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1. INTRODUCTION

Condensed *He. as the prototypical system of interacting bosons, 1s of great interest
to both theoreticians and experimentalists. Theoretical attempts to deseribe the behavior
of iquid *He have been extensively compared tu a host of experimental measurenients in
order to check the applicability of these treatments. Although much of this effort has been
devoted to studies of the interesting properties of superfluld *He, the norinal liquid has
also been the object of a substantial amount of experimental and theoretical work.

There are currently no comprehensive analvtic theories capable of determining the
momentum distribution of condensed h=lium. Computer simulations seem to present the
most realistic description of condensed helium, bur until recently. most of these!® con-
sidered only the ground state or low excited state properties. In contrast. Path Integral
Monte Carlo "PIMCT methods have been very successful in caleulating the properties of
both normal liguid and supertluid helium over a wide range of temperatures and densities.?
Measurements of the densiiv dependence of the momentum distribution and the kinetic
energy in the normal liquid provide a valuable and unique test for these difficult caleula-
llons

The momentum distribution of iquid helium can in principle: be determined from in-
elastic neutron scattering measutements at high momentum transfers. Q, using the Iinpulse
Approximation® (1A}, Several previous measurements have studied the inelastic scatter-
ing from: the normal fluid at sati.ated vapor pressure.® ~!'* Reported values of the single
particle kinetic energies. which can be obtained directly from the second moment of the
scattering (regardless of the validity of the [A). range from 13.6 to 16.9 K at 4.23 K and
a density of 0.125 gm/cec. Additionally. the momentum distribution in the normal liquid

has been reported as Gaussian over three orders of magnitude.

[r: this paper we report deep melastic scattering measurements of normal liquid *He at
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125 K at eloven densities ranging from 0.125 to 0.200 gm/crn® . Our measurements are at

suficienrly high Q. approximately 23 A 7! thar deviations from the [A are small and may

be taken into account using a recent theoretical treatment by Silver 2% We find that the
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1. INTRODUCTION

Condensed *He, as the prototypical system of interacting bosons, is of great interest
to both theoreticians and experimentalists. Theoretical attempts to describe the behavior
of liquid *He have been extensively compared to a host of experimental measurements in
order to check the applicability of these treatments. Although much of this effort has been
devoted to studies of the interesting properties of superfluid *He, the normal liquid has
also been the object of a substantial amount of experimental and theoretical work.

There are currently no comprehensive analytic theories capable of determining the
momentum distribution of condensed helium. Computer simulations seem to present the
most realistic description of condensed helium, but until recently, most of these!'? con-
sidered only the ground state or low excited state properties. In contrast, Path Integral
Monte Carlo (PIMC) methods have been very successful in calculating the properties of
both normal liquid and superfluid helium over a wide range of temperatures and densities.?
Measurements of the densiiy dependence of the momentum distribution and the kinetic
energy in the normal liquid provide a valuable and unique test for these difficult calcula-
tions.

The momentum distribution of liquid helium can in principle be determined from in-
elastic neutron scattering measurements at high momentum transfers, @, using the Impulse
Approximation* (IA). Several previous measurements have studied the inelastic scatter-
ing from the normal fluid at satu_ated vapor pressure.® ~!* Reported values of the single
particle kinetic energies, which can be obtained directly from the second moment of the
scattering (regardless of the validity of the IA), range from 13.6 to 16.9 K at 4.25 K and
a density of 0.125 gm/cc. Additionally, the momentum distribution in the normal liquid
has been reported as Gaussian over three orders of magnitude.

In this paper we report deep inelastic scattering measurements of normal liquid *He at
4.25 K at eleven densities ranging from 0.125 to 0.200 gm/cm?®. Our measurements are at
sufficiently high Q, approximately 23 A~!, that deviations from the IA are small and may
be taken into account using a recent theoretical treatment by Silver.!3:'® We find that the
kinetic energy increases in a monotonic fashion with density and is quite comparable to

the PIMC results. The data are also consistent with the momentum distribution generated
by the PIMC calculation.



2. DEEP INELASTIC NEUTRON SCATTERING

The scattering of neutrons by helium is described by the double-differential cross-

section

da _ kg ‘ 5
e =#ELS(Qu) )

where b is the bound scattering length of helium, k; and ky are respectively the initial
and final momentum of the neutron, and @ and w are the momentum and energy transfer
respectively. The dynamic structure factor S(¢),w) describes the dynamics of the helium
sample.

In the limit that Q/27 is large compared with the nearest neighbor distance (for
helium!? this implies @ greater than or on the order of 10 A-1) the incoherent approxi-

mation holds and we can write

o
[Sv]
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where 7{t) is the position vector of an atom and < ... > signifies a thermodynamic average.
In the incoherent approximation interference effects due to correlations between the atoms

average out, and the scattering from each atom can be treated independently. Moments

of this function can be derived and in particular the second moment may be written as'®
‘ 2 4 .
Ma(Q) = /(_ — 0P Sine( Q) = Suwr < KE > (2.3)

where the recoil energy, wr, Is fLEQz/?.MHe and My, 1s the mass of the recoiling atom.
Under the conditions of the incoherent approximation, the average kinetic energy per
atom can be obtained directly from the second moment of the observed scattering. In our
experiments, (Q at the center of the recoil peak is 23 A=, and the incoherent approximation
1s certainly applicable.

At high momentum transfers, the form for S(Q,w) simplifies considerably from Equa-
tion (2.2). In this limit, the impulse imparted to the target atom by the neutron during
the collision far exceeds the impulse transferred by neighboring helium atoms and only
single particle properties are probed. The scattering can then be described by the well

known impulse approximation (IA) which directly relates S(Q,w) to the atomic momentum

distribution, n(lﬁ'{)

Q—noc

lim S(Q,)=5/4(Q,w) =/ n(|7) 8w — w, — -h—Q'ﬁ)d;; (2.4)



The delta function represents the conservation of energy and momentum. In the IA the
duration of the scattering event can be viewed as much shorter than the helium-helium
interaction time. The recoiling atom then acts as a free-particle during the collision.

The scattering from an isotropic system, such as liquid helium, can be expressed as a
function of a single scaling variable ¥ = (M/Q)(w — w,) when the impulse approximation

is obeved.!® The scattering, as a function of this scaling variable, may be written as

S14(Quw) = %J(Y)

—_
(R
(1]

~—

where J(Y') is readily interpreted as the longitudinal momentum distrtbution and Y as the

z component of the momentum

JY) = / / dp. dp, n(ps,py,Y) (2.6)

In the IA, J(Y") depends only on Y and is symmetric about ¥ = 0. This behavior of
J(Y) is just the Y -space manifestation of the well known characteristics of the IA, that
the scattering function is centered at the recoil energy and, at constant @, is symmetric
with a width proportional to Q.

The IA only approximately describes the scattering for currently accessible momentum
transfers. Deviations from the IA, known as final state effects (FSE), result from the
interaction of the recoiling helium atom with its neighbors during the scattering process.
These interactions alter the ideal free-particle behavior of the final state of the recoiling
atom required for the validity of the IA. At high @’s the observed scattering approximately
scales®® with Y and final state effects, while certainly present, are amenable to theoretical
treatment.

In the analysis of our data, we make use of a theory by Silver!3:?® which expresses
FSE as a convolution with the A result

+00
J(Y)= R(Y = Y")Jr4(Y")dY' (

—o0

1
~1
N’

where R(Y) is the final state broadening. This broadening, which depends only on the
measured pair correlation function and interatomic potential, varies slowly with Q and
has been approximated as a function of ¥ only. The shape of the final state broadening is
shown in Figure 1. The negative tails in R(Y") are necessary since the scattering must obey

the second moment sum rule for incoherent scattering (Equation (2.3)) requiring R(Y') to
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have zero second moment. We note that FSE have little effect on the broad scattering
observed in the normal liquid and that we take them into account only for completeness.
Several other procedures, or ignoring FSE altogether, would give similar results.

The final state broadening may be viewed'®'! as the Fourier transform of the prob-
ability that the recoiling atom will not collide with a neighboring atom as a function of
distance and is thus dependent on the density. In Silver’s theory, this probability depends
on the interatomic potential and pair correlation function, g(r), only the latter of which is
density dependent. Since, to a first approximation, g(r) scales with the density, R(}") will
also scale with the density.?? The final state broadening at a density p» may be obtained

from the broadening at a different density p, by

R,(Y)=R, (%y)

—_—
!\D
[#s)

~—~—

where R;(Y’) and R.(Y") are the broadening at the densities p; and p2 respectively. We
use the final state broadening calculated by Silver 2! at a density of 0.147 gm/cm? and
scale this result to our experimental densities using Equation (2.8).

We can chtain n(p) directly from J(Y) using

(2.9)

but in practice converting from an experimentally determined J(Y') to n(p) presents sev-
eral difficulties. First, in order to use Equation (2.9) the instrumental resolution and final
state effect broadening must be removed. Deconvolution, particularly on data with sta-
tistical noise, is an unstable and ill-defined procedure. Second, numerical differentiation
substantially increases the error associated with the data and can only be avoided if the
data is smoothed or the results are otherwise biased. Finally, in order to obtain n(p) the
differentiated data must be divided by Y and the results are particularly susceptible to
any statistical fluctuations at small Y. In this paper we limit our analysis to J(Y) which

1s directly related to the experimental data and avoid all of the above problems.

3. EXPERIMENTAL DETAILS

The measurements were carried out using the PHOENIX spectrometer at the Intense
Pulsed Neutron Source (IPNS) at Argonne National Laboratory. IPNS is a spallation neu-

tron source that generates a short burst of neutrons with a usable flux over a wide range of
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energies. PHOENIX, a high resolution time-of-flight (TOF') inclastic spectrometer, uses a
mechanical Fermi chopper to select the incident energy. Low efficiency monitors placed in
the neutron beam are used to measure the incident energy and to determine the parameters
describing the incident pulse of neutrons. The chopper phasing for these measurements
was chosen such that neutrons with a nominal incident energy of 495 meV were selected.
Scattered neutrons are detected in a single high angle detector bank containing 23 equally
spaced detectors with scattering angles between 135° and 145°. The detectors are approx-
imately 3.8 m from the sample position. This choice of incident energy and scattering
angle corresponds to an average momentum transfer of 23 A-! at the recoil peak of the
helium sample, with a variation in Q across the detector bank of 2 47}, A more complete
description of the instrument and its use in measuring properties of condensed helium is
presented elsewhere.??

The helium sample was contained in a cylindrical cell of 6061-T6 aluminum 0.10 m
high with an inner diameter of 0.04 m and a wall thickness of 1.6 mm. The cell was
attached to either the mixing chamber of a *He-'He dilution refrigerator or a *He pot.
The temperature, which was monitored using vapor pressure thermometry and germanium
resistance thermometers attached to the bottom of the cell, was maintained at 4.25 £0.051\.
Data on the earlier samples was taken for about 30 hours and resulted in approximately
90,000 total integrated counts in the helium peak. Due to an increase in flux at IPNS, later
samples required only about 18 hours of data collection to generate the same number of
integrated counts. The scattering from liquid helium was measured at densities of 0.125,
0.130, 0.140, 0.149, 0.160, 0.173, 0.181, 0.186, 0.195, and 0.200 gm/cm?, corresponding to
pressures between SVP and 1500 PSIA. A barckground run of the empty sample cell was
taken at the same temperature and incident neutron energy.

The integrated counts in the first beam monitor were used to normalize the flux on the
sample from run to run. Both monitor spectra, which are asvmmetric due largely to the
moderator pulse spectrum, were fit to the results of a numerical simulation to determine
the energy of the neutrons in the incident beam and the mean time of arrival at the sample.
Standard techniques were used to convert the TOF data from each detector to S(Q,w)
and then to J(Y"). Data from the individual detectors were added together in J(Y¥') in
order to reduce the statistical uncertainty.

An accurate determination of the scattering function requires that instrumental res-

olution be taken into account. In general, the instrumental broadening is 2 complicated
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function depending on both the energy and the momentum transfer.** In the case of he-
lium, where the scattering is only significant near }” = 0, the instrumental resolution may
be expressed as a simple one dimensional convolution. A Monte Carlo simulation of the
instrument response is used to evaluate the instrumental broadening,** which is shown in
Figure 1. The instrumental resolution has a FWHM of ~0.6 A-' and is much narrower
than the total observed scattering.

An absolute intensity scale for the scattering was obtained from an experiment using a
known scatterer, low density (0.0073 gm/cm®) helium gas at 5.6 X. At this low density, only
single helium scattering events are observed; multiple scattering and sample self shielding
are negligible. The integrated scattering is defined to have unit area, as required by the
zeroth moment sum rule. This provides an absolute intensity scale to within the 5%

accuracy to which the area of the helium peak can be determined.

4. RESULTS

The obscrved scatiering, normalized to constant incident flux and converted to J(Y'),
for our 0.138 gm/cc sample (with the empty cell subtracted) is shown in Figure 1. The
mstrumental resolution and the broadening due to final state effects are also shown in
Figure 1. The widths of both sources of broadening are quite comparable to each other
but much less than the total width of the scattering due to the helium.

After subtraction of the empty cell signal, 2 small, broad sample dependent compo-
nent approximately five times as wide as the helium peak, is still present. We believe
this component is due to multiple scattering involving scattering initially by the liquid
sample followed by scattering from the refrigerator, radiation shields, outer vacuum can,
and other components of the cryostat before being detected. Similar backgrounds have
been observed in other inelastic scattering experiments using the chopper spectrometers
at IPNS.2* The observed background, which depends on the sample, has been observed to
be nearly independent of angle for scattering angles from 15 to 110 degrees.?? Improved
shielding of the sample cell from the cryostat used in some of the latter measurements
-eported here, zubstantially reduced this background, verifying our identification of this
additional scattering. We fit this background to a quadratic polynomial from ¥ = -9 to
63 landY =6t09 AL Removing this broad component, as part of our background,

does not change the shape of the observed peak within the experimental errors.
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The contribution of helium-helium multiple scattering to the observed scattering from
the bulk liquid was calculated using the same Monte Carlo simulation as used to generate
the resolution broadened scattering. At these high Q's the multiple scattering is primarily
due to low Q coherent scattering by the liquid and provides a negligible contribution to
the observed scattering particularly at the lower densities.

As mentioned earlier, the second moment of the observed scattering, corrected for
instrumental resolution, can be related to < K E > in the incoherent approximation,
regardless of final state effects. An interesting way to observe the contributions to the
second moment and its associated uncertainty is to evaluate the second moment as a

function of integration range

ma(Yc) = /T J(Y)Y3dYy (4.1)
The limiting value of m, provides a model independent method of determining < KE >
from our data. Figure 2 demonstrates the above calculation for a variety of densities.
The broad background mentioned earlier was subtracted from the observed J(Y') before
performing the integration. The error bars shown in the plots are determined by evaluating
Equation (4.1) at the minimum and maximum J(Y') consistent with the uncertainty in the
darta. In order to determine < A'E > from the plots in Figure 2, the instrumental resolution
broadening must be included. If the instrumental resolution function and the underlying
J(Y') are approximated by Gaussians, their widths add in quadrature. The second moment
of the underlying J(¥") can be obtained by subtracting the square of the effective Gaussian
resolution second moment, = 0.06 2, from the limiting values of m,shown in thé plots
of Figure 2. Using this method, we obtain values for <« KE > of 15.3 £1.5, 17.1 2.1,
25.3 £2.5, and 34.9 £3.5 K for the samples at densities of 0.125, 0.140, 0.173, and 0.200
gm/cc respectively. It is important to note that the large errors in determining the kinetic
energy result from the sensitivity of the second moment to the behavior of the scattering
at large Y, and not from poor statistics in the data. The statistics of our data are quite
good with a total of 90,000 counts in the helium peak and approximately 1000 counts per
0.075 A-! wide channel at the peak. The difficulty in determining the tails dominate the
errors in the second moment as demonstrated in Figure 2.

We attempted to characterize the underlying momentum distribution implicit in our
data by fitting the observed J(¥') with a Gaussian model, implying a Gaussian n(p).

A Gaussian momentum distribution has been reported in previous measurements for a
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sample at SVP.5 The model J(¥") , convoluted with final state effects and the instrumental
resolution, was fit to the data over various ranges of Y7, but the quality of the fits was poor.
A single Gaussian J(Y") does not well represent the observed scattering which is consistent
with the 0 K calculatious of Whitlock and Panoff! and the finite temperature calculations
of Ceperley and Pollock. 3

Inan attemot to fit the data with a more flexible model, we have used-a J(Y") consisting-

of a sum of two Gaussians (corresponding to a sum of two Gaussians in n(p)) with their

centers constrained to the same value

‘11 (}- - Ya::nter)2 *4‘2 (Y' - }'—center)
mo e Y)= ——___1 ) - B - XpP{— 4.2
) = e exp(= g el 4 (-l (4
The center of the Gaussians was allowed to differ from ¥ = 0 within the experimental

uncertainty in determining the ¥ scale. We find that this model gives significantly better
fits at all densities than did the single Gaussian model J(Y"). Figure 3 shows the two
Gaussian fits to the data at four representative densities. In general, the agreement between
the fits and the data is excellent. Table 1 lists the amplitudes and widths from the fits for
all the densities. The particular values of these parameters quoted for a given density are
only representative of an entire family of values which can equally well characterize the
data because the widths and émplitudes of the fitted Gaussians are highly correlated. The
model J(Y') from any particular fit is indistinguishable from any other fit to the data for
a given density.

The average kinetic energy per particle was determined from the two Gaussian fits
and are shown in Figure 4. Table 2 lists the determined values of <« KE > and the
associated uncertainties for all the densities. Figure 5 shows the 0.138 gm/cc data and the
model J(Y") (convoluted with the instrumental resolution and final state effect broadening)
giving the quoted kinetic energy, 16.1 K. Also shown are the J(Y') having associated kinetic
energies of 14.5 and 17.7 K representing the quoted uncertainty in < KE >. The values
for <« K'E > and the associated uncertainties are consistent with those determined directly
from the second moment of the scattering as given above. We can apply Equation (4.1)
to our fitted two Gaussian model for J{¥") and calculate the second moment as a function
of the range of integration. Figure 6 shows the results for the same densities as plotted in
Figure 2. We note the consistent behavior between Figures 2 and 6, namely a rapid rise
in the second moment reaching a limiting value at ¥'¢ of about 3.2 A~! and 5.4 A~! for

densities of 0.125 to 0.200 gm/cc respectively.
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Equation (4.1) provides an interesting way to compare theoretical predictions with
our fits. We calculate the second moments from J(Y') determined by Ceperley® for several
densities using the PIMC method and compare them to those determined from fits to our

data. From the comparisons in Figure 7 we note a general tendency of our fitted model

‘_at‘ determlned from Ceperley s J(Y )

J(} ) to increase mo at a slower in

»ae,

an
This indicates that our model J(Y ) hiﬁré’ Somewhat less’ intensity at TowY” (0°to 2 A1)
but somewhat greater intensity at intermediate to hlgh Y (3to4 A~!) than the theoretical
J(Y).

Several numerical calculations' of the momentum distribution have reported non-
Gaussian behavior in the tails of n{p). More recently, PIMC calculations® in the normal
liquid have also indicated non-Gaussian behavior in the tails. To examine the sensitivity
of our model to the tails of our data, we modify the behavior of our two Gaussian model
in the low intensity region. We replace the model n{p) with a sum of two Gaussians over
the central region of the peak, but matched to an exponential in the tails and examined
the effect on the 0.138 gm/cc data. Gaussian and exponential portions are matched at
approximately 20% of the peak height, which occurs at ¥ = 1.6 A~!, with the constraint
that the model is continuous. The width of both components were allowed to vary, subject
to the constraint that the total area remained within the 5% uncertainty of the Intensity
calibration. The best fit obtained v-as almost equivalent to the best two Gaussian fit
and gave a value of 16.9 K for the kinetic energy, 0.8 K greater than obtained from the
two Gaussian fit. When the exponential was constrained so as to be consistent with the
minimum and maximum unceriainty in the data, the kinetic energies varied from +15%
to -10% of the value obtained from the original two Gaussian model. These variations are
comparable to the variation in < K'E > obtained directly from the second moment and
again indicate the difficulty in obtaining accurate information on the shape of the tails
or on < KE >. Figure 8 shows the difference between n(p) as determined by our best
two Gaussian fit and the model using exponential tails. The model with exponential tails
distributes more intensity to the high p region of n(p) than does the simpler two Gaussian

model. Both of these model n(p) are consistent with our data.

5. DISCUSSION

Previous inelastic scattering measurements at SVP have generally extracted a single
Gaussian momentum distribution.®>:8 Corrections for FSE were either made using approx-

imate methods® or not at all.’ Earlier inelastic scattering measurements at SVP have also




- determined values for the Llnetlc energy which are in good agreement with our results

;'Harhng and Gibbs,® usmg a Gaussian form and including a term to correct for FSE, ob-':‘:’
\7 ‘tain values of 16.3 and 15 7 :}:0 ) K at 4. 19 and 4.2 K, respectlvely Mook11 obtamed 16 9;~;

K; from the sec'ond‘ m nt:, of n( p) obtamed from'S (Q,u.) ata Q,t‘of 15 & -1, He observed

‘excess scattering at p = 2.25 A~ which has not been observed in subsequent experiments

- that would tend to raise his estimate of the kinetic energy. Woods and Sears® obtained

- 13.6 K, also calculated from the second moment of n(p) based on data taken at momentum

-transfers between 6 and 8 A~!. Our measured value of < KE > at SVP of 15.5+1.6 Kis

~In reasonable agreement with these earher results

caseof e\:ponentlal tails drﬁers httle from the two 'Gaussian model o
(Figure 8).

The average kinetic energy per particle determined directly from the second moment
of the scattering (corrected for instrumental resolution) is in good agreement with that
determined from fitting the data with a sum of two Gaussians. These values are also in

good agreement with the theoretical values determined by PIMC methods. The ability of
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PIMCto calculate propertxes ofnorma.l liquid 4He__‘0\"‘er,‘ his-range -of densities and at finite

.vgmper_‘iﬁytflx;es:";is‘irﬁéxﬁafk:ibfé:?Thév'é:\':évélléﬁi‘agfeé:rfr'ief’x’if:between: J (Y) determined by PIMC
methods and our data lends support to the application of PIMC to the more challenging

task of calculating the momentum distribution and condensate fraction of superfluid *He, 24
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P EN . Oy Aa T2
(gm/cc) (44 (A-H
0.125 0.924 0.84 0.076 1.63
e — 0130 ——— 0:700-——1.02-——0.300—~—0.60— |~
0.138 0.580 1.08 0.420 0.70 '
0.140 0.527 1.14 0.473 0.74
0.147 0.461 1.29 0.539 0.76
0.160 0.774 1.11 0.226 0.69
0.173 0.772 1.20 0.228  0.66
0.181 0.397 1.54 0.603 0.94
0.186 0.648 1.36 0.352 0.6
0.195 ~ 0596 - 1.52 ~ 0.404 095
02000 0396 - 1.67 . 0.604  1.07

~_ Table 1: Fitted Gaussian parameters of J(Y') for normal liquid *He.



P < RE=> A<KE >
(gm/cc) () (K)
0.125 15.5 1.6
0.130 15.2 1.5
0.138 16.1 1.6
0.140 17.1 1.7
0.147 19.6 2.0
0.160 19.2 1.9
0.173 218 2.2
0.181 26.5 2.7
0.186 26.5 2.7
0.195 31.6 3.2
0.200 32.7 3.3

Table 2: Single particle kinetic energies for normal liquid *He.
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Figure Captions

Comparison of instrumental resolution (solid line), FSE (dashed line) and data
at 0.138 gm/cm?®.

The second moment of the experimentally determined J(}) as a function of
integrating range for a variety of densities. Plots a, b, ¢, and d are for densities
of 0.125, 0.140, 0.173, and 0.200 gm/cc respectively.

Measured J(Y') and two Gaussian fits for a variety of densities. The model J(}")
has been broadened by the instrumental resolution and FSE. Plots a, b, ¢, and d
are for densities of 0.123, 0.140, 0.173, and 0.200 gm/cc respectively.

The measured average kinetic energy per atom as a function of density. The x
are the theoretical values from Ceperley.® The smooth curve is from a quadratic
fit to the measured points and is intended as a guide to the eye.

Measured J(Y') and two Gaussian fits for liquid helium at a density of 0.138

gm/cc. The three smooth curves are the model J(Y') having the indicated kinetic
energies.

The second moment of the fitted model J(Y') a functinn of integrating range for
the indicated densities.

Comparison of the second moments of J(Y) determined as a function of inte-
grating range from our fitted model and the theoretically determined J(Y') from
PIMC calculations.? The densities used in the experiment are 0.138, 0.173, and
0.186 gm/cc for plots a, b, and c respectively. The densities used in the theoretical
calculation are 0.138, 0.173, and 0.191 gm/cc for plots a, b, and ¢ respectively.

n(p) as determined from fits to the measured J(Y') of liquid heliure at a density
of 0.138 gm/cc. The solid curve is the best two Gaussian fit to the data. The
dashed curve is the best fit using Gaussians to model the central portion of the
peak adding exponential behaviour in n(p) at ¥ = + 1.6 A~1.

Comparison of the measured and theoretical J(Y). The solid curves are the
theoretical J(Y) from Ceperley® convoluted with instrumental resolution and
FSE broadening. The measured J(Y') are from densities of 0.138, 0.173, 0.186
gm/cc for plots a, b, and ¢ respectively. The theoretical J(Y) were calculated at
densities of 0.138, 0.173, and 0.191 gm/cc for plots a, b, and c respectively.
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