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ABSTRACT

Considerable a:tention has recently
been direoted at de/eloping ever faster
algoritnas for generating gamms randos
variates on digital computers. 7This paper
surveys the current state of the art
inoluding the leading algorithms of Ahrens
~ and Dleter, Atkinson, Cheng, Fishman,
Marsaglia, Tadikamalla and VWsllaae,
General random variate generation
teonhniques are explaipned with reference to
theae ganua algoritnas. Computer
simulation experimets on 1BM and CDC
ecomputers are reported.

1. 1NTRODUCTION

The gamaa distribution is a useful
model for stoochastio inputs to a wide
variety of simulation applications.
Computer gencrated gamma variatos have
been used to model interarrival and
service times in queueing problems, as
lead times and demand in inventory
control, and as failure times in
roliadbility models. The gamma
distrioution's popularity ocan be traced to
the properties it obtains by the
appropriate seleoction of its shape
parameter,. 1n this papar, we oconsider the
gamma density in standardiszed form:

£f(x) = x -1 exp(-x)/T(a), x > 0, a > 0.

Several parameter valuea of a are
particularly important, 1f a = {, then f
ia the denaity of ti.e exponential
distridbution. If a v« k, an integer, then
a k-Erlang distridbution is obdbtained. Some
simple trap.formsations of gamma variates
lead to other well-known distridbutions,

If X has tha density £, then 2X has a
oni-pquared diatridution with 20 degrees
of freedoa. The ratio of independent
ehi-squared variates is an P variate;

X /(2 X,) 43 a beta variate if X; and X,
are independent gamma variates. FPFinally,
the limiting distridution of a gamoma
variate as a -+ e i3 noraal. Bscause of
the gacnma aistridbution's versatility and
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its aszgropriateness in simulation
appliocationa, oconsiderable atterntion hnas
been direoted to improving methods for
generating gaama randos variates on a
digital gomputer. The purpose of this
paper 13 to examine various generation
methods and to identify the state of the
art. In section 2, some general
univariate techniques are revieved,
Section 3 desoribes soms of the leading
algoritnma. Finally, in section § we
coppare and contrast the algorithas. We
also discuss future research directions.

J1. GENERAL TECHNIQUES

The most coamon univariate randons
variate generation techniquas can be
roughly desorided as one of the following
[18): inverse prodbability integral
transform, transformation, rejection and .
mixture, Ve will briefly desoribe esach of
these techniques in this seotion,

Tne first method is dased on the
following vwell-knoun result: if X is a
continuvous random variable with
distribution fupmation F, then U = F(X) has
a uniforms 0-1 distridbution. The converse
of this result leads to a randon variate
gensration method: given a unifora 0-1
random numbar U, the variate X = F-? (V)
haa distridbution funotion F., Application
of this method is limited to variates
having an inverae distribution function in
simple oclosed fora. For the gasma faally,
only the exponential distributioen (o » 1)
enjoys this property. This leads to the
exponential generation forauls
X a «ln(1 - U) or squivalently X = =1n(U),
since U and 1 - U have the same uniforms
0-1 diatribution. For arbditrary shape
parameter a g 1, this approach fails since
the evaluation of F°! must be done
numerically. However, for integer a s k,
ve oan apply the gensral transforsation
method. In partioular, X s =ln(v}, ¥ )
has A gempa distribution with ahape
parameter k, Aif the Uji's are independent
ucifora O0-i. The transformation method
ocan also be used to odbtain ohi-squared, P
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and beta variatas us indicated in
smctinn 1.

The rejection method |10, 16, 19) has
recently been the most fruitful approach
to devaloping nev algerithms for
generating gamma variates. The algorithms
of Ahrens and Dieter [1), Wallace [20]),
Atkinson (2), Marsaglia [13), Fishman (7],
Cheng (5), end Tadikamalla [16, 7], are
based on the rejection method. The idea
of the rejection method is to generate
variates from a density h(x; 0) which
somevnat resembles the desired density
f{x). Occasionally, variates gensrated
froa h Are rejected in such a way that the

accepted variates h~ove a distrihution
corrssponding to f. Formally, let f(x),

x efl, be the density from which zampies
are required, Let h(x; §) be another
density which is easy t6 generate, hts the
same support as £, and which satisfies
f(x) £ §h(x; 8) for all x¢g ) ané for some
§2 1. 7The rejection method algurithm is:

%. ienerate x having density h(x; g).
2. Generate u which is uniform 0-1,

3. If u@T(x) = £(x)/8h(x; 0), go to
1. Otherwise, return x. ~

The variable § is the expected number of
*trials® until acceptance of x. The
variable 1/§ is generally referred to as
the “efficiency" of tne procedure,

Severali aometimes conflieting
consicerations enter into the selection of
hix; g). Trhey are summarized, as follows:

1. A fast, si ple algorithm for gener-
~ating variates from h(x; 6) must
be available. (i.e., step 1 of the
algorithm should be executed
quiokly.)

2. The efficency 1/8§ should be cloze to
1. (1..0, h(!; 2) should look
like f.)

3. 7The acoeptance-rejection test in
step 3 should be aimple, (i,e,, T(x)
snould be easy to evaluate.)

4, & must be computadble fron
8 s oin [ max f(x)/h(x; 9)).
-] xef} =
We will return to these considsrations in
relation to specific gaomma algorithms in
asction 3,

1he mixture method is based upon
representing the denasity f from which
variates are to be generated as
£(x) = pit)(x) » pafa(x) + oue ppf,(x),
where p,+ py ¢+ «ec P, = 1 and sach of the
£4's are denalties, The rule of thumd in
developing mixtures for f is to select the

(

fy's s0 that £, i3 the fastest f; to
generate, p; is close to 1, and

£3s ee» o fn are not unduly difficult to
gensrate. The corresponding mixture
method algorithm is aimply to generate
variates from each fj with probability p,.
The mixture method has not received the
saae attention for generating gamna
variates as it has for normal and
exponential variates (see Marsaglia

(14, 15] and Kinderman and Ramage [11)),
This is primarily due to the awkward
problem that a different mixture must be
used for each o value. Only in very large
simulation studies could the effort in
determining mixtures for the varjious
values de Justified.

I11. LEADING ALGORITHMS

In tnis aection we briefly describe
sone of the better algorithams for
generating gamna variatea, These
algorithas are basned on the rejection
method-=-they differ only by their choice
of h(x;8). The simpler choices for h(x;s)
include the exponential (Fishman), the =
k«-Erlang (Tadikamalla), the doubdble
exponential (Tadikawalla), and the
log~logistic (Cheng) densities. Several
authors nave chosen h(x;6) to be a mixture
of two densities. These include N nsrmal
and an exponcntial (Ahrens and Dieter), a
uniform and an exponential (Atkinson), and
tvo k-Erlangs (wallace). Marsaglia's
"squeeze” method generates the cube root
of a gamma variate using & normal density
for h(x;0).

Many of these algorithms have been
streamlined considerably by their
inventors to improve their relative
performance. Preliminary fast acceptance
tests to avoid evaluations of f(x) are
employed in the published versions of the
Cheng, Marsaglia and Atkinson algorithms,
Ar “her streamlining technique used in the
Marsaglia and Atkinson algorithms involves
generating a uniform variate via exp(-E),
where E is a stencdard exponential variate,
This leads to simplified scceptance tests
by eliminating exponential funotion
evaluations. For thia technique to be
wortnwhile, however, a fast exponential
generator muat be used.

For formal statenments of the
algorithms, the reader is referred to the
cited papers. Our hope is that the brief
cverview given here is sufficient to
eluoidate the commonality of the methods.
In the next section we compare the
algorithms on the basis of selected
oonputer execution timings.



IV. SIMULATION RESULTS \

In this gection the : .8 of our
sinulation expsriments art sorted.
Seven of the leading algor...ms are
comparea oo the basis ¢f computer
execution times and aors storage. The
algorithms considered are preceded by
their sbbreviations, as follows

1. GO Ahrens and Dieter [1).

2. AT Atkinson [2).

3. GB Cheng (5]).

5, GF Frishman [7).

5., MS Marsaglia [13].

6. T Tadikamalla'’s k-Erlarng [16].

T. T2 Tadikamalla's double

exponential [17].
¥allace's algorithm [20) was not
considered, since Tadikamalls fras skown TV
to be superior, Sisilarly, Greenwocd's
algoritns (8) was not iacluded due to
results given in [13]).

The timings of our simulation
expariments are given in Table 1 and Table
2. The algorithas wvere coded in FORTRAN
uasing publinhed versions where they vere
available, The results from Table 1 wvere
obtained on the Kentuecky Educational
Network's 1Bm 370/165 computer. The
individual times are based on generating
10,000 variatea. The FORTRAN versions of
Luries and Mason's (12} uniform generator
and Kinderaan und Ramage's [(11) normal
generator wers esmployed. The results fronm
Table Z vere obtained on a Lus Alamos
Scientitioc Laboratory CDC 6600 computer,
The individual tipes are based on
generat'ng 100,000 variates, and again
enployiag the Kinderman-Ravage normal
generator. CDC's RANF uniform generator
was uxati.

The ecra astorage requirements vary
consideratiy for “he algorithma. The IBM
oore storagts in bytes are (G7, 526),
(T1, 690), (am, T6d), (MS, 882),

(T2, 96o), (AT, 1008), end (GO, 1196).
Tnese valuss do not include the ocre
storage of tne unifors generator vhioch was
conmon to all the algorithns. For MS and
GO, an additional 1162 bytes are required
to store the Rinderman-Rasage normal
gensrator.

From the preceding remarks and froa
tne tables, ve can make several

{

TABLE 2

CDC_Timings (y-seconds)
1.6 2.25 3.5 4.3 5.6 10.5 15.5 50.5

GO - - 285 257 286 241 232 207
AT 224 2351 281 204 311 376 427 656
GB 221 200 164 180 180 184 1868 182
GF 213 267 326 363 398 B41 0874 1372
N8 184 100 1685 164 186 180 177 176
T2 234 2331 267 274 276 280 278 277

recommendationa. Algorithms AT, GF and T
are not ocompetitive for & values greater
than 2. Expsoted exasocution times increase
oconsicderably as a inoressea. On the IBM
syatem, OF oan bs recommended for

ac (1, 2), Af speed and simplioity are
the doainant considersations (for these a,
GF and T1 are squivalent). Algoritha GO
{mproves nicely as a inoreases but is
still inferior to both OB and HS, If only
one algoritha could be recommsnded, we
would advouate GB for the IBM. For CDC
equipment and with speed the primary
consideration, MS with the
Kinderman-Rauags normal algoriths oan be
approved. Wwhere both aimplicity and speed
are important, then GB can be advonated
for both mschines.

V. CONCLUSIONS

TABLE 1

IBM Timings (u-seconds)
1.6 2.25 3.54.56 5.6 10.5 15.5 50.5

- - 267 260 2%9 237 23% 232
AT 181 187 230 232 286 309 337 523
GB 178 176 168 1689 164 162 158 135
GF 161 212 245 277 287 418 480 -

MS 209 208 207 210 206 207 200 212
T1 161 195 233 248 271 406 492 -

T2 171 177 185 162 181 103 107 164

The state of the art for generating
ganma random variates has been saplored,
The leading algorithss have been explained
in o unirying framework and then conpared
on the basis of core Storage and exescution’
times. The algorithms of Chang and
Marssglia appear to br. the leading
oandidates presently. Lowever, work
should be continued in developing even
faster algorithas. The appropriate
direction would appear to be in the
selection of h(x; 0).
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