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1. Introduction 

Consider the equation 

(1.1) L[u] K(y)u + u + r(x,y)u 
XX yy f(x,y) 

> _> 0 in a bounded simply connected region G , where K(y) < 0 whenever y < 

and the region G is bounded by the curves: A piecewise smooth curve 

lying in the half-plane y > 0 which intersects the line y = 0 at the 

r 
0 

points A(-1,0) and B(O,O) For y < 0 by a piecewise smooth curve r 1 

through A which meets the characteristic of (1.1) issued from B at the 

point P and the curve r 2 which consists of the portion PB of the 

characteristic through B . 

------In this paper1using a variation of the energy-integral method (a,b,c-

method) similar to. the one used in [ 1] , · we obtain sufficient conditions for / 

the uniqueness of the solution of the boundary value problem 

(1. 2) 

(1. 3) 

(1. 4) 

d u 
n 

L[u] f in G 

K(y)uxdy- uydxlr 
0 

<P(s) 

ljJ(s)ds 

The question of uniqueness and exiStence of solutions ~f thisfu:ann-Tricomi 

boundary value prob~ has been dealt with for instance by L. S. Cubenko [4] 

in the case K(y) =sign YIYim, m > 0 when !l coincides with the char.acteris-

tic through A and instead of .(1. 3) the values d u + a.(s)u ds 
n 

on r are 
0 

known. For r(x,y) < 0 , a.(s) > 0 the uniqueness is proved with the 
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maximum-mitHnum !.principle and the existence of a. solution in a special function 

class under further conditions on r by the integral-equation method. V. F. 
0 

Egorov proved in [5] the uniqueness of the described boundary value problem in 

the case K(y) = y, r(x,y) :: 0 if has the special form X = -1 + C(-y)3/2, 

2 C > 3 and r · satisfies the boundary condition 
0 

3xdy- 2ydxjr > 0 . 
0 

In the papers [6] and [7] he generalized this uniqueness theorem to the 

case K(y) = sign yJyJm 
' 

m > 0 r(x,y) - 0 ' 
m 

+ 1 2 2 2 
rl X -1 + C(-y) c > -- and Jc- m+2 is "sufficient small". -- m+2 

D. V. Koracev and K. I. Miha1lov [8] treated the Neumann-Tricomi problem in 

case K(y) Ym for y > 0 , K( ) ( )n f 0 y = - -y or y < K(O) = 0 , 

-

r(x,y) :: 0 when r
1 

is a characteristic through A By use of the maximum-

minimum principle the unigueness and, with the integral-equation method, the 

existence of a solution P.re shown. For a representation of the integral-equation 

method for the Neumartn-Tricomi problem when r
1 

is a characteristic we. refer 

to [11] and for the existence of weak solution to [3]. 

To our knowledge in all the papers connected with uniqueness results for 

the problem (1.2), (1.3), (1.4) when r
1 

is not a characteristic, the assump-

tiona K(y) • signJyJy m ut :.> 0 , .r(x,y) = 0 and that l' 
1 

is of special 

form play an essential role. 

In the present paper wer~ve an uniqueness 

I 

theorem f~r a "general" function( 

K(y) ' when r(x,y) 
~·L 

is not necessarily zero and r 
1 

is of a more general· form. / 

2. Preliminary Lemmas 

We consider the differential operator 

(2.1) L[u] K(y)u + u + r(x,y)u 
XX YY 

f(x,y) 
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. wh~re 

(2. 2) 

and 

Remark 1 

K(y) :::.._ 0 
< 

for > y- 0, 
< 

1- 1- o-
r(x,y)EC (G+)nc(G_), f(x,y)EC (G) 

3 

The assumptions (2.2) can be we~kened; see theorem 3.1. we·introduce the 

Pfaffian form of first degree 

(2. 3) 

where d u 
n 

(2.4) 

0 1 2 2 2 2 1 2 2 0 
2(a u+a u +au )d u+(ru -K(y)u -u )(a dy-a dx)-u d.a 

x y n :x y u 

2 2 1 2 2 1 (K(y)u -1.1 )(a dy+a dx)+2u u (Ka dy-a dx) 
X y . X y 

0 . 
+ 2a u(K(vJ)u rlv-u dx) 

X J y 

2{ 1 0 2 0 } + u (ra -K(y)a)dy-(ra -ay)dx 

K(y)u dy - u dx 
X y 

and ·obtain 

. [ d, nJ 
1 2 . 

2(a0 u+a u +a u )L[u][dx,dy] 
X y 

2 . 2 2 
+ (Au +2Bu u +Cu +Du )[dx,dy] 

X X y y 
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where 

A= K(y) (a~ - a~) 2 0 - a K' (y) + 2K(y)a 

2 1 B = K(y)a + a 
X y 

(2. 5) 

c ( 1 . 2) - ax - ay + 2a0 

0 0 0 1 2 
D -K(y)a - a 2a r + (a r) +(a r) 

. XX yy X y 

By use of Green's theorem we have 

(2. 6) J [d,Q] 

\ve shall show that under suitable assumptions on r 
0 

, r 1 and the coefficients 

of (2.1), the functions i 
a , i 0,1,2 can be determined so that 

(2.7) 0 < J n JJ [d,Q] < 0 

ac+ u ac _ G+U G_ 

thus it.will follm-1 from (2. 7) that u = 0 

·Lemma 2.1 

If 

0 

a2 +jK(y)j-1/2 J jK(t)jl/2dt 

0 
a·· 

t=y 

sign y l ~' ( )jK( ). J-1/ 2 
. I, . y y 

0 

I jK(t)j 112dt 

t=y 



then 

A = B c - 0 

Proof 

The conclusion of the lemma follows at once by substitution of 

i 0,1,2 (as given in the lemma) in (2.5). 

Remark 2 

For the special case 

(2. 8) K(y) 

we conclude from Lemma 2.1 

a.1 - -(x+l),. 

Lemma 2.2 

2 
Ct 

2 
- m+2 y, 

m > 0 

0 
Ct 
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i 
Ct ' 

If the Pfaffian form rl is as in (2. 3) and the function u satisfies 

the boundary conditions (1. 3) and (1. 4) then 

(a) J 
. 2 2" 2 1 2 . 2 0 
{(ru -K(y)u -u )(a. dy-a. dx)-u d a.} 

x y n 
r r 

0 . 0 

(b) J ( ( ) 
2 2) ( ld 2d ) · K y u +u a. y-a. x 
X y 

rl 



(c) 

B 

J
"{ .1/2 .. 2 "1 .. 2 

+ -[(-K) u +u ] (a dy+a·dx) + 
X y 

P. 

2 [ [ 0 1/2 1/2 0 1 2 J} + u d a (-K) ]+(-K) da +r(a dy-a dx) 

Proof 

The statement (a) follows directly from (2.3) and (1.3). ul · = 0 
rl 

6 

implies u dx + u dylr = 0 on the smooth parts of Thus from (2.3) 
X y 1 

~·7e have 

2 1 2 2 2 1 2 2 K(y)u a dy + K(y)u a dx - u a dy - u a dx + 
X X y y 

Observing that on r 1 

we have 

2 . 2 2 
2u u K(y)a dy =· -2u K(y)a dx , 

X y X 

1" 
-2u u a dx 

. X y 
2 1 2u a dy 
y 



.. 
7 

Now since u dx + u dyJr 
X y 1 

0 , (b) follows. Since on 
0 1 

x + f (-K(t))~dt 

we ·have 
!.: 

dx - (K(y)) 2dy. 0 ' d ulr 
n 2 

K(y)u dy 
X 

u dx y 

t=y 

!.: 
-(-K(y)) 2du Thus 

(2.9) 

An integration by parts yields 

B 

r 
0 !.: 

-2a (-K) 2 udu 
) 

p 

B 
0 !.: 2 

-a (-K) 2u 
p 

B 

+ J 
p 

B 

J a0 (-K)~du2 

P. 

u2 d[a0 (-K)~] 

s.o we obtain by a simple c.alculation from (2. 9) the statement (c)~ 

Remark 3 

If r 1 has the characteristic. direction, then 

at once from the observations that 

. 1 . 

(-K(y))~dy- dxlr 0 , 
. . 1 . 

u dx + u dyJr = 0 X . y . 
1 

which implies 0. ·rn this case see [2] . 

0 . This follows 

0 
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3. Neumann-Tricomi P.roblem 

We call a function u(x,y) €C
0

(G) a quasi-regular solution of (2.1) if 

the following hold ([9], p. 234): 

i) u(x,y) satisfies {2.1); 

ii) The integral exists; 

cn{y=O} 

iii) If G± (£) are regions with boundary aG± (E:) lying entirely in G+ and 

G , then the line integrals along aG±(E) which result from the 

application of Green's theorem to the integrals: 

I I u L[u]dxdy , 

G±(E:) 

I I u L[u]dxdy , 
X I I u L[u]dxdy 

y 

have a limit when 0G± (£) approaches the boundary of G+ and G 

First we prove the uniqueness theorem for a special case: 

Theorem 3.1 

The equation 

L[u] 

where 

(2. 8) K(y) 

K(y)u + u + r(x,y)u xx yy 
f(x,y) 

0 f(x,y) €C (G) 

has at most one quasi-regular solution in G satisfying the boundary conditions 



K(y)'u dy - u dx 
X y l/J(s)ds 

cp(s) 

if the following conditions are satisfied: 

. 1 2 2 
a= (a ,a)= (-(x+l),- rn+2 y) 

. -D 4 -- r - a ·grad r > 0 in G , and -D t 0 rn+2 

in G+ 

. 9 

in G+ in case r(x,y) t 0 

ii) r 1 lies inside the characteristic triangle determined by the line AB ~nd 

the two characteristics of (2.1) through A and B which intersect in C 

and satisfies 

(3. 2) (K(y) (:: )" + 1) (-(m+2) (x+l)dy + 2ydx) I r 1 > 0 

iii) r(x,y)jr < 0 
2 

(3. 3) 

Remark 4 

r(x,y)jr < 0 
0 

(m+2)(x-i-;J..)dy- 2ydxlr > 0 
0 

See the remarks at the end of the proof concerning the possible forms of the 

curves ro and rl . 

Proof 

Suppose there exist two solutions and Let u = u 1 - u 2 , by (2.4) 



and with the choice (see Lemma 2.1) 

(3. 4) 

we obtain 

1 
a -(x+l), · a 2 2 

- - m+2 y ~ 
0 

a 

Q(u ,u ) 
. X y A} + 2Bu u 

X X y 
2 + Cu 
y 

4 
D = - in+2 r + a.· grad r 

- 0 

1 m 
- 2 m+2 

in G ' 
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From Lemma 2.2 and (3.4), under the assumptions (3.2) and iii) we obtain 

(3. 5) I S] ..:.. 0, I S] > 0 

r rl 0 

~+ 1 m -
On r2 

2 (-y) 2 
0 ' dx -

2 . 
0 ' and x + m+2 ( -y) dy 

1 2 -(a dy + a dx) ( (x+l)dy-+ ~2 y dx) 

{(x+l) - ~2 (-y)~ + 
1
} dy > .0 

because r2 consists of points above the characteristic AC given by 

2 ·~·H 
x+l 2 

0 
0 1 m 

rlr < 0 if follows 
m-1-2 

(-y) . From a 2 m+2 and that 
2 

~[a0~-K)~] + r(a1dy-a2dx)lr > 0 
. 2 



Thus we obtain under the hypothesis of theorem 3.1 

and ulr = 0 . 
2 

By hyperbolic theory we have u - 0 in G 

11. 

but this implies 

u _ 0 in case G 
+ 

r(x,y). ::: 0 in by the maximum principle, otherwise we get 

u - 0 in .G+ by the hypotheses i) 

-As it can be seem from the proof, the condition r(x,y) lr < 0 can be replaced 
2 

by the "weaker" condltion 

d[a0 (-K)~] + r(a1dy-a 2dx) lr. > 0 
2 

Remark 5 (Boundary curve r 1) 

By theorem 3.1 r
1 

.is a piecewise smooth curve inside the characteristic 

triangle and must satisfy 

The solutions of 

w 
0 

-(m+2)(x+l) + 2ydx 0 

. through A(-1,0) lying inside the characteristic triangle are given by 

(3. 6) X = 
~+1 

-1 + C(-y) 2 with 2 c > -­- m+2 

(3. 6). gives the possible forms of the boundary curves r 1 which satisfy (3. 2) 

and where we have J Q = 0 . ·,: For m = 1 we obtain the result of V. P. Egorov 

rl 
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in [5]. 

We observe that the characteristic directions Q(dx,dy) = 0 through an 

arbitrary point (x , y ) E G divide a neighborhood of (x
0 

,y
0

) in four parts 
0 0 . -

where Q(dx,dy) :;:: K(y) ( ~) 2 
+ 1 ~ 0 . Similarly the solution of 

w
0 

= -(m+2)(x+l)dy + 2y dx = 0 through (x
0

,y
0

) divides a neighborhood of 

in two parts where w > 0 
0 

and w < 0 
0 

respectively. From the 

point (x
0

,y
0

) the curve r 1 may proceed in a direction (dx,dy) where 

Q·w > 0 . 
0-

Fig. 1 

y 

The possible directions are indicated in figure 1.. It is clear from theorem 3.1 

(condition 3.2) that all possible'boundary curves r
1 

have a vertical tangent 

. in A(.:..l,U). 

Remark 6 (~oundary curve. r0) 

. By theorem 3.1 r
0 

is a piecewise smooth curve which must satisfy 
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(3.3) - (m+2)(x+l)dy- '2ydxlr 
. 0 

> 0 

We note that the boundary of .. y 

the rectangle in Figure 2 
rc.~~-----------------~--- ______ ................................. . 
I 

C<o j C>O below satisfies .the condition 

(3. 3). · We are interested in +."--~yi 0 .... _ 
(lfQ,;>. : (XooYul I 

I ' other possible piecewise 
i __________________________ .. ·-··-··----*..:..,\> 

· Al-l,o) Bto,o)i " 
1 

smooth curv~s which inter-

sect the line y = 0 in 
Fig. 2 

A(-1,0) and B(O,O). 

A(-1,0): The condition, (3.3) is satisfied for the solutions of w1 0 , 

which are given by 

(3.7) X = -·00 < c < + 00 

Let be an arbitrary point such that x < -l,y > 0 , then there 
0 0 

exists a solution of 

(3.8) 

w = 0 1 

X = 

through 

l+x 
-1 + __ o-=--

~1 
2 

Yo 

~1 
2 

y 

which is given by 

The solution (3. 8) through (xo,yo) divide a neighborhood of (xo,yo) in ·two 

parts where wl > 0 and wl < 0 respectively. Starting from (xo,yo) to 

reach A(-1,0) the curve r may proceed in a direction (dx,dy) where 
0 

w > 0 
1- As it is easily seen, the line which connects (xo,yo) is a possible 



··-

~ 

. ~ 

part of t 
0 

Starting f.rom a point such that -1 < 
'\, 

Y > 0 , 
0 
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the same 

consideration shows that hy condition ·(3.3) a possible curve r which inter-
0 

sects y = 0 in A(-1,0) must have either a vertical tangent in A(-1,0) or 

a negative derivative. 

B(O,O): Writing the condition (3.3) w
1 

> 0 in the form 

w1 = ( (m+2) (x+l), 2y ) · n ~ 0 , n (dy, -dx) 

we see, that f~r a curve starting at B(O,O) all dire~tion are pos~ible. 

For other types of conditions on 

Morawetz [10]. 

r 
0 

for the Neumann-problem see C.S .. 

Before returning to the Neumann-Tricomi problem for a general function· 

K(y) , we make some remarks concerning· .a problem which is similar· to the problem 

considered by D. V. Koracev and K. I. Miha1lov in [8]. 

Remark 7 

Instead of the special c~se (2.8) we consider the problem 

y > 0 , n > 0 
(3. 9) K(y) 

for y < 0 m > 0 . 

With the choice 

G+ 
1 -(x+l), 2 2 0 1 n 

a a n+2 y, a - 2 n+2 

G 1 -(x+l), 2 2 0 1 m 
a a m+2 y, a -2 m+2 



I 
I 
I 

I 
I 

I 
' 

the considerations in theorem 3.1 remain the same.· On r we geE instead 
0 

of (3.3) 

(3 .10) 

and theorem 3.1 is 

B 

(3.11) J 
A 

+ 

(n+2)(x+l)dy- 2ydxlr > 0 
0 

valid if the line integral (see (2.7)) 

B 

(-Q_ +Q+) J { 2 2 2 1 1 
(a_-a+)uy + 2(a. -a+)u u 

- X y 
A 

0 0" 2 [ ·2 2 0 0 J} 2(a -a+)uu + u r(a_-a.+) - (ay -a.y ) dx - y 
+ -

B 

2 J 
0 0 

(a -a+)uu dx > 0 - y 
A 
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As it can be seen from (2.3), (2.4) with 1 
a 

2 
a 0 ' 

0 
a -1 , _considered in G+ 

B 

J uuydx < 0 for r < 0 in G+ , 

A 

thus (3.11) is valid if 
0 0 .· . 

a_ - a+~ 0 , which means n < m . -The theorem 3.1 

remains true in the case K(y) is given by (3.9) if the condition (3.3) is 

replaced by (3.10), r(x,y) ~ 0 in G+ and 0 < n < m 

The proof of theorem 3.1 indicates the approach for proving an analogous 

uniqueness theorem for the Neumann-Tricomi problem in the general case when the 

function K(y) ~ 0 
"< 

for Y ~ o· <· • The central idea is to choose the functions 

i 
a i 0, 1; 2 so that the form. Q(u , u ) 

X y 
Au2 + 2Bu u x x.y + Cu

2 = 0 y 
in G . 



.-~ 

... 

Theorem 3.2 

The equation 

L[u]= K(y)u + u + r(x,y)u = f(x,y) 
XX yy 

where 

K(y) ~ 0 for y ?_ 0 
.< 

1- 1- 0-
i-(x,y)EC (G+)nc (G_) , f(x,y)EC (G) 
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has at most one.quasi-regular solution in· G satisfying the boundary conditions 

dnulr 
0 

hold: 

With 

(3.12) 

= K(y)u d - u dxlr = ~(s)ds , 
X y y 

0 . 
if the following conditions 

0 

1 
a "7(x+l) , a 2 I K(y) 1-l/Z -J I K(t)ll,/ 2dt 

y 
0 

a
0 

sign y t K' (y) ··~~(y)l~ 312 J ·I'K(t)i 112dt 

y 

i) 
0 0 . . 0 1. 

-D = K(y)a + a + 2ra - (a r) 
XX YY - X 

(a1r) > 0 in G with -D $ 0 in 
y 

. G+ in case r(x,y) is not identical zero in G+ . 

ii) r
1 

lies inside the characteristic triangle determined by the line AB 

and the characteristics of (2.1) through A and B which intersect in 

c· and satisfies 

(3.13) 



....... iii) r(x,y) lr < 0 
2 

-(a
1
dy- a

2
dx) lr > 0 

6 

2 lim. a 0 
y~± 
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1 2 0 
r(a dy- a dx) -dna lr > 0 

0 

The proof of.theorem 3.2 is similar to that of theorem 3.1 by the choice 

(3.12) of the functions 
0 . 1 2 

a , a , a instead of (3.4). As it can be seen, 

all conditions on the functions 0 1 2 a , a , a in theorem 3.2 can be written as 

conditions on the function K(y) The corresponding remarks 4 and 5 are valid, 

where the curves (3.6) have to be replaced by the curves 

for which we have 

0 

X = 1 + c I (-K(t) 1
/

2dt , c > 1 

t=y 
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