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We have derived expressions for the spectral qistribut1on of
diffraction radiation produced when a charged particle of gonstant
velocity passes near or through a dielectric sphere of fad1us a.1 Our
expressions, which are valid in the long wavelquth limit ka << s
describe the production of radiation as a funct1on of ghe par§1c1e S
jmpact parameter and energy and as a function of the d1e!ectr1c
property of the sphere. Our results reduce to forms similar to
Rayleigh scattering of light when ka + 0 and @he impact parameter is
large. Certain limiting cases of our expressions are f0und'to be
significantly different from the corresponding results previously

published by other workers.
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Introduction

One potentially useful method of diagnosing intense charged
particle beams is by observing the diffraction radiation (DR) produced
when a beam passes near an object on an array of objects. Since such
a diagnostic technique is noninterceptive, it could be done without
disturbing the beam or any associated experiment.

As a step toward developing a DR diagnostic technique, we have
derived expressions for the spectral density of DR produced by a
relativistic charged particle passing by a dielectric sphere. We have
chosen a sphere simply in order to compare our results in the
nonrelativistic 1imit to those published previously. Actual
diagnostic systems may involve other geometries.

DR is intimately connected with transition~ and Cherenkov
radiation. A complete solution of the electromagnetic field produced
by a particle passing at constant velocity through or near an
interface between media with different dielectric functions yields all
three types of radiatior fields, depending on the details of the
particles trajectory. Ii this paper, we first investigate some
features of DR produced by relativistic particles through the use of
the WiTTiams-weizsgcker method of virtual quanta. Since this method
is strictly valid only for impact parameters much greater than the
sphere's radius, we next give a treatment which is valid for any
impact parameter. The limiting cases of our results when B8 << 1 are
then compared with previous nonrelativistic expressions, where B = v/c,
the ratio of particle velocity to Tight velocity. We have considered



only the dipole contribution to the radiation, thus our results
represent the DR correctly only for ka << 1, where k is 2n divided by
the wavelength of the radiation and a is the sphere's radius.

Diffraction Radiation Using the Method of Virtual Quanta

The system we are considering is shown in Fig. 1: a particle of
velocity v passes by a dielectric sphere of radius a at an impact
parameter b, with v aleng 2. The method of virtual quanta consists of
dividing the calculation of an electromagnetic process occurring
during the collision of a charged particle with particles or photons
into two parts. First, the particle's electromagnetic field is
replaced by an incoherent sum of photons. The spectral density of the
photon field is just the modulus squared of the Fourier transform of
the particle's fields. Then the processes is calculated hy
considering the corresponding process of photon scattering.!’?

The fields of a relativistic particle are? (see Fig. 1).
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If 8 =1, the fields of (la) are equivalent to those of a plane
polarized pulse of radiation traveling along 2. If a fictitious
magnetic field is associated with E,(t), a second pulse traveling
along x can be thought of as replacing the effect of Ez(t).l’2 The
frequency spectra of pulses 1 and 2 are just

dl
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(energy per unit area per unit frequency interval)

where Ex z(b,w) represents the Fourier transform of Ex(t) or E (t).
’

The explicit forms of the frequency spectra arel’Z2:
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where Kl(u) and Ko(u) are modified Bessel functions and
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is the low frequency limit of dI;/dw. Note that dl,/dw is smaller
than dIl/dw by a factor y-d. A plot of Eq. (3) versus In w would
reveal4 that dIl/dw contains all frequencies up to Wrax ™ 1/at, where
at ~ b/yv is the collision time. Similarly, dIz/dw Tooks like the
modulus squared of the Fourier transform of one cycle of a sine wave
of frequency w ~ 1/at, which is narrowly peaked around w ~ yv/b.

According to the method of virtual quanta, the frequency spectrum
of radiation produced by the collisior of a charged particle with a
target is given by

dIC[b,w) i dop(w) Ldll[b,w) . dlz{b,w)J
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|energy/unit frequency-sr |, (6)

where dop(w)/dQ is the differential scattering cross section for
scattering of a photon of frequency w hy the target, or more generally
for any other process under consideration which has a counterpart in
photon interactions. The differential cross section for the collision

process is
doc(w) © dI
TadTha) = 2n Jb TMFelde bdb  [area/unit energy-sr], (7)

min
in which the minimum impact parameter bnin > 0 must be introduced on
physical grounds in order to avoid a divergent integral.



We now apply the above approach to the production of DR by a
relativistic particle (y >> 1) scattered by a dielectric sphere. We
need the Rayleigh scattering cross section of a plane polarized wave
when ka << 1. This is

4 - 2
%% = -——g; e plw)| s (8)
IE |
where the polarization vector of the scattered wave is e, shown in
Fig. 2, and
-1 3
Plw) = =55 a” E (w) (9)

is the Fourier transformed dipole moment induced in the sphere of
dielectric constant € by the incident photon with field amplitude
Ex(w], provided ka << 1, Using (9) in (8) we have

2
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where the angle 6 is defined in Fig. 2.

If we neglect the dipole moment pz[w) ~ y-lpx, then, using
Eq. (10) and the method of virtual quanta Eq. (6), we car immediately
write down the following expression for DR:
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where the term in brackets in (1la) is just dII/dm, Eq. (3). This

procedure is valid as long as the motion of the displaced charge in
the sphere is nonrelativistic and provided the field of the particle
fx(b.w) is essentially constant across the sphere!, i,e. Afx/gx <«<1
where Afx is the change of the field across a diameter. The latter



condition is satisfied for impact parameters b >> a. Eqgs. (1la) and
(11b) show that for u = wb/yv << 1, the spectral distribution is
nearly independent of y and that the k4a6 dependence of Rayleigh
scattering is obtained along with the c0529 dependence of dipole

radiation.

Extension of the Method to Any Value of Impact Parameter

The results of the previous section were restricted to impact
parameters b >> a in order for the method of virtual quanta to be
applicable. In order to extend the calculation to the range of impact
parameters b < a, we proceed as follows: first we determine the
induced dipole moment of the sphere during the passage of the charaged
particle; then we use this result in the standard expression for the
differential frequency spectrum for dipole radiation,

2wl e r 2
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Instead of (9), we determine the dipole moment of the sphere from

~
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which is based on the Tong wavelength approximation.
Using (13) in (12) we obtain
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where 6 is the angle of the unit propagation vector E with respect to

Z.
For b > a, (13) yields

. e-l 3dp(ka) el 3
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Note that for ka + O, p, becomes jdentical to the form (9) of Rayleigh
scattering. With the result (15), the frequency spectrum becomes

2 2 .2 2 1. .412 jylka) 2
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Note that cosa » 1 as y + = and the last factor in (16) becomes
cosze (see Fig. 2).

We have also obtained an approximate expression for the freguency
spectrum when b < a, which is more cumbersome than (16). For lack of
space we give here only the limiting case b = 0:
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From symmetry, p, = 0 when b = 0 and (17) is the result of the
contribution from P, alone.

The Method of Image Charges for Nonrelativistic Particles

We have used the method of image charges to obtain expressions
for the spectral density of DR produced by a nonrelativistic particle
passing either near a perfectly conducting sphere (b > a) or through
it along a diameter (b = 0). In the latter case, the result for the
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total spectral density of dipole radiation was obtained in closed form
with no approximations. The result, after integration

over 4x steradians, is

(b = 0) 2
£ 2:.,- o - g:%‘ (ka)? Lcosx = (x +%) sinx + x2 Ci(x))%, x = ka/g. (18)

The nonrelativistic limit of Eq. (17) integrated over solid angle is
in good agreement with the above result when x << 1, if in
(17), ¢ + = », vy » 1, and the small argument forms jo(x) + 1 and
j](x)/x * %3 for x << 1 are used. Similarly, for b > a, the image
charge method was found to agree with the result (16) above
when ¢ + - =, vy »+ 1, and ka << 1,

In contrast to our results, if one takes the 1imiting case of
Porgorzelski and Yeh®, corresponding to our Eq. (17), one obtains

. 2 2 2
t]:”f 0 —.gchiQ ) %‘11?8 5:‘12 (ka)? J’S(ka/s) sin’e, (19)

which doesn't have the (ka)® dependence which appears in Egs. (17) and
(18) for ka << 1. Yet another expression for the spectral density at
zero impact parameter is cited in the review by Bass and Yakovenko“.
That expression, strangely enough, gives a nonzero result as a + 0,
untike (17), (18), or (19) above.

Numerical Results

In Figs. 3 and 4 we plot the spectral density of DR in units of
q2/c as a function of impact parameter in units of sphere radii for
electrons with energy 0.1, 1 and 10 MeV, with ka = 0.1 and ¢ = 2.0.
In Fig. 3, the observation angle & = =, i.e. we are observing
backscattered radiation, while in Fig. 4 & = n/2.

In Fig. 5 we plot the DR spectral density versus impact parameter
for three different values of ka: ka = 1,0, 0.5 and 0,1, The
observation angle is 8 = = and the electron energy is 100 MeV.

i



In Fig. 6, we illustrate the angular dependence of DR for three
impact parameters: b = 0, b = a, and b = 5a, at an energy of 0.1 MeV
and with ka = 0.1, Note that for b = 0, the radiation pattern is that
of a single dipole oriented along the ;-axis, while for b > a, the
dipole oriented along the ; -axis also contributes.

In Fig. 7, we show the angular dependence for an impact parameter
b = a at 0.1 and 100 MeV with ka = 0.1, The contribution from the
dipole induced along ;, which peaks at 6 = n/2 for 0.1 MeV, has
disappeared at 100 MeV because of the 7'2 weighting which appears in
Eq. (16).

Summary

We have examined the problem of the production of diffraction
radiation (DR) by a charged particle passing near or through a
.dielectric sphere from three closely related points of view: the
method of virtual quanta, the radiation of induced dipole moments, and
the method of images. In a sense, all three methods are similar in
that they all can be considered as a determination of radiation
produced by the dipoles induced in the sphere by a passing particle.
We illustrated the connection between Rayleigh scattering of light and
the method of virtual quanta for the case of ka << 1, large impact
parameters, and relativistic particles. We then gave a more general
formula, valid for any impact parameter and any energy, provided
ka << 1. The general formula may be considered as resulting from a
generalization of the method of virtual quanta to a situation where
the particle fields vary appreciably across the sphere. Finally, the
image charge method was used to determine the radiation from the
dipole induced in a perfectly conducting sphere by a nonrelativistic
particle. Our relativistic expressions agree with the image charge
results in the nonrelativistic 1imit. In contrast, we found that the
literature contains at least two different expressions for the same



physical situation of diffraction radiation produced by a
nonrelativistic particle incident on a sphere, neither of which agrees
with the present results.
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