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ON MULTIPLE-COMPARISONS PROCEDURES

by

W. J. Conover
Ronald L. Iman

ABSTRACT

Some of the more popular multiple-compari-
sons procedures are discussed and compared. Some
new nonparametric methods are introduced. One
procedure is an analog to the Fisher's least sig-
nificant difference method for the completely

randomized design. Some simulation studies indicate
this procedure is a reasonable nonparametric method
to use. A summary description is given for other

nonparametric methods, which may be used with the
completely randomized or randomized blocks designs.

I INTRODUCTION

When two treatments are being compared, the situation is fairly simple.
Either the two treatments are considered equivalent or they are not. The
traditional theory of statistical hypothesis testing corresponds nicely to the
experimenter's objectives. The Type I error and Type II error, with corres-
ponding a and 3, are easy to interpret.

When more than two treatments are being compared simultaneously, the situa-
tion is no longer simple. The experimenter is usually not as interested in
knowing whether any differences among the treatments exist as in knowing which
treatments are different. The traditional theory of hypothesis testing no
longer corresponds so nicely to the experimenter's objectives. The theorist
is often overly concerned with protecting against Type I error, so the resulting
procedures have relatively little power. On the other hand, repeated use of
the two-sample procedures, while rich in power, tends to boost the experimentwise

a level to unacceptable heights. Although convincing arguments may be made to



justify either of the two extreme procedures, some sort of "middle ground" pro-
cedure has more practical appeal to most experimenters and consulting statisti-
cians .

A procedure that has some popular appeal and falls between the two extremes

mentioned above consists of two stages. The first stage is an overall test of
the hypothesis "no treatment differences" at an acceptable a level, say a = 0.05.
If the hypothesis is accepted, no further comparisons are made. In this way an

overall experimentwise a level is maintained at or below the specified level.

If the null hypothesis is rejected, then some acceptable two-sample proce-
dure is applied to all pairs of treatments which may be of interest, or to any
other contrasts of interest. The nominal a level used in this second-stage
procedure has no real probabilistic meaning, since the tests are conditional
on the result of the first stage, but the method preserves most of the desired
power characteristic of the two-sample procedure.

The purpose of this report is to discuss and compare some procedures that
fall into the wvarious categories above. In the next section some parametric
multiple-comparisons procedures are discussed. Section III is concerned with
some nonparametric procedures. A nonparametric multiple-comparisons procedure
based on the rank transform, apparently not previously considered in the 1liter-
ature, is introduced in Section IV, along with some justification for its use.
A collection of useful equations is given in Section V.

A test is usually called parametric or nonparametric, depending on whether
the a level of the test is or is not a function of untested assumptions con-
cerning the form of the distribution function. Therefore, the two-stage proce-
dures are classified as parametric or nonparametric, depending on whether the
first-stage test is parametric or nonparametric. Since the a level of the se-
cond-stage test is usually not known, it is no longer a hypothesis test in the
usual sense but rather merely a convenient yardstick for separating some treat-
ments from others. Although this seemingly opens the door to all types of pro-
cedures for the second stage, there are intuitive reasons for selecting a se-
cond-stage procedure that agrees "in spirit" with the philosophy behind the
choice for a first-stage procedure. That is, a second-stage procedure that is
sensitive to the same types of differences as the first-stage procedure will
tend to produce results that are more in agreement with the results of the

first-stage procedure. For this reason, the second-stage procedure is often



a two-sample version of the first-stage procedure.

II. PARAMETRIC METHODS

Virtually all parametric multiple-comparisons procedures assume that some

sort of linear model exists with a normally distributed error term. Let
P”,...,Pp" denote the means of the treatments of interest, and let X*,...,X* be
the corresponding maximum likelihood estimates of those means. Further, let

MSE denote the denominator of the F statistic usually used in the analysis of
variance test of the hypothesis that all k means are equal. Then, (MSE)/n”* is
an estimator of the wvariance of X., where n. is the number of observations asso-
_ T T
ciated with X_..
i
Some of the more popular parametric procedures are listed below, in the

notation of farmer and Swanson.!

LSD (Least Significant Difference). Consider populations i and j to

be different if the inequality

X.,-X. >*  vyMSE /1 | 1~
1y a/'2 / n. n.
A

1

—

is satisfied, where ~“ is obtained from t-tables with the same degrees

of freedom as MSE. The a level applies to each individual comparison.

FSD (Fisher's Significant Difference). The LSD test is used here, but
only if a preliminary F test has rejected the null hypothesis of no

differences

TSD (Tukey's Significant Difference). This is the same as LSD except
£~2 1is replaced by a larger value g%, which may be obtained from tables
of the studentized range. No preliminary test is necessary. The a

level applies to all pairwise comparisons simultaneously.

SSD (Scheffe's Significant Difference). This is the same as LSD and TSD
except £a/z or © i-s replaced by a still larger critical value, which
equals the square root of the critical value of the F statistic used in
the preliminary test in FSD. No preliminary test is applied, however.

The a level applies to all possible contrasts of the p's simultaneously.



BET (Bayes' Exact Test). The same general procedure is used again
here, except that i-s replaced by a critical wvalue that is a
function of the F statistic used in FSD. In particular, if F

is small (indicating homogeneous sample means), the multiple

comparisons are still made but with a relatively large critical
value, while if F is large (indicating heterogeneous sample means),
the critical wvalue is smaller and differences are more likely to be
declared significant. Thus, BET provides an interesting compromise
between the LSD and FSD methods. The interesting question of
interpreting the a level is sidestepped* however, and replaced with

a measure of "minimum average risk."

Two other procedures, SNK (Student-Newman-Keuls) and MRT (Multiple-Range
Test), resemble LSD except the critical wvalue i-s replaced by various criti-
cal values, depending on how many of the X's are intermediate in wvalue to the

and Xj being considered. These critical values lie somewhere between
and ga, with the MRT critical wvalues being, in general, less than the correspon
ding SNK values.

Some of these procedures are easy to compare directly. For example, MRT
will tend to have more pairs declared significant than will SNK because of the
inequality of their critical values, and both will have more significant differ
ences noted than TSD or SSD. Comparisons with FSD and BET are not as clear,

however. An extensive Monte Carlo study of the relative merits of the above

procedures resulted in the following conclusions by Carmer and Swanson.!

1) If one agrees with the notion that an experimenter should want
to use a procedure capable of detecting a real difference when

it exists, then one should not use TSD, SSD, or SNK.

2) The LSD procedure appears to offer too little protection against
a Type I error, and offers little advantage over FSD, BET, and
MRT in detecting real differences when they exist, and, therefore,
should not be used.

3) In agreement with Duncan, who says that it makes more sense for

a critical value to depend on F than on the number of samples,

BET should be preferred over his MRT procedure.



4) Although FSD and BET appear to be more practical than the
other procedures studied, there is little basis for choosing

between the two.
The interested reader is referred to Waller? and Waller and Duncanl for

a presentation of the BET and some exact tables.

IIT. NONPARAMETRIC METHODS

Three of the more popular nonparametric multiple-comparisons procedures
were compared by Lin and Haseman.4 These methods apply only to the completely
randomized design. The first procedure'is a nonparametric analog to the FSD
procedure and is recommended by Conover. 5 The first stage is a Kruskal-Wallis
test for overall differences. If the test is significant, pairwise comparisons
are made by using the Mann-Whitney test, which involves reranking the observa-

tions for each comparison.

The second procedure is due to Nemenyif but is usually attributed to
Dunn.7 The same overall ranks that are used to replace the observations in the
Kruskal-Wallis test are used here also, but no preliminary test is applied.

Treatments i and j are considered different if the inequality

—— + ——
n. n,

IR.-R.1 > /K~ v'MST /I T~
il a
i J

is satisfied, where h is the critical value from a Kruskal-Wallis test, MST
a

refers to the "mean square total"

MsT _ Total sum of squares
Total degrees of freedom

of the ranks, which equals NCN+1l) /12 if there are no ties, and n* and n* are
the respective sample sizes. The a level covers all possible contrasts in the
spirit of Scheffe's (SSD) procedure. Actually, Dunn suggests using, instead
of the 1l-a/(2p) quantile from the standard normal distribution, where p is
the total number of contrasts to be considered. Thus, for all pairwise compari-
sons, p equals , which may be quite large for a moderate number of samples, k.

The third procedure was proposed independently by Steel8 and Dwass.9 As
in the Nemenyi-Dunn procedure, no preliminary overall test is performed. Rather,

each pair of samples being compared is ranked between themselves, and the larger



of the two rank sums is compared against a critical value, which ensures one of
an overall 1level of significance a applicable to all pairwise comparisons, in
the spirit of the TSD procedure.

After extensive Monte Carlo simulations under both the null hypothesis
and alternatives involving normal, uniform, and exponential distributions, Lin

and Haseman4 reach the following conclusions.

1) The Nemenyi-Dunn and Steel-Dwass procedures seem to unduly

stress protection against Type I errors at the expense of

power to detect real differences when they exist.

2) The Kruskal-Wallis-Mann-Whitney test seems to provide a better
balance between Type I and Type II errors, in agreement with
the corresponding results found by Carmer and Swanson for the

FSD procedure.

Iv. THE RANK TRANSFORM PROCEDURE

The Rank Transform (RT) procedure consists of ranking the observations
from the smallest to largest and then applying a reasonable parametric proce-
dure to the ranks. For the completely randomized design the rank transform
procedure analogous to the FSD method has been compared with FSD using Monte
Carlo simulation. Of course, the F test on the ranks is equivalent to the
Kruskal-Wallis test, so the only difference between this rank transform proce-
dure and the Kruskal-Wallis-Mann-Whitney test reported above is in the multi-
Ple-comparisons procedure following significance in the Kruskal-Wallis test.
This procedure is much simpler than the repeated use of the Mann-Whitney test
because the original ranks are used throughout the analysis instead of re-
ranking for each pairwise comparison. In particular, if there are no ties the
LSD analog indicates populations i and j to be significantly different if the

inequality

. /N (N+1)
Re Ry > %2/ 12

is satisfied, where R* and R* are the average ranks for the corresponding sam-
ples, -s£-~2 same value used in LSD and FSD, N is the sum of all the sam-
pPle sizes, and T is the Kruskal-Wallis statistic. Although this procedure is

simply the rank transform counterpart to the FSD procedure, one can readily see



that the larger the value of T, the easier it is to obtain significant differ-
ences, much like the BET procedure. Also, one can see the difference between this
method and the Nemenyi-Dunn procedure. Where the Nemenyi-Dunn procedure uses
"mean square total" on the right side of the inequality, this method uses "mean
square error," which may be larger or smaller than mean square total, depending
on whether T is smaller or larger than its mean k-1. Of course, the only time
the above inequality will be used is when T is significant, in which case T
will be much larger than k-1.

This RT procedure was compared with the FSD procedure under the null hypo-

thesis, with "medium" nonnull conditions, and with "strong" nonnull effects,

as detailed in Table I. One thousand simulations were made for each of the

three situations combined with four populations: normal, lognormal, exponential,

and Cauchy. The Kruskal-Wallis test used a = 0.05 in all cases. The second-
stage results for a = 0.05 and a = 0.10 are given.
TABLE I

THE TWELVE CONDITIONS UNDER WHICH THE RT AND FSD PROCEDURES WERE COMPARED

Population
1 (nl1=7 = 4 (n4=10
(Sample Size) (n1=7) R ﬁjgu 8 3 (n3=9) (n )
a) No effects
1. N(O,1) N(0,1) N(O,1) N(0,1)
2. -In Ub -Invu -Inu -InvU
3. exp{N(0,1)} exp{N(0,1)} exp{N(0,1)} exp{N(0,1)}
4. C€(0,1)c c(0,1) c(0,1) c(0,1)
b) Medium effects
5. N(0,1) N(0,1) N(.5,1.5) N(1,2)
6. -Invu -Invu —Fln u —SEx
7. exp{N(0,1)} exp{N(0,1) } exp{N(.5,1)} exp{N (.84,1)}
8. c(0,1) c(0,1) C(.5,1.5) 0(1,2)
c) Strong effects
9. N(0,1) N(0,1) N(1,1-5) N(2,2)
10. -In U -Invu -2ln U -3ln U
11. exp{N(0,1)} exp{N(0,1)} exp{N(1,1)} exp{N(2,1)}
12. c(0,1) c(0,1) Cc(1,1-5) C(2,2)
a N(y,a2) = normal random variable-
b U = uniform random variable on (0,1)-
c C(a,b) = a + b tan (rT(U-.5)) = Cauchy random variable with a=median,b=scale factor.



Table II shows the proportion of times the null hypothesis was rejected
using the F test and using the Kruskal-Wallis test. With normal populations
these results agree with the theory which says the Kruskal-Wallis test is not
as powerful as the F test. For the other three distributions the Kruskal-Wallis
test appears to have as much or more power than the F test, although the hetero-
geneity of variance present in the lognormal situation probably causes the lack
of power in both tests.

When the null hypothesis was rejected, multiple comparisons were made with
the FSD and RT procedures, as reported in Table III. The comparison of error
rates and power rates were computed. It is interesting to note that in the
case with normal populations, the power of the RT procedure matches the power
of the FSD method even though the Kruskal-Wallis test rejected the null hypo-
thesis fewer times than the F test, and therefore the RT method was applied
fewer times than the FSD method. A larger number of Type I errors also accom-
panies the RT method, although the proportion of Type I errors is still well
below the nominal wvalue 0.05. For the nonnormal distributions reported in
Table III, the RT method declared more population pairs to be different than
the FSD procedure did, in situations where the populations were not different

(Type I error) as well as when they were.

TABLE II
THE PROPORTION OF TIMES THE F TEST AND THE KRUSKAL-WALLIS TEST REJECTED THE

HYPOTHESIS OF NO OVERALL DIFFERENCES AT a = 0.05

No Effects Medium Strong
Normal ) Ol 0.036 0.339 0.910
K-W: 0.039 0.322 0.896
Exponential EFE 0.049 0.106 0.391
K-W: 0.055 0.119 0.423
Lognormal F: 0.040 0.038 0.034
K-W: 0.064 0.062 0.048
Cauchy F 0.028 0.024 0.057
K-W: 0.053 0.106 0.248



TABLE III

THE PROPORTION OF PAIRWISE COMPARISONS WHICH WERE DECLARED SIGNIFICANT

II. Some differences were present

. in the experiment
I. No differences were P

present in the (a) among identi- (I>) among pairs with
experiment cal pairs differences

First stage a = 0.05; Second stage a = 0.05.

Normal FSD 0.015 0.016 0.379
RT 0.016 0.033 0.380
Exponential FSD 0.021 0.003 0.131
RT 0.022 0.023 0.139
Lognormal FSD 0.018 0.014 0.016
RT 0.027 0.022 0.023
Cauchy FSD 0.011 0.005 0.019
RT 0.022 0.019 0.087
First stage a = 0.05; Second stage a = 0.10.
Normal FSD 0.018 0.041 0.438
RT 0.019 0.063 0.434
Exponential FSD 0.025 0.005 0.148
RT 0.027 0.044 0.166
Lognormal FSD 0.020 0.018 0.018
RT 0.033 0.025 0.028
Cauchy FSD 0.013 0.006 0.022
RT 0.027 0.033 0.106

Although this simulation study is not extensive, it provides some support
for using the RT method as a multiple-comparisons procedure to follow the
Kruskal-Wallis test. Because no reranking is necessary, the RT method is
easier to use than the Mann-Whitney method. Perhaps further work comparing

the power of the two procedures will be done.



V. A SUMMARY OF RECOMMENDED NONPARAMETRIC MULTIPLE-COMPARISONS PROCEDURES

The rank transform procedure described in the previous section may be used
in any experimental situation for which a parametric procedure exists. Once
the initial rank transformation is performed, with average ranks used in case

of ties, the usual parametric procedures may be applied to the ranks, or to

scores such as normal scores used in place of ranks if desired. Problems with
ties are handled automatically and are no longer problems. No assumptions of
continuity need be made. Evidence from past research indicates that these pro-

cedures are powerful and robust.

The primary disadvantage of the rank transform procedure is that, except
in the completely randomized design, these procedures are not commonly in use
for analysis of data from experimental designs. The Friedman test is commonly
used for the randomized blocks design, so a multiple-comparisons procedure to
follow the Friedman test, which has characteristics similar to the Friedman
test, is needed. Similarly, a procedure is needed to follow the Durbin test
for balanced incomplete block designs. Such procedures are being planned to
appear in the forthcoming revision of Conover. 5 Equations for these proce-
dures are given in this section for the interested reader. They are merely the

rank analogs to the corresponding FSD procedure.

A. Kruskal-Wallis Test (Completely Randomized Design)

In the previous section no indication of how to handle ties was given,
except to recommend assigning average ranks and using FSD or LSD formulas on
the ranks. In case this explanation is not sufficient, more explicit instruc-
tions will now be given.

Consider the following notation.

= the i~ observation in the sample.
R. . the rank (or average rank in case of ties) of X*., from 1 to
i1
k
N £ n .
j=1 !
R the sum of the ranks assigned to the j sample

R2. - NIMI

N-1 ranks I 4

10



N (N+1)

If there are no ties reduces to N(N+1)/12. If T, the Kruskal-Wallis statis-
tic exceeds the 1-a quantile of a chi-square distribution with k-1 degrees

of freedom, multiple comparisons are made using the inequality

R. R

i a1 2 2 N-1-T.% ,1 1 A
n 5 > "1-a/2 (8 N g J s n.g
i J
for all pairs of samples, where *i a/2 l:ire quantile from a t distribu-

tion with N-k degrees of freedon.
As an alternative to the above procedure the ranks R” may be treated as

data in the FSD procedure. The results of these two procedures are equivalent.

B. Van der Waerden Test (Completely Randomized Design)
If normal scores are used instead of ranks in the above analysis, the equa-
tions are as follows.

$ ~“(R,/(N+1)), where $(x)

A. . is the standard normal distribution
1]
function
. . th
1-\:3 = the sum of the scores assigned to the j sample
1 2
E A
N-1 ij
all
scores

A2/n.

j=1 Jg J

Multiple comparisons are based on the inequality

A. 2 N-1-T1 __

> *1-a/2 (Sl ( - -1-)h
n. N-k n n.
J i 1

only if the statistic T* exceeds the 1l-a quantile of a chi-square distribution

with k-1 degrees of freedom.

11



As an alternative to the above procedure, the scores may be treated
as data in the FSD procedure. The results of these two procedures are equiva-

lent.

C. Friedman Test (Randomized Complete Block Design)
The most popular nonparametric test for the randomized complete block design

is the Friedman test, which is presented for the case with several observations

per cell.

X.. . the n observation in block i, treatment j, i=1l,...,b;
ijn
j=1,...,k; n=1,...,m.
R. . the rank (or average rank in case of ties) of among
ijn

those observations in block i only; from 1 to km.

RJ the sum of all ranks assigned to treatment j.
m
(mk-D 1“u r2 . mkb (mk+1)2/4) I
ijn
. ranks
* -t Z (R. - bm(mk*1l)/2)2
s2 i'l J

If the Friedman test statistic T* exceeds the 1l-a quantile of a chi-square dis-

tribution with k-1 degrees of freedom, multiple comparisons are based on the

inequality
r 2 2b(mk-1) * n T2 ,h
Ré'R'i >t) ./2 *2 mbk-k-b+l] 1 b (mk-1)]
for all pairs of treatments i and j. If there are no ties SA reduces to
2

kbm (mk+1)/12. The number of degrees of freedom is mbk-k-b+1l.

As an alternative to the above procedure, the ranks maY be treated
as data in an ordinary two-way analysis of variance, without interaction. The
resulting F test for treatments is equivalent to the Friedman test. A signifi-

cant value of F is then followed by the LSD procedure, still treating the ranks

as data. These two procedures are equivalent.

12



D. Durbin Test (Balanced Incomplete Block Design)
The usual nonparametric test for the balanced incomplete block design and

the appropriate multiple-comparisons procedure are as follows.

t the number of treatments to be examined.
k the number of experimental units per block (k<t).
b the total number of blocks.

the number of times each treatment appears (r<b)

X. . the result of treatment j in block i, if treatment j
il
appears in block 1i.

R. . the rank of X.. within block i only, from 1 to k.
il i1
R. the sum of the r ranks assigned to treatment j; j=1,...,t,
1
_ 12 (t-1) £ r(k+1l) n 2
~ rt(k-1Hk+1) 11 Y J
If exceeds the 1l-a quantile of a chi-square distribution with t-1 degrees of

freedom, make pairwise comparisons using the inequality

/r (k+1) (k-1) (bk (t-1) -t

]
IRj-Ril > ;ti a/21 6 (t-1) (bk-t-b+1) J

where is obtained from t tables with bk-t-b+l degrees of freedom.

The above procedure is equivalent to the usual parametric analysis on the
ranks if there are no ties. In case of extensive ties the above chi-square
approximation may be inaccurate, and the parametric analysis on the ranks R*

should be used instead, because of its built-in correction for ties.
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