

## MASTER

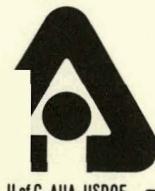
PES OF HIGHER TEMPERATURE VAPORS

by

J. Berkowitz and C.H. Batson

Prepared for

Annual Conference


on

Mass Spectrometry and Allied Topics

Seattle, Washington

3-8 June 1979

NOTICE  
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.



ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the

U. S. DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

cep

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

#### MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

|                                  |                            |                                   |
|----------------------------------|----------------------------|-----------------------------------|
| The University of Arizona        | Kansas State University    | The Ohio State University         |
| Carnegie-Mellon University       | The University of Kansas   | Ohio University                   |
| Case Western Reserve University  | Loyola University          | The Pennsylvania State University |
| The University of Chicago        | Marquette University       | Purdue University                 |
| University of Cincinnati         | Michigan State University  | Saint Louis University            |
| Illinois Institute of Technology | The University of Michigan | Southern Illinois University      |
| University of Illinois           | University of Minnesota    | The University of Texas at Austin |
| Indiana University               | University of Missouri     | Washington University             |
| Iowa State University            | Northwestern University    | Wayne State University            |
| The University of Iowa           | University of Notre Dame   | The University of Wisconsin       |

#### NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

PES OF HIGHER TEMPERATURE VAPORS

J. Berkowitz and C. H. Batscn, Argonne National Laboratory

Argonne, IL 60439

The study of high temperature species by photoelectron spectroscopy is about 7 years old. We began this work in the early 1970's, using a newly-designed cylindrical mirror analyzer. Significant information was obtained on a number of inorganic systems, particularly metal halides and metal atoms. One significant difference that appeared was the characterization of bonding orbitals in the conventional (covalent) sense and bonding orbitals when ionic bonding is dominant. [Many high temperature species tend to be ionically bonded, whereas normally volatile materials tend to be covalently bonded.]

Our work (and those of other groups) seemed to reach a temperature barrier of  $\sim 1000^\circ$ , for several reasons. In order to surmount this barrier, we designed a new apparatus. It consists of a hemispherical electron energy analyzer with a retarding-focussing entrance lens, and a radiatively heated oven, basically of the Nuclide Analysis Associates design. The oven has been modified from the Knudsen cell style by surmounting a large, thin tube. The base oven and the tube are independently heated by non-inductively wound heaters. The uncancelled magnetic fields of the two heaters are opposed, reducing the residual field further. Double-oven capability is thereby achieved, and temperatures in excess of  $2000^\circ\text{C}$  should be possible.

The electron energy analyzer is largely isolated from the oven and heating system. It can rotate (in  $\theta$  and  $\phi$ ), enabling angular distribution studies to be performed. Scanning is achieved with the retarding lens, keeping the electron pass energy through the analyzer fixed.

We describe below one recently completed study, and make reference to others completed or underway.

The Alkali Halide Vapors

Early mass spectrometric work had revealed the presence of dimers, trimers, even tetramers in alkali halide vapors. This work showed that the complexity of the vapor increased from  $\text{Cs} \rightarrow \text{Rb} \rightarrow \text{K} \rightarrow \text{Na} \rightarrow \text{Li}$  halides. For cesium halides, dimers were ca. 1% of vapor, higher polymers insignificant. For lithium halides, dimers were  $\sim 50\%$  of vapor, trimer around 10%. PES has heretofore been confined to Cs, Rb, K and Na halides, presumably for two reasons.

- a) Temperatures required are somewhat higher for lithium halides.

## THE AMERICAN SOCIETY OF MASS SPECTROMETRY

b) Large dimer component would confuse the photoelectron spectrum.

The basic observations of this earlier work are:

- a) In the VUV range, ionization occurs from the halogen end of an  $M^+X^-$  diatomic molecule.
- b) This p-like orbital splits in cylindrical symmetry into  $\pi$  and  $\sigma$ . The  $\pi$  splits further by spin-orbit interaction into  $\pi_{3/2}$  and  $\pi_{1/2}$ .
- c) One can therefore anticipate 3 peaks, but in most cases 2 of the peaks are not separated and one sees a doublet.
- d) A dimer peak can be seen at somewhat higher energy, increasing in intensity as the percent of dimer increases.

The present work was performed on lithium halides, which have the largest dimer concentrations. Two types of spectra were obtained, one with essentially the saturated vapor, the other with superheated vapor. Some peaks were dramatically lower in the superheated vapor, and could immediately be assigned to dimer. Normalization and subtraction of the two spectra enabled us to obtain "pure" monomer and dimer spectra. The monomer spectra were about as expected from extrapolation and prediction of the other alkali halides. The dimer spectra were completely new. Six peaks are anticipated for these rhombic structures. In the case of  $Li_2I_2$ , we see 5 of these.

## Conclusions

- a) The first I.P. of dimer is higher than that of monomer in each lithium halide.
- b) This can be obtained by ionic model calculations, and also by molecular orbital calculations. We have done such calculations using the  $X\alpha$ -DVM method. The calculations were performed by Dr. G. L. Goodman.
- c) These calculations predict that trimer has lower IP than dimer, and tetramer has higher IP than trimer.
- d) Electron impact measurements on LiF agree with this oscillatory trend, through trimer.
- e) A crude ionic model calculation can also rationalize this behavior (assuming hexagonal trimer and distorted cube for tetramer).

A complete description of this work will appear shortly in the Journal of Chemical Physics. The partial cross sections of atomic iodine have also been studied, and will appear in the same journal.

## THE AMERICAN SOCIETY OF MASS SPECTROMETERS

This research was performed under the auspices of the Division of Basic Energy Sciences of the United States Department of Energy.