

LA-UR-83-1151

Conf-830440--2

5553
WB.

6

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

LA-UR--83-1151

DE83 011139

TITLE: COORDINATE AMPLIFICATION OF METALLOTHIONEIN I AND II GENE SEQUENCES
IN CADMIUM-RESISTANT CHO VARIANTS

AUTHOR(S): C. E. Hildebrand, B. D. Crawford, M. D. Enger, B. B. Griffith,
J. K. Griffith, J. L. Hanners, P. J. Jackson, J. Longmire,
A. C. Munk, J. G. Tesmer, and R. A. Walters

SUBMITTED TO: UCLA Symposia on Molecular and Cellular Biology,
Vol. 8, Gene Expression, Keystone, CO, April 11-15, 1983

MASTER

By acceptance of this article, the publisher agrees that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy

Los Alamos Los Alamos National Laboratory
Los Alamos, New Mexico 87545

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1

COORDINATE AMPLIFICATION OF METALLOTHIONEIN I AND, II GENE SEQUENCES IN CADMIUM-RESISTANT CHO VARIANTS

C. E. Hildebrand, B. D. Crawford, M. D. Enger,
B. B. Griffith,² J. K. Griffith, J. L. Hanners,
P. J. Jackson, J. Longmire,
A. C. Munk, J. G. Tesmer, R. A. Walters

Genetics Group, Los Alamos National Laboratory
Los Alamos, NM 87545

and

R. L. Stallings

University of Texas System Cancer Center
Smithville, TX 78957

ABSTRACT Cadmium-resistant (Cd^r) variants of the Chinese hamster cell line, CHO, have been derived by stepwise selection for growth in medium containing $CdCl_2$. These variants show coordinately increased production of both metallothionein (MT) I and II and were stably resistant to Cd^{2+} in the absence of continued selection. Genomic DNAs from these Cd^r sublines were analyzed for both MT gene copy number and MT gene organization, using cDNA sequence probes specific for each of the two Chinese hamster isometallothioneins. These analyses revealed coordinate amplification of MT I and II genes in all Cd^r variants which had increased copies of MT-encoding sequences. In situ hybridization of an MT-encoding probe to mitotic chromosomes of a Cd^r variant, which has amplified MT

¹This work supported by the United States Department of Energy and the Los Alamos National Laboratory.

Present address: Department of Cell Biology
Cancer Research and Treatment Center
University of New Mexico School of
Medicine
Albuquerque, NM 87131

E.H.B

Metallothionein Gene Amplification

genes at least 14-fold, revealed a single chromosomal site of hybridization. These results suggest that the isoMTs constitute a functionally related gene cluster which amplifies coordinately in response to toxic metal stress.

INTRODUCTION

The phenomenon of gene amplification has been observed in both bacteriophage and bacteria [reviewed in (1)] and in eukaryotic cells *in vivo* and in culture [reviewed in (2)]. Specific gene amplification has been reported for developmentally regulated genes (3-6), genes conferring drug resistance (7,8), cellular homologs of viral oncogenes (9), and genes conferring resistance to heavy metal toxicity (10-12).

In the context of resistance to heavy metal toxicity, we have examined the regulation of metallothionein gene expression in the cadmium sensitive (Cd^S) Chinese hamster line, CHO, and in Cd -resistant (Cd^r) variants derived from these cells. Production of high affinity metal-binding proteins, the metallothioneins (MTs), has been shown to be a major factor contributing to the stable Cd^r phenotype (10-16). It is of interest that synthesis of two major isometallothioneins is induced coordinately in Cd^r variants in response to subtoxic exposures to $CdCl_2$ or $ZnCl_2$ (15). In this paper we examine the role of amplification of the genes encoding the two major isoMTs in regulation of isoMT expression and in conferring the Cd^r phenotype. Results of preliminary studies on the chromosomal organization of these genes, examined in one Cd^r variant, may provide insight concerning the coordinate regulation of the isoMTs and the stability of the Cd -resistance phenotype.

RESULTS

Cd^{2+} -resistant CHO sublines have been derived by exposure of the CHO cell in monolayer culture to stepwise increases in $CdCl_2$ levels (13,14). After continuous growth in medium containing stepwise increases in Cd^{2+} concentration, Cd -resistant (Cd^r) variants were cloned and characterized for (a) stability of the Cd^r phenotype in the of selective pressure, (b) Cd^{2+} uptake and intracellular

Metallothionein Gene Amplification

partitioning, and (c) metallothionein (MT) expression (13, 14, 16). Phenotypic characteristics of the CHO cell and four Cd^r variants resistant to CdCl₂ concentrations from 2 to 200 μ M in cell culture medium are summarized in Table I. All of the Cd^r variants are stably resistant to Cd²⁺ during long-term growth (up to 135 population doublings) in the absence of selective pressure.

TABLE I
Phenotypic Characteristics of CHO Cells and Cd^r CHO Variants

Cell Line	Toxic Threshold for CdCl ₂ Exposure (μ M CdCl ₂)	Basal MT Synthesis Rate ^a	Maximally Induced MT Synthesis Rate ^b
CHO	0.2	-- ^c	-- ^c
Cd ^r 2C10	2.0	-- ^c	28.3
Cd ^r 20F4	26	-- ^c	60.6
Cd ^r 30F9	40	-- ^c	41.7
Cd ^r 200T1	145	40	320

^aMethods for the measurement of toxic threshold for CdCl₂ exposure have been published (14).

^bRelative MT synthesis rate measurement and calculation has been described (15).

^cMT synthesis was undetectable in these cells under the conditions given.

Increased production of MT in response to Cd²⁺ exposure (both rate of induction and maximal level of expression) is a major factor in development of increased cellular Cd²⁺-resistance. The Cd^r30F9 variant was an interesting exception to the correlation between increased MT expression and increased Cd²⁺-resistance (14). Nondenaturing polyacrylamide gel electrophoresis revealed coordinate induction of both major isoMTs in all Cd^r variants (Fig. 1, 15). Given the metal-loading capacity and molecular weight of MT, measurements of Cd²⁺ uptake into MT indicate that in maximally-induced Cd 200T1 cells, MT could represent at least 2% of total cytoplasmic protein.

Metallothionein Gene Amplification

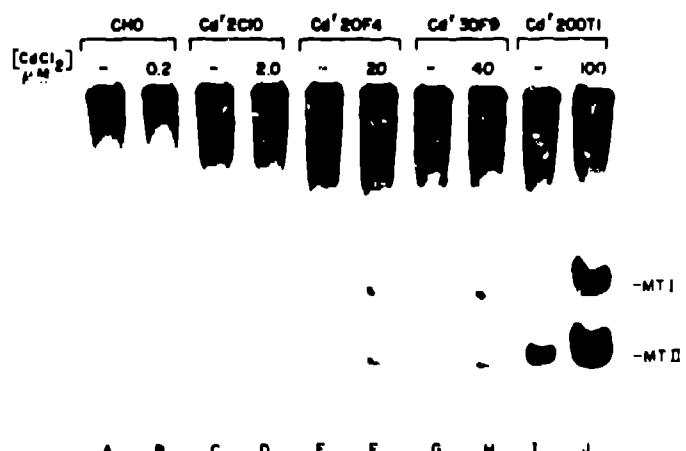


FIGURE 1. Nondenaturing polyacrylamide gel electrophoresis of cytoplasmic fractions from CHO cells and Cd²⁺ variants. Cells were exposed to indicated concentrations of CdCl₂ and pulse-labeled with ³⁵S-cysteine for 30 minutes prior to the time of maximal MT synthesis (14-16).

To determine whether the MT overproduction phenotype of the Cd²⁺ variants was a consequence of genotypic alteration in the genes encoding either or both of isoMTs, genomic DNA from CHO cells and each of the Cd²⁺ variants was purified and analyzed for MT gene organization and copy number. These analyses used specific MT-encoding and 3' non-coding sequence probes derived from recombinant cDNA clones for the two major Chinese hamster isoMTs [pCHMT1 and pCHMT2, (17)]. Figure 2 diagrams the strategy for derivation of DNA sequence probes for MT protein encoding regions and for 3' non-coding regions specific for MTI and MTII genes. In control experiments, filter hybridization analyses of linearized plasmid pCHMT1 and pCHMT2 DNAs using the MT protein coding region probe derived from pCHMT2 provided cross-hybridization with pCHMT1 under conditions of high stringency (> 80% homology cut-off) as expected from the 81% nucleotide sequence homology in the protein coding region. In contrast, under the same hybridization stringency conditions, probes derived from the 3'-untranslated regions of pCHMT1 and pCHMT2 showed hybridization to their homologous plasmids but no cross-hybridization to their nonhomologous plasmids. The properties of these pCHMT1- and pCHMT2-derived cDNA probes permitted analysis of both the organization and dosage of MT genes in the CHO cells and in the Cd²⁺-resistant variants.

Metallothionein Gene Amplification

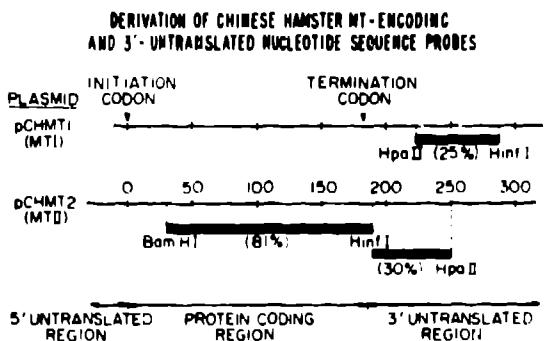


FIGURE 2. Strategy for derivation of Chinese hamster MT-encoding and 3'-untranslated nucleotide sequence probes. Heavy solid lines indicate regions used for probe construction. Numbers in parentheses under heavy lines represent sequence homology between pCHMT1 and pCHMT2 in the designated regions (17).

Sequence representation of MT structural genes in CHO cells and the CHO Cd^r variants were estimated 1) by nucleic acid reassociation kinetic analyses using the MTII-encoding structural gene probe (Fig. 2) as tracer driven by genomic DNAs isolated from the different cell lines, and 2) by Southern blotting and filter hybridization analysis using the same probe and DNAs from the same variants. The reassociation kinetics of Chinese hamster pCHMT2 DNA with total genomic DNA from the CHO cell and each of cadmium resistant variant cells is shown in Fig. 3. Similar results were been obtained using an independently purified set of genomic DNAs and a 63 nucleotide HinfI-HpaII restriction fragment from pCHMT2 (Fig. 2) as tracer. When genomic DNA was omitted from the reaction mixes, the rate of pCHMT2 DNA self-reassociation was slow relative to that measured in the presence of CHO DNA indicating that tracer self reassociation does not significantly affect the hybridization kinetics observed in Fig. 3. Based upon extrapolation from Cot 1/2 values of the respective hybridization reactions, MT-like gene sequences are amplified approximately 1x, 7x, 3x, and 14x in the genomes of Cd^r2C10, Cd^r2OF4, Cd^r3OF9, and Cd^r200T1 respectively, relative to their abundance in the genome of the cadmium-sensitive, parental CHO cell. By comparison with the rate of reaction of the slowest kinetic component in 300 nucleotide long total, genomic Chinese hamster DNA (10), we estimate that the complement of MT genes in CHO cells is near single-copy levels.

Metallothionein Gene Amplification

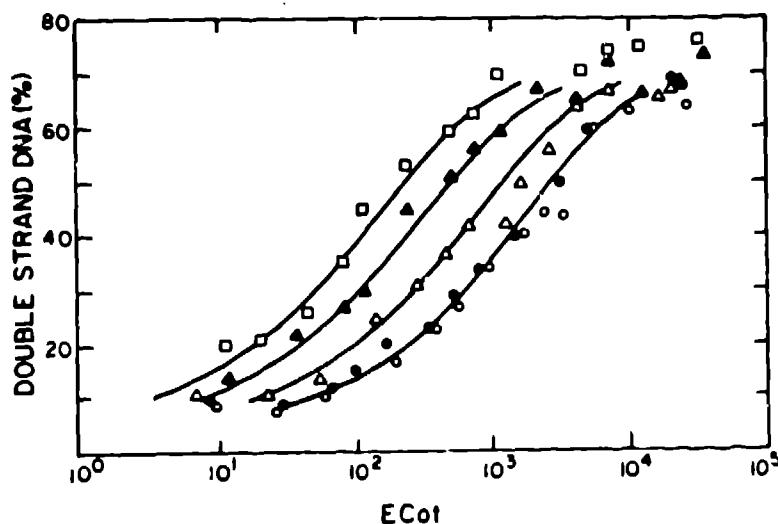
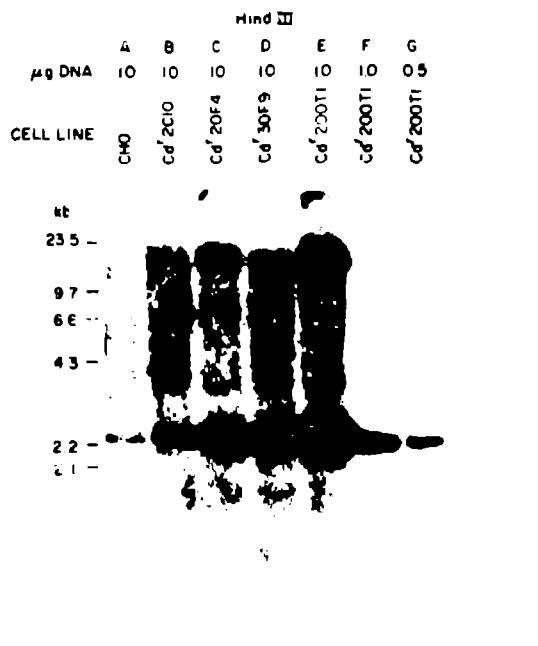



FIGURE 3. Nucleic acid reassociation kinetic analyses of pCHMT2 with genomic DNAs from CHO (○), Cd^r2C10 (●), Cd^r20F4 (▲), Cd^r30F9 (△), and Cd^r200T1 cells (□). Methods for extraction, shearing, annealing, and hydroxylapatite chromatography of Chinese hamster cell DNA have been described (10).

To investigate further how the amplified MT genes are organized in the genomes of the Cd^r variants, electrophoretically-resolved, restriction endonuclease digests of genomic DNA from CHO cells and each of the Cd^r variants were analyzed by filter hybridization with the MT-coding region probe (Fig. 2). Two major bands of hybridization, at ~2.3 kb and ~17-19 kb, were observed in the HindIII digests of Cd^r20F4, Cd^r30F9 and Cd^r200T1. This result suggested that these two hybridization bands may represent MTI and II genes since MTI and II coding regions share extensive homology (17). Further, the results in Fig. 4 indicate that the MT genes are amplified coordinately.

Metallothionein Gene Amplification

PROBE pCHMT2 CODING REGION

FIGURE 4. Filter hybridization analyses of genomic DNAs from CHO cells and Cd^r variants. DNA was digested with HindIII according to conditions specified by the supplier, electrophoretically resolved in a 1% agarose gel, transferred to Gene Screen filters (New England Nuclear Corp.), and hybridized with the pCHMT2 protein-coding region probe (Fig. 2). Hybridization was for 24-48 hr at 60°C according to procedures specified for Gene Screen by New England Nuclear Corp. Filter washes were also performed according to procedures specified by the supplier. In independent digests the high molecular weight fragment (17-19 kb) is also observed in CHO and Cd^r2C10 cells. The lower intensity observed for the 17-19 kb fragment may reflect comparative specificity of the pCHMT2 probe for the 2.3 kb fragment. Alternatively, less efficient transfer of high molecular weight DNA fragments may explain this result.

Metallothionein Gene Amplification

To test the hypothesis of coordinate amplification, genomic DNA from the Cd^r200T1 was digested with different restriction endonucleases (HindIII, BamHI, and EcoRI) and analyzed by filter hybridization with both MT-encoding structural gene probe and the MTI- and MTII-specific cDNA probes obtained from the 3' untranslated regions of pCHMT1 and pCHMT2 inserts. The results of these filter hybridization analyses (Fig. 5A) reveal two primary bands of hybridization (of approximately equal intensity) with the MTII protein-encoding region probe in each of the digests described above. In contrast, when digested with Hind III or BamHI Cd^r200T1 DNA yielded two fragments which hybridized differentially to the MTI- and MTII-specific 3' untranslated region probes (Fig. 5B) probes. These fragments were of the same apparent size as the HindIII and BamHI fragments which hybridized with MT coding region probes (Fig. 5A). The two fragments generated by Eco RI did not show differential hybridization to the isoMT-specific probes. The results with HindIII and BamHI demonstrate that the genomic DNA sequences encoding MTI and MTII are amplified coordinately in the Cd^r200T1 subline. Further the similarity of fragment sizes hybridizing the MT-protein coding region probe in both HindIII (Fig. 4) and BamHI (data not shown) digests of all Cd^r variants indicates that the MTI and II genes are amplified coordinately in all of these cell lines. In independent filter hybridization measurements, comparison of hybridization of the MTII encoding probe with CHO genomic DNA and dilutions of Cd^r200T1 genomic DNA revealed that the MT gene copy number in Cd^r200T1 may be as high as 40-50 fold greater than the copy number in the CHO cells (Fig. 4).

Metallothionein Gene Amplification

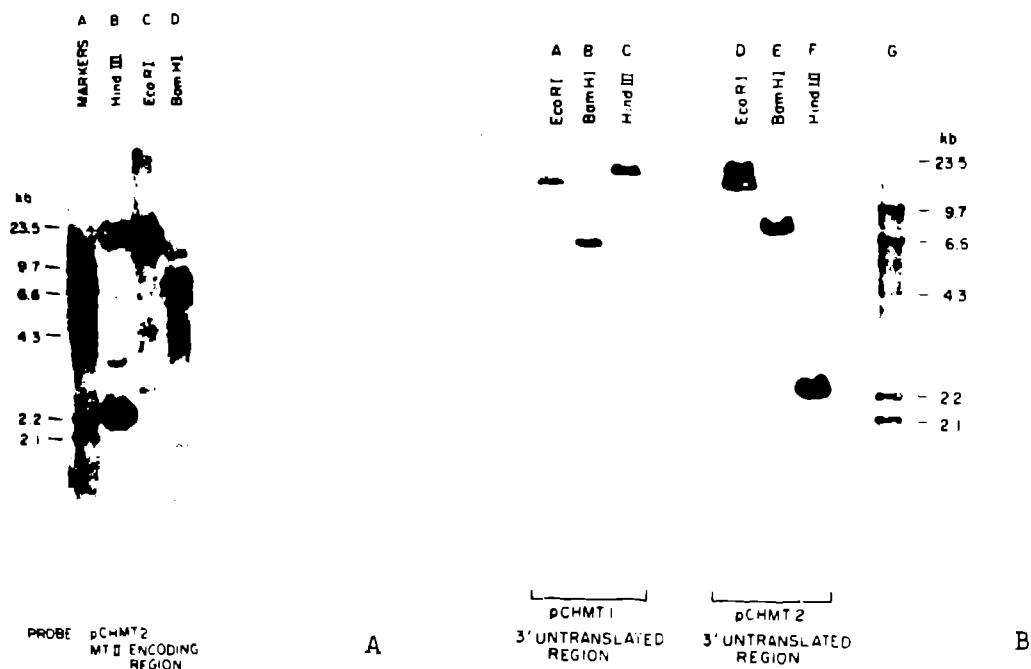


FIGURE 5. Analyses of genomic DNA from Cd^r200T1 digested with the indicated restriction endonuclease, electrophoretically resolved in a 1% agarose gel, transferred to filter and hybridized with MT coding region probe (A, lanes B-D) or 3' untranslated region probe from pCHMT1 (B, lanes A-C) or 3' untranslated region probe from pCHMT2 (B, lanes D-F). Lane C contains ³²P-labeled HindIII digested markers. Filter hybridization and wash procedures were described in the legend to Fig. 4.

The coordinate amplification of the MTI and MTII encoding genes in Cd^r200T1, coupled with the observed stability of the Cd^r phenotype suggested that the amplification event(s) may be localized to a specific chromosome(s). In situ hybridization (21,22) of the MTII protein coding region probe with mitotic chromosomes from the Cd^r200T1 cell line revealed a single chromosomal site of hybridization (Fig. 6). This observation supports the proposal that MT genes are closely linked. Interestingly, further cytogenetic analyses have shown that the region of hybridization in these cells corresponds to a translocation breakpoint on a large rearranged chromosome in the Cd 200T1 karyotype. Further molecular genetic and cytogenetic analyses are directed toward revealing the genomic arrangement(s) and chromosomal location(s) of the isoMT genes in the Chinese hamster.

Metallothionein Gene Amplification

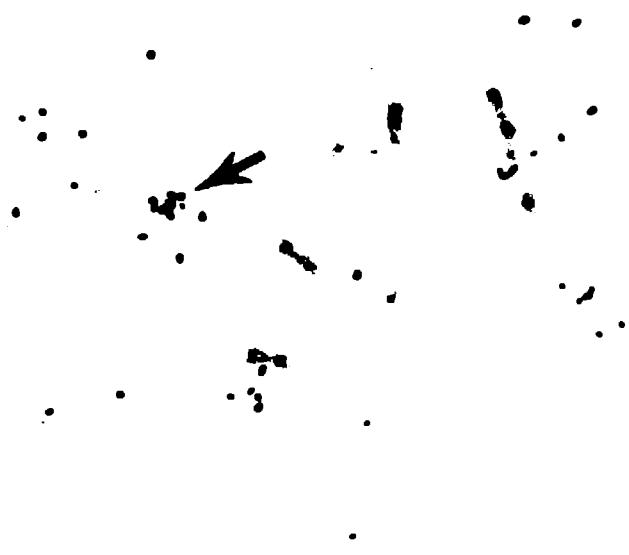


FIGURE 6. *In situ* hybridization of mitotic chromosomes from the Cd^r200T1 cell with an MTII-encoding sequence probe. ¹²⁵I-dCTP-labeled MTII-encoding probe was hybridized with the Cd^r200T1 metaphase plates according to established procedures (21,22). Arrow designates consistently labeled region on a large, rearranged chromosome.

DISCUSSION

Specific gene amplification is one mechanism by which eukaryotic cells respond to metabolic stress [reviewed in (2)]. In the cases studied most extensively, inhibitors of specific target enzymes have been used to select cells containing increased copies of the gene(s) encoding the target enzyme (7,8). In other cases, cellular resistance to metabolic inhibitors arises through amplification of genes encoding products not directly related to the action of the inhibitor (18-19). Cellular resistance to heavy metal toxicity falls into the latter category.

Increased production of metallothionein in Cd-resistant cells has been identified as a major factor in conferring the resistant phenotype (13-16). By virtue of their high affinity Cd-binding capacity, cytoplasmic MTs sequester

Metallothionein Gene Amplification

the toxic Cd^{2+} ion, thereby reducing access of this inhibitory heavy metal to intracellular targets (14, 16). In this study, increased production of both major isoMTs was observed in Cd^r Chinese hamster cells. In the clonal variants resistant to 20-200 M Cd^{2+} ($Cd^{r}20F4$, $Cd^{r}30F9$, $Cd^{r}200T1$), coordinate amplification of both MTI- and MTII-encoding genes occurred at levels ~7-, 3-, and 14-fold, respectively, above the gene copy number in CHO by reassociation kinetics analyses, and up to 50-fold in $Cd^{r}200T1$ by filter hybridization analyses. Paradoxically, both the degree of gene amplification, as well as MT induction capacity, do not correspond quantitatively with increased Cd -resistance suggesting that other mechanisms, possibly metal-inducible (20), operate in conferring Cd^{2+} -resistance (14, 16).

The stability of the Cd^r phenotype reported here for Cd^r -CHO variants suggested that the amplified MT genes were stably chromosome-associated (2). In all Cd^r variants which maintain amplified MT genes, the G1 DNA content is indistinguishable from the parental CHO cell (data not shown). This finding is in contrast to that of Gick and McCarty (12) who demonstrated that Cd^r CHO cells with amplified MT genes also displayed an abundance of tetraploid cells, as well as partial instability of the Cd^r phenotype. In the context of the relationship between stability of the Cd^r phenotype and chromosomal or extrachromosomal location of amplified genes, the in situ hybridization analyses shown here indicate a chromosomally-integrated site for the amplified MT genes. This localization of MT-encoding sequences to a single chromosome is consistent with our observation of the coordinate amplification of Chinese hamster MTI and II genes suggesting their close linkage. Further analyses of the organization of the unit(s) of amplification, the linkage of the MT genes, and the chromosomal location of the MT genes in both CHO and euploid Chinese hamster cells are in progress.

ACKNOWLEDGMENTS

The authors thank Myrna Jones and Cleo Naranjo for skillful technical assistance in various phases of this work. The expert secretarial and editorial assistance of Monica Fink is gratefully acknowledged.

Metallothionein Gene Amplification

REFERENCES

1. Anderson RP, Roth JR (1977). Tandem genetic duplications in phage and bacteria. *Ann Rev Microbiol* 31:473.
2. Schimke RT (ed) (1982): "Gene Amplification," Cold Spring Harbor Laboratory.
3. Brown DD, David I (1968). Specific gene amplification in oocytes. *Science* 160:272.
4. Nagel W (1978). "Endopolyploidy and polyteny in differentiation and evolution," Amsterdam: Elsevier/North-Holland Biomedical Press.
5. Spradling AD, Mahowald AP (1980). Amplification of genes for chorion proteins during oogenesis in *Drosophila melanogaster*. *Proc Natl Acad Sci* 77:1096.
6. Zimmer WE, Schwartz RJ (1982). Amplification of chicken actin genes during myogenesis. In Schimke RT (ed): "Gene Amplification," Cold Spring Harbor Laboratory, p 137.
7. Schimke RT, Alt FW, Kellems RE, Kaufman R, Bertino JR (1978). Amplification of dihydrofolate reductase genes in methotrexate resistant cultured mouse cells. *Cold Spring Harbor Symp. Quant. Biol.* XLII:649.
8. Wahl GM, Padgett RA, Stark GR (1979). Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N-(phosphonacetyl)-L-aspartate-resistant hamster cells. *J Biol Chem* 254:8679.
9. Chattopadhyay SK, Chang EH, Landes MR, Ellis RW, Scolnick EM, Levy DR (1982). Amplification and rearrangement of onc genes in mammalian species. *Nature* 296:361.
10. Walters RA, Enger MD, Hildebrand CE, Griffith JK (1981). Genes coding for metal induced synthesis of RNA sequences are differentially amplified and regulated in mammalian cells. In Brown DD, Fox CF (eds): "Developmental Biology Using Purified Genes,".
11. Beach LR, Palmiter RD (1981). Amplification of metallothionein-I gene in cadmium-resistant mouse cells. *Proc Natl Acad Sci* 78:2110.
12. Glick GG, McCarty KS, Sr (1982). Amplification of the metallothionein-I gene in cadmium- and zinc-resistant Chinese hamster ovary cells. *J Biol Chem* 257:9049.
13. Hildebrand CE, Tobey RA, Campbell EW, Enger MD (1979). A cadmium-resistant variant of the Chinese hamster (CHO) cell with increased metallothionein induction capacity. *Exptl Cell Res* 124:237.

Metallothionein Gene Amplification

14. Enger MD, Ferzoco LT, Tobey RA, Hildebrand CE (1981). Cadmium resistance correlated with cadmium uptake and thionein binding in CHO variants Cd²0F4 and Cd³0F9. *J Toxicol Environ Health* 7:675.
15. Hildebrand CE, Enger MD (1980). Regulation of Cd²⁺/Zn²⁺-stimulated metallothionein synthesis during induction, deinduction, and superinduction. *Biochem* 19:5850.
16. Hildebrand CE, Griffith JK, Tobey RA, Walters RA, Enger MD (1982). Molecular mechanisms of cadmium detoxification in cadmium-resistant cultured cells: role of metallothionein and other inducible factors. In Foulkes EC (ed): "Biological Roles of Metallothionein," New York: Elsevier North-Holland, Inc. p 219.
17. Griffith BB, Walters RA, Enger MD, Hildebrand CE, Griffith JK (1983). cDNA cloning and nucleotide sequence comparison of Chinese hamster metallothionein I and II mRNAs. *Nucleic Acids Res* 11:901.
18. Biedler JL (1982). Evidence for transient or prolonged extrachromosomal existence of amplified DNA sequences in antifolate-resistant, vincristine-resistant, and human neuroblastoma cells. In Schimke RT (ed): "Gene Amplification." Cold Spring Harbor Laboratory, p 39.
19. Kuo T, Pathak S, Ramagli L, Rodriguez L, Hsu TC (1982). Vincristine-resistant Chinese hamster ovary cells. In "Gene Amplification," Cold Spring Harbor Laboratory, p 53.
20. Griffith JK, Enger MD, Hildebrand CE, Walters RA (1981). The differential induction by cadmium of a low complexity RNA class in cadmium resistant and cadmium sensitive mammalian cells. *Biochem* 20:4755.
21. Harper ME, Ullrich A, Saunders GF (1981). Localization of the human insulin gene to the distal end of the short arm of chromosome II. *Proc Natl Acad Sci* 78:4458.
22. Wahl GM, Vitto L, Padgett RA, Stark GR (1982). Single copy and amplified CAD genes in Syrian hamster chromosomes localized by a highly sensitive method for in situ hybridization. *Mol Cell Biol* 2:308.