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COLLECTIVE ION ACCELERATION
OCTOBER 1977 - SEPTEMBER 1978

by

R. J. Faehi, B. B. Godfrey, and W. R. Shanahan

ABSTRACT

Numerical and analytic studies of collective ion
acceleration in intense relativistic electron beams
are presented. Investigation of autoresonant accel-
era*ion has shown that radial beam inhomogeneities
distort the slow cyclotron wave into a surface-
localized mode. Variation of linear wave fields in
inhomogeneous magnetic fields is strongly affected by
this. Numerical studies of self-consistent cyclotron
waves show the persistence of linear characteristics
even at large amplitudes. Propagation of large
amplitude waves has been observed over moderate dis-
tances in simulations without significant attenuaticn
or nonlinear disruption.

Ion acceleration in virtual cathodes has also
been studied. Insights into both formation and late
time dynamics have been gained. Increased virtual
cathode understanding is being pursued toward defin-
ing optimal configurations.

Future plans are outlined.

I. SUMMARY ‘

Collective ion acceleration in intense relativistic electron beams is one
of the most promising and ingenious apﬁlications yet proposed for pulsed power
technology. It is also still highlyjconjectﬁral. Successful generation of
significant currents of heavy or lightﬁions to energies of several hundred MeV
per nucleon in a compact and relativepy inexpensive system would find ready

uses in electronuclear breeding, inertial confinement fusion, basic nuclear
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science, medical and materials research. In fact, the extent of its applica-
tions is difficult to gauge because no source has ever combined the energy and

current which these devices promise to yield. Continuing research is needed to

bring any collective acceleration concept to fruition, however. At Los Alamos
Scientific Laboratory (LASL), we are engaged in an intense theoretical effort
to understand and evaluate several of the most promising schemes.

. The autoresonant- accelerator, conceived by Austin Research Associates
(ARA),1 is a proposal to trap ions in large cyclotron waves carried by a rela-
tivistic: electron beam. Acceleration is achieved by spatially varying the
magnetic field in a wéveguide. Although this is conceptually simple, there are
extensive unresolved questions about wave coherence, propagation in unneutral-
ized beams, and nonlinear phenomena, all of which seem capable of disrupting
the cyclotron fields. Conventional, charge-neutral plasmas are so rich in
wave-wave and wave-particle interactions that large-amplitude monochromatic
waves have 1little trouble spreading their energy over broad wave and/or
particle spectra. This experience had induced initial pessimism on the pros-
pects for a scheme requiring narrow band propagation for up to 10 meters.
Extensive numerical simulation at both LASL and ARA has shown the feasibility
of growing such waves, however. LASL studies have furthermore indicated that
extraction from the amplifier can be accomplished with little difficulty and
that propagation over moderate distances induces only minimal attenuation.
The reason why long coherence scales can occur is intimately tied to the nature
of unneutralized electron beams. The single species medium does not possess
low-frequency modes to facilitate wave and particle scattering, while the wave
phase velocity is too far removed from particle velocities (ve ¥ ¢) to permit
direct wave-particle interactions. The only other sources of wave decay are
three~ and four-wave Couplings and intrinéic phase mixing, which are fairly
weak in high-density beams. Consequently, the required beam wave coherence
does not automatically mitigate against collective traveling wave accelerators.

The importance of beam nonn%utrality must be emphasized when considering
collective accelerator characteristics. iarge self-fields, for instance, lead
to uniquely determined equilibria with significant radial gradients in energy
and rotation. ' Self-consistent cyclotron waves have been demonstrated to be
much more surface localized than|previously believed. Further investigations
at LASL indicafe that this stroqgly affects the wave accelerating fields in

both homogeneous and spatially vaﬁying magnetic fields.3 One result of this is
\
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that smaller fields will be available but that they will not depend as strongly
on cyclotron wavelength.

Other collective acceleration mechanisms have also been investigated at
LASL. One of the more interesting involves formation of a virtual cathode in
the. vicinity of a plasma sheath. Virtual cathodes form when beam current is. .
greater than can be sustained by the wavegulde The en;uing beam disruption
effectlvely transforms beam kinetic energy into locally intense ax1a1 f1e1ds
These have been proposed as the source of collectively accelerated ions measured
in many experiments, where ions at 2-3 times the beam energy occur. Numﬂrlcal
simulation of representative configurations yielded the ion energy spect&a, but
without the electrostatic characteristics commonly taken to be the acccleratlng
source mechanism. These continuing 1nvest1gat10ns promise to yle;d entirely
new interpretations for this class of experiments, with concomitént insights
into their optimization. _jﬁ

Methods have also been suggested for moving the virtual cathode to accel-
erate negative ions.4 Numerical simulations have demonstrated this under
somewhat artificial conditions. There are still questions as to the viability
of this scheme, but enough progress has been made to warrant‘continued investi-
gation, albeit at a low level.

Study of the complex, self-consistent dynamics of'nonneutral relativistic
beams requires sophisticated numerical tools. We have developed an exception-
ally powerful and flexible code for treating relativistic charged partlcle
beams, CCUBE. CCUBE is a two-dimensional, fully electromagnetic, relativistic
particle-in-~cell simulation code. Its 1mp1ementat10n in generalized orthogonal
curvilinear geometry is especially useful in 51mu1at1on of complex conflgura-
tions which frequently arise in collective acceleratlon schemes. This capa-
bility is further enhanced through employment’of a Galerkin particle algorithm.
With suitable density weighting, the aigorithm simplifies calculation of
complicated houndaries.5 j

£
i

IT. PROGRESS DURING FY78 |
e I
Computational and analytic res¢arch on collective ion acceleration at LASL

s B
during the past year has concentrated od understanding the physics of the Auto-
resonant Acceleration concept, rWhile supporting the feasibility experiment of
it being conducted by ARA. We had previously demonstrated self-consistent wave

growth relevant to autoresonant acceleration in numerical simulations. During

|
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the past year, we have studied the extraction,~propagétion, and nonlinear char-
acteristics of self-consistent cyclotron wAves suitébke for autoresonant accel-
eration. We continued numerical studies of small-amplitude waves gb infer
properties during inhomogeneous propagation, and unexpected results Qere ob~-
tained. To complement our previoﬁs helical wave-growth studies, we undertook a
detailed linear study of an alfernative growth mechanism, the inductive loop.
Several alternate colleclive acceleration mechanisms were also considered at
LASL during the last year. Further study has shown the traveling virtual
accelerator may yet be feasible. qudies‘airected toward underétanding experi-
mentally observed acceleration a;sociated with virtual cathodes was also
initiated. Finally, a low-level effort was continued on the LASL-originated
concept of a temporally phase-modulated accelerator.

A. Autoresonant Accelerator

Previous iASL studies of the autoresonant accelerator have shown that
large-amplitude cyclotron waves can be grown in a helical waveguide, that rela-
tivistic beams can propagéte in spatially decreasing magnetic fields, and that
collective acceleratior of a small number of ions is possible in such fields.
The waves employed in this last effort were introduced artificially. Extensive
numerical analysis of the linearized cyclotron waves, conducted in conjunction
with the full simulations, however, shows that the radial structure of true
eigenmodes is highly localized on the beam surface. Careful examination of the
artificially excited waves in the simulation indicated that they probably con-
tained large céntinuum, as opposed to discrete, mode components. Thus, while
the simulation waves propagated in satisfactory agreement with linear theory,
there were large uncertainties as to whether their overall behavior was repre-
sentative of self-consistent laboratory waves. To address this problem, we
extended our linear thedry calculétions to investigate the effects of inhomo-
geneous propagation on realistic small-amplitude cyclotron waves.

Numerical analysis of linear eigenmodes in intense relativistic electron
beams has revealed thé ihportancé of using self-consistent beam equilibria.
Inclusion of radial variations inéy, due to space-charge effects, and rotation
can radically distort modes, especﬁally thé slow-beam cyclotron one in which we

. \ . . .
are mainly interested. This can be seen clearly by considering certain charac-

teristics, such as the ratio of ra?ial beam modulation to axial electric field.
It should be remembered that wh?le absolute magnitudes have no meaning in

linear theory, the relative magniﬁudes are fixed and highly characteristic of
4 l



the wave. The above-mentioned ratio, moreover, is singularly relevant to col-.
lective acceleration, for it relates the amountvof beam surface modulation to

the accelerating electric field. For typical beam and wave paramgtérs, the

difference between including radial y-variations and'assuming constant Yy is a

reduction of the axial electric field by a significant factdr, i.e., 1/3 to 1/4,
for a given surface modulation. The correct equilibrium is important for’
accurate calculétion of cyclotron wave properties. As the wave propagates along
a decreasing magnetic field, it 'is, therefore, crucial that self-consistent!
equilibrium changes are accounted for.

The numerical approach used by us started with determination of a self-
consistent eigenmode for a given homogeneous magnetic field, current, and
density profiie. Then a new magnetic field was chosen and the correspondirg
beam equilibrium calculated, under assuﬁption of constant current, angular
momentum, and enérgy. The original wave information was included through the
above conservation laws, plus conservation of wave energy flux. In cases of
only spatially varying fields, the frequency is also a constant of the motion.
For sufficiently weakly varying quantities, this procedure allows Calculaflon
of local dispersion and eigenmode structure, The results of such calculatlons
differ significantly from simpler heuristic estlmates of inhomogeneous propaga-‘
tion. Taking a wave which is initially in a high field region (short wave-
length) and following it in a decreasing field, we find that its phase velocity,

Voh? does not depart markedly from simple linear expectations, i.e.,

Von = vo/ (1 + Q/Y wy) , (1)

|
where Q = eBO/mc. However, in regard to its jwavefield, the simple guess was:

that the potential of the wave would remain constant, so that

E, < ko, (2)
that is, the field would decrease 11near1y with the magnetic field. This ddes

\ .
ryclotron wave, however. Our detailed

not account for the nature of a beam
calculations indicate that EZ remains| virtually constant as long as kRB St
When the wavelength becomes longer, Eq. (2), in fact, is reasonably good.:
This more accurate treatment also shows that a much larger beam modulation is

required to produce the accelerating Eszield, however. Since stability limits
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the effective relative modulation to roughly one-half the beam radius, or
AR/RB ="1/2, there is a practical limit to the cyclotron wave magnitudes which
can be used. Both factors must be included inlgesigning the axial magnetic
field variation, such that acceleration is accomplisﬁed in minimum distance with’
neither beam disruption nor particle dé-trapping. These considerations are
discussed in detail in Appendix A for typical solid béaﬁs and field parameters.

The above considerations were predicated on the validity of linear thegry
in realistic, radially ihhomogeneous beams. Since the self-consistent results
differ so quantitatively from those of 'simple ﬁodel theory, it is important to
determine which, if either, theory actually describes nonlinear, physical cyclo-
tron waves.

We have previously demonstrated the simulation ability to grow large-ampli-
tude cyclotron waves in a helical waveguide, so studying self-consistent waves
was only a matter of extracting them into a smooth-walled guide. The advantage
of employing a realistically terminated growth section was that the amplitude
of the waves could be controlled by varying the length of the section. This
also facilitated extraction. The primary concern over cyclotron wave extrac-
tion, and the.reason matched terminations help, is that the uqstable, growing
eigenfields are mddified by interaction with the helical aneguide fields.
Thus, when the wave leaves a growth section, it must relax toward its stable
state. It was feared that this nonadiabatic relaxation might distort or disrupt
the coherent wave. With matched terminations, however, the wévegdide‘fields
are damped smoothly to zero ty the end of the growth section. Residual fields

not terminated on the helix were 'soaked up" by a ring of resistive material

outside the helix. With this arrangement, waves were observeq to propagat
freely from the growth section, with little distortion of the cyélotron fields.
High-frequency electromagnetic necise was enhanced by extraction bﬁt at least
part of this had a purely numerical origin. Even if physical, however, such
noise could probably be controlled ‘experimentally. The significant point is
that the cyclotron fields remained qﬁiescent and narrowband.

After extraction, we followed #he wave relaxation for distances on the
order of one meter. This is probabl% further than would occur in the proof-of-

|

principle experiments, since the beam would pass into an adiabatic magnetic

field compresser as soon after growth as practical. In the interest of studying
the nonlinear structure of the waves, however, these and longer propagation
studies are useful.
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Une of the first observations made about the relaxation pr&@ess is that
the fields suffer relatively little attenuation, only of order 10-20%. Self-
consistent linear theory predicts that the ratio of beam modulation to axial
electric field, AR/EZQ is smaller for helically unstable cyclotron waves than
it is for stable waves. Pre11m1nary estimates had assumed that the modulation
would remain constant, so transition to smooth-wnlled propagation would result -
in significant reductions in accelerating field. In fact,;it is the field which
iszroughly invariant and the modulation which’increased. This is beneficial in
that larger fields are obtained, but worrisome with respect to wave contact with
the walls. The observation is also consistent witﬁ self-consistent linear
theory. ‘ 3 5 |

The - ultimate test of linear theory consists of measurement of the radial
wave profileé. Simple theory predicts a relatively flat, bulk perturbation
while self-consistent theory glves a highly surface- locallzed wave. Sincé
behavior of the wave in an acceleration section is quite -different for the two
theories, it is important to determine which describes large-amglitude cyclotron
waves. Carefui diagnosis of the simulations shows that the “large-amplitude
cyclotron waves are in good qualitative agreement with self-corsistént theory.
In fact, since measured uncertainties are magnified when one t.rms ratios, the
magnitudes are in remarkably good quantitative agreement with linear theory.
The major surprise is that nonlinear cyclotron waves,ﬁin these high-density
beams at least, differ so little from their small- amplltude counterparts.
Appendix B describes this work in more detail. , -

Attention has been focused on the m = 0 cyclotrnn«wave in a solid bean
because it is the desired acceleration mode and thé\brojected beam. configura-
tion. However, in the growth section studied most exhaustively¢§t LASL, the
helical waveguide, various nonaxlsymmetrlc modes (m # 0) are also destabilized.
We have numerically examined nonax1symmetr1c waves for stab111ty with GRADR and
found that the m-= 1 possesses theHlargest growth increment of all m # 0 waves
(Ref. Appendix C). In fact, for the c#rrent ARA experimental parameters, the
m = 1 instability is significantly stronger than m = 0. Variation of the para-
meters, such as increase in magnetic field, can preferentially reduce m = 1 with
respect to m = 0, but no high-current regime has been discovered yet in which

|
= 0 is the stronger of the instabili?ies. None of these studies can address
the problem of nonlinear competition beiwpen the modes or give information about

H

the final wave state, both of which may'prove interesting topics for future
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investigation. Until these are conducted, however, one must agsume that linear.
theory will govern wave growth.in the -helix. This"implies that care must be
taken in designing the initial wave excitef so that excitation of m = 1 modes
"occurs at orders of magnitude lower‘ievel : Consideratf%n should also be given
to design of a spatial filtering network that will h1gh1y distort the unstable

i
m = 1 waves while leaving the desired modes\largely unaffected

One of the more effectgve means found for suppres$ing the m = 1 instability
was to use’ a hollow electron beam. This has alsoc beea suggested as a way of
obtaining larger fields for a given modulation, AR. It will be~remembered that
self-consistent space-charge and rotation effects reduce the axial electric.
field by a significant factor compa{ed]witﬁ simple linear thee%y. The_space-

" charge fields and rotatidn,“howevef, are known to be much smaller in hollow
beams than in solid beams with the same current and energy. It was, therefore,
hoped that cyclotron eigehmodes in hollow beams would more nearly exhibit the
behavior of simple linear theory. )

GRADR studies of suitable cyclotron waves were made in hollow beams as,a

out + Rin)/(Rout - Rin)' Appendix C con-

tains the description of this work. As this ratio was increased from 1 (solid

function of aspect ratio, that is (R

beam) up to almost 10, it was observed that the ratio of modulation to field on

the inner radius, AR/E_|. remalned almost invariant. The total variation of

Z'1n
this ratio was on the order of 30%, and the trend was toward 1ncreas1ng values

?

(undesirable) with the h;ghest aspect ratios. As disappointing as this result
was, however, it was~e§en worse when one considered that the EZ field fell off
roughly at e+k: as the axis was approached. The ratio of modulation to axial
field was, therefore, considerably worse in hollow than in solid beams.’ It
appears that the only advantage of hollow beams is reduction of m=1 growth
rates in the helix, while disadvantages include reduced accelerating field“dn
axis and lack of radial containment for ions. m

The helix is not the only slow-wave structure whlch has been con51dered
for cyclotron wave growth. Inductive loop structures have also been studied,
pr1mar11y by ARA. Their ana1y51s’ however, modeled the actual nonaxisymmetric
structure with an effective 1mped ance given in terms of lumped :circuit param-
eters. There is nothing intrin%ically wrong with this approach, and it is
certainly a powerful technique Eor obtalnlng qualltatlve information about

complicated” structures. Its accuracy though- depends on the expression used for

kimpedance; low-frequency expressions can be quite dlfferent ‘from high- frequency
| -

2 <
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ones. We, rherefore, sought ‘to check the earller results by undertaks: ng a more
explicit, detailed study of this growth mechanlsm The complex three- dlmen51on-
ality of this structure eventually thwarted us, but not before we had been able

to draw some interesting conclusions. . R

InrAp?endii D, we outline our explicit model of g; jhductiye loop. The
primary feeture added to this ,analysis was that the coupling ﬁe fields were
zeroed out on the metallic loop, and finite only Un the capacitive gaps on the
loops. This is in contradisﬁihetion to the lumped parameter model, where it is
distributed uniformly around the loop. Becatise the az;muthal localization of

the E, field can impose a periodicity on the solutions, there -was reason to-

6

believe that certain nonaxisymmetric modes (m # 0) would be distorted, others ’

~ enhanced, while in general modes with different m could be ‘coupled. To imple-
ment this numerically in GRADR, it was necessary from%gmpractical standpoint to
treat loops with infinitesimal radial extert.  This significantly reduced the

capacitance, which was then compensated by filling the. space outside the loop

-+ with a dielectric material (g = 30-60). While the dielectric served to slow

the guided waves down to desired velocities, it mdstobe noted that it did not
completely replicate the cavity-like f1e1d structure of a true capacitative
plate structure. Nevertheless, with a wavegulde structure spannlng z, 6, and r
dimensions; a fulry three dimensional treatment yould be required, and such
numerical tools are not available at present. The numerlcal model described in
Appendix D can be said to more accuratelyimodel the:;zimuthai structure of the
ARA-envisioned waveguide, while being less accurate in treating the coupling.

Comparison of numerical growth results are glven .in Appendlx E. The dis~

tributed parameter model yields much larger growth rates than our perlodlc gap

one. This is not unreasonable, since correct treatmernt of the three-dimensional

fields in the region outside the loops is probably not represented w1th the high

dielectric medium employed, by us. JThe- Ee field on the loo E “is the char-

acteristic field for this 1nstab111ty It is(m4 5 times larger .ylth the
low-frequency boundary conditions than wlth the 321muthally periodic ohes, thus
the larger growth rate. Since the calculatlons were otherwise 1dent1cal we
conclude that the lumped parameter modelJcan, at least under some CJrcumctances,
overestimate the strength of the loop-arlven 1ns¢ab111ty Our calculatlons

however, suffer from not being completely self- con51stent and three- d1men51onal

The possibility of wr1t1ng a three- dlmei51cnal numerlcal lineaxr_code is being

pursued at a'row level by us, but until it, or a similar numerical tool is

o]
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developed,'accurate\evaluation of inductive loop structﬁres can bnly be accom-~
plished empirically. ]

Cyclotron 'wave amplifiers are needed by_én autoresonant accelerator for
the same reason collective acce]eration is beihg pursued in the first place:
external powef supplies can not excite RF travellng waves much larger than
lOéTV/cm. Since ARA hopes to conduct proof- of- pr1nc1p1e experiments with wave
m;gnitudes of 2.5 x 105 V/cm, it "is apparent that cyclotron waves excited to -
”Eheir largest level by external sources must still be grown. While numerical
studies at LASL and ARA indicate that sucﬁ a beam wave amplifier can probably
be buiit and operated as required, "the need to amplify wave powers by up to
four orders of magnipude leads to hiéh-gain problems, such as feédback, ampli-
fication of unwanted modeé, and poWér handling on the structure. These woulg
all be amgliorateﬂ if larger waves could be excited initially. Toward this en&;
the éuggéstion has been advanced that self-fields of the beamamight be used to
self-excite a suitable cyélotron wave. ’

Various structures have been numerically evaluated at LASL for use as
self-driven antennas. These are described in Appendix F. Thé most successful
examined to date consists of a right circular éévity‘onéFhalf wavelength long
Connéct;h with a similar length of "unterminated" helix. This structure excites
a narrow band cycloEron  wave ;ignal with a magnitude .on the order of
5 x 104“V/cm. The excitation is due to zero-order '"grounding current'" which
rings for 5~1928 period because of improper termination of the helix, (Ref.
Appendix H of 1977 LASL Annual Report}. Such ; cqnfiguration is also very
efficient at exciting =zero-frequéncy, nontraveling waves, as have been all
“"self-driven antennas" tb date. . Although self-excitation of cyclotron waves
has béen shown to be fea“ible, the concept will have only academic interest
until means of removing zero- frequency dlsturbances are found. ‘

Finally, flashover problems W1th “the ARA beam machine have resulted ‘in
delays with operating at 3 MeV - As an 1nter1m measure, experiments will be
conducted with reduced paraweters,hsuch as beam energy of 2.0-2.25 MeV and cur-
rent 15-20 kA. We have reformulated our linear wave studies consistent with
these“new paraﬁeterSJ The resﬁlts, reported in Appendix G, indicate that not

\\

_only can programmatic goals ‘be achieved; they may aétually be improved if both

1

beam and guide radius are reduced py a factor of 2.
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B. Alternative Collective Acceleration Approaches

Most of the LASL effort has been devoted to studying autoresonant ion

acceleration, but a low-level effort

has also been expended on alternative col-

lective acceleration mechanisms. This work has focused on three particular

schemes. The bulk of the effort has been devoted to ntudy of virtual cathode

acceleratlon in vacuum wavegu1des While this has y1e1ded best results to date,

large uncertainties still exist about the acceleration mechanism. New results

have also prompted re-examination of

While this scheme is still marginal,

the traveling virtual cathode accelerator.

certain deleterious characteristics, which

had mitigated against it, have been successfully resolved. The third scheme

was the phase-modulated accelerator, originated at LASL and described in the

FY77 annual report. This was pursued at a very low level during this year.

Present indications are that its primary role may be in heavy ion fusion or as

an injector into a high B accelerator.

Collective acceleration produced by forming a virtual cathode in vacuum is

an attractive, simple configuration

at many institutions. Performance

numbers of ions (1012 14

which has been experimentally demonstrated

typically involves acceleration of large

) to roughly 1.5 times the beam energy, with a high

energy tail out to 10 times the electron beam energy. While these are useful

parameters for light-ion-driven inertial confinement pellets, they do not

satisfy requirements for a medium-energy accelerator at present. Nevertheless,

higher energy beam machines may soon be possible, and compact generation of,

say, 200-MeV protons would find ready applications. The problem with this

mechanism is that, despite widespread speculation, no quantitative model for

the observed ion spectrum exists.

Allusion is often made to a deep, steady

potential, derived by Poukey and expahded upon by Olson. In many space-charge

limiting simulations conducted both at LASL and at the Air Force Weapons Labor~-

atory, however, no such well has even been calculated. Work was, therefore,

undertaken to simulate a model configuration for collective ion acceleration.

Since any acceleration results would be closely tied to virtual cathode dynam-

ivs, a detailed numerical study was
of this state.

The key results garnered from
(1) no steady potential well with de
(2) fluctuating potentials in excess

1.7 mcz(y0 - 1), and (3) the magnitu

idecided upon to gain better understending

simulation of virtual cathodes were that
pth greater than mc (yo ~ 1) was observed
of mc (yo - 1) were indeed measured, up to

de of the peak potential correlates quite

11




well with a macroscopic‘recurreﬁce<Period'for the motion of the entire virtual

cathode. This last is further assoéﬁated with onset of electron reflection and

possibly with the flux of potentiai fluctuations on the beam. A quantitative

model for these results is still being formulated by us, but it is apparent that
since no steady anomalous well exists, simple trapping arguments cannot be

advanced to explain even the low-energy ion spectra.

The second phase of this numerical‘study consisted of using the virtual
cathode to accelerate ions from a pre-existing plasma. A dense plasma slab
(np = 35.0 no) was iniﬁially locafed adjacenf to the injection plane. Since it
was much denser than the beam, space-cha;ge fields were essentially neutralized
in the plasma. To prevent charge depletion, however, the slab was made moder-
ately thick, roughly 2-3 cm. This model configufation may be regarded as a
crude analogue of the plasma fqrmed~fr6m a Luce diode. The differences are
appreciable, though, and it is péssibleﬁthat key features of the experiment are
not represented here. More sophisticated plasma configurations are being con-
sidered at present, but no data is yet available on these. When the beam with
supercritical current was injected throﬁgh such a slab, it propagated freely
until leaving the slab. Immediately upon exiting the plasma, it formed a
virtual cathode. As expected, this virtual cathode possessed an average ﬁoten-
tial depth of only le¢] = mcz(y0 - 1). One possibly significant difference
between these calculations and the metallic anode ones treated earlier was that
the beam was highly two-stream unstable with the plasma. The plasma length was
too short for beam disruption, but it certainly resulted in an enhanced fluc-
tuation level on the beam. Whether this or interaction of ions with the well
was responsible, the virtual cathode did not exhibit the regular oscillations
which were correlated with potentials greater than mcz(y0 - 1).

~

Ions were found to be accelerated quite rapidly (At & 100 w;l) and over

13

short distances (Az 10 c/wb) to energies of order & on = 1.5 mcz(y0 - 1).

This was followed by a slower period of acceleration which was not localized to
the virtual cathode. The virtuél cathode evolution was furthermore different
from previous, moving well modeﬂS. Instead of charge neutralization occurring

near the back of the potential w%ll, enough ion current was accelerated to force

1}

neutralize the beam. Thus, the ﬂon density need be only n, no/y2 rather than

n, = n,. In consequence, the back edge of the potential exhibited little
motion, but because propagation was facilitated by the ions, the potential

possessed a flat bottom, extending from the original back edge out to the front

12




edge of the accelerated ions. While this does not enhance the electrostatic
potential, ¢, it can contribute significantly to the electromagnetic vector
potential A. In fact, ion acceleration in excess of sion = mcz(y0 - 1) scales,
though not linearly, with the measured quantity, 8<Az>/8t, brackets indicating
average over the fast time scale.

The mere fact that a monotonic increase in <Az> occurs for constant current
injection indicates that additicnal current must be flowing, and this is pos-
sible only because sufficient numbers of ions are accelerated to allow propaga-
tion. Velocity of the ions is not a major factor as long as Vion << c. Motion
of the partially neutralizing ion bunch, however, is important insofar as it

increases the integral

dev ,

\Y

where

J = E n.q.v.
JqJ J

J

For similar current configurations, the same current carrying volume will even~
tually be attained regardless of the velocity of the ions. This argumeﬁt
suggests the simulation result that ions with different masses reach the same
energy as a function of distance. More analysis will be needed to understand
the apparent numerical scaling with ion charge, Z, however. Both these results
and the calculated ion energy spectrum are in agreement with experiments.
Moreover, since the peak electrostatic potential is only of order the beam
kinetic energy, the mechanism for ion acceleration to 2-3 times the beam energy,
which we measure in the simulations, is clearly not a deep, steady electrostatic
well. Inductive forces, neglected in Previous analyses, are responsible for
the excess acceleration above the beam kﬁnetic energy. The role these may play
in so-called '"Luce geometry" experimentg, where acceleration to ten times beam
energy is commonly seen, is still mooﬁ a% this time. The combination of induc-
tive and electrostatic forces appears tojbe the mechanism for the bulk acceler-
ation of ions €ion = 1-3 mcz(y0 - 1), bﬁt to date no high-energy tail has been

observed in our simulations. Pursuit of possible synchronous mechanisms to
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explain the tail will continue at a low level. More detail on these studies

can be found in Appendix H.

Further work on the Traveling Virtual Cathode mechanism conducted ag@in in
collaboration with the Air Force Weapons Laboratory is reported in Appendix I.
This mechanism was discussed in the FY7? annual report (Appendix L). At the
time of the previous report, only Constan# current injection had been simulated.
Those calculations showed that a virtual cathode could be formed in the wave-
guide interior, but that it was subject té large irregular fluctuations‘in‘both
position and magnitude. Subsequent simulations with linear current riseﬁime,
however, have: demonstrated that those undesirable characteristics were not
intrinsic features of the virtual cathode. On the contrary, increasing the
current at a sufficient rate yields smooth, monotonic motion of the virtual
cathode toward the metallic foil. The observed acceleration was too high to
trap realistic ions, but simulations with unphysically low mass-to-charge }atios
showed almost complete negative ion capture by the virtual cathode fields from
an initially neutral plasma slug. Though ion acceleration under artificial
conditions has been numerically demonstrated, extrapolation to physically feal-
izable conditions requires further study. Specifically, while acceleration of
the virtual cathode can be reduced by increasing the current risetime, it is
not certain that turbulent fluctuations will not reappear with the slower
velocity. Analysis is also required to determine whether the virtual cathode
fields (E = 2 x 105 V/cm) will strip negative ions to a neutral state. |

The final alternative acceleration scheme, phase-modulated acceleration,
has received only nominal attention during the past year. Preliminary investi=-
gations indicated the concept should be most viable at ion velocity, v, < 0.5 c.
In the low-velocity regime, however, it seemed quite competitive with other
collective acceleration schemes. These considerations strongly suggest appli-
cations in heavy ion fusion. Since the initial heavy ion velocity, moreover,
is extremely small, the possibility of dephasing zero-frequency cyclotron waves

These are extremely easy to excite in a relativistic electron

beam, at magnitudes of 1-2 X 105

was examined.
|
V/cm. Calculations on the test particle code

NOvA indicated‘promise, but acc&rate evaluation of this particular mode of
I .

il
acceleration must await full, se%f-consistent simulation. Those calculations

are planned for the coming year.

’ ]
|
|
|

14



C. Code Development

Numerical studies form a significant element of collective acceleration
research at LASL. As a complement to analytic studies, these permit treatment
of both self-consistent nonlinear states and more generalized linear ones
with boundary conditions. The changing status of evolving research calls for'
flexible, general-purpose codes and smaller, more specific codes to address
particular problems or conditions.

CCUBE, a two-dimensional relativistic particle simulation code written
for the express purpose of studying electron beam physics, is the primary
numerical tool for our investigations. Although it has been discussed pre-
viously, projected research efforts have dictated a series of significant
modifications. During the past year, the 'particle pushing" routines have
been completely rewritten to employ an arbitrary order Galerkin algorithm.
This employs only fields, so potentials are no longer needed in the code. By‘
incorporating magnetic field forces in a series of microsteps, electromagnetic
effects are more accurately treated. This permits omission of current cor-;
rections needed to preserve the continuity equation. In the process, a unique
particle weighting scheme has been implemented which greatly simplifies treat-
ment of complicated boundaries. Diode design calculations, conducted within a
different context, have ably demonstrated the flexibility of this new version
of CCUBE. The code changes are described in Appendix J.

While many new classes of problems can now be studied with CCUBE, this
version does exhibit a higher level of longitudinal fluctuations. The magnitude
seems acceptable at present but can probably be reduced by incorporation of
higher order weighting splines. Such a course, however, would make boundary
treatments more difficult. In short, a series of innovative changes have been
made in CCUBE which should facilitate simulation of geometrically complex
autoresonant accelerator configurations, but which have also degraded certain
noise characteristics. Colloquially, one does not get something for nothing.
Other modifications can probably be made to improve those characteristics if
it should appear necessary. For the:coming year, though, no problems are
anticipated and a stable code format is expected.

The GRADR code has proved highli useful for studying linear phenomena
on self-consistent beam equilibria. Ii the past year, improvements have been
made to it for examination of non-a%isymmetric (m # 0) helix modes, non-

axisymmetric boundaries (for loop dribers), hollow beams, and inhomogeneous
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wave propagation within a WKB framework. These topics are discussed in more
detail in the appropriate appendices. |

Such a cbde is essential for mapping out linear parameter regimes which
can then be followed nonlinearly in CCUBE simulations. Nevertheless, certain
problems are intrinsically three-dimensional. The ARA loop drive geometry is
one such example. 1In a search for more general numerical tools, we discovered
an overall paucity in this area. Since the need is evident, it appéars that
we shall have to devise a code for treating three-dimensional boundaries and/or
beam equilibrium. The time scale for this undertaking, however, is difficult
to estimate. Until such a code has been written and debugged, analytic expres-
sions and estimates must suffice.

Other smqller codes are commonly written to address specific problems, but
do not have general applicability. While the list of these is extensive, most
are never documented and quickly fade into obscurity. The ability to effi-
ciently produce such programs nevertheless does aid in overall study of collec-

tive acceleration problems.

III. PLANS FOR FY79

The Autoresonant Accelerator feasibility experiment has begun to geherate
preliminary data. During the coming year, these data will be used to resolve
questions of beam propagation and quality, wave growth and extraction, and ion
loading. We at LASL intend to conduct analytic and numerical studies on these
same issues in such a manner as to provide support for the experiment without
neglecting key basic physics questions. Additional work will also be performed,
as time permits, on alternative acceleration approaches. Elucidation of these
mechanisms may later permit their employment in conjunction with autoresonant
acceleration, such as using virtual cathodes for ion injection. CCUBE, GRADR,
and other smaller codes will undergo continuing minor modifications, but will
be essentially stable. Conversion from the CHAT compiler to a more standard
Extended FORTRAN one (FIN) ého#ld reduce execution times and enhance code
]

|
. | .
In the previous year, work was concentrated on wave growth and extraction.

portability.

We will expleit this experiencqito investigate propagation of beam and waves
into spatially varying magnetic ﬂields. Two parallel efforts will be conducted.
In the first, we will employ b%ams of high quality to study compressioh and

compression-induced modification4 to laminar and wave-carrying beams. The other
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line of research will study nonideal be

propagations.

If an electron beam propagates int
comparéd to its larmor radius, beam c
adiabatically. This implies that the p
Baz, will remain constant, and also tha
strength will be invariant. While cold

modulations will increase in magnitude.

may phase mix and enhance the random scatter on the beam.

tions will, therefore,

ams 2nd their effect on wave-growth and.

o magnetic field gradients which are loné
haracteristics will change smoothly and
roduct qf field times beam radius squared
t the ratio of transverse energy to field
beams shov'd remain cold, zero-frequency
If these latter become too peaked, they

The first investiga-

examine compression of equilibrium beams to determine

scale lengths needed to obtain minimum beam heating.

Compression of

cyclotron waves may present more problems than simple

laminar compression since the waves possess both intrinsic radial and axial

scale lengths. Self-consistent linear
shown that wave modulation becomes pro
length is decreased.
agreement with linear theory.

to increase during compression.
however,

quality will exacerbate any problems

follow immediately after the compression.

Simulation of no

and field magnitudes must show minimal attenuation.

studies of cyclotfon waves have already
gressively more surface-peaked as wave-

nlinear waves show this trait in good

The relative modulation is, therefore, expected

Coherence can not be lost during this stage,

Degraded wave
with ion loading, which is planned to:

Goals here are to characterize waves '

during compression and determine most favorable conditions.

The "above studies presuppose good beam quality at the onset.

ing the compression stage, however,

propagate through

section, and finally be extracted from the growth section.

later phases of an accelerator can be

stages.

analysis of individual trajectories.

treatment of electromagnetic as well as

a zero-frequency suppression section,

Before enter-

the beam must be extracted from a diode,

then a wave growth
Beam quality in the
significantly degraded by the earlier

Some estimate of this can be obtained from static diode codes through

The full noise spectrum though requires

electrostatic fluctuations, so we intend

to study beam quality effects with self-consistent two-dimensional simulations.

The first effect experienced by t
anode ground plane is radial pinchingi
beam bounces around its radial equil%
cyclotron bouncing. The magnitude of

guide magnetic field as well as meanf

he beam as it passes through a metallic
This is followed by expansion as the

brium position, that is, zero-frequency

|
bouncing depends on waveguide radius and .

beam radius, energy, rotation, angular
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divergence and temperaturé. Experimental conditions dictate the field, wave-
guide radius and total beam energy. Diodevdesién and foil scattering determine
the other quantities, but these are not knéwn precisely a priori and are subject
to shot-to-shot variation. Unless beam c&éracteristics satisfy all equilibrium
conditions when entering the waveguide, ﬂounciﬁg will result, and bouncing is
undesirable. This has resulted in desigh of a nonadiabatic field transition

section near the anode to suppress it. It is reasonable that success of such

a section will depend on ability to match the field variation with actual beam
parameters. Propagation ofia laminar béam, for instance, through the 'non-
adiabatic section will certainly induce bouncing. The sensitivity of a given
field design to beam conditions will be one of the first projects undertaken
in this study. For a given energy and cﬁrrent, we will examine the resulting
beam state as a function of both initial divergence and beam scatter (i.e.,
temperature). If necessary, new field configurations will be examined. As a
sidelight, previous studies at LASL have indicated the viability of certain
self-driven antenna configurations, subject to the condition that zero-frequency
waves can be removed from the beam afterward. This will also be pursued if
manpower is available.

Once beam characteristics leaving the transition section are determined,
they will be used for helical wave growth simulations. The effects of nonideal
beam quality will be inferred from amplifier performance. Reduced extraction
efficiency, if any, will also be measured. Experimental parameters will be
used to provide touch points between calculation and measurement.

After the above objectives have been satisfied, preliminary studies ﬁill
be undertaken to determine feasibility of different schemes fbr loading ions
into the troughs of cyclotron waves. This project will tie in directly with
planned simulations of an alternate mechanism, the Temporal Phase Modulation
accelerator. Becuase its conceptual simplicity translates into calculational
simplicity, there should be little problem in simulating this configuration.
If it is viable, a background plaéma will be initialized at a location condu-
cive for ion trapping. An interésting question should be resolved when the
local beam energy is large enough%so that n, o ne/yz, that is, Budker's condi-
tion for force-free equilibrium is satisfied. Beam disruption may occur under
those conditions due to localized éinching. Results of these calculations Qill
apply directly to autoresonant accéleration in the high ion density limit. This
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project should be nearing completion by the end of the second quarter of ;his
fiscal year.

Several CCUBE developments are scheduled to be cbmpleted during the coming
year, though none of the magnitude of conversion to an entirely new algorithm
which was accomplished in the pfevious year. Continuing characterization of
this algorithm is occurring as new types.of calculations are undertakén. At
this point, however, it appears that CCUBE is stable and will undergo only minor
changes in the foreseeable future. One change which should not affect CCUBﬁ
usage is conversion to CDC-Extended FORTRAN and the FIN compiler. Laboratory
estimates are that computer throughput will increase by 30% with this compiler.
While such figures neglect variations from cdde-to—code, we hope to realize some
reduction in problem run time. Conversioh will also facilitate CCUBE usage on
the CRAY-1 computer and at other faciliiies. Finally, low-level efforts in
pursuit of three-dimensional calculation will continue during the coming year.
Unexpected problems arising from the ARA experiments will be addressed as time
and manpower permits.

A tentative schedule for LASL activities in ¥Y79 is depicted on the follow-
ing page. The serial and exploratory nature of the planned research is such
that changes may be made, as required on the basis of evolving results. The

manpower for this schedule is estimated to be between 2.0 and 2.5 man years.
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TENTATIVE WORK PLAN FOR FY79

Oct. - Dec. | Jan. ~ Mar. | Apr. - Jun. | Jul. - Sep. |

Beam C&mpression/Expansion -
Cyclotron Wave Deceleration ———»
Zero-Frequency Suppression —————
Scattered Beam Effects —_—

Temporal Phase Modulation —»
Virtual Cathode Acceleration Studies ————»

Ion Loading —
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APPENDIXES e

N » [ i
i

This section contains elevgb appendixes describing in detail various
aspects of collective ion acceleration. Each is self-contained. Section 1I
of the report summarizes the appendixes, pointing out significant features and

tying the results together. ! !
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- ABSTRACT

AL

| An expression for the energy of small amp11tude waves
in a radially inhomogeneous, cold: f1u1d unneutralized,
relativistic electron beam is obtained in terms of the
wave ‘ amplitudes. The result is employed together with
conservation of wave energy to determine how the axial
electric field strength and beam edge modulation assoc1ated
with slow cyclotron waves change with position in an elec-
tron beam propagating along the adiabatically spatially
decreasing magnetic guide field of an autoresonant collec-
tive ion accelerator. The resulting ax1a1 proflles are
found to depart markedly from those of earller, radially
homogeneous beam calculations. P0551b1e impacts of these:
findings on a planned autoresonant acceleration feasibility
experiment are discussed. :

I. INTRODUCTION

2

Autoresonant collective ion acceleration is among the most thoroughly
1nvestlgated proposals for ut11121ng the ‘intense fields of high-current rela-
tivistic electron beams to accelerate light or heavy ions to energies of
hundreds or, perhaps, thousands of MeV per nucleon.3 -Autoresonant acceleratlonz
employs an electron beam propagating in vacuum along a magnetic guide field
which slowly diverges spatially (and thereby decreases in magnitu&e) from the -
input to the output end of the ion acceleration region. Linear theogy predicts
that slow cyclotron wavesflaunched at the”input end will increase in piase
velecity as they move into regions of| weaker magnetic field. Provided the -
guide field strength is appropriateiy tailored axially, ions trapped by the

electrostatic fields of the cyclotron waves can be expected to accelerate with

the waves up to quite high energy. o




Since efficient trapping of the ions depends on a balance between the
axial'electrig field of the cyclotron wave and the rate of wave phase velocity
_ change; it isﬁimportaht to understand the adiabatic variation of cyc]otron wave
amplitude down the ion accelerator. This problem is intrinsically nonlinear
due to the large amplitudes of the cyclotron waves, radially inhomogeneous due
to the equilibfiud fields ~1d finite extent of the electron beam, and axially
inhomogéneous dug to variation of axial magnetic field strength and beam para-
meters tied to it. Detailed answers probably require extensive multidimen-
" sional computer simulationé, and such work is in progress.l'_6 Nonetheless,
one can expect to obtain valuable insight by investigating the properties of
sm;11 amplitude, linearized waves in an axially uniform beom equilibrium and
relating wave 5mplitudes atuoifferent magnetic field strengths by the require-
ment that wave energy be conserved as the wave moves down the ion accelerator.
Until recently, thé further approximation that thé beam equilibrium be radially
uniform out to a sharp edge was required so that homogeneous plasma linear
theo%y could be applied. In this limit the axial electric field of the slow
cyclotron mode was %ound to vary linearly with magnetic guide field.7
»In order to obtain the properties of small-amplitude waves in more real-
}stic, radially inhomogeneous equilibria, we have developéﬂ a computer progfam
to solve numerically the fourth-order system of radial differential equations

for eigenmodes of any cold fluid relativistic“particle beaﬂ\equilibrium,which

\

4

depends on radius‘only.8 A particutarly striking conclusion of studig§ based
on this computer code is the strong effect of beam radial kinetic energy.
inhomogeneity, caused by space-charge, on the radial structure of cyclotron
waves. Particle motion and mostifield components ASsociated with the waves are
highly localized to the beam surface. This contrasts with the homogeneous
model, which has both the perturbed fluid and the perturbed field components as
Bessel functions in radius. With such a disparity between the eigenmode Struo-
tures from the two models, it would be surprizing not to find differences in
their predictions for theﬁadiﬁbaﬁic variation of wave amplifo(é as cyclotron
waves move through the ion éccelqrator. In this paper we show ﬁhat, for real-
istic solid beam equilibria, th[ slow cyciotron wave axial electric field
strength is nearly constant in| the strong guide field region, and only
approaches the linear dependence|of ﬁhe homogeneous model where the magnetic

guide field is sufficiently weak that the cyclotron wavelength much exceeds the

beam radius.
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A cyclotron wave train appears in space as a periodic modulation of. the
beam envelope.2 It is desirable to know the variation in amplitude of the
modulation throughout the accelerator in order to design a vacuum caﬁity of
minimum radius. Having the metal wall close to the beam enhances stability and
reduces space-charge effects. Here too we find that the axial profile of beam
modulation is modified strongly by radial inhomogeneiﬁy. Moreover, the degree
of modulation required to produce a given axial electric field is systematically
larger for the inhomogeneous equilibrium.

In Sec. II we derive a general formula for wave energy in an axisymmetric,
radially strongly inhomogeneous cold fluid relativistic eiectron beam. This
expression is employed along with the usual definition of wave energy conser-
vation to obtain in Sec. III the‘variation with guide field strength of wave
phase velocity, group velocity, a*ial electric field, and beam modulation for
parameters of interest to the ion acceleration experiments soon to begin at
Austin Research Associates, Inc.9 From these quantities an optimal magnetic
guide field axial profile is determined. Section IV discusses both the poten-
tial impact of these results on autoresonant collective ion acceleration and

the limitations of the present model from neglect of nonlinearities and thermal

effects.

II. WAVE ENERGY IN A RADIALLY INHOMOGENEOUS BEAM
Let the small-amplitude eigenmodes of a weakly inhomogeneous nondissipa-

tive plasma be defined locally by the matrix equation
A-X=0, (1)

where X is a vector of wave coﬁponents such as perturbed electric fields,
magnetic fields, and fluid velocities. The generalized dielectric tensor A
depends only on equilibrium guantities. Weinberglo has shown that under quite

general conditicns wave energy can be defined as

-1y . (2. . 1 :
U=5%X (Bw) X, ‘ (2)

. . . i , . ,
provided that A is symmetric. Moreover, an energy conservation equation exists,




5 ) ‘
R GV (3)

Here, w, k, and vg are the local frequency, wavenumber, and group velocity,
v =V w. ‘ ' (&)

The problem at hand differs from Weinberg's oniy in that (1) the beam is
strongly inhomogeneous radially and (2) we care solely about axial flow of wave
energy. Reproducing his analysis with these twovmodifications, we find that
Eq. (1) holds if A is taken as a matrix operator containing radial derivatives.

The appropriate quantity corresponding to Eq. (2) is energy per unit length,

R

fX'(-g—EA)°err, - (5)
0

DO =

with the requirement now that A be self-adjoint.11 Energy flow is described by

a_
3t

U+ gE (vg0) = 0 . (6)
The group velocity is treated as a scalar, since only the axial component is
meaningful.

The matrix operator A is given in Table II of Ref. &, but not in self-
adjoint form. Recasting it requires considerable algebra. The end product is
presented in Table I, which gives A and X, and Table II, which defines the
transformed dependent variables B and u and certain special symbols. As in
Ref. 8, E, B, and u represent the perturbed electric and magnetic fielas and
the fluid relativistic momentuﬁ. Equiiibrium quantities tarry a zero super-
script. Equations are normaliéed such. that the electron charge and mass and
the speed of light are unity. %oundary conditions consistant with self-adjoint-
ness are (1) fields are regulJr on axis, and (2) tangential electric fields
vanish at the outer boundary, ﬁ = R. Aécuracy of the transformations has been

verified by solving numerically ithe equations and comparing the results to those

of Ref. 8.
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With the equations in self-adjoint ferm, it is straightforward to con-
struct equivalent variational integrals. Variational integrals can, in turn,
be used for Rayleigh-Ritz eigenvalue estimates and for construction of finite
element difference schemes.12 We shall address the first of these applications
in a subsequent publication.

Inserting Table I into Eq. (5) gives the desired wave energy density,

R
=1 f fiei? v 1502
2
0
(o) o 2
- nO 1-2 yw (Ialz - Ju 2E|
Q Q
(7
nol(uoxﬁ) IZ n2+n2+n°y°2+A—Qz
r z 'O - 2
* 2 ot 2 vy
Q Q
o\ n_iu_+n iu, _
1 X0) 2z =2z @ 6~ 4.
Q Q r

Attempting to simplify the integrand analytically is futile. Instead, we solve
Eq. (1) as in Ref. 8 for the eigenmode and eigenfrequency, and then integrate
Eq. (7) numerically.

For low-frequency slow cyclotron waves in an ultrarelativistic, radially

uniform beam filling the drift tube, an approximate but much simpler expression

exists,7
R n°+° 2
UE-w/-—z—IEI r dr . (8)
B
0 z

I
We have evaluated Eq. (7) and Eq. (8) for a uniform beam with yo = 20 and find

that they agree quiﬁe well for wz << 40, as expected. We also performed the
|

comparison for the physically more realistic equilibrium treated in Ref. 8, for

which the current density and particle 3‘nergy (kinetic plus potential) are spec-

| .
ified to be uniform in radius, and tﬁe remaining beam profiles are computed

\
|
j 29
1
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self-consistently. Here too, agreement is fairly good, suggesting that Eq. (8)

may have a wider range of applicability than originally expected. Incidentally,
3

. .. .13
agreement in the case of the non-self-consistent rigid rotor beam model is

As Sloan has observed,14 a self-consistent equilibrium is necessary for
|

poor.

the meaningful definition of wave energy.

I11. APPLICATION TO AUTORESONANT ACCELERATION

The Austin Research Associates, Inc. experiment9 employs a 3-MeV, 30-kA
electron beam. At the generator diode the electron beam is approximately uni-
form radially in current density and, of course, energy. The beam has a reason-
ably sharp outer edge at 3.0 cm. The diode is embedded in a 2.5-kg guide field.
Leaving the diode region, the beam propagates into a 3.4 kg guide field, where
a 300-MHz slow cyclotron wave is excited. The beam is further compressed until
the guide field reaches about 25 kg, and ions are added. Adiabatic expansion
of the beam as the guide field drops to about 2 kg provides the ion accelera-
tion. It is hoped that several amps of 30-MeV protons can be obtained with
this apparatus.

To represent these parameters in dimensionless form, we normalize the beam

density to its value in the 3.4-kg field. The beam plasma frequency there is

woo= 3-1010 sec-l. The guide field is then expressed as the cyclotron frequency
scaled to w_. Thus, B: = 2.0 in the wave growth section and 1.47 in the diode.

Other field components are scaled similarly. The cyclotron wave (angular) fre~
quency relative to the reference value of wp is w = 0.06. At the diode
¥y® = 7.0 and v = 1.75. (Budker's dimensionless current parameter v is defined
as the axial line density of electrons in the beam, multiplied by the classical
electron radius.15 ) Since the length scale c/wp is one centimeter, the dimen-
sionless beam radius at the diode is a = 3.

To estimate the spatial variation  of the cyclotron wave amplitude in the
experiment, we employ conservation of wave energy flux, Eq. (6), together with
the fact that wave energy is p?oportional to the square of the wave amplitude,
Eq. (5). Because the actual célculations are entirely numerical, we give here
only an outline of the procedure and then turn to a discussion of the results.
Conceptually, five steps are reguired to obtain the wave amplitude as a function
of applied magnetic field streﬂ%th:

(1) Specify the injected‘beam profile and applied magnetic field strength

at the anode plane of the diode. To agree with the planned experiment, we
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choose a nonrotating, axisymmetric, v = 1.75, Yy = 7.0 electron beam radially

: o
uniform in energy and in current density out to a sharp edge, a = 3.0; Bz‘1s
1.47. '

(2) Compute corresponding self-consiétent axisymmetric beam equilibria
within a metalic drift tube for different guide field strengths. Within the
drift tube away from the diode, the beam expands or contracts radially and
rotates in order to achieve force balance. Beam kinetic energy is reduced by
space charge effects, with yo at the beam axis depressed relative to its value
at r = a by roughly v. Equilibria are found numerically by solving the stand-
ard set of four equilibrium equations8 together with equations expressing con-
servation of total energy, canonical angular momentum, and particle flux along
stream lines. These latter equations relate the beam equilibria to the injec-
tion conditions of step one. Details of this procedure and characteristic
equilibrium profiles are given in Ref. 16. The drift tube radius must be
specified to solve the field equations. We set B;R2 constant with R = 3.8 when
B® = 2. Since BZa2 is expected to be approximately constant, this choice of
R(BZ) has the desirable property that R/a is fairly constant at about 1.4.

(3) For each equilibrium and a fixed frequency of w = 0.06, compute the
axial wavenumber k and the cyclotron wave radial profiles, as in Ref. 8. 1In
other words solve Eq. (1) with A and X defined in Tables I and II as an eigen-
value problem in k. Wave amplitudes are now determined as a function of BZ up
to an overall multiplicative constant 0(BZ). In addition, the wave phase veloc-
ity is known.

(4) Repeat the eigenvalue calculations of step three at a slightly dif-
ferent frequency w + Sw to obtain the shifted wavenumber k + 6k. The group
velocity is 6w/Sk.

(5) Integrate Eq. (7) using equilibrium and wave profiles from steps two
and three. This gives the wave enérgy up to the factor 02. The wave energy
is, of course, time independent in the present problem, so that Eq. (6) reduces
to ng constant throughout the accelerator independent of BZ. Thus, the depend-
ence of O on B; is determined. Spepifying the cyclotron wave amplitude at the
beginning of the accelerator, we know it throughout the system.

The calculations just describdd have been carried out for a range of B:
values from 0.65 to 20.0, or 1.1 ﬂg to 34.0 kg. For fields below the lower
limit, no equilibrium exists. Throughout the range the axial wave number deter-

1
mined numerically is well approximated by the simple expression
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o _ 0, 0
kv, =w+ B /Yy , (9)

with yo, v:, and B: evaluated at r = a; VZ = u;/yo. The group velocity is given

\

to within a few percent by
v_=v2 . - (10)

Neither result is unexpected.

Figure 1 presents the axial electric field strength on axis of the slow
cyclotron wave as a function of applied magnetic field strength, with EZ normal-
ized to unity (i.e., 0.51 MV/cm.) at BZ = 2. Note that Ez is proportidnal to k
for BZ small but becomes flat for BZ large. For reasons to be discussed below,
the transition value depends on wavelength, occuring for ka a bit larger than
one. In contrast, analytic estimates of Ez in the radially uniform beam model
give Ez proportional to k,7 the dashed line in Fig. 1. Because that analysis
is, strictly speaking, valid only for long wavelengths, we have carried out a

numerical study for the uniform beam, performing steps three, four, and five
o

above on a radially homogeneous, charge and current neutral beam (E? = Be = 0)
of radius specified by B: a2 constant. Beam energy in the model is taken as
the injection energy reduced by 2v £2n R/a. This physically reasonable value of
yo leads to values of k and v_ in close agreement with the self-consistent beam
results. For Ez’ on the other hand, the uniform beam model predicts much larger
values at large BZ. Note that both curves in Fig. 1 avoid the '"wave brgaking
region" indicated. One expects disruption of the electron beam for electric
fields of order kv or greater for a v/y ~ 1/4 beam.2

Some qualitative understanding of the difference in results of the two
cases can be developed from Eq. (8). Because in equilibrium beam particles tend
to stay on magnetic flux surfaces, nOYO/BZ is approximately constant. In addi-

tion, the slow cyclotron wave is predominately electrostatic, which means that

ke = I E | (11)
r dr "z i

IR
(=]

and E Finally, vg is nearfy constant. Combining all these gives
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R
2 d 2 2
j; [(kEz) + (E Ez) Jrdr « k° . (12)

In the uniform beam model the radial profile of Ez is representéble piecewise

by Bessel functions,17 and Eq. (12) reduces to

Ei « K2/ (1+akZa?) . (13)

The factor a is on the order of 0.17, but depends weakly on the beam and wave
parameters. For ka small the Ez radial profile for the self-consistent solid
beam equilibrium does not differ greatly from its form in the uniform beam
model.8 Hence, the two plots of EZ on axis in Fig. 1 lie close together for
small B®. As ka exceeds one, however, the radial profile of Ez becomes rather
flat out to near the beam radius, wheré it abruptly decreases in value. The
dominance of dE /dr near r = a in Eq. (12) decreases significantly the varia-
tion of E_ with B; relative to the uniform beam model. A quantitative analytic
expression in this case has not yet been derived.

We next compute the optimal dependence of B; on axial location z in the

accelerator. To do this we employ the ion equation of motion

=2g

14
dt M (14)
and require that the ions move in phase with the slow cyclotron waves so that
they experience the maximum accelerative field at all times. The v in Eq. (14)
is then the wave phase velocity, and E is the maximum axial electric field EZ
The ions are treated nonrelativistically. Q/M is the ion charge to mass ratio.

Rearranging terms in Eq. (14) yields

_ufon
z-vaEzdv. (15)

Since we know both v and Ez as functions‘of B:, we have BZ as an implicit func-
tion of z. The optimal axial magnetic field at the beginning of the accelera-
tion region out to z = 4 is displayed in Fig 2 for each of the three curves in
Fig. 1. 1In all three cases the total accelerator length is about 83 with B 1

at the termination. The total length is approximately the same for the three
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quite different Ez curves because throughout most of the accelerator the ions
are in a weak B: region. Nonetheless, it is important to know the proper mag-
netic field variation at the beginning of the acceleration region. Too steep a
decrease in BZ would dump the ions from the electrostatic wells of the cyclotron
waves.

To make contact with the planned experiment, we recall that the length
scale for these calculations is 1 cm. Thus, the total acceleration length is
only 83 cm provided Ez = 1, or 0.51 MV/cm, at B: = 2, or 3.4 kg. As we
shall see, however, Ez = 0.08 at BZ = 2 seems to be about the largegt axial
electric field practical. This choice of Ez leads to an accelerator stretched
by a factor of 12 to 1000 cm.

The practical limitation referred to comes from consideration of the beam
radius modulation associated with a given wave amplitude,

fa = -ur/Q ) (16)

with u and Q evaluated at the beam edge, r = a. Plotted in Fig. 3 is the
relative mcdulation Sa/a for the self-consistent beam equilibrium and for the
uniform beam model. The curves are normalized to the EZ values of Fig. 1.
Thus, for the self-consistent beam equilibrium, a relative modulation of 2.8 is
required to produce Ez =1 at BZ = 2. Of course, Sa/a > 1 is impossible, and
computer simulations indicate &8aj/s > 0.5 ‘is undesirable.18 This limits Ez to .
less than 0.2 at B: = 2, the magnetic field in which the cyclotron wave is
initially to be excited. Demanding that 8a/a remain less than 0.5 throughout
the accelerator further restricts Ez at B: = 2 to less than 0.08.

In contrast, the radially uniform beam model predicts that 6a/a of order
0.5 is sufficient to give EZ =1 at BZ = 2. The disparity arises because, as
mentioned in the Introduction, the slow cyclotron wave in the self-consistent,
radially inhomogeneous equilibrium is a surface mode, while in the uniférm beam
model it is a body mode. Only thé outermost electrons participate strongly in
the former, and so much larger be;m modulation is required to produce the same

axial electric field strength. In order to test these predictions of linear

theory, we are performing a seriLs of fully self-consistent, nonlinear, two-
dimensional, axisymmetric computei simulations using the PIC code CCUBE.IS’19

To date, attention has been restiicted to B; = 2, but work at stronger guide

fields is planned.18 The resul#s of two typical comphtations Ga/aEz are
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indicated by "X" in Fig. 3. (Dividing Sa/a by Ez has the effect of normalizing
the simulation data to Ez = 1.) The point labeled "S" is a small amplitude
wave Ez = 0.06; the point labeled "L" a large amplitude wave Ez = 0.2. VUn-
certainty in the data is about 15%. Agreement between the self-consistent beam
linear theory and thé simulation results is good. The reduction in 6a/aEz of
about 1/3 for the large amplitude wave relative to the small is due to non-
linear effects. For progressively larger wave fields the beam particles are
more tightly coupled in their oscillations, and the cyclotron wave begins a
transition from a surface to a body wave. In the simulations this change,

while small for Ez = 0.2, is directly observable in the electron streamlines.

IV. CONCLUSIONS

We have obtained a general expression for the energy density of a small
amplitude wave in an axisymmetric, relativistic particle beam equilibrium with
a self-consistent but otherwise arbitrary radial profile. Using this expres-
sion together with conservation of wave energy flux, we examined the adiabatic
variation of the slow cyclotron wave as it propagates through the autoresonant
accelerator device in order to obtain guidance for an experiment soon to be
performed by Austin Research Associates, Inc. Two models were employed, a
radially uniform cold beam without equilibrium self-fields and a more realistic
model for a cold solid beam including self-field effects. The radially uniform
model has been used extensively in analytic studies.1’7’g We found first that
the uniform model predicts a more or less linear variation of the accelerating
field EZ with the guide field B:, while the self-consistent model gives EZ
essentially constant for ka > 1 and linear with B; only at long wavelengths.
The difference is important only in the first 5% of the accelerator region,
however. Of greater impact is our second finding, that the self-consistent
model requires a beam radius modulation by the cyclotron wave that is four to
ten times that required by the uniform beam model to produce a given value of
Ez' This result has been corroborated}for small BZ by computer simulation.

Applying the predictions of the self-consistent beam equilibrium model to
the planned experiment suggests that Ez%be excited to no more than 40 kV/cm at
BZ = 3.4 kg, so that the relative rad%al modulation of the beam can remain
below about 0.5. For this excitation amplitude, EZ ranges between 80 kV/cm and
20 kV/cm as BZ decreases from 34 kg to 1.7 kg. Total acceleration distance is

1000 cm for an optimal magnetic field profile but probably should be increased
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about 20% to improve ion phase stability in the face of real-world»elecgkon beam
irregularities. (Reducing the maximum field from 34 kg to 25 kg would not
shorten the accelerator significantly.) The expected proton energy is 35‘MéV.“
Ion current, an extremely important issue, is not addressed by this analysis.
Because the upcoming experiment was designed quite conservatively, the acceler-
ator parameters suggested here can be accomodated without difficulty. ‘ Our
findings do, however, raise important questions regarding scaling to larger
devices.

The present study has two limitatioms: It assumes small amplitude waves
and a cold beam. The latter assumption is, we believe, very_good in that finite
Larmour radius effects large enough to modify.the results préééﬁted‘here“a}so
are large enough to damp significantly the cyclotron waves. A hot electron beam
clearly must be avoided experimentally. We hope to quantify this obser&ation
at a later date. ;

Testing the validity of the small amblitude approximation is a primary goal
of our continuing simulation effort. As noted in Sec. III, reasonabie agreement
between simulation‘results and linear theory has been demonstrated at small B:.
We expect that nonlinear effects will increase allowed accelerating field

strengths by no more than about 50%. To obtain still larger fields at a fixed

electron beam current probably will réquire hollow beams.
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Fig. 1

Adiabatic variation of the axial
electric field with changing magnetic
guide field for a slow cyclotron wave
in the radially uniform and the self-
consistent solid beam equilibria.
Curves are normalized to E_ = 1 at
bS = 2. z

z

Fig. 2

Optimal axial variation of tlie mag-
netic guide field of an autoresonant
accelerator for the axial electric
fields plotted in Fig. 1.

Fig. 3

Relative modulation of the beam sur-
face by a slow cyclotron wave with
axial electric fields as plotted in
Fig. 1.



APPENDIX B

NONLINEAR CHARACTERISTICS OF CYCLOTRON WAVES IN
AN ARA CONFIGURATION

To be published in the Proceedings of the Third International
Conference on Collective Methods of Acceleration
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NONLINEAR CHARACTERISTICS OF CYCLOTRON WAVES IN
AN ARA CONFIGURATION

by

R. J. Faehl, W. R. Shanahan, and B. B. Godfrey

ABSTRACT

The Autoresonant Accelerator (ARA) offers great prom-

ise for collective ion acceleration provided large

amplitude cyclotron waves can be generated with long

coherence scales and controllable propagation charac-

teristics. Numerical simulations have been performed

to examine cyclotron wave growth in a helical slow-

wave structure. No inhibition of growth was observed,
short of an intrinsic space charge limitation. Ex-

traction of such waves from the amplifying section

through realistic terminations has been performed.

The radial structure and propagation of these large,

extracted cyclotron waves has been studied and compar-
isons with linearized waves have been drawn. The

effect of nonlinear wave properties on ARA designs

are presented.

I.  INTRODUCTION

Ion acceleration in collective wave fields of relativistic electron beams
has beeﬁ studied energetically in recent years.l-5 The Auto-Resonant Acceler-
ator (ARA), which utilizes a slow cyclotron mode, is probably the best analyzed
and furthest developed of such collective wave schemes. In these conceptually
simple échemes, ions are trappqd in a beam-supported wave, which is then accel-
erated in some fashion. Thereéare implicit assumptions here, however, namely
that nonlinear waves (a) rem%in coherent for long distances and times and
(b) behave, at least approximaéely, like linear waves. These fundamental ques-

|

needed in the ARA. We have studied the nonlinear wave characteristics with

tions have motivated us to study finite-amplitude cyclotron waves such as are

emphasis on radial wave structure, field strength, and possible deviations from
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linear dispersion. Large two-dimensional particle simulations were used to grow
waves self-consistently and then follow their subsequent propagation. These
results have been augmented by numerical studies of radially inhomogeneous
linear theory and analysis of nonlinear waves.

The overall structure of this paper is as follows. Linear theory and the
equations from which it is derived are examined briefly. Origin of the axial
electric field, the comporent responsible for ion acceleration, is discussed.
Also, qualitative examination of the equations suggests possible nonlinear
effects. The simulations themselves are then described. Finally, simulation
results are given in which slow cyclotron waves are grown from small amplitude
signals and stable propagation is observed over modest scale lengths. Analysis
of the simulations is performed to obtain data that can be compared directly

with linear theory.

II. LINEAR THEORY AND NONLINEAR CYCLOTRON WAVES

Before discussing 'nonlinear waves'", it is proper to define what we Pean
by "nonlinear". The term is used in this context simply to distinguish finite
amplitude waves from the results of first-order perturbation analysis. Thif is
complicated since unique equilibrium conditions make even linear analysis of
unneutralized relativistic electron beams nontrivial. A brief analysis of the
linear equations shows this clearly.

Relativistic electron beam equilibrium during vacuum propagation in a
smooth-walled drift tube requires a large, external axial magnetic field, Bz'
Since the beam is unneutralized, significant radial electric and azimuthal mag-
netic fields are present with magnitudes determined by total beam current, beam
and drift tube dimensions, and radial density distribution. For these to be
self-consistent, the beam must rotate, giving a zero-order vy Finally, since
there are large equilibrium potentials, injection of even a monoenergetic beam

into a finite radius drift tube results in radial variations in Yy, given by

2 2, .

mc (yo - 1) = mc (er) - 1) - ed(r) , (1
2,-1/2 %

where y = [1 -~ (v/c)”] and ¢ i% the electrostatic potential. Linearization

around a self-consistent beam equiﬁibrium leads to equations which, to the best

of our knowledge, do not possess cl%sed-form solutions. Consequently, analytic

|
|
|
;
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efforts have often neglected beam rotation, density inhomogeneity, and/or radial
y-variations. As we show below, the consequences can be significant vis-a-vis
collective ion acceleration.

The dispersion of Beaﬁ 6yclotron waves can be quite accurately described

with a reduced set of linearized cold fluid and field equations, which for azi-

muthally symmetric modes (m = Q) are

aﬁr aﬁr fe e ; ~
5t tV28z " Per - m Bt T, - V,By) @
ap 9p P e . ~

6 6 r_ ~
5t "V25z tVer T @ Bgtv,h v B, (3)
an Bﬁvz 1 3
5t -7 Bz r o " "'r “
a*a,  , d°A,  ,1 3 oA

7 "~ ¢ 5~ ¢ - —r——= 4nec(nOV. +1v.} , (5)
at 9z r 9r Jr 5 B ‘

where tildes refer to perturbed quantities, M 0; ﬁi = YOGi’ i=r,0, and A

is the vector potential, such that B = V X A. Numerical solution of the full

fluid and field equations on self-consistent equilibria provide confidence in

the viability of Egs. (2)-(5) for modeling cyclotron waves.6’7 Aside from their
utility in deriving dispersion relations, this redqced set can yield informa-
tion directly about nonlinear waves. -

In writing the model equations (2);(5); the ﬁz and Ez equations were
omitted. Although they could be included for the sake of accuracy, they effec-
tively decouple from cyclotron waves of interest to ARA. In fact, they arise
almost as by-products. The V.- and ve-induced motions characterize‘the wave,
leading to periedic radial modulations of the beam. Figure 1, taken from a
wave growth simulation, c1ear1§ shows this. 1In Fig. 1(a), the configuration
space (r - z) of the beam éxhib{ts this beam modulation after a section of con-
vective wave growth. Figure ldb) shows the corresponding constant contours of
¢, the electrostatic potentialﬁ The potential troughs are associated with the
modulations. This is the souﬁ%e of the Ez field that traps and accelerates

the ions; the radial modulation causes density compressions and rarefactions.
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Thus, the cyclotron wave always possesses some Ez field, but its magnitude is

determined by the depth of radial modulation. To be more precise, it is the

radial integral of the density modulation which determines Ez, and this depends

on the structure of \~ since Or = vr/(Q/y), Q = eBZ/mc. If the radial per-

turbation is distributed broadly across the beam, the integrated density mod-

ulation will be greater than if it were, say, localized on the surface. Since

there is only a finite beam-to-wall separation, the magnitude of modulation on

the outside of the beam is limited. Maximizing the axial electric field, there-
fore, depends sensitively on the radial eigenmodes.

Other information deducible from Eqs. (2)-(5) is more qualitative. Exami-
nation of the first order equations shows the terms neglected in this order,
but which in general need not be small. A prime example is the radial convec-
tive term, vr(api/ar), i = r,0. These terms are clearly not first order. How-
ever, when the waves become finite, perturbation schemes become dubious and
actual magnitudes must be considered. In this case, lack of an axially homo-
geneous (k = 0) v, component indicates that, for large waves at ko, the convec-
tive terms contribute most strongly at 2k0, the spatial second harmonic. (Since
the 2k0 contribution is not resonant, however, only forced oscillations are
induced.) More directly applicable terms are those involving v, In the
reduced equations, only the k = 0 component was retained. The self-field
Be(k = 0) can be quite large, however, so finite values of vz(k = ko) can con-
tribute significantly to the ko mode. While one can argue that these should be
included in linear theory, v, is coupled nonlinearly with wave amplitude,
through

.2 ~2

~ 2 1/2
Vv, = c(y -l-pr-pe)/

/Y . (6)

This nonlinear term can directly alter the cyclotron dispersion. Linear results
are of little value in estimating Gz since there is no guarantee 4 priori that
the nonlinear ratio of wave quantitie§ remains fixed, One of our primary objec-
tives, in fact, is to determine the relatlve magnitudes of nonlinear wave quan-

l
tities. To do this, more powerful numFrlcal tools are required.

‘ |
III. DESCRIPTION OF CYCLOTRON WAVE GRPWTH SIMULATIONS
The study of relativistic slow c&clotron‘waves requires self-consistency.
|
Two-dimensional relativistic particle simulations were therefore conducted to
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amplify small amplitude cyclotron-like perturbations. The large amplitude
extracted signals were then allowed to propagate for moderate distances in a
smooth-walled guide. A more complete discussion of the cyclotron wave growth
has been reported elsewhere,7 but a brief outline will now be given to place
that work in perspective.

Wave growth in a helical slow wave structure has been widely employed for
many years, for example, as the basis for traveling wave tubes. The principle
of operation is that in a helix waveguide structure, the phase velocity of the
electromagnetic mode is reduced to Vph = ¢ sin Y, winere Y is the helix pitch
angle. It is, in fact, lowered to the point where resonance with a slow beam
mode is achieved. Only slow modes can be resonant since, by definition, they
alone possess phase velocities slower than the medium velocity, in this case
Vo £ c¢. In traveling wave tubes, the beam mode is a Langmuir wave. ARA appli-
cations call for unstable growth of the slow cyclotron wave, however. This mode
is quite dissimilar from the space charge wave. Previous theoretical and ex-
perimental experience was therefore inapplicable. This led to a number of un-
pleasant surprises in the simulations before certain fundamentals of electrical
engineering were rediscovered and successful stable amplification was achieved.

Figure 2 depicts the simulation configuration used in these studies. A
sheath helix with pitch angle § and radius RH’ illustrated with the dashed line
in the figure, was attached to perfectly conducting flanges on either end,
shown as crosshatching. An outer conducting wall with radius Rw existed out-
side the helix., The relativistic electron beam was injected on the left simu-
lation boundary and propagated to the right, downstream boundary, where it was
"smoothly" extracted. Once the space charge fields reached the grounded helix,
they induced a charge flow on it. This 'charging current" is quite pHysical
and in a nonresistive helix, it rang for an unacceptably long period. More
gentle risetimes would have ameliorated this condition, for helix dispersion
eventually smooths the charging pulse. Although the helix current smdothed,
however, the residual current ﬁlow resulted in a strong, finite width diamag-
netic region. The total Bz fieid experienced by the beam was therefore discon-
tinuous at the flange/helix bouhdaries. This stationary discontinuity excited

i
zero~frequency cyclotron waves with wavenumber k QO/YOVO' These waves did
not interfere with growth of tﬂe coupled helix/cyclotron waves, but beating of
the two finite~amplitude cycl%tron modes yielded a potential distribution

unsuitable for long-term trapping. Removal of the helix current without
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disturbing helix charge distributions was found to be highly desirable, and
accomplished in the simulations, as in the laboratory, by terminating the helix
with matched impedances. After the initial transients decayed away, the current
and charge distributions were quiescent and suitable for introduction of a small
amplitude signal at the most unstable frequency upstream of the helix. Our
“generator" was directly tied to the heli%, but other more physical antennas
have been examined. When the signal generator was 'turned on", steady cyclo-
tron wave amplification occurred, in close agreement with linear theory. To
prevent oscillation, rather than'amplification, large volumetric resistances
were added outside the helix at the far end of the growth section. These were
sufficiently large that they inhibited amplification, bnt such magnitudes were
required to prevent oscillation. After the resulting large amplitude cyclotron
wave reached the end of the nelix, it was found to propagate into the smooth-

walled drift tube with only nominal (10-20%) attenuation of the wave.

IV. DISCUSSION AND ANALYSIS OF NUMERICAL CALCULATIONS

The model configuration described above was successfully employed to grow
large amplitude cyclotron waves. Since growth is due to coupling with the
helical waveguide mode, however, the finite amplitude wave possessed a different
réaial structure from a stable cyclotron wave. Relaxation toward a stable con-
figuration is thus expected after the wave leaves the growth section. This is,
in fact, the dominant behavior observed in simulations. A small fraction of
the wave gnergy is nevertheless converted into high-frequency noise. This néise
seems to couple into resonant TE and TM wave guide modes with moderate effi-
ciency. These are only tentative conclusions, since there are indications that
the coupling may be enhanced by purely numerical effects. Even if the simula-
tions overestimate the magnitude of electromagnetic noise, however, the combin-
ation of high frequency with incoherence in this field make it unlikely to
interfere with the cyclotron accelerating fields. The low frequency field it-
self showed only weak attenuation or loss of coherence as it propagated for
distances of order L = 100 c/wp beyénd the growth section. The only wave coh-
pling effect observed was a tendency}toward seneration of harmonics, which never
amounted to more than a few percent gf the primary wave energy.

Demonstration of long coherence lengths for nonlinear cyclotron waves was

accomplished with the numerical sim#lations. Beyond this, however, a primary

objective was to characterize the fiﬁite-amplitude wave state. How then should

|
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a nonlinear wave be characterized? Linear waves are completely described once

a dispersion relation and the eigenfunctions are determined. The situation is

much more complicated for finite~amplitude waves. For one thing, linear super-
position of modes is no longer strictly valid; a nonzero coupling between all

modes exists in general. Therefore, while it is still important to determine

the relation between w and k, i.e., the dispersion, one also needs to specify
the spectrum. Spectral characteristics are a self-consistent aspect of a non-
linear wave state. The radial wave structure in our case is also a valid indi-

cator, insofar as it can be compared with a linear eigenfunction. As mentioned

earlier, it can be directly correlated with the Ez field of the wave. Finally,
linear theory allows us to predict ratios of eigenfunctions, for instance,

v /E . Similar ratios can be determined directly from simulations.
r max’ "z max
In this fashion, the degree to which nonlinear waves resemble linear ones can

be inferred quantitatively. To make these concepts more concrete, we will

consider a typical simulation.

A series of simulation calculations was performed in a geometry similar to
wte

that in Fig. 2. 1In units of c/wp", the helix and the inner flange radii were

RH
This last dimension corresponds to a Budker parameter of = 1.75, or 30 KA.

3.8, the outer flange radius was Rw = 5.7, and the beam radius, RB = 2.65.

The helix extended from z = 15.0 to 115.0, with a pitch angle ¥ = -15°. The

helix was excited directly at z 30, giving a total growth length Lgrow = 85.

For these conditions, the growth rate was T = 0.020 wp and the group velocity

0.6 c, giving almost 3 e-foldings, in the absence of resistive termina-

v

gr

tions. These simulations were designed for conservative performance, with a
maximum power amplification of only about a factor of 260. In fact, addition

of various resistive elements to inhibit feedback sliortened the effective growth
length, so that the observed amplification factor was on the order of 130. Our
purpose here was not maximum amplification; in specifically designed wave
growth simulations, amplification factors almost 10 times larger have been
measured.7 The large amplitude cyclotron waves which were grown, however,
proved very suitable for studying the nonlinear characteristics.

The magnitude of the EZ field on axis is plotted in Figure 3, as a function

of axial position. The electricffield is observed to reach its maximum value

ats
w

For comparison purposes note thaﬁ when n = 3 x 1011 cm_z, c/w = 1 cm.

0 p

46



near the end of the helix. More significant, however, is that, while some
fluctuations in amplitude are observed, the average field of the extracted wave
is only about 10% lower than the peak.

The EZ values shown in Fig. 3 were obtained by setting numerical "probes"
at various positions along the axis. Figure 4‘shows a typical '"probe" trace,
near the end of the growth section, and its associated power spectrum. The
dashed line indicates the frequency expected from linear theory for this config-
uration. There is virtually no detectable frequency shift, even though the
magnitude is over 2 X 105 V/cm, assuming n, = 1012 cm-3. Since this probe was
still within the region dominated by the linear helix, this is perhaps not sur-
prising. Figure 5, however, compares that power spectrum with one obtained
almost 90 c/wp further down the propagation path, well beyond the helix. Al-
though the total noise content at high frequencies is quite different, the low
frequency cyclotron signal is hardly affected at all.

With the aid of computer-generated movies, a point of constant phase can
be observed directly. The phase velocity of finite amplitude waves determined

in this fashion was remarkably close to that of infinitesimal linear waves.

As an example, a series of wave crests were followed for a distance L = 50 c/wp

and times on the order of t = 300 w;l . Wave modulation was such that
Ar/RB = 0.23. (The beam-to-wall separation for this calculation corresponded
to Ar/RB = 0.43). The average phase velocity was measured to be Vph = 0.275 c,

while linear theory predicted Vph = 0.269 c.

One of the few nonlinear spectral effects observed so far has been harmonic
generation. This is registered to varying degrees on probes of Ez’ BB’ and Ee
fields, and seems to be correlated with the wave magnitude. The specific origin
of this apparent nonlinearity has not yet been identified but is under investi-
gation.

Figure 6 shows the beam envelope under typical conditions of steady cyclo-
tron wave amplification. Radial beam modulations increase through the growth
section but are not attenuated on leaving it. In fact, they increase to some-
what larger values. Surprisingly, this?behavior is explicable on the basis of
inhomogeneous linear theory. Figure 7 %hows the radial eigenfunctions for v,
derived on self-consistent radial prof%les, with the same wavelength. These
are related to the radial modulation by Ar = Gr/(w - kvo). Figure 7(a) depicts
the radial velocity structure within 1the growth section; the frequency is

w = 0.124 * 0.0201 wp. In Fig. 7(b), we show the eigenfunction under identical
| 47
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conditions, except that a smooth waveguide wall is at the helix radius; for
constant frequency, the relative wavenumber shift is less than 1%. Both scales
are normalized to the maximum value of EZ. Since Fig. 3 indicated that the Ez
magnitude di1d not decrease significantly, it is evident that the radial modu-
lation must increase substantially as the mode relaxes toward its stable con-
figuration.

We have repeatedly referred to inhomogeneous linear theory. The reason is
well illustrated by the above example. To obtain the expected ratio, lineari-
zation was performed around the radially inhomogeneous equilibrium. If the same

calculation is conducted, except with a constant, averaged value of y, 1i.e.,

B
<y> = Y dr/Rg ,
0

qualitatively and quantitatively different eigenfunctions result. Figure 8
gives a comparison between the v, and Ez eigenfunctions computed with <y>,
Figs. 8(a,b) and those with y(r), Figs. 8(c,d). The difference is quite signi-
ficant, for it indicates that, if linear theory is relevant to finite amplitude
waves, over 4 times the density modulation is required to induce a given Ez
magnitude than would be expected on the basis of the simpler <y> analysis.
Since the beam modulation is effectively limited to the beam-to-wall separation,
this implies relatively small upper limits on the obtainable wave acceleration
fields. Althoﬁgh the magnitude is still large compared with conventional
fields, it is much smaller than originally anticipated. The self-congistent
equilibrium employed here depends on a specific current distribution, of‘course,
and this is certainly not unique. Tailoring the radial current distribution
may yield more propitious field/modulation ratios. The important point is that
linear theory at 1least should be based upon realistic, not idealized, beam
states.

Eigenfunctions of the radial velocity were also compared with linear
theory. These were obtained nuﬂprically by measuring the root-mean-square

radial velocity' of the beam at va%ious axial slices as a function of the orig-

inal stream lines, i.e.,

1/2

<vr(r0)> = [jg vi(ro)dt/T]
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The time interval for averaging was chosen large enough so that uncertainties
in quantities at the desired wave frequency were less than 2%. Figure 9 shows/
the linear eigenfunction as a solid line, and the nonlinear as a dashed line,
both normalized to the axial EZ magnitude. The structure is qualitatively the
same, though the nonlinear wave exhibits less modulation. This is significant
in that it indicates less modulation is required to produce a given Eszield on
axis. Compared with Fig. 8, however, it is apparent that inhomogeneous linear
theory is more applicable to nonlinear waves than is simple linear theory.

The ratio of beam modulation to induced axial electric field is a very
important accelerator parameter, due to finite beam/wall separatioh. Simula-
tion derived values of (Ar/EZ)max are plotted in Fig. 10 as a function of z.
It is clear that the ratio approaches the inhomogeneous linear values in both
the unstable growth section and the stable propagation section.

Finally, note that finite transverse oscillations occur at the expense of

the original beam energy, which was predominantly longitudinal} A simple model

for the effect on longitudinal motion is
_ 2 _q oL 22 1/2
v,(rg) = clyy(ry) - 1 - p"(rg) 1" "/y(ey) - (7

Since we measured the RMS eigenfunctions of P.s Eq. (7) can be estimated direct=-
ly. Figure 10 shows the relative mean change in v_as a function of z, for a
typical wave growth/propagation simulation, with Gr/RB ] 23%. This v, not only
induces frequency modulations through terms like sz6 in Eq. (2), but also in
the basic Doppler shift, kvz. If frequency shifts on the order of ksz are not
compensated by wavelength shifts, the nonlinear phase velocity should have been

reduced. Phase velocity changes of this size would have been seen in simulation

'
i

movies, however, but the measured values, as discussed above, were not reduced.

It is not clear at this time why such effects have not been observed in the

simulations.

V. CONCLUSIONS
Cyclotron waves suitable for use in an Autoresonant Accelerator have been

self-consistently grown to nonlinear|levels in numerical simulations, and there-

after propagated for moderate distances without significant attenuation. While
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the investigation of these nonlinear wave states has not been completed yet,
certain important observatious can still be made.

The primary conclusion must be that cyclotron waves possessing relative
radial modulations of 20% or less are not violently unstable, and in fact ex-
hibit coherence 1lengths at least on the order of the simulations, i.e.,

AL = 102 c/w . Larger a.plitude waves will be simulated in the near future.

Comparisons with inhomogeneous linear theory revealed quantitative differences
in nonlinear waves but no qualitative changes.

Finite amplitude cyclotron waves were also found to be highly localized on
the beam surface, which is consistent with inhomogeneous linear theory. The
interior of the beam does not "actively' participate in the oscillation. There-
fore, a relatively large radial surface modulation, much larger than simple
linear theory predicted, is needed to produce a given magnitude field on axis.

Previous work7 has shown that an uppcr limit on the amplitude is that the total

potential, equilibrium plus wave, must not exceed the space charge limit,

roughly

Opoeny < /ey, - vo'™

This in turn limits both the allowable beam-to-wall separation and the radial

modulatiorn. Although nonlinear cyclotron waves are not quite so surface-peaked

as linear ones, the linear picture is still qualitatively correct. If these

results prove to be valid over a broad range of magnetic field, they impose real
limits on ARA performance, for the linear results indicate that propagation in

a decreasing field will not reduce the EZ field, but rather increase the rela-

tive beam modulation. Conclusive results must await either experiments or

simulations of cyclotron wave propagation in inhomogeneous fields. We are

actively pursuing the latter.

A final observation of considerable interest is that the phase velocity of
finite amplitude waves is very accurately given by linear theory, at least at
the simulated wave strcungths. Since a nonlinear frequency shift on the order
of ksz plays a significant role in cylotron waves in low density beams,s’10
measurable changes in the phase velocity should have been detectable for waves

seen in the simulation. Larger amplitude waves, however, should prove a more

stringent test on any nonlinear phase velocity modifications.
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This work is currently being extended to larger amplitude waves, propaga-
tion in axially varying magnetic fields, and longer propagation distances. If~
present trends, consistent with inkomogeneous Jlinear theory, persist, signifi-
cant alterations will be needed in the design of an Autoresonant acceleratog.
Possible improvements may result from reshaping the acceleration section, gi&fng
smaller acceleration gradients, finding an optimum radial current profile}:or

emploving a higher energy electron beam.
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Fig. 1

Convectively grown cyclotron wave in
particle simulation, (a) configura-
tion space (r - z) and (b) constant
contours of electrostatic potential.

Fig. 2

Schematic representation of the sim-
ulation configuration employed to
grow cyclotron wave.

Fig. 3
EZ as a function of axial position,
z; r = 0.35 c/wp, RB = 2.65,
RH - 3.8, Rw =5.7/3.8, ¥ = -15°,
eBo/mc = 2.0 wp, L = 200 c/wp,

L = 100 c/w .
grow P
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Fig. 4

"probe' trace;
r =0.35, z =2106; (b) power spec-
trum derived from probe trace.
Dashed line indicates frequency of
original antenna signal.

(a) Typical E

Fig. 5

Comparison of E_ power spectra at z
(a) z = 106 andz(b) z = 193. En-
hanced high frequency components at
z = 193 may be due to numerical
effects.

Fig. 6

Typical beam envelope in a wave
growth run. Growth section extends
from z = 15 to z = 115.
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Fig. 8
Comparison of v, and Ez linear eigen-
functions, RB=2.65, RW=3'8’
k=0.46 wp/c. (a) v versus r derived
from equilibrium with <y>=4.9,
(b) Ez versus r, same as (a); (?) v,
versus r derived from self-consistent
equilibrium, Y(Ry)=5.8, ¥(0)=4, (d) E_

versus r, same as (c).
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Fig. 7
Comparison of linear eigenfunctions of
v, derived numerically on a self-con-
sistent equilibrium, RB=2'65’ Qo=2.0 u&.
(a) v versus r within growth section,
RH=3.8, RW=5'7’ Py=-15°,
w=0.124%0.020 i wp, k=0.46 wp/c; (b) .
versus r in smooth-walled waveguide,

R.=3.3, w=0.122 w_, k=0.46 w_.
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Fig. 9
Comparisop of v, linear eigenfunctioh
(solid line) with RMS vr(ro) derived
from simulation (dashed line), RB=2.65,
Rw=3.8, Gr/RB=23%.
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NONAXISYMMETRIC BEAM/HELIX INSTABILITY AND NONSOLID BEAMS

by
R. J. Faehl

ABSTRACT

Beam/helix growth rates of nonaxisymmetric modes
are examined numerically for parameters appropriate to
autoresonant ion acceleration. These are compared with
m = 0 growth rates in both solid and hollow beams.
Hollow beams reduce m = 1 growth with respect to m = 0,
but overall offer few advantages for ion acceleration.

In the FY77 annual report, a fairly detailed discussion was given of linear
theory for the helix-beam coupling instability. This discussion was based on .
analytic theory and numerical solution of linearized cold fluid/electromagnetic
equations of self-consistent equilibria. Although the potential importance of
nonaxisymmetric modes (m # 0) was noted, we confined our attention at that time
to the m = 0 mode in a solid beam. We have since extended the numerical results
to hollow beams and the m # 0 modes.

All nonaxisymmetric helix modes (m # 0) possess moderately high phase
velocity, since Wra1ix - "GC (tan2¢ +2mk/2Rqu/22), where § is the pitch angle, RH
is the helix radius, and q = (k= - w™/c®)""“.
these waves, furthermore, vanishes on axis (i.e., Ez(r=0) = 0), so that ion
acceleration in an m # 0 mode could only be achieved far from the axis. While

The axial electric field for

this is an undesirable characteristic qf all modes, m = 1 is probably the most |
deleterious. Not only is it of litt1% use for ion acceleration, it can be
strongly disruptive by kinking the be%m into the wall. Growth of the m =1
beam/helix mode is, therefore, particdlarly undesirable. To examine it, and
other nonaxisymmetric modes, we extenied the m = 0 dispersion calculation to

the case of arbitrary m.
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TABLE I

HELIX/BEAM INSTABILITY AS'A FUNCTION OF GUIDE Bz FIELD

Qo m=20 m=1

Mmax Knax MNoax K nax
2.0 0.024 0.46 0.121% 0.24
2.5 0.025 0.59 0.082 0.86
3.0 0.025 0.71 0.076 1.075
4.0 0.021 0.96 0.059 1.38

The summary of a series of calculations for m = 0 and m = 1 helix induced
beam instabilities is shown in Table I, as a function of magnetic field, where
QO = eBO/mc, RH = 3.8, RB = 2.65, v =1.75, and ¢ = -15°. (All distances are
in units of c/mp.)

The magnetic field variation had little effect on the helix dispersion,
but it shifted the cyclotron branch to higher k (short wavelength). Since the
instability occurs roughly at resonance of the two modes, this shifts peak
growth to shorter wavelength. As the table shows, the m = 1 growth rate is much
larger than m = 0, for parameters of interest here. However, it is apparent
that for these parameters the effect of magnetic field on the m = 0 mode is
considerably less than on m = 1. Other parameter searches have also shown
propitious scaling of m = 0 versus m = 1, but no parameter or combination of

parameters yet examined has reduced the magnitude of m = 1 to less than m = 0.

For parameters examined so far, magnitude of the m = 1 growth in a helix
is so much larger than m = 0 that active measures are probably required to sup-
press it. There are several possibilities for achieving this.

(1) One can excite the m = 0 cyclotron mode at éufficiently large magnitude
that little or no amplification is required to raise it to a programmatically
satisfactory level. This requirés a clean excitation mechanism which will not
simultaneously excite m = 1. The self-driven antenna concept discussed in
another appendix has shown promise for ‘large excitation levels, but further
analysis would be required to determlne the full comp051t10n of excited waves.

(The simulations capnot provide useful information here, for they are axisym-

metric and thus show only m = 0 waves.)
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(2) Selective nonlinear suppression of the m = 1 waves, if possible, would
facilitate free growth of both m = 0 and m = 1 perturbations. Austin Research
Associates has had some success in studying nonlinear saturation mechanisms in
low-density and/or weakly coupled beams. It is not clear that this work can be
extended to the high-current regime, or if it can, that a mechanism can be found
to suppress m = 1 without affecting m = 0. Further analysis appears necessary
to determine the viability of this approach.

(3) Spatial filtering can be accomplished by loading a waveguide such that
certain wavelengths are highly distorted while others are virtually unaffected.
By distorting the portion of k-space in which m = 1 is unstable, but not m = 0,
it should be possible to reduce m = 1 to manageable levels. Unfortunately, this
is only possible where unstable regions in k-space are well separated. We can
crudely estimate the width of unstable waves by noting that the instability is
a resonance effect. It, therefore, peaks at roughly the intersection of thei
two dispersion curves and is effective until the 1linear frequency lnismatchj
becomes too great. We find that the maximum mismatch is approximately equal to
the peak growth rate,

Aw = Ikvo - QO/YO - kc sin §| 2T , (1)

max

which can be simplified by noting that the resonance, and hence, peak growth

occurs at

k o €= /B, - sin ¥y, (2)

so that the unstable wave regions are defined by

|
—
IA

/9

= YOrmax 4]

Another resonance occurs for helix in%ersection with Langmuir (space-charge)
! ;
waves, which gives ‘
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For m = 0, the Langmuir resonance occurs st very long wavelengths, i.e.,
kLmax << 1. The m =1 Langmuir resonance is shifted to considerably shorter
wavelengths, however. The situation is depicted schematically in Figs. 1 and 2,
for m = 0 and m = i modes. The m =:1 Langmuir instability is so much stro@ger
than its m = 0 counterpart, at moderate magnetic field (for instance,
QO = 2.0 u&) that the combined range of 'm = 1 Langmuir and m = 1 cyclotron
completely overlaps the m = 0 band. For spatial filtering to be effective, a
parameter regime must be chosen so that the m = 0 cyclotron wave is more un-
stable than any m = 1 mode. If one neglects higher order interactions, i.e.,
m 2 2, it appears that the necessary separation can be achieved by going to
sufficiently large magneﬁic field (compare to Table I).

The above results were all obtained in solid beams. It has been suggested
that hollow beams may yield more propitious results. Toward this end, we have
employed the GRADR code to numerically calculate stable and helically unstable
tyclotron waves with a hollow beam. As with the solid beam calculations, Anly
sharp radial boundaries were studied. , |

There are several characteristics of cyclotron waves which can be used to
compare the effect of hollow beams versus solid ones. The axial electric field,
for instance, is produced by radial modulation of the beam. It is, therefdre,

important to know how much modulation is needed to Produce a desired field

1.00
1.00 =T T /
078
075}
-3
3 2 oso
~ 050} 3
3
026
025
%0 I - m T
ke /wp
Fig. 1. ‘ ‘ Fig. 2
Dispersion of m=0 helix (w), cyc101{ Dispersion of m=1 helix (w), cyclo-
tron {w.), and space-charge or Langmuir tron (w,), and space-charge (w._)
(w_) waVes. Crosshatching shows ! waves. Crosshatching shows width
approximate width of unstable inter- of unstable interaction.
action. |
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magnitude. Studies on the effect of radial y variations described in Appendix B
indicate that the eigenmode is highly surface-localized, so that roughly four

times the modulation is required.
The peak growth rate for the m = 0 and m = 1 modes is shown as a function

- R, , in Table 1I. The beam-to-
out in

helix distance was maintained at a fixed value, RH - RB = 1.15, and the helix

of beam aspect ratio RB/A, where A = R

angle was § = -15°. A slight shift to lower k with increasing aspect ratio is
expected due to smaller potential depression across the beam. (Reduced space-
charge means larger y.) The m = 1 space charge instability weakens signifi-
cantly as the beam becomes more hollow, thus eliminating overlap with the m = 0
cyclotron growth. Overall, however, the "hollowness" of the beam seems to have
little effect on the cyclotron instability.

The other reason advanced for employing hollow beams is that the wave
would not be so localized on the surface. The space-charge variation of y
across a solid beam leads to highly peaked m = 0O cyclotron eigenmodes. Conse-
quently, the Ez field on axis is much smaller (factor of four for typical ARA
parameters) than one would expect from a constant Yy analysis, for the same mod-
ulation. Since the modulation amplitude is limited by the finite beam-to-wall
separation, this places a smaller upper bound on accelerating fields than had
been anticipated (compare to Appendix A). With a hollow beam, the y-variation
across the beam is smaller, and thus, it was hoped, something more akin to the

constant y case would result. Table III, however, shows the vr(RB)/Ez(R) ratio

TABLE 11
HELIX/BEAM INSTABILITY GROWTH RATES AS A FUNCTION OF ASPECT RATIO
- = = = =1§/° = N =
R RB 1.5, v 1.75, ¢ 15°, Q 2.0 wp, JO 7.0

H 0
Ry/4 m=0 m=1
r K r k
max : max max max
. a a
1.0 0.022 10.46 0.121 0.24
2.5 0.026 |0.44 0.107 0.64
4.0 0.025  |0.42 0.090 0.62
10.0 0.024 1 0.42 0.064 0.57

3peak growth for m = 1 spacé charge wave; approximate peak
growth for cyclotron wave is Fhax = 0098 at kmax = 0.67.
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TABLE 111
MODULATION-TO-FIELD RATIO AS A FUNCTION OF BEAM ASPECT RATIO
V=175, ¥5 = 7.0, 2= 2.0m, Ry - Ry = 1.15, k = 0.45

W B

RB/A vr(RB)/Ez max Vr(RB)/Ez(O)
1.0 2.66 2.66

1.6 2.05 2.36

1.8 2.00 2.36

2.1 1.91 2.30

2.5 1.87 2.36
4.0 2.13 3.14
10.0 2.97 8.57

as a function of aspect ratio, for constant beam-to-wall separation and total
current of 30 kA (v = 1.75).

Typical v, and Ez eigenmodes are shown in Fig. 3. There is very little
systematic enhancement of the modulation-to-field ratio with hollow beams, and
the fact that peak Ez fields occur on the inner beam surface, and not on axis,
implies that there will be little radial confinement of any ions and correspond-
ingly poor ion beam quality.

In conclusion, we find little advantage for using a hollow, rather than
solid beam. There are minor advantages and disadvantages for both, but to the
extent we have studied that hollow beams (RB/AR £ 10), we find no distinct

programmatic advantages for changing to a hollow beam at this time.
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APPENDIX D

SLOW CYCLOTRON WAVE GROWTH BY PERIODIC INDUCTIVE STRUCTURES

To be published in the Proceedings of the Third International
Conference on Collective Methods of Acceleration
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SLOW CYCLOTRON WAVE GRCWTH BY PERIODIC INDUCTIVE STRUCTURES

by

William R. Shanahan, Brendan B. Godfrey; and Rickey J. Faehl

ABSTRACT

The Auto-Resonant Accelerator concept of
collective ion acceleration is critically depend-
ent for its success upon the availability of an
effective means with which to grow the relevant
slow cyclotron wave. We present a preliminary
study of such growth via a two-dimensionally peri-
odic slow wave structure. This structure consists
of a z-slotted waveguide about which are placed
conducting straps axially and azimuthally inter-
rupted by capacitive gaps. Appropriate boundary
conditions. are derived without reference to con-
cepts borrowed from low-frequency circuit theory.
These boundary conditions have been incorporated
into a numerical code which performs linear normal
mode analyses about self-consistently generated
nonneutral relativistic electron beam equilibria.
This same code may. also be employed to examine
the purely vacuum modes, which exhibit expected
behavior. Questions. of structure tuning are dis-
cussed.. Initial results concerning wave .growth
are presented, and future activities indicated.

In the travelling-wave class of collectlve 1on accelerat1on schemes, ions
are placed in the trough of a large ampl:tude plasma wave that has been produced
on a relativistic electron beam. The ion-wave system is then accelerated by
increasing the phase velocity of\the wave through su1tab1e spat1al 1,2 or tem-
poral3 variation of system parameters Cruc1al to the success of such schemes
is the availability of an effective method with which to grow such large amp11-
tude waves. For the Auto-Resonant Accelerator, where one is concerned with the
slow cyclotron mode, several such methods have been investigated in the past.

In one approacha explicit advantage is taken of the negative-energy nature of
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the slow cyclotron mode to grow the wave through the introduction of a dissipa-
tive element, such as a resistive liner. In another, perhaps more familiar
method, growth is achieved by permitting the electron beam to interact with a
slow-wave structure. The use of such structures is particularly attractive in
this context, inasmuch as their spatial structuring offers at least the possi-
bility of growing modes with prescribed desirable properties while discriminat-
ing against less favorable waves. In particular, the slow-wave structure
consisting of a metallic helix surrounding the relativistic electron beam has
hitherto been extensively investigated from this point of view.4’5 In this
report, we present preliminary results of an investigation of another, quite
different, slow-wave structure.

The system considered here consists of a z-slotted wave-guide around which
are placed conducting straps. These straps are interrupted both axially and

azimuthally by capacitive gaps to give rise to a two-dimensionally periodic

structure, The entire system is enclosed within an onter cylindrical conduct-

ing wall. This structure, the rescnant loop-drive, is depicted in Fig. 1.

Interaction of an electron beam with such a structure may be viewed in two quite

conceptually distinct, but physically equivalent, ways. Firstly, the periodic

v

INOUCTIVE SLOTTED
STRAP /_MW&QWE

rig. 1
Resonant loop-drive ~low-wave struc-
ture.

structure may be considered to be an
effective LC-circuit with the elec-
tron beam serving as a source of
electromotive force. The wvarious
geometric features of the slow-wave
structure, such as the axial and
azimuthal periodicities and corres-
ponding strap lengths and widths,
may then he adjusted to provide the
effective LC-circuit with a resonant
frequency appropriate to the beam
mode whose growth is desired. Energy
is consequently extracted from this
mode; aud since it is negative energy

in character, the amplitucde of the

mode grows.

The second, perhaps more satis-

fying, way of viewing the interaction
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between the electron beam and the slow-wave structure being considered here is
as being the solution of a boundary-value problem involving Maxwell's equations

and a periodic boundary. In this view, the dispersion relation of the relevant

vacuum mode mirrors in w-k space the periodicity in real space introduced by

the boundary conditions. This mode is consequently highly distorted from its

"periodicity-free form and may be expected to intersect the less affected slow-

cyclotron ﬁode, the position and strength of the intersection being controlled
by the geometric properties of the slow-wave structure. Of course, this is also
the conventional viéw of the slow-wave structure interaction with nonrelativ-.
istic electron beams. , ‘

Austin Research Assbciates, Inc. the inventors of the Auto-Resonant Accel-

erator principle, have presented a very useful analytic discussion of the slow-

_wave structure under consideration from the point of view of lumped-element

ciréuit theory.7 Such an analysis is essential for obtaining an iutditive grasp

of the dynamics of slow-cyclotron wave growth by this method{\ However, this
approach makes a number of assumptions whose limits it would be desirable to
delineate. First1§; a treatment strictly from the perspectlve of Maxwell s
equations is désirable 1n determ1n1ng those regions of frequency and wave~-number
‘where the more tractable lumped-element circuit theory is applicable. Such a
determination sﬁéuld provide greater confidence in future analytic studies.

Becondly, earlier analysis assumed that the capacitaiive gaps were so niimerous
that théir capacitance could be assumed to be uniformly d1str1buted in the azi-
muthal direction. In reality, the capacitance is concentrated at various points
about the circumference of the conducting straps, thereby introducing a period-
icity in this direction. Such a periodicity can have a marked effect‘on the
relevant mode structure, linking together modes of different azimuthal quantum
number. The analysis to be presented below addresses this question. Lastly,
previous investigators employed a model beam profile which essentially ignored
ali radial variations. Numerical investigation has revealed that such a profile
is not always appropriate for an electron beam with parameters suitable for
collective ion acceleration. 8 An investigation of the effect of a more real-
istic proflle on the growth mechanlsm is clearly desirable.

The purpose of this paper |is to report on some preliminary results of an

investigation designed to address these issues. We begin by deriving boundary
conditions suitable to the slowwwave structure descriﬁed above. No recourse is

made during this derivation to concepts borrowed from low-frequency circuit
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theory. These boundary conditions have been incorporated into a numerical code
designed earlier to investigate the equilibrium and eigenmodes of a relativ-
istic electron beam propagating in a nonperiddic geometry. This same code may
be employed to examine the vacuum modes, an understanding of which is essential
to a full appreciation of the cyclotron wave growth mechanism. Finally, we turn
to some initial results regarding cyclotron wave growth on a relativistic beam.
The boundary conditions to be applied are simply those that the tangential
electric field component Ee(r = a) be continuous everywhere and vanish identi-
cally on the conducting straps. Further, the radial derivatives are required
to be continuous at the gaps. The tangential electric field component Ez(r = a)
is, of course, forced to be zero by the presence of the z-slotted waveguide.
The usual metallic boundary-value conditions are assumed to be applicable at

the outer conducting wall. These conditions may be summarized conveniently as

Z{Ee(r = 2)5(0 - j6)S(30, * O_ - 0)S(z - hL)S(AL + d = 2)

hj |
aEél) aEéz)
+ or lr=a " Tor 'r=a S\g+1 e0 -6
x §(0 - jB, - 0)S(z - hL = d)S(L + L - 2)} =0 , (1a)
and
Eé?i (r=b)=0 . (1b)

Here L is the axial periodicity length, 90 is the corresponding azimuthal quan-

and GS are, respectively, the axial length and angular width of

e

-
5
-
<
Fl .
F-‘
e
Cu

the conducting straps. The superscripts (1,2) refer to the regions interior
and exterior to the slow-wave structure. We have also introduced the standard

unit step function:

The rather unsightly expression /(1a) may be somewhat simplified to yield
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(1) (2) (1) (2)
3Eg 3Eg ) [E(l) ) 3Eg 3Eg
0 or or

- ]Str(z,e) =0 "~ (2)

where Str(z,0) is that combination of step functions defining the positions of

the straps:

Str(6,z) = Z S(z - hL)S(hL + d - 2)S(6 - j6y)
hj

X 5(j8y + 6_ - 6) . - (3)

The numerical code into which the above boundary conditions are to be
incorporated solves for the eigenfrequencies and radial eigenfunctions of a
mode of the beam-waveguide system, which has a specified axial wave number kz
and a particular azimuthal quantum number £. Consequently, Equation (2) must
be put into a form comsistent withgsuch a scheme. The two-dimensional perio-
dicity of the present slow-wave structure implies that the fields will have the

form of Bloch functions

i(k+pk,)z+i(L+nm, )06
E(l’z) (r,z,8) =}: E(l’z)(r) e 0 0
k £

np

(4)

The desired form may be obtained by substituting (4) into (2), multiplying by
the usual Fourier exponentials, and effecting the necessary elementary integra-

tions. The result is

_(1np) 1 2nL sin(p” - p)kod/2 ‘
E + e d - -_— 6 16 . + e > 6 I
6 BOL -t | s nn’ pp s (p~ - p)k02 nn

np

Ho

(n™ - mmg/2 | “pp” * (n” - n)my(p” - plky/2

+

dsin(n” - n)mOBSAZ sin(n” - n)moes/2 sin(p” - p)kod/2]

7(1n"p")
. PRy oE (r)
X [(1 + A;r) Eéln P ) (r = a) - 6 9r 'rza] =0 . (5) .
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where we have defined

i (pkd/2+nm 8 _/2) ‘
ﬁélnp) (r - a) - el(p 0 / nmo 5/ Eélnp) (r - a) (6)
and
n’ -

A = [(I£+mn o (63 * Loy nm,- 1 (kpa))
x (K£+nm (k) * K -1 (K pb))
B (I£+nm +1 (pb) * Iz+nm0-1 (kpb))

x (K gnm + (k a) + K£+nm0-1 (kpa))]/é) (7a)
D= [Tpypg 1 (Kp2) * Tpupy -y (2]

< [y a1 K * Kpuo 1 G5p2)) - la & b] (7b)

(7¢)

2 2
k2 = gw_ <; + gEE)
P p:

c2 L

Equation (7) is derived from a consistent application of boundary condition (1b),

together with that deriving from the continuity of the tangential electric

field. Here ko =

2n/L and m is the analogous, but integral, quantity, which

is in fact the number of azimuthal géps employed. The prime on the summation

symbol denotes, as usual, the om1331on of terms ‘which would give rise to singu-

larities through the vanishing of den

tric constant of the material Wthh‘
\

structure and the outer conducting wal

numerical tuning, as will be elaboratgd further below.

|
|

omlnators. The quantity € is the dielec-
!
fills the region between the slow wave

1. This‘material bhas been introduced for
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Equation (5) could perhaps be made the basis of analytic study of slow

cyclotron wave growth. Such a study would require several assumptions and

approximations whose validity in parameter regimes of experimental interest is
not always clear. Our immediate objective has been rather to employ Eq. (5) to
conduct numerical investigations, which are not limited by such assumptions and
approximations. Previously,8 a numerical code, GRADR, was written, which con-

structs self-consistent beam eqguilibria and performs a normal mode analysis of

linear perturbations made about such equilibria. The code produces both the

eigenfrequency and the corresponding radial eigenfunctions of a giveh mode .

The equilibria examined have a number of features not shared by the model

equilibria gererally employed in analytic studies. In particular, the radial

variation of the relativistic factor induced by the presence of the space charge
is automatically included. This variation has a profound effect, both on the
form of the radial eigenfunctions and on the overall appearance of the disper-
sion diagram. While the dispersion properties of the slow cyclotron wave under
discussion are but little modified, the radial eigenfunctions are cdﬁsiderably
modified from the Bessel function form characteristic of uniform radial pro-
files. Particularly striking is the peaking of the relevant eigenmode about
the edge of the beams. In addition, discrete modes which appear in the uniform
theory are replaced by bands of continuous modes. These features can have
significant consequences for cyclotron wave growth mechanisms, leading, for
example, to the necessity of greater radial modulation than that predicted by
the uniform theory and to the shifting of relevant discrete modes into the
regions of continua. These questions have been extensively investigated for
growth by helical slow-wave structures5 but are yet to be addressed for the
loo}. drive. |

The numerical code described above has been modified to include the peri-
odic boundary conditions displayed in Ed. (5).

The code may also be used to examine the purely vacuum modes of the slow-
vave structure. Such an examination is necessary for a full understanding of
the interaction when a beam is present. Study of the vacuum modes is also use-
ful in assessing the accuracyﬁof various truncations which must be effected
when using Eq. (5). We expect Jhat the VacuUm mode will be relatively flat and
that it will exhibit a periodﬁcity in w-k space given by ko. The degree to
which this periodicity is obserﬁed may be taken as a measure of the accuracy of

a given truncation scheme. Thdbe expectations have been fully realized. Runs
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with ko =1 and d/L = 0.5-0.9 have revealed modes which vary in frequency by
approximately 15 percent throughout a Brillouin zone. With three axial zones
the frequency was periodic to within 2 percent, while with five it was periodic
to within a tenth of a percent. These results were but little changed when
azimuthal periodicity was included.

A further question, which may be addressed through a study of the vacuuﬁ
modes, is that of tuning the slow-wave structure. One would like to achievé
the growth of waves with phase velocities roughly in the range of 0.1-0.251
For parameters typical of Auto-Resonant Accelerator operation, this correspondé
to a resonant frequency for the slow-wave structure of Wo = 0.06-0.1 wp. This
frequency is, of course, a function of the various geometrical factors involved,
and one might believe that a judicious choice of these quantities would lead to
the desired value. Actually, it was found difficult to reduce this frequency
much below 0.2 without losing significant coupling between the various compo-
nents. This difficulty can probably be traced to our idealizaticn of the gaps
as having no radial extent. The inclusion of a finite radial width would pre-
sumably lead to a greater effective capacitance in the equivalent circuit of
the slow wave structure and, consequently, a lower resonant frequency. In the
analysis of such a system one must recognize that the azimuthal and axial
dependencies of the fields within the 8aps are not identical to those occurring

in the interior and exterior regions.

T SRR A T
Consequently, several important sim-
plifications which occurred in the
derivation of Eq. (5) do not appear,
. and the calculation rapidly becomes
quk_ — unwieldy. Rather than pursue this
= course, we have instead resorted to
the simple expedient of filling the

o region between the slow-wave struc-
. © ture and the exterior wall with a

°7ﬂz-‘——G&F““ﬁ&?““ﬁ??“‘“ﬁgf ~ substance of constant dielectric

Kol g /£)  constant & % 30-60. This quantity

Fig. 2 j can now be adjusted to yield the
Cyclotron wave growth with y = 7, § desired resonant frequency. It is
Rbeam = 2.65 c/Gp, a = 3.8 c/wp, E to be stressed that although the

b/a = 10, Qc = 2.0 wp. i dielectric is being introduced here :
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purely to achieve the desired tuning, it is not altogether clear that the
presence of such a substance is not possible or desirable in the actual
system. This issue must await the resolution of dielectri. breakdown queétions.
Nevertheless, using this procedure with dielectric constants in the raﬂgei30—60,
we have been able to produce vacuum modes of the desired frequency. Cyciotron
wave growth at the desired phase velocity has not, however, yet been achieved.

Preliminary results for cyclotron wave g;owth at a somewhat higher‘phase
velocity are exhibited in Fig. 2. Although the parameters chosen to geherate
this graph do not necessarily optimize the growth rate, examination of the
results of this run reveal a number of features which are likely to persist
under more favorable circumstances. Tirstly, as is clear from the graph itself,
the region of growth is very narrow in w-k space. This is in marked contrast
to the case of the helical structure, which is a broad-band amplifier. Such
sharpness of the resonance may prove an important advantage from the point of
view of coherence, provided that it does not seriously militate against initial
excitation of the desired mode. Further examination reveals significant cou-
pling between the principal mode and those lying immediately adjacent‘diffrac-
tion zonmes, the ratic of amplitudes being roughly 0.25. Coupling to more dis-
tant zones is much less. Some concern may therefore arise that unwanted modes
will experience significant growth. Actually, such concern is unwarranted in
the present case, since the relevant modes lie in bands of the continuous modes
referred to above. Previous investigation has revealed that such modes, if
excited, tend to phase-mix away in a secular fashion.

Further study along the 1ines sketched here is clearly required to ascer-
tain whether this slow-wave structure will provide an effective growth of the
slow~cyclotron waves for Auto-Resonant Accelcration. The linear theory code
described above will be used in the near future to determine those beam and
structure parameters which lead tu optimal phase velocity and growth rate. The
important question of the growth of modes with higher principal azimuthal‘quan-
tum numbers will also be addresséd. All the information thereby gained will be
used to choose parameters with which to perform cylindrical, relativistic, fully
electromagnetic particle computeé simulaﬁions9 of slow cyclotron wave growth by

the resonant loop drive.
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COMPARISON OF AUSTIN RESEARCH ASSOCIATES AND
LOS ALAMOS SCIENTIFIC LABORATORY LOOP-DRIVE BOUNDARY CONDITIONS

by

William R. Shanahan

ABSTRACT

A comparison of two different models for boundary
conditions appropriate to the resonant-~loop-drive slow-
wave structure is presented. The first model is based
on a low frequency approximation in which a capacitive
field-current relationship is invoked. The second
model is essentially a rigorous field theory approach
in which no such low-frequency assumption is made.
Significantly lower growth rates are obtained from the
latter approach than from the former. Reasons for
this difference are sought in an examination of the
radial eigenfunctions of the azimuthal electric field.

Interaction of a relativistic electron beam with the resonant-loop-drive
slow-wave structure has been proposed by Austin Research Associates (ARA) ag a
method of achieving slow cyclotron wave growth alternative to that provided by
use of a helical structure.1 At the time that this proposal was made, an accom-
panying analytic study seemed to indicate that growth rates and lengths compar-
able to those achievable by the use of a helix were to be expected. During the
past few months, we at LASL have conducted an independent study of this proposed
method of wave growth.2 Early in the course of this study, it became appareht
that the validity of several of thé assumptions in the ARA analysis was not
altogether self-evident. Since thesé assumpﬁions, particularly those pertaining
to boundary conditions, were made inﬂthe interests of obtaining an amalytically
tractable model of the loop-drive, wé embarked upon a purely numerical investi-
gation with what were deemed to be a?more realistic set of boundary conditions.

]

Growth rates lower than an order ofhmagnitude of those predicted by ARA have

|
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been obtained. The purpose of this report is to delineate the differences
between ARA and Los Alamos Scientific Laboratory (LASL) boundary conditions and
to present numerical evidence for the importance of these differences.

The resonant-loop-drive slow-wave structure, proposed by ARA, consists of
a z-slotted waveguide about which are placed conducting straps, which are inter-
rupted periodically, both axially and azimuthally, by capacitive gaps. The
periodicity introduced into configuration space by the presence of the gaps is
mirrored, via Floquet's theorem, by the w-k space structure of the positive-
energy vacuum mode, thereby intersecting the 1less affected negative-energy
cyclotron mode. A resonant transfer of energy from the latter to the former is
thus effected, giving rise to growth of the desired cyclotron mode. Physically,
the radial modulations requisite to cyclotron mode growth may be viewed as
arising from inieraction between the first-order azimuthal velocity perturbation
and the zero-order axial magnetic field. The first-order velocity perturbations
are driven by azimuthal electric fields generated inductively by the time-de-
pendent first-order axial magnetic field which is produced by the azimuthal
currents flowing in the conducting straps. These currents are driven by the
azimuthal electric fields, thus completing the feedback loop necessary for any
instabhility. ‘

The ARA analysis of the growth mechanism described above proceeded on the
basis of a number of assumptions.1 Firstly, although the azimuthal capacitive
gaps are in reality situated at discrete points about the circumference, it waé
assumed that these are sufficiently numerous that the capacitance may be assumed
to be uniformly distributed. In the spirit of low-frequency lumped-element
circuit theory, it was asserted that from this it followed that the current in
the inductive strap and the azimuthal electric field were related by the capac-

itive relation:

Ip=C % f ée(z) dz | (1

where an average of the electric field has been effected over the axial lengta
of the strap. This equation was then combined with well-known jump conditions

on the tangential magnetic field tojgive
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o d+nL

5B (2) =“ch2 Str(z) f Eo(z7)dz” (2)

n=-om nL

where Str(z) is that combination of step functions specifying the position of
the conducting straps. Using Eq. (2), supplemented by the corresponding condi-
tions for the tangential electric field, matching was effected between interior
and exterior solutions to yield the desired dispersion relation. Analysis of
this dispersion relation yielded the significant growth rates referred to above.

Our principal reservations concerning this analysis center about an appar-
ent conflict between the assumptions which underlie the capacitive relation,
Eq. (1), and the basic jump condition leading to Eq. (2). Essentially, Eq. (1)
implies an identification of the conduction with the displacement current, which
is equivalent to assuming curl B = 0, whereas the jump condition Eq. (2)
requires that this quantity be finite. Further, the preceding analysis assumes
that the azimuthal electric field is finite at every point about the circum-
ference of the loop, where in reality the electric field will vanish, to within
a very good approximation, on the conducting straps. Since the azimuthal
electric fields play a key role in the growth mechanism, it is not altogether
clear that this assumption is not without significant consequences. Of course,
it was also recognized that the assumption of continuously distributed capaci-
tance precluded the possibility of examining the coupling among azimuthal modes
induced by the azimuthal gaps. ‘

Despite these objections, it might be thought that the ARA analysis would
nevertheless yield qualitatively correct results and that the points just
alluded to would yield only refinements of these results. Such basically low
frequency arguments are frequently used in microwave engineering and often lead
to quite satisfactory results. To resolve these issues, we have conducted a
numerical investigation of the resonant-loop-drive employing a more realistic
set of boundary conditions. These boun@ary conditions are simply that the azi-
muthal electric fields vanish everywhe%e on the conducting straps and possess
continuous radial derivatives in the &aps. The z-slotted waveguide assures

that Ez = 0 at the loop radius. These conditions 'may be summarized as
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3Ee (r) i 3Ee (r) . E(l)(r) i
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x Str(z,0) =0 ,
r=a
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3)

where a designates the radius of the slow-wave structure and St:(z,ﬁ) is that

combination of step functions specifying both the axial and azimuthal positions

of the conducting straps. The superscripts (1) and (2) refer ré#pectively to

the regions interior and exterior to the loop drive.

Further, the entire beam

slow-wave structure system was assumed to be surrounded by an outer conducting

wall at which the usual metallic boundary conditions apply.

These boundary conditions have been incorporated into a numerical code,

GRADR, designed previously by B. Godfrey3 to investigate nonperiodic geometries.

GRADR performs normal mode analyses of linear perturbations made about self-

consistently generated equilibria.

frequency, but also plots of the cofresponding radial eigenfunction.

GRADR produces not only the proper eigen-

For

purposes of comparison, two different versions of ARA boundary conditions were

also implemented in the code.

whereas the other dispensed with the z-averaging present in Eq. (1).

One version was identical to that used by ARA,

Because

GRADR deals with normal modes of given axial wave number and azimuthal quantum

number, the above equations must be subjected to several manipulations before

they are programmed.
Our
graph in
number.
function

near the maximum of the first gra

more complete set of radial eigenfunction graphs generated by GRADR.

ph.

Details appear elsewhere.2

results are presented in three sets of two graphs each.

Hére we summarize the results.
The first

each set exhibits the growth rate plotted as a function of axial wave
The second exhibits the nature of the azimuthal electric field as a
of the radial coordinate for an eigenfunction corresponding to a point

These graphs havé been selected from a

As will

be noted further below, the azimuﬁhal electric field plot selected for'aisplay

A

here is the most revealing of these graphs.

The parameters used to gene

proof-of-principle eﬁperiment. T

radius

3.8 c/wb, and wc/wb = 2; v

and w,_ is the bheam plasma frequenc

b
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vhere w
c

rate these graphs were chosen to model the

hese were radius of beam = 2.65 c/u%, loop

is the zero-order cyclotron frequency

In addition, the outer wall has a radius



fifteen times that of the loop which, for these purposes, is essentially»in-

finite. Further, while the tuning of

the slow-wave structure may béysimply ,

achieved in the case of ARA boundary conditions by the adjustment of a free

parameter, for the LASL boundary conditions this mUSt be accomplished by appro-

priate selection of the various geometrlc factors 1nvolved For the cases pre-

sented here, we have chosen d/L and 85/60 = 0.5, where L is the axial“perio-

dicity length, d is the axial length of the strap, and 6, and 6_ are the”?or—

responding azimuthal quantities. Further, 2n/L = 1 and two azimuthal gaps hagg

been employed. It was found that adjustment of these parameters alone would not

yield the desired low resonant frequency. Further reduction was obtained by “f
filling the space between the slow-wave structure and tine outer conducting waIIJ/

ya
with a material of constant dielectric constant. Here we have chosen thi;

constant to be 30. The unit of length

parameters, is approximately equal to a centimeter. 7

is here c/wb, which, for projected AﬁA

W
/

s

Figure 1 corresponds to runs made with LASL boundary conditions, Fig. 2 to

those made with ARA boundary conditions

except that the z-averaging of the azim

The most striking aspect of these graphs is, of course, that the LASL goundary:

, while Fig. 3 is identical to F1g 2

uthal electric field has been ;gmoved.

conditions yield much reduced growth rates compared to those obtalned with ARA

boundary conditions. Consistently, the range of unstable axial wave numbers is

/

also rather narrower. Removing the z-averaging slightly 1ncrea§es the growth

4
rates obtained with ARA boundary conditions and broadens the/fange of insta-

bility. The group velocity observed in the region of 1nstab1;1ty for all three'

cases was approximately 0.5. Thus, these temporal growth ratvs are relevant tO\

the question of growth length.

It is difficult to come to a definitive conclusion regardlng the qualita-

a

)’y

//

tive source of the quantitative differences in the growyh rate exhibited here.

Examination of the radial eigenfunctions of three cas és considered generally

fails to reveal any striking differences. However, a comparison of the azi-

muthal electric field plots reveals an'

three cases the real parts of this comp

exception to this statement. For. all

onent are approximately equal, whereas

for ARA boundary conditions, both averaged and unaveraged, significantly larger

values of the imaginary components at
The absolute values of the azimuthal e
boundary conditions are approximately t

with LASL boundary conditions. This obs

rhe position of the loop are observed.
lectric field at the loop for the"ARAl
hree times greater than-those obtained

=rvation leads us to speculate that the
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conducting nature of the inductive straps, which is contained implicitly in the

LASL boundary conditions but is absent from the ARA formulation, is a principal

source of the differences in growth rate.
Originally, we had intended an extensive study of the resonant-loop-drive

in a variety of parameter regimes, including the: study of the variation of
: |

growth rate with beam energy and magnetic field st?ength. The observation of

such small growth rates, however, seems to render Such studies of purely aca-
|
|

demic interest.
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SELF-DRIVEN ANTENNA

by

Rickey J. Faehl

ABSTRACT

Various waveguide configurations are studied
numerically for the purpose of exciting traveling
cyclotron waves by the beam self-fields. Efficient
excitation is found in at least one configuration,
but it is accompanied by large =zero-frequency
growth, : '

State-of-the-art rf power supplies are limited in their ability to excite
large-amplitude beam cyclotron waves. To reach levels of 1-2 X 105 V/cm neces~
sary for proof-of-principle experiments, the wave must be amplified in the wave-
guide. This has lead to research at LASL aﬁd ARA on helical and inductive loop-
type beam wave amplifiers. It has been observed, however, that the self-fields
of these high-current, unneutralized electron beams are quite large already.
In fact, field-induced breakdown of waveguide surfaces may be a continuing
problem. Unfortunately, the self-fields are static while traveling fields are
needed to accelerate the ions. The feasibility of driving a resonant antenna
or cavity with the static fields has, therefore, been investigated by us‘using
self-consistent particle simulations.

Several possible self-driven antenna configurations have been simulated by
us. These studies have been very preliminary. No attempt was made to cdnduct
parametric investigation or detailed analysis. The latter would require a full
nonlinear analysis, for we are intérested in the efficiency of the coupling,
not the field structure in a compliéated cavity.

Our work was directly inspiredﬁby a suggestion from T. Starke of ARA. He

suggested that a quarter-wave helical antenna could be made to ring at the




desired frequency by opening the ground to the antenna after the beam had in-
duced a small amount of current in it. We have not been able to simulate the
configuration yet, due to difficulties in changing the antenna from grounded to
floating. In the meantime, however, several interesting results have been
deduced from the calculations.

Three configurations yielded promising results. These were (1) an iris-
loading of the waveguide, with a pair of irises, {2) a cylindrical cavity, and
(3) a cylindrical cavity connected to an improperly terminated helix.

A cylindrical beam with uniform density n, and radius RB’ inside a guide

with walls at RW’ generates large static Er and Be fields,

_ 2
Er = 2nen0RB/r , RB <r g Rw . (1)
. . ~ 2 - 2, 1/2
With the transformation ¢ = ed/mc”, uﬁﬁ— (Annoe /m) , Eq. (1) then becomes
~ _ 1,22, 2 ‘
Er - z[mpRB/C ]/r ’ (2)

where % uﬁRg/cz =17 kAé Thus forka 35-kA beam and r = 1-10 cm, the vacuum
field is between 7 X 107 and 7 X 10" V/cm. These fields are thus larger than
can be supplied to that region by conventional power supplies.

(1) With an iris structure, our intention is to disrupt these fields
locally. This is in contrast to conventional accelerators, where they are
formed into a periodic slow-wave structure. The iris disrupts the beam as fol-
lows: To achieve stable beam propagation in the presence of the large fields,
a large external Bz field is needed. This induces an E X B drift in the 6-
direction. The net VO rotation then couples with the Bz field to just cancel
the radially outward2 Er - VzBO force. The iris, however, must have Er =0 on
its faces. The local disruption of Er destroys the radial force balance and
particles begin to pinch, searching for a new equilibrium position. As they
propagate away from the iris, though, the field conditions revert to their
previous state and the partic}es must return. The resulting overshoot of

particles around their properlequilibriwm leads to the commonly seen zero-

frequency cyclotron wave with the particle trajectories given by

1
F(rgavgrte) = 1V, (rgVgte)/ (w = kvg)| (3)
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where w - kvo = % Qo/yo, w = 0. Any stationary discontinuity will generate the
same behavior, but the iris is a particularly good example.

So far, we have only described how zero-frequency waves (undesirable) are
created by the iris. To generate a finite frequency wave, we must employ an
additional iris and the fact that the first had already disrupted the beam.
Such a configuration is shown in Fig. 1.

When the iris responds to static fields, it excites a spectrum of evanes-
cent and "propagating" disturbances, of which only the above-mentioned zero-
frequency mode is seen far from the iris. These are all excited by a zero-
frequency source, however, and so are likely to be zero-frequency themselves.
During the rise time of the beam, transients are present. A finite frequency
component of the rising beam current can then excite the iris at its frequency:
With a single iris, these finite frequency components simply radiate away, and
the beam excitation ceases when the "flat top" part of the pulse is reached.
Addition of a second iris, however, allows the traveling wave excitations td
feed back, or in other words, create a resonant cavity structure. The compo-
nents which can resonate will continue to ring even after the steady current
conditions are established.

To make these considerations more quantitative, consider a current form

() = Iy01 - exp(-t2/2t9)] . (4a)

This pulse, therefore, has the frequency spectrum

2.2
I(w) = Jn/2 rIoe"“ /2 , (4b)

or it has a variance of Aw = 1/t. To maximize the component at a given fre-

quency, W, one needs a rise time of to = I/wo. The problem is that for a
desired frequency of, say, wy = 0.10 wp in a beam with n, = 1012 cm-3, one finds

T = 0.15 nsec, which is an unreasonably fast rise time. While efficient excita-
tion of such a resonant structure may thus prove difficult, it still should be
possible to excite some time of travelﬂng wave with paired irises.

) |
These considerations were tested in a simulation with the following param-:
| . .
eters Rw = 5.7, RB = 2.65, Yo = 7.0, and irises extending from RI = 3.8 to 5.7

|
at z = 15.6 and 19.3 with a rise Aime wpt = 25. (These are similar to
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parameters suggested by T. Starke for a quarter-wave helical antenna.)
This simulation was similar to standard helical wave-growth runs, with the iris
spacing being dictated by a minimum number of cells betweern irises for adequate
wave resolution. If the wave excited was the lowest order cavity mode, one
finds AO = 7.4 or ko = 0.85. The quce-charge depression was so largé that the
y-spread in the beam ranged from Yﬁin = 2 to Ynax - 4. There is thus uncer-

tainty about the value to be used to evaluate the cyclotron dispersion

W, = kv0 - QO/y . (5)

Probes measuring E9 outside the beams did show a signal at w = 0.29 wp, however.
This is consistent with Eq. (5) if the effective beam energy wac y = 2.6, which
is not unreasonable. The signal, however, was only an order of magnitude above
the noise. This was completely dominated by the zero-frequency modulation, for
which AR/RB > 20%. Furthermore, comppter-generated movies showed only the zero-
frequency mode.

The iris-driven beam did not indicate strong traveling cyclotron wave
excitation, but very efficient coupling to the zero-frequency wave. The latter
level of excitation is quite unsatisfactory and rather mitigates against this
configuration. Nevertheless, Eq. (4b) indicates that the current component at
12

w = 0.29 w_was down by a factor of 10° from the steady current.1 Excitation

of a traveling wave to an order of magnitude above noise with this driving
level indicates that the iris driver mav yet prove interesting. The excitation
may possibly be enhanced by reducing the outer wall radius, increasing the mag-
netic field or changing the iris separation. Analyzing the excitation seems
beyond simple methods, however, so further study will entail more simulation.

(2) The second configuration, a cylindrical cavity, is depicted schemat-

ically in Fig. 2. The outer wall was again Rw = 5.7, the inner flange radius

RF = 3.8, and the beam RB = 2.65. The magnetic field was such thaF QO = 2.0 wp
and Yo = 7. Space-charge effects were much smaller in this configuration,
although the beam energy st}ll spanned almost an MeV, i.e., Ynin = 4.0 and
Yoax = 5.8. The cavity walls}were at z = 15.6 and 19.3. This geometry was thus

similar in many ways to the iris structure.

Simulatien results in this geometry were poor. One reason was the larger

effective y. Although cavitw dimensions were virtually the same as the iris,

the mean energy was much #igher, Y 2 5.5. Thus, with kO = 0.85, Eq. (5)
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predicts Wy ~ 0.5 wp. Beam components at this frequency are reduced from the

iris case by a factor of 5-10. Further, the zero-frequency modulation is only
AR/RB

More detailed analysis may yet show a propitious regime for this cavity, but at

=-6%, so the cavity apparently does not couple with the beam efficiently.

present, results are not promising.

(3) The above configurations employed stationary structures. Travelihg
wave excitation required a temporal variation of the beam, as in the above
cases, the rise time. The large seif-fields which we hoped to tap were thus
unavailable for excitation. If a traveling discontinuity could be induced,
however, the static fields might be directly usable. Fortunately, we have
already encountered such a disturbance in our helical growth investigation.

The helix is grounded to a perfect conductor, the outer wall flange, and
initially uncharged. When the beam is injected, though, a large self-field
Er is induced at the helix radius. This induces a large current along the
helix which attempts to maintain ground. Since the beam propagates at
Vg = cyl - YO—Z, while charge can orly advance at vph 2 ¢ sin ¢, ¢ the pitch
angle, the beam fields quickly outdistance the grounding current. The outer
wall is much greater than the helix, so a large discontinuity appears in thg
self-fields. 1If this were stationary it would simply generate the familar zero-
frequency wave. However, it is moving at vph’ so the excitation is Doppler-
shifted to finite frequency. Furthermore, we know this traveling field is
resonant with the slow cyclotron mode, so it is actually amplified.

In early simulations with terminated helixXes, we inadvertently excited this
mode by employing too rapid a beam rise time. The beam cyclotron mode, gener%
ated at the front of the grounding pulse, grew so large it completely trapped
the beam. By this we mean that no current could pass through the nonlineaf
cyclotron trapping region. These fields were significantly larger than even
virtual cathode fields for similar currents. We have little doubt that large
cyclotron waves can be self-excited in this fashion, but it was not clear that
steady generation could be achieved. ‘

The simulation configuration uséd is shown in Fig. 3. Parameters were
similar to the simple cavity configﬁration except that the walls were at
z =15.6 and 22.4, and a sheath helfk with ¢ = -15° was attached along the
mouth of the cavity. The nominal wavélength for this cavity was A = 13.6, or
ko = 0.462. Terminations on the he11x were intentionally mlsmatched so 1he:

helix current would ring for a long‘Perlod When the beam was injected, a
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large zero-frequency wave again appeared (AR/RB = 10%) but a large, narrow
bandwidth cyclotron traveling wave was also excited. Figure 4 shows an Ez probe
on axis, at a location z = 130. While the excited frequency is two orders of
magnitude above noise, the only reason it was detected was that the location
happened to be at a null of the zero-frequency wave. Otherwise, this strong
signal is masked. Nevertheless, since Be probes just outside the beams show
the same signal with little attenuation away from the cavity, it is clear that
the traveling wave is excited. The Ez magnitude on axis is 0.05 in units of
(4nn0mc2)-1/2. For n, = 1012 cm-s, this corresponds to EZ ¥ 50 kV/a. Although
this configuration is successful at exciting the desired traveling wave, sup-
pression of the accompanying zero-frequency mode must be accomplished before it
can be regarded as completely satisfactory.

To briefly summarize the results, various waveguide configurations were
simulated to study self-excitation ttaveling cyclotron waves. Although none
were completely satisfactory, enough positive data was obtained to indicate that
self-excitation may be feasible, however. The primary difficulty encountered
was the concomitant excitation of undesirable zero-frequency waves. U.til a
simple method is found for preferentially suppressing these later, it does not

appear that self-driven antennas will be of use in proof-of-principle experi-

ments.

Fig. 1

Iris-driven antenna configuration
with quarter-wave (A/4) separation.
Beam is shown as shaded region.

Fig. 2

Simple cavity configuration with
half-wave (A/2) width. Flange is
indicated by slanted region.
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Fig. 3

Cavity plus helix configuration.
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BEAM VOLTAGE AND CURRENT PARAMETER STUDY FOR THE
AUTORESONANT ACCELERATION PROOF-OF-PRINCIPLE EXPERIMENT

by

Brendan B. Godfrey and Rickey J. Faehl

ABSTRACT

Due to flashover problems, Austin Research
Associates, Inc. may be forced to perform its
procf-of-principle antoresonant collective ion
acceleration experiment at electron beam para-
meters of 2.25 MeV and 15 kA rather than the
intended 3.0 MeV and 30 kA. We show that the
original experimental goals still can be achieved
provided the beam radius is reduced by a factor
of two and a thinner anode foil is employed. More
generally, our parameter study suggests that oper-
ating with beams of smaller radii improves cyclo-
tron wave behavior during beam adiabatic compres~-
sion or expansion.

I. INTRODUCTION

The autoresonant collective ion acceleration proof-of-principle experiment,
as proposed,1 was to accelerate protons to 30 MeV using a 3 MeV, 30 kA electron
beam. The acceleration process was to be controlled by varying the beam guide
magnetic field from 25 kg to 2 kg over several meters. Radius of the beam at
maximum magnetic field strength was to be 1 cm. However, the electron beam
generator has suffered persistent electrical breakdown problems for several
months. To ameliorate these difficulties, initial experiments probably will be
performed in the 2.25 MeV, 10-20 kA range.2

Previously we have made estimates of beam scatter by the anode foil,3

4,5 and wave behavior

cyclotron wave growth in a helix slo%-wave amplifier,

during ion acceleration.6-8 The compﬁtations assumed a 3 MeV, 30 kA beam.
|

Here, we repeat the analyses for severdl combinations of reduced beam energy,

current, and radius. We find that increased scatter due to decreased beam
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voltage can be offset by use of thinner or less dense commercially available
anode foils. Within reasonable limits, slow cyclotron wave growth in a helix
amplifier is not strongly affected by electron energy and current. For the same
beam radius and range of magnetic field strengths, the reduced current and
voltage disasterously increase the ion acceleration length by a factor of 2.5,
on the other hand. Fortunately, it is necessary only to reduce the beam (and
waveguide) radius by one-half in order to return the acceleration length to
manageable proportions.

Sec. II treats foil scattering, Sec. III wave growth, and Sec. IV ion
acceleration. Few theoretical details are provided, since they are readily
available in the aforementicned references. Some concluding observations are

offered in Sec. V.

II. ANODE FOIL SCATTER

Excessive angular scatter in the beam electron trajectdries leads to fapid
damping of cyclotron waves. - This scatter varies adiébaticqlly with guide mag-
netic field strength. 1If the scattér is to be limited to 20° at the front of
the acceleration section, where Bg = 25 kg, then the beam must leave the diode,
where Bg = 2.5 kg, with a scatter no greater than: 6°. E Anode foil ‘induced
scatter depends on the material and thickness of the anode foil and on the elec-
tron energy approximately as )
1/2

o = r/2/p%y | (1)

9 n

where F is obtained from Table I. The table of scattering’ coefficients was
developed by L. E. Thode from Monte Carlo calculations.3

Original experimental plans called for a 1 mill. (25.4 pm) titanium foil,

3

#hich for 3 MeV gives 5.4°. For 2.25 MeV, the value rises to 6.9°. Evidently,
a different foil is needed for thé’lower voltage. One possibility is I/quill.’i

titanium, which gives 4.5° at thé lower energy. More generally, any foil with

kS

F "less than a%out 0.3 on Table I| is acceptable with respect to the 6° scatter

limit. Engineering considerations "will bear heavily -on the final choice.

2

ITI. CYCLOTRON WAVE GROWTH >

Cyclotron waves required forjautoresonant ion acceleration are to be first

excited by an RF antenna and then|amplified by a slow-wave structure. The helix -

2
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amplifier has been thoroughly investigated for the original beam parameters and
appears to be a good choice. The need for initially low phase velocities'sets
the helix pitch angle at 8° for a 3.4 kg magnetic guide field. The ratio of
helix radius R to beam radius a is optimal at about 1.5. With these helfx
parameters and the original beam parameters of 3.0 MeV, 30 ka, and 2.65 cm
radius, the wave e-folding distance is 34.4 cm. Amplification by a factor of
twenty can be achieved in a 1 m helix.

We have repeated these GRADR numerical calculat_ionsl*-6 for a 2.25 MeV beam

>f current 10, 15, or 20 kA and a radius of 2.65 or 1.32 cm. Table II gives

wave frequency w, wavenumber k, and growth léngth L for various beam energies,
currents, and radii. The e-folding length is seen to be relatively insensitive
to beam parameters and in no case cited exceeds by 50% the 3 MeV value. Wave

growth appears to be no problem.

I[V. ION ACCELERATION

The variaticn of wave properties and the corresponding increase 1in ien
energy in the acceleration section is determined from conservation of wave
energy flux and from the ion equations of motion. Figure 1 shows the change
with position of the wave phase and group velocities, and accelerating electrie
field, the beam envelope modulation, the ion. energy, theiwave,potentia} well
depth, and the guide magnetic field. The magnetic field deegeasesyfrom 25.5 to
1.7 kg. Potential depth and ion energy are in MV, the electric field in MV/cm,
and the axial distance in cm. The data is essentially that of Ref. 7, but we-
formated. The amplitude of the cyclotron wave at the entrance to the accelep-“
ation region is set by da = a/2. Largef'values of the beam envelope modulation
are impractical. Ion energy reaches the desired 30 MeV at 8.5 m. o ° '

Figure 2 provides the same 1nformatlon for a 2. 25 MeV, 15 kA echtron beam,

case 3 of Table 11. Ioms reach 30 MeV at 21.5 m, 2.5 t1me§jthe Flg. 1 d¢stancé

bR

B

A factor of two comes simply from cutting the total current in half The* remain-

"“1ng length increase is accounted for by the 20% increase in wave number at largq

B for Fig. 2 relative to Flg 1.EISpec1f1cally, ka/2 is 1.56 as opposed go\I 31

at Bg 25.5 kg. Other thlngs be1ng equal, ka > 2 reduces the acceleratwpnx
field sharply. ‘ o ’ //‘3 o {‘fﬂ

Results for the same 2.25 MeV, 15 kA beamobut w1th/£eam and waveguide

[+

radius reduced by 1/2, case 6 of Tale 11, are given-in Fig. 3. The distance J o

needed to achieve 30 MeV ions drops d@amat1ca11y to 6.0 m. The reduction

©
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X(pm)
Deuterium

Tritium
50/50

X(um)
Mylar

Kapton
Beryllium
Graphite
Aluminum

Titanium

V(MeV)

3.0

2.25

2.25

2.25

2.25

2.25

2.25
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TABLE I

FOIL SCATTERING FUNCTION 6% =

127.0 254.0 508.0
0.00447 0.0114 0.0276

12.7 25.4 50.8
0.0111 0.0292 0.0716
0.0115 0.0300 0.0735
0.00944 0.0245 0.0597
0.0211 0.0526 0.125
0.0541 0.132 0.310
0.168 0.397 0.913

TABLE 11

4 2
F/By
762.0 1270.0
0.0455 0.0843
76.2 127.0
0.119 0.221
0.122 0.227
0.0987 0.183
0.205 0.378
0.505 0.924
1.47 2.67

SLOW CYCLOTRON WAVE GROWTH IN AN 8° HELIX WITH

I (kA)

30
20
15
10
20
15

10

B_ = 3.4
z

a (cm)

2.65
2.65
2.65
2.65
1.32
1.32

1.32

kg and R/a = 1

Wy (3.10103ec

-1

.5

0.060
0.077
0.075
0.072
0.079
0.077

0.076

0.40
0.52
0.50
0.48
0.48
0.47

0.47

) k (cm-l)

2540.0

0.191

_254.0
0.504
0.517
0.417
0.852
2.07

5.91

L (cm)

34.4
32.7
38.9
49.3
30.8
34.5

42.8



appears due solely to the smaller value of ka/2 at z = 0, namely 0.76. Aiso

significant, the well depth at the start of acceleration is much greater, facil-

itating initial ion trapping. We conclude, therefore, that decreasing the beam
radius to about one-half the originally planned value is both necessary and
sufficient for achieving the projected 30 MeV ion energies at reduced beam

energy and current.

As an interesting sidelight, we note that the ion energy corresponding to
Bg = 1.7 kg is 20% greater in Fig. 3 than in Fig. 2. The difference is ex-
nlained in terms of the approximate dispersion relation for slow cyclotron
waves,
31/2 . (2)

e L 2,2 2
W, = kv [wc/y wp/y

Roughly, the corresponuing phase velocity squared is
2 2 2, 2
= - 37)
v¢ (woyv/wc) /(1 wp/ywc, . (3)

Decreasing the beam radius from Fig. 2 to Fig. 3 changes the denominator of (3)
from about 0.95 to 0.80. Thus, operating nearer the beam equilibrium limit
enhances the variation of ion energy with magnetic field. It is, unfortunately

not clear that this observation has practical value.

V. SUMMARY

We have seen that electron beam reduced energy and current, due to gener-
ator problems, should have no significant impact on the proof-of-principle
experiment provided beam radius is sufficiently reduced. Indeed, a 2.25 MeV,
15 kA beam injected into the acceleration region with 0.5 cm radius gives a
shorter ion acceleration length than does the original 3.0 MeV, 30 kA beam

injected with a 1.0 cm radius.

These specific numerical examples emphasize the general rule that ka/2 be
less than unity to maximize acceleration rates. Even with the originally pro-
posed experimental parameters, reduced beam radius would give better results.
Admittedly, there are experimental problems associated with obtaining small
diameter beams. Our numerical analyses nonetheless indicates that efforts in

this direction should be made.

]
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Fig. 1.

Fig. 2.

Variation of wave parameters
and beam energy in the ac-
celeration section of the
proof-of-principle auto-
resonant acceleration experi-
ment for a 3 MeV, 30 kA
electron beam injected at

the left with a 1.0 cm
radius. Wavs fregTency is

wo = 1.80 10”7 sec .

Variation of wave parameters
and beam energy in the
acceleration section of the
proof-of-principle auto-
resonant acceleration exper-
iment for a 2.25 MeV, 15 kA
electron beam injected at
the left with a 1.0 cm
radius. Wavglfrequency is

2.25 109 sec .
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Variation of wave parameter
and beam energy in the
acceleration section of the
proof-of-principle auto-
resonant acceleration exper
iment for a 2.25 MeV, 15 kA
electron beam injected at
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VIRTUAL CATHODE ION ACCELERATION IN VACUUM
' ("LUCE GEOMETRY")

by

R. J. Faehl
ABSTRACT

Simulations have been performed to study collec~-
tive ion acceleration from a dense plasma slab by a
relativistic virtual cathode. Deep )otenggals are
not ohserved. Bulk acceleration to 2-3 mc™(y, - 1)
is nevertheless measured. An inductive acceleration
mechanism is proposed, which depends on force
neutralized beam propagation.

I. INTRODUCTION

Proposals for utilizing the collective fields of intense relativistic
electron beams to accelerate ions have now been extant for over a decade.
Though many ingenious and imaginative schemes have been advanced, the most
conspicuous success in the laboratory has occurred when virtual cathodes have
been formed in either vacuum or a low-pressure gas fill. Ions have been accel-
erated to over ten times the electron beam energyl-A and total ion pulses in
excess of 1012 ions have been routinely measured. These experiments have been
repeated in many different laboratories. With repetition, the data base has
gradually'inqreased and uncertainties diminished.. Unfortunately, while many
groups have undertaken the experiment, no one has yet suggested a quantitative
explanation for the acceleration. With this theoretical/experimental disparity
in mind, we undertook a numerical study of this problem using two-dimensional
relativistic particle simulations. It was hoped that analysis of the simula-
tions would shed light on the responsible acceleration mechanism. These ihdeed
have yielded new insights into the complex ion/virtual cathode dynamics, but

2

the very high energy ion tail [eion S 10 mc (yo - 1)] has not been observed
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to date. The results nevertheless should lead to a radical reevaluation of
basic ijon acceleration experiments. Before proceeding to the simulation
results, however, it is instructive to review the consensus understanding of

virtual cathodes.

II. VIRTUAL CATHODE FOLKLORE

Theoretical understanding of relativistic virtual cathodes, with one ex-
ception,5 is due to a series of one-dimensional analyses. o7 The virtual
cathode is presumed to form if a current larger than the critical one is
injected into a waveguide. A number of analyses have been conducted to deter-
mine this space-charge limiting current.g-11 Numerical investigations have also
been performed.ll’12 The analytic virtual cathode studies, however, do not
directly incorporate this information. They furthermore become very question-
able near the actual particle turning point. One of the first papers to address
the question of reflection and the electrostatic “potential magnitude of a
virtual cathode was by Poukey and Rostoker.7 Poukey and’OISon13 later extended

that analysis to two dimensions and performed two-dimensional electrostatic

simulations to test the analysis. Many of the present widespread conceptions
about virtual cathodes are derived from these pioneering papers.

An important result derived from the Poukey and Glson analysis was that a
deep, stationary potential well could form at the virtual cathode. Under cer-
tain conditions, in fact, ultrarelativistic beams could yield maximum potentiai
of Ie¢max| = 2-3 mcz(y0 - 1). Technically, these were limited to the time of
first particle reflection; but when supplemented by electrostatic simulations,
the results seemed to have broader validity.

The 'deep" potential well had clear impliéations to collective ion accel-
eration. If any ions happened to become trapped in it (through diffusion,
ionization, etc.), they could be accelerated electrostatically to
€on = 2-3 mcz(y0 ~ 1). Since the well, moreover, was stationary, conservation
of energy arguments implied that the ion energy should scale as the charge
state, i.e., €.on < Ze¢max Because the well was stationary, of course, no net
acceleration would occur as long as it persisted, for the ions remained trapped.
When ionization was occurring, this presented nc problem. As soon as the mono-
tonically increasing ionization density equals the electron beam density, the

well will disappear in a nonadiabatic fashion and ions can propagate freely.

These points represent only a narrow abstraction fi1:m the Olson-Poukey model.

101



They are discussed only because these were just the salient features observed
in a series of careful experiments.u'_17 Ion acceleration in a neutral gas
fill yielded peak energies of just less than three times the beam kinetic
energy, with the peak in the ion spectrum centered near 3/2 mcz(yo -1).

It is natural to identify the experimental ion acceleration data with a
"deep well" because they are entirely consistent with theoretical predictions.
Both the peak ion energy and spectrum, plus a later observed scaling of ion
energies proportional to Z¢eff’ where Z is the ionic charge state and ¢eff an
effective clcctrostatic potential, indicated that the mechanism was purely
electrostatic, an intrinsic feature of virtual cathodes. Nevertheless, as we
will discuss in the next section, fully electromagnetic simulations of virtual
cathode formation and evolution show no such "deep" well when realistic para-
meters are employed. This apparent paradox can be traced to « number of assump-
tions, which are not self-consistent.

Before describing the simulation results, we should point out one obvious

inconsistency with the electrostatic model of ion acceleration. The cold fluid

energy equation for the electron beam is

gl = - . . T 2
at ev * E/mc
In steady state, (mczy - e¢) is a consta: of the motion, so one can apply

«imple trapping arguments to arrive at ion energies on the order of

< le .
3ion = | ¢Imax

However, !e¢lmax is then lizited to the initial beam energy,
i.e., le¢|max < mcz(yO - 1). There is an obvious way around this, namely that
the state is not steady. Then, a iully self-consistent model may yield poten-
tials greater than the beam kir-“ic energy. Simple trapping arguments, however,
can no longer be applied to calculate ion energy. The objection might be raised
that an anomalously dee: well could bhe established through transient dynamics
of the initial well formation and then remain steady thereafter. -‘Again, how-
ever, if the . afiguration is steady, the injected electrons would exhibit con-
servation of energy and be reflected at significant distances from the bottom
- £ thk: well. Without replenishment from the cold, injected beam, it is diffi-
cult to imaginz how an unneutralized structure like a virtual cathode could

remain intact. While these are only heuristic arguments, they indicate that
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ion acceleration in the potential of a virtual cathode may not be as simple as

it seenms.

III. SIMULATION OF VIRTUAL CATHODES

Previous 1- and 2-D electrostatic particle simulations have been conducted
to study beam propagation and virtuwal cathode formation.7’13’18 While the
qualitative virtual cathode features may be expected to be correctly treated,
questions of initial formation and subsequent oscillation of the structure
raise doubts as to the role of time-varying fields. We have, therefore, employ-
ed a fully electromagnetic, relativistic simulation code, CCUBE, to follow the
virtual cathode evolution. This code has been previously used for studies of
collective ion acceleration,lg-21 plasma heating by beams, and vacuum beam
propagation.12 For this last, critical currents obtained in the simulation
were compared with simple expressions and experiments. Good agreement there
served to validate our confidence in the code for conducting these calculations.
This study involved two distinct types of calculations, those with beam injec-
tion into a vacuum waveguide and those injected through a dense slab of plasma.
Since the former provides more direct information about intrinsic virtual

cathode bahavior, we will discuss them first.

A. Vacuum Injection Through a Metallic Foil

Solid relativistic electron beams were injected through a "metallic" ground
plane in this type simulation into an evacuated cylindrical waveguide. With

2np/me)l/z, the radius of the guide was much

all units scaled to c/wp, wp = (4ne
less than its length. Typical normalized radii were R = 4.7 - 14.5, with a
length of Z = 50. (We are considering intense electron beams, so a reasonable

1012 cm_3.

beam density is np = With this density, c/wp = 0.5 cm.) The beam

current, which was injected smoothly with a gaussian risetime,
1(t) = I 01 - exp(-t?/219)]

scaled with radius squared according to Budker's parameter, I0 S (wPRB/c)z.
For these calculations the time step was typically At = 0.04, and the cell
sizes Az = 0.5, and Ar = 0.2. The injection boundary (anode) was a perfect
conductor, that is radial and azimuthal electric fields were zero on its sur-

face.
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When a relativistic electron beam is injected through the anode, there are
initially no space-charge fields. These are established within a few c/wp of
the surface. If total current is below the waveguide critical current, propa-
gation is permitted and the beam goes freely down the tube. (Several recent
studies have confirmed improved expressions for this critical currentlo’ over
widely used interpolation formulas.g’g) Current in excess of the critical one,
however, leads to a discontinuous potential jump in the axial direction, dis-
ruption of propagation, and formation of a "virtual cathode." The waveguide
can support currents only as large as the critical one, so any excess must be
reflected, radially ejected, or "absorbed." By absorbed, we mean here that
electrons stop at the virtual cathode and spend long periods of time in that
region.

Previous models of the virtual céthode infer the peak potential by follow-
ing a single particle to the point of first reflection.7’13 This initial peak
is seen in our simulations as a distinct formation feature. Because the poten-
tial continues to evolve, we distinguish this feature from the late time
maximum and the average peak potential by denoting it as the "beam front poten-
tial." This is plotted in Fig. 1 as a function of injection current, in units
of v, where v = 1 corresponds to 17 kA. The lowest point is associated with a
subcritical current, and the highest with a current of over 880 kA. Clearly
the latter (v = 52) is much higher current than used to date in collective ion
acceleration experiments. With a risetime of T = 20 w;l, however, the maximum
beam front potential le¢bf/mc2|, exceeds Yo - 1 by only a factor of about 50%.
For typical beam density, this is only a 1.2-nsec risetime. Moreover, Fig. 2
shows that the beam front potential decreases with increasing risetime.

The beam front potential that appears in Figs. 1 and 2 is the appropriate

characteristic to compare with previous analytic models, but it is neither

steady nor the characteristic potential of a virtual cathode, as can be seen in

a typical time plot of , shown in Fig. 3. The peak associated with

Iq)maxl
formation is only a transient overshoct. It is not a steady-state condition.

It is, however, in qualitative agreement with at least one aspect of earlier
analytic models, scaling of potential magnitude with displacement from the
anode. The large potential is associated with large displacement; but as the
potential relaxes, it moves Back toward the anode. It tends to remain at the

minimum displacement in the absence of reflected current.
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; B
Beam front potential has been discussed firstfbecausexit provides easy

comparison between our simulations and results of previous studies. -Potentials
greater than the beam kinetic energy have been observed, butdnq§3in a steady
potential distribution. Simple ;Enservation arguments thus are not violated
since the state is clearly time dependent. . This does' not directly aid' in

\

understanding either the initial or subsequent potent1a1 magnltudes, however.

Pl

To understand this more clearly, we will therefore Consider formatlon dynamics
in more detail.

When an electron beam current greater than the sﬁhge—charge limit is in—‘
jected into a waveguide, a virtual cathode is exgected to form. In fact,
however, this does not happen instantaneously. Analyéis of thin, annular beams
shows that there 1s still a res;dual kinet u@\energy at “the space-charge limiting
currents, i.e., mc (y - 1) = mc (y1/3 - 1). ~ Solid beams, which we employed in
the simulations, are not so susceptible go~ana1y51s,10 bit the simulations them-
selves do exhibit this qualitative behavior. The minimum kinetic energy though
is not proportional to (y1/3 - 1). Thus, we see that initially, the electron
beam continues to flow at all radii, with the velocity onfaxis reduced to-
between v = 0.5-0.75 c¢. This state is not stable, however. ' '

We have numerically studied the linear dispefgion of beams very close to
the space-charge limit. None of the cold beam modes>are foind to be unstable,
but the velocity of slow space-charge waves (both phase and group vélocit}) is
iound to decrease toward zero. This property has been observed before, leading
to the supposition by Breitzman and Ryutov9 that accumulation of potential from
these waves is the mechanism for beam stoppage.r If the sign of the potential

were reversed, this would simply be a trapping argument, i.e., the wave poten-

tial must be at least large enough so that

2 _ 2
e

vph) ’

1
led b g5 mlv

wave

where vph = w/k, the wave velocity, and Ve is an electron velocity. For a
‘ \;‘\“ . ¢
hollow beam, the criterion can be expreésed rélativistically

leg,l S me? (33 - 1)
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In fact, this only expresses the fact that the potential can interact directly
with particles. Reflection is just the consequence when negative particles are
in a negative potential. Since the beam configuration does not induce exponen-
tial growth of ary waves (apparently!), where does this wave energy come from?
There are several possibilities. After particle reflection commences, the
reflected current is two-stream unstable with the original beam. Near the
anode, velocity, density, energy, and rotation are all axially inhomogeneous,
however, so even a convective analysis of the instability evolution is non-
trivial. This is being pursued, but no estimates afe yet available. In any
case, it is irrelevant to the initial potential buildup. The thermal qluctua—
tion level on the beam is another source of potential. In our simulations, we
injected a cold beam, so the primary source of fluctuations was probably numer-
ical. In an experiment, the source would be due to diode noise, foil scatter,
etc. While the magnitude of potential fluctuations will effect the rate of
potential buildup and possibly the location of particle reflection, it does not
alter the eventual state, i.e., reflection of part of the current. There are
reasons to believe that gradients near the anode may enhance the buildup process
but this will require more analysis to evaluate.

Whatever the source of potential, once it reaches reflection levels, a new
factor must be included in the virtual cathode dynamics, momentum transfer.
This has not been taken into account in previous models. Nevertheless, if a
particle with an initial momentum, Py = Ygmes is reflected and re-enters the
anode with Pg = ~Ygme, which is commonly observed in simulations, the momentum
imparted to the reflecting object is not insignificant. Furthermore, for the
high current beams in which we are interested, the momentum flux or pressure at
the reflection plane can be very large.

Three things can occur when an electron approaches a cylindrical virtual

cathode. If its radial coordinate is large enough so that
2 2
mc“{y(r) - 1] - edp(x)/mc” > 0 ,

the particle retains a finite kinetic energy and simply propagates through the
virtual cathode. This transmission should not be considered as an "emission";
it is simply in a part of phase/%oordinate space that possesses adiabatic tra-
jectories. The particle radiuﬁ is such that mcz(y -1) - e¢(r)/mcg <<.0,

reflection occurs, along with a homentum transfer of Ap = Zyomc. Finally, if
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mcz(y - 1) - e¢(r)/mc2 0, the electron can spend long periods of time near
the reflection point, i.e., be '"absorbed," while giving up Ap Z Yome- This
situation can occur on-axis during the initial formation and off-axis at any
time. Once "absorbed," these electrons are only marginally relativistic, and
so there are no relativistic mass corrections. When these particles are sub-
jected to the large, reflection-induced pressures, they commence to move rapidly
away from the anode. Since the potential fluctuations are embedded in this
stratum, they are carried with the particles. Thus, the peak potential and
plane of reflection are accelerated away‘from the anode. The minimum kinetic
energy of the steady space-charge limited current for a solid beam is greater
than zero but usually less than mcz(yé/3 = 1). The flux of particles to the
reflection point is thus drastically reduced. Little further acceleration
occurs once the virtual cathode attains the electron velocity. While this
propagation takes place, however, potential fluctuations are again Building up
near the anode. When they have reached a2 magnitude sufficient to reflect elec-
trons, a new virtual cathode forms, further reducing the particle flux to the
original reflecting structure. Clearly the rate at which this process repeats
depends bo*h on the magnitude of current in excess of the space-charge limit,
that is cthe magnitude of reflection, and the spectrum of fluctuations on the
beam.

Further analysis on the above mcdel is required to make it quantitative,
but it does clearly illustrate the repetitive, dynamic nature of a vacuum
virtual cathode. This is essential for understanding the fields associated
with it, which as‘applied to collective ion acceleration is the chief reason
for examining it in such detail. The above picture is much less simple and, in
a sense, less satisfying than a steady,"deep-well" model. A steady well, how-
ever, is energetically limited to a depth of |e¢/mc2| < Yo - 1. Only by con-
sidering time-dependent behavior, initially the fluctuations but later the
gross motion of the virtual cathode, can deeper wells be constructed. In fact,
the macroscopic motion can be exploited to explain the potentials observed in
simulations. A steady, repulsive well can not lead to net energy transfer to
~ the electrons, that is <E ¢ J> = 0. Transmitted particles are first deéeler-
:'ated, then accelerated back to their original energy; this is a basic feature
'of steady, electrostatic wells. In a sequence of moving wells, however, par-
ticles in proper regions of phase space can remain in synchronism with the

virtual cathode fields for long periods of time. Other particles can experience

107



repulsive fields in alternating directions as a train of virtual cathodes passes
and so be quasi-confined. Particles which remain in one region long enough
approach a '"thermalized" state. Such a situation is observed in simulation
around the virtual cathode in the near~axis region. Associated with such an

ensemble, there should be a potential energy,
p?
<E> >
2m <e¢

Figure 4 shows the energy phase space (y - z) of a virtual cathode after many
oscillations (25). Figure 5 shows the associated distribution function. Only
near the wvirtual cathode do particle energies drop below (y - 1) = 0.5,
so it is plausible to attribute the distribution around mcz(y - 1) = 1.3 with
an rms mean energy. Although the distribution is not believed to be strictly
Maxwellian, it is not unreasonably far from it. This also provides a conven-
ient measure of the average energy.

Though interaction of beam electrons with the virtual cathode is admitted-
ly complicated near the reflection point, certain correlations are still
evident. Peak potential in the wavegﬁide was monitored as a function of both
position and time. Not surprisingly, it remained localized near the axis in
the vicinity of the virtual cathode. This, therefore, gives us an indication
of the local dynamic behavior. As Fig. 6b, a plot of axial position of the
peak potential as a function of time shows, the "virtual cathode'" exhibits
periodic bounded motion. While the figure suggests oscillation, however, com-
puter generated movies clearly indicate a train of monotonically moving virtual
cathodes. The magnitude of peak potential is shown in Fig. 6a as a function of
time, where mcz(y0 ~ 1) = 4 for this calculation. Both average and fluctuating
values are indeed above the initial beam kinetic energy, but only by a factor
of 40%. In fact, the highest fluctuation we have observed to date corresponded
to only e¢/mc2]max ~ 1.7(){0 - 1), and the current, I = 880 kA, was greater than
the space-charge limit by a factor of 20. Figure 7 shows the results of series
of simulations with Yo = 5, of both the peak average and fluctuating potentials
as a function of normalized current v. The measured virtual cathode period
T measured in our calculations is indicated in Fig. 8, also as a function of
v. The apparent similarity between Figs. 7 and 8 suggests that the potential

scales with I_l, which is consistent with our correlation of large potentials
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with time-dependent wvirtual cathode behavior. This hypothesis is difficult to
quantify because the relation between W and ¢max is not functionally simple.
Identification of the excessively large potential with regular periodic motion
is misleading, however. Injection of a noisy beam leads to highly irregular
fluctuations, but roughly the same potential as calculations involving quiet
beams. Temporal virtual cathode dynamics in general are the key factor leading
to'(e¢/mc2) > Yo - 1.

This discussion of virtual cathode dynamics in vacuum has been fairly
detailed because our fully electromagnetic simulation results are significantly
different from previous analytic or numerical ones. The primary difference is
absence of deep stationary electrostatic wells. Peak potentials were observed
in excess of the beam kinetic energy, mcz(y0 - 1), but only by a factor of 1.7.
That calculation furthermore corresponded to a beam current far greater than
any used for collective acceleration experiments to date. It also had a current
risetime on the order of Tr = 1 nsec, which is faster than used in most experi-
ments. As Fig. 2 shows, peak potential decreased with increasing risetime.
Our conclusion from these calculations is that potentials associated with
virtual cathode experiments probably did not exceed the beam kinetic energy by
a significant factor, such as 2. This leaves open the question then as to how
a large number of ions were accelerated to between 2-3 times the beam kinetic
energy. In the next section, we discuss simulation of beams injected through a
dense plasma slab. Though identification of this configuration with any exper-
iment is arguable, the model problem is nevertheless found to shed considerable
insight into the acceleration mechanisms actually operative.

B. Injection Through a Dense Plasma Slab

Two-dimensional simulations performed to study collective ion acceleration
by a virtual cathode from a dense neutralized plasma have yielded interesting..
and surprising results. The virtual cathode was formed by injecting a super-
critical relativistic electron beam through a finite plasma slab. Formation
occurred only after the beam had transited the slab. Ions were attracted to the
resulting potential well and plasma electrons repelled. 1In this way, it was
possible to follow the self-consistent interaction of ions with the beam fields
in a model geometry which bore some semblance to those created experimentally.
It must be emphasized that the initial icalculations were performed more to gain
understanding of key mechanisms thanhto duplicate any given experiment. Al-

though the numerical results strongly éuggest certain experimental ones, we feel
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this was due more to insensitivity of the accelerating mechanism than to any
bias in the calculations.

In a typical simulation, the background plasma was 35 more dense than the
beam, i.e., n_= 35 n . This choice was predicated both by numerical con-
straints and debye screening arguments. The plasma slab was felt to be suffi-
ciently dense to screen out beam fields and to provide realistic ion flux into
the potential well, though this latter requires some explanation. Recent
measurements of the anode plasma indicate a dersity, n = 1017 cm-3, and temper-
ature, 6 = 2-5 eV.22 If ions could flow directly from the high-density region
into the virtual cathode, the flux would be orders of magnitude greater than
could be achieved in simulations. The plasma possesses an axial density pro-
file, however. Virtual cathode formation cannot take place until the plasma
density has dropped to significantly less than that of the beam, so an upper
bound on density near the potential well is about 1012 cm-3. After the well
has formed it will exert a dc electric field on the plasma, which the latter in
turn will attempt to screen. This screening length, the debye length, is
roughly AD ~ 10—3 cm at n = 1012 but AD ~ 5 X 10-6 cm at n = 1017 cm-3. There-
fore, the region directly influenced by virtual cathode fields is at moderately
low density, with new particles diffusing into that region in a random, iso-
tropic fashion. The situation is completely analogous to the amount of positive
ion current drawn by a negatively biased probe, which saturates at fairly low
voltage. The high-density plasma, therefore, plays only a minor role in deter-
mining ion flux into the potential well. In consequence of our use of reduced
ion mass and high plasma temperature (6 ~ 0.3-3.0 keV), in.fact, the ion flux
in the simulations may be in excess of actual quantities. More sophisticated
slab models are being contemplated at present to check the effect of the simple
plasma model.

As with vacuum virtual cathode simulations, the electron beam was injected
with a finite, gaussian risetime, with typical normalized time to full current
of w T =60. This corresponds to between 0.2-0.3 nsec, which is exceedingly
fast compared with experiments. Beam energy was usually €y = 2 MeV (YO = 5)
and current varied from I = 22-75 kA. The time step was prt = 0.25-0.50
(1-2 psec) and cell sizes were ube/c = 0.8 (0.10 cm) in both radial and axial
directions. (Since all dimensions scale with demnsity, the numbers in paren-

thesis should be interpreted as only representative physical dimensions.) The
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radius of the waveguide ranged from w R/c = 27-50 (2.7-5.0 cm) and the simula-
tion length varied from pr/c = 200-350 (20-35 cm).

A virtual cathode formed outside the plasma as soon as the current exceeded
the space-charge limit. There was little delay from the time this current was
attained until the reflection commenced. This suggests that the fluctuation
level on the beam had been enhanced by propagation through the plasma. A
similar phenomenon may be expected in experiments employing a dielectric insert
in the anode, which will create a dense plasma with appreciable width. Poten-
tial well depth associated with the virtual cathode is only of order the beam

kinetic energy, i.e.,

~ 2 -
le¢lmax = mc” (Y, 1)

A sample profile of the potential along the axis immediately after wvirtual
cathode formation is shown in Fig. 9a. It conforms qualitatively to previous
expectations. Ions are immediately drawn into this well and accelerated to
energies of 8ion.= 1-1.5 € It seems somewhat surprising that ions should
receive more energy than there is potential until one notes that the accelerat-
ing field includes an electromagnetic as well as electrostatic component. The
total field is Ez = -3¢/9z - (l/c)aAz/at. Inductive forces have been previously
neglected in virtual cathode analyses, but our simulations indicate they are
highly significant.

Ions are accelerated to the above-mentioned erergy in moderately short
distances, such as Az = 10 c/wp. As they propagate down the waveguide, they
are not impeded in any sense by the potential "well." The apparent well shown
in Fig. 9a only indicates that charge does not flow down the guide (there is no
external field). Once ions propagate to the "uphill" side of this "well",
they merely facilitate beam propagation farther down the tube. Late in time,

the self-consistent ion/electron distribution results in a wide flat-bottomed

"well," which still has roughly the same magnitude as it did imitially. Such a
potential distribution is shown in Fig. 9b, taken from the same calculations as
Fig. 9a except at u&t = 900. Still later there is some indication that the
depth of the well may decrease near the front edge, but in no case does charge
neutralization play a significant role in the ion acceleration. The additional

beam propagation is facilitated thrdugh force neutralization, which can occur
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for ion densities as low as n, = nb/yz. We do not observe significant motion
of the backedge ¢f the potential.

How does this correlate with ion acceleration? First, magnitude of the
virtﬁgi cathode potential is, on the average, no more than the beam kinetic
energy, |e¢|max = mcz(y0 - 1). Second, ions are rapidly accelerated from the
neutral plasma slab to energies in excess of the potential magnitude. Third,
propagation of the ions permits more beam propagation but no 'well' collapse,
because the potential "well" does not exist in the sense that it can produce
closed, bound ion trajectories. While these three features are not inconsistent
with an electrostatic, albeit time-decpendent, mechanism for ion acceleration,
the argument is greatly weakened by the observation of continued, slower accel-

eration in the absence of any potential increase or synchronism.

Figure 10 shows a typical time history of maximum potential, |e¢max/mc2|,
while Fig. 11 depicts the maximum ion energy as a function time for two dif-
ferent ion species; Mi/me = 500, 1836. (Figure 10 corresponds to the calcula~-
tion with Mi/me = 500.) Ion acceleration is qualitatively similar for both
charge-to-mass ratios, with rapid acceleration followed by a more gradual one.
The final energy reached in both calculations moreover is g, = 2-3 &y Even
more suggestive is a plot of maximum ion energy as a function of distance,
Fig. 12. The heavier ions clearly do not travel as far in the same period of
time, but they do attain the same energy at a comparable position down the drift
tube. Since our simulations were only run for relatively short physical dis-
tances, i.e., L = 20-35 cm, there is some question whether we observed the
maximum saturated ion energies. Energies of 2-3 times the beam kinetic energy
nevertheless are consistent with bulk ion acceleration measured in many experi-
ments. The ion spectrum, furthermore, is peaked at & = 1.5 mcz(y0 - 1).

There are at least two possible candidates for the acceleration mechanism.
No deep potential well is observed, so that is not one of them. First, the
additional beam current made possible by the ion pulse provides an inductive
mechanism. There is fairly strong indirect evidence for this, since ion
acceleration is correlated with an increase in Az'max with time. Second, the
self-consistent interaction of ions with the beam electrons can lead to fluc-
tuating space-charge fields. Evaluation of this mechanism, however, requires
calculation of field-particle correlation functions. It is also a higher order

mechanism. Let us, therefore, ;examine the inductive mechanism in more detail

to at least test its plausibility.
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The actual evolution of Az”in time is contained within the simulation but
involves time-varying currentyprofiles, which are difficult to quantify. How-
ever, a simpler model problem can be posed, which is qualitatively similar to
the observed dynamics. Consider an ion current flowing within a waveguide of
radius R. Let the ions be moving at constant velocity \A with density n, and
radius a < R. These ions allow a beam current to flow. The beam electrons also
are contained within a radius a but have velocity v, 2 ¢ and density
n, = <y>2ni. The effective <y> of the electrons is reduced greatly from the
initial energy since they are transmitted through a virtual cathode. Simulation
values give <y>2 = 5, for Yy = 5. The total current is therefore

~

.o 2 ~ 2

ji= eni(<y> v, vi) = eni<y> v, , (1)
but its envelope moves at only v, For concreteness, let

i =3gll - expl(z - v,t)/L}} (2)

where j0 = -en v _f(r) and f(r) is the radial distribution function. This form

for the current is not completely general but does possess many of the qualita-

tive features seen in the simulations. 1t also allows us to explicitly evaluate
Az(z,r,t) to determine if it can explain the acceleration.

The equation for Az is, in the Lorentz gauge,

129 oA 9 Az 1 37A 4m
-—r 2yt e (3
r or or 322 c2 3t2 c % ’
where
0 , z>v.t
i
i, = (4)

IA

-(v.t-z)/L
j0 [1 - e t ] , z = vit

Equations (3) and (4) can be solved :n a variety of ways, but the form of J

suggests a transformation to new var1ab1es,
\
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3

Y (vt - 2) ' (5a)

I
ct

£, (5b)
Thus, gl = 0 is the head of the current pulse. A more complete Qescfiption of
the solution to a formally similar problem can be found in the literature.

Since solution of Egs. (3) and (4), subjéct to the condition that Az vanish on
the wall, AZ(R) =0 is\straightforward and not particularly illuminatiing, and

details are left to the Appendix. The solution is

3 RIS R gso (6
= “n® 0t} 19,19, ' ’ = 2
Az(r,ﬁ) =
3 cn Jolayriz/al - 2e7 1?/q, 0% - 1)
n
- ng 2
re "/l L - DI}, g20 (6b)
where
R 2.2
c, = (-2nenevi/c) f rf(r) Jo(an)dr/(an) J1 (an)
0

The inductive electric field is therefore Ezl = (-l/c)aAzlat, where

ind

114 |



C

Y.V, q & ‘ \
( > 1) Z ce " /e (q L+ 1) , £ <o (7a)

n

Ez(r’g)'ind =

YO I ST

Note that there is a resonance in both Egs. (6) and. (7) if an = 1. Egunation (6)
possesses a separate solution for these resonant terms,
> e 8y + L) £<0 (8a)
n
Az(r’g)lres a
) cn[ZL AN A L/Z)] gso (8b)

n

This resonance need not be considered in too much detail, since it arose from
the particular form we employed for the-current pulseshape, i.e., exponential.
The current shapevthat would evolve physically is determined by self-consistent
interaction of electron beam, virtual cathode, and dense plasma. It seems to
be qualitativéf?'similar to simulation profiles, but details such as resonance
points are probaﬁly too model dependent.

A more genefél characteristic can be deduced, however, simply from the fact
that there are resonances which can greatly enhance the inductive field. 1In
other words, a suitable risetime to the current pulse can resonantly drive the
cavity. As the analysis shows, only one Bessel expansion at a time can be
resonant, and the magnitude is determined by both waveguide dimensions and cur-
rent radial profile. For instance, if jz « Jo(qlr), ¢, = -4nnevi/c, c, = 0 for

all n # 1, while a flat radial profile jields
|
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c, = -4neneveanbJ1(anb)/[anJl(an)]2 .

In the latter, the Bessel amplitudes are both smaller and oscillate in sign.
The current distribution in the radial direction, therefore, is highly signifi-
cant in determining strength of the inductive electric field. Moreover, since
the axial scale length, L, interacts strongly with the radial scale length, it
is important to note that the model described above is not self-consistent; the
length must change in time. To illustrate this, consider that the electron
current distribution was tied to the accelerated ion distribution. The ions
were assumed to be moving at constant velocity v, However, if the electric
field calculated in Eq. (7), were applied to an ensemble of particles with
different initial positions, (gi), one would find that the (gi) do not remain
constant in time, nor do they change veloc.ty uniformly. Thus, the distribution
must spread and the scale length must change in time.

Ion energy can be calculated with the use of Eq. (7),

Z

£i(r,z,t,zo) = g/. dz Ez[r,;(t),t] , 9)

0

where z(t) is derived from

I

t ’ t t
Z2(t) =z, + vit[ at’/y; (z",t7) + q/le dt"/y,(z",t") /‘
0 0

dt”Ez(z’,t”). ' (10)

Solution of Eq. (9) and (10), however, requires self-consistent reconstruction
of j(z,t) from ion trajectories. Numerical solution of this set is being under-
taken with a previously described code,24 but data is not yet available.

Before discussion of these results in context of previous simulations,
analyses, and experiments, it is interesting to observe the effect of a strong
guide field on ion acceleration. The magnetic field strength corresponded to

QO = wp, where QO = eBO/mc. For typical electron beam parameters, this yielded
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an absolute field strength of B0 = 10-20 kG. The plasma electrons were moder-
ately magnetized and the beam strongly magnetized, but ions were only marginally
affected. This strong field case incidentally most closely conformed to vacuum
virtual cathode configuration, in which peak potentials greater than mcz(yo ~ 1)
were observed. Peak potential was a secondary consideration here, however.
The primary effect of the field was that it permitted transmission of a large,
albeit hollow, electron beam current through the virtual cathode without agency
of any ions. Thus, the additional current facilitated by force neutralization
comprised a relatively small fraction of the total current. In fact, the inte-

grated axial current

<3, = [ avi,/fav

saturated in this simulation, whereas it had increased linearly im time in
simulations without an external field. The ion energy furthermore saturated in
this case. Ions reached about Si £ 2.2 mcz(y0 - 1) by ubt = 900 and received
no more energy until the end of the calculation at ubt = 1700. During that
time, they propagated from u5z/c = 150 to u&z/c = 300. Figure 12 shows that
ions received a sizable energy increment over that distance in an unmagnetized
waveguide. Therefore, the effect of a guide magnetic field was to degrade the

maximum ion energy while not completely inhibiting collective ion acceleration.

IV. DISCUSSION OF SIMULATION RESULTS AND COMPARISON WITH PREVIOUS WORK

It has been observed in.a variety of experimental configurations that
injection of an intense relativistic electron beam with current above the space-
charge limiting current will lead to acceleration of a large number of ions to
between 2 and 3 times the beam kinetic energy. The ion energy was furthermore
measured to be about the same regardless of the ion mass. Measurements with a
Thomson parabola furthermore indicated that energy did scale with ion charge
state, Ze. This is all consistent with a simple electrostatic model, provided
that a potential e = = 2-3 mcz(y0 - 1) existed. That point seemed to be
settled when two-dimensional electrostatic simulations were performed which
showed agreement with earlier analytic models. Estimates of the effect of
neglecting time-dependent electromagnetic fields indicated that these should be
small. The overall success and simblicity of this model have led to its wide

utilization in the field of collective ion acceleration. Unfortunately, more
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sophisticated calculations and preliminary experiments conducted to study
virtual cathode characteristics have failed to verify the central point, exist-
ence of a "deep," steady potential well. In fact, on the basis of calculations
performed in this study, it seems likely that results may have been misinter-

preted because the mechanism bore a clear signature of an electrostatic

potential well.
The results of our program of numerical simulation indicate the following:
(1) Potentials greater than the beam kinetic energy, mcz(y0 - 1),
can form in a virtual cathode, but they are not steady and
scale with magnitude of injected beam current. Highest
potentials seen were |ed| = 1.7 mcz(y0 - 1) at a current,
I = 880 kA, much higher than any used in collective ion
experiments.
(2} Injection of an electron beam through a dense plasma slab
results in bulk acceleration of ions to between 2 and 3
times the initial beam energy. The spectrum is peaked at
e, = 1.5 mcz(y0 - 1). A large component of the energy is
gained after leaving the steep potential gradient, at dis-
tances of 1-10 cm from the dense plasma. Magnitude of the
potential well was |e¢| = (1 % 0.20)mc2(y0 - 1).
(3) Presence: of a moderately strong magnetic field degrades
collective ions acceleration but does not destroy it.
(4) In geometries examined to date, no high-energy ion tail,
i.e. €. 210 mcz(y0 - 1), has been seen in the simulations.
Some of these results are consistent with experiments. For instance, we found
that ions with different charge-to-mass ratios were accelerated along similar
energy trajectories. In numerical simulations, only the ratio q/M appears.
Thus, the just-mentioned result was prédicated on ions with the same charge
state but different mass. If it were interpreted as ions of the same mass but
different charge, we recover the observed charge state scaling, since energy
was calculated from measured velocity and assumed mass. The simulations do not
distinguish between either interpretation. Since no large potentials were
present, it seems likely that this electrostatic "characteristic" was due to

self-consistent inductive forces. The accelerating fields apparently fall off

after a relatively short distance from the virtual cathode due to evolution of
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the ion/electron current profile. This latter point, however, requires further
analysis, as do details of the observed charge and mass scalings.

There are several aspects about the simulations which require discussion.
Earlier simuiations showed deep potentials; the. present ones do not. It is
possible that the differences were due to neglect or inclusion of time-dependent
electromagnetic fields. An important asset and liability of simulations is
their self-consistency. Neglect of electromagnetic fields, for instance, does
not make them less so, but it does alter particle trajectories and, hence,
evolution of the n-particle system. For phenomena in which known analytic
results exist, the validity of a simulation can be directly checked; otherwise,
the numerical model can be at variance with reality without being obvious. Ana-
lytic models. do exist for early time virtual cathode characteristics. These
are not appropriate for describing late‘time dynamics, however, nor do they
admit ready criterion for ascertaining their regimes of validity. In our fully
electromagnetic calculations, potentials greater than the kinetic energy are
observed; but the currents at which they occur are quite high. Though anélytic
estimates of potentials, |ed]| (2-3)mc2(y0 - 1), may occur physically, it seems
that the injected current must be so excessively large as to have little prac-
tical applicability at present. It is, furthermore, possible that axial elec-
tric fields in our calculations may be siﬁilar to those earlier simulations,
since the time derivative of AZ compensates to some extent for the reduced ¢. )

In any case, it is misleading to represent the present results as being
definitive. While one needs the more general calculation to evaluate the apbli-
cability of simpler simulations, our calculations do not encompass all possible
physics. Though fully relativistic and electromagnetic, there is no guarantee
that important effects do not occur on shorter time or length scales. The debye .
length, for instance, is only marginally resolved in the dense plasma, although
it probably is in the accelerating region. The time step, moreover, ;s only
sufficient to resolve microwave radiation. Bremsstrahlung and synchrotron
emission could conceivably lead to radiation damping near the virtual cathode.

Rough estimates do not indicate this to be a strong effect, but a priori argu-
ments can be misleading. An effecq which may play a role in virtual cathodes
is growth of nonaxisymmetric modes‘Hriven by velocity shear. Since the calcy-
lations are axisymmetric, such phenﬁmena cannot be observed. Further study of

\
these and other sources of error in the calculations is under way, but the,
1
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interaction of many effects suggests the desirability of conducting three-
dimensional simulations. These, however, are not feasible at present.

Future study of wvirtual cathode~induced acceleration will be divided
between numerical simulation in higher energy and current regimes and analytic
investigation of the inductive acceleration mechanism. In particular, source
of the high-energy tail will be pursued. Understanding the acceleration
mechanism should permit identification of intrinsic limitations and means of
optimizing the accelerated ion pulse. Utility of the virtual cathode mechanism
as an injector for other collective accelerators seems to be its most reasonable
application, although existing performance may be suitable for light-ion-driven

inertial confinement fusion.
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TRAVELING VIRTUAL CATHODE ACCELERATOR STUDIES

by

Rickey J. Faehl
ABSTRACT

Simulations of a traveling virtual cathode col-
lective accelerator have been performed. Previous
calculations had shown turbulent motion of the virtual
cathode, but this is greatly improved when a linear
current rise is applied. Ions with a mass-to-charge

ratio of 1/50 are accelerated to v, = 0.4 c.

In the ¥Y77 report, we presented numerical results on the traveling virtual
cathode accelerator. This concept involves injection of an intense relativistic
electron beam into an evacuated waveguide whose radius varies as a function of
axial position.1 The space-éharge limiting current of a cylindrical beam,
therefore, also depends on position. By varying the beam parameters in time,
it was hoped that a virtual cathode could be formed far from the injection plane
and moved in a controllable fashion to accelerate ions to high energy. A
linearly diverging waveguide was employed in those calculations with no ions
present. Constant current injection yielded virtual cathode formation far from
either injection or extraction planes. Though fields of moderate magnitude
(E ~ 2 x 10°

motion of the virtual cathode, which seemed unsuitable for collective accelera-

V/cm) were created, a build-up of fluctuations led to irregular

tion purposes. Since then it has been found that a somewhat smaller field can
be moved smoothly toward the anode by injecting a linearly increasing beam
current. Though this mitigates against positive iomn acceleration, it may be
possible to accelerate negative ions. The following study was, therefore, con-
ducted to determine the suitability of the moving fields for‘negative ion

acceleration.

127



A series of simulation calculations were performed with a hollow relativ-
istic electron beam which had Yo = 5 (2 MeV). The waveguide had a linearly
increasing radius section which, in units of c/wp, diverged from a radius of
R1 = 5.44 at z = 170 to R2'= 10.88 at z = 340. The inner beam radius was
R, . = 2.18 and the outer radius R

bi b
v = 1.24 (21 kA). A solenoidal magnetic field was imposed of strength
1/2

0 = 3.11, yielding a normalized beam current

- _ 2
QO = 4.0 wp, where u& = (4me nb/m)

space-charge limit at the injection plane, but by z = 340, the limiting current

and QO = eBO/mc. This beam is below the

is well below that of the beam. Thus, a virtual cathode should form in the
interior. With risetime to full current of u5tR = 75, we expect steady pro-
pagation throughout a waveguide of length L = 170 by wpt = 250. At wpt = 325,
we superimposed a linearly increasing component on the steady current,
I-= Io[l + (t - 325)/500].

Two completely different versions of CCUBE were employed in this study.
The first was employed for the previous traveling virtual cathode studies. It
used potentials (K,¢) to move particles and canonical momentum for the particle
quantities. For these purposes, it will be referred to as the "old code'". The
other version used ordinary relativistic momenta (pi = ymvi) and electromagnetic
fields (E,B). This "new code", however, differed radically from the old one in
its use of an arbitrary order Galerkin particle mover and a new area weighting
scheme for current densities and fields. The new code is a bit faster, more
flexible, preserves the continuity equation better, and gives more quiescent
transverse fields. Longitudinal fields, however, can be significantly noisier.
The trade-off between electrostatic and electromagnetic noise can be advanta-
geous in some situations, deleterious in others. A priori evaluation of the
relative effects, moreover, is difficult since it is not trivial to decouple
longitudinal from transverse contributions to the time-dependent fields. It is
safe to say, though, that noise properties in the two versions of CCUBE are
different.

Steady conditions, exceeding the space-charge limit, were reached by
wt 2 250. Electric field fluctuations, however, accreted far more slowly in
this geometry than are typicall§ seen in simulations of virtual cathodes near
the anode. Observable build-up did not occur until wpt > 320 and first reflec-
tion, not until wpt =.400-420. These results were obtained with the new
version. Using the older versioq, onset of reflection was delayed to wpt ~ 500.

The location of first reflectiop furthermore differed somewhat. 1In the new
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code reflection commenced at roughly z = 255, while calculations with older
versions indicate virtual cathode formation at between z = 275-305.

Despite the apparent discrepancy between the two code versions, it should
be remembered that any given simulation is completely deterministic and repro-
ducible. First-order phenomena must always be consistent for the simulation to
be valid. Second- and higher-order interactions, however, can be affected by
cell or time-step size, number of particles per cell, ordering of numerical
operations, or particle weighting. Numerical fluctuations due to particle
discreteness or finite cell size are able to couple directly with physical
fluctuations. In fact, in a set of operations which are repeated many times,
i.e., typically thousands, interchange of numerical operations which are alge-
braically commutative can lead to discrepancies in the second or third signifi-
cant digit. If the results were susceptible to numerical details though,
simulation of plasma phenomenon would have little general validity. Fortun-
ately, it is characteristic of these fluctuations that they have a mean of zero;
first-order trajectories and fields tend to be invariant when averaged over many
fluctuation times, i.e., autocorrelation times. When considering higher order
moments of the physical quantities, though, constant caution must be exercised
to ensure that numerical fluctuation effects have been accounted for.

This discussion is motivated by differences in virtual cathode formation
in two different versions of CCUBE. If the formation process were governed by
first-order quantities such as total current, beam energy, or beam and waveguide
dimensions, then there should be no discrepancy. If the local space-charge
limiting current were exceeded, propagation would be disrupted and the virtual
cathode would form. This does not explain the long interval between establish-
ment of steady conditions and first electron deflection, however. (For typical
beam parameters, this interval is on the order of 2 nsec!)

On the other hand, if virtual cathode formation is caused by fluctuation
build-up due to space-charge modifications of Langmuir wave dispersion, the
apparent discrepancies are plausible. The geometrical factor governing space-
charge limiting current is approximately f = [1 - (b/a)2 + 22n(Rw/a)]-1, where
b is the inner beam radius, a the outer begm radius, and Rw = Roz/L in our
case, is the waveguide radius. Taking the two extremal formation positions,

z . =255 and z = 305, one finds a relative difference,
min max
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2(fmin - fmax)/(fmin * fmax) = 15% ,

which is not unreasonable for a noise-induced process. Moreover, the fact that

the more distant virtual cathode forms significantly later is consistent with
accumulation of slowly propagating potential fluctﬁations.

An interesting aspect of virtual cathode formation is its similarity to
classical phase transitions. The critical point is space-charge limiting cur-
rent. The actual transition, however, is driven by build-up of fluctuations,
which provide the necessary free energy. The new state, involving a phase space
separatrix between reflected and transmitted electrons, is clearly higher
energy, since reduction of the current will lead to convection of potential
downstream and complete beam propagation again. The analogy with phase transi-
tions probably can not be pushed too far, since, as was discussed in Appendix H,
self-consistent inclusion of reflected electrons can lead to a time-dependent
state. We are pursuing this interesting point, however.

In steady-current simulations, the virtual cathode was observed to undergo
progressively more violent, irregular oscillations. This is consistent with
the kind of oscillations observed in near-anode virtual cathodes, correlated
with reflected electrons. Such behavior is not conducive to long ion/field
synchronism. When a linearly increasing current component was superimposed on
the steady current, however, the virtual cathode commenced to move smoothly
toward the anode. This is the correct qualitative behavior predicted by simple
space-charge 1limiting considerations. Fluctuations around the gross motion
were very minor as Fig. 1, a plot of the reflection position as a function of
time, shows. A small inflection near wpt = 470 can be associated with reflec~
tion of electrons. In general, however, very little electron reflection was
observed as the virtual cathode propagated from z = 255 to z = 185, and the
"trajectory" was very smooth.

A new feature of the moving virtual cathode is the formation of new virtual
cathodes behind the original as current is increased. These also propagated
toward the anode. Figure 2 shows a typical energy phase space plot at

w t = 520. The associated axial electric field is plotted in Fig. 3. These
propagate with roughly constant spacing. The trajectories of three co-linear
virtual cathodes are depicted in Fig. 4.

This multiple virtual cathode structure is seen in both new and old ver-

i
sions of CCUBE. As Fig. 5 shows, the trajectories are both displaced in time
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and space. This was discussed above. If they are replotted, however, in terms

of the approximate local current,

i t - to - z/v0

0 T

the agreement is satisfactory. Also plotted in Fig. 6 is the theoretical
trajectory for our linearly increasing current; it clearly does not describe
the trajectory quantitatively. Thus while virtual cathode motion is roughly
derivable from simple space-charge arguments, reasonable agreement apparently
requires a more sophisticated treatment. This latter will be needed to design
an effective negative-ion accelerator. In the meantime, however, we can employ
the observed motion heuristically to study collective ion acceleration.

The virtual cathode motion in Fig. 1 exhibits acceleration ranging from
Igl = 2.5 x 10_4 to 6.5 X 10-3 in units of wpc. For ion synchroni.m with this
motion, we must keep Iq/MIEz > |a]. Since the observed peak field, in commen-

1/2

. 2 " ~ .
surate units, (4nn.mc”) , is EZ < 0.2, we must choose a nonphysical charge-

to~mass ratio, Iq/én 2 1/30 (g/M = -1 for electron) to ensure ion acceleration.
The ratio actually used was |q/M| = 1/50 for both positive and negative ions,
so desynchronism is expected. The source for ions in our simulations was a
plasma slug with length Lp = 20 c/wp, mean radius Rp = 1.0, and density
np = 10-3 By Low density was employed so that the accelerated ion bunch would
not significantly perturb the virtual cathode motion and also to minimize plasma
shielding of the virtual cathode fields. In fact, it is possible that a high-
density bunch, i.e., np = n,, would lead to self-synchronism of fields with the
negative ions in a constant current beam. This conjecture has not been tested
yet, but it seems to merit further investigation.

Figure 7 shows phase and configuration space for both ion species at
wt = 420, the time of initial virtual cathode formation. An analogous set of
figures at wpt = 560 (Fig. 8) shows that both species have been accelerated,
albeit in opposite directions. As expected, the negative species have received
the bulk of the energy, reaching velocity of v, =~ 0.4 ¢, while the positive
ions are accelerated only to v, =~ 0.2 c. With this charge-to-mass ratio, al-
most complete ‘'snowp.owing" of the negative ions is observed. Compression of

the negative bunch has resulted in a density enhancement of roughly a factor
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of 3 over initial demsity, but this is still a small perturbation on the beam
density.

The results of these calculations can be briefly summarized. Injection of
time-dependent current has caused a vacuum virtual cathode to move, in agreement
with theoretical expectations. Irregular, turbulent motion seen in simulations
of virtual cathodes formed in diverging waveguides, when constant current was
injected, is found to be highly attenuated in the present case. Negative-ion
acceleration is seen when a plasma slug is placed near the position of initial
virtual cathode formation. Peak velocity of over v, = 0.4 c is measured for a

linear current risetime of 500 w;l.

There are still major issues unresolved about this collective ion acceler-
ation. Ccnstant current injection into a vacuum led to unsuitable virtual
cathode characteristics; injection of a current form I = Io[l + (¢t - tO/t)],
where w T = 500 yielded smooth virtual cathode acceleration back toward the
anode, but at too high an acceleration to pick up realistic negative ions. A
key question is whether there exists a parameter window in which smooth motion
at a slow enough rate can be induced. This is not entirely academic, since it
is plausible that the reason for laminar motion was because fluctuation flux
into the virtual cathode was fast enough to prevent potential build-up large

enough to induce significant reflection. Motion which is too slow may allow

the large potential buildup and consequent high reflection flux. Better under-
standing of the noise level of electron beams would facilitate comparison with
simulation results and permit more accurate evaluation of the viability of a
traveling virtual cathode accelerator. Other questions, such as the effect of
higher density plasmas and the rate at which these high fields induce negative
jon stripping require further investigation. These will be pursued as time

permits or until nonfeasibility is unambiguously demonstrated.
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Energy phase space at wpt = 520,

same parameters as in Fig. 1.

Fig. 3.

Axial electric field as a function
of space for beam configuration shown
in Fig. 2.
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APPENDIX J

A GALERKIN ALGORITHM FOR MULTIDIMENSIONAL
PLASMA SIMULATION CODES

To be published as a Los Alamos Scientific Laboratory report.
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A GALERKIN ALGORITHM FOR MULTIDIMENSIONAL
PLASMA SIMULATION CODES

by

Brendan B. Godfrey

ABSTRACT

A Galerkin finite element differencing scheme
has been developed for a computer simulation of
plasmas. The new difference equations identically
satisfy an equation of continuity. Thus, the usual
current correction procedure, involving inversion
of Poisson's equation, is unnecessary. The algo-
rithm is free of many numerical Cherenkov insta-
bilities. This differencing scheme has been
implemented in CCUBE, an already existing relativ-
istic, electromagnetic, two-dimensional PIC code
in arbitrary separable, orthogonal coordinates.
The separability constraint is eliminated by the
new algorithm. The new version of CCUBE exhibits
good stability and accuracy with reduced computer
memory and time requirements. Details of the
algorithm and its implementation are presented.

I. INTRODUCTION

Realistic coemputer simulation of intense relativistic beam phenomena
typically is very demanding. Boundary conditions are complex and often have a
dominant effect on the physics. Significant space and time scales usually are
of disparate magnitudes. There 1is occasional need for exotic coordinate
systems. In general, relativistic plasma PIC simulations are more prone to
numerical instability than nonrelativistic plasma simulations. To cope better
with these considerations, we have implemented a Galerkin finite element dif-
ference algorithm into an already existing two-dimensional plasma simulation
code, CCUBE.

The Galerkin algorithm rebresents the electric and magnetic fields as

sums of finite elements, in this case splines. Equations interrelating 'the
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coefficients of the finite elements, effectively the field values at mesh
points, are derived by inserting the expansion for the fields into the usual
Lagrange variational integral and minimizing the integral with respect to the
coefficients. This procedure not only gives a discretized set of Maxwell's
equations but also specifies a consistant interpolation procedure between the
fields and the simulation particles. Galerkin's method is employed successfully
in many branches of computational physics and engineering. References 1 and 2
provide good overviews. Lewis has discussed the application of Galerkin's
method in the spatial domain to plasma simulation,3’4 while Godfrey has ouflined
the extension to space and time.s’

In plasma simulation Galerkin algorithms conserve charge on the mesh, con-
serve momentum along cyclic coordinates, minimize energy errors, and ameliorate
certain numerical instabilities.7 It is the first of these features that we
wish to emphasize. If the charge and current densities on the mesh satisfy a
discretized equation of continuity, then Maxwell's equations may be advanced
explicitly in time without inversion of Poisson's equation to obtain the elec-
trostatic potential or to correct the longitudinal current. Dispensing with
Poisson's equation greatly facilitates use of nonseparable coordinates and
irregular boundaries.

Features of CCUBE, the two-dimensional plasma simulation code in which thé
algorithm has been implemented, can be summarized as follows. CCUBE was devel-
oped specifically for charged particle beams and, hence, is relativistic and
fully electromagnetic. It runs in any orthogonal coordinate system, accommo-
dates irregularly shaped boundaries and internal structures, and injects and
absorbs particles at any of the boundaries. The code supports extensive diag-
nostics, generates movies, and is optimized for the CDC-7600 computer. More
details are given in Ref. 8. CCUBE has been employed in é variety of applica-
tions, including electron beam heating of plasma, ion beam propagation, collec-
tive ion acceleration,g’10 space-charge limited flow,8 electron beam diodes,

11
slow-wave structures, and free electron lasers.

I1. DESCRIPTION OF THE ALGORITHM
The heart of the Galerkin algorithm described here is the interpolation
between particles and fields. The 'spatial interpolation procedure in two

dimensions is ‘
il
i
|
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E(B), J(3), p Linear in X1 and X2
g S, 5@ NGP in X , linear in X,
E(z), J(z), B(l) Linear in X], NGP in Xz
B(S) NGP in Xl and XZ .

NGP designates nearest grid point interpolation. The fields and currents are
staggered on the spatial mesh in the groups just listed. See Fig. 1.

Further setting apart the algorithm is its requirement for temporal inter-
polation. As in conventional approaches, electric fields are applied to par-
ticles at discrete times. However, the magnetic field is applied throughout
each time step, NGP interpolation in time. Moreover, during each time step the
average current during the time step is computed, again NGP interpolation. The
particle charge density is not needed except at initialization and for diagnos-
tics. It is evaluated at discrete times. Actually performing these NGP
temporal interpolations is, unfortunately, impractical. Therefore, we settle
for an N point quadrature as an approximation. The magnetic field is applied
to the particles at N uniformly spaced points in time during each time step.
The instantaneous current is evaluated at each time point and the N values

averaged to provide input to the field solver. The particle equations are

explicitly
-1
dx/dt = y P
m -1 N -1 m+k
dP/dt = E 6&(t - mAt) + N E y PXxB a(t-mAt-oliAt)
' i=1

(1)

m+s -1 N -1
J = N Ey PG(t-mAt-OtiAt)

i=1

o, = (i - ¥)/N i=1,N
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For simplicity the equations are given for rectangular coordinates only. Gener-
alization to curvilinear systems is straightforward. Note that we have consid-
ered in some detail the locations of the temporal quadrature points. The
uniform spacing indicated generally is optimal. Although the quadrature
approaches true NGP interpolation only as the number of points becomes infinite,
using just a few points typically gives good results. Figure 1 illustrates the
temporal evolution of particles and fields for N = 2.

The field equations naturally consistant with the interpolation procedures
described above involve nine-point differencing. However, we have found that
five-point differencing gives nearly as good accuracy with reduced computation
per time step and a slightly relaxed Courant condition. Only when greater
accuracy for high-frequency light-wave phase velocities is required is the nine-

point scheme noticably superior. With this choice the electric fields are

initialized from Gauss' law, Eq. (2).

[Er(ll'z;zon lv(llzéo !/Ax . [E(z)no+ (2)no ’J/Ax =0 2
1 272 & e myp 12
A similar expression exists for the magnetic fields,
(1)’!2 (1))'2 (2)"2 - (2),!2 -
[%n1+1,n2+% N +h Ax + f,n2+l Bn1+%,n2 Ax2 =0 . (3)

How these equaticns are best solved depends on the details of the physical con-
figuration béihg initialized. Sometimes it is necessary to solve Eqs. (2) and
(3) simultanéously with force balance equations for the particle distribution.
In any case it is critical to satisfy the field initialization equations very
accurately, as errors introduced here persist throughout the simulation. The
electric and magnetic fields, once initialized, are stepped forward in time

.according to Eqs. (4) and (5), using currents defined above.
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(1),m+1 (,m _ (3) ,m+% (3) mtl
[En1+7/2,n2 En1+/2.n2J/At - [n +%,n +52 n ‘H, n,s sz
(1),m+
nl+%,n2
(2),m+1 (2),m (3),m+% (3),m+%
- E At = -|B 772 ) ax 4
[ npsnyth "1’"2’“’]/ ["1”""2”’ "1"”"2’“’]/ ! ‘
(2),m+%
nl,n2+%
1
R S
11 1212 1 ‘21 2 1 2
- (1),mtys _ _(1),m+% (3),mt+%
[ﬁn yn, % Bn ,n -%}/ng Jn n
1’72 1772 172
1
[B(l),m::a - (1) m-':z]/At - [(3) m-.’1 g(3),m /Ax
nyany*%E ng,n,ty ) Byl
) -1
[Br(lz-?-”mr.:? ) Bxgzz;mnj/m; = [x?ilmn B Er(la)r,lnj/Axl
1 2 2 1 2 2 1?
(5)
(3),mt _ _(3),m-% - (2) m (2),m
[Bn1+!2,n2+!2 Bn1+!2,n2+!2 At = n1+1 n2+—2 Enl,n2+32 Axl

(1),m

g5

n +%,n +1

(l) m

0]

It is interesting that within the context of the Galerkin algorithm the

magnetic field equations, Egs.

(3) and (5

), are free of truncation error. Sub-

stitution of the finite element expansions of the electric and magnetic fields

into Maxwell's equations give Egs.

tion. That Egqg.
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based on scaler and vector potentials can be constructed such that they yield
numerical results identical to the present algorithm based directly on the
fields. Moreover, those potential algorithms are related by a limited algebraic
gauge invariance.5 The field equations given in this report‘are to be preferred
only because they are more convenient to implement.

Although Eqs. (3) and (5) are truncation error-free, Eqs. (2) and (4) are
not. Nonetheless, an algebraic relation exists among them. Substituting Eq.

(2) into Eq. (4) yields
g(1),my (1) ,mt% B+ (2) mty _ 5(2),m+y Ax
n1+‘1,n2 nl %,n 2 ,n +1 nl,nz-% 2

m+1 m
+ - At = 0 . 6
[pnl,n2 pnl’nz]// (6)

This relation is recognizable as an equation of continuity for the interpolated
charge and currents. Note, however, that it follows naturally from the discre-
tized electric field equations and is not introduced in some ad hoc fashion.
Alternatively, Eq. (6) can be viewed as a consistancy relationship. If it is
true, then Eq. {(2) satisfied at one time step is necessarily satisfied at all
time steps. Unfortunately, Eq. (6) is exact only for a true Galerkin algorithm.
The quadrature approximation introduced into the particle equations, Eq. (1),
gives rise to small errors in Eq. (6). Determining their magnitude is one goal

of the simulations outlined in the following section.

I11. PRELIMINARY TEST RESULTS

As a test of the algorithm, we have performed a series of simulations of
a nonneutral relativistic electron beam propagating along a guide magnetic
field in a metallic waveguide. Simulations are doubly aperiodic in cylindricél
coordinates with Az = 0,391, Ar = 0.185, and At = 0.165. (Units are chosen such
that ¢ = wp = 1.) There are approximately four electrons per occupied cell.
Standard smoothing is applied to the shortest wavelengths of the interpolated
current. Beam parameters are v = 1.75,‘y = 7.0, and w, = 2.0. The beam enters
through a ground plane and, therefore, bounces radially as it propagates. Such
configurations are characteristic of so@e collective ion acceleration studies.9
Figure 2 is a movie frame taken from o&e simulation. The beam enters from the

|
|
|

143



left and exits at the right, although some electfons strike the waveguide at
r = 3.8 and are absorbed.

These accuracy tests were intended to be as realistic as possible. Thus,
the results are presented even though the simulations were subsequently found
to be weally numerically unstable. The instability, which typically is abso-
lute, occurs at large perpendicular wave numbers and arises from the interaction
ot high-frequency light waves and aliases of the Doppler-shifted beam modes.
In other tests in which this instability is suppressed, accuracy is much im-
proved. The present results, shown in Figs. 3 and 4, are nonetheless satisfac-
tory. .
In each figure we compare results for N = 1-, 2-, and 3-point quadratures.
These results are contrasted with those of a '"control" case, the canonical
momentum algorithm discussed in Ref. 12 and implemented in an earlier version

of CCUBE.

CCUBE is almost entirely vectorized, and for optimized running on the
CDC-7600 employs the vector arithmetic’package STACKLIB13 and a few specially
written vector routines.14 Perhaps, a 25% increase in speed could be achieved
by hand-coding key subroutines in assembly language but at the cost of consid-
erable effort and a loss of flexibility. Figure 3a gives total central proces-
sor running time per particle per time step for our tests. Production runs for
the same physical parameters would be nearly 10% faster due to a reduced need
for diagnostics. The new algorithm actually is faster for one- and two-point
quadratures and is equal in speed to the control algorithm for three points.
The savings result principally from eliminating the Poisson equation soclver,
which is quite slow in curvilinear coordinates.

Continuity errors, a significant factor in evaluating the quadrature
approximation to our Galerkin algorithm, are determined by evaluating the errors
in Eq. (2) at late times. Figure 3b shows the relative RMS accumulated error
at t = 200. For the control case, the usual current correction routine is by-
passed. We see systematic improvement in the error as the number of quadrature
points is increased. Recall that all these test simulations were mildly numer-
ically unstable. Further simulations with that instability suppressed show a
marked decrease in the continuity errors. We shall report on those results at
a later date.

Both algorithms are of the "energy conserving" typeB’4 énd exhibit very

good total energy conservation over long periods of time as illustrated in
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Fig. 4a. The accuracy is particularly impressive in view of the large energy
fluxes through the boundaries. The linear decrease in energy error with in-
creasing number of quadrature points results principally from the improved
integration of cyclotron orbits about the magnetic guide field.

Relative noise levels given in Fig. 4b were obtained by comparing the peak
amplitudes of high-frequency electric field fluctuations with the average ampli-
tudes of the low—frequency electric fields. Relative energy densities were, of
course, much lower and rarely exceeded one percent. Although some of this noise
is physical, most of it is caused by particle discreteness effects near the
boundaries and by the weak numerical instability already mentioned. Increasing
the number of quadrature points decreases the former effect. It is straight-

forward to reduce further the noise levels by judicious smoothing, if desired.

IV. CONCLUSIONS

A proper evaluation of the Galerkin space-time-symmetric algorithm clearly
requires additional practical experience. We offer as a tentative judgment that
the Galerkin algorithm in CCUBE generally is competitive with more conventional
finite difference algorithms and yields significant advantages in cases when
solution of Poisson's equation is burdensome. Clearly, it is at its best in
multidimensional curvilinear systems. In closing, we make some more specific
observations.

The Galerkin algorithm facilitates simulations in complex geometries.
Particle motion in large magnetic fields is treated well. Energy is very well
conserved. Noise levels are adequately low, although current smoothing is some-
times required. Residual continuity errors accumulate slowly and, if desired,
can be eliminated by occasional reinitialization of the electrostatic fields.
Numerical Cherenkov instabilities7’12 are to some extent suppressed. Computer

requirements are not excessive.

ACKNOWLEDGMENTS
This project has profited from the contributions of far more people than

can be acknowledged individually here. Their assistance is no less appreciated.
This research was performed under the auspices of the U. S. Department of
Energy, with additional support from the U. S. Army Ballistic Missile Defense
Advanced Technology Center and the U. S. Air Force Weapons Laboratory.

145



Vector scatter-gather routines were written by K. Fong; a vector recipro-

cal square root routine was written by L. Rudsinski.
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