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ABS TRACT 

The present  e f f o r t  i s  p a r t  of an ongoing task  to  review the  n a t i o n a l  high 
level waste package e f f o r t .  
conta iner ,  and packing material components with r e spec t  t o  determining how 
they may con t r ibu te  to  the containment and cont ro l led  release of radionucl ides  
a f t e r  waste packages have been emplaced i n  s a l t ,  b a s a l t ,  t u f f ,  and g r a n i t e  
r epos i to r i e s .  In the cu r ren t  Biannual Report a review of progress i n  the new 
c r y s t a l l i n e  r epos i to ry  ( g r a n i t e )  program i s  described. 
t h i s  hos t  rock have a l s o  been out l ined  where re levant .  The u s e  of crushed 
s a l t ,  and bentoni te-  and zeol i te -conta in ing  packing materials i s  discussed. 
The e f f e c t s  of temperature and gamma i r r a d i a t i o n  are shown to  be important 
wi th  r e spec t  to  def in ing  the loca l ized  environmental condi t ions  around a 
waste package and the long-term i n t e g r i t y  of the packing. 

It  includes eva lua t ions  of reference waste form, 

Other foreign data  f o r  

iii 



. 



CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iii 
FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v i  
TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v i  i 
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . .  v i i i  
EXECUTIVE SUMMARY e 1 

1 . INTRODUCTION (P . Soo) . . . . . . . . . . . . . . . . . . . . . .  3 

1.1 Reference . . . . . . . . . . . . . . . . . . . . . . . . .  4 

2 . NEAR FIELD REPOSITORY CONDITIONS . . . . . . . . . . . . . . . .  7 

2.1 Basa l t  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.2 S a l t  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.3 Tuff . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.4 Grani te  (E  . Veakis) . . . . . . . . . . . . . . . . . . . . .  

2.4.1 DOE Program on Crys t a l l i ne  Repository Development . . 
2.4.3 Hydrology and Groundwater Compositions . . . . . . .  
2.4.4 E f f e c t s  of Temperature on Rock S t a b i l i t y  . . . . . .  
2.4.5 Waste Package Considerations f o r  a Grani te  

Repository . . . . . . . . . . . . . . . . . . . . .  
2.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . .  
2.4.7 References . . . . . . . . . . . . . . . . . . . . .  

2.4.2 Crys t a l l i ne  Rock Compositions . . . . . . . . . . . .  7 
10 
10 
15 

2 1  
23 
23 

3 . WASTE FORM FAILURE AND DEGRADATION MODES . . . . . . . . . . . .  
4 . CONTAINER SYSTEM FAILURE AND DEGRADATION MODES . . . . . . . . .  
5 . PACKING MATERIAL FAILURE AND DEGRADATION MODES . . . . . . . . . .  

5.1 Basalt.. Zeol i te -  and Bentonite-Containing 
Packing Mater ia ls  . . . . . . . . . . . . . . . . . . . . .  

5.2 Crushed Tuff Packing Mater ia l s  . . . . . . . . . . . . . . .  
5.3 Crushed S a l t  Packing Material  (E . Veakis) . . . . . . . . .  

5.3.1 Brine Migration Effec ts  . . . . . . . . . . . . . . .  
5.3.2 Temperature and Radiation E f f e c t s  . . . . . . . . . .  
5.3.3 S a l t  Consolidation Ef fec t s  . . . . . . . . . . . . . .  
5.3.4 Al te rna te  Packing Mater ia ls  f o r  S a l t  Repos i tor ies  . . 
5.3.5 Role of Packing Material  With Respect to  Regulatory 

C r i t e r i a  . . . . . . . . . . . . . . . . . . . . . . .  
5.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . .  
5.3.7 References . . . . . . . . . . . . . . . . . . . . .  

V 

27 

27 

27 

27 
27 
27 

28 
34 
38 
42 

45 
46 
47 



1.1 

1.2 

2 * 1  

2.2 

2.3 

5.1 

5.2 

5.3 

5.4 

5 . 5  

5 -6  

5.7 

FIGURES 

Chemical and mechanical fa i lure /degrada t ion  modes a f f e c t i n g  
containment of radionucl ides  by the  waste package system . . . .  
Factors a f f e c t i n g  radionucl ide r e l ease  from the  engineered 
b a r r i e r  system . . . . . . . . . . . . . . . . . . . . . . . . .  
Major regions under inves t iga t i en  by the OCRD . . . . . . . . .  
Geochemical v a r i a t i o n  of groundwaters with depth . . . . . . . .  
Thermal model .. ad iaba t i c  boundaries . . . . . . . . . . . . .  
Temperature/ temperature grad ien t  f o r  HLW . . . . . . . . . . . .  
Temperature a t  which the l i b e r a t i o n  of the hydration water of 
c a r n a l l i t e  begins versus  the absolute  humidity . . . . . . . . .  
Release ve loc i ty  of the hydration water from po lyha l i t e  a t  
absolu te  humidities between 0 and 83.0 g/m3 versus the  
r ec ip roca l  absolu te  temperature . . . . . . . . . . . . . . . .  
Release ve loc i ty  of the hydration water from k i e s e r i t e  a t  
absolu te  humidi t ies  between 0 and 83.0 g/m3 versus the  
rec iproca l  absolu te  temperature . . . . . . . . . . . . . . . .  
P l o t  of pH and t o t a l  base of br ine  versus  temperature of 
annealing of parent  rock s a l t  showing the temperature 
s e n s i t i v i t y  of the rock sa l t  used i n  t h i s  study . . . . . . . .  
Libera t ion  of the gas  components H20, HzS, H C l  and C02 and CH4 
versus the  temperature of an i r r a d i a t e d  and uni r rad ia ted  
sample. Minearalogical composition: 95 weight percent  
h a l i t e ,  5 weight percent anhydri te ,  po lyha l i te  and k i e s e r i t e  . . 
Consolidation of s a l t  c r y s t a l s  (250-420 pm) i n  br ine  . . . . . .  

5 

6 

9 

17 

18 

30 

30 

31 

31 

35 

37 

41 

v i  



2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2 .9  

5.1 

5.2 

5.3 

5 04 

5.3 

5.6 

5.7 

TABLES 

Comparison of regions of c r y s t a l l i n e  rocks and physiographic 
provinces . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Compositional averages of g r a n i t i c  rocks . . . . . . . . . . . .  
Chemical e f f e c t  of main minerals of g r a n i t e  and some important 
accessory minerals and weathering products . . . . . . . . . . .  
Estimated rock mass proper t ies  f o r  generic g ran i t e  . . . . . . .  
Hydraulic proper t ies  of d i f f e r e n t  hydrogeologic s t r u c t u r e s  f o r  
the reference repos i tory  s i t e  a r ea  i n  g r a n i t e  a t  depths of 
l m a n d 5 0 0 m  . . . . . . . . . . . . . . . . . . . . . . . . .  
Chemical analyses  of Climax and S t r i p a  groundwater samples . . .  
Description of disposal  room and container  d r i l l h o l e  . . . . . .  
Material  and s t r eng th  p rope r t i e s  . . . . . . . . . . . . . . . .  
KBS-SRL waste g l a s s  compositions . . . . . . . . . . . . . . . .  
Maximum temperatures i n  the s a l t  rock formation, conta iner  
sur face ,  and waste c e n t e r l i n e  . . . . . . . . . . . . . . . . .  
S i t e  SB -- heater  borehole accumulated t o t a l  moisture ga in  
compared to  approximate permeabili ty and pressure decay r a t e  
during hea te r  power reduct ion . . . . . . . . . . . . . . . . .  
Experimental r e s u l t s  of gas  analyses  of samples i r r a d i a t e d  
w e t  and dry a t  a dose r a t e  of 8 x lo6 rad/h a t  a temperature 
of 125°+30C . . . . . . . . . . . . . . . . . . . . . . . . .  - 
Resul ts  of r a d i o l y s i s  of Brine A a t  room temperature. Total 
dose -1.0 x lo9 r a d s  a t  2.4 x lo6 rad lh  . . . . . . . . . . . .  
S a l t  consol idat ion t e s t  r e s u l t s  . . . . . . . . . . . . . . . .  
Chemical and physical  p roper t ies  of oxides and hydroxides of 
C a  and Mg re l evan t  to packing f o r  reference r epos i to r i e s .  . . .  
Packing mater ia l  ( b a c k f i l l )  desiccant-oxide c a p a b i l i t i e s  i n  
reference s a l t  r epos i to r i e s .  . . . . . . . . . . . . . . . . . .  

8 

33 

36 

39 

40 

44 

45 

v i  i 



ACKNOWLEDGEMENT 

The authors gra te fu l ly  acknowledge the s k i l l s  and patience of 
M s .  G .  Searles  and Ms. M.  McGrath i n  the typing and preparation of t h i s  
report. 

v i i i  



EXECUTIVE SUMMARY 

A review has been conducted of information c u r r e n t l y  ava i l ab le  on the 
s t a t u s  of c r y s t a l l i n e  r epos i to ry  developments. The present  work i s  concerned 
with an assessment of da ta  and cu r ren t  e f f o r t s  per ta in ing  t o  a g r a n i t e  repos- 
i t o r y .  Data a r e  presented on the range of expected r epos i to ry  condi t ions and 
add i t iona l  information needs, with r e spec t  t o  the c r y s t a l l i n e  rock eva lua t ion  
process,  a r e  iden t i f i ed .  

Current DOE e f f o r t s  i n  the a rea  of c r y s t a l l i n e  r epos i to ry  development 
have focused on s i t e - s e l e c t i o n  c r i t e r i a ,  i n i t i a l  regional  screening and, pre- 
dominantly, thermomechanical i nves t iga t ions  of g r a n i t e  formations. Gran i t i c  
formations e x h i b i t  considerable v a r i a t i o n  i n  hydraul ic  conduct iv i ty ,  permea- 
b i l i t y  and poros i ty  a s  a r e s u l t  of v a r i a t i o n  i n  the f r a c t u r e  system. Water 
flow and groundwater composition tend t o  vary considerably w i t h  depth and from 
l o c a l i t y  to l o c a l i t y .  Thermal and r a d i a t i o n  f i e l d s  a r e  known t o  weaken the 
ul t imate  s t r eng th  of the rock and a l t e r  the f rac ture / f low system. Currently,  
no conceptual designs f o r  waste packages to  be emplaced i n  tu f f  appear t o  have 
been spec i f ied .  

A review w a s  a l s o  conducted on the  use of crushed s a l t  and a l t e r n a t e  
packing mater ia l  under s a l t  r epos i to ry  conditions.  
f o r  a waste package i n  a s a l t  repos i tory  do no t  s p e c i f i c a l l y  include the u s e  
of a t a i l o r e d  packing mater ia l  component. The use  of packing mater ia l  was, 
however, taken under considerat ion i n  Westinghouse work a s  an a l t e r n a t e  solu- 
t i on  t o  the need f o r  long-term waste i s o l a t i o n  i n  t h e  event the conta iner  was 
shown not  t o  meet the containment requirements. Crushed s a l t ,  bentoni te ,  
z e o l i t e  and sand packing ma te r i a l s  were considered. 

Current conceptual designs 

With respec t  t o  crushed s a l t ,  b r ine  may be present  a s  water of hydration, 
in te rgranular  water o r  br ine  inclusions.  Brine inc lus ions  have been shown to  
migrate up the thermal grad ien t  t o  t h e  waste container  but  accura te  es t imates  
of an t ic ipa ted  inflow r a t e s  need to  be es tab l i shed  f o r  pro to typic  condi t ions.  
Procedures f o r  minimizing br ine  migration t o  the  waste include se l ec t ion  of 
d r i e r  s a l t  formations f o r  repos i tory  use ,  avoiding s a l t  t h a t  contains  a l a rge  
portion of hydrated minerals and including des iccants  i n  the s a l t  packing t o  
absorb l i be ra t ed  water. Both CaO and MgO may be e f f e c t i v e  a d d i t i v e s  f o r  t h i s  
purpose. 

Brine present  a t  an e a r l y  period a f t e r  r epos i to ry  c losure  i s  l i k e l y  t o  
be ac id i c  due to i n t e r a c t i o n  with thermally released gases ,  such a s  HCL, C02 
and S02. However, thermal annealing and gamma i r r a d i a t i o n  of s a l t  w i l l  
probably cause subsequent in t ruding  b r ine  t o  be basic .  The main reason l i e s  
i n  the formation of sodium c o l l o i d s  which i n t e r a c t  with the  migrating br ine  to  
form NaOH and hydrogen. Thus, conta iner  ma te r i a l s  need t o  be evaluated w i t h  
respec t  to  a wide range of pH's t o  quant i fy  aqueous corrosion f a i l u r e  times. 
Some container  ma te r i a l s  may a l s o  be suscep t ib l e  to  hydrogen-induced f a i l u r e  
because of hydrogen l i b e r a t i o n  from the c o l l o i d a l  sodium i n t e r a c t i o n ,  and 
because of the generat ion of t h i s  gas  by gamma r a d i o l y s i s  of the br ine.  

1 



Crushed s a l t  packing mater ia l  w i l l  be consol idated under the a c t i o n  of 
compressive stresses, temperature,  and the presence of br ine .  Under long-term 
compressive creep condi t ions almost complete consol ida t ion  w i l l  occur i f  b r ine  
being re leased  i s  allowed to  escape. 

Al te rna te  packing materials f o r  use i n  a s a l t  r epos i to ry  include 
bentonite- and z e o l i  te-containing mixtures. 
thermally a l t e r e d  to  i l l i t e  and smect i te  a t  temperatures w e l l  wi th in  a n t i c i -  
pated repos i tory  condi t ions.  Since these a l t e r a t i o n  products a r e  more dense 
than bentoni te ,  and have l imi ted  swel l ing p o t e n t i a l  from water absorpt ion,  
bentoni te  packing may be subjected t o  increased permeabili ty.  In  add i t ion ,  
bentoni te  ma-y r e l e a s e  water under high temperature condi t ions.  A d e t a i l e d  
assessment of t h i s  e f f e c t  needs to  be undertaken t o  quant i fy  the e f f e c t s  of 
such water r e l eases  on conta iner  cor ros ion  and waste form leaching. 

Bentonite c l ays  , however, may be 

Zeo l i t e s  possess exce l l en t  radionucl ide sorp t ion  behavior and w i l l  be 
usefu l  f o r  l imi t ing  the ra te  of radionucl ide re lease .  
may be sub jec t  to  high-temperature a l t e r a t i o n .  
a re  two of the most important with respect to  waste i so l a t ion .  Under low 
water vapor pressures  some workers have shown t h a t  a t  high temperature they 
w i l l  s u f f e r  i r r e v e r s i b l e  dehydration reac t ions .  
zeo li te-containing rocks should only be employed f o r  radionucl ide r e t a r d a t i o n  
purposes a t  t empera tu res  below 85OC i n  water-saturated condi t ions.  
n o t  be a s t r i c t l y  va l id  argument f o r  a s a l t  r epos i to ry  but  the  l i m i t a t i o n s  of 
z e o l i t e s  as a packing a r e  evident  and need to  be f u l l y  addressed. 

Nevertheless,  they a l s o  
Mordenite and c l i n o p t i l o l i t e  

One study shows t h a t  u s e  of  

This may 

With respec t  t o  the r o l e  of crushed s a l t  packing material i n  meeting the 
radionucl ide containment and con t ro l l ed  r e l ease  c r i t e r i a  , the f a c t  t h a t  b r ine  
migrates  towards the waste form ind ica t e s  t h a t  l o s s  of containment, and con- 
t r o l  of radionucl ide r e l ease ,  w i l l  n o t  be governed by br ine  flow behavior. 
Compliance o r  non-compliance wi th  regulatory c r i t e r i a  w i l l ,  t he re fo re ,  depend 
on e s t ab l i sh ing  the r a t e s  of  d i f fus ion  of radionucl ides  to  the ou te r  boundary 
of the packing mater ia l  and beyond. 

2 



1. INTRODUCTION ( P .  Soo) 

In the l i cens ing  procedure f o r  a high l e v e l  waste geologic  r epos i to ry  two 
NRC c r i t e r i a  a r e  of major importance with r e spec t  to the performance objec-  
t i v e s  f o r  the engineered system. These are  d e t a i l e d  i n  F ina l  R u l e  10 CFR 60 
(Disposal of High Level Waste i n  Geologic Repos i tor ies )  dated June 1983. 
f i r s t  ob jec t ive  s p e c i f i e s  t ha t :  

The 

"Containment of HLW wi th in  the waste packages w i l l  be substan- 
t i a l l y  complete f o r  a period to  be determined by the Commis- 
s ion  taking i n t o  account the f a c t o r s  spec i f i ed  i n  subsect ion 
60.113(b) (of  10 CFR 60) provided, t h a t  such period s h a l l  be 
not  less than 300 years  nor  more than 1,000 years  a f t e r  
permanent c losure  of the  geologic r epos i to ry ;  and 

"The r e l e a s e  r a t e  of any radionucl ide from the engineered b a r r i e r  
system following the  containment period s h a l l  n o t  exceed one p a r t  
i n  100,000 p e r  year  of the inventory of t h a t  rad ionucl ide  calcu- 
la ted  t o  be present  a t  1000 years  following permanent c l o s u r e ,  o r  
such o t h e r  f r a c t i o n  of the inventory a s  may be approved o r  speci- 
f i ed  by the Commission; provided, t h a t  t h i s  requirement does no t  
apply to  any rad ionucl ide  which i s  re leased  a t  a ra te  l e s s  than 
0.1% of the ca lcu la ted  t o t a l  r e l e a s e  r a t e  l i m i t .  The ca l cu la t ed  
t o t a l  relese r a t e  l i m i t  s h a l l  be taken t o  be one p a r t  i n  100,000 
p e r  yea r  of the inventory of r ad ioac t ive  waste,  o r i g i n a l l y  em- 
placed i n  the underground f a c i l i t y ,  t h a t  remains a f t e r  1,000 
years of  rad ioac t ive  decay." 

To meaningfully address  these performance ob jec t ives  i t  w i l l  be necessary f o r  
the l icense  app l i can t  to  consider :  

a. How and when groundwater e n t e r s  the engineered r epos i to ry  system 
b. How and when groundwater pene t r a t e s  the geologic  packing mater ia l  

c. How and when groundwater pene t ra tes  the conta iner  system and causes  

d.  How and when groundwater leaches radionucl ides  from the waste form 
e.  How and when the rad ionucl ides  a r e  t ransported through the f a i l e d  

conta iner  system, packing ma te r i a l  and d is turbed  hos t  rock to  the 
near f i e l d  environment. 

( d i s c r e t e  backf i l l )  

cor ros ion  f a i l u r e  

For these scenar ios ,  i n  which the ind iv idua l  engineered b a r r i e r s  a r e  
breached, probable chemical (cor ros ion)  f a i lu re /deg rada t ion  modes and mechani- 
c a l  fa i lure /degrada  t i o n  modes need to  be i d e n t i f i e d  and quan t i f i ed .  
w i l l  depend on the s p e c i f i c  design of the engineered system inc luding  selec- 
t i o n  of ma te r i a l s ,  l o c a l  temperatures,  l o c a l  r epos i to ry  water condi t ions ,  
r a d i a t i o n  e f f e c t s ,  water flow r a t e s ,  and l i t h o s t a t i c / h y d r o s t a t i c  pressures ,  
e t c .  I t  i s  only through a comprehensive knowledge of these f a c t o r s  t h a t  the 
performance of the ind iv idua l  engineered b a r r i e r s  can be determined and 
compliance with the above-mentioned NRC c r i t e r i a  demonstrated. 

These 
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The purpose of the cu r ren t  s tudy i s  to  o u t l i n e  i n  l o g i c a l  sequence t h e  
important performance assessments f o r  b a r r i e r  components which may need to be 
addressed f o r  l i cens ing  wi th  respec t  to  demonstrating compliance with the 
containment and cont ro l led  radionucl ide r e l ease  performance objec t ives .  Fig- 
ures  1.1 and 1.2 a r e  schematics o u t l i n i n g  the  l o g i c  f o r  performance assess -  
ment. They spec i fy  those fa i lure /degrada t ion  modes which a r e  considered to  be 
important f o r  the ma te r i a l s  and h o s t  rocks cu r ren t ly  being considered i n  the 
na t iona l  high , l e v e l  waste terminal  s torage  program. By accumulating a compre- 
hensive data  base on these f a i l u r e  modes, those which w i l l  u l t imate ly  be 
con t ro l l i ng  can be i d e n t i f i e d .  

Although Figure 1.1 descr ibes  a plan f o r  the comprehensive performance 
assessment of the ind iv idua l  engineered b a r r i e r  components i t  i s  no t  mandatory 
f o r  each component to be f u l l y  charac te r ized .  I f  the l icense  app l i can t  can 
demonstrate t h a t  one component a lone can meet an NRC performance ob jec t ive  
then a de t a i l ed  cha rac t e r i za t ion  of the  o the r  engineered b a r r i e r s  i s  unneces- 
sary.  It would s u f f i c e  to show t h a t  the o the r  b a r r i e r s  a r e  redundant and do 
n o t  compromise the a b i l i t y  of the primary b a r r i e r  to  meet the objec t ive .  For 
example, i f  i t  can be shown t h a t  a conta iner  system alone can remain unbreach- 
ed f o r  300-1000 years  under a n t i c i p a t e d  waste package condi t ions ,  then a com- 
prehensive da ta  base on the performance of the secondary b a r r i e r s  would n o t  be 
needed to  address  the containment time. S imi l a r ly ,  i f  the  waste form has a 
radionucl ide r e l e a s e  r a t e  which w i l l  m e e t  the cont ro l led  r e l ease  c r i t e r i o n  
under an t i c ipa t ed  r epos i to ry  condi t ions  a d e t a i l e d  knowledge of the radionu- 
c l i d e  r e t a rda t ion  c a p a b i l i t i e s  of packing ma te r i a l s  i s  a l s o  n o t  needed. Thus, 
a l i cens ing  s t r a t e g y  based on f u l l  compliance with an NRC performance objec- 
t i v e  by a s i n g l e  b a r r i e r  would be a c o s t  saving endeavor. 
i f  compliance r e q u i r e s  the con jo in t  a c t i o n  of more than one b a r r i e r ,  so t h a t  

On the o the r  hand, 

each b a r r i e r  cont r ibu tes  p a r t i a l  compliance, the data  base t o  cha rac t e r i ze  
performance w i l l  n eces sa r i ly  involve single-component and multi-component 
tests to quant i fy  i n t e r a c t i o n  e f f e c t s .  S t r a t e g i e s  which may be used t o  
demonstrate compliance a r e  discussed i n  a separa te  r epor t  (NUREG/CR-2951, 
1982). 

In the following sec t ions  of the  cu r ren t  r e p o r t  a r e  described da ta  on the 
use of crushed s a l t  a s  a packing ma te r i a l  ( d i s c r e t e  b a c k f i l l ) ,  and progress i n  
the  DOE program on c r y s t a l l i n e  r epos i to ry  development. 
work repor ted  i n  p r i o r  Biannual R e p o r t s  i n  t h i s  program. 

This work complements 

1.1 Reference 

NUREG/CR-2951, BNL-NUREG-51588, "Draft  S t a f f  Technical Pos i t ion ,  Subtask 1.1: 
Waste Package Performance Af ter  Repository Closure," M. S .  Davis and 
D. G.  Schwei t z e r ,  Brookhaven National Laboratory, September 1982.  
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Figure 1.1 Chemical and mechanical fa i lure /degrada t ion  modes a f f e c t i n g  containment 
of radionucl ides  by the waste package system. 
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I n  at tempting t o  narrow the f i e l d  of candidate  l o c a l i t i e s  s u i t a b l e  f o r  
r epos i to ry  s i t i n g ,  OCRD excluded from f u r t h e r  cons idera t ion  a r e a s  exhib i t ing :  

Greater  than 1000 m of v e r t i c a l  movement i n  the c r u s t  over the l a s t  
10-mi 1 l i o n  years  
Evidence of young f a u l t s  (“15-million years  old o r  younger) 
Evidence of known ep icen te r s  of earthquakes of i n t e n s i t y  V o r  g r e a t e r  
on the  Modified Mercal l i  Scale  
Evidence of hor izonta l  acce le ra t ion  of the ground sur face  of -10 per- 
c e n t  g o r  g rea t e r  over the nex t  50 years  
Evidence of quaternary volcanic  rocks and depos i t s  
Known major mineral depos i t s  
Known high temperature convective groundwater systems 
Extreme erosion 
P o t e n t i a l l y  high reg iona l  hydraul ic  g rad ien t s  judged on the b a s i s  of 
topographic r e l i e f .  

Areas exh ib i t i ng  favorable  condi t ions  based on these prel iminary,  q u a l i -  
t a t i v e  c r i t e r i a  a r e  presented i n  Table 2.1. Figure 2 .1  i l l u s t r a t e s  the 
geographic pos i t i on  of each of the  major regions under inves t iga t ion  by OCRD. 

Table 2.1. Comparison of regions of c r y s t a l l i n e  rocks and physiographic 
provinces (OCRD-1, 1983). 

Major Regions of Exposed 
Crys t a l  l i n e  Rocks Physiographic Provinces Included 

P a c i f i c  Border Region 

Basin and Range Region 

Rocky Mountain Region 

Lake Superior  Region 

Northern Appalachian and 
Adi  ronda ck Reg i on 

Southern Appalachian Region 

P a c i f i c  Border Province 
S i e r r a  Nevada Province 
Cascade Province 

Basin and Range Province 

Northern Rocky Mountains Province 
Middle Rocky Mountains Province 
Southern Rocky Mountains Province 
Wyoming Basin Province 

Cental  Lowland Province 
Superior  High land Province 

N e w  England Province 
Adirondack Province 

Valley and Ridge Province 
Piedmont Province 
Blue Ridge Province 
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From the  geotechnical  s tandpoint ,  Witherspoon and Watkins (LBL-14082, 
1982) i d e n t i f i e d  three  basic  a r e a s  i n  need of i nves t iga t ion :  (I) character-  
i z a t i o n  of the rock mass f r a c t u r e  system, (2 )  thermornechanical e f f e c t s ,  and ( 3 )  
charac te r iza t ion  of the f r a c t u r e  hydrology -- including permeabili ty,  e f f e c t i v e  
porosi ty ,  and so rp t ive  capaci ty  of the hos t  rock. 

2.4.2 Crys t a l l i ne  Rock Compositions 

The term " c r y s t a l l i n e  rock" i s  an inexac t  designat ion f o r  r e f e r r i n g  t o  
igneous o r  metamorphic rock, although the term has a l s o  been used i n  reference 
t o  sedimentary rocks composed of coarse ly  c r y s t a l l i n e  gra ins .  
c r y s t a l l i n e  -rock i s  character ized by c l o s e l y  f i t t i n g  p a r t i c l e s  cons is t ing  of 
c r y s t a l s  o r  c r y s t a l  fragments. 
grained p lu tonic  rock having quartz  a s  an  e s s e n t i a l  component i n  addi t ion  to  
fe ldspar  and mafic minerals (Bates,  R. L, ,  1980). The term "g ran i t i c  rock" 
encompasses th ree  major rock types: g ran i  tes, monzonites, and g ranod io r i t e s  - 
igneous rocks i n  which the a l k a l i  f e ldspa r s  c o n s t i t u t e  important components 
(Frye, K., 1981). 
i n  Table 2.2. 

The t ex tu re  of 

Grani t ic  rock i s  a term appl ied t o  coarse- 

Average chemical compositions f o r  g r a n i t i c  rocks a r e  shown 

S i t e - spec i f i c  hos t  rock compositional cha rac t e r i za t ion  i s  important i n  the 

Table 2.3 
determination of petrogenet ic  processes t h a t  have taken place,  including min- 
e r a l  a l t e r a t i o n s  and h o s t  rock inf luence on groundwater composition. 
presents the major and accessory minerals and weathering products of g ran i t e .  
The a c t u a l  proport ions of these minerals  w i l l  vary with each p a r t i c u l a r  s i t e .  
Included i n  t h i s  t ab le  a r e  some probable chemical e f f e c t s  assoc ia ted  with a 
p a r t i c u l a r  mineral  o r  weathering product, 

E a r l i e r  s t u d i e s  undertaken by Dames and Moore f o r  the Office of Waste Iso- 
l a t i o n  were concerned w i t h  de t a i l ed  reviews of ava i l ab le  information on rock 
proper t ies  i n  order  to  a r r i v e  a t  a gener ic  base f o r  a " typical"  g r a n i t i c  forma- 
t ion  (Y/OWI/TM-36/5, 1978). Rock mass p rope r t i e s  derived by Dames and Moore 
f o r  a t yp ica l  g r a n i t e  a r e  presented i n  Table 2.4. 

2.4.3 Hydrology and Groundwater Compositions 

Hydraulic parameters, including hydraul ic  conduct ivi ty ,  permeabili ty o r  
porosi ty ,  vary considerably from s i t e  t o  s i t e  a s  a r e s u l t  of va r i a t ions  i n  the  
occurrence and ex ten t  of f r ac tu res .  Concentration of f r a c t u r e s  and t h e i r  phys- 
i c a l  conf igura t ions  a r e  key parameters i n  determining groundwater ve loc i ty .  
Table 2 . 5  shows hydraul ic  p rope r t i e s  of d i f f e r e n t  hydrologic s t r u c t u r e s  i n  
g ran i t e  t o  il Ius t r a  te the point.  

Permeabili ty t e s t i n g  of f r a c t u r e s  conducted by Lawrence Livermore Labora- 
to ry  (LLL) i n  the Climax s tock g r a n i t e  i nd ica t e  t h a t  permeabili ty can be highly 
va r i ab le  depending on the nature  and ex ten t  of the f r a c t u r e  zones present  
(UCRL-85231, 1980). I n t a c t  rock o r  healed f r a c t u r e s  exhibi ted a permeabi l i ty  
of da rc i e s  whereas moderately t o  highly f rac tured  zones encountered 
exhibi ted a permeabili ty i n  the range of t o  1O-I darcies .  A t  high 
temperatures permeabi l i ty  of g r a n i t i c  rocks may increase  a s  a resu l t  of 
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Table 2.2. Compositional averages of g r a n i t i c  rocks (number of ana lyses  used  f o r  
average i n  parentheses;  weight percent)  

A lka l i  Quartz Grano- 
Grani tesa(48)  Granites-Aa(72) Granites-Bb Monzonitesa(121) d io r i t e sa (137)  

I- 
C.' 

S io2 
Ti02 
*l2O3 
Fe2O3 
FeO 
MnO 
MgO 
CaO 
Na2O 
K 2 0  
H20' 
p205 
qz* 

ab 
an 

Cas103 
MgS io3 
FeSi03 
a c  
m t  
i R  
aP 

ov 

C 

73.86 
0.20 

13.75 
0.78 
1.13 
0.05 
0.26 
0.72 
3.51 
5.13 
0.47 
0.14 

32.2 
30.0 
29.3 

2.8 
1.4 

0.6 
1.1 

1.2 
0.5 
0.3 

---- 

---- 

72.08 
0.37 

13.86 
0.86 
1.67 
0.06 
0.52 
1.33 
3.08 
5.46 
0.53 
0.18 

29.2 
32.2 
26.2 
5.6 
0.8 

1.3 
1.7 

1.4 
0.8 
0.4 

---- 

---- 

77.0 

12.0 
0.8 
0.9 

---- 

---- ---- 
0.8 
3.2 
4.9 
0.3 

69.15(69. l ) c  
0.56(0.4) 

14.63( 15.8) 
1.22 (1.5) 
2.27( 1.3) 
0.06(<0.05) 
0.99(0.6) 
2.45 (3.2 ) 
3.35 (3.0) 
4.58(3.9) 
0.54(0.9) 
0.20(0.2 ) 

24.8 (28) 
27.2 

11.1 
28.3 

---- -- - - 
2.5 
2.2 

1.9 
1.1 
0.5 

---- 

~ 

66.88(67.6)c 
0.57 (0.4) 

15.66(15.8) 
1.33 (1.8) 
2.59( 1.6) 
0.07(0.1) 
1.57(0.8) 
3.56(3.7) 
3.84(3.1) 
3.07 (3.5) 
0.65( 1.0) 
0.21(0.2) 

21.9 (28) 
18.3 
32.5 
16.4 ---- ---- 
3.9 
2.9 

1.9 
1.1 
0.5 

---- 

aAverage compositions based on Wedepohl, 1969. 
bDOE/ET-002 8, 197 9. 
CClimax (NTS) g r a n i t e s  (UCRL-53309, 1982). 
*qz-quartz, ov-K-feldspar, a b - a l b i t e ,  an-anor th i te ,  c-corundum, ac-acmite, mt-magnetite, 

i R - i  lmeni t e ,  ap -apa t i t e .  



Table 2.3. Chemical e f f e c t  of main minerals of g r a n i t e  and some important 
accessory minerals and weathering products (UCRL-53155, 1981). 

~ ~~ 

Mineral o r  Weathering Product Chemical Ef f e c t  

Main minerals: 
Quartz 25-30% 
Feldspar 50-75% 

e.g., o r thoc la se  KA1Si308 
e.g., plagioc1ase(Na,Ca)(A1,Si)f,O8 

e.g., hornblende 
Amphiboles <20% 

Ca2Na (Mg ,Fe ) 4 (A 1 , Fe , T i  ) 3s i 802 2 ( 0,O H) 2 
Micas <20% 

e.g., b i o t i t e  K(Fe,Mg)3(AlSi301oVOH)2 

Accessory minerals  : 
Magnetite Fe3O4 
Pyr i t e  FeS2 
Ilmenite FeTi.03 
Zircon Z r S i O q  
Fluori  t e  CaF2 
Calc i te  CaC03 
Apatite Ca5(F,Cl,OH)(P04)3 
Monazite (Ce,La,Th)POq 

Weathering products:  
Kaol in i te  A14( Si4010) (OH) 8 
Chlo r i t e  (Mg ,Fe ,A1)4(Si4010) (0H)a 

Source of co l lo id  Si021 

I n t e r s t i t i a l  K , N a  ,Ca-exchangeable? 
Eas i ly  weathered 

Cation exchangers? 

Eh-ef f e e t  
Eh-effect;  SO:- source 

F' source 

PO - source 
Sorption of Ln and An? 

From fe ldspa r s ;  c a t i o n  exchanger 
From amphiboles and micas; 
ca t ion  exchanger 
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Table 2.4. Estimated rock mass p rope r t i e s  f o r  gener ic  g r a n i t e  
(based on Y/OWI/TM-36/5 , 1978). 

~~ 

Type of 

Prope r ty Pa rame te  r V a l u e  

Index Unit  weight 2640 kg/m3 (165 l b / f t 3 )  

Natural  moisture conten t  -e- 

Poros i ty  ( e f f e c t i v e )  0.4% 

S t re s s -  
s t r a i n  Young's modulus 1.7 x lo4 MPa (2.5 x lo6 lb / in2 )  

Poisson 's  r a t i o  0.18 

S treng th  Unconfined compressive 
s t r e n g t h  131 MPa (19,000 lb / in2)  

Tens i le  s t r e n g t h  6.9 MPa (1,000 lb / in2)  

Thermal Coef f i c i en t  of l i n e a r  
thermal expansion 8.1 x OC-1 (4.5 x 10-6 3-1) 

Heat capaci ty:  
Temperature, OC 

0 (32OF) 

- 

100 (212) 
200 (392) 

Thermal conduct ivi ty:  
Temperature , O C  - 

0 (32OF) 
50 (122) 

150 (302) 
200 (392) 
300 (572) 
400 (752) 

100 ( 2 1 2 )  

Heat Capaci ty,  W* sec/kg* 0 C - 
880 (0.21 BTU/lb-OF) 
920 (0.22) 
960 (0.23) 

Conductivity,  W/m OC - 
2.85 (1.65 BTU/h-ft OF) 
2.70 (1.56) 
2.56 (1.48) 
2.44 (1.41) 
2.34 (1.35) 
2.15 (1.24) 
1.99 (1.15) 
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Table 2.5. Hydraulic proper t ies  of d i f f e r e n t  hydrogeologic s t r u c t u r e s  
f o r  the  reference repos i tory  s i t e  a rea  i n  g r a n i t e  a t  depths 
of 1 m and 500 m (National Research Council, 1983). 

Water Travel  

Width t i v i  t y  (Unit  Gradient)  Under 0.00 1 
Conduc- Veloci ty  Time f o r  1 km 

Descript ion (m) ( d s )  Po r o s  i t y  (m/s) Gradient ( y r )  

Rock mass 
1 m depth 
500 m depth 

F i  rs t -order f r a c t u r e  
zones ( t e n s i o n )  

1 m depth 
500 m depth 

Second-order f r a c t u r e  
zones ( t ens ion )  

1 m depth 
500 m depth 

Second-order f r a c t u r e  
zones ( shea r )  

1 m depth 
500 m depth 

Second-order f r a c t u r e  
zones (compression) 

1 m depth 
500 m depth 

10-7 
10-10 

50 10-5 
10-8 

10 10-5 
10-8 

20 5 ~ 1 0 ' ~  
5 ~ 1 0 ' ~ '  

5 10-6 
10-9 

3 ~ 1 0 ' ~  
10 -5 

3 ~ 1 0 ' ~  3.33~10" 
10-4 10-4 

3 ~ 1 0 - ~  3 . 3 3 ~ 1 0 - ~  
10-4 10-4 

951 
3 170 

95 
317 

95 
3 1 7  

317 
105 7 

159 
5 29 
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an i so t rop ic  thermal expansion leading t o  g ra in  boundary cracking. The 
v a r i a b i l i t y  and ex ten t  of n a t u r a l  f r a c t u r e  systems precludes obtaining any 
r e l i a b l e  values of permeabili ty based on laboratory experiments. Fracture 
permeabili ty w i l l  vary,  and no t  necessa r i ly  decrease w i t h  depth,  i n  any 
predic tab le  manner, 
l o c a l i t i e s  a r e  no t  pred ic tab le  within a f a c t o r  of lo5  (Brace, W. F., 1980; 
a l s o  National Research Council, 1983) . 

Brace found t h a t  i n  s i t u  permeabili ty values  a t  s p e c i f i c  

Recent sampling and cha rac t e r i za t ion  of Climax g ran i t e  groundwater i nd i -  
c a t e  t h a t  chemical composition v a r i e s  considerably among samples and with 
depth. The major d i f f e rences  OCCUT with ch lor ide ,  sodium, calcium, s u l f a t e ,  
bicarbonate,  and magnesium (UCRL-53309, 1982). Table 2.6 shows r e s u l t s  from 
chemical analyses  of Climax groundwater samples. 
reported ranges f o r  S t r i p a  g r a n i t i c  groundwater cons t i t uen t s  f o r  comparison. 
Figure 2 . 2 shows chemical v a r i a t i o n  of groundwater with depth a t  S t r i pa .  

Included i n  the t ab le  a r e  

The deep g r a n i t i c  groundwaters a t  Climax were found t o  be n e i t h e r  d i l u t e  
nor i n  equi l ibr ium with the  gran i te .  
high i n  t o t a l  dissolved s o l i d s  (1110-1910 mg/L) and high i n  sodium (72-250 
mg/L) . 
the v a r i a t i o n  r e s u l t s  from d i f f e r e n t  f r a c t u r e  systems present  i n  the area from 
which the samples were obtained. 
groundwaters flowing i n t o  the a rea  v i a  f r a c t u r e s  a r e  chemically " ta i lored" by 
the f r a c t u r e  f i l l  ma te r i a l s  present ,  such a s  quar tz ,  c a l c i t e  and pyr i te .  The 
heterogeneity present  i n  the chemical composition of Climax groundwater sug- 
ges t s  t h a t  s i t e  cha rac t e r i za t ion  w i l l  r equi re  extensive groundwater sampling. 
With regard t o  the assessment and t e s t i n g  of waste package components, se lec-  
t ion  of syn the t i c  g r a n i t i c  groundwaters and t e s t  procedures need to  take i n t o  
account the p o s s i b i l i t y  of compositional v a r i a t i o n  t h a t  may r e s u l t  from complex 
f r ac tu re  flow systems. 

A s  ind ica ted ,  Climax groundwaters a r e  

The d i f fe rence  i n  composition between samples from Climax suggests t h a t  

Since g ran i t e  i s  e s s e n t i a l l y  impermeable, the 

2.4.4 Effec ts  of Temperature on Rock S t a b i l i t y  

Recent e f f o r t s  on the p a r t  of OCRD were concerned with e s t ab l i sh ing  ex- 
pected repos i tory  environments i n  a gener ic  g ran i t e  repos i tory  f o r  commercial 
high l eve l  waste (CHLW), defense high l e v e l  waste (DHLW), and spent  f u e l  (SF). 
Thermoelastic a n a l y s i s  was undertaken f o r  the purposes of pred ic t ing  s t r e s s e s  
and displacements i n  response to  the elevated temperatures induced by the waste 
package a s  wel l  a s  stresses r e s u l t i n g  from excavation of t h e  borehole (€%MI/ 
OCRD-9, 1983). The model used i n  the OCRD study assumed a two-row configura- 
t i on  of waste conta iners ,  a repos i tory  depth of 1000 m and i n i t i a l  temperature 
of 2OoC. 
bas ic  parameters per ta in ing  t o  the room and d r i l l h o l e .  
generic  g r a n i t e  p rope r t i e s  used (BMI/OCRD-7, 1983). 
model, during the  f i r s t  25 years  a f t e r  emplacement the d isposa l  room remained 
open; a t  25 years  the room was backf i l l ed  with crushed g ran i t e .  
study ind ica t e  t h a t  the e f f e c t  of temperature on the v e r t i c a l  stresses exceeds 
t h a t  induced by excavation and may r e s u l t  i n  an unstable  d r i l l h o l e .  I n s t a b i l -  
i t y  takes place with elevated temperatures w i t h  t he  uppe r  p a r t  of the borehole 
becoming more unstable  than the lower portion. 

Figure 2.3 shows the thermal model used; Table 2.7 p resents  the 
Table 2.8 g ives  the 

For the purposes of the 

R e s u l t s  of the  

Af te r  t e n  years  the a n a l y s i s  
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Table 2.6. Chemical ana lyses  of Climax and S t r i p a  groundwater samples 
(concent ra t ions  i n  mg/L except as  noted).  Taken from 

UCRL-53154, 1981; UCRL-53309, 1982. 

C-36 S t r i p a  CGW-1 "-01 UG-02 C- 30 
Parameter ( l o l a  (1) ( 3 )  (2 )  (2 )  (Ranges ) 

Na 
Ca 
K 
Mg 
S r  
cs 
A 1  
Si02 
U 
Fe . 

Zn 
Mn 
L i  
W 
Mo 
As 

T i  
c1 

S 
HCO3 

F 
TDS 
Conductivity (US) 
Dissolved 0 2  (mg/L) 
Eh (mV) 
PH 
Sample depth (m> 

PO4 

so4 

NO3 

250 
283 
3.4 
0.9 
5.6 
0.002 
0.03 
15.8 
1.8 
0.006 
0.005 
0.05 
0.25 
0.15 
0.72 
0.03 

<0.5 
0.004 
77 
1060 

co.01 
163 

(0.02 
0.9 
1900 
2 160 

co.01 
+410 

7.3 
420 

2 29 
240 
3.8 
4.8 
7.9 

0.05 
22.5 
18.5 
0.5e 
0.03e 
0.008 
0.17 
ND 
0.22 
ND 
0.5 
0.02 
160 
850 
ND 
65 
ND 
ND 
1770 
2050 
ND 
ND 
8.2 
420 

N D ~  

2 14 
114 
4.7 
1.5 
4.2 
ND 
0.02 
23.9 

0.8d 
0.03d 
0.05 
0.17 
ND 
0.09 
ND 

(0.3 
c0.002 

70 
480 
3 .O 
16 5 
ND 
1.4 
1110 
1340 

<O. 15 
+8 6 

7.5 
565 

<o. 1 

7 2  
16 1 
6.5 
118 
0.8 
ND 

<O. 05 
29.3 

<o. 1 
0.003 
0.008 
0.002 
0.14 
ND 
0.20 
ND 
1.9 
0.003 
7 7  
750 
ND 
16 7 
ND 
ND 
19 LO 
1700 
ND 
ND 
8 .1  
64 

56 
126 
4.8 
63 
1.8 
ND 

c0.05 
33.8 
<0.1 
c0.004 

0.004 
0.03 
0.07 
ND 
0.18 
ND 
1.2 

<0.001 
52 
325 
ND 
3 16 
ND 
ND 
1150 
1200 
ND 
ND 
7.8 
73 

43- 125 
10-59 
0.2-5.4 
0.5 

11.0-12.8 

0.02-0.24 

52-283 
2.7-19 

15.4-78.7 

8.85-9.75 

aNumbers i n  parentheses a r e  number of samples analyzed. 
bND = Not determined. 
CTDS = Tota l  dissolved s o l i d s  (mg/L). 
dSample contaminated with Fe and Zn from d r i l l  b i t .  
eSample contaminated by wire mesh covering c o l l e c t i o n  s i t e .  
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Figure 2 . 2 .  Geochemical variation o f  groundwaters w i t h  depth 
(UCRL-53154, 1 9 8 1 ) .  
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Figure 2 . 3 .  Thermal m o d e l  -- a d i a b a t i c  boundaries (BMI/OCRD-9, 1983). 
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Table 2 . 7 .  Descript ion of  d i sposa l  room and conta iner  d r i l l h o l e  
(BMI/OCRD-9, 1983). 

C h a r a c t e r i s t i c s  CHLW SF 

Room Decript ion:  
Room width (m) 7 . 5 0  7 . 5 0  7 . 5 0  

Adjacent p i l l a r  th ickness  ( m )  2 2 . 5 0  2 2 . 5 0  2 2 . 5 0  
Room height  (m) 7 . 0 0  7 .OO 7 .oo 

Container Emplacement Holes: 
Rows p e r  room 
Row sepa ra t ion  (m) 
Hole p i t ch  (along row) (m) 
Hole depth (m) 
Hole diameter (m) 
Containers p e r  hole 
Container length  ( m )  
Container diameter (m) 
Container power (W)* 
Areal thermal loading ( W / m 2 )  

2 
2 . 5 0  
2 . 6 7  
5 .OO 
0 . 5 2 4  
1 
3 .00  
0 . 3 2 4  

1000 
25 

2 2 
2 . 5 0  2 . 5 0  
1.86 1 . 8 3  
5 . 0 0  6 . 7 0  
0.810 0 . 5 5 6  
1 1 
3.00 4 . 7 0  
0.610 0 . 3 5 6  

256 5 5 0  
9 . 2  20  

* A t  time of emplacement. 
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Table 2 .8 .  Mater ia l  and s t r e n g t h  p r o p e r t i e s  (BMI/OCRD-9, 1983). 

Crushed 
Property Grani te  Grani te  A i r  SF CHLW DHLW 

Thermal conduct ivi  ty  
(W/m-K) 

S p e c i f i c  h e a t  
(J/kg-K) 

Coeff ic ien t  o f  
thermal expansion 
(0c-1) 

Density (kg/m3) 

E l a s t i c  nodulus 
(GPa) 

Poisson 's  r a t i o  

Cohesion (MPa) 

Angle of i n t e r n a l  
f r i c t i o n  (Deg) 

2.52 0.266 75a 1.21b 

809.3 809.3 3 14 837. qb 

2650 1828 1 .2  2995b 
no dens i ty  

49.9 10 0.001 --- 

1 . 2 1  1.35 

837.4 1047 

2995 2800 

aEquivalent conduct iv i ty  t o  s imulate  r a d i a t i v e ,  convective and 
hea t  t r a n s f e r .  

conductive 

bIn terna l  d e t a i l s  of the conta iners  were ignored. The conta iner  w a s  modeled 
a s  a h e a t  generat ing s o l i d  which does n o t  a f f e c t  the  accuracy of the temperature 
predicted on the  conta iner ' s  su r f ace  and i n  the  g r a n i t e .  
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i nd ica t e s  t h a t  i n  the case of both the CHLW and SF, the d r i l l h o l e  i s  experienc- 
i ng  i n s t a b i l i t y  along i t s  e n t i r e  length. Evidence of t e n s i l e  s t r e s s e s  along 
the d r i l l h o l e  were h ighes t  f o r  CHLW. It  should be noted t h a t  t h e  magnitude of  
these t e n s i l e  s t e s s e s  w i l l  depend on the i n i t i a l  condi t ion of the rock ( i , e . ,  
p r i o r  to excavation) and t h a t  the presence of f i s s u r e s  and j o i n t s  w i l l  r e s u l t  
i n  lower s t r e s s  l e v e l s  r e q u i r e d  to  induce f a i l u r e  (BMI/OCRD-9, 1983). 

A laboratory inves t iga t ion  of t he  mechanical s t r eng th  of Climax s tock  
quartz monzonite, Nevada Test S i t e ,  was undertaken i n  order  t o  determine the 
e f f e c t s  of r ad ia t ion  on t h e  host  rock (UCRL-87475, 1982). Gamma i r r a d i a t i o n  
was conducted on samples obtained from a sec t ion  of 22-inch diameter core. The 
samples were exposed t o  a t o t a l  dose of 1.3 x lo9 rads. The samples (25.4-m 
diameter) were taken from the  core f o r  un iax ia l  compression and t e n s i l e  t e s t -  
ing.  Tensi le  tests ind ica ted  no d i f fe rence  i n  s t r eng ths  between the i r r a d i a t e d  
and con t ro l  samples; a mean of 11.9 MPa -I- 1.5 MPa f o r  the former (15 samples) 
and a mean of 11.4 MPa + 1.8 MPa f o r  the-latter (14 samples). 
t e s t s  indicated t h a t  th; e f f e c t s  of gamma i r r a d i a t i o n  may have contr ibuted t o  
the reduct ion of the u l t imate  s t r eng th  of the rock. The 14 i r r a d i a t e d  samples 
exhibi ted a mean s t r eng th  of 163.7 MPa + 35.2 MPa while the con t ro l  samples had 
a s t r eng th  of 204.4 MPa + 33.4 MPa. 
increase i n  temperature Turing the t e s t ing .  

Compression 

Thy samples were no t  subjected to  any 

Conclusions based on t h e  LLL work ind ica t e  t h a t  gamma i r r a d i a t i o n  has a 
degrading e f f e c t  on the unconfined compressive s t r eng th  of the rock and there  
i s  a p o s s i b i l i t y ,  based on SEM examination of the samples, t h a t  i r r a d i a t e d  rock 
w i l l  tend to  s u f f e r  microfractur ing a t  lower s t r e s s  l eve l s .  

2.4.5 Waste Package Considerations f o r  a Granite Repository 

Granite rocks t y p i c a l l y  e x h i b i t  low s o l u b i l i t i e s  i n  water (commonly (300 
These rocks cont r ibu te  a r e l a t i v e l y  low s i l i c a  mg/L t o t a l  dissolved s o l i d s ) .  

content  and a l k a l i  concentrat ions ( t y p i c a l l y  ( 2  meq/L) with sodium dominance 
over potassium (Matthess, G., 1982). Shallow g r a n i t i c  groundwater i s  typ ica l ly  
i n  the n e u t r a l  pH range, and s l i g h t l y  oxidizing.  Deeper groundwater i s  a l s o  i n  
the n e u t r a l  pH range and s l i g h t l y  reducing. In  some l o c a l i t i e s ,  p a r t i c u l a r l y  
i n  the lower zones of slow groundwater flow, high C1’ concentrat ions may be 
encountered, Chebotarev ( i n  Freeze, R., 1979) has determined t h a t  a s  these 
groundwaters flow from the upper zones of well  leached rocks,  where the dom- 
inan t  anion i s  HC03, t o  the  lower zones of s luggish flow, over geologic 
times, t h e  groundwater tends to  evolve chemically toward the composition of 
seawater. The dominant anion species  evolve a s  follows with each dominant 
cons ti tuen t given f i r s t  : 

HCOg -> HCO?j + SO2- -> SO2- + HCO5 -> SO2- + 4 4 4 

c1- -> c1- + so;- -> Cl’. 

Deep g r a n i t i c  water may, therefore ,  be character ized by o ld  and extremely slow 
moving s a l i n e  br ines .  
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I n  Sweden, a n  e a r l y  waste package design i s  composed of a 10-cm th i ck  l e a d  
vesse l  t h a t  i s  sheathed wi th  6 mm of t i t an ium a l loy .  The maximum rock tempera- 
t u r e  expected is  -5OoC (wastes a r e  to  be s tored  a t  sur face  f a c i l i t i e s  f o r  40 
years  p r i o r  to emplacement). 
material. Spent f u e l  w i l l  be placed i n  copper conta iners  and bentoni te  w i l l  
serve a s  packing material  f o r  the SF design as  w e l l  (Ahlstrom, P . ,  1979; 
UCRL-53154, 1981). 
i n  a g ran i t e  r epos i to ry  has n o t  been formally proposed. 

A bentonite-sand mixture  w i l l  be used as packing 

A t  the  present  t i m e  a U.S. waste package design f o r  u s e  

The monitoring of cu r ren t  Swedish KBS e f f o r t s  a r e  of i n t e r e s t  t o  the  Waste 
Package Program i n  providing important informa t ion  on mu1 ticomponent waste 
package material  t e s t i n g  i n  advance of a U.S. waste package design. 

In a j o i n t  p r o j e c t  between the Universi ty  of F lo r ida ,  Savannah River  
Laboratory (SRL), and KBS, a t tempts  are  under way t o  eva lua te  the cor ros ion  
behavior of  waste g l a s s  t h a t  inc ludes  SRL defense waste g l a s s e s  and Swedish 
g l a s s  compositions. Table 1 shows the waste g l a s s  compositions used i n  these 
ongoing eva lua t ions  (Hench, L , ,  1982; DP-MS-83-66, 1983). 

Table 2,9 KBS-SRL waste g l a s s  compositions (weight percent) .  

Oxide ABS 39 ABS 41 SRL-A SRL-B SRL-C 

s io2 
B2°3 
A1203 
Na20 
Fe203 
ZnO 

Waste 
L i 2 0  

48.5 
19.1 
3.1 

12.9 
5.7 
0 
0 
9 

~ 

52.0 
15.9 
2.5 
9.9 
3.0 
3.0 
3.0 
9 

~ -~ 

40.6 
10.3 
2.7 
12.4 
13.4 

0 
4.0 

29.8 

47.7 
7.0 
2.7 
9.1 

13.4 
0 
4.9 

29.8 

37.6 
9.6 
3.2 

11.5 
15.8 
0 
3.7 

35 

The experimental  condi t ions were a s  follows: Assemblies of g l a s s  samples  
(5-mm-thick s l ices  taken from a 51-mm diameter x 80-mm long cas t ing )  were pre- 
pared by s tacking  them toge ther  wi th  o the r  ma te r i a l s  t h a t  included metals  and 
compacted bentoni te .  These assemblies  were placed i n  boreholes loca ted  a t  the 
350-m l eve l  of the S t r ipa  mine. The g l a s s e s  were analyzed p r i o r  t o  b u r i a l  and 
a f t e r  one- and three-month s torage  a t  9OoC (pH -8.1). 

Although, a t  present ,  only a l imi ted  amount of da ta  a r e  ava i l ab le  surface 
ana lys i s  has shown t h a t  the most extensive sur face  degradat ion occurred on 
g l a s s e s  in t e r f aced  with bentoni te .  R e s u l t s  are  only ava i l ab le  on the one- 
month samples. 

An assessment of material requirements and conta iner  and waste form 
behavior w i l l  r equ i r e  extensive and d e t a i l e d  information on groundwater 
composition and rock mineral composition f o r  the s p e c i f i c  s i t e  under 
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consideration. A s  s t a t e d  by Rydberg (UCRL-53155, 19811, the behavior of t h e  
conta iner  and waste form w i l l  be dependent on the maximum s o l u b i l i t i e s  of the 
chemical elements i n  groundwater and on the k i n e t i c s  of the d i s so lu t ion  
process. 
es t imate  the behavior of waste package components based on assumed 
environmental condi t ions.  

Unti l  such s i t e - s p e c i f i c  information becomes ava i l ab le ,  one can only 

Chemical f a i l u r e  modes f o r  TiCode-12, Type 304L s t a i n l e s s  s t e e l ,  and car- 
bon s t e e l  i n  b a s a l t  have been summarized i n  p r i o r  BNL r epor t s  (NUREG/CR-2492, 
Vol. 3, 1983; NUREG/CR-2482, V o l .  5, 1983) and a r e  a l s o  appl icable  to  the type 
of repos i tory  condi t ions l i k e l y  to  be encountered i n  g r a n i t i c  formations. 

2.4.6 Conclusions 

Current DOE e f f o r t s  i n  the a rea  of c r y s t a l l i n e  repos i tory  development have 
focused on s i t e - s e l e c t i o n  c r i t e r i a ,  i n i t i a l  reg iona l  screening and, predomi- 
nan t ly ,  thermomechanical i nves t iga t ions  of g r a n i t e  formations (NTS). Inves t i -  
gat ions have also been conducted on the chemical cha rac t e r i za t ion  of NTS 
groundwaters. To da te ,  t he re  has been no formal presenta t ion  of a waste 
package design f o r  use i n  a g ran i t e  repos i tory .  

Grani t ic  formations were shown to  e x h i b i t  considerable  v a r i a t i o n  i n  hy- 
d rau l i c  conduct ivi ty ,  permeabili ty and poros i ty  a s  a resul t  of v a r i a t i o n  i n  the 
f r ac tu re  system. With respec t  t o  waste package performance, these parameters 
become important no t  only with respec t  to  flow o r  water a v a i l a b i l i t y  but  a l s o  
with respec t  to the age and chemical composition of t he  groundwater. As i nd i -  
cated by r ecen t  t e s t i n g  a t  NTS, Climax g ran i t e  groundwater composition tends to  
vary with depth. 
This heterogenei ty  i n  chemical composition makes i t  d i f f i c u l t  t o  es t imate  the 
maximum s o l u b i l i t i e s  of the chemical elements i n  groundwater and the  k i n e t i c s  
of the d i s so lu t ion  process. The age of the groundwater and the f r a c t u r e  system 
of the g ran i t e  f o r  the p a r t i c u l a r  l o c a l i t y  under inves t iga t ion  w i l l  a l s o  de te r -  
mine the dominant ion species present  and whether the  m e t a l l i c  components of 
the waste package a r e  l i k e l y  to  encounter a high C1' environment. The pres- 
ence of thermal and r a d i a t i o n  f i e l d s ,  a s  a consequence of waste emplacement, 
may a c t  t o  weaken the  u l t imate  s t r eng th  of the rock and a l t e r  t h e  f rac ture j f low 
sys tem. 

This f inding was confirmed by t h e  S t r i p a  inves t iga t ions .  
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3. WASTE FORM FAILURE AND DEGRADATION MODES 

P r i o r  BNL Biannual Reports have summarized b o r o s i l i c a t e  g l a s s  f a i l u r e /  
degradation modes f o r  b a s a l t i c  and sa l t  r epos i to ry  condi t ions (NUREG/CR-2482, 
Vol. 1, 1982; NUREG/CR-2482, Vol. 4, 1983). Comparatively l i t t l e  work has 
been performed on the behavior of g l a s s  under an t i c ipa t ed  t u f f  and g r a n i t i c  
repos i tory  condi t ions.  Such s tud ie s  w i l l  be reviewed, however, when da ta  
become a v a i l a b l e ,  

4. CONTAINER SYSTEM FAILURE AND DEGRADATION MODES 

P r io r  BNL Biannual Reports have addressed conta iner  f a i lu re ldeg rada t ion  
modes f o r  b a s a l t i c  and s a l t  r epos i to ry  condi t ions.  Mater ia ls  evaluated 
include carbon steel, stainless s t e e l  and titanium-based a l l o y s  (NUREG/CR- 
2482, Vol. 2, 1983; NUREG/CR-2482, V O ~ .  3,  1983; NUREG/CR-2482, Vol. 4 ,  1983; 
NUREG/CR-2482, V O ~ .  5 ,  1984). 

5 .  PACKING MATERIAL FAILURE AND DEGRADATION MODES 

5.1 Basalt- ,  Zeol i te-  and Bentonite-Containing Packing Mater ia l s  

E a r l i e r  BNL Biannual Reports have addressed the s u b j e c t  ma te r i a l s  main,y 
with respect t o  the  b a s a l t  repos i tory  program (NUREG/CR-2482, Vol. 3, 1983; 
NUREG/CR-2482, Val. 4,  1983). 

5.2 Crushed Tuff Packing Materials 

This p a r t  of the  program has been completed and i s  reported i n  a p r i o r  
BNL Biannual Report (NUREG/CR-2482, Vol. 5, 1984). 

5.3 Crushed S a l t  Packing Mater ia l  (E. Veakis) 

Current conceptual designs f o r  a waste package i n  a s a l t  r epos i to ry  do 
no t  s p e c i f i c a l l y  include the use of a t a i l o r e d  packing ma te r i a l  component 
(ONWI-438, 1983). J u s t i f i c a t i o n s  c i t e d  f o r  the omission of t a i l o r e d  packing 
mater ia l  i n  the  Westinghouse designs a r e  (1) t h a t  the candidate  waste con- 
t a i n e r s  can be shown to  meet the containment requirements and (2 )  given the 
expected l imi ted  amounts of b r ine  present ,  t a i l o r e d  packing ma te r i a l  w i l l  n o t  
be required t o  con t ro l  f l u i d  flow. The use of packing ma te r i a l  w a s  only taken 
i n t o  cons idera t ion  i n  the  Westinghouse r epor t  a s  a means f o r  long-term waste 
i s o l a t i o n  i n  the  event the conta iner  was shown p o t  t o  meet the containment 
requirements. 

Previous e f f o r t s  reported i n  an e a r l i e r  Biannual Report addressed the 
s t a t u s  of d a t a  present ly  ava i l ab le  on bentoni te  and z e o l i t e  packing mater ia l s  
under condi t ions  expected i n  a s a l t  and b a s a l t  repos i tory  (NURECICR-2482, 
Vol. 4, 1983). These e f f o r t s  w i l l  n o t  be comprehensively repeated here;  
r a the r  the  main emphasis w i l l  be on data  pe r t inen t  to  an assessment of crushed 
s a l t  a s  packing mater ia l  . A 1  t e rna  t e  packing mater ia l s  t h a t  have been reported 
i n  the l i t e r a t u r e  f o r  a s a l t  waste package w i l l  only be b r i e f l y  d i s c u s s e d .  
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The p r inc ipa l  nea r - f i e ld  condi t ions an t i c ipa t ed  i n  a s a l t  repos i tory  
have been addressed a t  length i n  an e a r l i e r  Biannual Report (NUREG/CR-2482, 
Vol. 2 ,  1983), and w i l l  no t  be repeated here.  Maximum temperature expected, 
based on thermal loading per  u n i t  a r ea  a r e ,  however, presented i n  Table 5.1 
f o r  purposes of con t inu i ty  and c l a r i t y .  It should be noted t h a t  the repor t  
of Claiborne,  Rickertsen and Graham (ORNL/TM-7201) i s  used  by the Reference 
Repository Condit ions-Interface Working Group (RRC-IWG) a s  the bas ic  reference 
on expected r epos i to ry  condi t ions  (ONWI-483, 1983). Although the reference 
repos i tory  conf igura t ion  does n o t  address  the rma l  loadings higher than 
25 W/m2,  t h e  37 W/m2 loading was spec i f i ed  i n  t h e  Westinghouse design 
(ONWI-438, 1983) and i s  included f o r  comparative purposes t o  i l l u s t r a t e  t h e  
e f f e c t s  of higher  thermal loads. The maximum s a l t  temperature and temperature 
grad ien t  a r e  given i n  Figure 5.1 f o r  the  25 W/m2 a r e a l  loading. 

5.3.1 Brine Migration Ef fec t s  

I t  i s  w e l l  e s tab l i shed  t h a t  water i n  rock s a l t  may be present  a s  water of 
hydration i n  minerals ,  a s  i n t e r g r a n u l a r  water,  and a s  f l u i d  inc lus ions .  The 
behavior of such water m u s t ,  t h e r e f o r e ,  be assessed with r e spec t  t o  the  behav- 
i o r  of crushed s a l t  packing ma te r i a l ,  a s  w e l l  a s  o the r  waste package compo- 
nents.  Current ly ,  a j o i n t  e f f o r t  by the  U.S.A. and the Federal  Republic of 
Germany (FRG) i s  underway t o  measure b r ine  migration r a t e s  a t  the Asse s a l t  
mine i n  Germany (ONWI-242, 1983). The two types of b r ine  migration under 
cons idera t ion  i n  t h i s  s tudy include l i q u i d  i nc lus ion  migration through s a l t  
c r y s t a l s  and along gra in  boundaries and, a l s o ,  vapor migration along pressure  
grad ien ts .  Since laboratory and f i e l d  tests have shown t h a t  water present  i n  
rock s a l t  w i l l  migrate up a thermal g rad ien t  t o  t h e  waste package, i t  i s  i m -  
por tan t  to  a s ses s  the r a t e  of b r i n e  accumulation a s  a funct ion of temperature,  
thermal and pressure g rad ien t s ,  and s a l t  c h a r a c t e r i s t i c s .  

Jockwer (1981) conducted t e s t s  on 202 s a l t  samples from the  Asse s a l t  
mine i n  order  to  determine t h e  water conten t  of the s a l t  and any v a r i a t i o n s  
with d e p t h  and a t  d i f f e r e n t  s t r a t i g r a p h i c  leve ls .  
water content  i s  dependent on the amount of minor minerals present  conta in ing  
water of hydration and t h a t  water conten t  var ied  by a f a c t o r  of 10 wi th in  a 
d i s tance  of 1 m i n  var ious s t r a t i g r a p h i c  layers .  The l i b e r a t i o n  of water from 
the hydrated minerals was a l s o  found t o  be dependent on humidity. This r e l a -  
t i onsh ip  i s  shown i n  Figure 5.2 f o r  c a r n a l l i t e  (KMgC13.6HzO). 

H i s  f i nd ings  confirmed t h a t  

The 
r e l e a s e  ve loc i ty ,"  given a s  I ?  

G 

t * E  
g =- 

where G i s  weight l o s s  r e s u l t i n g  from the  l i b e r a t i o n  of hydrat ion water,  t i s  
time, and E i s  t o t a l  sample weight, i s  shown f o r  po lyhal i te  and k i e s e r i t e  i n  
Figures  5.3 and 5.4 on a log s c a l e  a s  a func t ion  of the  r ec ip roca l  absolu te  
temperature a t  varying humidity leve ls .  The da ta  a r e  shown schematical ly  so 
t h a t  es t imates  of r ep roduc ib i l i t y  cannot be made. 
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Table 5.1 Maximum temperatures i n  the s a l t  rock formation, container surface,  and waste centerline.a 

Waste Centerline 
S a l t  Container Surface (or  Center Pin) 

Maximum Years After Maximum Years After Maximum Years After 
Emplacement Temperature Emplacement Tem e r a t u r e  Emplacement 

OF O C  +--F 

HLW, 150 kW/acre 412 211 15 587 308 10 670 354 3 
(37.1 W/m2) 

HLW, 100 kW/acre 312 156 15 508 264 3 603 317 1.5 
(24.7 W/m2) 

0.5 580 304 HLW, 50 kW/acre 2 28 109 5 459 2 37 0.67 
( 12.4 W/m2) 

SF, 60 kW/acre 2 1 1  99 50 237 113 25 280 138 -5 
(14.8 W/m2) 

SF, 40 kW/acre 1 7 1  77 50 202 94 15 270 132 -3 
( 9.88 W/m2) 

aAssumes t h a t  waste i s  10 years o l d  on emplacement. The HLW decay r a t e s  were based on f u e l  t h a t  i s  a 
3:l mix of f resh U02 and MOX 
0.55 kW (one PWR f u e l  element) 

of an a i r  gap; an annulus between the container and the overpack. 

f u e l s .  The HLW container thermal loading was 2.16 kW, and the SF was 
Adapted from ORNL/TM-7201, 1980. 

bThe difference between s a l t  (host  rock) temperature and container temperature i s  due to  the presence 
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Figure 5 . 1 .  Temperature/ temperature gradient f o r  HLW (ONWI-242, 1983). 
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Figure 5 .2 .  Temperature a t  which tihe l iberat ion of  the hydration water 
of  c a r n a l l i t e  begins versus the absolute humidity 
(Jockwer, N . ,  1981). 
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Figure 5.3. Release v e l o c i t y  of the hydration water from polyhal i te  a t  
absolute humidities between 0 and 83.0 g/m3 versus the 
reciprocal absolute temperature (Jockwer, N . ,  1981). 

Figure 5.4. Release v e l o c i t y  o f  the hydration water from k i e s e r i t e  a t  
absolute humidities between 0 and 83.0 g/m3 versus the 
reciprocal absolute temperature (Jockwer, N . ,  1981). 
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Jenks and Claiborne' s (ORNL-5818, 1981) es t imates  of br ine  accumulation 
a r e  approximately 25 l i t e r s  for  CHLW, 8 l i t e r s  f o r  spent  f u e l  and 1 l i t e r  for  
DHLW i n  bedded s a l t  (over a 100-year time period).  
weight percent i nc lus ions ,  the estimated br ine  accumulation f o r  CHLW i s  -2.5 
l i ters w i t h  correspondingly l e s s e r  amounts f o r  spent  f u e l  and DHLW. The un- 
c e r t a i n t y  i n  these es t imates  i s  based to  a la rge  ex ten t  on the e f f e c t i v e  
permeabili ty of the rock s a l t  ad jacent  t o  the emplacement hole. 

In domal s a l t  with 0.03 

Brine migrat ion experiments conducted a t  the Avery Is land s a l t  mine in- 
cluded measurement of temperature, moisture c o l l e c t i o n ,  and p re -  and p o s t - t e s t  
permeabili ty [ONWI-190(4), 19831. E l e c t r i c a l  hea t e r s  emplaced on the f loo r  of 
the mine, a t  a depth of 169 m, were used  to  hea t  t h e  s a l t  over a period of 
-325 days a t  which poin t  heat ing was gradual ly  reduced (20% per day over f i v e  
days). The maximum temperature a t  t he  midheight of the  hea ter  borehole wal l  
was -51OC. During power reduct ion,  moisture was co l l ec t ed  from the borehole 
to determine moisture inflow a t  two l o c a l i t i e s .  Moisture c o l l e c t i o n  over the 
325 days was i n  the range of 5-8 g; however, one s i t e  experienced a moisture 
surge during power reduct ion and the  moisture inflow r a t e  increased to  -2.8 g 
per day. During power reduct ion the magnitude of measured s a l t  permeabi l i ty  
increased by approximately four orders  of magnitude. Table 5.2 presents  a 
summary of results.  Follow-up experiments and a more r e l i a b l e  moisture col-  
l ec t ion  system were recommended i n  f u t u r e  e f f o r t s .  

I n  order  to  avoid excessive br ine  accumulation a t  the emplacement hole ,  
Jenks and Claiborne (ORNL-5818, 1981) of fe red  the following recommendations: 

1. Locate the emplacement holes  wi th in  the s a l t  formation where there  i s  
a minimum amount of b r ine  t h a t  could conceivably migrate from the 
s a l t  i n t o  the emplacement hole.  

2. Employ designs and p r a c t i c e s  such t h a t  the wal l s  of the emplacement 
hole a r e  maintained under compressive s t r e s s e s .  I n  order  to  accom- 
p l i s h  t h i s  i t  may be necessary t o  employ conta iner  dimensions and 
packing mater ia l  t h a t  w i l l  minimize pos t -c losure  movement of the s a l t  
wal ls .  

3. Avoid impur i t ies  i n  the rock s a l t  t h a t  could y i e l d  water upon thermal 
o r  r a d i o l y t i c  decomposition and t h u s  con t r ibu te  to  the  amount of 
water t h a t  might migrate i n t o  the emplacement hole. Design the em- 
placement procedure so t h a t  t he  maximum temperature of the s a l t  wal l s  
does not  exceed about 25OoC i n  order  t o  avoid poss ib le  decrepi ta -  
t i on  of s a l t ,  and the r e l ease  of trapped water. 

4. Design so t h a t  the  maximum p r e s s u r e  within the emplacement hole re- 
mains less than the compressive s t r e s s e s  on the s a l t w a l l s ,  t o  reduce 
the development of microcracks within the s a l t ,  

5. Consider the u s e  of a des i ccan t -ba r r i e r  mater ia l  a s  p a r t  of a back- 
f i l l ,  wi th  the objec t ive  of absorbing water, sh ie ld ing  the me ta l l i c  
components from br ine  and cor ros ive  vapors, and possibly sorbing 
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Table 5.2. S i t e  SB -- hea te r  borehole accumulated t o t a l  moisture ga in  compared 
to  approximate permeabi l i ty  and pressure decay r a t e  during hea ter  
power reduct ion [ONWf-190(4), 19831. 

Heater Borehole Pressure 
Percent  Measurement Accumulated Approxima te Decay 

F u l l  Heater i n  Brine Tota l  Moisture Permeabi l i ty  Rate 
Date Powe ra Bore ho l e  (8)  (m2) (kPa/h) 

712717 9b 

8/25/80 

8/26/80 

8/27/80 

8/28/80 

8/29/80 

9/2/80 

9/3/80 

9/10/80 

80 

60 

40 

20 

00 

00 

00 

00 

B4 
B 8  
B2 

B2 
B 4  
B8 

B2 
B4 
B 8  

B2 
B4 
B8 

B2 
B4 
B8 

B2 
B4 
B8 

B 2  
B4 
B8 

B2 
B4 
B8 

B2 
B4 
B8 

------ 

17.5lC 

18.02 

18.80 

19.85 

23-23 

33.78 

34.65d 

------ 

2 x 10-21 <0.690 
3 x 10-21 C0.690 
Not Tested Not Tested 

<O. 690 
<0.690 
C0.690 

<O. 690 
1.380 

(0.690 

21.0 
8.3 
4.1 

34.0 
32.0 
24.0 

131.0 
94.0 
52.0 

1080.0 
1186.0 
896.0 

919.0 
758.0 
805.0 

514.0 
655.0 
557.0 

aPower leve l :  3 KW; hea t  f lux:  888.6 W/m2; c a n i s t e r  and h e a t e r  dimensions: 

bPre- test  condi t ions.  
CTotal amount of moisture previously c o l l e c t e d  from the hea te r  borehole a t  

dFinal  amount of t o t a l  moisture co l l ec t ed  p r i o r  to decommissioning of S i t e  SB 
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radionucl ides .  Dessicants such a s  CaO o r  MgO i n  combination with 
sand o r  crushed s a l t  a r e  es t imated to absorb more than the p r e d i c t e d  
accumula t i o n  of br ine.  

5.3.2 Temperature and Radiation Ef fec t s  

I n  bedded s a l t ,  da ta  ava i l ab le  ind ica t e  t h a t  b r ines  a r e  r i c h  i n  MgC12 
(-2.4 M), sa tura ted  i n  Cas04 (-0.03 M) and NaCl (<2.0 M), and conta in  
appreciable  amounts of B r '  (-0.05 M): 
br ines  would r e s u l t  i n  a more cor ros ive  environment than domal s a l t  b r ines  
which conta in  a much lower concentrat ion of s o l u t e s  o the r  than NaCl 

The MgC12 presegt  i n  bedded s a l t  

(ORNL-5818, 1981). 

Recent work a t  BNL shows t h a t  preannealing Carlsbad, New Mexico, rock 
s a l t  has a s t rong  inf luence on the pH and t o t a l  base of so lu t ions  made by 
d isso lv ing  3 gms of s a l t  i n  25 mL of  deionized water. The da ta  shown i n  
Figure 5.5 a r e  f o r  s a l t  preheated f o r  24 h a t  temperatures i n  the range of 
30 t o  1 6 7 O C .  Total  base increased from -0.13 veq/g f o r  unannealed rock 
s a l t  s o l u t i o n s  to  1.5 veq/g f o r  so lu t ions  from rock s a l t  annealed a t  125OC. 
The pH ranged from 6.4 (unannealed) t o  9.5 (annealed a t  125OC). 
e f f e c t s  a r e  dependent on s i te-specif ic  chemical composition ( impur i t i e s )  
of the rock s a l t  and may d i f f e r  from l o c a l i t y  to  l o c a l i t y .  The increased 
a l k a l i n i t y  i s  probably assoc ia ted  wi th  the thermal decomposition of b icar -  
bonates to  carbonates,  as  w e l l  a s  t h e  r e l ease  of a c i d i c  gases p r i o r  to d i s -  
so lu t ion  of the s a l t .  Table 5.3 g ives  supporting data  obtained from analy- 
s e s  of gases re leased from heated uni r rad ia ted  s a l t  and a l s o  samples of s a l t  
t h a t  were heated during gamma i r r a d i a t i o n  i n  dry and w e t  condi t ions.  
un i r rad ia ted  s a l t ,  s i g n i f i c a n t  q u a n t i t i e s  of C02  and SO2 were re leased  
during the  i n i t i a l  30-minute heat ing period a t  18OoC,  together  with H 2 ,  
0 2  and water vapor. I n  the following 15-minute hea t ing  period, s i m i l a r  
q u a n t i t i e s  of these gases  were released. 
s a l t ,  much l a r g e r  q u a n t i t i e s  of H 2  and C02 a r e  re leased.  
rad ia ted  i n  the presence of s a tu ra t ed  b r ine  even more hydrogen i s  released 
bu t  the Cog appears to  have dissolved i n  the  b r ine  to a major ex ten t .  The 
BNL study shows t h a t  t h i s  b r ine  becomes a c i d i c  during i r r a d i a t i o n  (pH -3.7) 
and seems to be assoc ia ted  with t h e  d i s so lu t ion  of a c i d i c  gases re leased  
during heat ing and i r r a d i a t i o n .  

These 

For 

During the i r r a d i a t i o n  of "dry" 
For s a l t  ir- 

Other s t u d i e s  on gas  re leased from heated A s s e  mine s a l t  were ca r r i ed  
o u t  i n  a German program (Uerpmann, P., 1982, Jockwer, N.,  1982, 1983). They 
detected H2S, H C 1 ,  C 0 2 ,  S02 ,  CH4, H 2  and 02.  
var ied  depending on s a l t  mineralogy. They be l ieve  t h a t  the  H C 1  i s  generated 
by thermal decomposition of t r a c e  minerals.  Figure 5.6 shows some of the data  
obtained f o r  s a l t  which was gamma i r r a d i a t e d  up t o  5 x l o 7  rad a t  -6OOC 
f o r  - 6 0  h. Gas r e l ease  r a t e s  were measured a s  the i r r a d i a t e d  s a l t  was slowly 
heated i n  a vacuum. They show t h a t  gas  generat ion i s  a t  a maximum a t  230 and 
33OoC f o r  un i r rad ia ted  s a l t .  The maxima f o r  i r r a d i a t e d  mater ia l  a r e  s h i f t e d  
to  higher  temperatures. I r r a d i a t i o n  i s  a l s o  found to  increase  t h e  y i e l d s  of 
H2S, H C 1 ,  COP and CH4. 

The gas components 
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Figure 5 .5 .  P lot  of pH and to ta l  base of brine versus temperature of  
annealing of parent rock s a l t  showing the temperature 
s e n s i t i v i t y  of the rock s a l t  used i n  t h i s  study. 
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Table 5.3 Experimental r e s u l t s  of gas ana l  s e s  of samples i r r a d i a t e d  w e t  
and dry a t  a dose r a t e  of 8 x loz rad/h a t  a temperature of 
125O - + 50Ca (NUREG/CR-3091, Val. 3, 1984). 

Volume Percent of Gas 

Sample Radiation 
Number Dose ( rad)  H7 07 co9 so 7 H9O 

L L L .. L 

No I r r a d i a t i o n ,  Heated a t  18OOC 

30 minutes a f t e r  heat ing 0.38 3.1 2.9 0 -02 77 
45 minutes a f t e r  heat ing 0.59 2.5 3.7 0.02 79 

Dry I r r a d i a  t ionsb  

RS4D 7.2 x lo8 72 ---d 22.2 BDL 5.6 
RS8D 1.3 109 64 BDL 9.0 3.6 23.2 
RS5D 2.6 109 65 BDL 29.4 BDL 5.9 

Wet I r r a d i a t i o n s C  

RS29T 7.1 x lo8 94 2.78 3.3 ND ND 
RS 14T 4.8 109 99 0.43 0.12 BDL ND 

normalized t o  A r  (assuming a l l  A r  present  i s  due to  atmospheric 
contamination) i n  order  to quant i fy  any N2/02 contamination from a i r  
ingress .  Data expressed i n  mole percent. 
BDL = Below Detection L i m i t s .  
ND = Not Determined. 

bSystem backf i l led  with 10 ps ig  N2.  
capsule. 

CSystem backf i l l ed  with 5 ps ig  He. Gas Generated = 63% of t o t a l  i n  
capsule. 

dContamination, possibly by sea l ing  torch,  c o n s i s t s  of a la rge  quan t i ty  of 
02 has been el iminated from these data. This sample may y ie ld  data  t h a t  
are representa t ive  of d i f f e r e n t  experimental conditions.  

Accuracy of analyses  is  - +lo%. 

Gas generated = 0.33% of t o t a l  i n  
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The above-mentioned BNL study a l s o  evaluated the a l k a l i n i t y  of br ines  
made by d isso lv ing  gamma i r r a d i a t e d  s a l t  i n  deionized water. Col lo ida l  sodium 
produced during i r r a d i a t i o n  in t e rac t ed  wi th  the water t o  y i e l d  NaOH and H 2 ,  
causing the pH to r i s e  t o  a s t a b l e  value of about 9.5. This f ind ing  has i m -  
por tan t  impl ica t ions  with respec t  to  waste package performance s ince  br ine  
migrating through i r r a d i a t e d  s a l t  would tend to  become increas ingly  a l k a l i n e .  
E a r l i e r  work i n  the cu r ren t  program has addressed the e f f e c t s  of pH and H 2  
absorpt ion on the corrosion of a range of candidate high l e v e l  waste conta iner  
and waste form ma te r i a l s  (NUREG/CR-2482 , Vol. 3,  1983 , and NUREG/CR-2482 , 
Vol. 5 ,  1984). 

Apart from compositional and pH e f f e c t s  caused by the d i s so lu t ion  of 
heated and hea ted / i r rad ia ted  s a l t ,  i t  i s  important to  understand how br ine  
i t s e l f  i s  a f f ec t ed  by i r r a d i a t i o n  and how t h i s  may inf luence waste package 
i n t e g r i t y .  Preliminary PNL experiments, involving gamma i r r a d i a t i o n  of 
Permian Basin b r i n e ,  showed r a d i o l y t i c  gas formation which may r e s u l t  i n  
p re s su r i za t ion  [ONWI-9(83-1), 19813. The gases formed cons is ted  of -70% 
hydrogen with the remainder pr imar i ly  oxygen, Gas generat ion i n  Permian 
Basin b r ine  was g r e a t e r  than t h a t  expected f o r  sa tura ted  MaCl so lu t ions  and 
was a t t r i b u t e d  to the presence of B r '  o r  o the r  t r a c e  impur i t ies  which tend 
t o  hinder  recombination of r a d i o l y t i c  products (PNL-SA-10928, 1983). 

S tudies  on the  i r r a d i a t i o n  of WIPP Brine A showed t h a t  the pH of a c i d i c  
b r ine  w i l l  increase ,  a s  shown i n  Table 5.4 (BNL-NUREG-33012, 1983). Based on 
the above d iscuss ion  i t  seems l i k e l y  t h a t  b r ine  i n i t i a l l y  reaching a waste 
conta iner  w i l l  be a c i d i c  because of i n t e r a c t i o n s  with gases ,  such a s  HC1. As 
increasing q u a n t i t i e s  of c o l l o i d a l  sodium a r e  formed i n  the rock s a l t  from 
gamma i r r a d i a t i o n ,  b r ine  which l a t e r  reaches the conta iner  w i l l  be a l k a l i n e .  
An a l k a l i n e  br ine  environment i s  p o t e n t i a l l y  bene f i c i a l  to  the loca l i zed  
aqueous corrosion of Grade-12 t i tanium conta iners ,  s i n c e  the p o t e n t i a l  f o r  
p i t t i n g  and crev ice  a t t a c k  i s  decreased (BNL-NUREG-33012, 1983). However, 
hydrogen generated by b r ine  r a d i o l y s i s ,  and from c o l l o i d a l  sodium in t e rac -  
t i o n s  wi th  br ine ,  may present  a s i g n i f i c a n t  problem i n  terms of hydrogen- 
assisted f a i l u r e  i n  t h i s  a l l o y .  

I n  the case of low-carbon s t e e l  exposed to  anoxic (-0.5 ppm dissolved 
02) simulated Permian Basin b r ine  a t  15OoC (one-month tes t  durat ion;  
refreshed autoclave system) conducted a t  PNL, cor ros ion  r a t e s  ranged from 0.48 
t o  0.74 mi ls /yr  [ONWI-9 (83- l ) ,  19821, A tenfold increase  i n  cor ros ion  r a t e s  
was reported when the s t e e l  was exposed to a 1 x lo5  rad/h gamma f i e l d  under 
i d e n t i c a l  experimental condi t ions.  The major cor ros ion  product was magnetite 
(Fe3O4). PNL reported the formation of an anhydr i te  phase (CaS04), i n  
add i t ion  t o  magnetite i n  the  i r r a d i a t e d  samples. 

5.3.3 S a l t  Consolidation Ef fec t s  

The consol idat ion of a crushed s a l t  packing during service m u s t  be 
estimated s i n c e  i t  w i l l  a f f e c t  thermal p r o p e r t i e s ,  b r ine  migration r a t e s  and 
radionucl ide release.  Such inves t iga t ions  were undertaken by Sandia National 
Laborator ies  on s a l t  fragments measuring up to about one cent imeter  i n  s i z e  
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Table 5.4. Resul t s  of r a d i o l y s i s  of Brine A a t  room temperature. 
Tota l  dose -1.0 x lo9 rads a t  2.4 x l o6  rad/h. 

Run 11 Run 1 2  Run 13 

S t a r t i n g  pH 1.0 7.4 0.3 
F ina l  pH 5.8 7.1 5.3 

F ina l  pressure (MPa) 0.9 1.2 0.7 

Gas composition 
(mo l /percen t )  
*2 64.0 62.7 78.0 
0 2  27.4 29.4 19.1 
N 2  7.6 6.3 1.6 

H 2  io2 2.3 2.1 4.1 

Overall G 0.42 0.52 0.35 
G(H2) 0.32 0.38 0.32 

co2 0.8 0.1 0.2 

(SAND-82-0630, 1982). They included quas is ta t ic  t e s t s  a t  temperatures rangi  
from 21°C t o  100°C, a t  p r e s s u r e s  up t o  2 1  MPa. 
tests was a l s o  conducted over the  same temperature range a t  p r e s s u r e s  rangin 
from 1.72 MPa t o  10.1 MPa. 

A s e r i e s  of twelve creep 

R e s u l t s  from 5 quas is ta t ic  tests conducted a t  a compaction pressure of 
about 2 1  MPa showed t h a t  the average dens i ty  of  the compacted s a l t  increased 
by approximately 30 percent  over the  temperature range 20-100°C. A t  the 
higher  t e s t  temperatures the dens i ty  w a s  about  5 percent  g rea t e r .  Creep 
e f f e c t s  on compaction were small s ince  the t e s t  t i m e  was l i m i t e d  t o  2.2 
hours. 

Compaction of dry s a l t  w a s  a l s o  detected i n  compressive creep t e s t s  
l a s t i n g  55.6 hours. 
i n t a c t  s a l t ,  i .e. the void space between s a l t  fragments was 20 percent.  

The maximum dens i ty  achieved w a s  80 percent  of t h a t  f o r  

In  ea r l i e r  experiments, da ta  obtained ind ica ted  t h a t  the primary f ac to r s  
a f f e c t i n g  the ra te  of consol ida t ion  of s a l t  i n  the presence of  b r ine  were ap- 
p l ied  s t r e s s  and p a r t i c l e  s i ze .  It  was concluded t h a t  when crushed s a l t  i n  
br ine  is subjec ted  to  a cons tan t  s t r e s s ,  consol ida t ion  occurs  i n  an  approxi- 
mately l i n e a r  fash ion  wi th  the logarithm of time (ORNL-5774, 1981). I t  shoul 
be noted, however, t h a t  some experiments show t h a t  rock s a l t  being gamma ir- 
rad ia ted  i n  the presence of b r i n e  at 125OC w i l l  consol ida te  i n  the absence 
of an appl ied  s t r e s s  (NUREG/CR-3091, Vol. 3,  1983). 
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Studies  on the migrat ion of b r i n e  wi th in  stressed s a l t  specimens suggests  
t h a t  the flow of b r ine  i s  influenced by consol ida t ion  (ORNL-5950, 1983) s ince  
the expuls ion of b r ine  during consol ida t ion  was found t o  match the decrease i n  
specimen volume. These r e s u l t s  using 250- t o  420-pm s a l t  c r y s t a l s  i n  a column 
9.54 cm i n  diameter a re  shown i n  Table 5.5 and p lo t t ed  i n  Figure 5.7. Conclu- 
s ions  drawn from the study show t h a t  under stress, s a l t  consol idated r e a d i l y  
i n  the presence of br ine  and t h a t  consol ida t ion  proceeds more r ap id ly  with 
increas ing  temperature ( t o  85OC). Reasonably complete consol ida t ion  occurs 
i f  b r ine  i s  allowed t o  escape from the  compressed s a l t .  In a repos i tory ,  how- 
ever ,  such a s i t u a t i o n  may n o t  e x i s t ,  and b r i n e  may remain trapped between 
s a l t  p a r t i c l e s  o r  i t  may form d i s c r e t e  volumes of water c lose  t o  the 
conta iner .  

Table 5.5. S a l t  consol ida t ion  tes t  r e s u l t s  (ORNL-5950, 1983). 

Applied Temperature (OC) Elapsed Brine Expelled (g)  
S t r e s s  Ram Anvil Timea Void Ram Anvil 

- 
Run (ba r )  End End ( m i d  Frac t ion  End End 

Run 201 - N a C l  c r y s t a l s : b  1540 g i n  9.537-cm-diam column 

0 0.251 
155 20 20 9685[ 13 0.071 
155 50 50 12565[2] 0.065 
155 80 80 14505 0.041 

15705 0.015 3 10 84 85 
155 76 95 28507 0.013 

Run 202 - N a C l  c r y s t a l : b  1556 g i n  9.537-cm-diam column 

85 
155 20 20 3940 

13690 15 5 50 50 
155 50 50 17810 
155 57 48 18140 

35225 155 85 67 
48903 85 67 

0.159 
11 0,104 

0.0367 
21 0.0315 

0.0278 
0.0024 

t 01 

0.548 

101 
0,256 

22.618 
4.961 

15.190 

t 01 

18.325 

t o 1  
4.080 
6.624 

18 .'295 
20.625 

aNumbers i n  brackets  r e f e r  to  po in t s  i n  Figure 5.7. 
b I n i t i a l  p a r t i c l e  s i z e ,  250-420 pm. 
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Figure 5.7. Consolidation of salt crystals (250-420 prn) in brine 
(numbered points indicate a change in conditions)(ORNL-5950, 
1983). 
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5.3.4 Alternate  Packing Mater ia ls  f o r  S a l t  Reposi tor ies  

Wes tinghouse, i n  i t s  conceptual waste package design study , considered 
t h e  p o t e n t i a l  use of non-sa l t  packing mater ia l s  (ONWI-438, 1983). These in-  
c l u d e  combinations of bentoni te  c l a y s ,  z e o l i t e s  and quar tz  sand. However , 
a major concern with respec t  to  bentoni tes  and z e o l i t e s ,  which a r e  hydrous 
a luminos i l ica tes ,  i s  t h e i r  s t a b i l i t y  under hydrothermal condi t ion.  They have 
been shown to  s u f f e r  from e a r l y  diagenesis  which represents  an important 
degradation mode (NUREG/CR-2482, Vol. 4 ,  1983). 

Work by Weaver (ONWI-21, 1979) and Aoyagi and Kazama (1980), on the 
diagenesis of c l a y  minerals shows t h a t  t h e  following transformation takes 
place: bentoni te  transforms f i r s t  t o  a mixed  l a y e r  i l l i te-smect i te  mineral  
(I/S) and then t o  i l l i t e ,  by removal of i n t e r l a y e r  water and replacement of 
Ca2+ o r  Na+ by K+, i .e . ,  

Bentonite - > I/S - > i l l i t e  

Weaver claimed t h a t  montmoril lonites ( including bentoni te)  can be con- 
ver ted to  i l l i t e  eventua l ly  a t  temperatures between 90 and 16OoC. Based on 
observed d iagenet ic  a l t e r a t i o n  of c l a y s  i n  Gulf Coast sediments he reported 
t h a t  some a l t e r a t i o n  of montmoril lonite to c h l o r i t e s  and i l l i t e s  occurred a t  
temperatures a s  low a s  4OoC. 
s h a l e s  takes  place with an  increase  i n  the A 1  content  (perhaps by l o s s  of S i )  
followed by the r e l e a s e  of i n t e r l a y e r  water to  t h e  pores, c lay  layer  contrac-  
t i o n ,  and the f i x a t i o n  of K (from K-feldspar) between the contracted layers .  
Calculat ions indicated t h a t  a t  1 2 O o C ,  80% of the smect i te  layers  could be 
converted to i l l i t e  i n  5000 years  (Howard, J .  D . ,  1981). While these calcu-  
l a t i o n s  i n d i c a t e  some po ten t i a l  f o r  s t a b i l i t y  over extended per iods of time, 
laboratory experiments a t  25OoC indica ted  t h a t  the same amount of contrac-  
t i o n  was obtained i n  167 days (Howard, J. D.,  1981). I l l i t e  has l e s s  exchange 
capac i ty  and i s  somewhat more permeable than bentoni te ,  but is r e l a t i v e l y  
r e s i s t a n t  to  f u r t h e r  change wi th  temperature over the range 200-300OC. When 
Mg o r  Fe i s  r ead i ly  a v a i l a b l e ,  c h l o r i t e  may a l s o  be formed a s  a by-product 
when montmoril lonite i s  converted t o  i l l i t e  and t h i s  conversion can begin a t  
temperatures as low a s  70OC. Since these a l t e r a t i o n  products of bentoni te  
a r e  5-10% more dense than bentoni te ,  and have l i t t l e  swelling capac i ty ,  
packing mater ia l  cracking due t o  hydrothermal a l t e r a t i o n  i s  l i k e l y  to lead to  
increased permeabili ty of the  packing mater ia l .  

This process under n a t u r a l  condi t ions i n  

Concerns have a l s o  been expressed with respec t  to  the use of bentoni te  
packing given t h a t  t h e i r  u s e  w i l l  con t r ibu te  more water than would otherwise 
be a v a i l a b l e  from br ine  in-flow i n  a s a l t  repos i tory  (ORNL-5818, 1981). 
Claiborne estimated t h a t  a 30.5 c m  diameter conta iner  surrounded by a 30.5 cm 
th ick  packing of 20% bentonite-80% sand mixture and 10% water (approximate 
minimum amount required t o  produce a s u f f i c i e n t l y  p l a s t i c  bentoni te ) ,  w i l l  
con ta in  approximately 66 l i t e rs  of water. I f  pure bentoni te  was used the 
water conten t  would be -330 l i t e r s  (ORNL/TM-8372, 1982). The p red ic t ive  
techniques u s e d  by Jenks and Claiborne (ORNL-5818, 1981) appear t o  be 
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.adequate f o r  short-term es t imates  of b r ine  migra t r i o n  ( in - f  low). 
term i n - s i t u  experiments a r e  required,  however, i n  order  to a s ses s  whether the 
t ranspor t  mechanisms cont r ibu t ing  to  short-term br ine  r e l ease  a r e  adequately 
defined and appl icable  to  long-term p red ic t ive  modeling e f f o r t s .  

Long- 

The hydrothermal s t a b i l i t y  o r  e a r l y  d iagenet ic  processes f o r  z e o l i t e s  
has been explored by researchers  over the l a s t  ten years  and, i n  the pas t  two 
years ,  new research has  been performed both w i t h  respec t  to  n a t u r a l  geological  
analogs and t o  laboratory experiments (NUREG/CR-2482, Vol. 4 ,  1983). As 
Wheelwright (PNL-3873, 1981) s t a t e d ,  there  is s t i l l  not  much information 
a v a i l a b l e  on the hydrothermal s t a b i l i t y  of z e o l i t e s  under condi t ions expected 
i n  b a s a l t  and s a l t  r epos i to r i e s .  According to  Aoyagi (19801, the transforma- 
t i on  of z e o l i t e s  during diagenesis  i s  f a s t e r  than f o r  c l ay  minerals.  The most 
important physical  f a c t o r  f o r  the transformation of z e o l i t e s  i s  temperature. 
The chemical composition of the pore water may a l s o  be re levant .  The c r y s t a l -  
lochemical transformation of z e o l i t e s  w i l l  be indicated by replacement of 
ca t ions  (e, Na+, and Ca2+), a s  well  a s  Si02 and H20 i n  the l a t t i c e  
s t r u c t u r e ;  therefore ,  the a c t i v i t y  of s i l i c a  w i l l  a l s o  be re levant .  Both 
geological  analogs and s h o r t  term laboratory s t u d i e s  have indicated t h a t  
mordenite i s  the most hydrothermally s t a b l e ,  z e o l i t e  w i t h  c l i n o p t i l o l i t e  the 
next  most s t a b l e  (NUREG/CR-2482, Vol. 4, 1983). Therefore, these two minerals 
have been most ex tens ive ly  considered f o r  use  a s  packing mater ia l  components 
i n  high l eve l  rad ioac t ive  waste r epos i to r i e s .  

Recent research by Smyth (1982) on n a t u r a l  geological  analogs of zeo l i t e -  
containing t u f f s  and b a s a l t s  i nd ica t e s  t h a t  even c l i n o p t i l o l i t e  and mordenite 
a r e  unstable  a t  e levated temperatures and low water vapor pressures  breaking 
down e i t h e r  by r eve r s ib l e  dehydration o r  i r r e v e r s i b l e  mineralogical t ransfor -  
mations w i t h  n e t  volume reduct ion and evolut ion of f l u i d s .  These mineralogi- 
c a l  changes would lead t o  mechanical f a i l u r e  by shrinkage f r a c t u r e s  and per- 
haps would provide a dr iv ing  force  ( f l u i d  pressure)  f o r  the r e l e a s e  of radio- 
nucl ides  to  the biosphere, Smyth (-1982) recommends the u s e  of z e o l i t e -  
containing rocks (and h i s  arguments would a l s o  apply to  use of z e o l i t e s  a s  
packing ma te r i a l s )  only i n  rad ioac t ive  waste r e p o s i t o r i e s  which can be kept  
below -8SoC and i n  water-saturated condi t ions.  

Other packing mater ia l s  have been spec i f ied  to  include des iccants ,  such 
a s  CaO and MgO combined with sand o r  crushed s a l t  t o  maintain an anhydrous 
environment around a waste conta iner  (ONWI-214, 1980; ONWI-449, 1983) , 

Jenks and Cla ibome (ORNL-5818, 1981) estimated t h a t  a CaO-sand or  
MgO-sand packing mater ia l  mix with p rope r t i e s  such a s  shown i n  Table 5.6 can 
r e a c t  with and absorb 43 kg and 63 kg of water, respec t ive ly ,  under reference 
repos i tory  condi t ions t h a t  include a 5-cm-thick packing ( see  Table 5.7). 

The des iccant -backf i l l  mater ia l s  u s e d  m u s t  e x h i b i t  adequate s t a b i l i t y  
and appropr ia te  thermal conduct ivi ty  so as no t  t o  con t r ibu te  t o  an adverse 
environment. Dicalcium s i l i c a t e  has been s tudied,  t o  e s t a b l i s h  the hydration 
proper t ies  of t h i s  mater ia l ,  a t  2OoC and one atmosphere (ONWI-449, 1983). 
Test  procedures a t  t h i s  s tage of screening a r e  c l e a r l y  n o t  representa t ive  of 

43 



Table 5.6. Chemical and physical  p rope r t i e s  of oxides  
and hydroxides of Ca and Mg re l evan t  t o  
packing f o r  re ference  r e p o s i t o r i e s  
(ORNL-5818, 1981). 

Molar vo lumea, mL/mo 1 

CaO 
Ca(OH) 2 
MgO 
Mg(OH) 2 

Rat io  of molar volumes, Ca(0H) p / C a O  

Rat io  of molar volumes, Mg(0H) 2/MgO 

H20 vapor pressure over hydroxideb, kPa 

Ca(OH) 2 

301OC 
40 l 0 C  

S o l u b i l i t y  i n  H20 a t  100°Ca, mm - 

16.76 
31.63 
11.26 
24.50 

1.89 

2.18 

0.35 
2.2 

17 
31 
84 

10 
0.69 

aHandbook values .  
b In t e rna t iona l  Cr i t ica l  Tables,  Vol. 7 ,  pp. 291-294. 

r epos i to ry  condi t ions.  
s i l i ca te  v a r i a n t  used i n  the screening tests i s  i n f e r i o r  t o  MgO with respect 
t o  the  e x t e n t  and r a t e  of r eac t ion  wi th  water and t h a t  i t  lacks  moderate 
temperature s t a b i l i t y .  
behavior of these  des iccant  a d d i t i v e s  i n  the presence of a r a d i a t i o n  f i e l d .  
The e f f e c t s  of r a d i o l y s i s  o r  the  presence of cor ros ion  products on the  
behavior of a des i ccan t -backf i l l  system need t o  be addressed p r i o r  t o  any 
assessment as  to  the b e n e f i t s  of inc luding  such components as p a r t  of the  
waste package design. 

Preliminary ind ica t ions  suggest  t h a t  the  dicalcium 

There i s  a t  present ,  no information pe r t a in ing  to  the 
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Table 5.7. Packing mater ia l  ( b a c k f i l l )  desiccant-oxide c a p a c i t i e s  i n  
re ference  s a l t  r e p o s i t o r i e s  (ORNL-5818, 1981). 

Type of Waste 

CHLW SF DHLW 
Backf ill parameter 

Volume of b a c k f i l l  spacea, m3 0.18 0.28 0.37 

Volume of void space i n  sand 0.072 0.11 0.15 
o r  crushed s a l t  backf i l l b ,  m3 

CaO capaci tyc, k mol 2 .4 3.6 4.9 

MgO capaci tyC,  k mol 3.5 5.4 7.3 

Tota l  hydration, kg of H 2 0 d  43 65 88 

Total  hydration, kg of H20d 63 97 131 

aFor reference r e p o s i t o r i e s ;  the height  of annular  space i s  assumed to  
equal tne a c t i v e  length  of the waste can i s t e r .  Spaces above and below 
waste a r e  no t  included here. 

bAssuming packing t o  60% of t heo re t i ca l  densi ty .  
CMoles of oxide powder requi red  t o  f i l l  void spaces t o  55% of t h e o r e t i c a l  

dens i ty ,  using handbook va lues  f o r  oxide d e n s i t i e s  a t  25OC. 
dHass of H20 requi red  to completely hydrate the amounts of oxide given 
here. 

5.3.5 Role of Packing Material With Respect t o  Regulatory C r i t e r i a  

In  Sec t ion  1 i t  was s t a t e d  t h a t  the waste package must conta in  the 
radionucl ides  i n  t h e  waste f o r  a period of not  less than 300 nor  more than 
1000 years  a f t e r  r epos i to ry  c losure ,  and t h a t  the engineered b a r r i e r  system 
must l i m i t  the  r e l e a s e  of radionucl ides  to  less than 1 p a r t  i n  lo5 p e r  year  
following loss of containment. A s a l t  r epos i to ry  is unique i n  the  sense t h a t  
br ine tends to  migrate towards the h o t  waste so t h a t  any radionucl ide 
migration w i l l  n o t  u sua l ly  be assisted by water flow. 

If a packing mater ia l  i s  no t  u t i l i z e d  then loss of containment w i l l  i m -  
mediately follow breaching of the containerjoverpack system s ince  t h i s  cons t i -  
t u t e s  the boundary of the  waste package. I f  a simple crushed s a l t  packing i s  
used a s  an i n t e g r a l  p a r t  of a waste package, however, containment w i l l  be l o s t  
when rad ionucl ides  d i f f u s e  to t h e  outer  boundary of the packing. Desiccants 
i n  the packing w i l l  l i k e l y  minimize the r a t e  of inflow of b r ine  to  the con- 
t a i n e r  and retard general  corrosion r a t e s ,  bu t  hydrogen embri t t lement  and 
s t r e s s -co r ros ion  cracking may be v i ab le  f a i l u r e  mechanisms f o r  some conta iner  
mater ia l s ,  a s  descr ibed above. Bentonite c l a y  packing ma te r i a l s  may be 
bene f i c i a l  i n  r e t a rd ing  water ing res s  to  the conta iner  sur face  and a l s o  i n  

45 



r e t a rd ing  radionucl ide migrat ion to  the package boundary. However, more 
de t a i l ed  assessments a r e  required under appropr ia te  condi t ions  to  e s t a b l i s h  
the r o l e  of any packing mater ia l  i n  meeting the waste package containment 
c r i  t e r ion .  

With r e spec t  to  the cont ro l led  r e l ease  r a t e  from the engineered b a r r i e r  
system, a packing mater ia l  i s  l i k e l y  t o  be bene f i c i a l  s ince  i t  can r e t a rd  
radionucl ide r e l ease  ra tes  by sorp t ion  processes. A crushed s a l t  packing may 
be l e s s  e f f e c t i v e  than a bentoni te  containing mater ia l  s ince  i t  i s  d i f f i c u l t  
to remove po ros i ty  during the  consoi lda t ion  process.  In  add i t ion ,  bentonite- 
and zeol i te -conta in ing  ma te r i a l s  possess an a b i l i t y  t o  sorb a range of 
radionucl ide spec ies  (NUREG/CR-2482, Vol. 4 ,  1983). 

5.3.6 Conc l u s  ions  

Temperature grad ien ts  surrounding the  waste package can cause b r ine  
inc lus ions  wi th in  the rock s a l t  to  migrate towards the hea t  source. The need 
to determine the amount of b r ine  l i k e l y  to accumulate around the  waste can- 
i s t e r  i s  important i n  assess ing  cor ros ion  behavior of the conta iner  and waste 
form leaching. Adequate estimates of moisture inflow are  n o t  a v a i l a b l e  a t  
t h i s  t i m e .  

The nea r - f i e ld  aqueous environment l i k e l y  t o  e x i s t  around a nonshielded 
waste package may be composed of b r ines  t h a t  w i l l  tend to  vary i n  pH and chem- 
i c a l  composition wi th  time. 
be a c i d i c  because of the d i s so lu t ion  of thermally-released gases from the 
s a l t ,  such as HC1.  As increas ing  amounts of c o l l o i d a l  sodium a r e  formed i n  
s a l t  by gamma i r r a d i a t i o n ,  b r ine  migrat ing through the i r r a d i a t e d  s a l t  w i l l  
become a l k a l i n e .  Therefore,  conta iner  candidate  materials w i l l  need t o  be 
evaluated with r e spec t  to  i n i t i a l  a c i d i c  b r ine  condi t ions  followed by longer  
term n e u t r a l  t o  a l k a l i n e  condi t ions.  

I n i t i a l l y ,  b r ine  reaching a waste con ta ine r  w i l l  

G a s  p r e s su r i za t ion  wi th  a package borehole i s  poss ib le  a f t e r  r epos i to ry  
c losu re  and occurs  from thermally-released gases from the crushed s a l t  packing 
material as  w e l l  a s  b r ine  r a d i o l y s i s  e f f e c t s .  

Ind ica t ions  a r e  t h a t  consol ida t ion  can be rapid i n  bedded sa l t .  Consoli- 
da t ion  of crushed s a l t  packing mater ia l  may r e s u l t  i n  enhancing the  l i b e r a t i o n  
of  b r i n e  i n  the  v i c i n i t y  of the waste package. Additional information i s  
needed on the p o s s i b i l i t y  of forming pockets of br ine  ad jacent  t o  the 
con ta ine r  due to  these e f f e c t s .  

The p red ic t ive  techniques used by Jenks and Claiborne appear adequate f o r  
short- term estimates of b r ine  in-migration. More accura te  pred ic t ions  of 
long-term b r ine  accumulation r equ i r e  i n - s i t u  t e s t i n g  f o r  long dura t ions  and an 
assessment of the e f f e c t s  of r a d i a t i o n ,  consol ida t ion ,  and temperature on the  
e f f e c t i v e  permeabi l i ty  of the  sa l t .  
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There is i n s u f f i c i e n t  information t o  adequately assess the behavior of 
des iccant  ma te r i a l  add i t ives  t o  packing material. There are no da ta  ava i l s  
on the behavior of these materials under a c t u a l  repos i tory  condi t ions.  Thc 
e f f e c t s  of r a d i o l y s i s  o r  the presence of cor ros ion  products on the hydratic 
p rope r t i e s  o r  s t a b i l i t y  of these desiccant-packing mixtures i s  n o t  known. 
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