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1. INTRODUCTION

Condensed 4He, as the prototypical system of interacting bosons, is of great interest

to both theoreticians and experimentalists. Theoretical attempts to describe the behavior

of liquid 4He have been extensively compared tu a host of experimental measurements in

order to check the applicability of these treatments. Although much of this effort has been

devoted to studies of the interesting properties of superfluid "'He, the normal liquid has

also been the object of a substantial amount of experimental and theoretical work.

There are currently no comprehensive analytic theories capable of determining the

momentum distribution of condensed helium. Computer simulations seem to present the

most realistic description of condensed helium, but until recently, most of these1 '- con-

sidered only the ground state or low excited state properties. In contrast. Path Integral

Monte Carlo 'PIMCi methods have been very successful in calculating the properties of

both normal liquid and supertluid helium over a wide range of temperatures and densities.3

Measurements of the density dependence of the momentum distribution and the kinetic

energy in the normal liquid provide a valuable and unique test for these difficult calcula-

tions

The momentum distribution of liquid helium can in principle be determined from in-

elastic neutron scattering measurements at high momentum transfers. Q, using the Impulse

Approximation4 iIA). Several previous measurements have studied the inelastic scatter-

ins from the normal fluid at satu..ited vapor pressure.5~ 14 Reported values of the single

particle kinetic energies, which can be obtained directly from the second moment of the

scattering (regardless of the validity of the IA). range from 13.6 to 16.9 K at 4.25 K and

a density of 0.125 grnjcc. Additionally, the momentum distribution in the normal liquid

ha^ been reported as Gaussian over three orders of magnitude.

In this paper we report deep inelastic scattering measurements of normal liquid ''He at

4 2o K at eleven densities ranging from 0.12L to 0.200 gm/cm*. Our measurements are at

svirRcienrly high Q, approximately 23 A" 1 , that deviations from the IA are small and may

b«- taken into account using a recent theoretical treatment bv Silver.l'J-lr' We find that the

k:n»-t;c ent-T-ry ::i'"r»*a^^> in a mo::<ifonic fashion with density and is quite comparable t.o

lts Tri'1 data ar-' aNo ""nnsi- '̂-n

PIMC c.ilculat;.,n

!' r i. -1C
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1. INTRODUCTION

Condensed 4He, as the prototypical system of interacting bosons, is of great interest

to both theoreticians and experimentalists. Theoretical attempts to describe the behavior

of liquid 4He have been extensively compared to a host of experimental measurements in

order to check the applicability of these treatments. Although much of this effort has been

devoted to studies of the interesting properties of superfluid 4He, the normal liquid has

also been the object of a substantial amount of experimental and theoretical work.

There are currently no comprehensive analytic theories capable of determining the

momentum distribution of condensed helium. Computer simulations seem to present the

most realistic description of condensed helium, but until recently, most of these1'2 con-

sidered only the ground state or low excited state properties. In contrast, Path Integral

Monte Carlo (PIMC) methods have been very successful in calculating the properties of

both normal liquid and superfluid helium over a wide range of temperatures and densities.3

Measurements of the density dependence of the momentum distribution and the kinetic

energy in the normal liquid provide a %'aluable and unique test for these difficult calcula-

tions.

The momentum distribution of liquid helium can in principle be determined from in-

elastic neutron scattering measurements at high momentum transfers, Q, using the Impulse

Approximation"1 (IA). Several previous measurements have studied the inelastic scatter-

ing from the normal fluid at satu_a.ted vapor pressure.5"14 Reported values of the single

particle kinetic energies, which can be obtained directly from the second moment of the

scattering (regardless of the validity of the IA), range from 13.6 to 16.9 K at 4.25 K and

a density of 0.125 grn/cc. Additionally, the momentum distribution in the normal liquid

has been reported as Gaussian over three orders of magnitude.

In this paper we report deep inelastic scattering measurements of normal liquid "'He at

4.25 K at eleven densities ranging from 0.125 to 0.200 gm/cm2. Our measurements are at

sufficiently high Q, approximately 23 A"1, that deviations from the IA are small and may

be taken into account using a recent theoretical treatment by Silver.15'16 We find that the

kinetic energy increases in a monotonic fashion with density and is quite comparable to

the PIMC results. The data are also consistent with the momentum distribution generated

bv the PIMC calculation.



2. DEEP INELASTIC NEUTRON SCATTERING

The scattering of neutrons by helium is described by the double-differential cross-

section
d~° b) (2.1)

dQdu k.

where 6 is the bound scattering length of helium, fc, and k/ are respectively the initial

and final momentum of the neutron, and Q and u are the momentum and energy transfer

respectively. The dynamic structure factor S(Q,u:) describes the dynamics of the helium

sample.

In the limit that Q/2~ is large compared with the nearest neighbor distance (for

helium1' this implies Q greater than or on the order of 10 A"1) the incoherent approxi-

mation holds and we can write

S,nc(<2,-0 = r°° exp(~) <expHQ-r(0)]expHQ-fT;O] > dt (2.2)

where f[t) is the position vector of an atom and < ... > signifies a thermodynamic average.

In the incoherent approximation interference effects due to correlations between the atoms

average out, and the scattering from each atom can be treated independently. Moments

of this function can be derived and in particular the second moment may be written as18

M2(Q) = J(u, - ur)
2Sinc{Q,uj)duj = |u.v < KE > (2.3)

where the recoil energy, wr, is h2Q2/2Mnt and Mfjc is the mass of the recoiling atom.

Under the conditions of the incoherent approximation, the average kinetic energy per

atom can be obtained directly from the second moment of the observed scattering. In our

experiments, Q at the center of the recoil peak is 23 A"1, and the incoherent approximation

is certainly applicable.

At high momentum transfers, the form for S(Q,UJ) simplifies considerably from Equa-

tion (2.2). In this limit, the impulse imparted to the target atom by the neutron during

the collision far exceeds the impulse transferred by neighboring helium atoms and only

single particle properties are probed. The scattering can then be described by the well

known impulse approximation (IA) which directly relates S(Q,u) to the atomic momentum

distribution, n(\p\)

lim S{Q,.J) = S[A(Q,UJ) — / n(\p\) 6(u — uir —-)dp (2.4)
J — oo *'-* Me



The delta function represents the conservation of energy and momentum. In the IA the

duration of the scattering event can be viewed as much shorter than the heliuin-helium

interaction time. The recoiling atom then acts as a free-particle during the collision.

The scattering from an isotropic system, such as liquid helium, can be expressed as a

function of a single scaling variable Y = (M/Q)(u> — <*v) when the impulse approximation

is obeyed.19 The scattering, as a function of this scaling variable, may be written as

S ( Q ) J{Y) (2.5)

where J{Y) is readily interpreted as the longitudinal momentum distribution and Y as the

z component of the momentum

J(Y)= j I dVzdpyn{Pl,PirY) (2.6)

In the IA, J(Y) depends only on Y and is symmetric about Y = 0. This behavior of

J{Y) is just the l"-space manifestation of the well known characteristics of the IA, that

the scattering function is centered at the recoil energy' and, at constant Q, is symmetric

with a width proportional to Q.

The IA only approximately describes the scattering for currently accessible momentum

transfers. Deviations from the IA, known as final state effects (FSE), result from the

interaction of the recoiling helium atom with its neighbors during the scattering process.

These interactions alter the ideal free-particle behavior of the final state of the recoiling

atom required for the validity of the IA. At high Q's the observed scattering approximately

scales20 with Y and final state effects, while certainly present, are amenable to theoretical

treatment.

In the analysis of our data, we make use of a theory by Silver15'16 which expresses

FSE as a convolution with the IA result

J(Y) = / R(Y - Y')JlA(Y')dY' (2.7)

where R(y ) is the final state broadening. This broadening, which depends only on the

measured pair correlation function and interatomic potential, varies slowly with Q and

has been approximated as a function of Y only. The shape of the final state broadening is

shown in Figure 1. The negative tails in R(Y) are necessary since the scattering must obey

the second moment sum rule for incoherent scattering (Equation (2.3)) requiring R{Y) to



have zero second moment. We note that FSE have little effect on the broad scattering-

observed in the normal liquid and that we take them into account only for completeness.

Several other procedures, or ignoring FSE altogether, would give similar results.

The final state broadening may be viewed15'16 as the Fourier transform of the prob-

ability that the recoiling atom will not collide with a neighboring atom as a function of

distance and is thus dependent on the density. In Silver's theory, this probability depends

on the interatomic potential and pair correlation function, g{r), only the latter of which is

density dependent. Since, to a first approximation, g(r) scales with the density, R{Y) will

also scale with the density,21 The final state broadening at a density po may be obtained

from the broadening at a different density p\ by

R2(Y) = R, (&Y) (2.S)

where i?i(l") and R?{Y) are the broadening at the densities p\ and p2 respectively. We

use the final state broadening calculated by Silver 21 at a density of 0.147 gmjcm? and

scale this result to our experimental densities using Equation (2.S).

We can obtain n(p) directly from J(Y) using

but in practice converting from an experimentally determined J{Y) to n(p) presents sev-

eral difficulties. First, in order to use Equation (2.9) the instrumental resolution and final

state effect broadening must be removed. Deconvolution, particularly on data with sta-

tistical noise, is an unstable and ill-defined procedure. Second, numerical differentiation

substantially increases the error associated with the data and can only be avoided if the

data is smoothed or the results are otherwise biased. Finally, in order to obtain n(p) the

differentiated data must be divided by Y and the results are particularly susceptible to

any statistical fluctuations at small Y. In this paper we limit our analysis to J{Y) which

is directly related to the experimental data and avoid all of the above problems.

3. EXPERIMENTAL DETAILS

The measurements were carried out using the PHOENIX spectrometer at the Intense

Pulsed Neutron Source (IPNS) at Argonne National Laboratory. IPNS is a spallation neu-

tron source that generates a short burst of neutrons with a usable flux over a wide range of



energies. PHOENIX, a high resolution time-of-flight (TOF) inelastic spectrometer, uses a

mechanical Fermi chopper to select the incident energy. Low efficiency monitors placed in

the neutron beam are used to measure the incident energy and to determine the parameters

describing the incident pulse of neutrons. The chopper phasing for these measurements

was chosen such that neutrons with a nominal incident energy of 495 meV were selected.

Scattered neutrons axe detected in a single high angle detector bank containing 25 equally

spaced detectors with scattering angles between 135° and 145°. The detectors are approx-

imately 3.S m from the sample position. This choice of incident energy and scattering

angle corresponds to an average momentum transfer of 23 A"1 at the recoil peak of the

helium sample, with a variation in Q across the detector bank of 2 A"1. A more complete

description of the instrument and its use in measuring properties of condensed helium is

presented elsewhere.--

The helium sample was contained in a cylindrical cell of 6061-T6 aluminum 0.10 m

high with an inner diameter of 0.04 m and a wall thickness of 1.6 mm. The cell was

attached to either the mixing chamber of a 3He-4He dilution refrigerator or a 4He pot.

The temperature, which was monitored using vapor pressure thermometry and germanium

resistance thermometers attached to the bottom of the cell, was maintained at 4.25 ±0.05K.

Data on the earlier samples was taken for about 30 hours and resulted in approximately

90,000 total integrated counts in the helium peak. Due to an increase in flux at IPNS, later

samples required only about IS hours of data collection to generate the same number of

integrated counts. The scattering from liquid helium was measured at densities of 0.125,

0.130, 0.140, 0.149, 0.160, 0.173, 0.1S1, 0.186, 0.195, and 0.200 gm/cm3, corresponding to

pressures between SVP and 1500 PSIA. A background run of the empty sample cell was

taken at the same temperature and incident neutron energy.

The integrated counts in the first beam monitor were used to normalize the flux on the

sample from run to run. Both monitor spectra, which are asymmetric due largely to the

moderator pulse spectrum, were fit to the results of a numerical simulation to determine

the energy of the neutrons in the incident beam and the mean time of arrival at the sample.

Standard techniques were used to convert the TOF data from each detector to S(Q,u;)

and then to J(Y). Data from the individual detectors were added together in J(F) in

order to reduce the statistical uncertainty.

An accurate determination of the scattering function requires that instrumental res-

olution be taken into account. In general, the instrumental broadening is a complicated



function depending on both the energy and the momentum transfer.23 In the case of he-

lium, where the scattering is only significant near Y = 0, the instrumental resolution may

be expressed as a simple one dimensional convolution. A Monte Carlo simulation of the

instrument response is used to evaluate the instrumental broadening,22 which is shown in

Figure 1. The instrumental resolution has a FWHM of ~0.6 A"1 and is much narrower

than the total observed scattering.

An absolute intensity scale for the scattering was obtained from an experiment using a

known scatterer, low density (0.0073 gm/cm2) helium gas at 5.6 K. At this low density, only

single helium scattering events are observed; multiple scattering and sample self shielding

are negligible. The integrated scattering is denned to have unit area, as required by the

zeroth moment sum rule. This provides an absolute intensity scale to within the 5%

accuracy to which the area of the helium peak can be determined.

4. RESULTS

The observed scattering, normalized to constant incident flux and converted to J(Y),

for our 0.13S gm/cc sample (with the empty cell subtracted) is shown in Figure 1. The

instrumental resolution and the broadening due to final state effects are also shown in

Figure 1. The widths of both sources of broadening are quite comparable to each other

but much less than the total width of the scattering due to the helium.

After subtraction of the empty cell signal, a small, broad sample dependent compo-

nent approximately five times as wide as the helium peak, is still present. We believe

this component is due to multiple scattering involving scattering initially by the liquid

sample followed by scattering from the refrigerator, radiation shields, outer vacuum can,

and other components of the cryostat before being detected. Similar backgrounds have

been observed in other inelastic scattering experiments using the chopper spectrometers

at IPNS." The observed background, which depends on the sample, has been observed to

be nearly independent of angle for scattering angles from 15 to 110 degrees.22 Improved

shielding of the sample cell from the cryostat used in some of the latter measurements

.eported here, substantially reduced this background, verifying our identification of this

additional scattering. We fit this background to a quadratic polynomial from Y = -9 to

-6 A"1 and V = 6 to 9 A"1. Removing this broad component, as part of our background,

does not change the shape of the observed peak within the experimental errors.



The contribution of helium-helium multiple scattering to the observed scattering from

the bulk liquid was calculated using the same Monte Carlo simulation as used to generate

the resolution broadened scattering. At these high Q's the multiple scattering is primarily

due to low Q coherent scattering by the liquid and provides a negligible contribution to

the observed scattering particularly at the lower densities.

As mentioned earlier, the second moment of the observed scattering, corrected for

instrumental resolution, can be related to < KE > in the incoherent approximation,

regardless of final state effects. An interesting way to observe the contributions to the

second moment and its associated uncertainty is to evaluate the second moment as a

function of integration range

r+Yt

mo(Vc)= / J[Y)Y2dY (4.1)

The limiting value of m? provides a model independent method of determining < KE >

from our data. Figure 2 demonstrates the above calculation for a variety of densities.

The broad background mentioned earlier was subtracted from the observed J(Y) before

performing the integration. The error bars shown in the plots are determined by evaluating

Equation (4.1) at the minimum and maximum J(Y) consistent with the uncertainty in the

data. In order to determine < KE > from the plots in Figure 2, the instrumental resolution

broadening must be included. If the instrumental resolution function and the underlying

J{Y) are approximated by Gaussians, their widths add in quadrature. The second moment

of the underlying J(Y) can be obtained by subtracting the square of the effective Gaussian

resolution second moment, « 0.06 A~2, from the limiting values of m2shown in the plots

of Figure 2. Using this method, we obtain values for < KE > of 15.3 ±1.5, 17.1 ±2.1,

25.3 ±2.5, and 34.9 ±3.5 K for the samples at densities of 0.125, 0.140, 0.173, and 0.200

gm/cc respectively. It is important to note that the large errors in determining the kinetic

energy result from the sensitivity of the second moment to the behavior of the scattering

at large Y , and not from poor statistics in the data. The statistics of our data are quite

good with a total of 90,000 counts in the helium peak and approximately 1000 counts per

0.075 A"1 wide channel at the peak. The difficulty in determining the tails dominate the

errors in the second moment as demonstrated in Figure 2.

We attempted to characterize the underlying momentum distribution implicit in our

data by fitting the observed J(Y) with a Gaussian model, implying a Gaussian n(p).

A Gaussian momentum distribution has been reported in previous measurements for a



sample at SVP.6 The model J(Y) , convoluted with final state effects and the instrumental

resolution, was fit to the data over various ranges of Y, but the quality of the fits was poor.

A single Gaussian J{Y) does not well represent the observed scattering which is consistent

with the 0 K calculations of Whitlock and Panoff1 and the finite temperature calculations

of Ceperley ajad Pollock.3

In aji attempt to fit the data with a more flexible model, we have used a J{Y) consisting-

of a sum of two Gaussians (corresponding to a sum of two Gaussians in n(p)) with their

centers constrained to the same value

M-S -^-1 ,- (̂  ~^ctnter)'y . -̂ 2 , (^ ~ i center)" ̂  , „..
} = (i^?jTexp( W~] + (i^fj?exp( £ | } (4-2)

The center of the Gaussians was allowed to differ from 1* = 0 within the experimental

uncertainty in determining the Y scale. We find that this model gives significantly better

fits at all densities than did the single Gaussian model J(Y). Figure 3 shows the two

Gaussian fits to the data at four representative densities. In general, the agreement between

the fits and the data is excellent. Table 1 lists the amplitudes and widths from the fits for

all the densities. The particular values of these parameters quoted for a given density are

only representative of an entire family of values which can equally well characterize the

data because the widths and amplitudes of the fitted Gaussians are highly correlated. The

model J( l ' ) from any particular fit is indistinguishable from any other fit to the data for

a given density.

The average kinetic energy per particle was determined from the two Gaussian fits

and are shown in Figure 4. Table 2 lists the determined values of < KE > and the

associated uncertainties for ail the densities. Figure 5 shows the 0.138 gm/cc data and the

model J(Y) (convoluted with the instrumental resolution and final state effect broadening)

giving the quoted kinetic energy, 16.1 K. Also shown are the J(Y) having associated kinetic

energies of 14.5 and 17.7 K representing the quoted uncertainty in < KE >. The values

for < KE > and the associated uncertainties are consistent with those determined directly

from the second moment of the scattering as given above. We can apply Equation (4.1)

to our fitted two Gaussian model for J(Y) and calculate the second moment as a function

of the range of integration. Figure 6 shows the results for the same densities as plotted in

Figure 2. We note the consistent behavior between Figures 2 and 6, namely a rapid rise

in the second moment reaching a limiting value at Yc of about 3.2 A"1 and 5.4 A"1 for

densities of 0.125 to 0.200 gm/cc respectively.



Equation (4.1) provides an interesting way to compare theoretical predictions with

our fits. We calculate the second moments from J(Y) determined by Ceperley3 for several

densities using the PIMC method and compare them to those determined from fits to our

data. From the comparisons in Figure 7 we note a general tendency of our fitted model

J ( l ' ) to increase m2 at a slower initial rate than that determined from Ceperley's J(Y).

This indicates that our model J{Y) have somewhat less intensity at low Y (0 to 2 A"1)

but somewhat greater intensity at intermediate to high Y (3 to 4 A"1) than the theoretical

J{Y).

Several numerical calculations1 of the momentum distribution have reported non-

Gaussian behavior in the tails of n(p). More recently, PIMC calculations3 in the normal

liquid have also indicated non-Gaussian behavior in the tails. To examine the sensitivity

of our model to the tails of our data, we modify the behavior of our two Gaussian model

in the low intensity region. We replace the model n(p) with a sum of two Gaussians over

the central region of the peak, but matched to an exponential in the tails and examined

the effect on the 0.13S gm/cc data. Gaussian and exponential portions are matched at

approximately 20% of the peak height, which occurs at Y ~ 1.6 A"1, with the constraint

that the model is continuous. The width of both components were allowed to vary, subject

to the constraint that the total area remained within the 5% uncertainty of the intensity

calibration. The best fit obtained vas almost equivalent to the best two Gaussian fit

and gave a value of 16.9 K for the kinetic energy, O.S K greater than obtained from the

two Gaussian fit. When the exponential was constrained so as to be consistent with the

minimum and maximum uncertainty in the data, the kinetic energies varied from +15%

to -10% of the value obtained from the original two Gaussian model. These variations are

comparable to the variation in < KE > obtained directly from the second moment and

again indicate the difficulty in obtaining accurate information on the shape of the tails

or on < KE >. Figure 8 shows the difference between n(p) as determined by our best

two Gaussian fit and the model using exponential tails. The model with exponential tails

distributes more intensity to the high p region of n(p) than does the simpler two Gaussian

model. Both of these model n(p) are consistent with our data.

5. DISCUSSION

Previous inelastic scattering measurements at SVP have generally extracted a single

Gaussian momentum distribution.5'6 Corrections for FSE were either made using approx-

imate methods6 or not at all.5 Earlier inelastic scattering measurements at SVP have also



determined values for the kinetic energy which are in good agreement with our results.

Harling and Gibbs,5 using a Gaussian form and including a term to correct for FSE, ob-

tain values of 16.3 and 15.7 ±0.5 K at 4.19 and 4.2 K, respectively. Mook11 obtained 16.9

K, from the second moment of n(p) obtained from S(Q,u) at a Q of 15; A|~r. He observed

excess scattering at p = 2.25 A"1 which has not been observed in subsequent experiments

that would tend to raise his estimate of the kinetic energy. Woods and Sears6 obtained

13.6 K, also calculated from the second moment of n(p) based on data taken at momentum

transfers between 6 and S A"1. Our measured value of < KE > at SVP of 15.5 ±1.6 K is

in reasonable agreement with these earlier results.

From Figure 4 we note the good agreement of the kinetic energy values determined

from our data and those reported by Ceperley using PIMC methods. The best model J{Y)

determined by our data tend to have slightly less intensity at low to intermediate Y and

slightly more intensity at intermediate to high Y than do the J(Y) given by Ceperley as

evidenced in Figure 7. This effect", however, is within the uncertainty in determining J(Y)

from our data. Figure 9 shows Cepeiiey's J(Y) (convoluted with the instrumental final

state effects broadening) compared with our data at nearly the same densities. We note

the excellent agreement over most of the range in Y.

6. CONCLUSION

We have carried out Deep Inelastic Neutron Scattering measurements in the normal
li(Wid phase at ̂ eleven ^densities from 0.130 to 0.200 gm/cc. The observed scattering is

well described by the Impulse Approximation at the momentum transfers used in this

experiment. The observed scattering :s not well characterized by a single Gaussian, and

a sum of two Gaussians was used to model the underlying J(Y) indicating non-Gaussian

behavior in n(p). Behavior at large Y is difficult to deduce due to the low statistics in

the tails of the scattering, and the data is consistent with non-Gaussian behavior at high

y , such as exponential tails in n(p). We note, however, that the underlying n(p) for the

case of exponential tails differs little from the two Gaussian model over a large range of p

(Figure 8).

The average kinetic energy per particle determined directly from the second moment

of the scattering (corrected for instrumental resolution) is in good agreement with that

determined from fitting the data with a sum of two Gaussians. These values are also in

good agreement with the theoretical values determined by PIMC methods. The ability of

10



PIMC to calculate properties of normal liquid 4He over this range of densities and at finite

temperatures is remarkable. The excellent agreement between J(Y) determined by PIMC

methods and our data lends support to the application of PIMC to the more challenging

task of calculating the momentum distribution, and condensate fraction of superfluid 4He.24
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p
(gm/cc)

0.125
n i *>n
U.loU
0.138
0.140
0.147
0.160
0.173
0.181
0.1S6
0.195
0.200

Ax

0.924
0,700—
0.5S0
0.527
0.461
0.77'4
0.772
0.397
0.64S
0.596
0.396

(A-' l

0.S4
1.02
LOS
1.14
1.29
1.11
1.20
1.54
1.36
1.52
1.67

A2

0.076

U.oUU
0.420
0.473
0.539
0.226
0.22S
0.603
0.352
0.404
0.604

(A-M

1.63
- 0 : 6 0 —

0.70
0.74
0.76
0.69
0.66
0.94
0.S6
0.95
1.07

Table 1: Fitted Gaussian parameters of J(Y) for normal liquid 4He.



p
(qm/cc)

0.125
0.130
0.13S
0.140
0.147
0.160
0.173
0.1S1
0.1S6
0.195
0/200

< KE y
(K)

15.5
15.2
16.1
17.1
19.6
19.2
21.S
26.5
26.5
31.6
32.7

A < KE >
(K)

1.6
1.5
1.6
1.7
2.0
1.9
2.2
2.7
2.7
3.2
3.3

Table 2: Single particle kinetic energies for normal liquid 4He.



Figure Captions

Fig. 1: Comparison of instrumental resolution (solid line), FSE (dashed line) and data

at 0.13S gm/cm?.

Fig. 2: The second moment of the experimentally determined J{Y) as a function of
integrating range for a variety of densities. Plots a, b, c, and d are for densities
of 0.125, 0.140, 0.173, and 0.200 gm/cc respectively.

Fig. 3: Measured J(Y) and two Gaussian fits for a variety of densities. The model J(Y)
has been broadened by the instrumental resolution and FSE. Plots a, b, c, and d
are for densities of 0.125, 0.140, 0.173, and 0.200 gm/cc respectively.

Fig. 4: The measured average kinetic energy per atom as a function of density. The x
are the theoretical values from Ceperley.3 The smooth curve is from a quadratic
fit to the measured points and is intended as a guide to the eye.

Fig. 5: Measured J{Y) and two Gaussian fits for liquid helium at a density of 0.13S
gm/cc. The three smooth curves are the model J(Y) having the indicated kinetic
energies.

Fig. 6: The second moment of the fitted model J(Y) a function of integrating range for
the indicated densities.

Fig. 7: Comparison of the second moments of J(Y) determined as a function of inte-
grating range from our fitted model and the theoretically determined J(Y) from
PIMC calculations.3 The densities used in the experiment are 0.138, 0.173, and
0.1S6 gm/cc for plots a, b, and c respectively. The densities used in the theoretical
calculation are 0.13S, 0.173, and 0.191 gm/cc for plots a, b, and c respectively.

Fig. 8: n(p) as determined from fits to the measured J(Y) of liquid heliurr. at a density
of 0.138 gm/cc. The solid curve is the best two Gaussian fit to the data. The
dashed curve is the best fit using Gaussians to model the central portion of the
peak adding exponential behaviour in n(p) at Y = ± 1.6 A"1.

Fig. 9: Comparison of the measured and theoretical J(Y). The solid curves are the
theoretical J(Y) from Ceperley3 convoluted with instrumental resolution and
FSE broadening. The measured J(Y) are from densities of 0.138, 0.173, 0.186
gm/cc for plots a, b, and c respectively. The theoretical J(Y) were calculated at
densities of 0.138, 0.173, and 0.191 gm/cc for plots a, b, and c respectively.
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