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COLLECTIVE ION ACCELERATION

OCTOBER 1977 - SEPTEMBER 1978

by

R. J. Faehi, B. B. Godfrey, and W. R. Shanahan

ABSTRACT

Numerical and analytic studies of collective ion
acceleration in intense relativistic electron beams
are presented. Investigation of autoresonant accel-
eration has shown that radial beam inhomogeneities
distort the slow cyclotron wave into a surface-
localized mode. Variation of linear wave fields in
inhomogeneous magnetic fields is strongly affected by
this. Numerical studies of self-consistent cyclotron
waves show the persistence of linear characteristics
even at large amplitudes. Propagation of large
amplitude waves has been observed over moderate dis-
tances in simulations without significant attenuation
or nonlinear disruption.

Ion acceleration in virtual cathodes has also
been studied. Insights into both formation and late
time dynamics have been gained. Increased virtual
cathode understanding is being pursued toward defin-
ing optimal configurations.

Future plans are outlined.

I. SUMMARY

Collective ion acceleration in intense relativistic electron beams is one

of the most promising and ingenious applications yet proposed for pulsed power

technology. It is also still highly conjectural. Successful generation of

significant currents of heavy or light I ions to energies of several hundred MeV

per nucleon in a compact and relatively inexpensive system would find ready

uses in electronuclear breeding, inertial confinement fusion, basic nuclear



science, medical and materials research. In fact, the extent of its applica-

tions is difficult to gauge because no source has ever combined the energy and

current which these devices promise to yield. Continuing research is needed to

bring any collective acceleration concept to fruition, however. At Los Alamos

Scientific Laboratory (LASL), we are engaged in an intense theoretical effort

to understand and evaluate several of the most promising schemes.

The autoresonant accelerator, conceived by Austin Research Associates

(ARA), is a proposal to trap ions in large cyclotron waves carried by a rela-

tivistic electron beam. Acceleration is achieved by spatially varying the

magnetic field in a waveguide. Although this is conceptually simple, there are

extensive unresolved questions about wave coherence, propagation in unneutral-

ized beams, and nonlinear phenomena, all of which seem capable of disrupting

the cyclotron fields. Conventional, charge-neutral plasmas are so rich in

wave-wave and wave-particle interactions that large-amplitude monochromatic

waves have little trouble spreading their energy over broad wave and/or

particle spectra. This experience had induced initial pessimism on the pros-

pects for a scheme requiring narrow band propagation for up to 10 meters.

Extensive numerical simulation at both LASL and ARA has shown the feasibility

of growing such waves, however. LASL studies have furthermore indicated that

extraction from the amplifier can be accomplished with little difficulty and
2

that propagation over moderate distances induces only minimal attenuation.

The reason why long coherence scales can occur is intimately tied to the nature

of unneutralized electron beams. The single species medium does not possess

low-frequency modes to facilitate wave and particle scattering, while the wave

phase velocity is too far removed from particle velocities (v = c) to permit

direct wave-particle interactions. The only other sources of wave decay are

three- and four-wave couplings and intrinsic phase mixing, which are fairly

weak in high-density beams. Consequently, the required beam wave coherence

does not automatically mitigate against collective traveling wave accelerators.

The importance of beam nonneutrality must be emphasized when considering

collective accelerator characteristics. Large self-fields, for instance, lead

to uniquely determined equilibria" with significant radial gradients in energy

and rotation. Self-consistent cyclotron waves have been demonstrated to be
much more surface localized than previously believed. Further investigations

at LASL indicate that this strongly affects the wave accelerating fields in
3

both homogeneous and spatially varying magnetic fields. One result of this is



that smaller fields will be available but that they will not depend as strongly

on cyclotron wavelength.

Other collective acceleration mechanisms have also been investigated at

LASL. One of the more interesting involves formation of a virtual cathode in

the vicinity of a plasma sheath. Virtual cathodes form when beam current is

greater than can be sustained by the waveguide. The ensuing beam disruption

effectively transforms beam kinetic energy into locally intense axial fields.

These have been proposed as the source of collectively accelerated ions measured

in many experiments, where ions at 2-3 times the beam energy occur. Numerical

simulation of representative configurations yielded the ion energy spectra, but

without the electrostatic characteristics commonly taken to be the accelerating

source mechanism. These continuing investigations promise to yieljd entirely

new interpretations for this class of experiments, with concomit&int insights

into their optimization. //

Methods have also been suggested for moving the virtual cathode to accel-
4

erate negative ions. Numerical simulations have demonstrated this under

somewhat artificial conditions. There are still questions as to the viability

of this scheme, but enough progress has been made to warrant continued investi-

gation, albeit at a low level.

Study of the complex, self-consistent dynamics of nonneutral relativistic

beams requires sophisticated numerical tools. We have developed an exception-

ally powerful and flexible code for treating relativistic charged particle

beams, CCUBE. CCUBE is a two-dimensional, fully electromagnetic, relativistic

particle-in-cell simulation code. Its implementation in generalized orthogonal

curvilinear geometry is especially useful in simulation of complex configura-

tions which frequently arise in collective acceleration schemes. This capa-

bility is further enhanced through employment of a Galerkin particle algorithm.

With suitable density weighting, the algorithm simplifies calculation of

complicated boundaries.

•' !i
• ;i

II. PROGRESS DURING FY78 j

Computational and analytic research on collective ion acceleration at LASL

during the past year has concentrated on understanding the physics of the Auto-

resonant Acceleration concept, while supporting the feasibility experiment of,

it being conducted by ARA. We had previously demonstrated self-consistent wave
»rLti<growth relevant to autoresonant acceleration in numerical simulations. During

II '
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the past year, we have studied the extraction, propagation, and nonlinear char-

acteristics of self-consistent cyclotron waves suitable for autoresonant accel-

eration. We continued numerical studies of small-amplitude waves to infer

properties during inhomogeneous propagation, and unexpected results were ob-

tained. To complement our previous helical wave-growth studies, we undertook a

detailed linear study of an alternative growth mechanism, the inductive loop.

Several alternate colleclive acceleration mechanisms were also considered at

LASL during the last year. Further study has shown the traveling virtual

accelerator may yet be feasible. Studies directed toward understanding experi-

mentally observed acceleration associated with virtual cathodes was also

initiated. Finally, a low-level effort was continued on the LASL-originated

concept of a temporally phase-modulated accelerator.

A. Autoresonant Accelerator

Previous LASL studies of the autoresonant accelerator have shown that

large-amplitude cyclotron waves can be grown in a helical waveguide, that rela-

tivistic beams can propagate in spatially decreasing magnetic fields, and that

collective acceleration of a small number of ions is possible in such fields.

The waves employed in this last effort were introduced artificially. Extensive

numerical analysis of the linearized cyclotron waves, conducted in conjunction

with the full simulations, however, shows that the radial structure of true

eigenmodes is highly localized on the beam surface. Careful examination of the

artificially excited waves in the simulation indicated that they probably con-

tained large continuum, as opposed to discrete, mode components. Thus, while

the simulation waves propagated in satisfactory agreement with linear theory,

there were large uncertainties as to whether their overall behavior was repre-

sentative of self-consistent laboratory waves. To address this problem, we

extended our linear theory calculations to investigate the effects of inhomo-

geneous propagation on realistic small-amplitude cyclotron waves.

Numerical analysis of linear eigenmodes in intense relativistic electron

beams has revealed the importance of using self-consistent beam equilibria.

Inclusion of radial variations in y, due to space-charge effects, and rotation

can radically distort modes, especially the slow-beam cyclotron one in which we

are mainly interested. This can be seen clearly by considering certain charac-

teristics, such as the ratio of radial beam modulation to axial electric field.

It should be remembered that while absolute magnitudes have no meaning in

linear theory, the relative magnitudes are fixed and highly characteristic of

4



the wave. The above-mentioned ratio, moreover, is singularly relevant to col-

lective acceleration, for it relates the amount of beam surface modulation to

the accelerating electric field. For typical, beam and wave parameters, the

difference between including radial "/-variations and assuming constant y is a

reduction of the axial electric field by a significant factor, i.e., 1/3 to 1/4,

for a given surface modulation. The correct equilibrium is important for

accurate calculation of cyclotron wave properties. As the wave propagates along

a decreasing magnetic field, it is, therefore, crucial that self-consistent

equilibrium changes are accounted for.

The numerical approach used by us started with determination of a self-

consistent eigenmode for a given homogeneous magnetic field, current, and

density profile. Then a new magnetic field was chosen and the corresponding

beam equilibrium calculated, under assumption of constant current, angular

momentum, and energy. The original wave information was included through the

above conservation laws, plus conservation of wave energy flux. In cases of

only spatially varying fields, the frequency is also a constant of the motion.

For sufficiently weakly varying quantities, this procedure allows calculation

of local dispersion and eigenmode structure. The results of such calculations

differ significantly from simpler heuristic estimates of inhomogeneous propaga-

tion. Taking a wave which is initially in a high field region (short wave-

length) and following it in a decreasing field, we find that its phase velocity,

v ,, does not depart markedly from simple linear expectations, i.e.,

V = V ( 1 + Q/Y V » (1)

•

where Q = eB /me. However, in regard to its wavefield, the simple guess was

that the potential of the wave would remain constant, so that

Ez«k<t.o , (2)

that is, the field would decrease linearly with the magnetic field. This does

not account for the nature of a beam cyclotron wave, however. Our detailed

calculations indicate that E remains
z

When the wavelength becomes longer,

virtually constant as long as kRn > 1.
B

Eq. (2), in fact, is reasonably good.
This more accurate treatment also shows that a much larger beam modulation is

required to produce the accelerating Er field, however. Since stability limits



the effective relative modulation to roughly one-half the beam radius, or

AR/RD = 1/2, there is a practical limit to the cyclotron wave magnitudes which
D

can be used. Both factors must be included in designing the axial magnetic

field variation, such that acceleration is accomplished in minimum distance with

neither beam disruption nor particle de-trapping. These considerations are

discussed in detail in Appendix A for typical solid beams and field parameters.

The above considerations were predicated on the validity of linear theory

in realistic, radially inhomogeneous beams. Since the self-consistent results

differ so quantitatively from those of simple model theory, it is important to

determine which, if either, theory actually describes nonlinear, physical cyclo-

tron waves.

We have previously demonstrated the simulation ability to grow large-ampli-

tude cyclotron waves in a helical waveguide, so studying self-consistent waves

was only a matter of extracting them into a smooth-walled guide. The advantage

of employing a realistically terminated growth section was that the amplitude

of the waves could be controlled by varying the length of the section. This

also facilitated extraction. The primary concern over cyclotron wave extrac-

tion, and the reason matched terminations help, is that the unstable, growing

eigenfields are modified by interaction with the helical waveguide fields.

Thus, when the wave leaves a growth section, it must relax toward its stable

state. It was feared that this nonadiabatic relaxation might distort or disrupt

the coherent wave. With matched terminations, however, the waveguide fields

are damped smoothly to zero by the end of the growth section. Residual fields

not terminated on the helix were "soaked up" by a ring of resistive material

outside the helix. With this arrangement, waves were observed to propagate

freely from the growth section, with little distortion of the cyclotron fields.

High-frequency electromagnetic noise was enhanced by extraction but at least

part of this had a purely numerical origin. Even if physical, however, such

noise could probably be controlled experimentally. The significant point is

that the cyclotron fields remained quiescent and narrowband.

After extraction, we followed î he wave relaxation for distances on the

order of one meter. This is probably further than would occur in the proof-of-

principle experiments, since the beam would pass into an adiabatic magnetic

field compresser as soon after growth as practical. In the interest of studying

the nonlinear structure of the waves, however, these and longer propagation

studies are useful.



One of the first observations made about the relaxation process is that

the fields suffer relatively little attenuation, only of order 10-20%. Self-

consistent linear theory predicts that the ratio of beam modulation to axial

electric field, AR/E ', is smaller for helically unstable cyclotron waves than
z °

it is for stable waves. Preliminary estimates had assumed that the modulation

would remain constant, so transition to smooth-v/alled propagation would result

in significant reductions in accelerating field. In fact, it is the field which

is roughly invariant and the modulation which increased. This is beneficial in

that larger fields are obtained, but worrisome with respect to wave contact, with

the walls. The observation is also consistent with self-consistent linear

theory.

The ultimate test of linear theory consists of measurement of the radial

wave profiles. Simple theory predicts a relatively flat, bulk perturbation

while self-consistent theory gives a highly surface-localized wave. Since

behavior of the wave in an acceleration section is quite different for the two

theories, it is important to determine which describes large-amplitude cyclotron

waves. Careful diagnosis of the simulations shows that the large-amplitude

cyclotron waves are in good qualitative agreement with self-co«-sistent theory.

In fact, since measured uncertainties are magnified when one i^rms ratios, the

magnitudes are in remarkably good quantitative agreement with linear theory.

The major surprise is that nonlinear cyclotron waves, in these high-density

beams at least, differ so little from their small-amplitude counterparts.

Appendix B describes this work in more detail. >

Attention has been focused on the m = 0 cyclotron wave in a solid bean

because it is the desired acceleration mode and the projected beam, configura-

tion. However, in the growth section studied most exhaustively tit LASL, the

helical waveguide, various nonaxisymmetric modes (m / 0) are also destabilized.

We have numerically examined nonaxisymmetric waves for stability with GRADR and

found that the m = 1 possesses the largest growth increment of all m ^ 0 waves

(Ref. Appendix C). In fact, for the current ARA experimental parameters, the

m = 1 instability is significantly stronger than m = 0. Variation of the para-

meters, such as increase in magnetic field, can preferentially reduce m = 1 with
respect to m = 0, but no high-current egime has been discovered yet in which

m = 0 is the stronger of the instabilities. None of these studies can address

the problem of nonlinear competition between the modes or give information about

the final wave state, both of which nay prove interesting topics for future

7



investigation. Until these are conducted, however, one must assume that linear-

theory will govern wave growth,in the helix. This implies that care must be

taken in designing the initial wave exciter so that excitation of m = 1 modes

occurs at orders of magnitude lower level. Consideration should also be given

to design of a spatial filtering network that will highly distort the unstable

m - 1 waves while leaving tjihe desired modes'largely unaffected.

One of the more effective means found for suppressing the m = 1 instability

was to use a hollow electron beam. This has also been suggested as a way of

obtaining larger fields for a given modulation, AR. It will be^remembered that

self-consistent space-charge and rotation effects reduce the axial electric

field by a significant factor compared with simple linear theory. The space-

charge fields and rotation, however, are known to be much smaller in hollow

beams than in solid beams with the same current and energy. It was, therefore,

hoped that cyclotron elgenmodes in hollow beams would more nearly exhibit the

behavior of simple linear theory.

GRADR studies of suitable cyclotron waves were made in hollow beams as,a

function of aspect ratio, that is (R ^ + R. )/(R ^ - R. ). Appendix C con-r out in out in rtr

tains the description of this work. As this ratio was increased from 1 (solid

beam) up to almost 10, it was observed that the ratio of modulation to field on

the inner radius, AR/E |. , remained almost invariant. The total variation of

this ratio was on the order of 30%, and the trend was toward increasing values

(undesirable) with the highest aspect ratios. As disappointing as this result

was, however, it was even worse when one considered that the En field fell off
+kr Z

roughly at e as the axis was approached. The ratio of modulation to axial

field was, therefore, considerably worse in hollow than in solid beams. It

appears that the only advantage of hollow beams is reduction of m = 1 growth

rates in the helix, while disadvantages include reduced accelerating field" on

axis and lack of radial containment for ions.

The helix is not the only slow-wave structure which has been considered

for cyclotron wave growth. Inductive loop structures have also been studied,

primarily by ARA. Their, analysis', however, modeled the actual nonaxisymmetric

structure with an effective impedance given in terms of lumped circuit param-

eters. There is nothing intrinsically wrong with this approach, and it is

certainly a powerful technique for obtaining qualitative information about

complicated structures. Its accuracy though depends on the expression used for

impedance; low-frequency expressions can be quite different from high-frequency
8



ones- We, therefore, sought to check the earlier results by undertaking a more

explicit, detailed study of this growth mechanism. The complex three-dimension-

ality of this structure eventually thwarted us, but not before we had been able

to draw some interesting conclusions.

In Appendix D, we outline our explicit model of ah inductive loop. The

primary feature added to this analysis was that the coupling E_ fields were

zeroed out on the metallic loop, and finite only An the capacitive gaps on the

loops. This is in contradistinction to the lumped parameter mgdel, where it is

distributed uniformly around the loop. Because the azimuthal localization of

the E Q field can impose a periodicity on the solutions, there-was reason to

believe that certain nonaxisymmetric modes (m / 0) would be distorted, others

enhanced, while in general modes with different m could be "coupled. To imple-

ment this numerically in GRADR, it was necessary from\aopractical standpoint to

treat loops with infinitesimal radial extent. This significantly reduced the

capacitance, which was then compensated by filling the space outside the loop

with a dielectric material (e = 30-60). While the dielectric served to slow
Q

the guided waves down to desired velocities, it must be noted that it did not

completely replicate the cavity-like field structure of a true capacitative

plate structure. Nevertheless, with a waveguide structure spanning z, 6, and t?

dimensions, a fully three-dimensional treatment would be required, and= such

numerical tools are not available at present. The numerical model described in

Appendix D can be said to more accurately model the azimuthai structure of the

ARA-envisioned waveguide, while being less accurate in treating the coupling.

Comparison of numerical growth" result's are given-in Appendix E. The dis-

tributed parameter model yields much larger growth rates than our periodic gap

one. This is not unreasonable, since correct treatment of the three-dimensional

fields in the region outside the loops is probably not represented with the high

dielectric medium employed by us. The- E Q field on the loop ""as the char-

acteristic field for this instability:. It ^s 4-5 times larger with the

low-frequency boundary conditions thanowith the azimuthally periodic ones, thus
'/

the larger growth rate. Since the calculations were otherwise identical, we

conclude that the lumped parameter model!can, at least under some circumstances,

overestimate the strength of the loop-driven instability. Our calculations,

however, suffer from not being completely self-consistent and three-dimensional.

The possibility of writing a three-dimensional numerical lineaic_code is being

pursued at a low level by us, but until it, or a similar numerical tool is

• •''• 9



developed, accurate evaluation of inductive loop structures can only be accom-

plished empirically.

Cyclotron wave amplifiers are needed by an autoresonant accelerator for

the same reason collective acceleration is being pursued in the first place:

external power supplies can not excite RF traveling waves much larger than
4

10 _. V/cin. Since ARA hopes to conduct proof-of-principle experiments with wave

magnitudes of 2.5 * 10 V/cm, it is apparent that cyclotron waves excited to

their largest level by external sources must still be grown. While numerical

studies at LAST, and ARA indicate that such a beam wave amplifier can probably

be built and operated as required, the need to amplify wave powers by up to

four orders of magnitude leads to high-gain problems, such as feedback, ampli-

fication of unwanted modes, and power handling on the structure. These would

all be ameliorated if larger waves could be excited initially. Toward this end,

the suggestion has been advanced that self-fields of the beam might be used to

self-excite a suitable cyclotron wave.

Various structures have been numerically evaluated at LASL for use as

self-driven antennas. These are described in Appendix F. The most successful

examined to date consists of a right circular cavity one-half wavelength long

connected with a similar length of "unterminated" helix. This structure excites

a narrow band cyclotron wave signal with a magnitude on the order of

5 x 10 V/cm. The excitation is due to zero-order "grounding current" which

rings for a long period because of improper termination of the helix, (Ref.

Appendix H of 1977 LASL Annual Report). Such a configuration is also very

efficient at exciting zero-frequency, nontraveling waves, as have been all

"self-driven antennas" to date. Although self-excitation of cyclotron waves

has been shown to be feasible, the concept will have only academic interest

until means of removing zero-frequency disturbances are found.

Finally, flashover problems with the ARA beam machine have resulted in

delays with operating at 3 MeV. As an interim measure, experiments will be

conducted with reduced parameters,) such as beam energy of 2.0-2.25 MeV and cur-

rent 15-20 kA. We have reformulated our linear wave studies consistent with
I

these new parameters.' The results, reported in Appendix G, indicate that not

only can programmatic goals be achieved; they may actually be improved if bothbeam and guide radius are reduced

10

by a factor of 2.



B. Alternative Collective Acceleration Approaches

Most of the LASL effort has been devoted to studying autoresonant ion

acceleration, but a low-level effort has also been expended on alternative col-

lective acceleration mechanisms. This work has focused on three particular

schemes. The bulk of the effort has been devoted to study of virtual cathode

acceleration in vacuum waveguides. While this has yielded best results to date,

large uncertainties still exist about the acceleration mechanism. New results

have also prompted re-examination of the traveling virtual cathode accelerator.

While this scheme is still marginal, certain deleterious characteristics, which

had mitigated against it, have been successfully resolved. The third scheme

was the phase-modulated accelerator, originated at LASL and described in the

FY77 annual report. This was pursued at a very low level during this year.

Present indications are that its primary role may be in heavy ion fusion or as

an injector into a high p accelerator.

Collective acceleration produced by forming a virtual cathode in vacuum is

an attractive, simple configuration which has been experimentally demonstrated

at many institutions. Performance typically involves acceleration of large
12 14

numbers of ions (10 -10 ) to roughly 1.5 times the beam energy, with a high

energy tail out to 10 times the electron beam energy. While these are useful

parameters for light-ion-driven inertial confinement pellets, they do not

satisfy requirements for a medium-energy accelerator at present. Nevertheless,

higher energy beam machines may soon be possible, and compact generation of,

say, 200-MeV protons would find ready applications. The problem with this

mechanism is that, despite widespread speculation, no quantitative model for

the observed ion spectrum exists. Allusion is often made to a deep, steady

potential, derived by Poukey and expanded upon by Olson. In many space-charge

limiting simulations conducted both at LASL and at the Air Force Weapons Labor-

atory, however, no such well has even been calculated. Work was, therefore,

undertaken to simulate a model configuration for collective ion acceleration.

Since any acceleration results would be closely tied to virtual cathode dynam-

ics , a detailed numerical study was decided upon to gain better understanding

of this state.

The key results garnered from simulation of virtual cathodes were that
2

(1) no steady potential well with depth greater than me (v . - 1) was observed,
2

(2) fluctuating potentials in excess - *" - - '
2

1.7 me (v - 1), and (3) the magnitude of the peak potential correlates quite

of me (Y 0 - 1) were indeed measured, up to

11



well with a macroscopic recurrence period for the motion of the entire virtual

cathode. This last is further associated with onset of electron reflection and

possibly with the flux of potential fluctuations on the beam. A quantitative

model for these results is still being formulated by us, but it is apparent that

since no steady anomalous well exists, simple trapping arguments cannot be

advanced to explain even the low-energy ion spectra.

The second phase of this numerical study consisted of using the virtual

cathode to accelerate ions from a pre-existing plasma. A dense plasma slab

(.n = 35.0 n.) was initially located adjacent to the injection plane. Since it

was much denser than the beam, space-charge fields were essentially neutralized

in the plasma. To prevent charge depletion, however, the slab was made moder-

ately thick, roughly 2-3 cm. This model configuration may be regarded as a

crude analogue of the plasma formed from a Luce diode. The differences are

appreciable, though, and it is possible that key features of the experiment are

not represented here. More sophisticated plasma configurations are being con-

sidered at present, but no data is yet available on these. When the beam with

supercritical current was injected through such a slab, it propagated freely

until leaving the slab. Immediately upon exiting the plasma, it formed a

virtual cathode. As expected, this virtual cathode possessed an average poten-
2

tial depth of only |e<)>| = me (y - 1). One possibly significant difference

between these calculations and the metallic anode ones treated earlier was that

the beam was highly two-stream unstable with the plasma. The plasma length was

too short for beam disruption, but it certainly resulted in an enhanced fluc-

tuation level on the beam. Whether this or interaction of ions with the well

was responsible, the virtual cathode did not exhibit the regular oscillations
2

which were correlated with potentials greater than me (y - 1).

Ions were found to be accelerated quite rapidly (At = 100 UJ ) and over
2

short distances (Az = 10 c/iu ) to energies of order e. = 1.5 me (yrt - 1).p ion 0

This was followed by a slower period of acceleration which was not localized to

the virtual cathode. The virtual cathode evolution was furthermore different

from previous, moving well models. Instead of charge neutralization occurring

near the back of the potential well, enough ion current was accelerated to force

neutralize the beam. Thus, the ion density need be only n. = nQ/y rather than

n. = n.. In consequence, the back edge of the potential exhibited little

motion, but because propagation was facilitated by the ions, the potential

possessed a flat bottom, extending from the original back edge out to the front

12



edge of the accelerated ions. While this does not enhance the electrostatic

potential, <j>, it can contribute significantly to the electromagnetic vector
2

potential A. In fact, ion acceleration in excess of e. = me (y - 1) scales,

though not linearly, with the measured quantity, 8<A >/3t, brackets indicating
2

average over the fast time scale.
The mere fact that a monotonic increase in <A > occurs for constant current

z

injection indicates that additional current must be flowing, and this is pos-

sible only because sufficient numbers of ions are accelerated to allow propaga-

tion. Velocity of the ions is not a major factor as long as v. << c. Motion

of the partially neutralizing ion bunch, however, is important insofar as it

increases the integral

where

- / n.q.v.
Lmd J J J

For similar current configurations, the same current carrying volume will even-

tually be attained regardless of the velocity of the ions. This argument

suggests the simulation result that ions with different masses reach the same

energy as a function of distance. More analysis will be needed to understand

the apparent numerical scaling with ion charge, Z, however. Both these results

and the calculated ion energy spectrum are in agreement with experiments.

Moreover, since the peak electrostatic potential is only of order the beam

kinetic energy, the mechanism for ion acceleration to 2-3 times the beam energy,

which we measure in the simulations, is clearly not a deep, steady electrostatic

well. Inductive forces, neglected in previous analyses, are responsible for

the excess acceleration above the beam kinetic energy. The role these may play

in so-called "Luce geometry" experiments, where acceleration to ten times beam

energy is commonly seen, is still moot at this time. The combination of induc-

tive and electrostatic forces appears to' be the mechanism for the bulk acceler-

2 ;

ation of ions 8. = 1-3 me (y - 1), but to date no high-energy tail has been
observed in our simulations. Pursuit of possible synchronous mechanisms to

13



explain the tail will continue at a low level. More detail on these studies

can be found in Appendix H.

Further work on the Traveling Virtual Cathode mechanism conducted again in

collaboration with the Air Force Weapons Laboratory is reported in Appendix I.

This mechanism was discussed in the FY77 annual report (Appendix L). At the

time of the previous report, only constant current injection had been simulated.

Those calculations showed that a virtual cathode could be formed in the wave-

guide interior, but that it was subject to large irregular fluctuations in both

position an<i magnitude. Subsequent simulations with linear current risetime,

however, have demonstrated that those undesirable characteristics were not

intrinsic features of the virtual cathode. On the contrary, increasing the

current at a sufficient rate yields smooth, monotonic motion of the virtual

cathode toward the metallic foil. The observed acceleration was too high to

trap realistic ions, but simulations with unphysically low mass-to-charge ratios

showed almost complete negative ion capture by the virtual cathode fields from

an initially neutral plasma slug. Though ion acceleration under artificial

conditions has been numerically demonstrated, extrapolation to physically real-

izable conditions requires further study. Specifically, while acceleration of

the virtual cathode can be reduced by increasing the current risetime, it is

not certain that turbulent fluctuations will not reappear with the slower

velocity. Analysis is also required to determine whether the virtual cathode

fields (E = 2 x 10 V/cm) will strip negative ions to a neutral state.

The final alternative acceleration scheme, phase-modulated acceleration,

has received only nominal attention during the past year. Preliminary investi-

gations indicated the concept should be most viable at ion velocity, v. < 0.5 c.

In the low-velocity regime, however, it seemed quite competitive with other

collective acceleration schemes. These considerations strongly suggest appli-

cations in heavy ion fusion. Since the initial heavy ion velocity, moreover,

is extremely small, the possibility of dephasing zero-frequency cyclotron waves

was examined. These are extremely easy to excite in a relativistic electron

beam, at magnitudes of 1-2 x 10 V/cm. Calculations on the test particle code

NOVA indicated promise, but accurate evaluation of this particular mode of

acceleration must await full, self-consistent simulation. Those calculations

are planned for the coming year.
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C. Code Development

Numerical studies form a significant element of collective acceleration

research at LASL. As a complement to analytic studies, these permit treatment

of both self-consistent nonlinear states and more generalized linear ones

with boundary conditions. The changing status of evolving research calls for

flexible, general-purpose codes and smaller, more specific codes to address

particular problems or conditions.

CCUBE, a two-dimensional relativistic particle simulation code written

for the express purpose of studying electron beam physics, is the primary

numerical tool for our investigations. Although it has been discussed pre-

viously, projected research efforts have dictated a series of significant

modifications. During the past year, the "particle pushing" routines have

been completely rewritten to employ an arbitrary order Galerkin algorithm.

This employs only fields, so potentials are no longer needed in the code. By

incorporating magnetic field forces in a series of microsteps, electromagnetic

effects are more accurately treated. This permits omission of current cor-

rections needed to preserve the continuity equation. In the process, a unique

particle weighting scheme has been implemented which greatly simplifies treat-

ment of complicated boundaries. Diode design calculations, conducted within a

different context, have ably demonstrated the flexibility of this new version

of CCUBE. The code changes are described in Appendix J.

While many new classes of problems can now be studied with CCUBE, this

version does exhibit a higher level of longitudinal fluctuations. The magnitude

seems acceptable at present but can probably be reduced by incorporation of

higher order weighting splines. Such a course, however, would make boundary

treatments more difficult. In short, a series of innovative changes have been

made in CCUBE which should facilitate simulation of geometrically complex

autoresonant accelerator configurations, but which have also degraded certain

noise characteristics. Colloquially, one does not get something for nothing.

Other modifications can probably be made to improve those characteristics if

it should appear necessary. For the coming year, though, no problems are

anticipated and a stable code format is expected.

The GRADR code has proved highly useful for studying linear phenomena

on self-consistent beam equilibria. In the past year, improvements have been

made to it for examination of non-akisymmetric (m f 0) helix modes, non-

axisymmetric boundaries (for loop drivers), hollow beams, and inhomogeneous



wave propagation within a WKB framework. These topics are discussed in more

detail ia the appropriate appendices.

Such a code is essential for mapping out linear parameter regimes which

can then be followed nonlinearly in CCUBE simulations. Nevertheless, certain

problems are intrinsically three-dimensional. The ARA loop drive geometry is

one such example. In a search for more general numerical tools, we discovered

an overall paucity in this area. Since the need is evident, it appears that

we shall have to devise a code for treating three-dimensional boundaries and/or

beam equilibrium. The time scale for this undertaking, however, is difficult

to estimate. Until such a code has been written and debugged, analytic expres-

sions and estimates must suffice.

Other smaller codes are commonly written to address specific problems, but

do not have general applicability. While the list of these is extensive, most

are never documented and quickly fade into obscurity. The ability to effi-

ciently produce such programs nevertheless does aid in overall study of collec-

tive acceleration problems.

III. PLANS FOR FY79

The Autoresonant Accelerator feasibility experiment has begun to generate

preliminary data. During the coming year, these data will be used to resolve

questions of beam propagation and quality, wave growth and extraction, and ion

loading. We at LASL intend to conduct analytic and numerical studies on these

same issues in such a manner as to provide support for the experiment without

neglecting key basic physics questions. Additional work will also be performed,

as time permits, on alternative acceleration approaches. Elucidation of these

mechanisms may later permit their employment in conjunction with autoresonant

acceleration, such as using virtual cathodes for ion injection. CCUBE, GRADR,

and other smaller codes will undergo continuing minor modifications, but will

be essentially stable. Conversion from the CHAT compiler to a more standard

Extended FORTRAN one (FTN) should reduce execution times and enhance code

portability.

In the previous year, work was concentrated on wave growth and extraction.

We will exploit this experience to investigate propagation of beam and waves

into spatially varying magnetic fields. Two parallel efforts will be conducted.

In the first, we will employ beams of high quality to study compression and

compression-induced modifications to laminar and wave-carrying beams. The other
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line of research will study nonideal beams and their effect on wave-growth and

propagations.

If an electron beam propagates into magnetic field gradients which are long

compared to its larmor radius, beam characteristics will change smoothly and

adiabatically. This implies that the product of field times beam radius squared
2

Ba , will remain constant, and also that the ratio of transverse energy to field

strength will be invariant. While cold beams shoved remain cold, zero-frequency

modulations will increase in magnitude. If these latter become too peaked, they

may phase mix and enhance the random scatter on the beam. The first investiga-

tions will, therefore, examine compression of equilibrium beams to determine

scale lengths needed to obtain minimum beam heating.

Compression of cyclotron waves may present more problems than simple

laminar compression since the waves possess both intrinsic radial and axial

scale lengths. Self-consistent linear studies of cyclotron waves have already

shown that wave modulation becomes progressively more surface-peaked as wave-

length is decreased. Simulation of nonlinear waves show this trait in good

agreement with linear theory. The relative modulation is, therefore, expected

to increase during compression. Coherence can not be lost during this stage,

however, and field magnitudes must show minimal attenuation. Degraded wave

quality will exacerbate any problems with ion loading, which is planned to

follow immediately after the compression. Goals here are to characterize waves

during compression and determine mobt favorable conditions.

The above studies presuppose good beam quality at the onset. Before enter-

ing the compression stage, however, the beam must be extracted from a diode,

propagate through a zero-frequency suppression section, then a wave growth

section, and finally be extracted from the growth section. Beam quality in the

later phases of an accelerator can be significantly degraded by the earlier

stages. Some estimate of this can be obtained from static diode codes through

analysis of individual trajectories. The full noise spectrum though requires

treatment of electromagnetic as well as electrostatic fluctuations, so we intend

to study beam quality effects with self-consistent two-dimensional simulations.

The first effect experienced by the beam as it passes through a metallic

anode ground plane is radial pinching. This is followed by expansion as the

beam bounces around its radial equilibrium position, that is, zero-frequency

cyclotron bouncing. The magnitude of bouncing depends on waveguide radius and

guide magnetic field as well as mean beam radius, energy, rotation, angular
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divergence and temperature. Experimental conditions dictate the field, wave-

guide radius and total beam energy. Diode design and foil scattering determine

the other quantities, but these are not known precisely a priori and are subject

to shot-to-shot variation. Unless beam characteristics satisfy all equilibrium

conditions when entering the waveguide, bouncing will result, and bouncing is

undesirable. This has resulted in design of a nonadiabatic field transition

section near the anode to suppress it. It is reasonable that success of such

a section will depend on ability to match the field variation with actual beam

parameters. Propagation of a laminar beam, for instance, through the non-

adiabatic section will certainly induce bouncing. The sensitivity of a given

field design to beam conditions will be one of the first projects undertaken

in this study. For a given energy and current, we will examine the resulting

beam state as a function of both initial divergence and beam scatter (i.e.,

temperature). If necessary, new field configurations will be examined. As a

sidelight, previous studies at LASL have indicated the viability of certain

self-driven antenna configurations, subject to the condition that zero-frequency

waves can be removed from the beam afterward. This will also be pursued if

manpower is available.

Once beam characteristics leaving the transition section are determined,

they will be used for helical wave growth simulations. The effects of nonideal

beam quality will be inferred from amplifier performance. Reduced extraction

efficiency, if any, will also be measured. Experimental parameters will be

used to provide touch points between calculation and measurement.

After the above objectives have been satisfied, preliminary studies will

be undertaken to determine feasibility of different schemes for loading ions

into the troughs of cyclotron waves. This project will tie in directly with

planned simulations of an alternate mechanism, the Temporal Phase Modulation

accelerator. Becuase its conceptual simplicity translates into calculational

simplicity, there should be little problem in simulating this configuration.

If it is viable, a background plasma will be initialized at a location condu-
i

cive for ion trapping. An interesting question should be resolved when the
2

local beam energy is large enough so that n. = n /y , that is, Budker's condi-

tion for force-free equilibrium is satisfied. Beam disruption may occur under

those conditions due to localized pinching. Results of these calculations will

apply directly to autoresonant acceleration in the high ion density limit. This
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project should be nearing completion by the end of the second quarter of this

fiscal year.

Several CCUBE developments are scheduled to be completed during the coming

year, though none of the magnitude of conversion to an entirely new algorithm

which was accomplished in the previous year. Continuing characterization of

this algorithm is occurring as new types of calculations are undertaken. At

this point, however, it appears that CCUBE is stable and will undergo only minor

changes in the foreseeable future. One change which should not affect CCUBE

usage is conversion to CDC-Extended FORTRAN and the FTN compiler. Laboratory

estimates are that computer throughput will increase by 30% with this compiler.

While such figures neglect variations from code-to-code, we hope to realize some

reduction in problem run time. Conversion will also facilitate CCUBE usage on

the CRAY-1 computer and at other facilities. Finally, low-level efforts in

pursuit of three-dimensional calculation will continue during the coming year.

Unexpected problems arising from the ARA experiments will be addressed as time

and manpower permits.

A tentative schedule for LASL activities in FY79 is depicted on the follow-

ing page. The serial and exploratory nature of the planned research is such

that changes may be made, as required on the basis of evolving results. The

manpower for this schedule is estimated to be between 2.0 and 2.5 man years.
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TENTATIVE WORK PLAN FOR FY79

Ocv. - Dec. . Jan. - Mar. . Apr. - Jun. . Jul. - Sep. .

Beam Compression/Expansion

Cyclotron Wave Deceleration

Zero-Frequency Suppression ••

Scattered Beam Effects

Temporal Phase Modulation -••

Virtual Cathode Acceleration Studies

Ion Loading —
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APPENDIXES

This section contains eleven appendixes describing in detail various

aspects of collective ion acceleration. Each is self-contained. Section II

of the report summarizes the appendixes, pointing out significant features and

tying the results together. ,(
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WAVE AMPLITUDE VARIATION AND ENERGY FLOW "
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WAVE AMPLITUDE VARIATION AND ENERGY FLOW
IN AUTORESONANT COLLECTIVE ION ACCELERATION3

Brendan BC Godfrey and Barry S. Newberger

ABSTRACT

An expression for the energy of small amplitude waves
in a radially inhomogeneous, cold 'fluid, unneutralized,
relativistic electron beam is obtained in terms of the
wave amplitudes. The result is employed together with
conservation of wave energy to determine how the axial
electric field strength and beam edge modulation associated
with slow cyclotron waves change with position in an elec-
tron beam propagating along the adiabatically spatially
decreasing magnetic guide field of an autoresonant collec-
tive ion accelerator. The resulting axial profiles are
found to depart markedly from those o£ earlier, radially
homogeneous beam calculations. Possible impacts of these-
findings on a planned autoresonant acceleration feasibility
experiment are discussed.

" J
I. INTRODUCTION

1 2
Autoresonant collective ion acceleration ' is among the most thoroughly

investigated proposals for utilizing the intense fields of high-current rela-

tivistic electron beams to accelerate light or heavy ions to energies of
3

hundreds or, perhaps, thousands of MeV per nucleon. Autoresonant acceleration

employs an electron beam propagating in vacuum along a magnetic guide field

which slowly diverges spatially (and thereby decreases in magnitude) from the

input to the output end of the ion acceleration region. Linear theory predicts

that slow cyclotron waves launched at

velocity as they move into regions of

guide field strength is appropriately tailored axially, ions trapped by the

electrostatic fields of the cyclotron waves can be expected to accelerate with

the waves up to quite high energy.
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Since efficient trapping of the ions depends on a balance between the

axial electric field of the cyclotron wave and the rate of wave phase velocity

change-, it is important to understand the adiabatic variation of cyclotron wave

amplitude down the ion accelerator. This problem is intrinsically nonlinear

due to the large amplitudes of the cyclotron waves, radially inhomogeneous due

to the equilibrium fields u id finite extent of the electron beam, and axially

inhomogeneous due to variation of axial magnetic field strength and beam para-

meters tied to it. Detailed answers probably require extensive multidimen-
4-6

sional computer simulations, and such work is in progress. Nonetheless,

one can expect to obtain valuable insight by investigating the properties of

small amplitude, linearized waves in an axially uniform beam equilibrium and

relating wave amplitudes at different magnetic field strengths by the require-

ment that wave energy be conserved as the wave moves down the ion accelerator.

Until recently, the further approximation that the beam equilibrium be radially

uniform out to a sharp edge was required so that homogeneous plasma linear

theory could be applied. In this limit the axial electric field of the slow

cyclotron mode was found to vary linearly with magnetic guide field.

In order to obtain the properties of small-amplitude waves in more real-

istic, radially inhomogeneous equilibria, we have developed a computer program

to solve numerically the fourth-order system of radial differential equations

for eigenmodes of any cold fluid relativistic particle beam equilibrium which
8 <

depends on radius only. A particularly striking conclusion' of studies based

on this computer code is the strong effect of beam radial kinetic energy

inhomogeneity, caused by space-charge, on the radial structure of cyclotron

waves. Particle motion and most field components associated with the waves are

highly localized to the beam surface. This contrasts with the homogeneous

model, which has both the perturbed fluid and the perturbed field components as

Bessel functions in radius. With such a disparity between the eigenmode struc-

tures from the two models, it would be surprizing not to find differences in

their predictions for the-- adiabatic variation of wave amplitu< 5 as cyclotron

waves move through the ion accelerator. In this paper we show that, for real-

istic solid beam equilibria, the slow cyclotron wave axial electric field
strength is nearly constant in

approaches the linear dependence
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of the homogeneous model where the magnetic

guide/field is sufficiently weak that the cyclotron wavelength much exceeds the

beam radius.



A cyclotron wave train appears in space as a periodic modulation of the

beam envelope. It is desirable to know the variation in amplitude of the

modulation throughout the accelerator in order to design a vacuum cavity of

minimum radius. Having the metal wall close to the beam enhances stability and

reduces space-charge effects. Here too we find that the axial profile of beam

modulation is modified strongly by radial inhomogeneity. Moreover, the degree

of modulation required to produce a given axial electric field is systematically

larger for the inhomogeneous equilibrium.

In Sec. II we derive a general formula for wave energy in an axisymmetric,

radially strongly inhomogeneous cold fluid relativistic electron beam. This

expression is employed along with the usual definition of wave energy conser-

vation to obtain in Sec. Ill the variation with guide field strength of wave

phase velocity, group velocity, axial electric field, and beam modulation for

parameters of interest to the ion acceleration experiments soon to begin at
9

Austin Research Associates, Inc. From these quantities an optimal magnetic

guide field axial profile is determined. Section IV discusses both the poten-

tial impact of these results on autoresonant collective ion acceleration and

the limitations of the present model from neglect of nonlinearities and thermal

effects.

II. WAVE ENERGY IN A RADIALLY INHOMOGENEOUS BEAM

Let the small-amplitude eigenmodes of a weakly inhomogeneous nondissipa-

tive plasma be defined locally by the matrix equation

A • X = 0 , (1)

where X is a vector of wave components such as perturbed electric fields,

magnetic fields, and fluid velocities. The generalized dielectric tensor A

depends only on equilibrium quantities. Weinberg has shown that under quite

general conditions wave energy can be defined as

u =

provided that A is symmetric. Moreover, an energy conservation equation exists,
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§£ U + V • (vgU) = 0 . (3)

Here, iu, k, and v are the local frequency, wavenumber, and group velocity,
O

V = V. II) . (4)
g k

The problem at hand differs from Weinberg's only in that (1) the beam is

strongly inhomogeneous radially and (2) we care solely about axial flow of wave

energy. Reproducing his analysis with these two modifications, we find that

Eq. (1) holds if A is taken as a matrix operator containing radial derivatives.

The appropriate quantity corresponding to Eq. (2) is energy per unit length,

(f- A) • X r dr , ' . (5)

with the requirement now that A be self-adjoint. Energy flow is described by

it u + k (vgu) = ° • (6)

The group velocity is treated as a scalar, since only the axial component is

meaningful.

The matrix operator A is given in Table II of Ref. 8, but not in self-

adjoint form. Recasting it requires considerable algebra. The end product is

presented in Table I, which gives A and X, and Table II, which defines the

transformed dependent variables B and u and certain special symbols. As in

Ref. 8, E, B, and u represent the perturbed electric and magnetic fields and

the fluid relativistic momentum. Equilibrium quantities carry a zero super-

script. Equations are normalized such that the electron charge and mass and

the speed of light are unity. Boundary conditions consistant with self-adjoint-

ness are (1) fields are regular on axis, and (2) tangential electric fields

vanish at the outer boundary, r = R. Accuracy of the transformations has been

verified by solving numerically

of Ref. 8.
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MATRIX REPRESENTATION OF RADIAL EIGENMODE EQUATIONS IN SELF-ADJOINT FORM- DIFFERENTIAL
OPERATORS IN A . . END IN A CENTERED DOT. NULL ELEMENTS ARE OMITTED. SEE TABLE I I FOR SPECIAL SVHBOLS.

o o o
n U

Z " 8 i

dr

d

dr

1 d

r d r

- uj —• —

n -



00

TABLE II

DEFINITIONS OF SPECIAL SYMBOLS AND TRANSFORMED VARIABLES USED IN TABLE I.
NOTE THAT THE ZEROES OF Q AND A ARE SINGULAR POINTS OF THE RADIAL EIGENMODE EQUATIONS.

- - u Q

o _
~~ u z " B

z
d r

z " Be
z 0

IB « iB - ~^~ n u
Z Z r, V

nz - ^ziu * iu + u
ft

A «

1=e

«2

i

r

' E

=

o
- n •

d

dr

o

r o
7

iB0 +

iuQ +

4

A

+

o
u

ft

n e

z

z

o- n u

- ^8

n°f / \ l / d d l \ T
- B + — i [ u V - ufi°u 1 + - (u ° — u ° - u ° r u,°J u

r r fl [ ^ z 6 6 z) Q\B d r z z d f r 6 ^ r j
u r



With the equations in self-adjoint form, it is straightforward to con-

struct equivalent variational integrals. Variationai integrals can, in turn,

be used for Rayleigh-Ritz eigenvalue estimates and for construction of finite
12

element difference schemes. We shall address the first of these applications

in a subsequent publication.

Inserting Table I into Eq. (5) gives the desired wave energy density,

(7)

n°|(u°xu)r|
2 n^HQ+nV2^2 2

+ u

CT ST r

( '( r dr

Attempting to simplify the integrand analytically is futile. Instead, we solve

Eq. (1) as in Ref. 8 for the eigenmode and eigenfrequency, and then integrate

Eq. (7) numerically.

For low-frequency slow cyclotron waves in an ultrarelativistic, radially

uniform beam filling the drift tube, an approximate but much simpler expression

exists,

U s -w / ̂ J |E|2 r dr . (8)
'0 Bz

We have evaluated Eq. (7) and Eq. (8) for a uniform beam with y = 20 and find

that they agree quite well for u> << n , as expected. We also performed the
il

comparison for the physically more realistic equilibrium treated in Ref. 8, for

which the current density and particle energy (kinetic plus potential) are spec-
i

ified to be uniform in radius, and the remaining beam profiles are computed
•i

•I
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self-consistently. Here too, agreement is fairly good, suggesting that Eq. (8)

may have a wider range of applicability than originally expected. Incidentally,
13

agreement in the case of the non-self-consistent rigid rotor beam model is
14

poor. As Sloan has observed, a self-consistent equilibrium is necessary for

the meaningful definition of wave energy.

III. APPLICATION TO AUTORESONANT ACCELERATION
9

The Austin Research Associates, Inc. experiment employs a 3-MeV, 30-kA

electron beam. At the generator diode the electron beam is approximately uni-

form radially in current density and, of course, energy. The beam has a reason-

ably sharp outer edge at 3.0 cm. The diode is embedded in a 2.5-kg guide field.

Leaving the diode region, the beam propagates into a 3.4 kg guide field, where

a 300-MHz slow cyclotron wave is excited. The beam is further compressed until

the guide field reaches about 25 kg, and ions are added. Adiabatic expansion

of the beam as the guide field drops to about 2 kg provides the ion accelera-

tion. It is hoped that several amps of 30-MeV protons can be obtained with

this apparatus.

To represent these parameters in dimensionless form, we normalize the beam

density to its value in the 3.4-kg field. The beam plasma frequency there is

ui =3*10 sec . The guide field is then expressed as the cyclotron frequency

scaled to ui . Thus, B = 2.0 in the wave growth section and 1.47 in the diode.

Other field components are scaled similarly. The cyclotron wave (angular) fre-

quency relative to the reference value of to is to = 0.06. At the diode

Y = 7.0 and V = 1.75. (Budker's dimensionless current parameter V is defined

as the axial line density of electrons in the beam, multiplied by the classical

electron radius. ) Since the length scale c/u) is one centimeter, the dimen-

sionless beam radius at the diode is a = 3.

To estimate the spatial variation of the cyclotron wave amplitude in the

experiment, we employ conservation of wave energy flux, Eq. (6), together with

the fact that wave energy is proportional to the square of the wave amplitude,

Eq. (5). Because the actual calculations are entirely numerical, we give here

only an outline of the procedure and then turn to a discussion of the results.

Conceptually, five steps are required to obtain the wave amplitude as a function

of applied magnetic field strength:

(1) Specify the injected beam profile and applied magnetic field strength

at the anode plane of the diode. To agree with the planned experiment, we
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choose a nonrotating, axisymmetric, v = 1.75, v° = 7.0 electron beam radially

uniform in energy and in current density out to a sharp edge, a = 3.0; B is
z

1.47.

(2) Compute corresponding self-consistent axisymmetric beam equilibria

within a metalic drift tube for different guide field strengths. Within the

drift tube away from the diode, the beam expands or contracts radially and

rotates in order to achieve force balance. Beam kinetic energy is reduced by

space charge effects, with y at the beam axis depressed relative to its value

at r = a by roughly V. Equilibria are found numerically by solving the stand-
o

ard set of four equilibrium equations together with equations expressing con-

servation of total energy, canonical angular momentum, and particle flux along

stream lines. These latter equations relate the beam equilibria to the injec-

tion conditions of step one. Details of this procedure and characteristic

equilibrium profiles are given in Ref. 16. The drift tube radius must be

specified to solve the field equations. We set B R constant with R = 3.8 when

B = 2 . Since B a" is expected to be approximately constant, this choice of
z z

R(B ) has the desirable property that R/a is fairly constant at about 1.4.
z

(3) For each equilibrium and a fixed frequency of u) = 0.06, compute the

axial wavenumber k and the cyclotron wave radial profiles, as in Ref. 8. In

other words solve Eq. (1) with A and X defined in Tables I and II as an eigen-

value problem in k. Wave amplitudes are now determined as a function of B up

to an overall multiplicative constant a(B ). In addition, the wave phase veloc-
z

ity is known.

(4) Repeat the eigenvalue calculations of step three at a slightly dif-

ferent frequency u> + 6u> to obtain the shifted wavenumber k + 6k. The group

velocity is 6tu/6k.

(5) Integrate Eq. (7) using equilibrium and wave profiles from steps two
2

and three. This gives the wave energy up to the factor a . The wave energy
is, of course, time independent in the present problem, so that Eq. (6) reduces
to v U constant throughout the accelerator independent of B . Thus, the depend-g o Z

ence of a on B is determined. Specifying the cyclotron wave amplitude at the
Z i

beginning of the accelerator, we know it throughout the system.

The calculations just described have been carried out for a range of B

values from 0.65 to 20.0, or 1.1 kg to 34.0 kg. For fields below the lower

limit, no equilibrium exists. Throughout the range the axial wave number deter-

mined numerically is well approximated by the simple expression
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kv = w + B /y
z z

(9)

v , and B evaluated at r = a; v
z' z ' zwith y

to within a few percent by

u /y . The group velocity is given
z

o
V = V
8 z

(10)

Neither result is unexpected.

Figure 1 presents the axial electric field strength on axis of the slow

cyclotron wave as a function of applied magnetic field strength, with E normal-

ized to unity (i.e., 0.51 MV/cm.) at B = 2 . Note that E is proportional to k

for B small but becomes flat for B large. For reasons to be discussed below,
z z

the transition value depends on wavelength, occuring for ka a bit larger than

one. In contrast, analytic estimates of E in the radially uniform beam model
7 Z

give E proportional to k, the dashed line in Fig. 1. Because that analysis
z

is, strictly speaking, valid only for long wavelengths, we have carried out a

numerical study for the uniform beam, performing steps three, four, and five

above on a radially homogeneous, charge and current neutral beam (E = B_ = 0)

of radius specified by B a constant. Beam energy in the model is taken as
z

the injection energy reduced by 2v jKn R/a. This physically reasonable value of

y leads to values of k and v in close agreement with the self-consistent beam
results. For E , on the other hand, the uniform beam model predicts much larger

z
values at large B . Note that both curves in Fig. 1 avoid the "wave breaking

Z i

region" indicated. One expects disruption of the electron beam for electric
2

fields of order kv or greater for a v/y ~ 1/4 beam.

Some qualitative understanding of the difference in results of the two

cases can be developed from Eq. (8). Because in equilibrium beam particles tend

to stay on magnetic flux surfaces, n y /B is approximately constant. In addi-
z

tion, the slow cyclotron wave is predominately electrostatic, which means thatkE = j - E
r dr z (11)
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/
[(kE ) 2 + (̂- E )2]rdr « k

2 . (12)

z dr z

In the uniform beam model the radial profile of E is representable piecewise

by Bessel functions, and Eq. (12) reduces to

E 2 « k2/(l+ak2a2) . (13)
z

The factor Of is on the order of 0.17, but depends weakly on the beam and wave

parameters. For ka small the E radial profile for the self-consistent solid

beam equilibrium does not differ greatly from its form in the uniform beam

model. Hence, the two plots of E on axis in Fig. 1 lie close together for
z

small B . As ka exceeds one, however, the radial profile of E becomes rather
z z

flat out to near the beam radius, where it abruptly decreases in value. The

dominance of dE /dr near r = a in Eq. (12) decreases significantly the varia-
z

tion of E with B relative to the uniform beam model. A quantitative analytic
z z

expression in this case has not yet been derived.
We next compute the optimal dependence of B on axial location z in the

z
accelerator. To do this we employ the ion equation of motion

and require that the ions move in phase with the slow cyclotron waves so that

they experience the maximum accelerative field at all times. The v in Eq. (14)

is then the wave phase velocity, and E is the maximum axial electric field E .

The ions are treated nonrelativistically. Q/M is the ion charge to mass ratio.

Rearranging terms in Eq. (14) yields

Since we know both v and E as functions of B , we have B as an implicit func-
z z' z r

tion of z. The optimal axial magnetic field at the beginning of the accelera-

tion region out to z = 4 is displayed in Fig. 2 for each of the three curves in

Fig. 1. In all three cases the total accelerator length is about 83 with B = 1
z

at the termination. The total length is approximately the same for the three
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quite different E curves because throughout most of the accelerator the ions
z

are in a weak B region. Nonetheless, it is important to know the proper mag-
z

netic field variation at the beginning of the acceleration region. Too steep a

decrease in B would dump the ions from the electrostatic wells of the cyclotron

waves.

To make contact with the planned experiment, we recall that the length

scale for these calculations is 1 cm. Thus, the total acceleration length is

only 83 cm provided E = 1, or 0.51 MV/cm, at B° = 2, or 3.4 kg. As we
2 Z

shall see, however, E = 0*08 at B =2 seems to be about the largest axial
z z

electric field practical. This choice of E leads to an accelerator stretched

by a factor of 12 to 1000 cm.

The practical limitation referred to comes from consideration of the beam

radius modulation associated with a given wave amplitude,

6a = -u /Q , (16)

with u and Q evaluated at the beam edge, r = a. Plotted in Fig. 3 is the

relative modulation 6a/a for the self-consistent beam equilibrium and for the

uniform beam model. The curves are normalized to the E values of Fig. 1.
z

Thus, for the self-consistent beam equilibrium, a relative modulation of 2.8 is
required to produce E = 1 at B = 2 . Of course, 6a/a > 1 is impossible, and

Z Z 18

computer simulations indicate Sa/a > 0.5 is undesirable. This limits E to

less than 0.2 at B = 2 , the magnetic field in which the cyclotron wave is

initially to be excited. Demanding that 6a/a remain less than 0.5 throughout

the accelerator further restricts E at B = 2 to less than 0.08.
z z

In contrast, the radially uniform beam model predicts that 6a/a of order
0.5 is sufficient to give E = 1 at B = 2 . The disparity arises because, as

z z

mentioned in the Introduction, the slow cyclotron wave in the self-consistent,

radially inhomogeneous equilibrium is a surface mode, while in the uniform beam

model it is a body mode. Only the outermost electrons participate strongly in

the former, and so much larger beam modulation is required to produce the same
i

axial electric field strength. In order to test these predictions of linear

theory, we are performing a series of fully self-consistent, nonlinear, two-

dimensional, axisymmetric computer simulations using the PIC code CCUBE. '
To date, attention has been restricted to B = 2 , but work at stronger guide

18 I Z

fields is planned. The results of two typical computations 6a/aE are
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indicated by "X" in Fig. 3. (Dividing Sa/a by E has the effect of normalizing

the simulation data to E = 1.) The point labeled "S" is a small amplitude

wave E =0.06; the point labeled "L" a large amplitude wave E =0.2. Un-

certainty in the data is about 15%. Agreement between the self-consistent beam

linear theory and the simulation results is good. The reduction in 6a/aE of

about 1/3 for the large amplitude wave relative to the small is due to non-

linear effects. For progressively larger wave fields the beam particles are

more tightly coupled in their oscillations, and the cyclotron wave begins a

transition from a surface to a body wave. In the simulations this change,

while small for E =0.2, is directly observable in the electron streamlines.
z

IV. CONCLUSIONS

We have obtained a general expression for the energy density of a small

amplitude wave in an axisymmetric, relativistic particle beam equilibrium with

a self-consistent but otherwise arbitrary radial profile. Using this expres-

sion together with conservation of wave energy flux, we examined the adiabatic

variation of the slow cyclotron wave as it propagates through the autoresonant

accelerator device in order to obtain guidance for an experiment soon to be

performed by Austin Research Associates, Inc. Two models were employed, a

radially uniform cold beam without equilibrium self-fields and a more realistic

model for a cold solid beam including self-field effects. The radially uniform
1 7 9

model has been used extensively in analytic studies. ' ' We found first that

the uniform model predicts a more or less linear variation of the accelerating

field E with the guide field B°, while the self-consistent model gives E
2 2 Z

essentially constant for ka > 1 and linear with B only at long wavelengths.
z

The difference is important only in the first 5% of the accelerator region,

however. Of greater impact is our second finding, that the self-consistent

model requires a beam radius modulation by the cyclotron wave that is four to

ten times that required by the uniform beam model to produce a given value of

E . This result has been corroborated for small B° by computer simulation.

Applying the predictions of the self-consistent beam equilibrium model to

the planned experiment suggests that E be excited to no more than 40 kV/cm at

B = 3.4 kg, so that the relative radiljal modulation of the beam can remain
I

below about 0.5. For this excitation amplitude, E ranges between 80 kV/cm and

20 kV/cm as B° decreases from 34 kg to 1.7 kg. Total acceleration distance is

1000 cm for an optimal magnetic field profile but probably should be increased
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about 20% to improve ion phase stability in the face of real-world election beam

irregularities. (Reducing the maximum field from 34 kg to 25 kg would not

shorten the accelerator significantly.) The expected proton energy is 35 MeV. ~"

Ion current, an extremely important issue, is not addressed by this analysis.

Because the upcoming experiment was designed quite conservatively, the acceler-

ator parameters suggested here can be accomodated without difficulty. Our

findings do, however, raise important questions regarding scaling to larger

devices.

The present study has two limitations: It assumes small amplitude waves

and a cold beam. The latter assumption is, we believe, very good in that finite

Larmour radius effects large enough to modify the results presented here also

are large enough to damp significantly the cyclotron waves. A hot electron beam

clearly must be avoided experimentally. We hope to quantify this observation

at a later date.

Testing the validity of the small amplitude approximation is a primary goal

of our continuing simulation effort. As noted in Sec. Ill, reasonable agreement

between simulation results and linear theory has been demonstrated at small B .
z

We expect that nonlinear effects will increase allowed accelerating field

strengths by no more than about 50%. To obtain still larger fields at a fixed

electron beam current probably will require hollow beams.
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Adiabatic variation of the axial
electric field with changing magnetic
guide field for a slow cyclotron wave
in the radially uniform and the self-
consistent solid beam equilibria.
Curves are normalized to E = 1 at

Fig. 2

Optimal axial variation of the mag-
netic guide field of an autoresonant
accelerator for the axial electric
fields plotted in Fig. 1.
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NONLINEAR CHARACTERISTICS OF CYCLOTRON WAVES IN
AN ARA CONFIGURATION

by

R. J. Faehl, W. R. Shanahan, and B. B. Godfrey

ABSTRACT

The Autoresonant Accelerator (ARA) offers great prom-
ise for collective ion acceleration provided large
amplitude cyclotron waves can be generated with long
coherence scales and controllable propagation charac-
teristics. Numerical simulations have been performed
to examine cyclotron wave growth in a helical slow-
wave structure. No inhibition of growth was observed,
short of an intrinsic space charge limitation. Ex-
traction of such waves from the amplifying section
through realistic terminations has been performed.
The radial structure and propagation of these large,
extracted cyclotron waves has been studied and compar-
isons with linearized waves have been drawn. The
effect of nonlinear wave properties on ARA designs
are presented.

I. INTRODUCTION

Ion acceleration in collective wave fields of relativistic electron beams

has be^n studied energetically in recent years. The Auto-Resonant Acceler-

ator (ARA), which utilizes a slow cyclotron mode, is probably the best analyzed

and furthest developed of such collective wave schemes. In these conceptually

simple schemes, ions are trapped in a beam-supported wave, which is then accel-

erated in some fashion. There are implicit assumptions here, however, namely

that nonlinear waves (a) remain coherent for long distances and times and

(b) behave, at least approximately, like linear waves. These fundamental ques-

tions have motivated us to study finite-amplitude cyclotron waves such as are

needed in the ARA. We have studied the nonlinear wave characteristics with

emphasis on radial wave structure, field strength, and possible deviations from
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linear dispersion. Large two-dimensional particle simulations were used to grow

waves self-consistently and then follow their subsequent propagation. These

results have been augmented by numerical studies of radially inhomogeneous

linear theory and analysis of nonlinear waves.

The overall structure of this paper is as follows. Linear theory and the

equations from which it is derived are examined briefly. Origin of the axial

electric field, the component responsible for ion acceleration, is discussed.

Also, qualitative examination of the equations suggests possible nonlinear

effects. The simulations themselves are then described. Finally, simulation

results are given in which slow cyclotron waves are grown from small amplitude

signals and stable propagation is observed over modest scale lengths. Analysis

of the simulations is performed to obtain data that can be compared directly

with linear theory.
i

II. LINEAR THEORY AND NONLINEAR CYCLOTRON WAVES

Before discussing "nonlinear waves", it is proper to define what we mean

by "nonlinear". The term is used in this context simply to distinguish finite

amplitude waves from the results of first-order perturbation analysis. This is

complicated since unique equilibrium conditions make even linear analysis of

unneutralized relativistic electron beams nontrivial. A brief analysis of the

linear equations shows this clearly.

Relativistic electron beam equilibrium during vacuum propagation in a

smooth-walled drift tube requires a large, external axial magnetic field, B .

Since the beam is unneutralized, significant radial electric and azimuthal mag-

netic fields are present with magnitudes determined by total beam current, beam

and drift tube dimensions, and radial density distribution. For these to be

self-consistent, the beam must rotate, giving a zero-order vQ. Finally, since

there are large equilibrium potentials, injection of even a monoenergetic beam

into a finite radius drift tube results in radial variations in y, given by

mc2(70 - 1) = mc
2(Y(jr) - 1) - e<Kr) , (1)

2 -1/2
where Y = [1 " (v/c) ] and <j> is the electrostatic potential. Linearization

around a self-consistent beam equilibrium leads to equations which, to the best

of our knowledge, do not possess closed-form solutions. Consequently, analytic



efforts have often neglected beam rotation, density inhomogeneity, and/or radial

y-variations. As we show below, the consequences can be significant vis-a-vis

collective ion acceleration.

The dispersion of beam cyclotron waves can be quite accurately described

with a reduced set of linearized cold fluid and field equations, which for azi-

muthally symmetric modes (m = 0) are

e ~

3p 3pft p e ~
—• + v ~- + va — = - - (Eo + v B - v B ) (3)
3t z 3z 6 r m 6 z r r z

8n 3nv 1 3

3T = • -§F " r V r V r

32A. „ 32A. _ 1 3 3A.
— — - c — — - c - — r = 4nec(nnv. + nv.) , (5)
3t 3z r 3r 3r u I I

where tildes refer to perturbed quantities, v = 0, p. = YnV., i = r,8, and A

is the vector potential, such that B = V x A. Numerical solution of the full

fluid and field equations on self-consistent equilibria provide confidence in

the viability of Eqs. (2)-(5) for modeling cyclotron waves. ' Aside from their

utility in deriving dispersion relations, this reduced set can yield informa-

tion directly about nonlinear waves.

In writing the model equations (2)-(5), the p and E equations were

omitted. Although they could be included for the sake of accuracy, they effec-

tively decouple from cyclotron waves of interest to ARA. In fact, they arise

almost as by-products. The v - and v -induced motions characterize the wave,

leading to periodic radial modulations of the beam. Figure 1, taken from a

wave growth simulation, clearly shows this. In Fig. l(a), the configuration

space (r - z) of the beam exhibits this beam modulation after a section of con-

vective wave growth. Figure l(jb) shows the corresponding constant contours of

<(>, the electrostatic potential. The potential troughs are associated with the

modulations. This is the source of the E field that traps and accelerates

the ions; the radial modulation causes density compressions and rarefactions.
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Thus, the cyclotron wave always possesses some E field, but its magnitude is

determined by the depth of radial modulation. To be more precise, it is the

radial integral of the density modulation which determines E , and this depends

on the structure of v , since 6r =» v /(Q/y), Q = eB /me. If the radial per-

turbation is distributed broadly across the beam, the integrated density mod-

ulation will be greater than if it were, say, localized on the surface. Since

there is only a finite beam-to-wall separation, the magnitude of modulation on

the outside of the beam is limited. Maximizing the axial electric field, there-

fore, depends sensitively on the radial eigenmodes.

Other information deducible from Eqs. (2)-(5) is more qualitative. Exami-

nation of the first order equations shows the terms neglected in this order,

but which in general need not be small. A prime example is the radial convec-

tive term, v (3p./3 ), i = r,8. These terms are clearly not first order. How-

ever, when the waves become finite, perturbation schemes become dubious and

actual magnitudes must be considered. In this case, lack of an axially homo-

geneous (k = 0) v component indicates that, for large waves at k.., the convec-

tive terms contribute most strongly at 2kfl, the spatial second harmonic. (Since

the 2k_ contribution is not resonant, however, only forced oscillations are

induced.) More directly applicable terms are those involving v . In the

reduced equations, only the k = 0 component was retained. The self-field

Bfi(k = 0) can be quite large, however, so finite values of v (k = k.) can con-

tribute significantly to the k. mode. While one can argue that these should be

included in linear theory, v is coupled nonlinearly with wave amplitude,

through

2 2 2 1/2
vz s c(y

Z - 1 - p* " P Q ) ' /Y • (6)

This nonlinear term can directly alter the cyclotron dispersion. Linear results

are of little value in estimating v since there is no guarantee a priori that

the nonlinear ratio of wave quantities remains fixed. One of our primary objec-

tives, in fact, is to determine the relative magnitudes of nonlinear wave quan-
(

tities. To do this, more powerful numerical tools are required.
I

III. DESCRIPTION OF CYCLOTRON WAVE GROWTH SIMULATIONS

The study of relativistic slow cyclotron waves requires self-consistency.
I

Two-dimensional relativistic particle I simulations were therefore conducted to
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amplify small amplitude cyclotron-like perturbations. The large amplitude

extracted signals were then allowed to propagate for moderate distances in a

smooth-walled guide. A more complete discussion of the cyclotron wave growth

has been reported elsewhere, but a brief outline will now be given to place

that work in perspective.

Wave growth in a helical slow wave structure has been widely employed for

many years, for example, as the basis for traveling wave tubes. The principle

of operation is that in a helix waveguide structure, the phase velocity of the

electromagnetic mode is reduced to V , = c sin ij), where )JJ is the helix pitch

angle. It is, in fact, lowered to the point where resonance with a slow beam

mode is achieved. Only slow modes can be resonant since, by definition, they

alone possess phase velocities slower than the medium velocity, in this case

v = c. In traveling wave tubes, the beam mode is a Langmuir wave. ARA appli-

cations call for unstable growth of the slow cyclotron wave, however. This mode

is quite dissimilar from the space cha'rge wave. Previous theoretical and ex-

perimental experience was therefore inapplicable. This led to a number of un-

pleasant surprises in the simulations before certain fundamentals of electrical

engineering were rediscovered and successful stable amplification was achieved.

Figure 2 depicts the simulation configuration used in these studies. A

sheath helix with pitch angle 4> ar*d radius Ru, illustrated with the dashed line
n

in the figure, was attached to perfectly conducting flanges on either end,

shown as crosshatching. An outer conducting wall with radius Rw existed out-

side the helix. The relativistic electron beam was injected on the left simu-

lation boundary and propagated to the right, downstream boundary, where it was

"smoothly" extracted. Once the space charge fields reached the grounded helix,

they induced a charge flow on it. This "charging current" is quite physical

and in a nonresistive helix, it rang for an unacceptably long period. More

gentle risetimes would have ameliorated this condition, for helix dispersion

eventually smooths the charging pulse. Although the helix current smoothed,

however, the residual current flow resulted in a strong, finite width diamag-

netic region. The total B field experienced by the beam was therefore discon-

tinuous at the flange/helix boundaries. This stationary discontinuity excited

zero-frequency cyclotron waves with wavenumber k = ^A/VQ V
0« These waves did

not interfere with growth of the coupled helix/cyclotron waves, but beating of

the two finite-amplitude cyclotron modes yielded a potential distribution

unsuitable for long-term trapping. Removal of the helix current without
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disturbing helix charge distributions was found to be highly desirable, and

accomplished in the simulations, as in the laboratory, by terminating the helix

with matched impedances. After the initial transients decayed away, the current

and charge distributions were quiescent and suitable for introduction of a small

amplitude signal at the most unstable frequency upstream of the helix. Our

"generator" was directly tied to the helix, but other more physical antennas

have been examined. When the signal generator was "turned on"i steady cyclo-

tron wave amplification occurred, in close agreement with linear theory. To

prevent oscillation, rather than amplification, large volumetric resistances

were added outside the helix at the far end of the growth section. These were

sufficiently large that they inhibited amplification, but such magnitudes were

required to prevent oscillation. After the resulting large amplitude cyclotron

wave reached the end of the helix, it was found to propagate into the smooth-

walled drift tube with only nominal (10-20%) attenuation of the wave.

IV. DISCUSSION AND ANALYSIS OF NUMERICAL CALCULATIONS

The model configuration described above was successfully employed to grow

large amplitude cyclotron waves. Since growth is due to coupling with the

helical waveguide mode, however, the finite amplitude wave possessed a different

radial structure from a stable cyclotron wave. Relaxation toward a stable con-

figuration is thus expected after the wave leaves the growth section. This is,

in fact, the dominant behavior observed in simulations. A small fraction of

the wave energy Is nevertheless converted into high-frequency noise. This noise

seems to couple into resonant TE and TM wave guide modes with moderate effi-

ciency. These are only tentative conclusions, since there are indications that

the coupling may be enhanced by purely numerical effects. Even if the simula-

tions overestimate the magnitude of electromagnetic noise, however, the combin-

ation of high frequency with incoherence in this field make it unlikely to

interfere with the cyclotron accelerating fields. The low frequency field it-

self showed only weak attenuation or loss of coherence as it propagated for

distances of order L = 100 c/tu beyond the growth section. The only wave cou-

pling effect observed was a tendency toward generation of harmonics, which never

amounted to more than a few percent of the primary wave energy.

Demonstration of long coherence lengths for nonlinear cyclotron waves was

accomplished with the numerical simulations. Beyond this, however, a primary

objective was to characterize the finite-amplitude wave state. How then should
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a nonlinear wave be characterized? Linear waves are completely described once

a dispersion relation and the eigenfunctions are determined. The situation is

much more complicated for finite-amplitude waves. For one thing, linear super-

position of modes is no longer strictly valid; a nonzero coupling between all

modes exists in general. Therefore, while it is still important to determine

the relation between ui and k, i.e., the dispersion, one also needs to specify

the spectrum. Spectral characteristics are a self-consistent aspect of a non-

linear wave state. The radial wave structure in our case is also a valid indi-

cator, insofar as it can be compared with a linear eigenfunction. As mentioned

earlier, it can be directly correlated with the E field of the wave. Finally,
z

linear theory allows us to predict ratios of eigenfunctions, for instance,
v /E . Similar ratios can be determined directly from simulations,
r max z max

In this fashion, the degree to which nonlinear waves resemble linear ones can

be inferred quantitatively. To make these concepts more concrete, we will

consider a typical simulation.

A series of simulation calculations was performed in a geometry similar to

that in Fig. 2. In units of c/iu , the helix and the inner flange radii were

R = 3.8, the outer flange radius was R = 5.7, and the beam radius, R = 2.65.

This last dimension corresponds to a Budker parameter of =1.75, or 30 kA.

The helix extended from z = 15.0 to 115.0, with a pitch angle ty = -15°. The

helix was excited directly at z 30, giving a total growth length L =85.
grow

For these conditions, the growth rate was V = 0.020 iu and the group velocity

v 0.6 c, giving almost 3 e-foldings, in the absence of resistive termina-

tions. These simulations were designed for conservative performance, with a

maximum power amplification of only about a factor of 260. In fact, addition

of various resistive elements to inhibit feedback shortened the effective growth

length, so that the observed amplification factor was on the order of 130. Our

purpose here was not maximum amplification; in specifically designed wave

growth simulations, amplification factors almost 10 times larger have been

measured. The large amplitude cyclotron waves which were grown, however,

proved very suitable for studying the nonlinear characteristics.

The magnitude of the E field on axis is plotted in Figure 3, as a function
Z ;

of axial position. The electric jfield is observed to reach its maximum value

* 11 -2
For comparison purposes note that when n = 3 x 10 cm , c/u) = 1 cm.

0 p
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near the end of the helix. More significant, however, is that, while some

fluctuations in amplitude are observed, the average field of the extracted wave

is only about 10% lower than the peak.

The E values shown in Fig. 3 were obtained by setting numerical "probes"

at various positions along the axis. Figure 4 shows a typical "probe" trace,

near the end of the growth section, and its associated power spectrum. The

dashed line indicates the frequency expected from linear theory for this config-

uration. There is virtually no detectable frequency shift, even though the
5 12 -3

magnitude is over 2 x 10 V/cm, assuming n = 10 cm . Since this probe was

still within the region dominated by the linear helix, this is perhaps not sur-

prising. Figure 5, however, compares that power spectrum with one obtained

almost 90 c/iu further down the propagation path, well beyond the helix. Al-

though the total noise content at high frequencies is quite different, the low

frequency cyclotron signal is hardly affected at all.

With the aid of computer-generated movies, a point of constant phase can

be observed directly. The phase velocity of finite amplitude waves determined

in this fashion was remarkably close to that of infinitesimal linear waves.

As an example, a series of wave crests were followed for a distance L = 50 c/ui
-1 P

and times on the order of t = 300 UJ . Wave modulation was such that
P

Ar/R = 0.23. (The beam-to-wall separation for this calculation corresponded
to Ar/R = 0.43). The average phase velocity was measured to be V = 0.275 c,

is ph

while linear theory predicted V , = 0.269 c.

One of the few nonlinear spectral effects observed so far has been harmonic

generation. This is registered to varying degrees on probes of E , B_, and E_
z o t)

fields, and seems to be correlated with the wave magnitude. The specific origin

of this apparent nonlinearity has not yet been identified but is under investi-

gation.

Figure 6 shows the beam envelope under typical conditions of steady cyclo-

tron wave amplification. Radial beam modulations increase through the growth

section but are not attenuated on leaving it. In fact, they increase to some-

what larger values. Surprisingly, this behavior is explicable on the basis of

inhomogeneous linear theory. Figure 7 shows the radial eigenfunctions for v

derived on self-consistent radial profiles, with the same wavelength. These

are related to the radial modulation by Ar = v /(uu - kv ). Figure 7(a) depicts

the radial velocity structure within the growth section; the frequency is

u) = 0.124 ± 0.020i u) . In Fig. 7(b), we show the eigenfunction under identical
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conditions, except that a smooth waveguide wall is at the helix radius; for

constant frequency, the relative wavenumber shift is less than 1%. Both scales

are normalized to the maximum value of E . Since Fig. 3 indicated that the E
z 6 z

magnitude did not decrease significantly, it is evident that the radial modu-

lation must increase substantially as the mode relaxes toward its stable con-

fi guration.

We have repeatedly referred to inhomogeneous linear theory. The reason is

well illustrated by the above example. To obtain the expected ratio, lineari-

zation was performed around the radially inhomogeneous equilibrium. If the same

calculation is conducted, except with a constant, averaged value of y> i.e.,

dr/Rfi

qualitatively and quantitatively different eigenfunctions result. Figure 8

gives a comparison between the v and E eigenf unctions computed with <y>,

Figs. 8(a,b) and those with Y(r), Figs. 8(c,d). The difference is quite signi-

ficant, for it indicates that, if linear theory is relevant to finite amplitude

waves, over 4 times the density modulation is required to induce a given E
Z

magnitude than would be expected on the basis of the simpler <y> analysis.
Since the beam modulation is effectively limited to the beam-to-wall separation,

this implies relatively small upper limits on the obtainable wave acceleration

fields. Although the magnitude is still large compared with conventional

fields, it is much smaller than originally anticipated. The self-consistent

equilibrium employed here depends on a specific current distribution, of course,

and this is certainly not unique. Tailoring the radial current distribution

may yield more propitious field/modulation ratios. The important point is that

linear theory at least should be based upon realistic, not idealized, beam

states.

Eigenfunctions of the radial velocity were also compared with linear

theory. These were obtained numerically by measuring the root-mean-square

radial velocity of the beam at various axial slices as a function of the orig-

inal stream lines, i.e.,

< V r ( r 0 ) > =
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The time interval for averaging was chosen large enough so that uncertainties

in quantities at the desired wave frequency were less than 2%. Figure 9 shows

the linear eigenfunction as a solid line, and the nonlinear as a dashed line,

both normalized to the axial E magnitude. The structure is qualitatively the
z

same, though the nonlinear wave exhibits less modulation. This is significant
in that it indicates less modulation is required to produce a given E -field on

z

axis. Compared with Fig. 8, however, it is apparent that inhomogeneous linear

theory is more applicable to nonlinear waves than is simple linear theory.

The ratio of beam modulation to induced axial electric field is a very

important accelerator parameter, due to finite beam/wall separation. Simula-

tion derived values of (Ar/E ) are plotted in Fig. 10 as a function of z.

It is clear that the ratio approaches the inhomogeneous linear values in both

the unstable growth section and the stable propagation section.

Finally, note that finite transverse oscillations occur at the expense of

the original beam energy, which was predominantly longitudinal. A simple model

for the effect on longitudinal motion is

vz(r0) = ch£(r0) - 1 - p
2(r0)]

1/2/Y()(r0) . (7)

Since we measured the RMS eigenfunctions of p , Eq. (7) can be estimated direct-

ly. Figure 10 shows the relative mean change in v as a function of z, for a
z

typical wave growth/propagation simulation, with 6 /R ? 23%. This v not only

induces frequency modulations through terms like v B_ in Eq. (2), but also in
Z \J

the basic Doppler shift, kv . If frequency shifts on the order of kAv are not

compensated by wavelength shifts, the nonlinear phase velocity should have been

reduced. Phase velocity changes of this size would have been seen in simulation

movies, however, but the measured values, as discussed above, were not reduced.

It is not clear at this time why such effects have not been observed in the

simulations.

V. CONCLUSIONS

Cyclotron waves suitable for use in an Autoresonant Accelerator have been

self-consistently grown to nonlinear levels in numerical simulations, and there-

after propagated for moderate distances without significant attenuation. While
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the investigation of these nonlinear wave states has not been completed yet,

certain important observations can still be made.

The primary conclusion must be that cyclotron waves possessing relative

radial modulations of 20% or less are not violently unstable, and in fact ex-

hibit coherence lengths at least on the order of the simulations, i.e.,
2

AL = 10 C/UJ . Larger amplitude waves will be simulated in the near future.

Comparisons with inhomogeneous linear theory revealed quantitative differences

in nonlinear waves but no qualitative changes.

Finite amplitude cyclotron waves were also found to be highly localized on

the beam surface, which is consistent with inhomogeneous linear theory. The

interior of the beam does not "actively" participate in the oscillation. There-

fore, a relatively large radial surface modulation, much larger than simple

linear theory predicted, is needed to produce a given magnitude field on axis.

Previous work has shown that an upper limit on the amplitude is that the total

potential, equilibrium plus wave, must not exceed the space charge limit,

roughly

d> <
Ttotal u u

This in turn limits both the allowable beam-to-wall separation and the radial

modulation. Although nonlinear cyclotron waves are not quite so surface-peaked

as linear ones, the linear picture is still qualitatively correct. If these

results prove to be valid over a broad range of magnetic field, they impose real

limits on ARA performance, for the linear results indicate that propagation in

a decreasing field will not reduce the E field, but rather increase the rela-
z

tive beam modulation. Conclusive results must await either experiments or

simulations of cyclotron wave propagation in inhomogeneous fields. We are

actively pursuing the latter.

A final observation of considerable interest is that the phase velocity of

finite amplitude waves is very accurately given by linear theory, at least at

the simulated wave strengths. Since a nonlinear frequency shift on the order
p i n

of kAv plays a significant role in cylotron waves in low density beams, '
z

measurable changes in the phase velocity should have been detectable for waves

seen in the simulation. Larger amplitude waves, however, should prove a more

stringent test on any nonlinear phase velocity modifications.
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This work is currently being extended to larger amplitude waves, propaga-

tion in axially varying magnetic fields, and longer propagation distances. If

present trends, consistent with inhomogeneous linear theory, persist, signifi- >

cant alterations will be needed in the design of an Autoresonant accelerator.

Possible improvements may result from reshaping the acceleration section, giving

smaller acceleration gradients, finding an optimum radial current profile, or 0

employing a higher energy electron beam. ^
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Convectively grown cyclotron wave in
particle simulation, (a) configura-
tion space (r - z) and (b) constant
contours of electrostatic potential.

160

Fig. 2

Schematic representation of the sim-
ulation configuration employed to
grow cyclotron wave.
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E as a function of axial position,z
z; r = 0.35 c/iu , R = 2.65,

RH - 3 .8 , Rw = 5 .7 /3 .8 , t|j = -15° ,

eB /me = 2.0 tu , L = 200 c/u> ,
° P ' P

L = 100 c/u) .
grow p

Flange

52



E z( t )0005
Fig. 4

(a) Typical E "probe" trace;
r = 0.35, z =Z106; (b) power spec-
trum derived from probe trace.
Dashed line indicates frequency of
original antenna signal.
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Fig. 5

Comparison of E power spectra at z.
(a) z = 106 andz(b) z = 193. En-
hanced high frequency components at
z = 193 may be due to numerical
effects.

125
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Fig. 6

Typical beam envelope in a wave
growth run. Growth section extends
from z = 15 to z = 115.
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Comparison of linear eigenfunctions of

v derived numerically on a self-con-

sistent equilibrium, R =2.65, Q =2.0 U) .
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(a) v versus r within growth section,
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w=0.124±0.020 i u , k=0.46 u> /c; (b) Vf
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Fig. 8

Comparison of v and E linear eigen-

functions, Rg=2.65, R=3.8,

k=0.46 ui /c. (a) v versus r derived

from equilibrium with <v>=4.9,

(b) E versus r, same as (a); (c) v
z r

versus r derived from self-consistent

equilibrium, y(RB)=5.8, v(0)=4,|(d) E£

versus r, same as (c).
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Fig. 9

Comparison of v linear eigenfunction

(solid line) with RMS v (r ) derived

from simulation (dashed line), R =2.65,

Rw=3.8, 6r/RB=23%.
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Fig. 10

Tabulated estimate of v shift as a
z

function of z using Eq. (7) and

simulation data, for parameters of

Fig. 3.
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NONAXISYMMETRIC BEAM/HELIX INSTABILITY AND NONSOLID BEAMS

by

R. J. Faehl

ABSTRACT

Beam/helix growth rates of nonaxisymmetric modes
are examined numerically for parameters appropriate to
autoresonant ion acceleration. These are compared with
m = 0 growth rates in both solid and hollow beams.
Hollow beams reduce m = 1 growth with respect to m = 0,
but overall offer few advantages for ion acceleration.

In the FY77 annual report, a fairly detailed discussion was given of linear

theory for the helix-beam coupling instability. This discussion was based on

analytic theory and numerical solution of linearized cold fluid/electromagnetic

equations of self-consistent equilibria. Although the potential importance of

nonaxisymmetric modes (m ^ 0) was noted, we confined our attention at that time

to the m = 0 mode in a solid beam. We have since extended the numerical results

to hollow beams and the m f 0 modes.

All nonaxisymmetric helix modes (m f 0) possess moderately high phase
2

velocity, since w^ , . = -qc (tan t|> + mk/Rj,q ), where t|j is the pitch angle, R,,
is the helix radius, and q = (k - UJ /c ) ' . The axial electric field for

these waves, furthermore, vanishes on axis (i.e., E (r=0) = 0), so that ion

acceleration in an m f 0 mode could only be achieved far from the axis. While

this is an undesirable characteristic of all modes, m = 1 is probably the most

deleterious. Not only is it of little use for ion acceleration, it can be

strongly disruptive by kinking the beam into the wall. Growth of the m = 1

beam/helix mode is, therefore, particularly undesirable. To examine it, and

other nonaxisymmetric modes, we extended the m = 0 dispersion calculation to

the case of arbitrary m.
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TABLE I

HELIX/BEAM INSTABILITY AS A FUNCTION OF GUIDE B FIELD
z

fio m = 0 m = 1

2

2

3

4

.0

.5

.0

.0

0

0

0

0

max

.024

.025

.025

.021

k
max

0.46

0.59

0.71

0.96

r
max0.121-

0.082

0.076

0.059

k
max

0.24

0.86

1.075

1.38

The summary of a series of calculations for m = 0 and m = 1 helix induced

beam instabilities is shown in Table I, as a function of magnetic field, where

Q. = eB./mc, Ru = 3.8, R_ = 2.65, V = 1.75, and ijt = -15°. (All distances are
u u n D

in units of c/u) .)
P

The magnetic field variation had little effect on the helix dispersion,

but it shifted the cyclotron branch to higher k (short wavelength). Since the

instability occurs roughly at resonance of the two modes, this shifts peak

growth to shorter wavelength. As the table shows, the m = 1 growth rate is much

larger than m = 0, for parameters of interest here. However, it is apparent

that for these parameters the effect of magnetic field on the m = 0 mode is

considerably less than on m = 1. Other parameter searches have also shown

propitious scaling of m = 0 versus m = 1, but no parameter or combination of

parameters yet examined has reduced the magnitude of m = 1 to less than m = 0.

For parameters examined so far, magnitude of the m = 1 growth in a helix

is so much larger than m = 0 that active measures are probably required to sup-

press it. There are several possibilities for achieving this.

(1) One can excite the m = 0 cyclotron mode at sufficiently large magnitude

that little or no amplification is required to raise it to a programmatically

satisfactory level. This requires a clean excitation mechanism which will not

simultaneously excite m = 1. The self-driven antenna concept discussed in

another appendix has shown promise for large excitation levels, but further

analysis would be required to determine the full composition of excited waves.
!

(The simulations cannot provide useful information here, for they are axisym-

metric and thus show only m = 0 waves.)
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(2) Selective nonlinear suppression of the m = 1 waves, if possible, would

facilitate free growth of both m = 0 and m = 1 perturbations. Austin Research

Associates has had some success in studying nonlinear saturation mechanisms in

low-density and/or weakly coupled beams. It is not clear that this work can be

extended to the high-current regime, or if it can, that a mechanism can be found

to suppress m = 1 without affecting m = 0. Further analysis appears necessary

to determine the viability of this approach.

(3) Spatial filtering can be accomplished by loading a waveguide such that

certain wavelengths are highly distorted while others are virtually unaffected.

By distorting the portion of k-space in which m = 1 is unstable, but not m = 0,

it should be possible to reduce m = 1 to manageable levels. Unfortunately, this

is only possible where unstable regions in k-space are well separated. We can

crudely estimate the width of unstable waves by noting that the instability is

a resonance effect. It, therefore, peaks at roughly the intersection of the

two dispersion curves and is effective until the linear frequency mismatch

becomes too great. We find that the maximum mismatch is approximately equal to

the peak growth rate,

*» = |kV0 " V * 0 " kC Sin •' " rmax » Cl)

which can be simplified by noting that the resonance, and hence, peak growth

occurs at

kmax

so that the unstable wave regions are defined by

max

Another resonance occurs for helix intersection with Langmuir (space-charge)
1

waves, which gives i

k • :i
I r - 5 1 I = Y r r /«*» •
kT Lmax p
Lmax
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For m - 0, the Langmuir resonance occurs at very long wavelengths, i.e.,
kLmax K< 1- T h e m = l Langmuir resonance is shifted to considerably shorter

wavelengths, however. The situation is depicted schematically in Figs, a and 2,

for m = 0 and m = 1 modes. The m = 1 Langmuir instability is so much stronger

than its m = 0 counterpart, at moderate magnetic field (for instance,

fi0 = 2"° * V t h a t t h e conibined range of m = 1 Langmuir and m = 1 cyclotron

completely overlaps the m = 0 band. For spatial filtering to be effective, a

parameter regime must be chosen so that the m = 0 cyclotron wave is more un-

stable than any m = 1 mode. If one neglects higher order interactions, i.e.,

m ^ 2, it appears that the necessary separation can be achieved by going to

sufficiently large magnetic field (compare to Table I).

The above results were all obtained in solid beams. It has been suggested

that hollow beams may yield more propitious results. Toward this end, we have

employed the GRADR code to numerically calculate stable and helically unstable

cyclotron waves with a hollow beam. As with the solid beam calculations, only

sharp radial boundaries were studied.

There are several characteristics of cyclotron waves which can be used to

compare the effect of hollow beams versus solid ones. The axial electric field,

for instance, is produced by radial modulation of the beam. It is, therefore,

important to know how much modulation is needed to produce a desired field

I.OOr—

0.75 -

0.25 -

0.00
0.00 1.00

Fig. 1.

Dispersion of m=0 helix (uu), cyclo-
tron uO

y
and space-charge or Langmuirg

(u) ) waves. Crosshatching shows
approximate width of unstable inter-
action.
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Waves. Crosshatching shows width
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magnitude. Studies on the effect of radial y variations described in Appendix B

indicate that the eigenmode is highly surface-localized, so that roughly four

times the modulation is required.

The peak growth rate for the m = 0 and m = 1 modes is shown as a function

of beam aspect ratio RD/A, where A = R . - R. , in Table II. The beam-to-
B out in

helix distance was maintained at a fixed value, R - R_ = 1.15, and the helix

angle was ij* = -15°. A slight shift to lower k with increasing aspect ratio is

expected due to smaller potential depression across the beam. (Reduced space-

charge means larger y.) The m = 1 space charge instability weakens signifi-

cantly as the beam becomes more hollow, thus eliminating overlap with the m = 0

cyclotron growth. Overall, however, the "hollowness" of the beam seems to have

little effect on the cyclotron instability.

The other reason advanced for employing hollow beams is that the wave

would not be so localized on the surface. The space-charge variation of y

across a solid beam leads to highly peaked m = 0 cyclotron eigenmodes. Conse-

quently, the E field on axis is much smaller (factor of four for typical ARA

parameters) than one would expect from a constant y analysis, for the same mod-

ulation. Since the modulation amplitude is limited by the finite beam-to-wall

separation, this places a smaller upper bound on accelerating fields than had

been anticipated (compare to Appendix A). With a hollow beam, the y-variation

across the beam is smaller, and thus, it was hoped, something more akin to the

constant y case would result. Table III, however, shows the v (R )/E (R) ratio
r 15 z

TABLE II

HELIX/BEAM INSTABILITY GROWTH RATES AS A FUNCTION OF ASPECT RATIO

n D

RB/A

1.0

2.5

4.0

10.0

m = (

r
max

0.022

0.026

0.025

0.024

k
max

0.46

0.44

0.42

0.42

u

0

0

0

0

m =

r
max
.1213

.107

.090

.064

V

1

0

0

0

0

u

k
max

.24a

.64

.62

.57

Q i

Peak growth for m = 1 space charge wave; approximate peak
growth for cyclotron wave is T = 0.098 at k =0.67.

max max
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TABLE III

MODULATION-TO-FIELD RATIO AS A FUNCTION OF BEAM ASPECT RATIO

V = 1.75, Yo = 7.0,
o

RB/A

1
1
1
2
2
4.0
10.0

i O ~) **

Vr ( RB
2
2
2
1
1
2

2 .0

" E z
.66
.05
.00
.91
.87
.13

V Rw

max

< " R B = 1.15, k =

W /Ez
2.66
2.36
2.36
2.30
2.36
3.14

0.45

(0)

2.97 8.57

as a function of aspect ratio, for constant beam-to-wall separation and total

current of 30 kA (v = 1.75).

Typical v and E eigenmodes are shown in Fig. 3. There is very little
TO Z

systematic enhancement of the modulation-to-field ratio with hollow beams, and

the fact that peak E fields occur on the inner beam surface, and not on axis,

implies that there will be little radial confinement of any ions and correspond-

ingly poor ion beam quality.

In conclusion, we find little advantage for using a hollow, rather than

solid beam. There are minor advantages and disadvantages for both, but to the

extent we have studied that hollow beams (RD/AR ^ 10) we find no distinct

programmatic advantages for changing to a hollow beam at this time.

-1.0
0.00 1.81 3.61 5.42 7.22

wpr/c

Fig. 3

Radial velocity (V ) and axial field

(E ) eigenfunctions for hollow beam
Zwith R.n=5.45, Rout=6'07'

QQ=2.0 ui , and v=1.75 (30 kA).
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APPENDIX D

SLOW CYCLOTRON WAVE GROWTH BY PERIODIC INDUCTIVE STRUCTURES

To be published in the Proceedings of the Third International
Conference on Collective Methods of Acceleration
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SLOW CYCLOTRON WAVE GROWTH BY PERIODIC INDUCTIVE STRUCTURES

by

William R. Shanahan, Brendan B. Godfrey, and Rickey J. Faehl

ABSTRACT

The Auto-Resonant Accelerator concept of
collective ion acceleration is critically depend-
ent for its success upon the availability of an
effective means with which to grow the relevant
slow cyclotron wave. We present a preliminary
study of such growth via a two-dimensionally peri-
odic slow wave structure. TJhis structure consists
of a z-slotted waveguide about which are placed
conducting straps axially and azimuthally inter-
rupted by capacitive gaps. Appropriate boundary
conditions are derived without reference to con-
cepts borrowed from low-frequency circuit theory.
These boundary conditions have been incorporated
into a numerical code which performs linear normal
mode analyses about self-consistently generated
nonneutral relativistic electron beam equilibria.
This same code may also be employed to examine
the purely vacuum modes, which exhibit expected
behavior. Questions of structure tuning are dis-
cussed. Initial results concerning wave „growth
are presented, and future activities indicated.

In the travelling-wave class of collective ion acceleration schemes, ions

are placed in the trough of a large-amplitude plasma wave that has been produced

on a relativistic electron beam. The ion-wave system is then decelerated by

increasing the phase velocity of the wave through suitable spatial ' or tem-

poral variation of system parameters. Crucial to the success of such schemes

is the availability of an effective method with which to grow such large ampli-

tude waves. For the Auto-Resonant Accelerator, where one is concerned with the

slow cyclotron mode, several such^methods have been investigated in the past.
4

In one approach explicit advantage is taken of the negative-energy nature of

64



the slow cyclotron modf to grow the wave through the introduction of a dissipa-

tive element, such as a resistive liner. In another, perhaps more familiar

method, growth is achieved by permitting the electron beam to interact with a

slow-wave structure. The use of such structures is particularly attractive in

this context, inasmuch as their spatial structuring offers at least the possi-

bility of growing modes with prescribed desirable properties while discriminat-

ing against less favorable waves. In particular, the slow-wave structure

consisting of a metallic helix surrounding the relativistic electron beam has
4 5

hitherto been extensively investigated from this point of view. ' In this

report, we present preliminary results of an investigation of another, quite

different, slow-wave structure.

The system considered here consists of a z-slotted wave-guide around which

are placed conducting straps. These straps are interrupted both axially and

azimuthally by capacitive gaps to give rise to a two-dimensionally periodic

structure. The entire system is enclosed within an outer cylindrical conduct-

ing wall. This structure, the resonant loop-drive, is depicted in Fig. 1.

Interaction of an electron beam with such a structure may be viewed in two quite

conceptually distinct, but physically equivalent, ways. Firstly, the periodic

structure may be considered to be an

effective LC--circuit with the elec-

tron beam serving as a source of

electromotive force. The various

geometric features of the slow-wave

structure, such as the axial and

azimuthal periodicities and corres-

ponding strap lengths and widths,

may then be adjusted to provide the

effective LC-circuit with a resonant

frequency appropriate to the beam

mode whose growth is desired. Energy

is consequently extracted from this

mode; and since it is negative energy

in character, the amplitude of the

mode grows.

The second, perhaps more satis-

fying, way of viewing the interaction

Fig. 1
Resonant loop-drive ^low-wave struc-
ture .
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between the electron beam and the slow-wave structure being considered here is

as being the solution of a boundary-value problem involving Maxwell's equations

and a periodic boundary. In this view, the dispersion relation of the relevant

vacuum mode mirrors in w-k space the periodicity in real space introduced by

the boundary conditions. This mode is consequently highly distorted from its

periodicity-free form and may be expected to intersect the less affected slow-

cyclotron mode, the position and strength of the intersection being controlled

by the geometric properties of the slow-wave structure. Of course, this is also

the conventional view of the slow-wave structure interaction with nonrelativ-

istic electron beams.

Austin Research Associates, Inc. the inventors of the Auto-Resonant Accel-

erator principle, have presented a very useful analytic discussion of the slow-

wave structure under consideration from the point of view of lumped-element
c 7

circuit theory. Such an analysis is essential for obtaining an intuitive grasp

of the dynamics of slow-cyclotron wave growth by this method. However, this

approach makes a number of assumptions whose limits it would be desirable to

delineate. Firstly, a treatment strictly from the perspective of Maxwell's

equations is desirable in determining those regions of frequency and wave-number

where the more tractable lumped-element circuit theory is applicable. Such a

determination should provide greater confidence in future analytic studies.

Secondly, earlier analysis assumed that the capacitative gaps were so numerous

that their capacitance could be assumed to be uniformly distributed in the azi-

muthal direction. In reality, the capacitance is concentrated at various points

about the circumference of the conducting straps, thereby introducing a period-

icity in this direction. Such a periodicity can have a marked effect on the

relevant mode structure, linking together modes of different azimuthal quantum

number. The analysis to be presented below addresses this question. Lastly,

previous investigators employed a model beam profile which essentially ignored

ali radial variations. Numerical investigation has revealed that such a profile

is not always appropriate for an electron beam with parameters suitable for
o

collective ion acceleration. An investigation of the effect of a more real-

istic profile on the growth mechanism is clearly desirable.The purpose of this paper is to report on some preliminary results of an

investigation designed to address these issues. We begin by deriving boundary

conditions suitable to the slow-wave structure described above. No recourse is

made during this derivation tc
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theory. These boundary conditions have been incorporated into a numerical code

designed earlier to investigate the equilibrium and eigenmodes of a relativ-

istic electron beam propagating in a nonperiodic geometry. This same code may

be employed to examine the vacuum modes, an understanding of which is essential

to a full appreciation of the cyclotron wave growth mechanism. Finally, we turn

to some initial results regarding cyclotron wave growth on a relativistic beam.

The boundary conditions to be applied are simply those that the tangential

electric field component Eft(r = a) be continuous everywhere and vanish identi-

cally on the conducting straps. Further, the radial derivatives are required

to be continuous at the gaps. The tangential electric field component E (r = a)
z

is, of course, forced to be zero by the presence of the z-slotted waveguide.

The usual metallic boundary-value conditions are assumed to be applicable at

the outer conducting wall. These conditions may be summarized conveniently as

= a)S(8 - - 6)S(z - hL)S(hL + d - z)

x S(6 - j6n - 9 )S(z - hL - d)S(hL + L - z)} = 0
vJ S

(la)

and

e'z = o

Here L is the axial periodicity length, 0 is the corresponding azimuthal quan-

tity, while d and 9 are, respectively, the axial length and angular width of
s

the conducting straps. The superscripts (1,2) refer to the regions interior

and exterior to the slow-wave structure. We have also introduced the standard

unit step function:

S(x) =

x > 0

x < 0

The rather unsightly expression (la) may be somewhat simplified to yield
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where Str(z,6) is that combination of step functions defining the positions of

the straps:

Str(6,z) = V ^ S(z - hL)S(hL + d - z)S(0 - j6n)

hj

x S(j60 + eg - 6) . (3)

The numerical code into which the above boundary conditions are to be

incorporated solves for the eigenfrequencies and radial eigenfunctions of a

mode of the beam-waveguide system, which has a specified axial wave number k

and a particular azimuthal quantum number H. Consequently, Equation (2) must

be put into a form consistent with; such a scheme. The two-dimensional perio-

dicity of the present slow-wave structure implies that the fields will have the

form f>f Bloch functions

2) V ^ (1 2) Kk+pk )z+i(£+nm )6
'̂  (r,z,8) = 2 , E U ' (r) e ° ° (4)

k 2.
n p

The desired form may be obtained by substituting (4) into (2), multiplying by

the usual Fourier exponentials, and effecting the necessary elementary integra-

tions. The result is

27tL sin(p' - p)k d/2
6 .6 , + 8 —T-, rr-^ 6 .

MQ nn pp s (p - p)kQ2 nn
n p "

dsin(n' - n)mn8 /2 sin(n' - n)m_6 /2 sin(p' - p)k,
+ _, , .0 s 6 ° s C

(n' - n)mQ/2 pp (n' - n)mQ(p' - p)kQ/2

') (r)

^ 2 j

(5)

68



where we have defined

(r = a) = e
i(pkAd/2+nmrte

(r = a) (6)

and

A " =

(k b) + K
v p '

' .. (k a) + K'
£+nmo+l p £+nm

(k
P

,0- 'V»)J/D • (7a)

je+nmo+l

( kp b ) + K£+run0-l
 ( kp b ) ] (7b)

k 2 =
P

(7c)

Equation (7) is derived from a consistent application of boundary condition (lb),

together with that deriving from the continuity of the tangential electric

field. Here kQ = 2n/L and mfl is the analogous, but integral, quantity, which

is in fact the number of azimuthal gaps employed. The prime on the summation

symbol denotes, as usual, the omission of terms which would give rise to singu-

larities through the vanishing of denominators. The quantity e is the dielec-

tric constant of the material which fills the region between the slow wave

structure and the outer conducting wall. This material has been introduced for

numerical tuning, as will be elaborated further below.
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Equation (5) could perhaps be made the basis of analytic study of slow

cyclotron wave growth. Such a study would require several assumptions and

approximations whose validity in parameter regimes of experimental interest is

not always clear. Our immediate objective has been rather to employ Eq. (5) to

conduct numerical investigations, which are not limited by such assumptions and

approximations. Previously, a numerical code, GRADR, was written, which con-

structs self-consistent beam equilibria and performs a normal mode analysis of

linear perturbations made about such equilibria. The code produces both the

eigenfrequency and the corresponding radial eigenfunctions of a given mode

The equilibria examined have a number of features not shared by the model

equilibria generally employed in analytic studies. In particular, the radial

variation of the relativistic factor induced by the presence of the space charge

is automatically included. This variation has a profound effect, both on the

form of the radial eigenfunctions and on the overall appearance of the disper-

sion diagram. While the dispersion properties of the slow cyclotron wave under

discussion are but little modified, the radial eigenfunctions are considerably

modified from the Bessel function form characteristic of uniform radial pro-

files. Particularly striking is the peaking of the relevant eigenmode about

the edge of the beams. In addition, discrete modes which appear in the uniform

theory are replaced by bands of continuous modes. These features can have

significant consequences for cyclotron wave growth mechanisms, leading, for

example, to the necessity of greater radial modulation than that predicted by

the uniform theory and to the shifting of relevant discrete modes into the

regions of continua. These questions have been extensively investigated for

growth by helical slow-wave structures but are yet to be addressed for the

drive.

The numerical code described above has been modified to include the peri-

odic boundary conditions displayed in Eq. (5).

The code may also be used to examine the purely vacuum modes of the slow-

v»-.ve structure. Such an examination is necessary for a full understanding of

the interaction when a beam is present. Study of the vacuum modes is also use-

ful in assessing the accuracy of various truncations which must be effected

when using Eq. (5). We expect that the vacuum mode will be relatively flat and

that it will exhibit a periodicity in w-k space given by k~. The degree to

which this periodicity is observed may be taken as a measure of the accuracy of

a given truncation scheme. These expectations have been fully realized. Runs
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with kQ - 1 and d/L - 0.5-0.9 have revealed modes which vary in frequency by

approximately 15 percent throughout a Brillouin zone. With three axial zones

the frequency was periodic to within 2 percent, while with five it was periodic

to within a tenth of a percent. These results were but little changed when

azimuthal periodicity was included.

A further question, which may be addressed through a study of the vacuum

modes, is that of tuning the slow-wave structure. One would like to achieve

the growth of waves with phase velocities roughly in the range of 0.1-0.25!

For parameters typical of Auto-Resonant Accelerator operation, this corresponds

to a resonant frequency for the slow-wave structure of w- = 0.06-0.1 tu . This
P

frequency is, of course, a function of the various geometrical factors involved,

and one might believe that a judicious choice of these quantities would lead to

the desired value. Actually, it was found difficult to reduce this frequency

much below 0.2 without losing significant coupling between the various compo-

nents. This difficulty can probably be traced to our idealization of the gaps

as having no radial extent. The inclusion of a finite radial width would pre-

sumably lead to a greater effective capacitance in the equivalent circuit of

the slow wave structure and, consequently, a lower resonant frequency. In the

analysis of such a system one must recognize that the azimuthal and axial

dependencies of the fields within the gaps are not identical to those occurring

in the interior and exterior regions.

Consequently, several important sim-

plifications which occurred in the

derivation of Eq. (5) do not appear,

and the calculation rapidly becomes

unwieldy. Rather than pursue this

course, we have instead resorted to

the simple expedient of filling the

region between the slow-wave struc-

ture and the exterior wall with a

substance of constant dielectric

constant e = 30-60. This quantity

can now be adjusted to yield the

desired resonant frequency. It is

to be stressed that although the

dielectric is being introduced here
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purely to achieve the desired tuning, it is not altogether clear that the

presence of such a substance is not possible or desirable in the actual

system. This issue must await the resolution of dielectric breakdown questions.

Nevertheless, using this procedure with dielectric constants in the range 30-60,

we have been able to produce vacuum modes of the desired frequency. Cyclotron

wave growth at the desired phase velocity has not, however, yet been achieved.

Preliminary results for cyclotron wave growth at a somewhat higher phase

velocity are exhibited in Fig. 2. Although the parameters chosen to generate

this graph do not necessarily optimize the growth rate, examination of the

results of this run reveal a number of features which are likely to persist

under more favorable circumstances. Firstly, as is clear from the graph itself,

the region of growth is very narrow in w-k space. This is in marked contrast

to the case of the helical structure, which is a broad-band amplifier. Such

sharpness of the resonance may prove an important advantage from the point of

view of coherence, provided that it does not seriously militate against initial

excitation of the desired mode. Further examination reveals significant cou-

pling between the principal mode and those lying immediately adjacent diffrac-

tion zones, the ratio of amplitudes being roughly 0.25. Coupling to more dis-

tant zones is much less. Some concern may therefore arise that unwanted modes

will experience significant growth. Actually, such concern is unwarranted in

the present case, since the relevant modes lie in bands of the continuous modes

referred to above. Previous investigation has revealed that such modes, if

excited, tend to phase-mix away in a secular fashion.

Further study along the lines sketched here is clearly required to ascer-

tain whether this slow-wave structure will provide an effective growth of the

slow-cyclotron waves for Auto-Resonant Acceleration. The linear theory code

described above will be used in the near future to determine those beam and

structure parameters which lead to optimal phase velocity and growth rate. The

important question of the growth of modes with higher principal azimuthal quan-

tum numbers will also be addressed. All the information thereby gained will be

used to choose parameters with which to perform cylindrical, relativistic, fully
•I ' 9

electromagnetic particle computer simulations of slow cyclotron wave growth by

the resonant loop drive.

72



ACKNOWLEDGMENTS

We wish to thank B. Newberger for helpful discussions. This work was

supported under the auspices of the U.S. Department of Energy.

REFERENCES

1. M. L. Sloan and W. E. Drummond, "Autoresonant Accelerator Concept," Phys.
Rev. Lett. 31, 1234 (1973).

2. P. Sprangle, A. T. Dobrot, and W. M. Mannheimer, "Collective Ion Acceler-
ation in a Converging Waveguide," Phys. Rev. Lett. 36, 1180 (1976).

3. R- J. Faehl and B. B. Godfrey, "Collective Ion Acceleration through
Temporal Variation of Relativistic-Electron-Beam Energy," Phys. Rev.
Lett. 40, 1137 (1978).

4. W. E. Drummond et. al., "A .Theoretical Investigation of Auto-Resonant
Acceleration," Air Force Weapons Laboratory report AFWL-TR-296 (1976).

5. R. J. Faehl, B. S. Newberger, and B. B. Godfrey, "Simulation of Cyclotron
Wave Growth in a Helical Slow Wave Structure," submitted to Phys. Fluids.

6. R. M. Bevensee, Electromagnetic Slow Wave Systems, (John Wiley and Sons,
New York, 1964).

7. W. E. Drummond et. al., "Quarterly Status Report for Period 1 March
1977-31 May 1977," Austin Research Associates Report I-ARA-77-U-47, (June
1977).

8. B. B. Godfrey, "Linear Theory of Radially Inhomogeneous Unneutralized
Relativistic Electron Beams," submitted to IEEE Trans. Plasma Sci.

9. B. B. Godfrey, "Numerical Simulation of Autoresonant Acceleration," I2EE
Trans. Plasma Sci. 5, 223 (1977).

73



APPENDIX E

COMPARISON OF AUSTIN RESEARCH ASSOCIATES AND
LOS ALAMOS SCIENTIFIC LABORATORY LOOP-DRIVE BOUNDARY CONDITIONS

Los Alamos Scientific Laboratory report LA-7599-MS
February 1979

74



COMPARISON OF AUSTIN RESEARCH ASSOCIATES AND
LOS ALAMOS SCIENTIFIC LABORATORY LOOP-DRIVE BOUNDARY CONDITIONS

by

William R. Shanahan

ABSTRACT

A comparison of two different models for boundary
conditions appropriate to the resonant-loop-drive slow-
wave structure is presented. The first model is based
on a low frequency approximation in which a capacitive
field-current relationship is invoked. The second
model is essentially a rigorous field theory approach
in which no such low-frequency assumption is made.
Significantly lower growth rates are obtained from the
latter approach than from the former. Reasons for
this difference are sought in an examination of the
radial eigenfunctions of the azimuthal electric field.

Interaction of a relativistic electron beam with the resonant-loop-drive

slow-wave structure has been proposed by Austin Research Associates (ARA) as a

method of achieving slow cyclotron wave growth alternative to that provided by

use of a helical structure. At the time that this proposal was made, an accom-

panying analytic study seemed to indicate that growth rates and lengths compar-

able to those achievable by the use of a helix were to be expected. During the

past few months, we at LASL have conducted an independent study of this proposed
2

method of wave growth. Early in the course of this study, it became apparent

that the validity of several of the assumptions in the ARA analysis was not

altogether self-evident. Since these assumptions, particularly those pertaining

to boundary conditions, were made in the interests of obtaining an analytically

tractable model of the loop-drive, we embarked upon a purely numerical investi-

gation with what were deemed to be a imore realistic set of boundary conditions.

Growth rates lower than an order of! magnitude of those predicted by ARA have
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been obtained. The purpose of this report is to delineate the differences

between ARA and Los Alamos Scientific Laboratory (LASL) boundary conditions and

to present numerical evidence for the importance of these differences.

The resonant-loop-drive slow-wave structure, proposed by ARA, consists of

a z-slotted waveguide about which are placed conducting straps, which are inter-

rupted periodically, both axially and azimuthally, by capacitive gaps. The

periodicity introduced into configuration space by the presence of the gaps is

mirrored, via Floquet's theorem, by the w-k space structure of the positive-

energy vacuum mode, thereby intersecting the less affected negative-energy

cyclotron mode. A resonant transfer of energy from the latter to the former is

thus effected, giving rise to growth of the desired cyclotron mode. Physically,

the radial modulations requisite to cyclotron mode growth may be viewed as

arising from interaction between the first-order azimuthal velocity perturbation

and the zero-order axial magnetic field. The first-order velocity perturbations

are driven by azimuthal electric fields generated inductively by the time-de-

pendent first-order axial magnetic field which is produced by the azimuthal

currents flowing in the conducting straps. These currents are driven by the

azimuthal electric fields, thus completing the feedback loop necessary for any

instability.

The ARA analysis of the growth mechanism described above proceeded on the

basis of a number of assumptions. Firstly, although the azimuthal capacitive

gaps are in reality situated at discrete points about the circumference, it was

assumed that these are sufficiently numerous that the capacitance may be assumed

to be uniformly distributed. In the spirit of low-frequency lumped-element

circuit theory, it was asserted that from this it followed that the current in

the inductive strap and the azimuthal electric field were related by the capac-

itive relation:

=c 5 / V z ) dz

where an average of the electric field has been effected over the axial length

of the strap. This equation was then combined with well-known jump conditions

on the tangential magnetic field to give
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oo d+nL

AB (z) = ̂  S ^ Str(z) f Efl(z')dz' , (2)
z d ^^j J D

n=-» nL

where Str(z) is that combination of step functions specifying the position of

the conducting straps. Using Eq. (2), supplemented by the corresponding condi-

tions for the tangential electric field, matching was effected between interior

and exterior solutions to yield the desired dispersion relation. Analysis of

this dispersion relation yielded the significant growth rates referred to above.

Our principal reservations concerning this analysis center about an appar-

ent conflict between the assumptions which underlie the capacitive relation,

Eq. (1), and the basic jump condition leading to Eq. (2). Essentially, Eq. (1)

implies an identification of the conduction with the displacement current, which

is equivalent to assuming curl B = 0, whereas the jump condition Eq. (2)

requires that this quantity be finite. Further, the preceding analysis assumes

that the azimuthal electric field is finite at every point about the circum-

ference of the loop, where in reality the electric field will vanish, to within

a very good approximation, on the conducting straps. Since the azimuthal

electric fields play a key role in the growth mechanism, it is not altogether

clear that this assumption is not without significant consequences. Of course,

it was also recognized that the assumption of continuously distributed capaci-

tance precluded the possibility of examining the coupling among azimuthal modes

induced by the azimuthal gaps.

Despite these objections, it might be thought that the ARA analysis would

nevertheless yield qualitatively correct results and that the points just

alluded to would yield only refinements of these results. Such basically low

frequency arguments are frequently used in microwave engineering and often lead

to quite satisfactory results. To resolve these issues, we have conducted a

numerical investigation of the resonant-loop-drive employing a more realistic

set of boundary conditions. These boundary conditions are simply that the azi-

muthal electric fields vanish everywhere on the conducting straps and possess

continuous radial derivatives in the gaps. The z-slotted waveguide assures

that E = 0 at the loop radius. These conditions may be summarized as
z
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V 3r
Ee

x Str(z,0) I = 0
c=a

" [—a? ii J

where a designates the radius of the slow-wave structure and Str(z,6) is that

combination of step functions specifying both the axial and azimuthal positions

of the conducting straps. The superscripts (1) and (2) refer re/spectively to

the regions interior and exterior to the loop drive. Further, the entire beam

slow-wave structure system was assumed to be surrounded by an outer conducting

wall at which the usual metallic boundary conditions apply.

These boundary conditions have been incorporated into a numerical code,
3

GRADR, designed previously by B. Godfrey to investigate nonperiodic geometries.

GRADR performs normal mode analyses of linear perturbations made about self-

consistently generated equilibria. GRADR produces not only the proper eigen-

frequency, but also plots of the corresponding radial eigenfunction. For

purposes of comparison, two different versions of ARA boundary conditions were

also implemented in the code. One version was identical to that used by ARA,

whereas the other dispensed with the z-averaging present in Eq. (1). Because

GRADR deals with normal modes of given axial wave number and azimuthal quantum

number, the above equations must be subjected to several manipulations before
2

they are programmed. Details appear elsewhere. Here we summarize the results.

Our results are presented in three sets of two graphs each. The first

graph in each set exhibits the growth rate plotted as a function of axial wave

number. The second exhibits the nature of the azimuthal electric field as a

function of the radial coordinate for an eigenfunction corresponding to a point

near the maximum of the first graph. These graphs have been selected from a

more complete set of radial eigenfunction graphs generated by GRADR. As will

be noted further below, the azimuthal electric field plot selected for display

here is the most revealing of these graphs.

The parameters used to generate these graphs were chosen to model the

proof-of-principle experiment. These were radius of beam =2.65 c/ia , loop

radius = 3.8 c/io,, and IU /u). =• 2, ̂ here w is the zero-order cyclotron frequency

and w is the beam plasma frequency. In addition, the outer wall has a radius
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fifteen times that of the loop which, for these purposes, is essentially in-

finite. Further, while the tuning of the slow-wave structure may be simply

achieved in the case of ARA boundary conditions by the adjustment of a free

parameter, for the LASL boundary conditions this must be accomplished by appro-

priate selection of the various geometric factors involved. For the cases pre-

sented here, we have chosen d/L and 6 /6 =0.5, where L is the axial perio-
s u

dicity length, d is the axial length of the strap, and 8 and 6 are the cor^

responding azitnuthal quantities. Further, 2n/L = 1 and two azimuthal gaps have

been employed. It was found that adjustment of these parameters alone would not

yield the desired low resonant frequency. Further reduction was obtained by /

filling the space between the slow-wave structure and the outer conducting wall/

with a material of constant dielectric constant. Here we have chosen this

constant to be 30. The unit of length is here c/ui , which, for projected A.RA

parameters, is approximately equal to a centimeter. ;

Figure 1 corresponds to runs made with LASL boundary conditions, Fig. A to

those made with ARA boundary conditions, while Fig. 3 is identical to Fig. 2

except that the z-averaging of the azimuthal electric field has been removed.

The most striking aspect of these graphs is, of course, that the LASL ooundary

conditions yield much reduced growth rates compared to those obtained with ARA

boundary conditions. Consistently, the range of unstable axial wave numbers is

also rather narrower. Removing the z-averaging slightly increases the growth

rates obtained with ARA boundary conditions and broadens the /range of insta-

bility. The group velocity observed in the region of instability for all three

cases was approximately 0.5. Thus, these temporal growth rates are relevant to,

the question of growth length. | i
# i :

It is difficult to come to a definitive conclusion regarding the qualita-
.//

tive source of the quantitative differences in the growth rate exhibited here.

Examination of the radial eigenfunctions of three cases considered generally

fails to reveal any striking differences. However, a comparison of the azi-

muthal electric field plots reveals an exception to this statement. For all

three cases the real parts of this component are approximately equal, whereas

for ARA boundary conditions, both averaged and unaveraged, significantly larger
values of the imaginary components at

The absolute values of the azimuthal electric field at the loop for the'ARA

boundary conditions are approximately t

with LASL boundary conditions. This obs

he position of the loop are observed.

iree times greater than those obtained

:rvation leads us to speculate that the

79



conducting nature of the inductive straps, which is contained implicitly in the

LASL boundary conditions but is absent from the ARA formulation, is a principal

source of the differences in growth rate.

Originally, we had intended an extensive study of the resonant-loop-drive

in a variety of parameter regimes, including the study of the variation of

growth rate with beam energy and magnetic field strength. The observation of

such small growth rates, however, seems to render such studies of purely aca-
i

demic interest.
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SELF-DRIVEN ANTENNA

by

Rickey J. Faehl

ABSTRACT

Various waveguide configurations are studied
numerically for the purpose of exciting traveling
cyclotron waves by the beam self-fields. Efficient
excitation is found in at least one configuration,
but it is accompanied by large zero-frequency
growth. :

State-of-the-art rf power supplies are limited in their ability to excite

large-amplitude beam cyclotron waves. To reach levels of 1-2 x 10 V/cm neces-

sary for proof-of-principle experiments, the wave must be amplified in the wave-

guide. This has lead to research at LASL arid ARA on helical and inductive loop-

type beam wave amplifiers. It has been observed, however, that the self-fields

of these high-current, unneutralized electron beams are quite large already.

In fact, field-induced breakdown of waveguide surfaces may be a continuing

problem. Unfortunately, the self-fields are static while traveling fields are

needed to accelerate the ions. The feasibility of driving a resonant antenna

or cavity with the static fields has, therefore, been investigated by us using

self-consistent particle simulations.

Several possible self-driven antenna configurations have been simulated by

us. These studies have been very preliminary. No attempt was made to conduct

parametric investigation or detailed' analysis. The latter would require a full
i

nonlinear analysis, for we are interested in the efficiency of the coupling,

not the field structure in a complicated cavity.

Our work was directly inspired] by a suggestion from T. Starke of ARA. He

suggested that a quarter-wave helical antenna could be made to ring at the
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desired frequency by opening the ground to the antenna after the beam had in-

duced a small amount of current in it. We have not been able to simulate the

configuration yet, due to difficulties in changing the antenna from grounded to

floating. In the meantime, however, several interesting results have been

deduced from the calculations.

Three configurations yielded promising results. These were (1) an iris-

loading of the waveguide, with a pair of irises, (2) a cylindrical cavity, and

(3) a cylindrical cavity connected to an improperly terminated helix.

A cylindrical beam with uniform density n. and radius RR, inside a guide

with walls at R , generates large static E and B0 fields,

' E r = 2/ten0Rg/r , Rg g r S Ry . (1)

~ 2 2 1/2
With the transformation ty - e<)>/mc , u) (= (4nn.e /m) , Eq. (1) then becomes

\ = i[u)pRB/c2]/r ' (2)

1 2 2 2where -r UJ RR/c = 17 kA. Thus for a 35-kA beam and r = 1-10 cm, the vacuum
3 4field is between 7 x 10 and 7 x 10 V/cm. These fields are thus larger than

can be supplied to that region by conventional power supplies.

(1) With an iris structure, our intention is to disrupt these fields

locally. This is in contrast to conventional accelerators, where they are

formed into a periodic slow-wave structure. The iris disrupts the beam as fol-

lows: To achieve stable beam propagation in the presence of the large fields,

a large external B field is needed. This induces an E x B drift in the 9-
z

direction. The net V. rotation then couples with the B field to just cancel
2 Z

the radially outward E - V B_ force. The iris, however, must have E = 0 on

its faces. The local disruption of E destroys the radial force balance and

particles begin to pinch, searching for a new equilibrium position. As they

propagate away from the iris, though, the field conditions revert to their

previous state and the particles must return. The resulting overshoot of

particles around their proper equilibrium leads to the commonly seen zero-

frequency cyclotron wave with the particle trajectories given by

•\

r(ro,vo,to) = |Vr(ro,vo,to)/(u) - kv Q)| , (3)
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where u) - kvfi = ± Q /v , ui = 0. Any stationary discontinuity will generate the

same behavior, but the iris is a particularly good example.

So far, we have only described how zero-frequency waves (undesirable) are

created by the iris. To generate a finite frequency wave, we must employ an

additional iris and the fact that the first had already disrupted the beam.

Such a configuration is shown in Fig. 1.

When the iris responds to static fields, it excites a spectrum of evanes-

cent and "propagating" disturbances, of which only the above-mentioned zero-

frequency mode is seen far from the iris. These are all excited by a zero-

frequency source, however, and so are likely to be zero-frequency themselves.

During the rise time of the beam, transients are present. A finite frequency

component of the rising beam current can then excite the iris at its frequency.

With a single iris, these finite frequency components simply radiate away, and

the beam excitation ceases when the "flat top" part of the pulse is reached.

Addition of a second iris, however, allows the traveling wave excitations to

feed back, or in other words, create a resonant cavity structure. The compo-

nents which can resonate will continue to ring even after the steady current

conditions are established.

To make these considerations more quantitative, consider a current form

I(t) = IQ[1 - exP(-t
2/2t2)] . (4a)

This pulse, therefore, has the frequency spectrum

2 2
I(uj) = V^72 T^e"* X /2 , (4b)

or it has a variance of Atu = 1/t. To maximize the component at a given fre-

quency, u>0, one needs a rise time of T_ = 1/u)-. The problem is that for a
1 2 - 3

desired frequency of, say, U). = 0.10 u) in a beam with n~ = 10 cm , one finds

T = 0.15 nsec» which is an unreasonably fast rise time. While efficient excita-

tion of such a resonant structure may thus prove difficult, it still should be

possible to excite some time of traveling wave with paired irises.

These considerations were tested in a simulation with the following param-

eters R,= 5.7, R n=2.65, Yn = 7-°. a
nd irises extending from RT = 3.8 to 5.7

W D \i II J .

at z = 15.6 and 19.3 with a rise time iu T = 25. (These are similar to
P
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parameters suggested by T. Starke for a quarter-wave helical antenna.)

This simulation was similar to standard helical wave-growth runs, with the iris

spacing being dictated by a minimum number of cells between irises for adequate

wave resolution. If the wave excited was the lowest order cavity mode, one

finds A. = 7.4 or k_ = 0.85. The space-charge depression was so large that the

v-spread in the beam ranged from y . = 2 to y = 4. There is thus uncer-
*min 'max

tainty about the value to be used to evaluate the cyclotron dispersion

WQ = kv0 " V * • (5)

Probes measuring Efl outside the beams did show a signal at ui = 0.29 tu , however.

This is consistent with Eq. (5) if the effective beam energy wac y = 3-6, which

is not unreasonable. The signal, however, was only an order of magnitude above

the noise. This was completely dominated by the zero-frequency modulation, for

which AR/RR > 20%. Furthermore, computer-generated movies showed only the zero-

frequency mode.

The iris-driven beam did not indicate strong traveling cyclotron wave

excitation, but very efficient coupling to the zero-frequency wave. The latter

level of excitation is quite unsatisfactory and rather mitigates against this

configuration. Nevertheless, Eq. (4b) indicates that the current component at
-12 1

to = 0.29 lu was down by a factor of 10 from the steady current. Excitation

of a traveling wave to an order of magnitude above noise with this driving

level indicates that the iris driver may yet prove interesting. The excitation

may possibly be enhanced by reducing the outer wall radius, increasing the mag-

netic field or changing the iris separation. Analyzing the excitation seems

beyond simple methods, however, so further study will entail more simulation.

(2) The second configuration, a cylindrical cavity, is depicted schemat-

ically in Fig. 2. The outer wall was again Ry = 5.7, the inner flange radius

R^ = 3.8, and the beam RD = 2.65. The magnetic field was such that fin = 2.0 iu
£ o U p

and YA ~ 7. Space-charge effects were much smaller in this configuration,

although the beam energy still spanned almost an MeV, i.e., y • = 4.0 and

y =5.8. The cavity walls were at z = 15.6 and 19.3. This geometry was thus

similar in many ways to the iris structure.

Simulation results in this geometry were poor. One reason was the larger

effective y. Although cavity dimensions were virtually the same as the iris,

the mean energy was much higher, y = 5.5. Thus, with k_ = 0.85, Eq. (5)
•I
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predicts w ~ 0.5 w . Beam components at this frequency are reduced from the

iris case by a factor of 5-10. Further, the zero-frequency modulation is only

AR/RD =6%, so the cavity apparently does not couple with the beam efficiently.

More detailed analysis may yet show a propitious regime for this cavity, but at

present, results are not promising.

(3) The above configurations employed stationary structures. Traveling

wave excitation required a temporal variation of the beam, as in the above

cases, the rise time. The large self-fields which we hoped to tap were thus

unavailable for excitation. If a traveling discontinuity could be induced,

however, the static fields might be directly usable. Fortunately, we have

already encountered such a disturbance in our helical growth investigation.

The helix is grounded to a perfect conductor, the outer wall flange, and

initially uncharged. When the beam is injected, though, a large self-field

E is induced at the helix radius. This induces a large current along the

helix which attempts to maintain ground. Since the beam propagates at

vQ = Ci/l - YQ , while charge can only advance at v , = c sin t|j, tji the pitch

angle, the beam fields quickly outdistance the grounding current. The outer

wall is much greater than the helix, so a large discontinuity appears in the

self-fields. If this were stationary it would simply generate the familar zero-

frequency wave. However, it is moving at v so the excitation is Doppler-

shifted to finite frequency. Furthermore, we know this traveling field is

resonant with the slow cyclotron mode, so it is actually amplified.

In early simulations with terminated helixes, we inadvertently excited this

mode by employing too rapid a beam rise time. The beam cyclotron mode, gener^

ated at the front of the grounding pulse, grew so large it completely trapped

the beam. By this we mean that no current could pass through the nonlinear

cyclotron trapping region. These fields were significantly larger than even

virtual cathode fields for similar currents. We have little doubt that large

cyclotron waves can be self-excited in this fashion, but it was not clear that

steady generation could be achieved.

The simulation configuration used is shown in Fig. 3. Parameters were

similar to the simple cavity configuration except that the walls were at

z = 15.6 and 22.4, and a sheath helik with i|> = -15° was attached along the

mouth of the cavity. The nominal wavelength for this cavity was \_ = 13.6, or

kfi = 0.462. Terminations on the helix were intentionally mismatched so the.

helix current would ring for a long period. When the beam was injected, a
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large zero-frequency wave again appeared (AR/Rg S 10%) but a large, narrow

bandwidth cyclotron traveling wave was also excited. Figure 4 shows an E probe
z

on axis, at a location z = 130. While the excited frequency is two orders of

magnitude above noise, the only reason it was detected was that the location

happened to be at a null of the zero-frequency wave. Otherwise, this strong

signal is masked. Nevertheless, since BQ probes just outside the beams show

the same signal with little attenuation away from the cavity, it is clear that

the traveling wave is excited. The E magnitude on axis is 0.05 in units of
2 "1 /2 19 *i

(4nnQmc ) . For nQ = 10 cm" , this corresponds to E =50 kV/a. Although

this configuration is successful at exciting the desired traveling wave, sup-

pression of the accompanying zero-frequency mode must be accomplished before it

can be regarded as completely satisfactory.

To briefly summarize the results, various waveguide configurations were

simulated to study self-excitation traveling cyclotron waves. Although none

were completely satisfactory, enough positive data was obtained to indicate that

self-excitation may be feasible, however. The primary difficulty encountered

was the concomitant excitation of undesirable zero-frequency waves. U*,til a

simple method is found for preferentially suppressing these later, it does not

appear that self-driven antennas will be of use in proof-of-principle experi-

ments .

n
Fig. 1

Iris-driven antenna configuration
with quarter-wave (\/4) separation,
Beam is shown as shaded region.

f F f f f f ^/l M^ ̂  ^ J ^ ̂  ^

Fig. 2

Simple cavity configuration with
half-wave (\/2) width. Flange is
indicated by slanted region.
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Fig. 3

Cavity plus helix configuration.

10'*

Fig. 4

E probe on axis for configuration
z

in Fig. 3; (a) E as a function of

time, (b) E as a function of fre-

quency. Desired frequency is

a) - 0.16 CJ .

0.32 0.63
Frequency

0.94 1.25
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BEAM VOLTAGE AND CURRENT PARAMETER STUDY FOR THE
AUTORESONANT ACCELERATION PROOF-OF-PRINCIPLE EXPERIMENT

by

Brendan B. Godfrey and Rickey J. Faehl

ABSTRACT

Due to flashover problems, Austin Research
Associates, Inc. may be forced to perform its
proof-of-principle autoresonant collective ion
acceleration experiment at electron beam para-
meters of 2.25 MeV and 15 kA rather than the
intended 3.0 MeV and 30 kA. We show that the
original experimental goals still can be achieved
provided the beam radius is reduced by a factor
of two and a thinner anode foil is employed. More
generally, our parameter study suggests that oper-
ating with beams of smaller radii improves cyclo-
tron wave behavior during beam adiabatic compres-
sion or expansion.

I. INTRODUCTION

The autoresonant collective ion acceleration proof-of-principle experiment,

as proposed, was to accelerate protons to 30 MeV using a 3 MeV, 30 kA electron

beam. The acceleration process was to be controlled by varying the beam guide

magnetic field from 25 kg to 2 kg over several meters. Radius of the beam at

maximum magnetic field strength was to be 1 cm. However, the electron beam

generator has suffered persistent electrical breakdown problems for several

months. To ameliorate these difficulties, initial experiments probably will be
2

performed in the 2.25 MeV, 10-20 kA range.
3

Previously we have made estimates of beam scatter by the anode foil,
4 5

cyclotron wave growth in a helix slow-wave amplifier, ' and wave behavior
6-fi

during ion acceleration. The computations assumed a 3 MeV, 30 kA beam.

Here, we repeat the analyses for several combinations of reduced beam energy,

current, and radius. We find that increased scatter due to decreased beam
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voltage can be offset by use of thinner or less dense commercially available

anode foils. Within reasonable limits, slow cyclotron wave growth in a helix

amplifier is not strongly affected by electron energy and current. For the same

beam radius and range of magnetic field strengths, the reduced current and

voltage disasterously increase the ion acceleration length by a factor of 2.5,

on the other hand. Fortunately, it is necessary only to reduce the beam (and

waveguide) radius by one-half in order to return the acceleration length to

manageable proportions.

Sec. II treats foil scattering, Sec. Ill wave growth, and Sec. IV ion

acceleration. Few theoretical details are provided, since they are readily

available in the aforementioned references. Some concluding observations are

offered in Sec. V.

II. ANODE FOIL SCATTER

Excessive angular scatter in the beam electron trajectories leads to rapid

damping of cyclotron waves. This scatter varies adiabatically with guide mag-

netic field strength. If the scatter is to be limited to 20° at the front of

the acceleration section, where B = 2 5 kg, then the beam must leave the diode,

where B = 2 . 5 kg, with a scatter no greater than 6°. Anode foil induced

scatter depends on the material and thickness of the anode foil and on the elec-

tron energy approximately as

6 = F1/2/p2v , (1)
0-

where F is obtained from Table I. The table of scattering coefficients was
3

developed by L. E. Thode from Monte Carlo calculations.

Original experimental plans called for a 1 mill. (25.4 (Jm) titanium foil,

which for 3 MeV gives 5.4°. For 2.25 MeV, the value rises to 6.9°. Evidently,

a different foil is needed for the lower voltage. One possibility is 1/2 ntill. '."

titanium, which gives 4.5° at the lower energy. More generally, any foil with

F less than about 0.3 on Table I

limit. Engineering considerations will bear heavily on the final choice.

III. CYCLOTRON WAVE GROWTH

Cyclotron waves required for

excited by an RF antenna and then

is acceptable with respect to the 6° scatter

autoresonant ion acceleration are to be first

amplified by a slow-wave structure. The helix
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amplifier has been thoroughly investigated for the original beam parameters and

appears to be a good choice. The need for initially low phase velocities sets

the helix pitch angle at 8° for a 3.4 kg magnetic guide field. The ratio of

helix radius R to beam radius a is optimal at about 1.5. With these helix

parameters and the original beam parameters of 3.0 MeV, 30 ka, and 2.65 cm

radius, the wave e-folding distance is 34.4 cm. Amplification by a factor of

twenty can be achieved in a 1 m helix.
4-6

We have repeated these GRADR numerical calculations for a 2.25 MeV beam

Df current 10, 15, or 20 kA and a radius of 2.65 or 1.32 cm. Table II gives

wave frequency w, wavenumber k, and growth length L for various beam energies,

currents, and radii. The e-folding length is seen to be relatively insensitive

to beam parameters and in no case cited exceeds by 50% the 3 MeV value. Wave

growth appears to be no problem.

IV. ION ACCELERATION

The variation of wave properties and the corresponding increase in ion

energy in the acceleration section is determined from conservation of wave

energy flux and from the ion equations of motion. Figure 1 shows the change

with position of the wave phase and group velocities, and accelerating electric

field, the beam envelope modulation, the ion energy, thfe_ wave potential well -r

depth, and the guide magnetic field. The magnetic field decreases from 25.5 to

1.7 kg. Potential depth and ion energy are in MV, the electric field in MV/cm,

and the axial distance in cm. The data is essentially that of Ref. 7, but re-

formated. The amplitude of the cyclotron wave at the entrance to the acceler-1 °

ation region is set by 6a = a/2. Larger values of the beam envelope modulation

are impractical. Ion energy reaches the desired 30, MeV at 8.5 m. ° Q

Figure 2 provides the same information for a 2.25 MeV, 15 kA electron beam,

case 3 of Table II. Ions reach 30 MeV at 21.5 m, 2.5 times the Fig. 1 distanced

A factor of two comes simply from cutting the total current in half. The°rem^in-

ing length increase is accounted for by the 20% increase in wave number at large

Bz for Fig. 2 relative to Fig. 1. ° Specifically, ka/2 is 1.56 as°oppo£ed to 1.31

at B = 25.5 kg. Other things being equal, ka > 2 reduces the acceleration^
z

field sharply.
Results for the same 2.25 MeV,

radius reduced by 1/2, case 6 of Table

needed to achieve 30 MeV ions drops

5 kA beam °but witb^ybeam and waveguide

II, are gi,7ven<= in Fig. 3. The distance
/I ° =

dramatically to 6.0 m The reduction
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TABLE I

FOIL SCATTERING FUNCTION 82 = F/P y2

127.0 254.0 508.0 762.0 1270.0 2540.0

Deuterium
Tritium
50/50

0.00447 0.0114 0.0276 0.0455 0.0843 0.191

12.7 25.4 50.8 76.2 127.0 254.0

Mylar

Kapton

Beryllium

Graphite

Aluminum

Titanium

0.

0.

0.

0.

0.

0.

0111

0115

00944

0211

0541

168

0.0292

0.0300

0.0245

0.0526

0.132

0.397

0.

0.

0.

0.

0.

0.

0716

0735

0597

125

310

913

0

0

0

0

0

1

.119

.122

.0987

.205

.505

.47

0

0

0

0

0

2

.221

.227

.183

.378

.924

.67

0.504

0.517

0.417

0.852

2.07

5.91

TABLE II

SLOW CYCLOTRON WAVE GROWTH IN AN 8° HELIX WITH
B = 3.4 kg and R/a =1.5z

V(MeV)

3.0

2.25

2.25

2.25

2.25

2.25

2.25

I (kA)

30

20

15

10

20

15

10

a (cm)

2.65

2.65

2.65

2.65

1.32

1.32

1.32

wQ (3.10 sec"1)

0.060

0.077

0.075

0.072

0.079

0.077

0.076

k (cm )

0.40

0.52

0.50

0.48

0.48

0.47

0.47

L (cm)

34.4

32.7

38.9

49.3

30.8

34.5

42.8
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appears due solely to the smaller value of ka/2 at z = 0, namely 0.76. Also

significant, the well depth at the start of acceleration is much greater, facil-

itating initial ion trapping. We conclude, therefore, that decreasing the beam

radius to about one-half the originally planned value is both necessary and

sufficient for achieving the projected 30 MeV ion energies at reduced beam

energy and current.

As an interesting sidelight, we note that the ion energy corresponding to

B = 1.7 kg is 20% greater in Fig. 3 than in Fig. 2. The difference is ex-

plained in terms of the approximate dispersion relation for slow cyclotron
6

waves,

^ = ^ - [ ^ - ^ . (2)

Roughly, the corresponding phase velocity squared is

V ^ ^^ . (3)

Decreasing the beam radius from Fig. 2 to Fig. 3 changes the denominator of (3)

from about 0.95 to 0.80. Thus, operating nearer the beam equilibrium limit

enhances the variation of ion energy with magnetic field. It is, unfortunately,

not clear that this observation has practical value.

V. SUMMARY

We have seen that electron beam reduced energy and current, due to gener-

ator problems, should have no significant impact on the proof-of-principle

experiment provided beam radius is sufficiently reduced. Indeed, a 2.25 MeV,

15 kA beam injected into the acceleration region with 0.5 cm radius gives a

shorter ion acceleration length than does the original 3.0 MeV, 30 kA beam

injected with a 1.0 cm radius.

These specific numerical examples emphasize the general rule that ka/2 be

less than unity to maximize acceleration rates. Even with the originally pro-

posed experimental parameters, reduced beam radius would give better results.

Admittedly, there are experimental problems associated with obtaining small

diameter beams. Our numerical analyses nonetheless indicates that efforts in

this direction should be made.
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VIRTUAL CATHODE ION ACCELERATION IN VACUUM
("LUCE GEOMETRY")

by

R. J. Faehl

ABSTRACT

Simulations have been performed to study collec-
tive ion acceleration from a dense plasma slab by a
relativistic virtual cathode. Deep potentials are
not observed. Bulk acceleration to 2-3 me (y_ - 1)
is nevertheless measured. An inductive acceleration
mechanism is proposed, which depends on force
neutralized beam propagation.

I. INTRODUCTION

Proposals for utilizing the collective fields of intense relativistic

electron beams to accelerate ions have now been extant for over a decade.

Though many ingenious and imaginative schemes have been advanced, the most

conspicuous success in the laboratory has occurred when virtual cathodes have

been formed in either vacuum or a low-pressure gas fill. Ions have been accel-
1-4

erated to over ten times the electron beam energy and total ion pulses in
12

excess of 10 ions have been routinely measured. These experiments have been

repeated in many different laboratories. With repetition, the data base has

gradually increased and uncertainties diminished. Unfortunately, while many

groups have undertaken the experiment, no one has yet suggested a quantitative

explanation for the acceleration. With this theoretical/experimental disparity

in mind, we undertook a numerical study of this problem using two-dimensional

relativistic particle simulations. It was hoped that analysis of the simula-

tions would shed light on the responsible acceleration mechanism. These indeed

have yielded new insights into the complex ion/virtual cathode dynamics, but

the very high energy ion tail [£. > 10 me (y_ - 1)] has not been observed
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to date. The results nevertheless should lead to a radical reevaluation of

basic ion acceleration experiments. Before proceeding to the simulation

results, however, it is instructive to review the consensus understanding of

virtual cathodes.

II. VIRTUAL CATHODE FOLKLORE

Theoretical understanding of relativistic virtual cathodes, with one ex-

ception, is due to a series of one-dimensional analyses. ' The virtual

cathode is presumed to form if a current larger than the critical one is

injected into a waveguide. A number of analyses have been conducted to deter-
8-11

mine this space-charge limiting current. Numerical investigations have also
11 12

been performed. ' The analytic virtual cathode studies, however, do not

directly incorporate this information. They furthermore become very question-

able near the actual particle turning point. One of the first papers to address

the question of reflection and the electrostatic potential magnitude of a
7 13

virtual cathode was by Poukey and Rostoker. Poukey and Olson later extended

that analysis to two dimensions and performed two-dimensional electrostatic

simulations to test the analysis. Many of the present widespread conceptions

about virtual cathodes are derived from these pioneering papers.

An important result derived from the Poukey and Olson analysis was that a

deep, stationary potential well could form at the virtual cathode. Under cer-

tain conditions, in fact, ultrarelativistic beams could yield maximum potential
2

of |e<(> | = 2-3 me (y_ - 1). Technically, these were limited to the time of
1113 X U

first particle reflection; but when supplemented by electrostatic simulations,

the results seemed to have broader validity.

The "deep" potential well had clear implications to collective ion accel-

eration. If any ions happened to become trapped in it (through diffusion,

ionization, etc.), they could be accelerated electrostatically to
2

e. = 2-3 me (Y 0 - 1). Since the well, moreover, was stationary, conservation

of energy arguments implied that the: ion energy should scale as the charge

state, i.e., e. < Ze<)> Because the well was stationary, of course, no net

acceleration would occur as long as it persisted, for the ions remained trapped.

When ionization was occurring, this presented no problem. As soon as the mono-

tonically increasing ionization density equals the electron beam density, the

well will disappear in a nonadiabatic fashion and ions can propagate freely.

These points represent only a narrow abstraction fiom the Olson-Poukey model.
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They are discussed only because these were just the salient features observed
14-17

in a series of careful experiments. Ion acceleration in a neutral gas

fill yielded peak energies of just less than three times the beam kinetic
2

energy, with the peak in the ion spectrum centered near 3/2 me (¥« ~ 1)-

It is natural to identify the experimental ion acceleration data with a

"deep well" because they are entirely consistent with theoretical predictions.

Both the peak ion energy and spectrum, plus a later observed scaling of ion

energies proportional to Z<|> f,, where Z is the ionic charge state and <|> ff an

effective electrostatic potential, indicated that the mechanism was purely

electrostatic, an intrinsic feature of virtual cathodes. Nevertheless, as we

will discuss in the next section, fully electromagnetic simulations of virtual

cathode formation and evolution show no such "deep" well when realistic para-

meters are employed. This apparent paradox can be traced to a number of assump-

tions, which are not self-consistent.

Before describing the simulation results, we should point out one obvious

inconsistency with the electrostatic model of ion acceleration. The cold fluid

energy equation for the electron beam is

-* = -ev • E/mc
dt

2
In steady state, (me y - e(|)) is a consta: of the motion, so one can apply

timple trapping arguments to arrive at ion energies on the order of

e. S |e(|>| . However, |e(|)| is then limited to the initial beam energy,
ion max ^ max
i.e., \ety\ < me (v - 1). There is an obvious way around this, namely that

max 0

the state is not steady. Then, a iully self-consistent model may yield poten-

tials greater than the beam kir. ":ic energy. Simple trapping arguments, however,

can no longer be applied to calculate ion energy. The objection might be raised

that an anomalously dee well could be established through transient dynamics

of the initial well formation and then remain steady thereafter. Again, how-

ever, if the . ^figuration is steady, the injected electrons would exhibit con-

servation of energy and be reflected at significant distances from the bottom

£ thj well. Without replenishment from the cold, injected beam, it is diffi-

cult to imagine how an unneutralized structure like a virtual cathode could

remain intact. While these are only heuristic arguments, they indicate that
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ion acceleration in the potential of a virtual cathode may not be as simple as

it seems.

III. SIMULATION OF VIRTUAL CATHODES

Previous 1- and 2-D electrostatic particle simulations have been conducted
7 1 *̂  18

to study beam propagation and virtual cathode formation. ' ' While the

qualitative virtual cathode features may be expected to be correctly treated,

questions of initial formation and subsequent oscillation of the structure

raise doubts as to the role of time-varying fields. We have, therefore, employ-

ed a fully electromagnetic, relativistic simulation code, CCUBE, to follow the

virtual cathode evolution. This code has been previously used for studies of
19-21

collective ion acceleration, plasma heating by beams, and vacuum beam
12

propagation. For this last, critical currents obtained in the simulation

were compared with simple expressions and experiments. Good agreement there

served to validate our confidence in the code for conducting these calculations.

This study involved two distinct types of calculations, those with beam injec-

tion into a vacuum waveguide and those injected through a dense slab of plasma.

Since the former provides more direct information about intrinsic virtual

cathode bahavior, we will discuss them first.

A. Vacuum Injection Through a Metallic Foil

Solid relativistic electron beams were injected through a "metallic" ground

plane in this type simulation into an evacuated cylindrical waveguide. With
2 1/2

all units scaled to c/u) , w = (4ne n /m ) , the radius of the guide was much

less than its length. Typical normalized radii were R = 4.7 - 14.5, with a

length of Z = 50. (We are considering intense electron beams, so a reasonable
12 -3

beam density is n = 10 cm With this density, c/io = 0.5 cm.) The beam

current, which was injected smoothly with a gaussian risetime,

I(t) = IQ[1 - exP(-t
2/2t2)] ,

2
scaled with radius squared according to Budker's parameter, I- = (to RR/c) .

For these calculations the time step was typically At = 0.04, and the cell

sizes Az = 0.5, and Ar = 0.2. The injection boundary (anode) was a perfect

conductor, that is radial and azimuthal electric fields were zero on its sur-

face.
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When a relativistic electron beam is injected through the anode, there are

initially no space-charge fields. These are established within a few c/u) of

the surface. If total current is below the waveguide critical current, propa-

gation is permitted and the beam goes freely down the tube. (Several recent

studies have confirmed improved expressions for this critical current ' over
8 (l

widely used interpolation formulas. '") Current in excess of the critical one,

however, leads to a discontinuous potential jump in the axial direction, dis-

ruption of propagation, and formation of a "virtual cathode." The waveguide

can support currents only as large as the critical one, so any excess must be

reflected, radially ejected, or "absorbed." By absorbed, we mean here that

electrons stop at the virtual cathode and spend long periods of time in that

region.

Previous models of the virtual cathode infer the peak potential by follow-
7 13

ing a single particle to the point of first reflection. ' This initial peak

is seen in our simulations as a distinct formation feature. Because the poten-

tial continues to evolve, we distinguish this feature from the late time

maximum and the average peak potential by denoting it as the "beam front poten-

tial." This is plotted in Fig. 1 as a function of injection current, in units

of V, where V = 1 corresponds to 17 kA. The lowest point is associated with a

subcritical current, and the highest with a current of over 880 kA. Clearly

the latter (V = 52) is much higher current than used to date in collective ion

acceleration experiments. With a risetime of I = 20 w , however, the maximum

beam front potential |e<)) /me |, exceeds yn - 1 by only a factor of about 50%.

For typical beam density, this is only a 1.2-nsec risetime. Moreover, Fig. 2

shows that the beam front potential decreases with increasing risetime.

The beam front potential that appears in Figs. 1 and 2 is the appropriate

characteristic to compare with previous analytic models, but it is neither

steady nor the characteristic potential of a virtual cathode, as can be seen in

a typical time plot of |<|> |, shown in Fig. 3. The peak associated with
max

formation is only a transient overshoot. It is not a steady-state condition.

It is, however, in qualitative agreement with at least one aspect of earlier

analytic models, scaling of potential magnitude with displacement from the

anode. The large potential is associated with large displacement; but as the

potential relaxes, it moves back toward the anode. It tends to remain at the

minimum displacement in the absence of reflected current.
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Beam front potential has been discussed first ̂ because! it provides easy

comparison between our simulations and results of previous studies. -Potentials

greater than the beam kinetic energy have been observed, but not> in a steady

potential distribution. Simple conservation arguments thus are not violated

since the state is clearly time dependent. , This does not directly aid in

understanding either the initial or subsequent potential magnitudes, however.

To understand this more clearly, we will therefore consider formation dynamics

in more detail.

When an electron beam current greater than the spa^ce-charge limit is in-

jected into a waveguide, a virtual cathode is expected to form. In fact,

however, this does not happen instantaneously. Analysis of thin, annular beanis

shows that there is still a residual kinetic energy at the space-charge limiting
2 2 1/3 ''"

currents, i.e., me (y - 1) = me (-y ' - 1). Solid beamŝ , which we employed in

the simulations, are not so susceptible to analysis, but the simulations them-

selves do exhibit this qualitative behavior. The minimum kinetic energy though
1/3is not proportional to (y' - 1). Thus, we see that initially, the electron

beam continues to flow at all radii, with the velocity on axis reduced to

between v = 0.5-0.75 c. This state is not stable, however.

We have numerically studied the linear dispersion of beams very close to

the space-charge limit. None of the cold beam modes are found to be unstable,

but the velocity of slow space-charge waves (both phase and group velocity) is

found to decrease toward zero. This property has been observed before, leading
9

to the supposition by Breitzman and Ryutov that accumulation of potential from

these waves is the mechanism for beam stoppage. If the sign of the potential

were reversed, this would simply be a trapping argument, i.e., the wave poten-

tial must be at least large enough so that

1 2 2le<(> I ~ - m(v - v . ) ,1 Ywavep > 2 e ph '

where v , = tu/k, the wave velocity, and v is an electron velocity. For a

hollow beam, the criterion can be expressed relat ivis t ical ly

|e<t.wl > m c 2
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In fact, this only expresses the facL that the potential can interact directly

with particles. Reflection is just the consequence when negative particles are

in a negative potential. Since the beam configuration does not induce exponen-

tial growth of any waves (apparently!), where does this wave energy come from?

There are several possibilities. After particle reflection commences, the

reflected current is two-stream unstable with the original beam. Near the

anode, velocity, density, energy, and rotation are all axially inhomogeneous,

however, so even a convective analysis of the instability evolution is non-

trivial. This is being pursued, but no estimates are yet available.. In any

case, it is irrelevant to the initial potential buildup. The thermal fluctua-

tion level on the beam is another source of potential. In our simulations, we

injected a cold beam, so the primary source of fluctuations was probably numer-

ical. In an experiment, the source would be due to diode noise, foil scatter,

etc. While the magnitude of potential fluctuations will effect the rate of

potential buildup and possibly the location of particle reflection, it does not

alter the eventual state, i...e., reflection of part of the current. There are

reasons to believe that gradients near the anode may enhance the buildup process

but this will require more analysis to evaluate.

Whatever the source of potential, once it reaches reflection levels, a new

factor must be included in the virtual cathode dynamics, momentum transfer.

This has not been taken, into account in previous models. Nevertheless, if a

particle with an initial momentum, p_ = Ynmc, i-
s reflected and re-enters the

anode with pf = -y me, which is commonly observed in simulations, the momentum

imparted to the reflecting object is not insignificant. Furthermore, for the

high current beams in which we are interested, the momentum flux or pressure at

the reflection plane can be very large.

Three things can occur when an electron approaches a cylindrical virtual

cathode. If its radial coordinate is large enough so that

mc2[y(r) - 1] - e(|>(r)/mc
2 > 0 ,

the particle retains a finite kinetic energy and simply propagates through the

virtual cathode. This transmission should not be considered as an "emission";

it is simply in a part of phase/coordinate space that possesses adiabatic tra-
2 2

jectories. The particle radius is such that me (y - 1) - e<j>(r)/ma_ « 0,

reflection occurs, along with a momentum transfer of Ap = 2yomc. Finally, if
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me Cy - 1) - e<|>(r)/mc = 0, the electron can spend long periods of time near

the reflection point, i.e., be "absorbed," while giving up Ap = Vo
mc- This

situation can occur on-axis during the initial formation and off-axis at any

time. Once "absorbed," these electrons are only marginally relativistic, and

so there are no relativistic mass corrections. When these particles are sub-

jected to the large, reflection-induced pressures, they commence to move rapidly

away from the anode. Since the potential fluctuations are embedded in this

stratum, they are carried with the particles. Thus, the peak potential and

plane of reflection are accelerated away from the anode. The minimum kinetic

energy of the steady space-charge limited current for a solid beam is greater
2 1/3

than zero but usually less than me (y ' - 1). The flux of particles to the

reflection point is thus drastically reduced. Little further acceleration

occurs once the virtual cathode attains the electron velocity. While this

propagation takes place, however, potential fluctuations are again building up

near the anode. When they have reached a magnitude sufficient to reflect elec-

trons, a new virtual cathode forms, further reducing the particle flux to the

original reflecting structure. Clearly the rate at which this process repeats

depends both on the magnitude of current in excess of the space-charge limit,

that is the magnitude of reflection, and the spectrum of fluctuations on the

beam.

Further analysis on the above model is required to make it quantitative,

but it does clearly illustrate the repetitive, dynamic nature of a vacuum

virtual cathode. This is essential for understanding the fields associated

with it, which as applied to collective ion acceleration is the chief reason

for examining it in such detail. The above picture is much less simple and, in

a sense, less satisfying than a steady,"deep-well" model. A steady well, how-
2

ever, is energetically limited to a depth of |e<|>/mc | ̂  y_ - 1. Only by con-

sidering time-dependent behavior, initially the fluctuations but later the

gross motion of the virtual cathode, can deeper wells be constructed. In fact,

the macroscopic motion can be exploited to explain the potentials observed in

simulations. A steady, repulsive well can not lead to net energy transfer to

the electrons, that is <E • J> = 0. Transmitted particles are first deceler-

ated, then accelerated back to their original energy; this is a basic feature

of steady, electrostatic wells. In a sequence of moving wells, however, par-

ticles in proper regions of phase space can remain in synchronism with the

virtual cathode fields for long periods of time. Other particles can experience
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repulsive fields in alternating directions as a train of virtual cathodes passes;

and so be quasi-confined. Particles which remain in one region long enough

approach a "thermalized" state. Such a situation is observed in simulation

around the virtual cathode in the near-axis region. Associated with such an

ensemble, there should be a potential energy,

4 ? s <e^ •

Figure 4 shows the energy phase space (y - z) of a virtual cathode after many

oscillations (25). Figure 5 shows the associated distribution function. Only

near the virtual cathode do particle energies drop below (y - 1) = 0.5,
2

so it is plausible to attribute the distribution around me (y - 1) = 1.3 with

an rms mean energy. Although the distribution is not believed to be strictly

Maxwellian, it is not unreasonably far from it. This also provides a conven-

ient measure of the average energy.

Though interaction of beam electrons with the virtual cathode is admitted-

ly complicated near the reflection point, certain correlations are still

evident. Peak potential in the waveguide was monitored as a function of both

position and time. Not surprisingly, it remained localized near the axis in

the vicinity of the virtual cathode. This, therefore, gives us an indication

of the local dynamic behavior. As Fig. 6b, a plot of axial position of the

peak potential as a function of time shows, the "virtual cathode" exhibits

periodic bounded motion. While the figure suggests oscillation, however, com-

puter generated movies clearly indicate a train of monotonically moving virtual

cathodes. The magnitude of peak potential is shown in Fig. 6a as a function of
2

time, where me (y. - 1) = 4 for this calculation. Both average and fluctuating

values are indeed above the initial beam kinetic energy, but only by a factor

of 40%. In fact, the highest fluctuation we have observed to date corresponded
2

to only e<t>/mc | = 1.7(y~ - 1), and the current, I = 880 kA, was greater than
nicix \j

the space-charge limit by a factor of 20. Figure 7 shows the results of series

of simulations with y_ = 5, of both the peak average and fluctuating potentials

as a function of normalized current v. The measured virtual cathode period

T measured in our calculations is indicated in Fig. 8, also as a function of

V. The apparent similarity between Figs. 7 and 8 suggests that the potential

scales with T , which is consistent with our correlation of large potentials
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with time-dependent virtual cathode behavior. This hypothesis is difficult to

quantify because the relation between iu and <b is not functionally simple.
^ J osc max

Identification of the excessively large potential with regular periodic motion

is misleading, however. Injection of a noisy beam leads to highly irregular

fluctuations, but roughly the same potential as calculations involving quiet

beams. Temporal virtual cathode dynamics in general are the key factor leading

to (e«)>/mc2) > yQ - 1.

This discussion of virtual cathode dynamics in vacuum has been fairly

detailed because our fully electromagnetic simulation results are significantly

different from previous analytic or numerical ones. The primary difference is

absence of deep stationary electrostatic wells. Peak potentials were observed
2

in excess of the beam kinetic energy, me (v_ - 1), but only by a factor of 1.7.

That calculation furthermore corresponded to a beam current far greater than

any used for collective acceleration experiments to date. It also had a current.

risetime on the order of TD = 1 nsec, which is faster than used in most experi-

ments. As Fig. 2 shows, peak potential decreased with increasing risetime.

Our conclusion from these calculations is that potentials associated with

virtual cathode experiments probably did not exceed the beam kinetic energy by

a significant factor, such as 2. This leaves open the question then as to how

a large number of ions were accelerated to between 2-3 times the beam kinetic

energy. In the next section, we discuss simulation of beams injected through a

dense plasma slab. Though identification of this configuration with any exper-

iment is arguable, the model problem is nevertheless found to shed considerable

insight into the acceleration mechanisms actually operative.

B. Injection Through a Dense Plasma Slab

Two-dimensional simulations performed to study collective ion acceleration

by a virtual cathode from a dense neutralized plasma have yielded interesting.,

and surprising results. The virtual cathode was formed by injecting a super-

critical relativistic electron beam through a finite plasma slab. Formation

occurred only after the beam had transited the slab. Ions were attracted to the

resulting potential well and plasma electrons repelled. In this way, it was

possible to follow the self-consistent, interaction of ions with the beam fields

in a model geometry which bore some semblance to those created experimentally.

It must be emphasized that the initial calculations were performed more to gain

understanding of key mechanisms than to duplicate any given experiment. Al-

though the numerical results strongly suggest certain experimental ones, we feel
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this was due more to insensitivity of the accelerating mechanism than to any

bias in the calculations.

In a typical simulation, the background plasma was 35 more dense than the

beam, i.e., n = 35 n, . This choice was predicated both by numerical con-

straints and debye screening arguments. The plasma slab was felt to be suffi-

ciently dense to screen out beam fields and to provide realistic ion flux into

the potential well, though this latter requires some explanation. Recent
17 -3

measurements of the anode plasma indicate a density, n = 10 cm , and temper-
22

ature, 6 = 2-5 eV. If ions could flow direcLly from the high-density region

into the virtual cathode, the flux would be orders of magnitude greater than

could be achieved in simulations. The plasma possesses an axial density pro-

file, however. Virtual cathode formation cannot take place until the plasma

density has dropped to significantly less than that of the beam, so an upper
12 -3

bound on density near the potential well is about 10 cm . After the well

has formed it will exert a dc electric: field on the plasma, which the latter in

turn will attempt to screen. This screening length, the debye length, is
^ Q "|2 —(\ 1 7 * - ^

roughly A^ ~ 10" cm at n = 10 but L ~ 5 x 10 cm at n = 10 cm . There-

fore, the region directly influenced by virtual cathode fields is at moderately

low density, with new particles diffusing into that region in a random, iso-

tropic fashion. The situation is completely analogous to the amount, of positive

ion current drawn by a negatively biased probe, which saturates at fairly low

voltage. The high-density plasma, therefore, plays only a minor role in deter-

mining ion flux into the potential well. In consequence of our use of reduced

ion mass and high plasma temperature (6 ~ 0.3-3.0 keV), in fact, the ion flux

in the simulations may be in excess of actual quantities. More sophisticated

slab models are being contemplated at present to check the effect of the simple

plasma model.

As with vacuum virtual cathode simulations, the electron beam was injected

with a finite, gaussian risetime, with typical normalized time to full current

of u> T = 60. This corresponds to between 0.2-0.3 i"|sec, which is exceedingly

fast compared with experiments. Beam energy was usually e, = 2 MeV (Yn = 5)

and current varied from I = 22-75 kA. The time step was u) At = 0.25-0.50

(1-2 psec) and cell sizes were u) Ax/c = 0.8 (0.10 cm) in both radial and axial

directions. (Since all dimensions scale with density, the numbers in paren-

thesis should be interpreted as only representative physical dimensions.) The
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radius of the waveguide ranged from u> R/c = 27-50 (2.7-5.0 cm) and the simula-

tion length varied from IU L/c = 200-350 (20-35 cm).

A virtual cathode formed outside the plasma as soon as the current exceeded

the space-charge limit. There was little delay from the time this current was

attained until the reflection commenced. This suggests that the fluctuation

level on the beam had been enhanced by propagation through the plasma. A

similar phenomenon may be expected in experiments employing a dielectric insert

in the anode, which will create a dense plasma with appreciable width. Poten-

tial well depth associated with the virtual cathode is only of order the beam

kinetic energy, i.e.,

A sample profile of the potential along the axis immediately after virtual

cathode formation is shown in Fig. 9a. It conforms qualitatively to previous

expectations. Ions are immediately drawn into this well and accelerated to

energies of e. = 1-1.5 £,. It seems somewhat surprising that ions should

receive more energy than there is potential until one notes that the accelerat-

ing field includes an electromagnetic as well as electrostatic component. The

total field is E = -3<|>/3z - (l/c)3A /3t. Inductive forces have been previously
Z Z

neglected in virtual cathode analyses, but our simulations indicate they are

highly significant.

Ions are accelerated to the above-mentioned energy in moderately short

distances, such as Az = 10 c/io . As they propagate down the waveguide, they

are not impeded in any sense by the potential "well." The apparent well shown

in Fig. 9a only indicates that charge does not flow down the guide (there is no

external field). Once ions propagate to the "uphill" side of this "well",

they merely facilitate beam propagation farther down the tube. Late in time,

the self-consistent ion/electron distribution results in a wide flat-bottomed

"well," which still has roughly the same magnitude as it did initially. Such a

potential distribution is shown in Fig. 9b, taken from the same calculations as

Fig. 9a except at u> t = 900. Still later there is some indication that the

depth of the well may decrease near the front edge, but in no case does charge

neutralization play a significant role in the ion acceleration. The additional

beam propagation is facilitated through force neutralization, which can occur
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2
for ion densities as low as n. = n, /y . We do not observe significant motion

of the backedge -of the potential.

How does this correlate with ion acceleration? First, magnitude of the

virtual cathode potential is, on the average, no more than the beam kinetic
2

energy, |e<|>| S me (yA - 1). Second, ions are rapidly accelerated from the
max u

neutral plasma slab to energies in excess of the potential magnitude. Third,

propagation of the ions permits more beam propagation but no "well" collapse,

because the potential "well" does not exist in the sense that it can produce

closed, bound ion trajectories. While these three features are not inconsistent

with an electrostatic, albeit time-dependent, mechanism for ion acceleration,

the argument is greatly weakened by the observation of continued, slower accel-

eration in the absence of any potential increase or synchronism.
2

Figure 10 shows a typical time history of maximum potential, |e(|> /me |,
while Fig. 11 depicts the maximum ion energy as a function time for two dif-

ferent ion species; M./m = 500, 1836. (Figure 10 corresponds to the calcula-

tion with M./m = 500.) Ion acceleration is qualitatively similar for both

charge-to-mass ratios, with rapid acceleration followed by a more gradual one.

The final energy reached in both calculations moreover is e. = 2-3 £,. Even

more suggestive is a plot of maximum ion energy as a function of distance,

Fig. 12. The heavier ions clearly do not travel as far in the same period of

time, but they do attain the same energy at a comparable position down the drift

tube. Since our simulations were only run for relatively short physical dis-

tances, i.e., L = 20-35 cm, there is some question whether we observed the

maximum saturated ion energies. Energies of 2-3 times the beam kinetic energy

nevertheless are consistent with bulk ion acceleration measured in many experi-
2

ments. The ion spectrum, furthermore, is peaked at e. = 1.5 me (yQ - 1).

There are at least two possible candidates for the acceleration mechanism.

No deep potential well is observed, so that is not one of them. First, the

additional beam current made possible by the ion pulse provides an inductive

mechanism. There is fairly strong indirect evidence for this, since ion

acceleration is correlated with an increase in A | with time. Second, the
z max

self-consistent interaction of ions with the beam electrons can lead to fluc-

tuating space-charge fields. Evaluation of this mechanism, however, requires

calculation of field-particle correlation functions. It is also a higher order

mechanism. Let us, therefore, examine the inductive mechanism in more detail

to at least test its plausibility.
I
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The actual evolution of A in time is contained within the simulation but
z

involves time-varying current profiles, which are difficult to quantify. How-

ever, a simpler model problem can be posed, which is qualitatively similar to

the observed dynamics. Consider an ion current flowing within a waveguide of

radius R. Let the ions be moving at constant velocity v. with density n. and

radius a < R. These ions allow a beam current to flow. The beam electrons also

are contained within a radius a but have velocity v = c and density
2 e

n = <Y> n.. The effective <Y> of the electrons is reduced greatly from the
initial energy since they are transmitted through a virtual cathode. Simulation

2
values give <y> S 5, for yn = 5. The total current is therefore

j = -en.(<Y>2v - v.) = -en.<y>2v , (1)

but its envelope moves at only v.. For concreteness, let

j = jQ{l - exp[(z - v.t)/L]} , (2)

where j_ = -en v f(r) and f(r) is the radial distribution function. This form

for the current is not completely general but does possess many of the qualita-

tive features seen in the simulations. It also allows us to explicitly evaluate

A (z,r,t) to determine if it can explain the acceleration.
z

The equation for A is, in the Lorentz gauge,
z

1 9 3A 82A 1 92A 4n
z z _ z_

r 3r 3r 8zZ c 8tZ c

where

0 , z > v.t

z - -(v,t-z)/Ll[ •(v.t-z)/L"l
1 - e J , z g v .

Equations (3) and (4) can be solved in a variety of ways, but the form of j

suggests a transformation to new variables,
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- Z) (5a)

(5b)

Thus, L = 0 is the head of the current pulse. A more complete description of
23

the solution to a formally similar problem can be found in the literature.
Since solution of Eqs. (3) and (4), subject to the condition that A vanish on

z
the wall, A (R) = 0 is straightforward and not particularly illuminating, and

z
details are left to the Appendix. The solution is

(6a)

Az(r,|) =

^ (6b)

where

= (-27lenevii/c) j rf(r)

0

The inductive electric field is therefore E |. , = (-l/c)3A /8t, where
z xnd z '
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(7.)

Note that there is a resonance in both Eqs. (6) and (7) if q L = 1. Equation (6)

possesses a separate solution for these resonant terms,

aQ + 3L/2) 4 < 0 (8a)

z res

y» cn[~2L - e~^
/L (i " 4 0 + L/2j] 4 =S 0 (8b)

n

This resonance need not be considered in too much detail, since it arose from

the particular form we employed for the current pulseshape, i.e., exponential.

The current shape that would evolve physically is determined by self-consistent

interaction of electron beam, virtual cathode, and dense plasma. It seems to

be qualitatively similar to simulation profiles, but details such as resonance

points are probably too model dependent.

A more general characteristic can be deduced, however, simply from the fact

that there are resonances which can greatly enhance the inductive field. In

other words, a suitable risetime to the current pulse can resonantly drive the

cavity. As the analysis shows, only one Bessel expansion at a time can be

resonant, and the magnitude is determined by both waveguide dimensions and cur-

rent radial profile. For instance, if J <* J (q r) , c. = -47tn v./c, c = 0 for
z 0 1 X e i n

all n f 1, while a flat radial profile yields
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cn = -4neneVeqnRbJ1

In the latter, the Bessel amplitudes are both smaller and oscillate in sign.

The current distribution in the radial direction, therefore, is highly signifi-

cant in determining strength of the inductive electric field. Moreover, since

the axial scale length, L, interacts strongly with the radial scale length, it

is important to note that the model described above is not self-consistent; the

length must change in time. To illustrate this, consider that the electron

current distribution was tied to the accelerated ion distribution. The ions

were assumed to be moving at constant velocity v. . However, if the electric

field calculated in Eq. (7), were applied to an ensemble of particles with

different initial positions, (4-), one would find that the (£.) do not remain

constant in time, nor do they change velocity uniformly. Thus, the distribution

must spread and the scale length must change in time.

Ion energy can be calculated with the use of Eq. (7),

;i<r,z,t,z0> = I dz Ez[r,z(t),t] , (9)

where z(t) is derived from

z(t) =
t t t

+ Vit f dt'/Y^zV) + q/Mj C dt'/YiCz'.O f
4) JQ -h

dt"E (z',t"). (10)
z

Solution of Eq. (9) and (10), however, requires self-consistent reconstruction

of j(z,t) from ion trajectories. Numerical solution of this set is being under-
24

taken with a previously described code, but data is not yet available.

Before discussion of these results in context of previous simulations,

analyses, and experiments, it is interesting to observe the effect of a strong

guide field on ion acceleration. The magnetic field strength corresponded to

Q_ = U) , where Q^ = eBf/mc. For typical electron beam parameters, this yielded
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an absolute field strength of B_ = 10-20 kG. The plasma electrons were moder-

ately magnetized and the beam strongly magnetized, but ions were only marginally

affected. This strong field case incidentally most closely conformed to vacuum

virtual cathode configuration, in which peak potentials greater than me (VQ - 1)

were observed. Peak potential was a secondary consideration here, however.

The primary effect of the field was that it permitted transmission of a large,

albeit hollow, electron beam current through the virtual cathode without agency

of any ions. Thus, the additional current facilitated by force neutralization

comprised a relatively small fraction of the total current. In fact, the inte-

grated axial current

<jz> = J dvjz//dv

saturated in this simulation, whereas it had increased linearly in time in

simulations without an external field. The ion energy furthermore saturated in

this case. Ions reached about s. S 2.2 me (y_ - 1) by w t = 900 and received

no more energy until the end of the calculation at u) t = 1700. During that

time, they propagated from u> z/c = 150 to UJ z/c = 300. Figure 12 shows that

ions received a sizable energy increment, over that distance in an unmagnetized

waveguide. Therefore, the effect of a guide magnetic field was to degrade the

maximum ion energy while not completely inhibiting collective ion acceleration.

IV. DISCUSSION OF SIMULATION RESULTS AND COMPARISON WITH PREVIOUS WORK

It has been observed in a variety of experimental configurations that

injection of an intense relativistic electron beam with current above the space-

charge limiting current will lead to acceleration of a large number of ions to

between 2 and 3 times the beam kinetic energy. The ion energy was furthermore

measured to be about the same regardless of the ion mass. Measurements with a

Thomson parabola furthermore indicated that energy did scale with ion charge

state, Ze. This is all consistent with a simple electrostatic model, provided
2

that a potential e<(> = = 2-3 me (y~ ~ 1) existed. That point seemed to be

settled when two-dimensional electrostatic simulations were performed which

showed agreement with earlier analytic models. Estimates of the effect of

neglecting time-dependent electromagnetic fields indicated that these should be

small. The overall success and simplicity of this model have led to its wide

utilization in the field of collective ion acceleration. Unfortunately, more
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sophisticated calculations and preliminary experiments conducted to study

virtual cathode characteristics have failed to verify the central point, exist-

ence of a "deep," steady potential well. In fact, on the basis of calculations

performed in this study, it seems likely that results may have been misinter-

preted because the mechanism bore a clear signature of an electrostatic

potential well.

The results of our program of numerical simulation indicate the following:
2

(1) Potentials greater than the beam kinetic energy, me (yQ - 1),
can form in a virtual cathode, but they are not steady and

scale with magnitude of injected beam current. Highest
2

potentials seen were |e<}>| = 1.7 me (yn - 1) at a current,

I = 880 kA, much higher than any used in collective ion

experiments.

(2) Injection of an electron beam through a dense plasma slab

results in bulk acceleration of ions to between 2 and 3

times the initial beam energy. The spectrum is peaked at
2

e. = 1.5 me (Y_ - 1). A large component of the energy is

gained after leaving the steep potential gradient, at dis-

tances of 1-10 cm from the dense plasma. Magnitude of the
2

potential well was |e<(>| = (1 ± 0.20)mc (y - 1).

(3) Presence of a moderately strong magnetic field degrades

collective ions acceleration but does not destroy it.

(4) In geometries examined to date, no high-energy ion tail,
2

i.e. e. = 10 me (•y. - 1), has been seen in the simulations.

Some of these results are consistent with experiments. For instance, we found

that ions with different charge-to-mass ratios were accelerated along similar

energy trajectories. In numerical simulations, only the ratio q/M appears.

Thus, the just-mentioned result was predicated on ions with the same charge

state but different mass. If it were interpreted as ions of the same mass but

different charge, we recover the observed charge state scaling, since energy

was calculated from measured velocity and assumed mass. The simulations do not

distinguish between either interpretation. Since no large potentials were

present, it seems likely that this electrostatic "characteristic" Was due to

self-consistent inductive forces. The accelerating fields apparently fall off

after a relatively short distance from the virtual cathode due to evolution of
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the ion/electron current profile. This latter point, however, requires further

analysis, as do details of the observed charge and mass scalings.

There are several aspects about the simulations which require discussion.

Earlier simulations showed deep potentials; the present ones do not. It is

possible that the differences were due to neglect or inclusion of time-dependent

electromagnetic fields. An important asset and liability of simulations is

their self-consistency. Neglect of electromagnetic fields, for instance, does

not make them less so, but it does alter particle trajectories and, hence,

evolution of the n-particle system. For phenomena in which known analytic

results exist, the validity of a simulation can be directly checked; otherwise,

the numerical model can be at variance with reality without being obvious. Ana-

lytic models do exist for early time virtual cathode characteristics. These

are not appropriate for describing late time dynamics, however, nor do they

admit ready criterion for ascertaining their regimes of validity. In our fully

electromagnetic calculations, potentials greater than the kinetic energy are

observed; but the currents at which they occur are quite high. Though analytic
2

estimates of potentials, |e<)>| = (2-3)mc (yQ - 1), may occur physically, it seems

that the injected current must be so excessively large as to have little prac-

tical applicability at present. It is, furthermore, possible that axial elec-

tric fields in our calculations may be similar to those earlier simulations,

since the time derivative of A compensates to some extent for the reduced <|>.
z

In any case, it is misleading to represent the present results as being

definitive. While one needs the more general calculation to evaluate the appli-

cability of simpler simulations, our calculations do not encompass all possible

physics. Though fully relativistic and electromagnetic, there is no guarantee

that important effects do not occur on shorter time or length scales. The debye

length, for instance, is only marginally resolved in the dense plasma, although

it probably is in the accelerating region. The time step, moreover, is only

sufficient to resolve microwave radiation. Bremsstrahlung and synchrotron

emission could conceivably lead to radiation damping near the virtual cathode.

Rough estimates do not indicate this to be a strong effect, but a priori argu-

ments can be misleading. An effect which may play a role in virtual cathodes

is growth of nonaxisymmetric modes driven by velocity shear. Since the calcu-

lations are axisymmetric, such phenomena cannot be observed. Further study of

these and other sources of error in the calculations is under way, but the ,
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interaction of many effects suggests the desirability of conducting three-

dimensional simulations. These, however, are not feasible at present.

Future study of virtual cathode-induced acceleration will be divided

between numerical simulation in higher energy and current regimes and analytic

investigation of the inductive acceleration mechanism. In particular, source

of the high-energy tail will be pursued. Understanding the acceleration

mechanism should permit identification of intrinsic limitations and means of

optimizing the accelerated ion pulse. Utility of the virtual cathode mechanism

as an injector for other collective accelerators seems to be its most reasonable

application, although existing performance may be suitable for light-ion-driven

inertial confinement fusion.
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TRAVELING VIRTUAL CATHODE ACCELERATOR STUDIES

by

Rickey J. Faehl

ABSTRACT

Simulations of a traveling virtual cathode col-
lective accelerator have been performed. Previous
calculations had shown turbulent motion of the virtual
cathode, but this is greatly improved when a linear
current rise is applied. Ions with a mass-to-charge
ratio of 1/50 are accelerated to v = 0.4 c.

In the FY77 report, we presented numerical results on the traveling virtual

cathode accelerator. This concept involves injection of an intense relativistic

electron beam into an evacuated waveguide whose radius varies as a function of

axial position. The space-charge limiting current of a cylindrical beam,

therefore, also depends on position. By varying the beam parameters in time,

it was hoped that a virtual cathode could be formed far from the injection plane

and moved in a controllable fashion to accelerate ions to high energy. A

linearly diverging waveguide was employed in those calculations with no ions

present. Constant current injection yielded virtual cathode formation far from

either injection or extraction planes. Though fields of moderate magnitude

(E ~ 2 x 10 V/cm) were created, a build-up of fluctuations led to irregular

motion of the virtual cathode, which seemed unsuitable for collective accelera-

tion purposes. Since then it has been found that a somewhat smaller field can

be moved smoothly toward the anode by injecting a linearly increasing beam

current. Though this mitigates against positive ion acceleration, it may be

possible to accelerate negative ions. The following study was, therefore, con-

ducted to determine the suitability of the moving fields for negative ion

acceleration.
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A series of simulation calculations were performed with a hollow relativ-

istic electron beam which had y. = 5 (2 MeV). The waveguide had a linearly

increasing radius section which, in units of c/iu , diverged from a radius of

Rj = 5.44 at z = 170 to R = 10.88 at z = 340. The inner beam radius was

R, . — 2.18 and the outer radius R, = 3.11, yielding a normalized beam current

v = 1.24 (21 kA). A solenoidal magnetic field was imposed of strength
2 1/2

(!. = 4.0 in , where U) = (4ne n,/m) and 0_ = eB_/mc. This beam is below the

space-charge limit at the injection plane, but by z = 340, the limiting current

is well below that of the beam. Thus, a virtual cathode should form in the

interior. With risetime to full current of U) iR = 75, we expect steady pro-

pagation throughout a waveguide of length L = 170 by w t = 250. At uu t = 325,

we superimposed a linearly increasing component on the steady current,

I = IQ[1 + (t - 325)/500].

Two completely different versions of CCUBE were employed in this study.

The first was employed for the previous traveling virtual cathode studies. It

used potentials (A,<J>) to move particles and canonical momentum for the particle

quantities. For these purposes, it will be referred to as the "old code". The

other version used ordinary relativistic momenta (p. = ymv.) and electromagnetic

fields (E,B). This "new code", however, differed radically from the old one in

its use of an arbitrary order Galerkin particle mover and a new area weighting

scheme for current densities and fields. The new code is a bit faster, more

flexible, preserves the continuity equation better, and gives more quiescent

transverse fields. Longitudinal fields, however, can be significantly noisier.

The trade-off between electrostatic and electromagnetic noise can be advanta-

geous in some situations, deleterious in others. A priori evaluation of the

relative effects, moreover, is difficult since it is not trivial to decouple

longitudinal from transverse contributions to the time-dependent fields. It is

safe to say, though, that noise properties in the two versions of CCUBE are

different.

Steady conditions, exceeding the space-charge limit, were reached by

U) t = 250. Electric field fluctuations, however, accreted far more slowly in
P
this geometry than are typically seen in simulations of virtual cathodes near

the anode. Observable build-up did not occur until uu t > 320 and first reflec-

tion, not until iu t = 400-420. These results were obtained with the new
P

version. Using the older version, onset of reflection was delayed to 10 t = 500.

The location of first reflection furthermore differed somewhat. In the new
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code reflection commenced at roughly z = 255, while calculations with older

versions indicate virtual cathode formation at between z = 275-305.

Despite the apparent discrepancy between the two code versions, it should

be remembered that any given simulation is completely deterministic and repro-

ducible. First-order phenomena must always be consistent for the simulation to

be valid. Second- and higher-order interactions, however, can be affected by

cell or time-step size, number of particles per cell, ordering of numerical

operations, or particle weighting. Numerical fluctuations due to particle

discreteness or finite cell size are able to couple directly with physical

fluctuations. In fact, in a set of operations which are repeated many times,

i.e., typically thousands, interchange of numerical operations which are alge-

braically commutative can lead to discrepancies in the second or third signifi-

cant digit. If the results were susceptible to numerical details though,

simulation of plasma phenomenon would have little general validity. Fortun-

ately, it is characteristic of these fluctuations that they have a mean of zero;

first-order trajectories and fields tend to be invariant when averaged over many

fluctuation times, i.e., autocorrelation times. When considering higher order

moments of the physical quantities, though, constant caution must be exercised

to ensure that numerical fluctuation effects have been accounted for.

This discussion is motivated by differences in virtual cathode formation

in two different versions of CCUBE. If the formation process were governed by

first-order quantities such as total current, beam energy, or beam and waveguide

dimensions, then there should be no discrepancy. If the local space-charge

limiting current were exceeded, propagation would be disrupted and the virtual

cathode would form. This does not explain the long interval between establish-

ment of steady conditions and first electron deflection, however. (For typical

beam parameters, this interval is on the order of 2 nsec!)

On the other hand, if virtual cathode formation is caused by fluctuation

build-up due to space-charge modifications of Langmuir wave dispersion, the

apparent discrepancies are plausible. The geometrical factor governing space-
2 -1

charge limiting current is approximately f = U - (b/a) + 2£n(R /a)] , where

b is the inner beam radius, a the outer beam radius, and R,, = R_z/L in our

case, is the waveguide radius. Taking the two extremal formation positions,
z . = 255 and z = 305, one finds a relative difference,
mm max
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2(f . - f )/(f . + f ) = 15% ,
rain max min max

which is not unreasonable for a noise-induced process. Moreover, the fact that

the more distant virtual cathode forms significantly later is consistent with

accumulation of slowly propagating potential fluctuations.

An interesting aspect of virtual cathode formation is its similarity to

classical phase transitions. The critical point is space-charge limiting cur-

rent. The actual transition, however, is driven by build-up of fluctuations,

which provide the necessary free energy. The new state, involving a phase space

separatrix between reflected and transmitted electrons, is clearly higher

energy, since reduction of the current will lead to convection of potential

downstream and complete beam propagation again. The analogy with phase transi-

tions probably can not be pushed too far, since, as was discussed in Appendix H,

self-consistent inclusion of reflected electrons can lead to a time-dependent

state. We are pursuing this interesting point, however.

In steady-current simulations, the virtual cathode was observed to undergo

progressively more violent, irregular oscillations. This is consistent with

the kind of oscillations observed in near-anode virtual cathodes, correlated

with reflected electrons. Such behavior is not conducive to long ion/field

synchronism. When a linearly increasing current component was superimposed on

the steady current, however, the virtual cathode commenced to move smoothly

toward the anode. This is the correct qualitative behavior predicted by simple

space-charge limiting considerations. Fluctuations around the gross motion

were very minor as Fig. 1, a plot of the reflection position as a function of

time, shows. A small inflection near w t = 470 can be associated with reflec-

tion of electrons. In general, however, very little electron reflection was

observed as the virtual cathode propagated from z = 255 to z = 185, and the

"trajectory" was very smooth.

A new feature of the moving virtual cathode is the formation of new virtual

cathodes behind the original as current is increased. These also propagated

toward the anode. Figure 2 shows a typical energy phase space plot at

w t = 520. The associated axial electric field is plotted in Fig. 3. These

propagate with roughly constant spacing. The trajectories of three co-linear

virtual cathodes are depicted in Fig. 4.

This multiple virtual cathode structure is seen in both new and old ver-

sions of CCUBE. As Fig. 5 shows; the trajectories are both displaced in time
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and space. This was discussed above. If they are replotted, however, in terms

of the approximate local current,

the agreement is satisfactory. Also plotted in Fig. 6 is the theoretical

trajectory for our linearly increasing current; it clearly does not describe

the trajectory quantitatively. Thus while virtual cathode motion is roughly

derivable from simple space-charge arguments, reasonable agreement apparently

requires a more sophisticated treatment. This latter will be needed to design

an effective negative-ion accelerator. In the meantime, however, we can employ

the observed motion heuristically to study collective ion acceleration.

The virtual cathode motion in Fig. 1 exhibits acceleration ranging from

~ -4 -3
|a| = 2.5 x 10 to 6.5 x 10 in units of IU c. For ion synchronism with this
motion, we must keep |q/M|E > |a|. Since the observed peak field, in commen-

2 1/2 Z ~
surate units, (4/lnftmc ) , is E < 0.2, we must choose a nonphysical charge-

\J Z

to-mass ratio, |q/M| ̂  1/30 (q/M = -1 for electron) to ensure ion acceleration.

The ratio actually used was |q/M| = 1/50 for both positive and negative ions,

so desynchronism is expected. The source for ions in our simulations was a

plasma slug with length L = 2 0 c/wp, mean radius R = 1.0, and density
-3 ^

= 10

not significantly perturb the virtual cathode motion and also to minimize plasma

shielding of the virtual cathode fields. In fact, it is possible that a high-

density bunch, i.e., n = n_, would lead to self-synchronism of fields with the

negative ions in a constant current beam. This conjecture has not been tested

yet, but it seems to merit further investigation.

Figure 7 shows phase and configuration space for both ion species at

u) t = 420, the time of initial virtual cathode formation. An analogous set of

figures at tu t = 560 (Fig. 8) shows that both species have been accelerated,

albeit in opposite directions. As expected, the negative species have received

the bulk of the energy, reaching velocity ofv = ~ 0.4 c, while the positive
z

ions are accelerated only to v = ~ 0.2 c. With this charge-to-mass ratio, al-
z

most complete "snowp^owing" of the negative ions is observed. Compression of

the negative bunch has resulted in a density enhancement of roughly a factor
131
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of 3 over initial density, but this is still a small perturbation on the beam

density.

The results of these calculations can be briefly summarized. Injection of

time-dependent current has caused a vacuum virtual cathode to move, in agreement

with theoretical expectations. Irregular, turbulent motion seen in simulations

of virtual cathodes formed in diverging waveguides, when constant current was

injected, is found to be highly attenuated in the present case. Negative-ion

acceleration is seen when a plasma slug is placed near the position of initial

virtual cathode formation. Peak velocity of over v = 0.4 c is measured for a

linear current risetime of 500 tu
P

There are still major issues unresolved about this collective ion acceler-

ation. Constant current injection into a vacuum led to unsuitable virtual

cathode characteristics; injection of a current form I = In[l + (t - t./t)],

where U) T = 500 yielded smooth virtual cathode acceleration back toward the

anode, but at too high an acceleration to pick up realistic negative ions. A

key question is whether there exists a parameter window in which smooth motion

at a slow enough rate can be induced. This is not entirely academic, since it

is plausible that the reason for laminar motion was because fluctuation flux

into the virtual cathode was fast enough to prevent potential build-up large

enough to induce significant reflection. Motion which is too slow may allow

the large potential buildup and consequent high reflection flux. Better under-

standing of the noise level of electron beams would facilitate comparison with

simulation results and permit more accurate evaluation of the viability of a

traveling virtual cathode accelerator. Other questions, such as the effect of

higher density plasmas and the rate at which these high fields induce negative

ion stripping require further investigation. These will be pursued as time

permits or until nonfeasibility is unambiguously demonstrated.
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Fig. 7a.

Ion phase and configuration space

plots at u> t = 420, |q/M.| = 0.02;

negative ion p vs z and negative
z

ion r vs z .
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Fig. 7b.

Positive ion p vs z and positive

ion r vs z.

135



-0.2 —

170

Fig. 8a.

Ion phase and configuration space

plots at iu t = 560, |q/Mi| = 0.02;

negative ion p vs z and negative
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To be published as a Los Alamos Scientific Laboratory report,
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A GALERKJN ALGORITHM FOR MULTIDIMENSIONAL
PLASMA SIMULATION CODES

by

Brendan B. Godfrey

ABSTRACT

A Galerkin finite element differencing scheme
has been developed for a computer simulation of
plasmas. The new difference equations identically
satisfy an equation of continuity. Thus, the usual
current correction procedure, involving inversion
of Poisson's equation, is unnecessary. The algo-
rithm is free of many numerical Cherenkov insta-
bilities. This differencing scheme has been
implemented in CCUBE, an already existing relativ-
istic, electromagnetic, two-dimensional PIC code
in arbitrary separable, orthogonal coordinates.
The separability constraint is eliminated by the
new algorithm. The new version of CCUBE exhibits
good stability and accuracy with reduced computer
memory and time requirements. Details of the
algorithm and its implementation are presented.

I. INTRODUCTION

Realistic computer simulation of intense relativistic beam phenomena

typically is very demanding. Boundary conditions are complex and often have a

dominant effect on the physics. Significant space and time scales usually are

of disparate magnitudes. There is occasional need for exotic coordinate

systems. In general, relativistic plasma PIC simulations are more prone to

numerical instability than nonrelativistic plasma simulations. To cope better

with these considerations, we have implemented a Galerkin finite element dif-

ference algorithm into an already existing two-dimensional plasma simulation

code, CCUBE.

The Galerkin algorithm represents the electric and magnetic fields as

sums of finite elements, in this case splines. Equations interrelating the
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coefficients of the finite elements, effectively the field values at mesh

points, are derived by inserting the expansion for the fields into the usual

Lagrange variationai integral and minimizing the integral with respect to the

coefficients. This procedure not only gives a discretized set of Maxwell's

equations but also specifies a consistant interpolation procedure between the

fields and the simulation particles. Galerkin's method is employed successfully

in many branches of computational physics and engineering. References 1 and 2

provide good overviews. Lewis has discussed the application of Galerkin's
3 4

method in the spatial domain to plasma simulation, ' while Godfrey has outlined

the extension to space and time. '

In plasma simulation Galerkin algorithms conserve charge on the mesh, con-

serve momentum along cyclic coordinates, minimize energy errors, and ameliorate

certain numerical instabilities. It is the first of these features that we

wish to emphasize. If the charge and current densities on the mesh satisfy a

discretized equation of continuity, then Maxwell's equations may be advanced

explicitly in time without inversion of Poisson's equation to obtain the elec-

trostatic potential or to correct the longitudinal current. Dispensing with

Poisson's equation greatly facilitates use of nonseparable coordinates and

irregular boundaries.

Features of CCUBE, the two-dimensional plasma simulation code in which the

algorithm has been implemented, can be summarized as follows. CCUBE was devel-

oped specifically for charged particle beams and, hence, is relativistic and

fully electromagnetic. It runs in any orthogonal coordinate system, accommo-

dates irregularly shaped boundaries and internal structures, and injects and

absorbs particles at any of the boundaries. The code supports extensive diag-

nostics, generates movies, and is optimized for the CDC-76OO computer. More

details are given in Ref. 8. CCUBE has been employed in a variety of applica-

tions, including electron beam heating of plasma, ion beam propagation, collec-
9 10 8

tive ion acceleration, ' space-charge limited flow, electron beam diodes,
slow-wave structures, and free electron lasers.

II. DESCRIPTION OF THE ALGORITHM

The heart of the Galerkin algorithm described here is the interpolation

between particles and fields. The spatial interpolation procedure in two

dimensions is
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NGP designates nearest grid point interpolation. The fields and currents are

staggered on the spatial mesh in the groups just listed. See Fig. 1.

Further setting apart the algorithm is its requirement for temporal inter-

polation. As in conventional approaches, electric fields are applied to par-

ticles at discrete times. However, the magnetic field is applied throughout

each time step, NGP interpolation in time. Moreover, during each time step the

average current during the time step is computed, again NGP interpolation. The

particle charge density is not needed except at initialization and for diagnos-

tics. It is evaluated at discrete times. Actually performing these NGP

temporal interpolations is, unfortunately, impractical. Therefore, we settle

for an N point quadrature as an approximation. The magnetic field is applied

to the particles at N uniformly spaced points in time during each time step.

The instantaneous current is evaluated at each time point and the N values

averaged to provide input to the field solver. The particle equations are

explicitly

dx/dt = y'1 P

m -1 ̂ —> -1

(1)

dP/dt = E 6(t - mAt) + N /. Y P * B 6(t - mAt - cr

= N 2. V P 6(t - mAt - cr
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For simplicity the equations are given for rectangular coordinates only. Gener-

alization to curvilinear systems is straightforward. Note that we have consid-

ered in some detail the locations of the temporal quadrature points. The

uniform spacing indicated generally is optimal. Although the quadrature

approaches true NGP interpolation only as the number of points becomes infinite,

using just a few points typically gives good results. Figure 1 illustrates the

temporal evolution of particles and fields for N = 2.

The field equations naturally consistant with the interpolation procedures

described above involve nine-point differencing. However, ve have found that

five-point differencing gives nearly as good accuracy with reduced computation

per time step and a slightly relaxed Courant condition. Only when greater

accuracy for high-frequency light-wave phase velocities is required is the nine-

point scheme noticably superior. With this choice the electric fields are

initialized from Gauss' law, Eq. (2).

_ci) o . E ( D o y + rE(2),o

A similar expression exists for the magnetic fields,

0
(2)

= 0 (3)

How these equations are best solved depends on the details of the physical con-

figuration being initialized. Sometimes it is necessary to solve Eqs. (2) and

(3) simultaneously with force balance equations for the particle distribution.

In any case it is critical to satisfy the field initialization equations very

accurately, as errors introduced here persist throughout the simulation. The

electric and magnetic fields, once initialized, are stepped forward in time

according to Eqs. (4) and (5), using currents defined above.
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(5)

It is interesting that within the context of the Galerkin algorithm the

magnetic field equations, Eqs. (3) and (5), are free of truncation error. Sub-

stitution of the finite element expansions of the electric and magnetic fields

into Maxwell's equations give Eqs. (3) and (5) identically without approxima-

tion. That Eq. (5) is exact means that finite element differencing schemes
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based on sealer and vector potentials, can be constructed such that they yield

numerical results identical to the present algorithm based directly on the

fields. Moreover, those potential algorithms are related by a limited algebraic

gauge invariance. The field equations given in this report'are to be preferred

only because they are more convenient to implement.

Although Eqs. (3) and (5) are truncation error-free, Eqs. (2) and (4) are

not. Nonetheless, an algebraic relation exists among them. Substituting Eq.

(2) into Eq. (4) yields

(6)

This relation is recognizable as an equation of continuity for the interpolated

charge and currents. Note, however, that it follows naturally from the discre-

tized electric field equations and is not introduced in some ad hoc fashion.

Alternatively, Eq. (6) can be viewed as a consistancy relationship. If it is

true, then Eq. (2) satisfied at one time step is necessarily satisfied at all

time steps. Unfortunately, Eq. (6) is exact only for a true Galerkin algorithm.

The quadrature approximation introduced into the particle equations, Eq. (1),

gives rise to small errors in Eq. (6). Determining their magnitude is one goal

of the simulations outlined in the following section.

III. PRELIMINARY TEST RESULTS

As a test of the algorithm, we have performed a series of simulations of

a nonneutral relativistic electron beam propagating along a guide magnetic

field in a metallic waveguide. Simulations are doubly aperiodic in cylindrical

coordinates with Az = 0.391, Ar = 0.185, and At = 0.165. (Units are chosen such

that c = ID =1.) There are approximately four electrons per occupied cell.

Standard smoothing is applied to the shortest wavelengths of the interpolated

current. Beam parameters are v = 1.75, y = 7.0, and U) =2.0. The beam enters

through a ground plane and, therefore, bounces radially as it propagates. Such
9

configurations are characteristic of some collective ion acceleration studies.

Figure 2 is a movie frame taken from one simulation. The beam enters from the
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left and exits at the right, although some electrons strike the waveguide at

r = 3.8 and are absorbed.

These accuracy tests were intended to be as realistic as possible. Thus,

the results are presented even though the simulations were subsequently found

to be weakly numerically unstable. The instability, which typically is abso-

lute, occurs at large perpendicular wave numbers and arises from the interaction

ol high-frequency light waves and aliases of the Doppler-shifted beam modes.

In other tests in which this instability is suppressed, accuracy is much im-

proved. The present results, shown in Figs. 3 and 4, are nonetheless satisfac-

tory.

In each figure we compare results for N = 1-, 2-, and 3-point quadratures.

These results are contrasted with those of a "control" case, the canonical

momentum algorithm discussed in Ref. 12 and implemented in an earlier version

of CCUBE.

CCUBE is almost entirely vectorized, and for optimized running on the
13

CDC-7600 employs the vector arithmetic'package STACKLIB and a few specially
14

written vector routines. Perhaps, a 25% increase in speed could be achieved

by hand-coding key subroutines in assembly language but at the cost of consid-

erable effort and a loss of flexibility. Figure 3a gives total central proces-

sor running time per particle per time step for our tests. Production runs for

the same physical parameters would be nearly 10% faster due to a reduced need

for diagnostics. The new algorithm actually is faster for one- and two-point

quadratures and is equal in speed to the control algorithm for three points.

The savings result principally from eliminating the Poisson equation solver,

which is quite slow in curvilinear coordinates.

Continuity errors, a significant factor in evaluating the quadrature

approximation to our Galerkin algorithm, are determined by evaluating the errors

in Eq. (2) at late times. Figure 3b shows the relative RMS accumulated error

at t = 200. For the control case, the usual current correction routine is by-

passed. We see systematic improvement in the error as the number of quadrature

points is increased. Recall that all these test simulations were mildly numer-

ically unstable. Further simulations with that instability suppressed show a

marked decrease in the continuity errors. We shall report on those results at

a later date.
3 4

Both algorithms are of the "energy conserving" type ' and exhibit very

good total energy conservation over long periods of time as illustrated in

144



Fig. 4a. The accuracy is particularly impressive in view of the large energy

fluxes through the boundaries. The linear decrease in energy error with in-

creasing number of quadrature points results principally from the improved

integration of cyclotron orbits about the magnetic guide field.

Relative noise levels given in Fig. 4b were obtained by comparing the peak

amplitudes of high-frequency electric field fluctuations with the average ampli-

tudes of the low-frequency electric fields. Relative energy densities were, of

course, much lower and rarely exceeded one percent. Although some of this noise

is physical, most of it is caused by particle discreteness effects near the

boundaries and by the weak numerical instability already mentioned. Increasing

the number of quadrature points decreases the former effect. It is straight-

forward to reduce further the noise levels by judicious smoothing, if desired.

IV. CONCLUSIONS

A proper evaluation of the Galerkin space-time-symmetric algorithm clearly

requires additional practical experience. We offer as a tentative judgment that

the Galerkin algorithm in CCUBE generally is competitive with more conventional

finite difference algorithms and yields significant advantages in cases when

solution of Poisson's equation is burdensome. Clearly, it is at its best in

multidimensional curvilinear systems. In closing, we make some more specific

observations.

The Galerkin algorithm facilitates simulations in complex geometries.

Particle motion in large magnetic fields is treated well. Energy is very well

conserved. Noise levels are adequately low, although current smoothing is some-

times required. Residual continuity errors accumulate slowly and, if desired,

can be eliminated by occasional reinitialization of the electrostatic fields.

Numerical Cherenkov instabiliti

requirements are not excessive.

7 12
Numerical Cherenkov instabilities ' are to some extent suppressed. Computer
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Vector scatter-gather routines were written by K. Fong; a vector recipro-

cal square root routine was written by L. Rudsinski.

REFERENCES

1. S. G. Mikhlin, The Numerical Performance of Variational Methods (Wolters-
Noordhoff, Groningen, 1971).

2. B. A. Finlayson, The Method of Weighted Residuals and Variational Princi-
pals (Academic Press, New York, 1972).

3. H. R. Lewis, "Application of Hamilton's Principle to the Numerical Analysis
of Vlasov Plasmas," Meth. Comput. Phys. 9, 307 (1970).

4. H. R. Lewis, "Variational Algorithms for Numerical Simulation of Collision-
less Plasma with Point Particles Including Electromagnetic Interactions,"
J. Comput. Phys. W, 400 (1972).

5. B. B. Godfrey and L. E. Thode, "Galerkin Difference Schemes for Plasma
Simulation Codes," Proc. 7th Conf. Num. Sim. Plas., New York, 1975,
p. 87.

6. B. B. Godfrey, "Application of Galerkin's Method to Particle-in-Cell Plasma
Simulation Codes," Proc. 8th Conf. Num. Sim. Plas., Monterey, California,
1978, PE-3.

7. B. B. Godfrey, "Numerical Cherenkov Instabilities in Electromagnetic
Particle Codes," J. Comput. Phys. 15, 504 (1974).

8. L. E. Thode, B. B. Godfrey, and W. R. Shanahan, "Vacuum Propagation of
Solid Relativistic Electron Beams," Phys. Fluids, to be published.

9. B. B. Godfrey, "Numerical Simulation of Autoresonant Ion Acceleration,"
IEEE Plasma Sci. 5, 223 (1977).

10. B. B. Godfrey, "The Localized Pinch Model as a High Energy Ion Collective
Acceleration Mechanism," IEEE Plasma Sci. 6, 256 (1978).

11. R. J. Faehl, B. S. Newberger, and B. B. Godfrey, "Simulation of Cyclotron
Wave Growth in a Helical Slow Wave Structure," Phys. Fluids, to be pub-
lished.

12. B. B. Godfrey, "Canonical Momenta and Numerical Instabilities in Particle
Codes," J. Comput. Phys. 19, 58 (1975).

13. F. H. McMahon, L. J. Sloan, and G. A. Long, STACKLIB (Lawrence Livermore
Laboratory, 1977).

146



SPATIAL
MESH

Ej E,B2

I
E2B, B3

I
— E3 E,B2

CURRENT ( / > ) -

FORCES

TIME

EAt •

• i J

-•sVXBAt-

-^At-

E2B,

• E , B ,

E,B2

E;,B

I
E3

iAt-

• ( / » )

-jVXBAt EAt

- f At-

TEMPORAL EVOLUTION

-At

Fig. 1

CCUBE employs a field mesh staggered,
in both space and time. Correspond-
ing components of J and E are col-
located in space. The temporal
evolution illustrates an N = 2 .>
quadrature.
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Fig. 2

Typical movie frame from test simu-
lation of beam propagation in
cylindrical drift tube, showing
electron positions, contours of the
axial electric field, and electron
axial momenta.
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Compared to conventional algorithms,
the Galerkin method is reasonably
fast and accumulates continuity
errors slowly.

Relative
Energy
Level

Relative
Noise
Level

1.0%

0.5%

0

10%

5%

Fig. 4

Energy conservation and noise sup-
pression are good with the Galerkin
algorithm.
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