(’,q!(}é@ B

' UCRL-ID--105439

DE91 007114

Deconvolution Using a Neural Network

S. K. Lehman

November 15, 1990

This is an informal report intended primarily for internal or limited external
distribution. The opinionsand conclusions stated are those of the authorand'may
or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

’G‘JNL”WWXFJ

b

DISCLAIMER

This document was prepared as an account of work sporisored by an agency of the United States Governm. :t.
Neither the United States Government nor the University of California nor any of their employces, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, appaiatus, product, or process disclosed, or represents that its use would not
infringe privilely owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsemer.t,
reccmmendation, or favoring by the United States Government or the University of California, The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall nct be used for advertising or product endorsement purposes..

This report has been !epvodhred
directly from the best 4vailable copy.

Availabte to DOE and DOE contractors from the
Office of Scientific and Technical informatinn
P.O. Box 62, Gak Ridge, TN 3781]

Prices availabie from (615 570-8401, FTS on-8dii.

Available to the public from the
Natiunal Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd,,
Springftield, VA 22161

Price Page
Code Range
A01 Microfiche

Papercopy Viices

A02 1- 10
A03 11- 50
A04 51- 75
A05 76-100
A06 101-125
AQ7 126-150
A08 151-175
A09 176-200
A10 201-225
All 226-250
A12 251-275
Al3 276-300
Al4 301-325
Al5 326-350
Alé6 351-375
Al17 376-400
A18 401-425
A19 426-450
A20 451-475
A21 476-500
A22 501-525
A23 526-£50
A24 551-575
A25 576-660

A99 601 & UP

mn

‘Deconvolution Using a Neural Network*
- S. K. Lehman

University of California
Lawrence Livermore National Laboratory
Livermore, CA 94550

November 15, 1990

Abstract— Viewing one dimensional deconvolution as a matrix inversion problem, we compare a
neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is largely an
exercise in understanding how our neural network code works.

[INTRODUCTION
T HE NOISE free convolution of two one-dimensional signals is defined as:

M-1
g(n)= 5 f(m)h(n-m) (1)

m=0
where f(m), the input signal; h(k), the kernel; and g(n), the result, are defined on

0< m <M-1
0< k <K-1
0< n <M+K-1=N

In matrix form:

g = Hf (2)
where H is the matrix that transforms f to g:
[h(0) 0 0 0 0
h(1) h(0) 0 0 0
h(2) h(1) h(0) 0 0
: E : 0
h(K -2) h(K —=3) h(K—4)
g | AE=1) h(E-2) h(K-3) h(1) h(0) 3
= 0 hK-—1) A -2) h(2) h(1) (3)
0 0 h(K - 1) h(3) h(2)
0 0 MK ~1) h(K—-2) (K -3)
0 0 0 h(K =1) h(K -2)
L 0 0 0 0 h(K —1) |

*Work performcd under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory
under contract number W-7405-ENG-48.

-;'llu‘ﬂ L

The problem is to find A such that
f=Ag (4)

We are also interested in the convolution problem. That is finding H such that
g = Hf (5

We compare three methods for determining either H given A; or A given H; or H and A given an
appropriate set of fs and gs. The methods are:

1. Pseudo-inverse ;
2. Neural network ;

3. LMS.

II PSEUDO-INVERSE

Given H, A is determined by:

H'g = HTHf
(HTH)'H'g = f
Ag = f
Where
—_ (HTH)-IHT (6)
Similarly, given A:
H=(ATA)'AT (1)

IIT NEURAL NETWORK

To determine H, we use a one layer network with M inputs and M + K -- 1 outputs and train on a set of
impulses and their responses. There are 2M elements in the set since we have to train on negative as well
as the positive impulses, (When trained using only the positive impulses, the netwurk converges but not
correctly.)

Once converged, the weights make up H. Because this is a linear problem the biases are all 7ero.

To determine A, we use a network with M + K — 1 inputs and M outputs. We use the sane training
set as above except the impulse responses are the inputs and impulses are the targets.

Note in both networks we do not use threshold functions.

IV LMS

Given a set of input {f;} and output {g;} data determine H.

For the derivation of the LMS solution we temporarily drop the vector index i since we use tensor notation
and do not want to confuse the it with the vector element index.

The goal is to minimize:

£ = (g-HH(g-HI)
= (g' - H')(g - Hf)
- ng"-ngHf-’-fTHTHf
In tensor notation:
£% = ;g — 2 Hijfj + GH;iHuf (8)

Where g, is the i*h component of the vector g and not the i*h vector in the set {g;}.

o€ 2
OHmn

Back to matrix notation:

OH;;
- f; +fi

~28i 5,

H £

= —2g6imbjinfj + i [6jmbinHjk + 6imbni Hji] fi
~28mfn + fi [finHme + 6nk Hmi] fi

~-28mfn + fuHpnkfe + fiH i fn

~28mfn + G Hpmefe + £ Hms £

= =2g,.fn +2fn Hoifi ‘

9E?

e T & T
S = —2ef’ +2HE

Summing over the data set, {f;} and {g;}, and equating to zero:

%‘%2 = -2 lEg..f,T +2H [Ei:f;f;r] =0

- - [pee] fpee]

In a similar manner we may determine A:

oo froe]]

'V RESULTS

(9)

(12)

For a detailed transcript of the computer results see the appendices. They present a session training the
neural network to deconvolve, a session training it to convolve, and a Mathematica™ [1] session used to

verify the results.
As our test case we use:

(13)

(14)

The set of impulses and their responses used in training are:

ff = [1 0 0 0 0]
ff = 0 1 0 0 0]
£ = 0 0 1 0 0]
f%”_:[00010]
ff = [0 0 0 0 1]
£l = [-1 0 0 0 0] (15)
ff = [0 -1 0 0 0]
ff = [0 0 -1 0 0]
ff = [0 0 0 -1 0]
ff = [0 0 0 0 -1]
gl = 1 -1 1 0 0 0 O]
gl = [0 1 -1 1 0 0 0]
gy = 0 0 1 -1 1 0 0]
gl = [0 0 0 1 -1 1 0]
gl = [0 0 t 0 1 -1 1]
o = [-1 1 -1 0 0 0 0] (16)
g = [0 -1 1 -1 0 0 O]
gl =[0 0 -1 1 -1 0 0]
gg = 0 0 0 -1 1 -1 0]
gl =[0 0 0 0 -1 1 -1]
g =[1 1 0 -1 =101
g = [0 -1 -1 0 110] an.

Using Mathematica™ , we used (6) to compute A from (14). We then verified Apan -H =1 and
Amang; = f;. This is the pseudo-inverse solution from Mathematica™ :

3/4 -1/8 1/8 1/4 1/8 -1/8 -1/4
5/8 9/16 -1/16 3/8 7/16 1/16 -3/8
Apan=1 0 1/2 y2 0 12 1/2 0 (18)
-3/8 1/16 7/16 3/8 -1/16 9/16 5/8
~1/4 -1/8 1/8 1/4 1/8 -1/8 3/4

When we applied (7) to (18) to get H back again, we got a Mathematica™ error saying Al senAmath
was singular.

The neural network we trained to convolve yielded (14) exactly. However, the network we trained to
deconvolve, found a different A than the pseudo-inverse method:

0.4049 —0.2637 0.3314 0.5951 0.2637 —0.3314 -0.5951
0.5227 0.6245 0.1018 04773 0.3755 -0.1018 -0.4773.
A, = 0.1600 0.4017 0.2417 —0.1600 0.5983 0.7583 0.1600 (19)
-0.1343 0.0583 0.1926 0.1343 -0.0583 0.8074 0.8657
-0.2143 -0.2585 —0.0442 0.2143 0.2585 0.0442 0.7857

We verified Apn - H = I and Anng; = fi;. We entered (19) into Mathematica™ and applied (6) to it but got
the singular matrix error. o

We applied (11) in Mathematica™ to the data set, {f;} and {g;}, we presented to the neural network. It
computed H exactly. However (12) resulted in a singular matrix error when Mathematica™ tried to invert
Y, &7 . This is because half of the {g;} are linearly dependent.

The {f;} span an M-space. The {g;} span an M-dimensional subspace of an N-dimensional space. Recall
M<N.

H maps an M-space to an N-space. Since we have M (=5) linearly independent {f;}, we can use (11)
to find H. However in finding the mapping, A, from a 7-space to a 5-space, we have only 5 independent
{g:}, thus (12) will not work. It needs more information. The neural network somehow “guesses” at the
additional information in order to find the inverse.

The solution the neural network finds is not the minimum norm solution. Equation (18) is the minimum
norm solution since the pseudo—mverse is the LMS solution. The solution, A,,". the neural net.work finds
can be written as;

Ann=A)+AyL (20)

where A| (= Amarn) is parallel to the 5-subspace spanned by {g;} and A is perpendicular to it. The
minimum norm solution is Aj. By subtracting (18) from (19), Ann — Amatn, we obtained an A, We
verified in Mathematica™ that A - g; = 0.
We used Mathematica™ to find the null-space vectors of A,,.¢s, equation (17), and included them with
the set of vectors used in training the neural network to deconvolve. The resulting weights were (18) exactly.
Note A is the best solution for noise elimination since the noise would span the full 7-space.

VI CONCLUSIONS

A feed forward, backpropagation trained, one layer neural network with no thresholdmg functions can be
trained to convolve and deconvolve noise free data.

When given identical vectors set, the neural network was able to find the convolution matrix whereas the
LMS method was not.

VII ACKNOWLEDGMENTS

The author wishes to acknowledge the help and encouragement of J. P. Fitch and D. T. Gavel.

REFERENCES

[1] Stephen Wolfram, Mathematica, A System for Doing Mathematics by Computer, Addison-Wesley Pub-
lishing Company, NY 1988.

A DECONVOLVING NETWORK

This is the shell script used in training the network to deconvolve. The case presented includes the two
null-space vectors, thus the A found is that of the LMS solution.

First the training code, learn, is called, followed by apply, the testing code and then disect which
“disects” the network to examine the weights.

For a detailed description on code operation contact the author.

#!/bin/sh

Train=dtrainO-null
Tast=dtest

Range=1.0e12
Err=1.e-10

if(test -z "$1") then Method=1 ; else Method=$1 ; fi
set ‘wc -1 $Train $Test’

Eleml=$1
Elemt=$3

echo time \
learn -ve $Err -m $Method -F 2 deconvolve decon$Method $Eleml < $Train
time learn -ve $Err -m $Method -F 2 deconvolve decon$Method $Eleml < $Train

echo
echo apply -v -a "%8.2f" decon$Method $Elemt < $Test
apply -v -a "%8.2f1" decon$Method $Elemt < $Test

echo ‘

echo disect -a "%10.52" deconvolve decon$Method << TheEnd
disect -a "%10.5f" deconvolve decon$Method << TheEnd

10 :

W N -

i
1
1
1
TheEnd

This is a typescript of the execution of the above shell script.

roadrunner{101] decon
time learn ~ve 1.e-10 -m 1 -F 2 deconvolve deconi 12 < dtrainO-null

Network file: deconvoive
Height file: deconl
Dimension of input: 1
Dimension 0: 7

Inputs: 7

Hidden layers: O
Outputs: 5

No. of layers: 2
Layers: 7 &

No. of weights: 40

Optimization method: Polak - Ribiere (i)

Maximum linesearch evaluations: 20

Convergence parameter sigma: 0.1

Maximum restarts: 5

Maximum system error: 1e-10 ,

Maximum number of function evaluations: 5000
Random number seed: 1

Neuron output function: Linear - USE WITH CARE (2)

Total number of input patterns: 12

(LN .o R gy @ T ' . oo Do N W

Error at start: 0.91579

~Iteration 1,
Iteration 2,
Iteration 3,
Iteration 4,
Iteration 5,
Iteration 6,
Iteration T,
Iteration 8,

error
exror
exrror
exrror
Hrror
error
error
error

U ou oon-~

]

gnorm =

1.080156
0.277851, gnorm
C¢.13769, gnoxm

0.06556376, gnorm

0.0246831, gnorm =

0.0060042, gnorm
0.0015934, gnorm

0.000140781, gnoxrm
4.20221e-28, gnorm

Total number of iterations is 8
" Total number of functicn evaluations is 18
Normalized system error is 4.20221e-28
Norm of the gradient is 3.22214e-14
Maximum pattern error is 9.08972e-28

real 0
user 0.
Bys 0

o C w

apply -v -a 48.2f deconl 6 < dtest

Network file: deconvolve

Weight file: deconl
Dimension »f input: 1

Dimension 0: 7
Inputs: 7
Hidden layers: O
Outputs: b
No. of layers: 2

0.375408
' 0.273439
0.178131
0.109281
0.0678176
. 0.0214331
0.00Rr10232
3.22214e~14

Layers: 7 b
No. of weights: 40

-Inﬁuts-

01-101-10
1011101
01123 -14
0110110

1-23-33-21
b -10 16 -15 16 -10 &

-Outputs-

1) 0.00 1.00 0.00 -1.00 0
2) 1.00 °1.00 1.00 1.00 1
3) 0.00 1,00 2.00 3,00 4
4) 0.00 1.00 2.00 1.00 0
5) 1.00 -1,00 1.00 -1.00 1
8) 5.00 5.00 -5,00 5

~5.00

.00
.00
.00
.00
.00
.00

disect -a %10.5f deconvolve deconi << TheEnd

Network file: deconvolve
Weight file: deconil
Dimension of input: 1
Dimension 0: 7

Inputs: 7

Hidden layers: O
Outputs: b

Ho. of layers: 2

Layers: 7 &

No. of weights: 40

Enter disection layer & neuron (D to quit):

Dimension of sample: 1

Dimension 0: 7

Layer: 1

Neuron: 0

Bias: 1.89735e-16
0.75000 -0.12600 0.12600 0.25000

Layer & neuron (°D to quit):

Dimension of sample: 1

Dimension 0: 7

Layer: 1

Neuron: 1

Bias: 5.88234e-15
0.62500 0.58250

-0.06250 0.37500

0.12500 -0.12500 -0.26000

0.43760 0.06250 =0.37500

Layer & neuron ("D to quit):
Dimension of sample: 1
Dimension 0: 7

Layer: 1

Neuron: 2

Bias: 8.44377e-15

0.00000 0.50000 0.50000 0.00000 -0.50000 6,50000 0.00000

Layer & neuron (°D to quit):
Dimension of sample: ‘1
Dimension 0: 7

Layer: 1

Neuron: 3

Bias: 3.40288e-15

-0.37500 0.06250 0.43750 - 0.37500 -0.06250 0.56250 0.62500

Layer & neuron (°D to quit):
Dimension of sample: 1
Dimension 0: 7

Layer: 1

Neuron: 4

Bias: -1.0031e-15

‘-0.25000 -0.12500 ° 0.12500 0.25000 0.12500 -0,12500 0.76000°

Layer & neuron (°D to quit):
roadrunner [102] ‘

B CONVOLVING NETWORK

This is the shell script used in training a network to convolve. It is identical in form to the deconvolution
shell script.

#!/bin/sh

Train=ctrain0
Test=ctest
Range=1e12
Err=1.e-10

if(test -z "$1") then Method=1 ; else Method=$1 ; fi

set ‘wc -1 $Train $Test’
Eleml=$1
‘Elemt=$3

echo time learn -ve $Err -m $Method -F2 convolve con$Method $Eleml \< $Train
time learn -ve $Err -m $Method -F2 convolve con$Method $Eleml < $Train

echo
echo apply -v -a "%8.2f" con$Method $Elemt \< $Test
apply -v -a "%8.2f" con$Method $Elemt < $Test

echo ‘
echo disect -a "%9.4f2" convolve con$Method \<\< TheEnd
disect -a "%9.41f" convolve con$Method << TheEnd

o ‘

This is a typescript of the execution of the above shell script:

roadrunner[101] con
time learn -ve 1.e-10 -m 1 -F2 convolve coni 10 < ctrain0

Network file: convolve
Weight file: conil
Dimension of input: 1
Dimension 0: 6

Inputs: 6
Hidden layers: 0
putputs: 7

No. of layers: 2
Layers: 5 7

Ho. of weights: 42

Optimization method: Polak - Ribiere (1)

Maximum linesearch evaluations: 20

Convergence parameter sigma: 0.1

Maximum restarts: §5°

Maximum system error: ile-10

Maximum number of function evaluations: 5000
Random number seed: 1 '

Neuron output function: Linear = USE WITH CARE (2)

Total number of input patterns: 10

~-Targets-
1-110000

10

il

11

01-11000
001-1100
0001-110
00001-11 \
-11-10000 |
0-11-1000
00-11-100
000-11-10
0000-11-1

Error at start: 2.45993, gnora = 1.27743

Iteration 1, error = 1.08327, gnorm = 0.85685k6

Itera.jion 2, exror = 1.10771e-31, gnorm 4.23388e-18
I

Total number of iterations is 2

Total number of function c¢valuations is 6
Normalized system arror is 1.10771e-31
Norm of the gradient is 4.23388e-16
Naximum pattern exror is 1.72274e-31

real 0.2
user 0.0
sys 0.0

apply -v -a %8.2f conl 6 < ctest

Hetwork file: convolve
Weight file: conl
Dimension of input: 1
Dirension 0: 5
Inputs: 6§

Hidden layers: 0
Cutputs: 7

No. of layers: 2
Layers: 5 7

Fo. of weights: 42

-Qutputs-
1) 0.00 1.00 -1.00 0.00 1.00 -1.00 0.00
2) 1.00 0.00 1.00 1.00 1.00 0.00 1.00

. p
S

3) 0.00 1.00 1.00
4) 0.00 1.00 1.00
5) 1.00 =~2.00 3.00
6) 5.00 -10.00 15.00

2.00
0.00
~-3.00
-15.00

3.00
1.00
3.00
16.00

disect -a %9.4f convolve coni << TheEnd

Network file: convolve
Weight file: cont
Dimension of input: 1
Dimension 0: b
Inputs: b

HEidden layers: 0
Outputs: 7

No. of layers: 2
Layers: 6 7

No. of weights: 42

Enter disection layer & neuron ("D to quit):

Dimension of sample: 1
Dimension G: 6

Layer: 1

Neuron: 0

Bias: ~2.2204b5e-18

1.0000 0.0000 ©0.0000

Layer & neuron (“D to quit):

Dimension of sample: 1
Dimension 0: b

Layer: 1

Neuron: 1

Bias: -6.41848e-17

-1.0000 1.0000 0.0000

Layer & neuron (“D to quit):
Dimengion of sample: 1
Dimension 0: &

Layer: 1

Neuron: 2

Bias: -1.66533e-16

1.0000 -1.0000 1.0000

Layer & neuron ("D to quit):
Dimension of sample: 1
Dimension 0: &

Layer: 1

Neuron: 3

Bias: 2.77656e-18

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

~-1.00
1.00
-2.00
-10.00

12

0.0000 1.0000 -1.,0000 1.0000 0.0000

Layer & neuron (°D to quit):
Dimension of sample: 1
Dimension 0: &

Layer: 1

Neuron: 4

Bias: -5.55112e-17

0.0000 0.0000 1,0000 -1.0000 1.0000

Layer & neuron ("D to quit):
Dimension of sample: 1
Dimension O0: b

Layer: 1

Neuron: b

Bias: 1.11022e-16

0.0000 0.0000 0,0000 1.0000 -1.0000

Layer & neuron (°D to quit):
Dimension of sample: 1
Dimension 0: b

Layer: 1

Neuron: 6

Bias: O

0.0000 0.0000 0,0000 0.0000 1.0000

Layer & neuron (°D to quit):
roadrunner[102]

C MATHEMATICA RESULTS

This is the Mathematica™ script used in computing the various results:

(*

H : The convolution kernel ;

Amath : The pseudo-inverse solution ;

Ann : The inverse solution obtained from the weights of
the trained neural network ;

Aperp : The perpendicular part of Ann ;

Alms : The LMS solution for A ;

Hlms : The LMS solution for H ;

1 [n] : Positive & negative impulses ;

glnl : Responses to positive & negative impulses ;

gnull0 , gnulli : The null space vectors of Amath.

*)

B/: H := {{1. 0, 0, 0, 0}, {'1n 1, 0, 0, O}u {1u -1, 1, 0, °}|
{op i, -1, 1, 0}5 {0, 0,1, -1, 1}’ {on 0, 0, 1, -1}. {ol oi 0, 0, 1}}

Amath/: Amath := Inverse[Transpose[#] . H] . Transpose[H]

Ann/: Ann := {

{0.4049, ~0.2837 , 0.3314 , 0.5951 , 9.2837 ,-0.3314, -0.5051},
{0.5227, 0.6245 , 0.1018 , 0.4773 , 0.375656 ,-0.1018, ~-0.4773},
{0.1600, 0.4017 , 0.2417 ,-0.16800 , 0.5983 , 0.7583, 0.1800},
{-0.1343, 0.0683, 0.1926, 0.1343, -0.0583, 0.8074, 0.8657},
{-0.2143 ,-0.2685, -0.0442, 0.2143, 0.2685, 0.0442, 0.7857}}

Aperp/: Aperp := Ann - Amath

£/: £[n_] := If[n<=4 , Table[Ift[i ==n, 1, 0], {i, 0 ,4}] ,
Table[If[i ==n , -1, 0], {i,5,9 }]]

g/: gln.l := E.f[n]

gnullo/: gnullO := WullSpace[Amath] [[1]]

gnulli/: gnulll : uullsﬁace[Amathlttzll
tgt/: fgtln_] := Outer(Times,f[n],g(nl]
gtt/: gttln_] := Outer[Times,gln],?[n]]
ggt/: ggtln_] := Outer(Times,glnl,glnl]
#2t/: ££t[n_] := Outer[Times,f[n],f(n]]
ggd/: ggdln_]l := glnl.gln]

££d/: £¢d[n_] := f[n].f(n]

Alms/: Alms:= Sum{fgt[n],{n,0,11}].Inverse[Sum{ggt(n],{n,0,11}]]

Hlms/: Hlms:= Sum[gft[n],{n,0,11}].Inverse(Sum{fft[n],{n,0,11}]1]

This is a typescript showing the Mathematica™ results:

Inf1]:= << decon.m
In{2]):= Amath
3 i 1 1 1 1 1 5 9 i 3 7 b
outf2]= {{-, =(-), =, =, =, =(=), -}, {-, --, ~(-=), -, -, --
4 8 8 4 8 8 4 8 16 16 8 16 16

i1 1 1 3 i 7 3 1 9 b
> {0, =y =y 0, =, =, o}, {-(-), TTy TTy T —('-)n T -}n
2 2 2 2 8 16 16 8 16 ié 8
1 1 i 1 1 b 3
> {-(")» '(—)v S S _('). _}}
4 8 8 4 8 8 4

In(3]:= Alms

mm N v ' neow " I

3
’ _(')}n
8

14

"

e

15

Inverse::sing: Matrix {{2, -2, 2, 0, 0, 0, O}, {-2, 4, -4, 2, 0, 0, O},
{2, -4, 6, -4, 2, 0, 0}, {0, 2, -4, 6, -4, 2, O},
{0, 0, 2, -4, 6, -4, 2}, {0, 0, 0, 2, -4, 4, -2},
{0. 0) °| oo 2' —'zl 2}}
is singular.
out[3!= {{2, -2, 2, 0, o, 0, O}, {0, 2, -2, 2, O, O, O},
> {0, 0, 2, -2, 2, 0, 0}, {0, 0, 0, 2, -2, 2, O},
> {0, 0, 0, 0, 2, -2, 2}}\

> . Inverse[{{2, -2, 2, 0, 0, O, O}, {-2, 4, -4, 2, 0, 0, O},

> {2, -4, 6, -4, 2, 0, 0}, {0, 2, -4, 6, -4, 2, 0},
> {0, 0, 2, -4, 6, -4, 2}, {0, 0, 0, 2, -4, 4, -2},
> {0, 0, 0, 0, 2, -2, 2}}]

In[4]:= Hlma

Out[4)= {{1, 0, 0, O, 0}; {-1, 1, o0, 0, 0}, {1, -1, 1, 0, O},

> {0, 1, -1, t, 0}, {0, 0, 1, -1, 1}, {0, 0, 0, 1, -1}, {0, O, O, O, 1}}
In[6]:= gnullo

out(8]= {1, 1, 0, -1, -1, 0, 1}

In[6]:= gnullt

outl6l= {0, -1, -1, 0, 1, 1, 0}

In(7):= Amath . H

out[7]= {{1, o0, o, o, o}, {0, 1, 0, 0, O}, {0, 0, 1, 0, 0O}, {0, 0, O, %, O},

> {0, 0, 0, 0, 1}}

In(8]:= Ann . H

out(8l= {{1., 0., 0., 0., 0.}, {0., t., 0., 0., 0.2,

-16 -17
> {0., 0., 1., -1.11022 10 , 8.32667 10 1},

-18
> {o0., 0., -6.93889 10 , 1., 0.},

-17 -17
> {1.38778 10 , 0., 0., -1.38778 10 , 1.}}

In[9):= Amath . g[2]
out(sl= {0, 0, 1, 0, 0}

In{10]:= Ann . gl2]

out([10]= {0., 0., 1., -6,93889 10

In[11]:= Quit

-18

» 0.}

16

