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ON MULTIPLE-COMPARISONS PROCEDURES

by

W. J. Conover 
Ronald L. Iman

ABSTRACT

Some of the more popular multiple-compari­
sons procedures are discussed and compared. Some 
new nonparametric methods are introduced. One 
procedure is an analog to the Fisher's least sig­
nificant difference method for the completely 
randomized design. Some simulation studies indicate 
this procedure is a reasonable nonparametric method 
to use. A summary description is given for other 
nonparametric methods, which may be used with the 
completely randomized or randomized blocks designs.

I. INTRODUCTION

When two treatments are being compared, the situation is fairly simple.
Either the two treatments are considered equivalent or they are not. The 
traditional theory of statistical hypothesis testing corresponds nicely to the 
experimenter's objectives. The Type I error and Type II error, with corres­
ponding a and 3, are easy to interpret.

When more than two treatments are being compared simultaneously, the situa­
tion is no longer simple. The experimenter is usually not as interested in 
knowing whether any differences among the treatments exist as in knowing which 
treatments are different. The traditional theory of hypothesis testing no 
longer corresponds so nicely to the experimenter's objectives. The theorist 
is often overly concerned with protecting against Type I error, so the resulting 
procedures have relatively little power. On the other hand, repeated use of 
the two-sample procedures, while rich in power, tends to boost the experimentwise 
a level to unacceptable heights. Although convincing arguments may be made to
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justify either of the two extreme procedures, some sort of "middle ground" pro­
cedure has more practical appeal to most experimenters and consulting statisti­
cians .

A procedure that has some popular appeal and falls between the two extremes 
mentioned above consists of two stages. The first stage is an overall test of 
the hypothesis "no treatment differences" at an acceptable a level, say a = 0.05. 
If the hypothesis is accepted, no further comparisons are made. In this way an 
overall experimentwise a level is maintained at or below the specified level.

If the null hypothesis is rejected, then some acceptable two-sample proce­
dure is applied to all pairs of treatments which may be of interest, or to any 
other contrasts of interest. The nominal a level used in this second-stage 
procedure has no real probabilistic meaning, since the tests are conditional 
on the result of the first stage, but the method preserves most of the desired 
power characteristic of the two-sample procedure.

The purpose of this report is to discuss and compare some procedures that 
fall into the various categories above. In the next section some parametric 
multiple-comparisons procedures are discussed. Section III is concerned with 
some nonparametric procedures. A nonparametric multiple-comparisons procedure 
based on the rank transform, apparently not previously considered in the liter­
ature, is introduced in Section IV, along with some justification for its use.
A collection of useful equations is given in Section V.

A test is usually called parametric or nonparametric, depending on whether 
the a level of the test is or is not a function of untested assumptions con­
cerning the form of the distribution function. Therefore, the two-stage proce­
dures are classified as parametric or nonparametric, depending on whether the 
first-stage test is parametric or nonparametric. Since the a level of the se­
cond-stage test is usually not known, it is no longer a hypothesis test in the 
usual sense but rather merely a convenient yardstick for separating some treat­
ments from others. Although this seemingly opens the door to all types of pro­
cedures for the second stage, there are intuitive reasons for selecting a se­
cond-stage procedure that agrees "in spirit" with the philosophy behind the 
choice for a first-stage procedure. That is, a second-stage procedure that is 
sensitive to the same types of differences as the first-stage procedure will 
tend to produce results that are more in agreement with the results of the 
first-stage procedure. For this reason, the second-stage procedure is often
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a two-sample version of the first-stage procedure.

II. PARAMETRIC METHODS
Virtually all parametric multiple-comparisons procedures assume that some

sort of linear model exists with a normally distributed error term. Let
p^,...,p^ denote the means of the treatments of interest, and let X^,...,X^ be
the corresponding maximum likelihood estimates of those means. Further, let
MSE denote the denominator of the F statistic usually used in the analysis of
variance test of the hypothesis that all k means are equal. Then, (MSE)/n^ is
an estimator of the variance of X., where n. is the number of observations asso- _ 11
ciated with X..i

Some of the more popular parametric procedures are listed below, in the 
notation of farmer and Swanson.1

LSD (Least Significant Difference). Consider populations i and j to 
be different if the inequality

v^MSE /l | 1 ~
/ n. n.
^ i 1

is satisfied, where ^^ is obtained from t-tables with the same degrees 
of freedom as MSE. The a level applies to each individual comparison.

FSD (Fisher's Significant Difference). The LSD test is used here, but 
only if a preliminary F test has rejected the null hypothesis of no 
differences.

X.-X. > * ,.i y a/ 2

TSD (Tukey's Significant Difference). This is the same as LSD except 
£^2 is replaced by a larger value q^, which may be obtained from tables 
of the studentized range. No preliminary test is necessary. The a 
level applies to all pairwise comparisons simultaneously.

SSD (Scheffe's Significant Difference). This is the same as LSD and TSD 
except £a/2 or ^ i-s replaced by a still larger critical value, which 
equals the square root of the critical value of the F statistic used in 
the preliminary test in FSD. No preliminary test is applied, however. 
The a level applies to all possible contrasts of the p's simultaneously.
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BET (Bayes' Exact Test). The same general procedure is used again 
here, except that i-s replaced by a critical value that is a
function of the F statistic used in FSD. In particular, if F 
is small (indicating homogeneous sample means), the multiple 
comparisons are still made but with a relatively large critical 
value, while if F is large (indicating heterogeneous sample means), 
the critical value is smaller and differences are more likely to be 
declared significant. Thus, BET provides an interesting compromise 
between the LSD and FSD methods. The interesting question of 
interpreting the a level is sidestepped* however, and replaced with 
a measure of "minimum average risk."

Two other procedures, SNK (Student-Newman-Keuls) and MRT (Multiple-Range 
Test), resemble LSD except the critical value i-s replaced by various criti­
cal values, depending on how many of the X's are intermediate in value to the 

and Xj being considered. These critical values lie somewhere between 
and qa, with the MRT critical values being, in general, less than the correspon 
ding SNK values.

Some of these procedures are easy to compare directly. For example, MRT 
will tend to have more pairs declared significant than will SNK because of the 
inequality of their critical values, and both will have more significant differ 
ences noted than TSD or SSD. Comparisons with FSD and BET are not as clear, 
however. An extensive Monte Carlo study of the relative merits of the above 
procedures resulted in the following conclusions by Carmer and Swanson.1

1) If one agrees with the notion that an experimenter should want 
to use a procedure capable of detecting a real difference when 
it exists, then one should not use TSD, SSD, or SNK.

2) The LSD procedure appears to offer too little protection against 
a Type I error, and offers little advantage over FSD, BET, and 
MRT in detecting real differences when they exist, and, therefore, 
should not be used.

3) In agreement with Duncan, who says that it makes more sense for 
a critical value to depend on F than on the number of samples,
BET should be preferred over his MRT procedure.
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4) Although FSD and BET appear to be more practical than the
other procedures studied, there is little basis for choosing 
between the two.

The interested reader is referred to Waller2 and Waller and Duncan3 for 
a presentation of the BET and some exact tables.

III. NONPARAMETRIC METHODS
Three of the more popular nonparametric multiple-comparisons procedures 

were compared by Lin and Haseman.4 These methods apply only to the completely 
randomized design. The first procedure‘is a nonparametric analog to the FSD 
procedure and is recommended by Conover. 5 The first stage is a Kruskal-Wallis 
test for overall differences. If the test is significant, pairwise comparisons 
are made by using the Mann-Whitney test, which involves reranking the observa­
tions for each comparison.

The second procedure is due to Nemenyi6 but is usually attributed to 
Dunn.7 The same overall ranks that are used to replace the observations in the 
Kruskal-Wallis test are used here also, but no preliminary test is applied. 
Treatments i and j are considered different if the inequality

|R.-R.l > /K~ v'MST /I T~'ij1 a /---  + ---/ n. n./ i j

is satisfied, where h is the critical value from a Kruskal-Wallis test, MSTa
refers to the "mean square total"

Mst _ Total sum of squares
Total degrees of freedom

of the ranks, which equals NCN+1)/12 if there are no ties, and n^ and n^ are 
the respective sample sizes. The a level covers all possible contrasts in the 
spirit of Scheffe's (SSD) procedure. Actually, Dunn suggests using, instead 
of the l-a/(2p) quantile from the standard normal distribution, where p is
the total number of contrasts to be considered. Thus, for all pairwise compari- 
sons, p equals , which may be quite large for a moderate number of samples, k.

The third procedure was proposed independently by Steel8 and Dwass.9 As 
in the Nemenyi-Dunn procedure, no preliminary overall test is performed. Rather, 
each pair of samples being compared is ranked between themselves, and the larger
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of the two rank sums is compared against a critical value, which ensures one of 
an overall level of significance a applicable to all pairwise comparisons, in 
the spirit of the TSD procedure.

After extensive Monte Carlo simulations under both the null hypothesis 
and alternatives involving normal, uniform, and exponential distributions, Lin 
and Haseman4 reach the following conclusions.

1) The Nemenyi-Dunn and Steel-Dwass procedures seem to unduly 
stress protection against Type I errors at the expense of 
power to detect real differences when they exist.

2) The Kruskal-Wallis-Mann-Whitney test seems to provide a better 
balance between Type I and Type II errors, in agreement with 
the corresponding results found by Carmer and Swanson for the 
FSD procedure.

IV. THE RANK TRANSFORM PROCEDURE
The Rank Transform (RT) procedure consists of ranking the observations 

from the smallest to largest and then applying a reasonable parametric proce­
dure to the ranks. For the completely randomized design the rank transform 
procedure analogous to the FSD method has been compared with FSD using Monte 
Carlo simulation. Of course, the F test on the ranks is equivalent to the 
Kruskal-Wallis test, so the only difference between this rank transform proce­
dure and the Kruskal-Wallis-Mann-Whitney test reported above is in the multi­
ple-comparisons procedure following significance in the Kruskal-Wallis test.
This procedure is much simpler than the repeated use of the Mann-Whitney test 
because the original ranks are used throughout the analysis instead of re­
ranking for each pairwise comparison. In particular, if there are no ties the 
LSD analog indicates populations i and j to be significantly different if the 
inequality

R. -R. i l1 > ta/2
/N(N+1) / 12

is satisfied, where R^ and R^ are the average ranks for the corresponding sam­
ples, -£^2 same value used in LSD and FSD, N is the sum of all the sam­
ple sizes, and T is the Kruskal-Wallis statistic. Although this procedure is 
simply the rank transform counterpart to the FSD procedure, one can readily see
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that the larger the value of T, the easier it is to obtain significant differ­
ences, much like the BET procedure. Also, one can see the difference between this 
method and the Nemenyi-Dunn procedure. Where the Nemenyi-Dunn procedure uses 
"mean square total" on the right side of the inequality, this method uses "mean 
square error," which may be larger or smaller than mean square total, depending 
on whether T is smaller or larger than its mean k-1. Of course, the only time 
the above inequality will be used is when T is significant, in which case T 
will be much larger than k-1.

This RT procedure was compared with the FSD procedure under the null hypo­
thesis, with "medium" nonnull conditions, and with "strong" nonnull effects, 
as detailed in Table I. One thousand simulations were made for each of the 
three situations combined with four populations: normal, lognormal, exponential, 
and Cauchy. The Kruskal-Wallis test used a = 0.05 in all cases. The second- 
stage results for a = 0.05 and a = 0.10 are given.

TABLE I

THE TWELVE CONDITIONS UNDER WHICH THE RT AND FSD PROCEDURES WERE COMPARED

Population 
(Sample Size) l(n1=7) 00II 

j

CM
vE 
CM 

!

3(n3=9) 4(n4=10)

a) No effects
1. N(0,1) N(0,1) N(0,1) N(0,1)
2. -In Ub -In U -In U -In U
3. exp{N(0,l)} exp{N(0,l)} exp{N(0,1)} exp{N(0,l)}
4. C(0,l)c C(0,1) C(0,1) C(0,1)

b) Medium effects
5. N(0,1) N(0,1) N (. 5,1.5) N(1,2)
6. -In U -In U -jln u -§£» u
7. exp{N(0,1)} exp{N(0,1) } exp{N(.5,1)} exp{N (.84,1)}
8. C(0,1) C(0,1) C (. 5,1.5) 0(1,2)

c) Strong effects
9. N(0,1) N(0,1) N(1,1 - 5) N(2,2)

10. -In U -In U -2ln U -3ln U
11. exp{N(0,1)} exp{N(0,1)} exp{N(l,l)} exp{N(2,l)}
12. C(0,1) C(0,1)

a N(y,a2) = normal random variable- 
b U = uniform random variable on (0,1)-

C(1,1 - 5) C(2,2)

c C(a,b) = a + b tan (tt(U-.5)) = Cauchy random variable with a=median,b=scale factor.
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Table II shows the proportion of times the null hypothesis was rejected 
using the F test and using the Kruskal-Wallis test. With normal populations 
these results agree with the theory which says the Kruskal-Wallis test is not 
as powerful as the F test. For the other three distributions the Kruskal-Wallis 
test appears to have as much or more power than the F test, although the hetero­
geneity of variance present in the lognormal situation probably causes the lack 
of power in both tests.

When the null hypothesis was rejected, multiple comparisons were made with 
the FSD and RT procedures, as reported in Table III. The comparison of error 
rates and power rates were computed. It is interesting to note that in the 
case with normal populations, the power of the RT procedure matches the power 
of the FSD method even though the Kruskal-Wallis test rejected the null hypo­
thesis fewer times than the F test, and therefore the RT method was applied 
fewer times than the FSD method. A larger number of Type I errors also accom­
panies the RT method, although the proportion of Type I errors is still well 
below the nominal value 0.05. For the nonnormal distributions reported in 
Table III, the RT method declared more population pairs to be different than 
the FSD procedure did, in situations where the populations were not different 
(Type I error) as well as when they were.

TABLE II

THE PROPORTION OF TIMES THE F TEST AND THE KRUSKAL-WALLIS TEST REJECTED THE 

HYPOTHESIS OF NO OVERALL DIFFERENCES AT a = 0.05

No Effects Medium Strong

Normal F: 0.036 0.339 0.910
K-W: 0.039 0.322 0.896

Exponential F: 0.049 0.106 0.391
K-W: 0.055 0.119 0.423

Lognormal F: 0.040 0.038 0.034
K-W: ' 0.064 0.062 0.048

Cauchy F: 0.028 0.024 0.057
K-W: 0.053 0.106 0.248
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TABLE III

THE PROPORTION OF PAIRWISE COMPARISONS WHICH WERE DECLARED SIGNIFICANT

II. Some differences were present
I. No differences were 

present in the 
experiment

(a)
in the experiment
among identi- (T>) 
cal pairs

among pairs with 
differences

First stage a = 0.05; Second stage a = 0.05.

Normal FSD 0.015 0.016 0.379
RT 0.016 0.033 0.380

Exponential FSD 0.021 0.003 0.131
RT 0.022 0.023 0.139

Lognormal FSD 0.018 0.014 0.016
RT 0.027 0.022 0.023

Cauchy FSD 0.011 0.005 0.019
RT 0.022 0.019 0.087

First stage a = 0.05; Second stage a = 0.10.

Normal FSD 0.018 0.041 0.438
RT 0.019 0.063 0.434

Exponential FSD 0.025 0.005 0.148
RT 0.027 0.044 0.166

Lognormal FSD 0.020 0.018 0.018
RT 0.033 0.025 0.028

Cauchy FSD 0.013 0.006 0.022
RT 0.027 0.033 0.106

Although this simulation study is not extensive, it provides some support
for using the RT method as a multiple-comparisons procedure to follow the
Kruskal-Wallis test. Because no reranking is; necessary, the RT method is
easier to use than the: Mann-Whitney method. Perhaps further work comparing
the power of the two procedures will be done.
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V. A SUMMARY OF RECOMMENDED NONPARAMETRIC MULTIPLE-COMPARISONS PROCEDURES
The rank transform procedure described in the previous section may be used 

in any experimental situation for which a parametric procedure exists. Once 
the initial rank transformation is performed, with average ranks used in case 
of ties, the usual parametric procedures may be applied to the ranks, or to 
scores such as normal scores used in place of ranks if desired. Problems with 
ties are handled automatically and are no longer problems. No assumptions of 
continuity need be made. Evidence from past research indicates that these pro­
cedures are powerful and robust.

The primary disadvantage of the rank transform procedure is that, except 
in the completely randomized design, these procedures are not commonly in use 
for analysis of data from experimental designs. The Friedman test is commonly 
used for the randomized blocks design, so a multiple-comparisons procedure to 
follow the Friedman test, which has characteristics similar to the Friedman 
test, is needed. Similarly, a procedure is needed to follow the Durbin test 
for balanced incomplete block designs. Such procedures are being planned to 
appear in the forthcoming revision of Conover. 5 Equations for these proce­
dures are given in this section for the interested reader. They are merely the 
rank analogs to the corresponding FSD procedure.

A. Kruskal-Wallis Test (Completely Randomized Design)
In the previous section no indication of how to handle ties was given, 

except to recommend assigning average ranks and using FSD or LSD formulas on 
the ranks. In case this explanation is not sufficient, more explicit instruc­
tions will now be given.

Consider the following notation.
= the i^ observation in the sample.

R. . il the rank (or average rank in case of ties) of X^.,

N
k
£

j = l
n. . 1

from 1 to

R.1
"ththe sum of the ranks assigned to the j sample

N-l ranks
R2. - nIMI 
IJ 4
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T = N(N+l)'

If there are no ties reduces to N(N+1)/12. If T, the Kruskal-Wallis statis­
tic exceeds the 1-a quantile of a chi-square distribution with k-1 degrees 
of freedom, multiple comparisons are made using the inequality

R. R.
___1n. n. i J

> ^l-a/2 (S 2 N-l-T.% ,1 . 1 A 
N-k J ^n. n.J

for all pairs of samples, where ^i_a/2 1:^e quantile from a t distribu­
tion with N-k degrees of freedon.

As an alternative to the above procedure the ranks R^. may be treated as 
data in the FSD procedure. The results of these two procedures are equivalent.

B. Van der Waerden Test (Completely Randomized Design)
If normal scores are used instead of ranks in the above analysis, the equa­

tions are as follows.

A. . ij
$ ^(R„/(N+1)), where $(x) 

function.
is the standard normal distribution

A.
3

= the sum of the scores assigned to the j th sample.

1
N-l E A 

all
scores

2
ij

k
£

j = l
A2/n. 
J J

Multiple comparisons are based on the inequality

A.
n. J

2 N-1-Tl 
> *l-a/2 (S1 N-k

^ (— - -1-)h 
n. n.i 1

only if the statistic T^ exceeds the 1-a quantile of a chi-square distribution 
with k-1 degrees of freedom.
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As an alternative to the above procedure, the scores may be treated 
as data in the FSD procedure. The results of these two procedures are equiva­
lent .

C. Friedman Test (Randomized Complete Block Design)
The most popular nonparametric test for the randomized complete block design 

is the Friedman test, which is presented for the case with several observations 
per cell.

X. . ijn the n observation in block i, treatment j, i=l,...,b; 
j=l,...,k; n=l,...,m.

R. . ijn

R.
J

the rank (or average rank in case of ties) of among
those observations in block i only; from 1 to km.

the sum of all ranks assigned to treatment j.

m
(mk-D l“u r2 . mkb(mk+l)2/4) I .

, ranks ijn

* -t Z (R. - bm(mk*l)/2)2 .
s2 i'1 J

If the Friedman test statistic T^ exceeds the 1-a quantile of a chi-square dis­
tribution with k-1 degrees of freedom, multiple comparisons are based on the 
inequality

R.-R. 3 i > tl-a/2
r 2 2b(mk-l) *2 n T2 ,h 
^2 mbk-k-b+1J 1 b(mk-l)j

for all pairs of treatments i and j. If there are no ties S reduces to2 ^ 
kbm (mk+l)/12. The number of degrees of freedom is mbk-k-b+1.

As an alternative to the above procedure, the ranks maY be treated
as data in an ordinary two-way analysis of variance, without interaction. The 
resulting F test for treatments is equivalent to the Friedman test. A signifi­
cant value of F is then followed by the LSD procedure, still treating the ranks 
as data. These two procedures are equivalent.
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D. Durbin Test (Balanced Incomplete Block Design)
The usual nonparametric test for the balanced incomplete block design and 

the appropriate multiple-comparisons procedure are as follows.

t

k

b

X. . il

the number of treatments to be examined.

the number of experimental units per block (k<t).

the total number of blocks.

the number of times each treatment appears (r<b).

the result of treatment j in block i, if treatment j 
appears in block i.

R. . il
R.1

the rank of X.. within block i only, from 1 to k. il
the sum of the r ranks assigned to treatment j; j=l,...,t,

_ 12 (t-1) £
~ rt(k-lHk+l) l l

r(k+1) n 2
O J

If exceeds the 1-a quantile of a chi-square distribution with t-1 degrees of 
freedom, make pairwise comparisons using the inequality

/r (k+1) (k-1) (bk (t-1) - t
lRj-Ril > ;£i_a/2 l 6 (t-1) (bk-t-b+1) J ’

where is obtained from t tables with bk-t-b+1 degrees of freedom.
The above procedure is equivalent to the usual parametric analysis on the 

ranks if there are no ties. In case of extensive ties the above chi-square 
approximation may be inaccurate, and the parametric analysis on the ranks R^ 
should be used instead, because of its built-in correction for ties.
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