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1. Introduction

Consider the equation

| :
] Llul = K(y)uXX +u._ + r(x,y)u = f(x,y) ,

.1
ok Yy

g

k
in a bounded simply connected reéion G , where K(y) ;-0 whenever y Z 0
and the region G 1is bounded by the curves: A piecewise smooth curve fo
lying in the half-plane y > 0 which intersects the line y = 0 at the
points A({l,O) and B(0,0) . For y < 0 by a piecewise smooth curve Fl'
through A which meets the characteristic of (1.1) issued from B at the
point P and the curve PZ which consists of the portion PB of the
characteristic through B .
—
In this paper|using a variation of the energy-integral method (a,b,c-

method) similar tol!the one used in [1] , we obtain sufficient conditions for //

the uniqueness of the solution of the boundary value problem

(1.2) S wlul = f in G
(1.3) ' d u: = K(y)udy - uydx|ro = y(s)ds
(1.4) ul, = ¢(s)

1

The queétion of uniqueness aﬁd existence of solutions of this/;;umann—Tricomi
boundary value probiigjhas been dealt with for instance by L. S. Cubenko [4]

in the case K(y) = sign ylylm, m>0 when T coincides with the characteris-

<1

tic through A and instead Qf.(1.3) the values dnu + a(s)u ds on ‘Fo are

known. For r(x,y) <0, a(s) > 0 the uniqueness is proved with the



maximum-mininumiprinciple and the existence of a solution in a special function
class under further conditions on Po by the integral-equation method. V. F.

Egorov proved in [5] the uniqueness of the described boundary value problem in

the case K(y) =y, r(x,y) =0 if Fl has the special form x = -1 + C(—y)3/2,

C i-% and Fd satisfies the boundary condition 3xdy - 2ydx|r >0 .
' o

In the papers [6] and [7] he generalized this uniqueness theorem to the

case K(y) = sign y|y|m , m>0, r(x,y) =0,
3+1

2
Fl : x = -1+ C(-y) , C 3—m+2

and |C - 2 | is "sufficient small". -
m+2

D. V. Koratev and K. I. Mihailov [8] treated the Neumann-Tricomi problem in
case K(y) = ym for y >0, K(y) = —(—y)n for y <0, K(@) =0,

r(x,y) =0, when Fl is a characteristic through A . By use of the maximum-

minimum principle the uniqueness and, with the integral~equation method, the
existence of a solution are shown. For a representationof the integral-equation

method for the Neumann-Tricomi problem when T is a characteristic we refer

1

to [11] and for the existence of weak solution to [3].
To our knowledge in all the papers connected with uniquenéss results for

the problem (1.2), (1.3), (1.4) when T is not a characteristic, the aséump—

1

tiono K(y) = sign|y]y m , w>0, r(x,y) =0 and that Fl is of special

form play an essential role.

i
In the present paper we'give an uniqueness theorem for a ''general" functidn{

o iy
1 is of a more general form. |

o

K(y)‘, when r(x,y) 1is not necessarily zero and T

2. Preliminary Lemmas

We consider the differential operator

(2.1) , Llu] = K(y)uXx + uyy + r(x,y)u = £(x,y) ,



. where .
K(») 20 for y 20, K(y)€c°@NCE)N @)
(2.2) ‘
rn) €t @ N @), £x,y) €C°@
and
' c+] = ¢N{y > 0}, G_=c6N{y < 0}
Remark 1

The assumptions (2;2) can be weakened; see theorem 3.1. We introduce the

Pfaffian form of first degree

0 1 2 2 2 2 1 2 2 o}
= + _ _ - -
2 = 2(a uta u_to uy)dnu+(ru K(y)u‘x uy)(a dy a.dx) u dna

= (K(y)ui—ui)(qldy+a2dx)+2uxuy(Kazdy—uldx)
(2.3)

T+ 2a°u(K(y)u dy;u dx)

X y
+ u2 {(ral—K(y)qz)dy—(raz—a;)dx} .
where dnu = K(y)uxdy - uydx , and obtain
‘ o, 1 2 :
[d,0] = 2(a uta uX+a uy)L[u][dx,dy]

(2.4)

2 2 2
+ (Aux+2 Buxuy+Cuy+Du Yldx,dy]



where
A = K(y) (ai - ai)v— azK'(Y) + 2K(y)a®
3 2 1
B = K(y)ax + ay s
(2.5)

C =~ (al —‘az)-+ 2a0 s
X y
' o o o 1 2
= - - - +
D K(y)aXX ayy 20 r (o r)X + (o r)y
- By use of Green's theorem we have
(2.6) J Q = JJ [d,a]
' 3G, UaG G, UG

We shall show that under suitable assumptions on Fo , T and the coefficients

1

of (2.1), the functions al, i=0,1,2 can be determined so that

(2.7) 0 < J Q= Jf ld,el <0 ,
36, U3_ G UG_
tﬁus it 'will follow from (2.7) that u = 0 .
 Lémma 2.1
If
ot = Z(x+1)
0 .
aZ - +IK(y)|—l/2 [ |K(t)|l/2dt
) ety
‘ 0
. - 1=3/2 1/2
o) = sign y %—K’(y)lK(y)l / j |R(t)| /24¢

t=y



then
A=B=C=z0

Proof

The conclusion of the lemma follows at once by substitution of al,
i=0,1,2 (aé,given in the lemma) in (2.5). ) »
Remark 2

For the special case.

» ) ' . m

(2.8) K(y) = sign y|y[|", m >0
we conclude from Lemma 2.1 : .

Lemma 2.2
If the Pfaffian form Q is as in (2.3) and the function u satisfies

the boundary conditions (1.3) and (1.4) then

(a) J ) f I {(ruz-K(y)ui;ui)(aldy—azdx)—uzdnao} ,
r T
o )
(b) J Q= j'(K(y)ui+u§)(aldy—a2dx)
Fl o Fl

1}
————

{x(y) &) +1} (atay-a dx) ,

—



' : B
(c) | IQ - f 2= 2 r)1% 2|
P
PZ P
"B . I
E J {—[ 02 1 (Fayratan) +

. P N

o+ _u2 [d[uo (—K)1/2]+(—K)1/2da0+r (aldy—azdx)]}

Proof

The statement (a) follows directly from (2.3) and (1.3). ulr- =0
1

implies uxdx + uydy!F = 0 on the smooth parts of Fl . Thus from' (2.3)
. 1 : ' :
we have :

QIF = K(y)uialdy + K(y)uiazdx —,uialdy - uiazdx +
. 1

2 1
2 -
+ muXuyK(y)a dy 2uxuya dx
Observing that on ry

2. .2 2
2uXuyK(y)a dy —.—ZuXK(y)a dx ,

“2u u_atdx = 2ulatdy
Uy y

we have

N 2, 2 ( 1, 2 )
o+ o+ 2) e - 20



. o L
Now since uxdx + uydy]r =0, (b) follows. Since on F2 T x + f (-K(t))*dt
1 v - t=y

, 1 - . } Lo ‘
we have - dx - (K(y))zdy'é 0, dnuIF = K(y)uxdy - uydx = _(-K(y))zdu . Thus
: 2

. . . . i 1/ . :
QI = —2ao(-K(y))2udu + 2(alu +a2u ) (K(y)u_dy-u_dx)
F2 X y X y

(2.9)

- .
- (K(y)ui+u§)(aldy—a2dx) + uz[%(aldy—azdx)+(—K)2dao]

An integration by parts yields

B B
[ —2a9(—Kfiudu = - f OLO(-K)I/zdu2
P 'PA |
. g - B :
=0 | a0
Py

so we obtain by a simple calculation from (2.9) the Statement (c).

Remark 3

If Fl has the chafactéristic"direction, then J =10 . This follows
at once from the observations that : I‘1

= 0, uxdx:+ uydy|r '='0 R

(-K(y)) %y - dx]

i

- . g
which implies K(y)ui + uy'F = 0. 'In this case see [2] .

0



3. Neumann-Tricomi Problem

We call a function u(x,Y)éfCo(G) a quasi-regular solution‘of (2.1) if

the following hold ([9], ﬁ. 234) ¢

i) u(x,y) satisfies (2.1);
ii) The integral J 9) exists;
¢ N{y=0}

iii) If G,(e) -are regions with boundary 3G, (e) lying entirely in G, and
G_ , then the line integrals along 3G, (e) which result from the

application of Green's theorem to the integrals:

j j u Lluldxdy , f J u Lluldxdy , J J ug LLuldxdy

G, () G, (&) G, (e)

. have a limit when 0G, (¢) approaches the boundary of G, and G_ .

First we prove the uniqueness theorem for a special case:

Theorem 3.1

The equation

Llul = K(y)uxx T+ r(x,y)u = f(x,y)'

where

(2.8) K(y) = (sign »|y|™, m>0; rG,y)€ct@iNct@, £,y €c@

has at most one quasi-regular solution in G satisfying the boundary conditions



Cu
=]
c
n

K(y)uxdy - uydx = Y(s)ds 5

c
I

I ¢ (s)

if the following conditions are satisfied:

'i)

1 2 2 .
a ='(Q.:a ) = (—(X+l); - m+2 Y)
-D = — r-a-grad r >0 in G, and -D # 0 in G+ in case r(x,y) # 0
in G+
ii) Pl lies inside the characteristic triangle determined by the line AB and
the two characteristics of (2.1) through A and B which‘intersect in C
and satisfies
- | - '
(3.2) (K(y) (_Y-) + 1) (—(nH—Z)(x+1)dy + 2ydx)| > 0
dx . r, —
. , 1
iii) r(x,y)|., <0, rG,y|. <0
r, — r —
2 o o :
(3.3) (m+2) (x+1)dy - :>_ydx|F > 0
o
Remark 4
_ See the remarks at the end of the proof concerning the possible forms of the
curves T and T, .
: o 1
Proof
Suppose there ekist two solutions uy and u, . Let u = u; - Uy by (2.4)



10
2 2 2
[d,2] =(Au” + 2Bu_u_ + Cu_ + Du“)ldx,dy]
X Xy y
and with the choice (see Lemma 2.1).

l__ . 2=_ 2 0=_l _
(3.4) : a = (X+l)9 a m+2 ys a 2

we obtain
( ) = A 2 + 2B + C 2 0 1 G
Q uX,uy = Aux uxuy uy E in s

-4 .
D = =5 T + a-grad r .

From Lemma 2.2 and (3.4), under the assumptions (3.2) and.iii) we obtain

(3.5) , | Jnio, Jgio
’ r0 r‘1
2 o 3tl 3
O? P2 : x + v -v) =0, dx - (-y)" dy =0, and

1 2 2
—(a‘dy + odx) ((x+l)dy"+5:§ y dx)

o | L
{(x+l) - ;f_—z (—y)2 } dy > 0

because F2 consists of points above the characteristic AC given by

m
-+l
Cx+l - —g; (—y)2 =0 . From o = - %- —— and r|

m r 570 if follows tha;

2

o ks
d[ao(~K)2] + r(aldy—azdx)lr >0
4 “ . )
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Thus we obtain under the hypothesis of theorem 3.1

3G,U3G_ G

and u]r = 0 . By hyperbolic theory we have u = 0 in G_ , but this implies
2 .
u=z0 in case r(x,y) =0 in G+ by the maximum principle, otherwise we get

uzo inv,G+ by the hyootheses i)

- As it can be seem from the proof, the condition r(x,y)|r < 0 can be replaced
: ‘ 2

by the '"weaker" condition

L
dla® K71 + r(atdy-ad) |, >0 . -
' ' 2
Remark 5 (Boundary curve Fl)

By theorem 3.1 T. .is a piecewise smooth curve inside the characteristic

1

triangle and must satisfy

»,(g<y) (

The solutions of

T

) .
) + .1) (-—(m+2)(x+l)dy + 2ydx>|r >0
A 1

W, = -(m+2) (x+1) + 2ydx = 0
. through A(-1,0) 1lying inside the characteristic triangle are given by

m
. : §+1 9
- (3.6) x = -1 + C(-y) with C > -2

(3.6) gives the possible forms of the boundary curves Pl which satisfy (3.2)
and where we have f Q=0 . For m= 1 we obtain the result of V. P. Egorov

I
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in [5].

We observe that the characteristic directions Q(dx,dy) = 0 through an
arbitrary point (xb,yo)e(i_-divide a neighborhood of (xo,yo) in four parts
whére Q(dx,dy) = K(y) (%ﬁ-)z +1 %-0 . Similarly the solution of
W, = -(mt2) (x+1)dy + 2y dx = 0 through (xo,yo) divides a neighborhood of
(xo,yo) in two parts where w, } 0 and wy < 0 respectively. From the
point (xo,yo) the curve Fl may proceed in a direction (dx,dy) where
Q'mo >0,

Ny

AG-1,0) ) I'Bro.o)

Fig. 1

The possible directions are indicated in figure 1.. It is clear from theorem 3.1
(condition 3.2) that all possible boundary curves 'Fl have a verfical tangent

- in A(-1,0).

Remark 6  (Boundary curve . FO)

. By theorem 3.1 T is a piecewise smooth curve which must satisfy

0
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(3.3) w, = (mk2) (x+1)dy - 2ydx|, >0 .
A 0
We note that the boundary of : . Ay
the rectangle in Figure 2 ’[“~ S ——
. (=0 ’

below saFisfies the condition € <o i cr0

o ~ - i -
(3.3). We are interested in +\\\;\\ v - A

. (%q.Yo! %o/ ¥ol '

other possible piecewise =

smooth curves which inter-
sect the line y = 0 in

Fig. 2
A(-1,0) and B(0,0).

A(-l,O): The condition\(3.3) is satisfied for the solutions of Wy = o,

which are given by

ol
:

3.7) '  x=-1+Cy , —©<C<+ o

Let (xo,yo) be an arbitrary point such that x_ < -1,y > 0 , then there

exists a solution of wy = 0 through (xo,yo) which is given by
. . 1+x o+l
(3.8) x=-1+—— y
: —+1
2
Yo

The solution (3.8) through (xo,yo) divide a neighborhood of (xo,yo) in -two

parts where wy > 0 and 0y

reach A(-1,0) the curve Fo may proceed in . a direction (dx,dy) where

<0 'respectively. Starting from (xo,yo) to

Wy ;;0 . As it is easily seen, the line which connects (xo,yo) is a possible
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. part of T .
P 0
T C NN n N
Starting from a point (xo,yo) such that -1 < Xs Yo 0 , the same
consideration shows that hy condition (3.3) a possible curve FO which inter-
sects y =0 in A(-1,0) must have either a vertical tangent in A(-1,0) or
a negative derivative.

" B(0,0): Writiﬁg the condition (3.3) w, >0 in the form

1

wy = ((m+2)(x+l), 2y )' n>0,n-= (dy,—dX)

we see, that fqr a curve starting at B(0,0) all direétibn are pQSSible.

For other types of conditiéns on _Fo for thé Neumann—probyem see C.S..
Morawetz [10].

Before returning to the Neumann-Tricomi prbblem for a general function’
CK(y) , we méke some remarks conéerning a problem which is similar to thé problem

considered by D. V. Kora€ev and K. I. Mihailov in [8].

Remark 7

Instead of the special case (2;8) we consider.the problem

, : y* for y >0, n >0
(3.9) . K{y) = o
' " -(-y) for y <0, m>0.

With the choice

2 0 2 0

‘1 _ - _ - _ 1 n
G, ra =-(xtl), o = -5y, 0 = -5 o5
1. 2 _ __2 0 __1_m
G_ o = -(xtl), o" = 7Y, @ = -5 —5
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the considerations in theorem 3.1 remain the same.  On Po we get instead

of (3.3)

(3.10) : (n+2) (x+1)dy - 2ydx|r, >0
o o

and theorem 3.1 is valid if the line integral (see (2.7))

B B
(3.11) J (-0_+0,) = J{(af—af_)ui + 26l-aDuu,
A A

+ 2(&9—0&2)uuy + u2 [r(oig—uf_) - (OLS, —OLO )]}dx

+ 7
B
0 O
= 2 j (a_—a+)uuydx >0
A .
. . 1 2 0 A . . +
As it can be seen from (2.3), (2.4) with o =0" =0, o = -1, considered in G

B .

J uuydx <0 for r<O0 in G, ,
A

thus (3.11) is valid if ao - ag § 0 ; which means n < m . - The theorem 3.1

remains true in the case K(y) is given by (3.9) if the condition (3.3) is

and 0 <n<m. -

replaced by (3.10), r(x,y) <0 in G+

The proof of theorem 3.1 indicates the approach for proving an analogous
uniqueness theorem for the Neumann-Tricomi problem in the general case when the
function K(y) %.O for y 2 0. The central idea is to choose the functions

at , 1.=0,1,2 so that the forms Q(u ,u ) = Au2 + 2Bu u_ + Cu2 =0 in G .
T x’ Ty X xy 7y
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Theorem 3.2

The equation

Llul= K(y)uXX + Uy + r(x,y)u = f(x,y)

- where

K(» 20 for y20, Kyec'@ONCEHNCE) -
r(x,y)€ct@HNct @) , £x,y) €@

has at most one quasi-regular solution in ' G satisfying the boundary conditions

dnu|F = K(y)uxdy - uydx|r = y(s)ds , ulr' = ¢(s) 1if the following conditions

o} o : 1
hold:
. With
: o
ol = —(tl) , o = |K(y)|'1/2~J Ik(e)| Y %ae
(3.12) - 1 , o y o
. ) R o
ao = sign y-% K'(y).]K(y)|f3/2 J {K(t)lllzdt ’
y

1i) -D = K(y)ao + ao + 2ra’ - (alf) - (alr) >0 in G with -D # 0  in
XK yy x y =

G+ in case r(x,y) 1is not identical zero in G+ .

ii) Fl lies inside the characteristic triangle determined by the line AB
and_the characteristics of (2.1) through A and B which intersect in

C and satisfies

| | - 2 \y
(3.13) _ <§(y) (%ﬁ-) + 1) (aldy - azdx)lr >0 ,
‘ o . /71



115) Gy | <0, 20 %% + 0P

>0,
2 | 2 7

~(aldy - azdx)lr >0 ; r(atdy - o’dx) - dnaolr >0,
o 0o

1im. az =0 .
y>0+

The proof of .theorem 3.2 is similar to that of theofem 3.1 by the choice
(3.12) of the functions ao, dl, a2 instead of (3.4). As it can be seen,
all conditions on the funcﬁions ao, al, az in theorem 3.2 can be written aé
conditions on the function K(y) . The corresponding remarks 4 and 5 are valid,
where tﬁe curves. (3.6) have to be replaced by the curves

(o]

x='-1+c (-—K(t)l/zdt,C_>_l,

I} SY——

t=y

for which we have

aldy - azdk =0
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