are zero. The initial turbulence kinetic energy
and turbulence kinetic energy dissipation rate are 1000 and 1, respec-
tively. Relaxation factors for u*, v*, T*, k*, €*, and P* are initially 0.5,
0.5, 0.05, 0.5, 0.5, and 0.6, respectively. They are increased to 0.6, 0.6,
0.4, 0.5, 0.5, and 0.7 as the solution progresses. Since this flow is buoy-
ancy driven, convergence is very sensitive to the temperature relaxation
factor during the early iterations.

4.1 Computed Results

Figure 3 shows the vertical velocity profiles along a plane of
y* = 0.5. As the Rayleigh number increases the peak velocity increases,
its location moves towards the walls, and the size of the low velocity re-
gion increases. For Ra > 10°, a flow reversal occurs near the interface of
the central core and the boundary layer. An analysis of the streamlines
[8] show the presence of vorticies at this interface. For turbulent flow,
Ra = 108, the maximum velocities increase approximately an order of
magnitude, the boundary layer is thinner, and velocity peaks are closer
to the walls.
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Figure 3: Vertical velocity profiles along the horizontal mid-plane,
y* = 0.5, for varying Rayleigh number.
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Figure 4: Temperature profiles along the horizontal mid-plane, y* = 0.5,
for varying Rayleigh number.

Figure 4 shows the temperature profiles along a horizontal plane,
y* = 0.5. For Ra = 10%, the heat transfer is dominated by conduction,
the horizontal temperature gradient is negative, and the temperature
profile is almost linear. As the Rayleigh number increases, the gradients
near both of the walls are increasingly negative, and the size of the
isothermal region increases.

4.2 Comparison with Experimental Data

An important engineering parameter is the heat transfer across the en-
closure, characterized by the average Nusselt number. Table 1 shows a
comparison of the computed Average Nusselt number and experimental
data for Ra = 10° to 10® [15,17,18]. Due to the lack of available ex-



Table 1: Comparison of computed Nusselt number and experimental

data of Elder [15], Jacob [17], and Eckert and Carlson [18].

Nu (% difference)

Ra | FCVM [15] 117] [18]
105 | 1.102 | 1.413(-22.0) | 1.102( 0) | L.046( 5.4)
104 | 2.212 |2.513(-12.0) | 1.960(12.9) | 2.087( 6.0)
10° | 4.387 | 4.469( -1.8) | 3.342(31.3) | 4.163( 5.4)
10% | 8.503 | 7.947( 7.0) | 7.200(18.1) | 8.307( 2.4)
108 | 31.63 | 25.13( 25.9) | 33.419( -5.4) | 33.07(-4.4)

perimental data for Ra = 108, average Nusselt number are compared to
extrapolated experimental data. The FCVM solution agrees within 6%
of the data of Eckert and Carlson [18]. It agrees reasonably well with
the data of Elder [15], but has a different Nu vs Ra slope.

4.3 Comparison with Other Numerical Results

A comparison and summary of many of the numerical solutions for this
problem is presented by de Vahl Davis [19]. Table 2 compares the FCVM
solution with a “benchmark” solution by de Vahl Davis [20] and a donor-
cell differencing solution by Markatos and Pericleous [13].

For most cases, these comparisons show the FCVM solution agrees
reasonably well with other numerical solutions. For Ra = 103, there is
excellent agreement, with the velocities and the average Nusselt number
within a maximum of —1.4% difference (with respect to the “bench-
mark” solution [20]). For Ra = 10%, there is good agreement, with a
~2.2% difference in ¥4z, and for Ra = 10°, the largest percent differ-
ence is 3.1% in the velocity u,_ .. For Ra = 10°, the horizontal and
vertical velocities also agree within 2.8% and —1.9%, respectively. The
average Nusselt number is within —3.4%. For Ra = 10®, the percent
difference in v}, is 3.0%, and in the average Nusselt number, only
—1.3%. Although neither of these solutions is the absolute “correct”
solution, the agreement in these two variables is acceptable, considering
the FCVM solution only used 1681 nodes, compared to 7200.

5 Concluding Remarks

The FCVM was successfully used to calculate both laminar and turbu-
lent buoyancy driven flow of air in a square enclosure for Ra = 103 to
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Table 2: Comparison of FCVM Solution with Numerical Solution of de
Vahl Davis [20] and Markatios & Pericleous [13]

Ra | Ref. grid ut @(0.5,y%) | v:_ @(z*,0.5) | Nu
10° {20} 41 x 41 3.649@0.813 3.697@0.178 1.118
FCVM | 21 x 21 3.618@0.791 3.644@0.154 1.102
113) | 3030 | 3.544@0.832 | 3.593@0.168 | 1.108
10* [20] 41 x 41 16.18@0.823 19.62@0.119 2.243
FCVM | 21 x 21 16.14@0.846 19.18@0.100 2.212
[13] 30 x 30 16.18@0.832 19.44@0.113 2.201
10° [20] 81 x 81 34.73@0.855 68.59@0.066 4.519
FCVM | 21 x 21 35.81Q@0.846 68.61@0.064 | 4.387
[13] | 40 x 40 | 35.73@0.857 | 69.08@0.067 | 4.430
10° [20] 81 x 81 64.63@0.850 219.4@0.0379 | 8.799
FCVM | 31 x 31 66.42Q@0.866 | 215.2@0.0318 | 8.503
[13] 40 x 40 68.81@0.872 221.8@0.0375 | 8.754
10 | FCVM | 31 x 31 382.0@0.952 | 1924.0G@0.0158 | 31.724
FCVM | 41 x 41 339.3@0.941 | 1867.0@0.0111 | 31.625
[13] 60 x 120 || 514.3©@0.941 | 1812.0@0.0135 | 32.045

10%. The computed results include both the vertical velocity and the
temperature across the horizontal mid-plane and the average Nusselt
number. Additional details and more results, including isotherms and
streamlines, are presented in [8].

For both laminar and turbulent flow, the computed average Nusselt
number agree well with both experimental data and other numerical so-
lutions. Selected velocities and the average Nusselt number are within
4% of the other numerical solutions. Generally, comparisons show ac-
ceptable agreement with both experimental data and numerical solu-
tions that use considerably more nodes. This suggests the reduction in
“false” diffusion associated with the FCVM is significant, resulting in
comparable accuracy with fewer nodes.

Nomenclature

C1,C,,C,, turbulence model constants

*

Cy coefficient of friction, C'y = ;%5

C, specific heat, C} = CC‘;:

G gravity vector

Gr Grashoff number, Gr = w
h length of cavity side



k* turbulent kinetic energy, k* = fz“

n outward normal unit vector

Nu Nusselt number, Nu = K(gfé%—&fc—)
P pressure, P* = &%&

Pr Prandt]l number, Pr = 53}‘%’&

qr heat flux, ¢/* = ——*ko(%;i"ﬂ)

Ra Rayleigh number, Ra = GrPr
Re Reynolds number, Re = %‘iﬁﬁ
Se constant volumetric generation
Sp phi dependent volumetric generation
St Stanton number, St = CyPr=2/3
t* time, {* = e

T+ temperature, T* = ((ii?c))

ul velocities, u! = u;/u,

ur shear velocity, u} = /77

x! coordinates, ] = %:'

Greek

a thermal diffusivity

B8 coefficient of thermal expansion, 8 = 1/T
€* turbulent kinetic energy dissipation rate, €* =
Ty generalized diffusion coefficient
K> thermal conductivity, K* = 5;
Ty dynamic viscosity, u* = ;%

v* kinematic viscostiy, v* = =

¢ generalized field variable

p* fluid density, p* = ;”:

or turbulent Prandtl number

T wall shear stress, 7% = 7, /pu?
Subscript

1,7 indicial notation

¢ cold wall

e effective

h hot wall

T turbulent

0 reference variable

‘Superscript

* dimensionless quantity

o

o W)
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