

DOE/ER/03443-80

INSTITUTE FOR Physical SCIENCE AND TECHNOLOGY

Technical Note BN-906

University of
Maryland
College Park

ON UNIQUENESS OF NEUMANN-TRICOMI
PROBLEM IN \mathbb{R}^2

MASTER

by

A. K. Aziz

and

M. Schneider

April 1979



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ON UNIQUENESS OF NEUMANN-TRICOMI PROBLEM IN \mathbb{R}^2

by

A. K. Aziz *

Institute for Physical Science and Technology

University of Maryland

and

University of Maryland Baltimore County Campus

Department of Mathematics

and

M. Schneider

Technische Universitat Berlin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

*Research supported in part by the Department of Energy under contract DE A805-76ERO 3443.

1. Introduction

Consider the equation

$$(1.1) \quad L[u] = K(y)u_{xx} + u_{yy} + r(x,y)u = f(x,y) ,$$

in a bounded simply connected region G , where $K(y) > 0$ whenever $y > 0$ and the region G is bounded by the curves: A piecewise smooth curve Γ_0 lying in the half-plane $y > 0$ which intersects the line $y = 0$ at the points $A(-1,0)$ and $B(0,0)$. For $y < 0$ by a piecewise smooth curve Γ_1 through A which meets the characteristic of (1.1) issued from B at the point P and the curve Γ_2 which consists of the portion PB of the characteristic through B .

In this paper [using a variation of the energy-integral method (a,b,c-method) similar to the one used in [1], we obtain sufficient conditions for the uniqueness of the solution of the boundary value problem

$$(1.2) \quad L[u] = f \quad \text{in } G$$

$$(1.3) \quad d_n u : = K(y)u_x dy - u_y dx \Big|_{\Gamma_0} = \psi(s)ds$$

$$(1.4) \quad u \Big|_{\Gamma_1} = \phi(s) .$$

The question of uniqueness and existence of solutions of this Neumann-Tricomi boundary value problem has been dealt with for instance by L. S. Cubenko [4] in the case $K(y) = \text{sign } y |y|^m$, $m > 0$ when Γ_1 coincides with the characteristic through A and instead of (1.3) the values $d_n u + \alpha(s)u ds$ on Γ_0 are known. For $r(x,y) \leq 0$, $\alpha(s) \geq 0$ the uniqueness is proved with the

maximum-minimum principle and the existence of a solution in a special function class under further conditions on Γ_0 by the integral-equation method. V. F. Egorov proved in [5] the uniqueness of the described boundary value problem in the case $K(y) = y$, $r(x,y) \equiv 0$ if Γ_1 has the special form $x = -1 + C(-y)^{3/2}$, $C \geq \frac{2}{3}$ and Γ_0 satisfies the boundary condition $3xdy - 2ydx|_{\Gamma_0} \geq 0$.

In the papers [6] and [7] he generalized this uniqueness theorem to the case $K(y) = \text{sign } y|y|^m$, $m \geq 0$, $r(x,y) \equiv 0$,

$$\Gamma_1 : x = -1 + C(-y)^{\frac{m}{2} + 1}, \quad C \geq \frac{2}{m+2} \quad \text{and} \quad |C - \frac{2}{m+2}| \quad \text{is "sufficient small".}$$

D. V. Koračev and K. I. Mihaǐlov [8] treated the Neumann-Tricomi problem in case $K(y) = y^m$ for $y > 0$, $K(y) = -(-y)^n$ for $y < 0$, $K(0) = 0$, $r(x,y) \equiv 0$, when Γ_1 is a characteristic through A. By use of the maximum-minimum principle the uniqueness and, with the integral-equation method, the existence of a solution are shown. For a representation of the integral-equation method for the Neumann-Tricomi problem when Γ_1 is a characteristic we refer to [11] and for the existence of weak solution to [3].

To our knowledge in all the papers connected with uniqueness results for the problem (1.2), (1.3), (1.4) when Γ_1 is not a characteristic, the assumptions $K(y) = \text{sign } y|y|^m$, $m > 0$, $r(x,y) = 0$ and that Γ_1 is of special form play an essential role.

In the present paper we give an uniqueness theorem for a "general" function $K(y)$, when $r(x,y)$ is not necessarily zero and Γ_1 is of a more general form.

2. Preliminary Lemmas

We consider the differential operator

$$(2.1) \quad L[u] = K(y)u_{xx} + u_{yy} + r(x,y)u = f(x,y),$$

where

$$(2.2) \quad \begin{aligned} K(y) &> 0 \quad \text{for } y > 0, \quad K(y) \in C^0(\bar{G}) \cap C^3(\bar{G}_+) \cap C^3(\bar{G}_-) , \\ r(x, y) &\in C^1(\bar{G}_+) \cap C^1(\bar{G}_-), \quad f(x, y) \in C^0(\bar{G}) \end{aligned}$$

and

$$G_+ = G \cap \{y > 0\}, \quad G_- = G \cap \{y < 0\}$$

Remark 1

The assumptions (2.2) can be weakened; see theorem 3.1. We introduce the Pfaffian form of first degree

$$(2.3) \quad \begin{aligned} \Omega &= 2(\alpha^0 u + \alpha^1 u_x + \alpha^2 u_y) d_n u + (ru^2 - K(y)u_x^2 - u_y^2)(\alpha^1 dy - \alpha^2 dx) - u^2 d_n \alpha^0 \\ &= (K(y)u_x^2 - u_y^2)(\alpha^1 dy + \alpha^2 dx) + 2u_x u_y (K\alpha^2 dy - \alpha^1 dx) \\ &\quad + 2\alpha^0 u (K(y)u_x dy - u_y dx) \\ &\quad + u^2 \left\{ (r\alpha^1 - K(y)\alpha_x^0) dy - (r\alpha^2 - \alpha_y^0) dx \right\} , \end{aligned}$$

where $d_n u = K(y)u_x dy - u_y dx$, and obtain

$$(2.4) \quad \begin{aligned} [d, \Omega] &= 2(\alpha^0 u + \alpha^1 u_x + \alpha^2 u_y) L[u][dx, dy] \\ &\quad + (Au_x^2 + 2Bu_x u_y + Cu_y^2 + Du^2)[dx, dy] \end{aligned}$$

where

$$\begin{aligned}
 (2.5) \quad A &= K(y) \left(\alpha_x^1 - \alpha_y^2 \right) - \alpha^2 K'(y) + 2K(y)\alpha^0 \quad , \\
 B &= K(y)\alpha_x^2 + \alpha_y^1 \quad , \\
 C &= - \left(\alpha_x^1 - \alpha_y^2 \right) + 2\alpha^0 \quad , \\
 D &= -K(y)\alpha_{xx}^0 - \alpha_{yy}^0 - 2\alpha^0 r + (\alpha^1 r)_x + (\alpha^2 r)_y \quad .
 \end{aligned}$$

By use of Green's theorem we have

$$(2.6) \quad \int_{\partial G_+ \cup \partial G_-} \Omega = \iint_{G_+ \cup G_-} [d, \Omega]$$

We shall show that under suitable assumptions on Γ_0 , Γ_1 and the coefficients of (2.1), the functions α^i , $i = 0, 1, 2$ can be determined so that

$$(2.7) \quad 0 \leq \int_{\partial G_+ \cup \partial G_-} \Omega = \iint_{G_+ \cup G_-} [d, \Omega] \leq 0 \quad ,$$

thus it will follow from (2.7) that $u \equiv 0$.

Lemma 2.1

If

$$\alpha^1 = -(x+1)$$

$$\alpha^2 = +|K(y)|^{-1/2} \int_{t=y}^0 |K(t)|^{1/2} dt$$

$$\alpha^0 = \text{sign } y \frac{1}{4} K'(y) |K(y)|^{-3/2} \int_{t=y}^0 |K(t)|^{1/2} dt$$

then

$$A = B = C \equiv 0$$

Proof

The conclusion of the lemma follows at once by substitution of α^i , $i = 0, 1, 2$ (as given in the lemma) in (2.5).

Remark 2

For the special case

$$(2.8) \quad K(y) = \text{sign } y |y|^m, \quad m > 0$$

we conclude from Lemma 2.1

$$\alpha^1 = -(x+1), \quad \alpha^2 = -\frac{2}{m+2} y, \quad \alpha^0 = -\frac{1}{2} \frac{m}{m+2}$$

Lemma 2.2

If the Pfaffian form Ω is as in (2.3) and the function u satisfies the boundary conditions (1.3) and (1.4) then

$$(a) \quad \int_{\Gamma_0} \Omega = \int_{\Gamma_0} \{(ru^2 - K(y)u_x^2 - u_y^2)(\alpha^1 dy - \alpha^2 dx) - u^2 d_n \alpha^0\},$$

$$(b) \quad \int_{\Gamma_1} \Omega = \int_{\Gamma_1} (K(y)u_x^2 + u_y^2)(\alpha^1 dy - \alpha^2 dx)$$

$$= \int_{\Gamma_1} u_y^2 \left\{ K(y) \left(\frac{dy}{dx} \right)^2 + 1 \right\} (\alpha^1 dy - \alpha^2 dx),$$

$$(c) \quad \int_{\Gamma_2} \Omega = \int_P^B \Omega = -\alpha^0 (-K)^{1/2} u^2 \Big|_P^B$$

$$+ \int_P^B \left\{ -[(-K)^{1/2} u_x + u_y]^2 (\alpha^1 dy + \alpha^2 dx) + \right.$$

$$\left. + u^2 \left[d[\alpha^0 (-K)^{1/2}] + (-K)^{1/2} d\alpha^0 + r(\alpha^1 dy - \alpha^2 dx) \right] \right\}$$

Proof

The statement (a) follows directly from (2.3) and (1.3). $u|_{\Gamma_1} = 0$ implies $u_x dx + u_y dy|_{\Gamma_1} = 0$ on the smooth parts of Γ_1 . Thus from (2.3) we have

$$\begin{aligned} \Omega|_{\Gamma_1} &= K(y) u_x^2 \alpha^1 dy + K(y) u_x^2 \alpha^2 dx - u_y^2 \alpha^1 dy - u_y^2 \alpha^2 dx + \\ &+ 2u_x u_y K(y) \alpha^2 dy - 2u_x u_y \alpha^1 dx . \end{aligned}$$

Observing that on Γ_1

$$2u_x u_y K(y) \alpha^2 dy = -2u_x^2 K(y) \alpha^2 dx ,$$

$$-2u_x u_y \alpha^1 dx = 2u_y^2 \alpha^1 dy ,$$

we have

$$\Omega|_{\Gamma_1} = (K(y) u_x^2 + u_y^2) (\alpha^1 dy - \alpha^2 dx)$$

Now since $u_x dx + u_y dy|_{\Gamma_1} = 0$, (b) follows. Since on $\Gamma_2 : x + \int_{t=y}^0 (-K(t))^{\frac{1}{2}} dt = 0$

we have $dx - (K(y))^{\frac{1}{2}} dy = 0$, $d_n u|_{\Gamma_2} = K(y)u_x dy - u_y dx = -(-K(y))^{\frac{1}{2}} du$. Thus

$$(2.9) \quad \begin{aligned} \Omega|_{\Gamma_2} &= -2\alpha^0 (-K(y))^{\frac{1}{2}} u du + 2(\alpha^1 u_x^2 + \alpha^2 u_y^2)(K(y)u_x dy - u_y dx) \\ &\quad - (K(y)u_x^2 + u_y^2)(\alpha^1 dy - \alpha^2 dx) + u^2 \left[r(\alpha^1 dy - \alpha^2 dx) + (-K)^{\frac{1}{2}} d\alpha^0 \right] \end{aligned}$$

An integration by parts yields

$$\begin{aligned} \int_P^B -2\alpha^0 (-K)^{\frac{1}{2}} u du &= - \int_P^B \alpha^0 (-K)^{\frac{1}{2}} du^2 \\ &= -\alpha^0 (-K)^{\frac{1}{2}} u^2 \Big|_P^B + \int_P^B u^2 d[\alpha^0 (-K)^{\frac{1}{2}}] \end{aligned}$$

so we obtain by a simple calculation from (2.9) the statement (c).

Remark 3

If Γ_1 has the characteristic direction, then $\int_{\Gamma_1} \Omega = 0$. This follows at once from the observations that

$$(-K(y))^{\frac{1}{2}} dy - dx|_{\Gamma_1} = 0, \quad u_x dx + u_y dy|_{\Gamma_1} = 0,$$

which implies $K(y)u_x^2 + u_y^2|_{\Gamma_1} = 0$. In this case see [2].

3. Neumann-Tricomi Problem

We call a function $u(x, y) \in C^0(G)$ a quasi-regular solution of (2.1) if the following hold ([9], p. 234):

- i) $u(x, y)$ satisfies (2.1);
- ii) The integral $\int_{G \cap \{y=0\}} \Omega$ exists;

- iii) If $G_{\pm}(\epsilon)$ are regions with boundary $\partial G_{\pm}(\epsilon)$ lying entirely in G_+ and G_- , then the line integrals along $\partial G_{\pm}(\epsilon)$ which result from the application of Green's theorem to the integrals:

$$\iint_{G_{\pm}(\epsilon)} u L[u] dx dy, \quad \iint_{G_{\pm}(\epsilon)} u_x L[u] dx dy, \quad \iint_{G_{\pm}(\epsilon)} u_y L[u] dx dy$$

have a limit when $\partial G_{\pm}(\epsilon)$ approaches the boundary of G_+ and G_- .

First we prove the uniqueness theorem for a special case:

Theorem 3.1

The equation

$$L[u] = K(y)u_{xx} + u_{yy} + r(x, y)u = f(x, y)$$

where

$$(2.8) \quad K(y) = (\text{sign } y)|y|^m, \quad m > 0; \quad r(x, y) \in C^1(\bar{G}_+) \cap C^1(G_-), \quad f(x, y) \in C^0(G)$$

has at most one quasi-regular solution in G satisfying the boundary conditions

$$d_n u|_{\Gamma_0} = K(y)u_x dy - u_y dx = \psi(s)ds ,$$

$$u|_{\Gamma_1} = \phi(s)$$

if the following conditions are satisfied:

i) $\alpha = (\alpha^1, \alpha^2) = (-(x+1), -\frac{2}{m+2}y)$

$-D = \frac{4}{m+2} r - \alpha \cdot \text{grad } r \geq 0 \text{ in } G, \text{ and } -D \neq 0 \text{ in } G_+ \text{ in case } r(x, y) \neq 0$
in G_+ .

ii) Γ_1 lies inside the characteristic triangle determined by the line \overline{AB} and the two characteristics of (2.1) through A and B which intersect in C and satisfies

$$(3.2) \quad \left(K(y) \left(\frac{dy}{dx} \right)^2 + 1 \right) \left(-(m+2)(x+1)dy + 2ydx \right) |_{\Gamma_1} \geq 0$$

iii) $r(x, y)|_{\Gamma_2} \leq 0, \quad r(x, y)|_{\Gamma_0} \leq 0$

$$(3.3) \quad (m+2)(x+1)dy - 2ydx|_{\Gamma_0} > 0$$

Remark 4

See the remarks at the end of the proof concerning the possible forms of the curves Γ_0 and Γ_1 .

Proof

Suppose there exist two solutions u_1 and u_2 . Let $u = u_1 - u_2$, by (2.4)

$$[d, \Omega] = (Au_x^2 + 2Bu_x u_y + Cu_y^2 + Du^2)[dx, dy]$$

and with the choice (see Lemma 2.1)

$$(3.4) \quad \alpha^1 = -(x+1), \quad \alpha^2 = -\frac{2}{m+2} y, \quad \alpha^0 = -\frac{1}{2} \frac{m}{m+2}$$

we obtain

$$Q(u_x, u_y) = Au_x^2 + 2Bu_x u_y + Cu_y^2 \equiv 0 \quad \text{in } G,$$

$$D = -\frac{4}{m+2} r + \alpha \cdot \text{grad } r$$

From Lemma 2.2 and (3.4), under the assumptions (3.2) and iii) we obtain

$$(3.5) \quad \int_{\Gamma_0} \Omega \geq 0, \quad \int_{\Gamma_1} \Omega \geq 0$$

On Γ_2 : $x + \frac{2}{m+2} (-y)^{\frac{m}{2} + 1} = 0$, $dx - (-y)^{\frac{m}{2}} dy = 0$, and

$$\begin{aligned} -(\alpha^1 dy + \alpha^2 dx) &= \left((x+1) dy + \frac{2}{m+2} y dx \right) \\ &= \left\{ (x+1) - \frac{2}{m+2} (-y)^{\frac{m}{2} + 1} \right\} dy \geq 0 \end{aligned}$$

because Γ_2 consists of points above the characteristic AC given by

$x+1 - \frac{2}{m+2} (-y)^{\frac{m}{2} + 1} = 0$. From $\alpha^0 = -\frac{1}{2} \frac{m}{m+2}$ and $r|_{\Gamma_2} \leq 0$ it follows that

$$d[\alpha^0(-K)^{\frac{1}{2}}] + r(\alpha^1 dy - \alpha^2 dx)|_{\Gamma_2} \geq 0$$

Thus we obtain under the hypothesis of theorem 3.1

$$0 \leq \int_{\partial G_+ \cup \partial G_-} \Omega = \iint_{G_+ \cup G_-} [d, \Omega] \leq 0$$

and $u|_{\Gamma_2} = 0$. By hyperbolic theory we have $u \equiv 0$ in G_- , but this implies $u \equiv 0$ in case $r(x, y) \equiv 0$ in G_+ by the maximum principle, otherwise we get $u \equiv 0$ in G_+ by the hypotheses i).

- As it can be seen from the proof, the condition $r(x, y)|_{\Gamma_2} \leq 0$ can be replaced by the "weaker" condition

$$d[\alpha^0(-K)^{\frac{1}{2}}] + r(\alpha^1 dy - \alpha^2 dx)|_{\Gamma_2} \geq 0$$

Remark 5 (Boundary curve Γ_1)

By theorem 3.1 Γ_1 is a piecewise smooth curve inside the characteristic triangle and must satisfy

$$\left(K(y) \left(\frac{dy}{dx} \right)^2 + 1 \right) \left(-(m+2)(x+1)dy + 2ydx \right) |_{\Gamma_1} \geq 0$$

The solutions of

$$\omega_0 = -(m+2)(x+1) + 2ydx = 0$$

through $A(-1, 0)$ lying inside the characteristic triangle are given by

$$(3.6) \quad x = -1 + C(-y)^{\frac{m}{2}+1} \quad \text{with} \quad C \geq \frac{2}{m+2}$$

(3.6) gives the possible forms of the boundary curves Γ_1 which satisfy (3.2) and where we have $\int_{\Gamma_1} \Omega = 0$. For $m = 1$ we obtain the result of V. P. Egorov

in [5].

We observe that the characteristic directions $Q(dx, dy) = 0$ through an arbitrary point $(x_0, y_0) \in G_-$ divide a neighborhood of (x_0, y_0) in four parts where $Q(dx, dy) = K(y) \left(\frac{dy}{dx}\right)^2 + 1 \geq 0$. Similarly the solution of $\omega_0 \equiv -(m+2)(x+1)dy + 2y dx = 0$ through (x_0, y_0) divides a neighborhood of (x_0, y_0) in two parts where $\omega_0 > 0$ and $\omega_0 < 0$ respectively. From the point (x_0, y_0) the curve Γ_1 may proceed in a direction (dx, dy) where $Q \cdot \omega_0 \geq 0$.

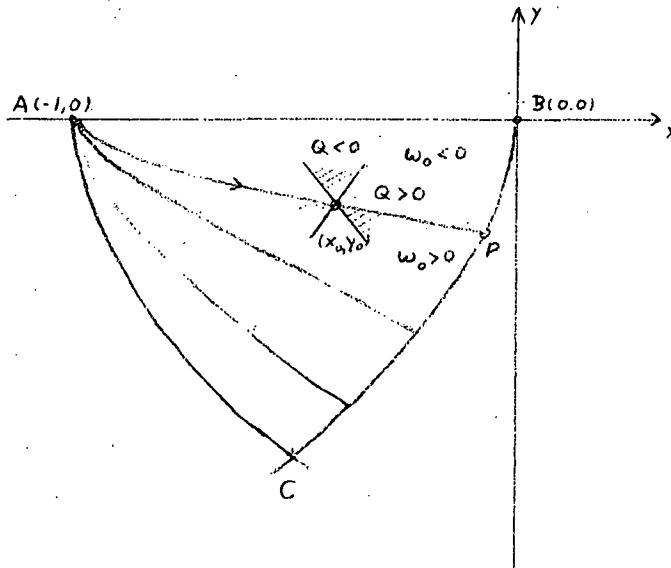


Fig. 1

The possible directions are indicated in figure 1. It is clear from theorem 3.1 (condition 3.2) that all possible boundary curves Γ_1 have a vertical tangent in $A(-1, 0)$.

Remark 6 (Boundary curve Γ_0)

By theorem 3.1 Γ_0 is a piecewise smooth curve which must satisfy

$$(3.3) \quad \omega_1 \equiv (m+2)(x+1)dy - 2ydx \Big|_{\Gamma_0} \geq 0 .$$

We note that the boundary of the rectangle in Figure 2 below satisfies the condition (3.3). We are interested in other possible piecewise smooth curves which intersect the line $y = 0$ in $A(-1,0)$ and $B(0,0)$.

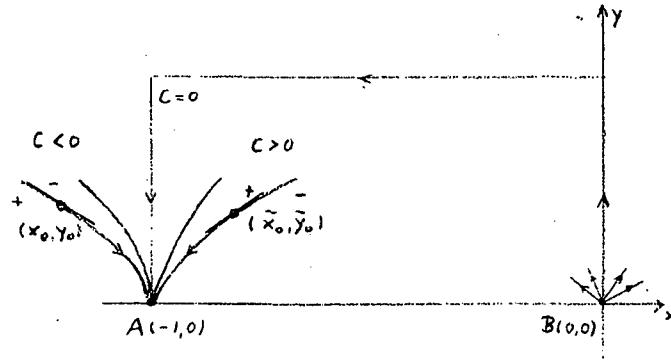


Fig. 2

$A(-1,0)$: The condition (3.3) is satisfied for the solutions of $\omega_1 = 0$, which are given by

$$(3.7) \quad x = -1 + \frac{m+1}{2} y^2, \quad -\infty < C < +\infty .$$

Let (x_0, y_0) be an arbitrary point such that $x_0 < -1, y_0 > 0$, then there exists a solution of $\omega_1 = 0$ through (x_0, y_0) which is given by

$$(3.8) \quad x = -1 + \frac{1+x_0}{\frac{m}{2}+1} y^{\frac{m+1}{2}} .$$

The solution (3.8) through (x_0, y_0) divides a neighborhood of (x_0, y_0) in two parts where $\omega_1 > 0$ and $\omega_1 < 0$ respectively. Starting from (x_0, y_0) to reach $A(-1,0)$ the curve Γ_0 may proceed in a direction (dx, dy) where $\omega_1 \geq 0$. As it is easily seen, the line which connects (x_0, y_0) is a possible

part of Γ_0 .

Starting from a point $(\tilde{x}_0, \tilde{y}_0)$ such that $-1 < \tilde{x}_0, \tilde{y}_0 > 0$, the same consideration shows that by condition (3.3) a possible curve Γ_0 which intersects $y = 0$ in $A(-1,0)$ must have either a vertical tangent in $A(-1,0)$ or a negative derivative.

B(0,0): Writing the condition (3.3) $\omega_1 \geq 0$ in the form

$$\omega_1 = \left((m+2)(x+1), 2y \right) \cdot n \geq 0, n = (dy, -dx)$$

we see, that for a curve starting at $B(0,0)$ all direction are possible.

For other types of conditions on Γ_0 for the Neumann-problem see C.S. Morawetz [10].

Before returning to the Neumann-Tricomi problem for a general function $K(y)$, we make some remarks concerning a problem which is similar to the problem considered by D. V. Koračev and K. I. Mihailov in [8].

Remark 7

Instead of the special case (2.8) we consider the problem

$$(3.9) \quad K(y) = \begin{cases} y^n & \text{for } y > 0, n > 0 \\ -(-y)^m & \text{for } y < 0, m > 0. \end{cases}$$

With the choice

$$G_+ : \alpha^1 = -(x+1), \alpha^2 = -\frac{2}{n+2} y, \alpha^0 = -\frac{1}{2} \frac{n}{n+2} ;$$

$$G_- : \alpha^1 = -(x+1), \alpha^2 = -\frac{2}{m+2} y, \alpha^0 = -\frac{1}{2} \frac{m}{m+2}.$$

the considerations in theorem 3.1 remain the same. On Γ_0 we get instead of (3.3)

$$(3.10) \quad (n+2)(x+1)dy - 2ydx \Big|_{\Gamma_0} \geq 0$$

and theorem 3.1 is valid if the line integral (see (2.7))

$$(3.11) \quad \int_A^B (-\Omega_- + \Omega_+) = \int_A^B \left\{ (\alpha_-^2 - \alpha_+^2)u_y^2 + 2(\alpha_-^1 - \alpha_+^1)u_xu_y + 2(\alpha_-^0 - \alpha_+^0)uu_y + u^2 \left[r(\alpha_-^2 - \alpha_+^2) - (\alpha_y^0 - \alpha_{y-}^0) \right] \right\} dx$$

$$= 2 \int_A^B (\alpha_-^0 - \alpha_+^0)uu_y dx \geq 0$$

As it can be seen from (2.3), (2.4) with $\alpha^1 = \alpha^2 = 0$, $\alpha^0 = -1$, considered in G^+

$$\int_A^B uu_y dx \leq 0 \quad \text{for } r \leq 0 \quad \text{in } G_+,$$

thus (3.11) is valid if $\alpha_-^0 - \alpha_+^0 \leq 0$, which means $n \leq m$. - The theorem 3.1 remains true in the case $K(y)$ is given by (3.9) if the condition (3.3) is replaced by (3.10), $r(x,y) \leq 0$ in G_+ and $0 < n \leq m$. -

The proof of theorem 3.1 indicates the approach for proving an analogous uniqueness theorem for the Neumann-Tricomi problem in the general case when the function $K(y) \geq 0$ for $y \geq 0$. The central idea is to choose the functions α^i , $i = 0, 1, 2$ so that the form $Q(u_x, u_y) = Au_x^2 + 2Bu_xu_y + Cu_y^2 \geq 0$ in G .

Theorem 3.2

The equation

$$L[u] = K(y)u_{xx} + u_{yy} + r(x,y)u = f(x,y)$$

where

$$K(y) \geq 0 \text{ for } y \geq 0, \quad K(y) \in C^0(\bar{G}) \cap C^3(\bar{G}_+) \cap C^3(\bar{G}_-),$$

$$r(x,y) \in C^1(\bar{G}_+) \cap C^1(\bar{G}_-), \quad f(x,y) \in C^0(\bar{G})$$

has at most one quasi-regular solution in G satisfying the boundary conditions

$$d_n u|_{\Gamma_0} = K(y)u_x dy - u_y dx|_{\Gamma_0} = \psi(s)ds, \quad u|_{\Gamma_1} = \phi(s) \quad \text{if the following conditions}$$

hold:

With

$$(3.12) \quad \begin{aligned} \alpha^1 &= -(x+1), \quad \alpha^2 = |K(y)|^{-1/2} \int_y^0 |K(t)|^{1/2} dt, \\ \alpha^0 &= \text{sign } y \frac{1}{4} K'(y) |K(y)|^{-3/2} \int_y^0 |K(t)|^{1/2} dt, \end{aligned}$$

i) $-D = K(y)\alpha_{xx}^0 + \alpha_{yy}^0 + 2r\alpha^0 - (\alpha^1 r)_x - (\alpha^1 r)_y \geq 0$ in G with $-D \neq 0$ in G_+ in case $r(x,y)$ is not identical zero in G_+ .

ii) Γ_1 lies inside the characteristic triangle determined by the line \overline{AB} and the characteristics of (2.1) through A and B which intersect in C and satisfies

$$(3.13) \quad \left(K(y) \left(\frac{dy}{dx} \right)^2 + 1 \right) \left(\alpha^1 dy - \alpha^2 dx \right) \Big|_{\Gamma_1} \geq 0,$$

$$\text{iii) } r(x, y)|_{\Gamma_2} \leq 0, \quad 2(-K)^{1/2} d\alpha^0 + \alpha^0 (-K)^{1/2}|_{\Gamma_2} \geq 0,$$

$$-(\alpha^1 dy - \alpha^2 dx)|_{\Gamma_0} \geq 0; \quad r(\alpha^1 dy - \alpha^2 dx) - d_n \alpha^0|_{\Gamma_0} \geq 0,$$

$$\lim_{y \rightarrow 0^\pm} \alpha^2 = 0$$

The proof of theorem 3.2 is similar to that of theorem 3.1 by the choice (3.12) of the functions $\alpha^0, \alpha^1, \alpha^2$ instead of (3.4). As it can be seen, all conditions on the functions $\alpha^0, \alpha^1, \alpha^2$ in theorem 3.2 can be written as conditions on the function $K(y)$. The corresponding remarks 4 and 5 are valid, where the curves (3.6) have to be replaced by the curves

$$x = -1 + C \int_{t=y}^0 (-K(t))^{1/2} dt, \quad C \geq 1,$$

for which we have

$$\alpha^1 dy - \alpha^2 dx = 0$$

REFERENCES

- [1] Aziz, A.K.; Schneider, M.; On Uniqueness of Frankl-Morawetz Problem in \mathbb{R}^2 , Monatsh. Math. 85, 265-276. (1977).
- [2] Aziz, A.K., Schneider, M.; On Uniqueness of Frankl-Morawetz Problem in \mathbb{R}^3 , SIAM J. Math. Anal. (in press).
- [3] Aziz, A.K., Schneider, M.; Weak and Semi-Strong Solutions for the Gellerstedt Problem, (to appear)
- [4] Čubenko, L.S.; Problem mit konormaler Ableitung für eine Gleichung gemischten typs, Volž. mat. Sbornik 5, 380-387 (Russisch) (1966)
- [5] Egorov, V.P.; On uniqueness of solution to the generalized Neumann-Tricomi problem, Differential Equations 9, 871-872 (1975); Translation from Differencial'nye Uravnenija 9, 1136-1137 (1973).
- [6] Egorov, V.P.; Extremum principle for a generalized Neumann-Tricomi problem, Differential Equations 11, 534-537 (1976); Translation from Differencial'nye Uravnenija 11, 708-712 (1975).
- [7] Egorov, V.P.; A generalized Neumann-Tricomi problem, Differential Equations 11, 1518-1527 (1976); Translation from Differencial'nye Uravnenija 11, 2040-2051 (1975).

- [8] Koracev, D.V., Mihailov, K.I.; A generalized problem of Neumann-Tricomi for an equation of mixed type, God.viss.teh.ucebn.Zaved., Mat. 8, Nr. 1, 117-127 (Bulgarisch) (1972).
- [9] Miklin, S.G.; Linear Equations of Mathematical Physics, Holt, Reinehart and Winston, Inc., 1967.
- [10] Morawetz, C.S.; Uniqueness for the analogue of the Neumann problem for mixed equations, Michigan Math. J. 4 (1), 5-14 (1957).
- [11] Smirnov, M.M.; Equations of Mixed Type, Translations of Mathematical Monographs Vol. 51, AMS Providence, Rhode Island, 1978.