poel| pel 19091 T30

DOE/PE/79009--T20

DE89 011437

WRATES

*JoaIay) Aouade Aue 10 JUSWUISA0D) SIS PAIUN)
3q) jo 9SOy} 19331 Io 9jes A[LIESSI00U 10U Op UIAIY passaidxd siofne jo suotuido pue
SMIA B4, ‘Joasay) Aousle Aue 10 WSWUIIAON sAIelS PANUn) Y £q SuLoAR) IO ‘UONBPUSW
-W0091 “YuaWasIopus sy A[dwi JO 9INJIISUOS A[LIRSSI0IU 10U SIOP ISIMIIYI0 1O ‘IBIMIOBJNURHI
‘Jrewapes) ‘oureu apes) £qQ 991A13s Jo ‘ss9001d ‘1onpoid feriowwos suads Aue 03 UIRIOY OUD
-19J9Y ‘sIyBu poumo A1djeaud s8uLIjur 10U POM sn SIt 1Ry sjuasaidal 3o ‘pasoposip sseooid
Jo “yonpoxd ‘smyesedde ‘uonjewriojur Aue Jo ssau[njasn Jo ‘ssoudlaiduwios ‘foenodde oY) 10j Kfiq
-1suodsar Jo Aypiqer| [e8a| Aue somnsse 1o ‘paydun lo ssaidxs ‘Kjuesiem Kue soyews ‘soakojdws
I13y3 Jo Aue Jou ‘§joa1ayy Aouafe Aue IOU JUSUILISACD SIILIS PINU()) JOYISN “JUSWIUIA0D)
s91E1S PAU 93 Jo AousBe ue £q parosuods yiom Jo junodoe ue se poredsid sem i0dar sig]

JANIVIDSIA

~—
©
: -
@ ® 0 4
= X Sh-X

a T M E
) 030
- o u O -H
“ 0 @ & N
. : B
m m, a2z
~ ! < b
o
s
ol
¥

MASTER

(o)

H

T
i

DISTRIBUTION GF THiS DBCUMES

ot
A~y
oD
SRIPN
..mmOO
o 2 '
DN D
g Q9
oun=1
20 N
0 go
D> H
Mo
oon
sO T
8P e
o8
=W g
O
WQGW
<o, v
mv\w\\/\
S QOU\

58 Charles Street, Cambridge, Massachusetts 02141

Meta Systems Inc

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

NOTICE

This report was prepared by Meta Systems Inc in the course of
performing work contracted for and sponsored by the New York
State Energy Research and Development Authority (hereafter the
"Authority”). The opinions expressed in this report do not
necessarily reflect those of the Authority or the State of New
York and reference to any specific product, service, process or
method does not necessarily constitute an implied or expressed
recommendation or endorsement of same. Further, the Authority
and the State of New York make no warranties or representations,
expressed or implied, as to the fitness for particular purpose,
merchantability of any product, apparatus or service or the
usefulness, completeness or accuracy of any processes, methods or
other information described, disclosed or referred to in this
report. The Authority and the state of New York make no
representation that the use of any product, apparatus, process,
method or other information will not infringe privately owned
rights and will assume no liability for damages resulting upon
any information contained in this report.

Section
1 EXECUTIVE SUMMARY

2 INTRODUCTION . .

- - -

Computer Model . .

Computer Environment and Requirements
Hardware Requirements
Software Requirements

Module Design . .

3 SCENARIO GENERATION MODULE "SCENGEN"

Program Structure

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

LotusTM

SRPOOL

CONTENTS

SRWHEEL .

SBBASE
SYSOUT
SPREP

SCENGI
SCHECK
SCENGO
SFCHEK
SERROR

123 Interface.

Common Blocks and Variable

4 ECONOMIC LOAD DISPATCH MODULE
Program Structure

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

RSYSTM
SWHEAD
SASYST
SHSYST
SNUMBK
SFOUT

SWPREP

"ELDM"

iii

Dictionary

W W w wwwwwwwwwwuw N NN
i | I | | I | | | | | | | | | I I | |
~N oy Oy 0 vy 8 O P [Y

[T - S - N - - S
I
Ow W O O W ™ o —

5

6

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

WHEELING RATE MODULE
Program Structure .

Subroutine

SADMIT
SGAMMA .
SINJ .
SPTMAX
SDCLF.
SSPOTP.
SGEN .
SLOSS .
SINJK .
SGENF .
SINJF .
SENGBL
SNEWGM
SMUE .
SFINAL
SGCOST
SWSPOTI
SWSPOTP
SPRINT
SPOOLD

RSPOTP
RSCEN .
STREV

SGREV .
SNREV .
SLREV .
STREVM
SGREVM
SNREVS
SLREVS
SNREVM
SLREVM
WSPOTP

RWHEEL

-

"IWHEEL"

Common Blocks and Variable

REVENUE RECONCILIATION MULTIPLIER MODULE
Program Structure

Common Blocks and Variable

iv

Dictionary

"COMPUTM"

.

|
O YW W O @ o

o Uy Wn
| i
o B e

.

8
9

Subroutine WHEELO
Subroutine SLPOOL
Subroutine RWSCEN
Subroutine SPRATE
Subroutine SPREV o e e .
Subroutine SOA
Subroutine SODS
Subroutine sSobC
Subroutine SNDS
Subroutine SNDC
Subroutine SONDS
Subroutine SONDC
Subroutine SGWREV . .
Subroutine SRATEO . . .
Subroutine SYEAR
Subroutine SWANN
Subroutine SDURC
Subroutine SWDURC . . .
LotusTM123 Interface
Layout of the Spreadsheet
Macro \O
Main Routine
Macro \G

Common Blocks and Variable Dictionary

FILE DESCRIPTION« « . .
Scenario File FSCEN.FIL . .
Spot Price File FSPOT.FIL .
Split File FSPLIT.FIL. . . .
Error File ERROR.FIL
ELDM Output File ELDM.OQUT .
Loop File FLOOPONE.OQUT . .

Scenario Generation File SCENGEN.DAT

IWHEEL Output File IWHEEL.OUT
Duration Curve File FDURC.FIL

RUNNING WRATES -~ BATCH PROCESSING

ERROR AND WARNING MESSAGES . . .
SCENGEN Module Error Messages
ELDM Module Error Messages .
Other Messages

.

Appendix A Description of Diskettes .
Appendix B Installation Procedure . .

vi

ILLUSTRATIONS

2-1 WRATES Flow Diagram
3-1 Flow Chart for the SCENGEN Module . .
1 Flow Chart for the ELDM Module . .
5-1 Flow Chart for the COMPUTM Module . .
6-1 Flow Chart for the IWHEEL Module . .

7-1 Sample Error File ERROR.FIL
7-2 Sample ELDM Output File ELDM.OUT . .

vii

7-15
7-16

TABLES

Table Page

3-1 Common Variables in the SCENGEN Module « « 3-9
4-1 Common Variables in the ELDM Module 4-14
5-1 Common Variables in the COMPUTM Module « 5-10
6-1 Common Variables in the IWHEEL Module « « « . .« . . 6-12
7-1 Variables in Scenario File FSCEN.FIL . ¢ ¢ « « & « « « o« « o 12
7-2 Variables in the Spot Price File FSPOT.FIL 1-6
7-3 Variables in the Split File FSPLIT.FIL. . . . +« « « « « « « . 1-13

viii

Section 1

EXECUTIVE SUMMARY

Wheeling is the transmission of electrical energy from a seller to a
buyer through transmission lines owned by the wheeling utility. The
Wheeling Rate Evaluation Simulator (WRATES) is a computer program
developed by Meta Systems to determine the price of wheeling services
based on the true cost of wheeling. WRATES can evaluate four types of
wheeling:

o Utility to Utility, through the transmission
network of one or more interconnected wheeling
utilities or pools.

o} Utility to Private User, where the private user may or
may not be located within the utility

o Private Generator to Utility, where the private
generator may or may not be located inside the wheeling
utility

o) Private Generator to Private User, where both, one or
none of the wheeling parties are within the wheeling
utility

In light of recent inquiries by the Federal Energy Regulatory
Commission (FERC) regarding transmission access, phases like "economic
wheeling” and "common carrier" have become subjects of utmost
interest. WRATES can provide wvaluable information about such vital
issues to policy makers, regulators, industrials and utilities.

One key issue underlying the wheeling debate is the determination of
the rates a wheeling utility should charge. WRATES is a tool for
evaluating wheeling rates that are based on:

o] Marginal Operating Costs with

o} Revenue Reconciliation for Capital Recovery.

The marginal operating costs are determined by fuel cost, transmission
losses and operational costs of dealing with generation and 1line

1-1

capacity limits. Line capacity limits affect the costs of system
redispatch to prevent line overloads and/or the capital costs of
building new lines. Generation capacity limits, when present, result
in emergency purchases, activation of interruptible contracts or other
similar actions. If marginal operating costs as described above are
charged, they may over-recover or under-recover revenue requirements.
Therefore, they generally have to be modified to achieve revenue
reconciliation; i.e. adjusted so that the utility or pool recovers the
"allowed” operating and capital costs. Revenue reconciliation for
transmission embedded capital can be done for the transmission system
as a whole or on a line by line basis which is especially useful for
new transmission 1lines. Revenue reconciliation for embedded
generation costs can be incorporated when the wheeling utility has an
"obligation to serve” one or both parties involved in the wheeling.

The theory underlying WRATES is directly applicable to the complex
networks of generating plants, transmission lines and distribution
areas. However, WRATES is programmed for the evaluation of simplified
networks which can provide a useful and realistic approximation of
these very complex, real-world networks and is intended for policy
studies which explore different approaches and evaluate the general
nature of the wheeling rates.

WRATES handle network flows and losses using either a DC load flow
approximation for 25 buses and 200 lines or the results of an AC load
flow for a much larger network. When working with its internal DC
load flow, WRATES can model up to 5 independently dispatched entities
(either utilities or pools), each with its own Automatic Generation

Control.

The basic theory underlying WRATES evolved from the theory of a spot
price based energy marketplace where private users and private
generators within a given utility pay or are paid at rates based on
marginal operating costs with revenue reconciliation. However, WRATES
does not assume the existence of a spot price based energy
marketplace. The results of WRATES can be used to derive time-of-use
(TOU) rates, constant rates over the period of the-wheeling contract,
or any other structured rates that vary with certain system
characteristics without being completely dynamic. The derived rates
can be applied to any market irrespective of the existing rate structure.

1-2

Section 2

INTRODUCTION

This document is the programmer’s manual for version 01 of the
Wheeling Rate Evaluation Simulator "WRATES".

COMPUTER MODEL

Because of its size, WRATES is implemented as a set of four (4)
modules: SCENGEN, ELDM, COMPUTM, and IWHEEL (Figure 2-1). Sequential
and direct access files provide the medium for transmitting
information between the modules (see Section 7).

™ 123
environment. The LOTUS 123 macro \W creates a sequential DOS file,
SCENGEN.DAT, which will hold the input data to SCENGEN.

The user prepares the input data for WRATES in a LOTUS
™

SCENGEN has three (3) main functions: checking the input data,
creating the scenario data, and writing the output to both the
scenario file, FSCEN.FIL, and the spot price file, FSPOT.FIL. Both
the scenario and the spot price files are direct access files. If
SCENGEN detects an error, it continues the data checking and prints
the error messages in the sequential file ERROR.FIL but halts the
execution of the other modules of WRATES. Otherwise, SCENGEN produces
a complete set of ELDM input data for each scenario and stores it in
the scenario file, FSCEN.FIL.

ELDM is the next module in line. It is called and executed as many
times as there are scenarios. It reads the input data from the
FSCEN.FIL and develops an economic generation dispatch for the
conditions before and/or after wheeling. The resulting spot prices
are written to FSPOT.FIL. Warning messages are stored in WARNING.FIL;
bus generations, line flows, line losses, and fuel costs are written
to the DOS file ELDM.OUT. If there are pools and the wheeling rate is
to apportioned among members of the pool, a direct access file,
FSPLIT.FIL, is created to hold the results of an economic dispatch for
a wheeling quantity equal to the specified quantity + 10 MW.

2-1

Input
LOTUS Worksheet

;

SCENGEN

FSCEN.FIL

LDM
vy E

FSPOT.FIL FSPLIT.FIL

P COMPUTM

l

> IWHEEL <

;

Output
LOTUS Worksheet

Figure 2-1 WRATES Flow Diagram

2-2

COMPUTM is called next. If all of the revenue reconciliation
multipliers are provided, or if the user did not request revenue
reconciled rates, COMPUTM is exited. Otherwise, COMPUTM reads from
FSPOT.FIL the pre-wheeling spot prices for each scenario and
accumulates the yearly gross revenues as well as the yearly fuel
costs. It then computes the requested revenue reconciliation
multipliers and writes them in FSPOT.FIL.

IWHEEL is the last module of WRATES. For each scenario it reads the
spot prices for the economic dispatch that includes the wheeling
transaction. It computes the ideal wheeling rate for each utility and
pool as well as the reconciled rate when required, and writes them to
IWHEEL.OUT. After all the scenarios are processed, IWHEEL computes
the coordinates of points describing the ideal and the reconciled
wheeling rate duration curves for each of the wheeling utilities, and
writes them to FDURC.FIL.

Then LOTUS™™
to sort the wheeling rates by utility and display them in a worksheet

123 is invoked and the macro \0 is automatically called

format. Macro \G can also be invoked to graph the wheeling rate
duration curves.

COMPUTER ENVIRONMENT AND REQUIREMENTS

WRATES was developed on an IBM/AT operating under DOS. It is coded in
FORTRAN 77. Its input is prepared in LOTUSTM 123 and its output is
also displayed on a LOTUSTM 123 spreadsheet. WRATES was compiled and
debugged using the Lahey F77L compiler. The executable modules were
created using the PC-DOS "link" command of DOS 3.2.

Hardware Requirements

Running WRATES requires an IBM AT or a compatible computer with:

o} 640 Kbytes of memory;

0 A math coprocessor;

o} A hard disk;

o) A 1.2 Megabyte (high density) floppy disk drive (because

WRATES is provided on "high density" diskettes);

o) A monitor (monochrome or color);

2-3

o] A printer that can print 132 characters per line either with
a wide carriage or via the compressed mode.

ftw R irem

The software requirements of WRATES are:

o] DOS operating System version 3.0 or higher;

o LOTUSTM 123 version 2.0 or higher (WRATES does not run from
Symphony) ;

o Lahey F77. compiler version 2.2 or higher (this is needed if

WRATES is recompiled on the user’s computer).

MODULE DESIGN

The following guidelines were used for the design of all four modules

of the program:

o) The source code for each module is stored in a separate
directory that has the same name as the module. For
example, the source code for the SCENGEN module is in
directory \SCENGEN.

o) All the common variables of a module are defined in the file
COMMON.FOR. This file is included at the beginning of every
subroutine of that module.

o All the common variables of a module are initialized in the
block data subprogram stored in the BLKDATA.FOR file of the
module directory.

o] All the array dimensions are specified in a "parameter”
statement located at the beginning of the COMMON.FOR file.
Therefore, changing those dimensions requires only modifying
the parameter statement in each module (a total of 4)
instead of changing the dimension of each affected variable
in both COMMON.FOR and BLKDATA.FOR of each module.

0 The flow of a module is controlled by the main routine
stored in the file called "Module name.FOR." For example,
the main program of the COMPUTM module is stored in
COMPUTM.FOR. All the module’s subroutines are called by the
main routine which is the only routine allowed to call any

subroutine.
o) Each subroutine is stored in a separate DOS file, the name
of which is "subroutine.FOR". For example, subroutine SODS

is stored in the DOS file SODS.FOR.

o) All the input/output files used in a module are opened at
the beginning of the main routine of that module.

2-4

Section 3

SCENARIO GENERATION MODULE "SCENGEN"

The Scenario generation module, SCENGEN, is the first module of
WRATES. It is called by the batch file WRATES.BAT after the input
data file SCENGEN.DAT is created from the LOTUSTM 123 input
spreadsheet. Its function is to create a complete set of input data
to ELDM for each scenario, and to write this data to the direct access
scenario file FSCEN.FIL. The flow chart of SCENGEN is shown in Figure
3-1. A key to the symbols used in the flow charts is contained in the
list of symbols preceding Section 1.

PROGRAM STRUCTURE

The flow of the SCENGEN ﬁodule is controlled by the main program
stored in SCENGEN.FOR which calls a total of ten (10) subroutines.
The input data to this module is stored in SCENGEN.DAT and it is
organized as follows. First, there is a section describing the base
case data; it has the title block, the pool affiliation data, the
wheeling transaction data, the net energy data, the bus data and
finally the line data. This data does not represent any particular
state of the electrical system, it is rather a block of data that
needs to be modified for each scenario. Second, there is a data
section for each scenario; it has the demand at each bus and the data
that differ from the base case. SCENGEN first reads then checks and
stores the base case data. The module then reads the input data for
each scenario and combines it with the base case data to create a
complete set of input data to ELDM for each scenario. The scenario
data is written to the scenario file FSCEN.FIL. During its execution,
SCENGEN checks the input data. If an error occurs, no further writing
to the scenario file is allowed, but the reading and checking of the
input data continues until either the number of errors exceeds the
maximum allowed, or the end of the data is reached. The following is
a description of the function of each subroutine in SCENGEN in the
same order as they are called by the main routine in SCENGEN.FOR.

SRPOOL

Yes
nerror 2 nerx P@

SRWHEEL

Yes
nerror 2 nerx D@

SBASE

Yes
nerror 2 nerx D@

Figure 3-1. Flow Chart for the SCENGEN Module

3-2

Yes

No

SYSQUT

SPREP

!

SCENGI

Yes
nerror 2 nerx b[:]

Loop through
all Scenarios SCHECK

Yes
nerror 2 nerx D[:]

Figure 3-1 (continued). Flow Chart for the SCENGEN Module

3-3

nerror 2 nerx

Yes ’[:J

e

Loop through
all Scenarios

SCENGO

SFCHEK
SERROR
Figure 3-1 (Continued). Flow Chart for the SCENGEN Module

3-4

Subroutine SRPOOI,

This subroutine reads the title of the study, the number of buses,
lines and pool in the system as well as the pool affiliation of each
utility if any. A utility could be either independently dispatched,
or could belong to a pool in which case it is centrally dispatched
with all the other members of the pool. SRPOOL also checks the pool
affiliation data for consistency and completeness.

Subroutine SRWHEEL

This subroutine is called after SRPOOL if the number of errors
detected so far does not exceed the allowed member of errors. SRWHEEL
reads the quantity to be wheeled as well as the location of the buyer
and seller. It also reads the wheeling reconciliation parameters of
the wheeling utilities. Noﬁe that the wheeling reconciliation is not

allowed for pools or their member utilities.

Subroutine SBASE

This subroutine is called after SRWHEEL if the number of errors
detected so far does not exceed the allowed number of errors. It
reads the base case data section and checks it for consistency and

completeness.

Subroutine SYSOUT

This subroutine is called after SBASE, and only if no errors are
detected so far. SYSOUT writes the system record (record 1) and the
pool record (record 2) to the scenario file, FSCEN.FIL. It also writes
the system record (record 1), the pool record (record 2) and the
revenue reconciliation record (record 3) to the spot price file,
FSPOT.FIL.

Subroutine SPREP

This subroutine is called once for each scenario right before the

scenario data is read. It sets the demand at each bus to zero and

copies the net energy data, the bus data, and the line data from the

arrays holding the base case data to the arrays that will hold the
3-5

scenario data.

Subroutine SCENGI
This subroutine reads the scenario data. It reads the demand at each
bus, the modifications to the net energy interchange data, the
marginal cost curve data, the cost of unserved energy data and the
line data. It then stores the data in the arrays prepared by
subroutine SPREP.

Subroutine SCHECK

This subroutine checks the consistency and validity of the scenario
data. For a list of the errors that are detected, see Section 9.

Subroutine SCENGO

This subroutine is called only if the input data is free of errors so
far. The function of this subroutine is to write the scenario data in
the direct access scenario file FSCEN.FIL. All the data related to
one scenario are stored in one record of FSCEN.FIL. This record has a
number equal to the scenario number plus two (2); e.g., the data
related to scenario 5 will be stored in record 7 of FSCEN.FIL.

Subroutine SFCHEK

This subroutine is called once after all the input data is read. It
performs further checking of the input data. For a list of the errors
SFCHEK detects, see Section 9.

Subroutine SERROR

This subroutine is called either when the number of errors detected is
equal to the maximum number (NERX) set by the user in BLKDATA.FOR, or
just before exiting the program. SERROR writes an error number and a
short message in SERROR.FIL for each error detected by SCENGEN. For a
list of the errors detected by SCENGEN, see Section 9.

LoTUs™ 123 INTERFACE

The input data for the SCENGEN module of the WRATES program is entered
into a LOTUSTM 123 spreadsheet. A LOTUSTM 123 macro, \W, is provided
to transfer the input data to a DOS sequential ASCII file called
SCENGEN.DAT. This file constitutes the input to the SCENGEN module

3-6

which is coded in FORTRAN.

The macro \W must be located in all of the input spreadsheets. In the
blank input spreadsheet provided with WRATES, WRATES.WK1l, the macro \W
is located beginning in cell C1000. This location will probably be
different in other input spreadsheets, depending on the number of rows
inserted by the user.

During its execution, the macro performs seven steps.

0 Step 1: The user is prompted as to whether or not
he/she wishes to save the spreadsheet. It is
saved if so desired by the user.

o] Step 2: Blank cells are replaced with zeroes in the
wheeling data portion of the spreadsheet, where some
input data were optional.

o) Step 3: The data is printed to the file SCENGEN.DAT.
If the file already exists, it is overwritten; if the
file does not exist, it is created. At this point
SCENGEN.DAT contains data, headers and other labelling
text.

o Step 4: Except for the title of the case study, the

data portion of the spreadsheet 1is erased, and the
numbers from the SCENGEN.DAT file are re-imported into
the spreadsheet.

o Step 5: Blank rows appearing between the data are
removed from the spreadsheet. '

o] Step 6: The data portion of the spreadsheet is again
printed to the SCENGEN.DAT file.

o) Step 7: The macro exits LOTUSTM 123.

After exiting LOTUSTM 123, control returns to the WRATES batch file.
The resulting file, SCENGEN.DAT, is an ASCII text file in the format
required for the input to the SCENGEN module.

COMMON BLOCKS AND VARIABLE DICTIONARY

This section describes the common variables used in the SCENGEN
module. Two files define and initialize the variables in this module.
The first, COMMON.FOR, defines the common blocks. The code in this
file is included in all the subroutines of the SCENGEN module. The
second, BLKDATA.FOR, is a subprogram that initializes the variables
defined in the common blocks. Table 3-1 is a listing of the common

3-7

variables of SCENGEN. The array variables are dimensioned by
parameters that are set in a parameter statement in COMMON.FOR. These

parameters are:

o ns maximum number of scenarios

o nlx maximum number of lines

o] nbx maximum number of buses

o] nux maximum number of utilities

o npx maximum number of pools

o] nptx maximum number of points on the supply curves

0 niux maximum number of independently dispatched entitites
o nerx maximum number of errors

o] nupx maximum number of independently dispatched entitites

Table 3-1

COMMON VARIABLES IN THE SCENGEN MODULE

Variable Dimension Type Definition

mm Block SY

NBUS I number of buses

NLINE I number of lines

NUTIL I total number of utilities

NPOOL I number of pools

NIUTIL I number of independently dispatched
utilities

NUP I numper of economically dispatched
entities

NWUTIL I total number of wheeling utilities

including pool affiliated ones

NWLINE I total number of lines for which
wheeling revenues or revenue
reconciliation multipliers are to
be computed

Common Block /CLINE/

XRES (1) i=1,nlx R resistance of line i (Ohms/Vz)

XINDUC (i) i=1,nlx R inductance of line i (Ohms/V?)

IBEGB (1) i=1,nlx I number of the beginning bus of
line 1

IENDB (i) i=1,nlx I number of the end bus of line i

ICONST (1) i=1,nlx I type of constraint for line i

0 - no constraint
1l - soft constraint
2 - hard constraint

XFLPOS (1) i=1,nlx R positive flow 1limit for 1line i
(MW)

XPEPOS (1) i=1,nlx R penalty parameter if flow in line
i exceeds 1limit in positive
direction

Table 3-1 (continued)

Variable Dimension Type Definition

XFLNEG (1) i=1,nlx R negative flow 1limit for 1line i
(MW)

XPENEG (i) i=1,nlx R penalty parameter if flow in line
i exceeds 1limit in negative
direction

ILUTIL (i) i=1l,nlx I utility to which line i belongs

Common Block /CLINY/

YRES (1)

YINDUC (1)

JCONST (1)

YFLPOS (1)

YPEPOS (1)

YFLNEG (1)

YPENEG (i)

i=1l,nlx R
i=1l,nlx R
i=1,nlx I
i=1,nlx R
i=1,nlx R
i=1,nlx R
i=1,nlx R

Common Block /CBUS/

XDEMD (1)

IBUTIL (i)

i=1,nbx R

i=1, nbx I

base case value far the resistance
of line i (Ohms/V®)

base case value er the inductance
of line i (Ohms/V®)

base case value for the constraint
on line i:

0 - no constraint

1l - soft constraint

2 - hard constraint

base case value for the positive
flow limit for line i (MW)

base case wvalue for the penalty
parameter if flow in 1line i
exceeds 1limit in the positive
direction

base case value for the negative
flow limit for line i (MW)

base case value for the penalty
parameter if flow in 1line 1

exceeds 1limit 1in negative
direction

demand at bus i (MW)

utility to which bus i belongs

Table 3-1 (continued)
Variable Dimension Type Definition
Common Block UPLY
XGENCP (i, 3) i=1,nbx R generation level at point j on the
j=1,nptx supply curve for bus i (MW)
XGENCO (i, 3j) i=1,nbx R marginal cost at point j on the
j=1,nptx supply curve for bus i ($/MWh)
IGENPT (1) i=1,nbx I number of points on the supply
curve for bus i :
YGENCP (i, j) i=1,nbx R base case value for the generation
j=1,nptx level at point j on the supply
curve for bus i (MW)
YGENCO (i, 3) i=1, nbx R base case value for the marginal
j=1,nptx cost at point j on the supply
curve for bus i ($/Mwh)
XUNEGM (1) i=1, nbx R cost of unserved energy for bus i
($/MwWh)
XUNESL (1) i=1,nbx R slope of unserved energy cost for
bus i ($/MWh/MWh)
XEXDGM (1) i=1, nbx R cost of excess demand for bus i
($/MWh)
XEXDSL (i) i=1,nbx R slope of the cost of excess demand
for bus i ($/MWh/MWh)
Common Block /CPQOL/
IUPOOL (1) i=1, nux I pool to which utility i belongs
IUP (i) i=1, nux I user assigned number of the
utility that 1is independently
dispatched
IDISNU (1) i=1, nux I program assigned number to the
independently dispatch utility i
IUP (IDISNU(i)) = 1
NPRANK (i) i=1, npx I number of utilities in pool 1
Common Block /CNETETI
XNETEI (i) i=1, nupx R net energy interchange for

3

independently dispatched entity i
(MW)

11

Table 3-1 (continued)

Variable Dimension Type Definition

YNETEI (1) i=1, nupx R base case value for the net energy
interchange for independently
dispatched entity i (MW)

mmon Block ENAR
KSCEN I current scenario number
NSCEN I number of scenarios
PSCEN (i) i=1l,ns R probability of scenario i
Common Block WGB
ISWGBN I system swing bus, usually same as
buying bus
ISWGBS I swing bus of the selling party
Common Block /CWHEEL/
XWHEEL R quantity of power wheeled (MW)
JTSELL I type of selling party:
' 1 - bus
2 - utility
3 - pool
NSELL I number of the seller
JTBUY I type of buying party:
1 - bus
2 - utility
3 - pool
NBUYER I number of the buyer
Common Block /CREVU/
NUTW (i) i=1, nux I utility number of wheeling
utility 1
ICLASS (i) i=1,nux I obligation class for wheeling
utility i:

1 - obligation to serve

2 - no obligation to serve

3 - obligation/no obligation to
serve

3-12

Table 3-1 (continued)

Variable Dimension Type Definition

IOPTON (1) i=1,nux I rate option for wheeling
utility i:
1l - aggregate
2 - disaggregate
3 - decomposed

IREVM (i) i=1,nux I revenue multiplier status:
1 - provided
2 - to be computed

XTREVM (1) i=1,nux R total revenue reconciliation
multiplier for utility i

XGREVM (1) i=1, nux R generation revenue reconciliation
multiplier for utility i

XNREVM (i) i=1,nux R network revenue reconciliation
multiplier for utility i

XTREV (1) i=1,nux R total capital revenues for
independently dispatched utility i
(K$)

XGREV (1) i=1,nux R generation capital revenues
for independently dispatched
utility i (K$)

XNREV (1) i=1, nux R network capital revenues for
independently dispatched utility i
(K$)

NLTW (i) i=1l,nlx I line number of each line with the
decomposed option

XLREVM (i) i=1,nlx R revenue reconciliation multiplier
for line i

XLREV (1) i=1,nlx R line i capital revenues (K$)

Common Block /CFILES/

IN I unit number of input data file

I0UT I unit number of error file

IFSCEN I unit number of scenario file

IFSPOT I unit number of spot price file

ILOOP I unit number of counter file

3-13

Table 3-1 (continued)
Variable Dimension Type Definition
mon Block N.
NAME A80 title of study
Common Block /COPT/
JELDM I ELDM option:
1 - run ELDM with and without
wheeling
2 - do not run ELDM
3 - run ELDM with wheeling
only
4 - run ELDM without wheeling
only
JRATE I rate option:
1 - ideal rates only
2 - ideal and reconciled rates
JSTAT I statistics option:
l1 -do not run yearly
statistics
2 - run yearly statistics
JPOOL I pool analysis option:
1 - do not run pool analysis
2 - run pool analysis i.e. split
pool wheeling costs among its
member utilities
Common Block /CERROR/
NERROR I number of errors
IERN (1) i=1,nerx I type of error i
IFVAR (1) i=1, nerx I first variable in error message of
error i
ISVAR (1) i=1,nerx I second variable in error message

of error i

14

Section 4

ECONOMIC LOAD DISPATCH MODULE "ELDM”

The Economic Load Dispatch Module, ELDM, is the largest module of
WRATES. It is invoked by WRATES.BAT ohce for each scenario. It first
reads the system topology and the scenario data from the scenario file
FSCEN.FIL. Next, for that scenario, it optimally dispatches
generation to satisfy the demand at each bus and the net energy
interchange of each utility, given the marginal cost curve at each
generating bus and the line flow constraints. The generation dispatch
is performed with wheeling and/or without wheeling, depending on the
value of the input parameter JELDM. Finally, the resulting generation
levels, spot prices at each bus, and line flows are written into the
spot price file FSPOT.FIL, and in the output file ELDM.QUT. If the
system has pools and the user has requested apportioning wheeling
rates to pool numbers, one more economic generation dispatch is
performed. This dispatch is for a wheeling quantity equal to the
specified wheeling quantity + 10 MW. The results of this dispatch are
written into the split file FSPLIT file and in the output file
ELDM.QUT. The flow chart of ELDM is shown in figure 4-1.

PROGRAM STRUCTURE

The flow of the ELDM module is controlled by the main program stored
in ELDM.FOR, which calls a total of 27 subroutines. Four nested loops
form the optimization algorithm. The three inner loops are run on a
utility by utility basis. The innermost one is called the "spot price
and generation loop"” and it computes the generation levels that
correspond to the spot prices at each bus of that utility. The
second, called the "gamma loop,” varies the value of gamma until the
energy balance is met for that utility. The third one is called the
"mu loop” and ensures that the flow on the line with a hard
constraint, if any, does not exceed the flow limit set in the input
data. Finally, the outermost loop, or "system loop" is performed as
many times as necessary until the generation levels and line flows
within each utility are consistent with the rest of the system.

RSYSTM

Yes
JELDM = 2 P@

No

SWHEAD

SADMIT

:

SASYST

;

SHSYST

;

SNUMBK

'

Figure 4-1. Flow Chart for the ELDM Module

4-2

Yes

SFOUT

...

Loop through
all Entities SGAMMA

SINJ

..

Figure 4-1 (Continued). Flow Chart for the ELDM Module

4-3

Gamma
loop

M u
loop

System

loop

Figure 4-1

Number of
Iterations
= Max

Yes

SPTMAX

SDCLF

v

SSPOTP

v

SGEN

SLOSS

SINJK

(Continued).

Spot price
and generation
loop

Flow Chart for the ELDM Module
4-4

SGENF

Gamma
loop

SLOSS

M u
loop

SINJF

System
loop

Yes
ICHBAL = 0

No

SNEWGM

Figure 4-1 (Continued).

Flow Chart for the ELDM Modn:le
4-5

Yes
NUP = 1

System No

loop

SFINAL

SGCOST

Yes

v

SWSPOTI

|

Yes

v

SWSPOTP

]

Figure 4-1 (Continued). Flow Chart for the ELDM Module

4-6

l

SPRINT

¢ SWPREP

IWHEEL=0

Yes T

and
JELDV

No

SPOOLD

JPOOL=2 &
IWHEEL=1 &
IPOOL=0

Figure 4-1 (Continued). Flow Chart for the ELDM Module

The following is a description of the function of the ELDM subroutines
in the same order as they are called by the main routine.

Subroutine RSYSTM

This subroutine reads the system record (record 1), the pool record
(record 2) and the record corresponding to the scenario that ELDM is
simulating from the scenario file FSCEN.FIL.

Subroutine SWHEAD
This subroutine writes a heading in both the warning file
"WARNING.FIL" and the output file "ELDM.OUT" of the economic load

dispatch module.

Subroutine SASYST

This subroutine creates the network incidence matrix A. It also
rearranges the buses such that the swing bus is the last one, and all
the buses following the swing bus have their rank reduced by one. The
array IPROGB holds the new bus numbers while the array IUSERB holds
the user assigned bus numbers; and

IUSERB (IPROGB (IBUS))

IBUS

Subroutine SHSYST

This subroutine computes the transfer admittance matrix H which has
one row for each line and one column for each bus excluding the system
swing bus. In this routine, there is a matrix inversion algorithm,

and it is based on the Gauss elimination method.

Subroutine SNUMBK

This subroutine assigns to each line and to each bus a number
reflecting their order in their respective independently dispatched
entities. The arrays ISYSTL and ISYSTB hold the network numbers for
lines and buses respectively. For example, if lines 7, 18 and 21 are
the only lines belonging to pcol 2; then

ISYSTL(1,2) = 7

ISYSTL (2,2) 18

ISYSTL (3,2) 21

4-8

Similarly for buses, if POOL 1 has only two buses: 3 and 9; then

"
w

ISYSTB (1,1)
ISYSTB (2,1)

|
(Vo)

Subroutine SFQUT

This subroutine is called only when ELDM is simulating the 1st
scenario. It writes the topology record (record 4) into the direct
access spot price file "FSPOT.FIL".

routin WPREP

This subroutine is called only when. ELDM is dispatching the system
with the wheeling transaction. It basically simulates the effect of
that transaction. If the seller or buyer is a bus, it modifies the
demand at that bus as well as the net energy interchange of the
independently dispatched entity (utility or pool) to which that bus
belongs. If the seller or buyer is a utility, it modifies the net
energy interchange of that utility if it is independently dispatched,
or it modifies the net energy interchange of the pool to which that
utility belongs. Finally if the seller or buyer is a pool, it
modifies the net energy interchange of that pool.

Subroutine SADMIT
This subroutine computes the admittances of all the 1lines of the

network. It also computes for each line the wvariable XLR, which is
the parameter such that the product of XLR and the square of the line
flow is equal to the losses on the line.

Subroutine SGAMMA

This subroutine is called once for each independently dispatched
entity. It computes an initial guess for gamma. This initial guess
is selected such that with this value of gamma the total generation
within the utility (or pool) will equal the total demand of that
entity plus its net energy interchange.

Subroutine SINJ

This subroutine computes the injection at each bus of the system.
Injection at a bus is defined as the value of generation at that bus
minus the value of demand at that bus.

4-9

Subroutine SPTMAX

This subroutine is called only if, after the maximum allowed number of
iterations (NITSMX), the innermost loop of ELDM did not produce a set
of consistent spot prices and generation levels at each bus for a
specific value of gamma. SPTMAX then computes a new value of gamma
depending on whether previous values of gamma have resulted in
converging solutions or not.

routin DCLF

This subroutine computes the flows through all the lines of the
network by multiplying the transfer admittance matrix (XHSYST) by the
injection vector (XINJ). It also calculates the derivative of the
losses represented at each bus of the system with respect to a change
in injection at each bus of the utility that is being dispatched.

Subroutine SSPOTP

This subroutine computes the spot price at each bus of the
independently dispatched entity that is being dispatched. The network
quality of supply terms are computed within this subroutine.

Subroutine SGEN

This subroutine computes an estimate of the generation levels at each
generating bus of the utility being dispatched given the spot price at
each bus. This estimate is not the exact value corresponding to the
spot price on the marginal cost curve; rather, it is a weighted
average of the previous value and the value corresponding to the
latest spot price.

Subroutine SILOSS

This subroutine computes the losses of each line of the entity being
dispatched. It also associates half of the losses of each line with
the bus at the beginning of that line and the other half with the bus
at the end of that line. This association is the direct result of the
expansion of the DC load flow equations, and is necessary to obtain
accurate values for the spot prices.

ubroutine SINJK

Subroutine SINJK computes the injection at each bus of the utility
being considered. Here, the injection at a bus is defined as the
generation at that bus minus the demand at that bus, minus the losses
associated with that bus. The losses are equal to half of the losses
for all the lines connected to that bus. The newly calculated values
of the injections are then compared at each bus to the previous
values. If the injections at any bus are different by an amount
larger than the tolerance allowed, the flag ICHINJ is set to 1, to
indicate that at least one more iteration of the "spot price and

generation loop" is needed.

Subroutine SGENF

This subroutine is called right after the "spot price and generation
loop” and yields a consistent set of generations and spot prices at
each bus of the independently dispatch entity. It computes the final
values of generation based on the marginal cost curve at each bus;
those values correspond to the last calculated spot price.

Subroutine SINJF

This subroutine is called after SGENF and SLOSS yield the final values
of the generation and losses, respectively. It calculates the
injection at each bus of the utility being considered, in the same way
as SINJK.

Subroutine SENGBL

This subroutine checks the energy balance for the independently
dispatched entity utility being considered. The energy balance
equation is:

Generation - Demand - Losses - Net Energy Interchange = delta

If delta is not within the tolerance (TOLENG) specified by the user in
BLKDATA.FOR, the flag ICHBAL is set to 1, indicating that the gamma
loop needs at least one more iteration; otherwise the gamma loop is

exited.

(S
|

11

Subroutin NEWGM

This subroutine is only called when the energy balance is not
achieved. Its function is to estimate a new value of gamma, the
marginal cost of generation for the independently dispatched entity
being considered. This new value is selected between a lower bound
(FGAM) and an upper bound (SGAM) derived from previous iterations.

Subroutine SMUE

Each independently dispatched entity can have up to one line with a
hard constraint on its flow. This subroutine checks the flow on that
line. If it exceeds the flow limit, SMUE estimates a wvalue for the
Lagrange multiplier "mu” that will reduce the flow on the line to its
limit. In the first iteration, "mu" is set equal to the value of
gamma, the marginal generating cost for the utility to which the line
belongs. In subsequent iterations, a lower bound and an upper bound
on the value of "mu" are derived and updated with each iteration until
the final value of mu is computed. This value is such that the line
flow on the line with a hard constraint is equal to its limit within a
tolerance TOLINJ set by the user in BLKDATA.FOR.

Subroutine SFINAL

SFINAL is part of the outermost or system loop. Its function is to
ensure that all the bus generations derived for each independently
dispatched entity form a feasible and consistent solution for the
whole system. Subroutine SFINAL checks if the new values of the
injections at each bus of the system are equal to the values derived
in the previous iteration within the tolerance (TOLINJ) set in
BLKDATA.FOR. If the injection at any one bus is different than its
previous value by an amount larger than the tolerance, the flag ICHFIN
is set to 1 to indicate that at least one more iteration in the system
loop is required. Otherwise the system loop is exited.

Subroutine SGCQST

This subroutine computes the cost of generation at each generating bus
of the system by calculating the areas under their respective marginal
cost curves. It also computes the total generation for each utility
by summing the costs at each bus of the utility and for each pool by
summing the costs at each bus of the pool.

4-12

Subroutine SWSPOTT

This subroutine writes the spot price record for the scenario being
simulated in the spot price file FSPOT.FIL (see Section 7).

b i W TP
This subroutine writes the generations costs for all pools and all
utilities in the split file "FSPLIT.FIL," if the wheeling rate for

pools is to be apportioned among member utilities.

Subroutine SPRINT

This subroutine writes the results of the Economic Load Dispatch
Module in the ASCII file ELDM.OUT (see Section 7).

Subroutine SPOOLD

This subroutine is called when ELDM is dispatching the system for a
wheeling quantity equal to the specified gquantity + 10 MW. It
simulates the effect off that transaction in the same fashion as

SWPREP.

COMMON BLOCKS AND VARIABLE DICTIONARY

This section describes the common variables used in the ELDM module.

Two files define and initialize the wvariables in this module. The
first, COMMON.FOR, defines the common blocks. The code in this file
is included in all subroutines of the ELDM module. The second,

BLKDATA.FOR, is a subprogram that initializes all the wvariables
defined in the common blocks. Table 4-1 is a listing of the common
variables of ELDM. The array variables are dimensioned by parameters
that are set in a parameter statement in COMMON.FOR. These parameters

are:
o nlx maximum number of lines
o} nbx maximum number of buses
o] nux manximum number of utilities
o npx maximum number of pools
0 nptx maximum number of points on supply curve
o] nupx maximum number of independently dispatched entities

4-13

Table 4-1

COMMON VARIABLES IN THE ELDM MODULE

Variable Dimension Type Definition

Common Block Y

KUP I current independently dispatched
entity

NBUS I total number of buses

NLINE I total number of lines

NUTIL I total number of utilities

NPOOL I total number of pools

NIUTIL I total number of independently
dispatched utilities

NUP I total number of independently
dispatched entities = NPOOL +
NIUTIL

NBUSUP (i) i=1, nupx I number of buses 1in each

independently dispatched entity

NLINEUP (i) i=1, nupx I number of lines in each
independently dispatched entity

Common Block /CPOOL/
IUPOOL (1) i=1,nux I pool to which utility i belongs

IUP (1) i=1, nux I user assigned number of the
independently dispatched utility i

IDISNU (1) i=1,nux I program assigned number to the
independently dispatched utility
i; IUP(IDISNU(i)) = 1i

ILPOOL (i) i=1,nlx I pool to which line i belongs

IBPOOL (1) i=1,nbx I pool to which bus i belongs.

NPRANK (1) i=1,npx I number of utilities in pool i

IPUTIL (i, 3) i=1, nux I ngﬂber of the ith utility in the

j=1, npx 3 pool

Table 4-1

(continued)

Variable

Dimension Type Definition
ommon Block LINE

XRES (1) i=1,nlx R resistance of line i (Ohms/Vz)

XINDUC (i) i=1,nlx R inductance of line i (Ohms/Vz)

XADMIT (i) i=1l,nlx R admittance of line i

XLR (1) i=1,nlx R parameter such that line losses =
XLR x (line flow squared)

IBEGB (i) i=1,nlx I number of the beginning bus of
line i

IENDB (i) i=1,nlx I number of the end bus of line i

XFLPOS (1) i=1,nlx R positive flow limit for 1line i
(MW)

XPEPOS (1) i=l,nlx R penalty parameter if flow in line
i exceeds 1limit in positive
direction

XFLNEG (1) i=1,nlx R negative flow 1limit for 1line i
(MW)

XPENEG (1) i=1l,nlx R penalty parameter if flow in line
i exceeds limit in negative
direction

ILUTIL (1) i=1,nlx I utility to which line i belongs

ICONST (1) i=1,nlx I type of constraint for line i:

0 - no constraint
1 - soft constraint
2 - hard constraint

Common Block /CBUS/

XDEMD (1) i=1,nbx R demand at bus i (MW)

XGENB (i) i=1, nbx R generation at bus i (MW)

IBUTIL (1) i=1,nbx I utility to which bus i belongs

XSPOTP (1) i=1,nbx R spot price at bus i ($/MWh)

XLSPOT (i, 3j) i=1,nlx R component of the spot price

j=1,nbx at bus j, associated with line i

Table 4-1

(continued)

Variable Dimension Type Definition
Common_ Block /CMSYST/
IASYST (i, 3) i=1,nlx I incidence matrix
j=1, nbx
XHSYST (i, Jj) i=1,nlx R transfer admittance matrix
j=1,nbx
XDDEV (i, Jj) i=1,nbx R derivative of losses
j=1,nbx associated with bus i due to
changes in injectipn at bus j
Common Block /CCOST/
XBCOST (i) i=1,nbx R production cost at bus i ($)
XUGCB (1) i=1,nux R production cost for utility i,
before wheeling ($)
XUGCA (1) i=1,nux R production cost for utility i,
including the effect of wheeling
($)
XPGCB (1) i=1,npx R production cost for pool i, before
wheeling ($)
XPGCA (1) i=1,npx R production cost for pool i
including the effect of wheeling
($)
Common Block /CSUPLY/
XGENCP (i, j) i=1, nbx R generation level at point j
j=1,nptx of the supply curve for bus i (MW)
XGENCO (i, Jj) i=1,nbx R marginal cost at point j on supply
j=1, nptx curve for bus i ($/MwWh)
IGENPT (1) i=1,nbx I number of points on the supply
curve for bus i
XUNEGM (1) i=1,nbx R cost of unserved energy for bus i
($/MWh)
XUNESL (1) i=1, nbx R slope of unserved energy cost for

bus i ($/MWh/MWh)

4-16

Table 4-1 (continued)

Variable Dimension Type Definition

XEXDGM (1) i=1,nbx R cost of excess demand for bus i
($/MWh)

XEXDSL (1) i=1,nbx R slope of the cost of excess demand

: for bus i ($/MWh/MWh)

DUNE R amount of energy used for sloping
the inserted energy section of the
marginal cost curves

Common Block /CNETEI

XNETEI (1) i=1, nupx R net energy interchange for
the independently dispatched
entity i (MW)

Common Block /CSWGB/

ISWGBN I system swing bus

ISWGBS I swing bus of the selling
utility or seller bus

Common Block /CLINEF/

XLINF (i) i=1,nlx R line flow (MW)

XPENF (1) i=1,nlx R derivative of the penalty function
due to a flow on line i exceeding
its flow limit ($/MW)

XPENFC (1) i=1l,nlx R penalty function due to a flow on
line i exceeding its flow 1limit
($)

Common_ Block /CWHEEL/

IWHEEL I wheeling flag:

0 - dispatch without wheeling
1- dispatch with wheeling
XWHEEL R power wheeled (MW)
JTSELL I type of selling party:
1 - bus
2 - utility
3 - pool
NSELL I number of the selling party

17

Table 4-1 (continued)

Variable Dimension Type Definition

JTBUY I type of buying party:
1 - bus
2 - utility
3 - pool

NBUYER I number of the buying party

Common Block OMPUT

IUSERB (i) i=1,nbx I user assigned number of the bus
with an internally assigned number
equal to i

IPROGB (i) i=1,nbx I internally assigned number for
bus 1i

ISYSTL (i, 3) i=1,nlx I l%@? number of the ith line in the

j=1, nupx 3 independently dispatched

entity

ISYSTB (i, J) i=1,nbx I bus nu@Rer of the ith bus in the

j=1,nupx the j independently dispatched

entity

Common Block /CGAMMA/

XGAMMA (1) i=1, nupx R marginal cost of generation for
independently dispatched entity i
($/MWh)

NITGAM I iteration number in the gamma loop

NITGMX I maximum number of iterations in
the gamma loop

TOLENG R tolerance for the energy balance
(MW)

FGAM (i) i=1, nupx R lower bound of the interval
containing the final value of
gamma for entity i

SGAM (1) i=1, nupx R upper bound of the interval

containing the final value of
gamma for entity i

Table 4-1 (continued)

Variable Dimension Type Definition

FTGEN (1) i=1, nupx R total generation in entity i
corresponding to gamma = FGAM(i)

STGEN (i) i=1, nupx R total generation in entity 1
corresponding to gamma = SGAM(1i)

Commeon Block INJ

XINJ (1) i=1,nbx R injection at bus i (MW)

XINJP (i) i=1,nbx R previous value of injection at bus
i used in subroutine SINJK (MW)

XINJPP (1) i=1,nbx R previous value of injection at bus
i used in subroutine SFINAL (MW)

NITSPT I iteration number in the innermost
loop of ELDM (spot price and
generation loop)

NITSMX I maximum number of iterations
allowed

KITSPT I number of times subroutine SPTMAX
is called within the current gamma
loop

NITFIN I iteration number in the system
loop

NITEFMX I maximum number of iterations
allowed for the system loop

TOLINJ R tolerance for the injections (MW)

Common Block /CMUE/

XMUE (1) i=1, nupx R Lagrange multiplier for the hard
line constraint in independently
dispatched entity i ($/Mwh)

NITMUE I iteration number in the mu loop

NITMMX I maximum number of iterations
allowed for the mu loop

TOLLF R tolerance for the line flow on the

lines with hard constraints (MW)

4-19

Table 4-1 (continued)

Variable Dimension Type Definition

ILMUE (i) i=1, nupx I number of the 1line with hard
constraint in independently
dispatched entity i

FVMUE (i) i=1,nupx R lower bound of the mu interval
that contains the final wvalue of
mu for entity i

SVMUE (1) i=1, nupx R upper bound of the mu interval
that contains the final value of
mu for entity i

FLINF (i) i=1, nupx R flow on the 1line with a hard
constraint in entity corresponding
to FVMUE (i)

SLINF (i) i=1, nupx R flow on the 1line with a hard
constraint in entity corresponding
to SVMUE (i)

Common Block /CNAME/

NAME A80 title of study

Common Block /CPREV/

ENGDLT R difference between generation and
(demand + 1losses + net energy
interchange)

ALPHAG (1) i=1,nbx R acceleration factor for the
iterations within SGEN subroutine

JSIGN (1) i=1, nbx I sign of the difference between
generation wvalues at bus i given
by 2 subsequent iterations in
subroutines SGEN

Common Block /CLOSS/

XLOSS (i) i=1, nupx R losses in independently dispatched
entity i (MW)

DLOSS (1) i=1,nbx R losses associated with bus i (MW)

XLOSSL (1) i=1l,nlx R losses of line i (MW)

Table 4-1 (continued)

~Variable Dimension Type Definition

Common_Block FILES

IFSCEN I unit number of scenario file
FSCEN.FIL

IFLOOP I unit number of counter file
FLOOPONE.OUT

IoUT I unit number of printout file
ELDM.OQUT

IFSPOT I unit number of spot price

file FSPOT.FIL

IFSPLIT I unit number of the split file
FSPLIT.FIL

IWARN I unit number of warning file
WARNING.FIL

Common Block /COPTON/

JELDM I ELDM option:
1 - run ELDM with and without
wheeling

2 - do not run ELDM
3 - run ELDM with wheeling

only
4 - run ELDM without wheeling
only
JPOOL I pool option:

1 - do not split the wheeling
costs among utilities
affiliated with pools

2 - split wheeling costs among
utilities affiliated with
pools

IPOOL I pool flag:
0 - system is dispatched with the
wheeling quantity as specified
1 - system is dispatched with the
wheeling quantity equal to
XWHEEL + 10

Table 4-1 (continued)

Variable Dimension Type Definition

KSCEN I current scenario number
PSCEN R probability of scenario (%)
NSCEN I number of scenarios

Section 5

REVENUE RECONCILIATION MULTIPLIER MODULE "COMPUTM"

Revenue reconciliation multipliers are needed to compute reconciled
wheeling rates. In WRATES, the user has the option to specify those
multipliers or to input capital revenue requirements and have WRATES
compute the multipliers. The user can use either option for each
wheeling utility not belonging to a pool. COMPUTM is the module that
computes the revenue reconciliation multipliers. It is called by
WRATES .BAT after the Economic Load Dispatch module is run for all the
scenarios. In COMPUTM, the computation of the revenue reconciliation
multipliers is based on yearly pre-wheeling revenues and capital
requirements. Three types of revenue reconciliation options are
allowed: aggregate, disaggregate and decomposed. In the aggregate
case, only one multiplier is computed. In the disaggregate case, two
multipliers are computed: one for the generation and one for the
network. In the decomposed case one multiplier is computed for the
generation and one multiplier is computed for each line of the
utility. The flow chart of COMPUTM is shown in Figure 5-1.

PROGRAM STRUCTURE

The flow of the COMPUTM module is controlled by the main program
stored in COMPUTM.FOR which calls a total of thirteen (13)
subroutines. COMPUTM has two consecutive scenario loops. In each of
them, it loops through the scenarios and reads the pre-wheeling spot
price and fuel data from the spot price file FSPOT.FIL. The first
loop is always executed. It computes the aggregate revenue
reconciliation multiplier in the aggregate case, or the generation
revenue reconciliation multiplier in the disaggregate and decomposed
cases. The second loop is skipped for the aggregate case; it is
executed to compute the network revenue reconciliation multiplier in
the disaggregate case and the line by line multipliers for the
decomposed case. The reason for having two loops is that the
generation reconciliation multiplier has to be known before either the
network or the line multipliers can be computed. The following is a

RSPOTP

RSCEN

................................

Yes
First
Scenario
loop
Yes

Independently

Dispatched
Wheeling
Utilities

STREV

loop

Figure 5-1. Flow Chart for the COMPUTM Module

5-2

Disggregate
First option l
Scenario : '
loop : No SGREV
Independentlyj] SNREV
Dispatched
Wheeling
Utilities
loop g

Yes
Decomposed
Optiji/////' l
No SGREV
SLREV

Figure 5-1 (Continued). Flow Chart for the COMPUTM Module
5-3

...

loop

Wheeling
Utilities

Aggregate Yes
Option +
STREVM
Disaggregate Yes
or Decomposed *
/ ICONT =
No v
SGREVM
g
No

...

Second
Scenario
loop

Figure 5-1

(Continued).

Flow Chart for the COMPUTM Module

5-4

Yes

Second
Scenario
loop

Yes

Disggregate

Option

Wheeling
Utilities
loop

SNREVS

Decomposed
Optiii////,

No

...

Figure 5-1 (Continued). Flow Chart for the COMPUTM Module

5-5

Yes

Yes

Disggregate
Option

SNREVM

Wheeling
Utilities
loop

Yes

Decomposed
Option

SLREVM

WSPOTP

End
COMPUTM

Figure 5-1 (Continued). Flow Chart for the COMPUTM Module
5-6

description of the function of all the subroutines of COMPUTM, in the
same order as they are called by the main routine in COMPUTM.FOR

Subroutine RSPOTP

RSPOTP is the first subroutine called by COMPUTM. It reads the first
four (4) records of the spot price file FSPOT.FIL.

Subroutine RSCEN

This subroutine is called in each scenario loop as many times as there
are scenarios. RSCEN reads the record of FSPOT.FIL that holds the
pre-wheeling spot price and dispatch information for the scenario
under consideration. The number of this record is equal to twice the
scenario number plus 3; e.g. if the scenario number is 7, the number
of that record is equal to (2 x 7 + 3) = 17.

Subroutine STREV

This subroutine is part of the first "scenario loop". It is called
once for each wheeling utility for which the aggregate option is
specified. It accumulates the yearly ideal revenues of the utility as
well as the yearly fuel cost. It also computes the terms required for
the calculation of the aggregate multiplier.

Subroutine SGREV

This subroutine is part of the first "scenario loop." It is called
once for each wheeling utility for which either the disaggregate or
the decomposed option is specified. It accumulates the yearly ideal
generation revenues of the utility as well as the yearly fuel costs.

Subroutine SNREV

This subroutine is also part of the first "scenario loop." It is
called once for each wheeling utility for which the disaggregate
option is specified. It accumulates the yearly ideal network revenues
and one of the terms required for the calculation of the revenue

reconciliation network multiplier.

Subroutine SLREV

This subroutine is also part of the first scenario loop. It is called
once for each wheeling utility for which the decomposed option is

5=-7

specified. It accumulates the ideal yearly revenues for each line of
the utility; and it also computes some of the required terms for the
calculation of the line revenue reconciliation multipliers.

Subroutine STREVM

This subroutine is called after the first "scenario loop" is
completed. It is skipped if none of the wheeling utilities has the
aggregate option specified. 1Its function is to compute the aggregate
revenue reconciliation multipliers using the yearly terms that were
accumulated in subroutine STREV of the first "scenario loop."

Subroutine SGREVM

This subroutine is also called after the first "scenario loop" is
completed. It is skipped for the wheeling utilities for which the
- aggregate option is specified. 1Its function is to compute the
generation revenue reconciliation multiplier using the yearly terms
that were accumulated in subroutine SGREV of the first "scenario

loop."

Subroutine SNREVS

This subroutine is part of the second "scenario loop." It is called
once for each wheeling utility for which the disaggregate option is
specified. 1Its function is to accumulate the yearly cost of losses
for the wheeling utility knowing the generation revenue reconciliation
multiplier of that utility.

Subroutine SLREVS

This subroutine is also part of the second "scenario loop." It is
called once for each wheeling utility for which the decomposed option
is specified. 1Its function is to accumulate the yearly cost of losses
for each line of the utility knowing the generation revenue
reconciliation multiplier of that utility.

Subroutine SNREVM

This subroutine is called once for each wheeling utility for which the
disaggregate option is specified, right after the "second scenario
loop" is completed. It computes the network revenue reconciliation
multipliers using the yearly terms computed in subroutines SNREV and
SNREVS.

5-8

Subroutine SLREVM

This subroutine is called once for each wheeling utility for which the
decomposed option is specified, right after the second "scenario loop"
is completed. It computes the line revenue reconciliation multipliers
using the yearly terms computed in subroutines SLREV and SLREVS.

Subroutine WSPOTP

This subroutine is the last routine called by COMPUTM. 1Its function
is to write the calculated revenue reconciliation multipliers in the

wheeling record (record 3) of the spot price file.

COMMON BLOCKS AND VARIABLE DICTIONARY

This section describes the common variables used in the COMPUTM
module. Two files define and initialize the variables in this module.
The first, COMMON.FOR, defines the common blocks. The code in this
file is included in all the subroutines of COMPUTM. The second,
BLKDATA.FOR, is a subprogram that initializes all the wvariables
defined in the common blocks. Table 5-1 is a listing of the common
variables of COMPUTM. The array variables are dimensioned by
parameters that are set in a parameter statement in COMMON.FOR. The

parameters are:

o) nlx maximum number of lines
o nbx maximum number of buses
o nux maximum number of utilities

Table 5-1

COMMON VARIABLES IN THE COMPUTM MODULE

Variable Dimension Type Definition

Common Block Y

KUP I current independently dispatched
utility

KUTIL I current utility

NBUS I total number of buses

NLINE I total number of lines

NUTIL I total number of utilities

NPOOL I total number of pools

NIUTIL I number of independently dispatched
utilities

NUP I number of independently dispatched
entities

NBUSUP (i) i=1,nupx I number of buses 1in the
independently dispatched entity i1

NLINEUP (i) i=1,nupx I number of lines 1in the

Common Block /CPOQL/

IUPOOL i=1,nux I
NPRANK (1) i=1, npx I
IUP (1) i=1, nux I
IDISNU (1) i=1,nux I
ILPOOL (1) i=1,nlx I

independently dispatched entity i

pool to which utility i belongs
number of utilities affiliated
with pool 1

user assigned number of
independently dispatched utility i

program assigned number for the
independently dispatched utility 1
IUP (IDISNU(1)) =1

number of the independently
dispatched entity to which line 1
belongs

Table 5-1 (continued)

Variable Dimension Type Definition

IBPOOL (i) . i=1, nbx I number of the independently
dispatched entity to which bus i
belongs

Common Block OPTON

ICLASS (i) i=1,nux I obligation class for wheeling
utility i:
1 - obligation to serve
2 - no obligation to serve
3 - obligation/no obligation to
serve

IOPTON (1) i=1, nux I rate option for utility i:
1 - aggregate
2 - disaggregate
3 - decomposed

IREVM (1) i=1, nux I revenue multiplier status:
1 - provided
2 - to be computed

JRATE I rate option:
1 -ideal rates only
2 -ideal and reconciled rates

JREVM I 0 - all IREVM = 1
1l - at least one IREVM = 2

Common Block /CPRICE/

XNETEI (i) i=1, nupx R net energy interchange for
independently dispatched entity i
(MW)

XGAMMA (1) i=1, nupx R marginal generation cost in
independently dispatched entity i
($/MWh)

XSPOTP (i) i=1,nbx R spot price at bus i ($/MWh)

XNSPOT (i) i=1l,nbx R network component of spot price at

bus i ($/MWh)

XLSPOT (i, 3) i=1,nlx R line component of spot
j=1, nbx price at bus j for line i ($/Mwh)
XTFUEL (1) i=1,nux R hourly fuel cost for independently

dispatched entity i (%)

5-11

Table 5-1 (continued)

Variable Dimension Type Definition

XCFUEL (1) i=1, nux R vearly fuel cost for independently
dispatched entity i ($)

XL0SS (1) i=1, nupx R losses within independently
dispatched entity i (MW)

XLOSSL (i) i=1,nlx R losses of line i (MW)

XPENFC (1) i=1,nlx R penalty function due to a flow on
line i exceeding its flow limit
(%)

Common Block/CRECON/

XTREVM (1) i=1, nux R total revenue reconciliation
multiplier for utility 1

XGREVM (1) i=1,nux R generation revenue reconciliation
multiplier for utility i

XNREVM (i) i=1, nux R network revenue reconciliation
multiplier for utility i

XLREVM (1) i=1,nlx R line revenue reconciliation
multiplier for line i

XTREV (1) i=1,nux R total capital revenues for utility
i (K$)

XGREV (1) i=1, nux R generation capital revenues for
utility i (K$)

XNREV (1) i=1,nux R network capital revenues for
utility i (K$)

XLREV (1) i=1,nlx R line capital revenues for line i
(K$)

XIR (1) i=1,nux R ideal revenues for utility i

XIRA (1) i=1, nux R array that holds intermediate
results for the calculation of the
aggregate revenue reconciliation
multiplier for utility 1

XGIR (1) i=1, nux R ideal generation revenues for
utility i

XNIR (1) i=1, nux R ideal network revenues for

utility i

Table 5-1

(continued)

Variable Dimension Type Definition

XNIRA (1) i=1,nux R array that holds intermediate
results for the calculation of the
network revenue reconciliation

multiplier

XLPR (1) i=1,nux R a second array that holds
intermediate results for the
calculation of the network revenue
reconciliation multiplier

XLIR (1) i=1l,nlx R ideal line revenues

XLIRA (i) i=1l,nlx R array that holds intermediate
results for the calculation of the
line revenue reconciliation
multiplier

XLOR(1) i=1,nlx R a second array that holds
intermediate results for the
calculation of the line revenue
reconciliation multiplier

Common Block /CBUS/

XDEMD (i) i=1,nbx R demand at bus i (MW)

XGENB (1) i=1,nbx R generation at bus i (MW)

Common Block /CWHEEL/

XWHEEL R power wheeled (MW)

JTSELL I type of selling party:
1 - bus
2 - utility
3 - pool

NSELL I number of the selling party

JTBUY I type of buying party:
1 - bus
2 - utility
3 - pool

NBUYER I number of the buying party

NWUTIL I number of wheeling utilities

NUTW (1) i=1, nux I utility number of the wheeling

utilities

5-13

Table 5-1

(continued)

Variable Dimension Type Definition

NWLINE I number of lines for which the
decomposed option is specified

NLTW (1) i=1,nlx I line number for each line for
which the decomposed option is
specified

NLHOLD (1) i=1,nlx I order of the lines in the NLTW
array i.e.
if NLTW(2) = 7
then NLHOLD (7) = 2

Common Block /COMPUT/

IUSERB (1) i=1,nbx I array holding the user assigned
number of each bus, i being the
internally assigned number of that
bus

ISYSTB (i, j) i=1,nbx I bus number of the ith bus in

j=1, nupx the independently dispatched
entity Jj

ISYSTL (i, 3) i=1,nlx 1 line number of the it™ line in

j=1, nupx the independently dispatched
entity j

Common Block /CNAME/

NAME AB0 title of study

Common Block /CSCEN/

ISCEN I current scenario

PSCEN R probability of scenario (%)

HSCEN I hours in each scenario

NSCEN I number of scenarios

Common Block /CFILES/

IFSPOT I unit number of spot price file

Section 6

WHEELING RATE MODULE "IWHEEL"

WRATES can investigate four (4) types of wheeling: utility to
utility, bus to bus, utility to bus and bus to utility. WRATES can
also model three (3) wheeling dbligation classes; class O when the
wheeler is obligated to serve both wheeling parties; class N where the
wheeler is not obligated to serve any of the wheeling parties; and
class ON where the wheeler is obligated to serve one wheeling party
but not the other. The Wheeling Rate Module "IWHEEL"™ computes ideal
wheeling rates based on the spot prices computed in ELDM for the
generation dispatch including the wheeling transaction. It also
computes revenue reconciled wheeling rates based on the revenue recon-
ciliation parameters that are either user specified or computed in the
COMPUTM module. The flow chart of IWHEEL is shown in Figure 6-1.

PROGRAM STRUCTURE

The flow of the IWHEEL module is controlled by the main program stored
in IWHEEL.FOR which calls a total of 21 subroutines. For each
scenario, IWHEEL reads from FSPOT.FIL the spot prices for the econbmic
dispatch that include the wheeling transaction. IWHEEL also reads the
generation costs from the split file ’‘FSPLIT.FIL" if there are pools
and the user has requested that the wheeling rate be apportioned among
pool numbers. IWHEEL computes the ideal wheeling rate for each
utility, as well as the reconciled rate when required (i.e. JRATE =
2), and writes them to IWHEEL.OUT. For the equations describing the
wheeling rates, refer to Appendix A2 of the user’s manual. After all
the scenarios are processed, IWHEEL computes the yearly statistics if
required (i.e. JSTAT = 2). Finally, it computes the coordinates of
points describing the ideal and the reconciled wheeling rates duration
curves for each of the wheeling utilities and writes them to the file
FDURC.FIL.

The following is a description of all the subroutines in IWHEEL, in
the same order as they are called by the main routine that is stored
in IWHEEL.FOR.

6~1

RWHEEL

!

WHEELO

Yes
NWLINE > O i

SLPOOL

RWSCEN

Loop through
all Scenarios

.....................................

Loop through SPRATE
all Wheeling

Pools l

Figure 6-1. Flow Chart for the IWHEEL Module

6-2

SPREV

Yes
Loop through
all Wheeling *
Pools
SSPLIT
Class and Yes
Option not SNRATE
Defined
Class O Son
Loop through Aggregate
all Utilities
Class O Yes
Loop through Disaggregate SODS
all Scenarios

Figure 6-1 (Continued). Flow Chart for the IWHEEL Module

6-3

Class O

Decomposed SODC

Class N
Disaggregate

Yes
SNDS

Loop through
all Utilities

Class N

Decomposed SNDC

Class ON
Disaggregate

Yes
SONDS

Loop through
all Scenarios

Class ON

Decomposed SONDC

SGWREV

.....................................

Figure 6-1 (Continued). Flow Chart for the IWHEEL Module

6-4

SRATEO
Loop through Yes
all Scenarios ‘
No
SYEAR

Yes

SWANN

SDURC

SWDURC

Figure 6-1 (Continued). Flow Chart for the IWHEEL Module

6-5

Subroutine RWHEEL

This subroutine is the first routine of the module IWHEEL. It reads
the first four (4) records of the spot price file FSPOT.FIL, and
processes the input data to fill wvariable arrays needed for the
computation of wheeling rates.

Subroutine WHEELO

This subroutine writes the title block, the wheeling transaction data
and the revenue reconciliation data to the file IWHEEL.OUT. It also
computes the number of wheeling pools and the number of independently
dispatched wheeling utilities. This file 1is 1later accessed by the
LOTUSTM 123 output macro that transfers the data to LOTUSTM 123

worksheet.

Subroutine SLPOOL

This subroutine determines if there are lines with the decomposed

option that belong to pools.

Subroutine RWSCEN

This subroutine is called once for each scenario; it reads the record
in FSPOT.FIL holding the spot price data for the economic dispatch
that includes the wheeling transaction. The number of this record is
equal to twice the scenario number plus four (4), e.g., 1if the
scenario number is 8, this record number is (2 x 8 + 4 =) 20. RWSCEN
also reads the cost of generation before wheeling for the same
scenario. With this data, it computes the cost of wheeling to each of
the wheeling utilities by subtracting the generating cost without
wheeling from the generating cost including the effect of the wheeling

transaction.

Subroutine SPRATE

This subroutine computes the ideal wheeling rate for all the wheeling
pools of the system. Note that WRATES does not compute reconciled

rates for pools.

Subroutine SPREV

This subroutine computes the gross and net wheeling revenues for all

the wheeling pools of the system.

Subroutine SOA

Within each scenario, subroutine SOA is called once for every wheeling
utility that is obligated to serve both the buyer and the seller and
for which the aggregate option is specified. It basically computes
both the ideal and the reconciled wheeling rates for those utilities.

Subroutine SODS

Within each scenario, subroutine SODS is called once for every
wheeling utility that is obligated to serve both the buyer and the
seller and for which the disaggregate option is specified. It
computes the ideal wheeling rate and the generation and network
components ©of the reconciled wheeling rate for those utilities. The
total reconciled wheeling rate is then calculated as the sum of the

generation and network components.

Subroutine SODC

Within each scenario, subroutine SODC is called once for every
wheeling utility that is obligated to serve both the buyer and the
seller and for which the decomposed option is specified. It computes
the ideal wheeling rate and the generation and line by line components
of the reconciled wheeling rate for those utilities. The total
reconciled rate is then calculated as the sum of the generation and

all of the line components for the utility.

Subroutine SNDS

SNDS is similar to SODS except that the wheeling rates computed in
SNDS are for the wheeling utilities that have no obligation to serve
neither the seller nor the buyer.

Subroutine SNDC

SNDC is similar to SODC except that the wheeling rates computed in
SNDC are for the wheeling utilities that have no obligation to serve
neither the seller nor the buyer.

6-7

Subroutine SONDS

SONDS is similar to SODS, except that the wheeling rates computed in
SONDS are for the wheeling utilities that have an obligation to serve
either the seller or the buyer but not both.

Subroutine SONDC

Subroutine SONDC is similar to SODC, except that the wheeling rates
computed in SONDC are for the wheeling utilities that have an
obligation to serve either the seller or the buyer but not both.

Subroutine SGWREV

This subroutine is called for each wheeling utility after its wheeling
rate 1is computed. SGWREV computes both the gross and net wheeling
revenues of that utility.

Subroutine SRATEQ

For each scenario, this subroutine. writes the wheeling rates of all
the wheeling utilities and pools in the IWHEEL.OUT file. This file is
later accessed by the LOTUSTM 123 output worksheet.

Subroutine SYEAR

This subroutine is called for each scenario after the wheeling rates
of all the wheeling utilities and pools have been computed. SYEAR is
skipped if the user did not request yearly statistics (JSTAT = 1). It
basically computes the weighted average wheeling rates and accumulates
the yearly wheeling revenues for the wheeling utilities.

Subroutine SWANN

This subroutine is called after all the scenarios have been processed.
Like SYEAR, it 1is skipped if the user did not request yearly
statistics (JSTAT = 1). SWANN writes the yearly statistics to the
output file IWHEEL.OUT.

Subroutine SDURC

This subroutine is called to build the wheeling rate duration curves

of both the ideal and the reconciled rates for each wheeling utility.

First it sorts both the ideal and reconciled wheeling rates 1in
6-8

descending order using the insertion method. Then it calculates the
cumulative probabilities of those rates. The cumulative probability
of a random variable at the value x is defined as the probability of
this variable being larger or equal to x. The calculated cumulative
probabilities will be the ordinates of the points on the wheeling rate
duration curves.

Subroutine SWDURC

This subroutine is the last routine called by IWHEEL. Its function is
to write the coordinates of the points on the wheeling rate duration
curves to the output file FDURC.FIL. This file is later accessed by
the LO’I‘USTM 123 output macro and the duration curves plotted in
LOTUSTM 123 at the user’s request.

LoTus™ 123 INTERFACE

The IWHEEL module writes the wheeling results into the file
IWHEEL.QUT, and the duration curve data into the file FDURC.FIL. Both
files are DOS ASCII files. The last step of WRATES is to place this
output data in a LOTUSTM 123 spreadsheet, complete with headers and
labels. WRATES performs this task with two macros: an automatically
executed one \0, and a user invoked one \G. Both macros are stored in
the LOTUSTM 123 worksheet file TEMPLATE.OUT. Upon completion of the
IWHEEL module, WRATES.BAT copies TEMPLATE.OUT to another worksheet
file named AUTO123.WK1l. Next, WRATES enters LOTUS ' 123. The
AUTO0123.WK1 file is automatically loaded into the spreadsheet, and the

macro \0 is executed as soon as the spreadsheet is loaded.

Lavout of the Spreadsheet

The TEMPLATE.OUT spreadsheet has five major sections: the output
table, the work area, the graph table, the macro area, and the header
area. The output table appears in columns A through L. The length of
the output table depends on the number of utilities in the system, the
number of pools in the system, whether the decomposed option was
selected and whether yearly statistics were requested. The work area
is in columns M through Y. When IWHEEL.OUT and FDURC.FIL are imported
to the spreadsheet, they are manipulated by the macros in this area.
The graph table is located in columns Z through AX and rows 1 through
111. The macro area is in coclumns BC to BM. The graph macro \G
begins in cell BE2 and the output macro \0 begins in cell BK2. The

6-9

header area is in columns BV to CG and rows 1 through 64; this is
where the headers for the output table are stored.

Macro \OQ

This macro is executed automatically when LOTUSTM 123 is invoked. 1Its
function is to sort and display the wheeling rates computed by IWHEEL
that are stored in IWHEEL.OUT. This macro has one main routine and 5

subroutines.

Main Routine. The main routine begins in cell BK2 of the spreadsheet
file named TEMPLATE.OQUT. It first imports the file IWHEEL.OUT into
the work area of the spreadsheet. Next, it moves the title of the
study, the system information and the utility revenue reconciliation
data into the output table. It checks the data to determine if the
decomposed option had been selected, in which case line revenue
reconciliation information is present in the output data. If the line
data is present, the routine copies the line header, located in the
range named HEADRL, into the output table and the line data is moved
under this header. The rest of the output data contains the wheeling
rates. Depending on the system configuration and the output requested
of the program, data may exist for up to five separate levels of
wheeling rates. The macro sorts the data so that it is no longer
grouped by scenario but by these five levels. After the data is
sorted in the proper order, the macro determines which data is present
and calls the appropriate subroutines to place these data in the
output table. Five subroutines are used to place the five types of
wheeling data into the appropriate tables. In addition to these five
subroutines, there are five subroutines that are called if annual data
is present. One of these subroutines is called by each of the five
subroutines for the different wheeling rates. The subroutines are:

POOL, ANNP Wheeling rates for pools;

PUTILITY, ANNUP Utility components of pool wheeling rates;

PLINE, ANNLP Line components of pool wheeling rates;

IUTILITY, ANNUI Wheeling rates for independently
dispatched utilities;

ILINE, ANNLI Wheeling rates for 1lines within

independently dispatched utilities.

6-10

Graph Macro \G

The graph macro \G begins in cell BE2 of the output spreadsheet
TEMPLATE.OUT. The purpose of this macro is to graph the wheeling rate
duration curves printed in FDURC.FIL. The graph table is located in
columns 2 through AX. Named graphs have been created with the ranges
in this table corresponding to the data ranges in the named graphs.
For example, named graph ‘IDEAL UTILITY 1’/ has its X range defined as
212 ... Z111 and its first data range defined as AAl2 ... AAlll. The
macro \G imports the file FDURC.FIL into the work area and copies the
data for each graph into the graph table. Then it enters the graph
menu and prompts the user to choose the graph to make current.

COMMON BLOCKS AND VARIABLE DICTIONARY

This section describes the common wvariables used in the IWHEEL module.

Two files define and initialize the wvariables in the module. The
first, COMMON.FOR, defines the common blocks. The code in this file
is included in all the subroutines of IWHEEL. The second,

BLKDATA.FOR, is a subprogram that initializes the variables defined in
the common blocks. Table 6-1 is a listing of the common variables.
The array variables are dimensioned by parameters that are set in a

parameter statement in COMMON.FOR. The parameters are:

o} nlx maximum number of lines
o nbx maximum number of buses
o nux maximum number of utilities

o} nsx maximum number of scenarios

Table 6-1

COMMON VARIABLES IN THE IWHEEL MODULE

Variable Dimension Type Definition

Common Block /CSYS/

NBUS I number of buses

NLINE I number of lines

NUTIL I number of utilities

NPOOL I number of pools

NIUTIL I number of independently dispatched
utilities

NUP 1 numper of independently dispatched
entities

NWP I number of wheeling pools

NWIU I number of independently dispatched
wheeling utilities

NWUTIL I number of wheeling utilities

NWLINE I nunmber of lines for which the

decomposed option is requested

JRATE I wheeling rate option:
1 - ideal rates only
2 - ideal and reconciled rates

JSTAT I pool analysis
1 - do not run yearly statistics
2 - run yearly statistics

JPOOL I pool analysis

1 - do not run pool analysis
2 - run pool analysis

Common Block /CNOW/

KUTIL I current utility

KP I current pool

KUP I current independently dispatched
entitity

6-12

Table 6-1 (continued)

Variable Dimension Type Definition

Common Block POOQL

IUPOOL (1) i=1, nux I pool to which utility i belongs

NPRANK (1) i=1, npx I number of utilites affiliated with
pool i

IUP (1) i=1, nux I user assigned number of the
utility that has the dispatch
number i

IDISNU (i) i=1,nux I program assigned number for the
independently dispatch utility i

NBUSUP (i) i=1, nupx I number of buses belonging to the
independently dispatched entity i

NLINEUP (i) i=1,nupx I number of lines belonging to the
independenly dispatch entity

ISYSTB (i, J) i=1,nbx I bus number of the ith bus in the

j=1, nupx I independently dispatch entity j
ISYSTL (1, 3) i=1,nlx, I line number of the it line in the
j=1, nupx independently dispatched entity J

NORDER (i) i=1,nlx I order of the i¢h line within the
pool to which it belongs

Common Block /CLOAD/

XGENB (1) i=1,nbx R generation at bus i (MW)

XDEMD (i) i=1,nbx R demand at bus i (MW)

XLOSS (i) i=1,nupx R losses within independently
dispatched entity i (MW)

XNETEI (1) i=1, nupx R net energy interchange within
independently dispatched entity i
(MW)

Common Block /CPRICE/

XSPOTP (1) i=1, nbx R spot price at bus i

XGAMMA (i) i=1, nupx R marginal generation cost for

independently dispatched entity i

6-13

Table 6-1 (continued)

Variable Dimension Type Definition

XLR (1) i=1,nlx R line parameter such that line
losses equal XLR times the square
of the line flow

XLSPOT (i, 3) i=1,nlx R line i component of the spot price

j=1,nbx at bus j

XPENF (i) i=1,nlx R derivative of the penalty function
due to a flow on line i exceeding
its flow limit

XPENFC (1) i=1,nlx R penalty function due to a flow on
line 1 exceeding its flow 1limit
($)

XP (1) i=1l,nlx R derivative of the penalty function
due to a flow on line i exceeding
its flow limit (prewheeling)

XPS (1) i=1,nlx R derivative of the penalty function
due to a flow on line i exceeding
its flow limit (incremental case)

Common Block /CREVP/

NUMBUP i=1, nupx I number of the independently
dispatched wheeling entity:

ITYPUP (i) i=1, nupx I type of independently dispatched
wheeling entity:

1 - utility
2 - pool

IOPT (1) i=1, nupx I rate option of the wheeling pools
1 - aggregate
2 - disaggregate
3 - decomposed

Common Block /CREVU/

NUTW (i) i=1, nux I number of each wheeling utility

ICLASS (i) i=1,nux I obligation class for wheeling

utility i:
1 - obligation to serve

2 - no obligation to serve
3 - obligation/no obligation to
serve

14

Table 6-1 (continued)

Variable Dimension Type Definition

IOPTON (1) i=1,nux I rate option for utility i:
1 -~ aggregate
2 - disaggregate
3 - decomposed

XTREVM (1) i=1, nux R total revenue reconciliation
multiplier

XGREVM (1) i=1, nux R generation revenue reconciliation
multiplier

XNREVM (i) i=1, nux R network revenue reconciliation
multiplier

IREVM (1) i=1,nux I revenue multiplier status
1 - provided
2 - to be computed

XTREV (i) i=1,nux R total capital revenues (K$)

XGREV (i) i=1,nux R generation capital revenues (K$)

XNREV (i) i=1, nux R network capital revenues (KS$)

NLTW (i) i=1,nlx I number of each line with the
decomposed option

XLREVM (1) i=1,nlx R line revenue reconciliation
multiplier

XLREV (i) i=1,nlx R line capital revenues (K$)

Common Block /CYEAR/

YRATEI (i) i=1,nux R yearly ideal wheeling rate ($/MWwh)

YRATER (1) i=1,nux R yearly reconciled wheeling rate
($/MWh)

YRATRG (1) i=1,nux R generation component of the yearly
reconciled wheeling rate ($/Mwh)

YRATRN (1) i=1, nux R network component of the yearly

reconciled wheeling rate ($/MWh)

6-15

Table 6-1 (continued)
Variable Dimension Type Definition
YRATRL (i) i=1,nlx R line component of the yearly
reconciled wheeling rate ($/Mwh)
YWCST (i) i=1,nux R yearly cost of wheeling (K$)
YWREV (1) i=1, nux yearly wheeling revenues (K$)
YWREVG (1) i=1,nux R generation component of the yearly
wheeling revenues (K$)
YWREVN (1) i=1,nux R network component of the yearly
wheeling revenues (KS$)
YNTREV (i) i=1,nux R yearly net wheeling revenues (K$)
YNETREV = YWREV-YWCST
YWREVL (1) i=1,nlx R line components of the yearly
wheeling revenues (K$)
Common Blogck /CWHEEL/
XWHEEL R power wheeled (MW)
JTSELL I type of selling party:
1 - bus
2 - utility
3 - pool
NSELL I number of the selling party
JTBUY I type of buying party:
1 - bus
2 - utility
3 - pool
NBUYER I number of the buying party
Common Block /COMPUT/
IUSERB (1) i=1, nbx I user assigned number for bus i
IPROGB (1) i=1, nbx I program assigned number for the

bus that has a user assiged number
equal to i

6-16

Table 6-1 (continued)

Variable Dimension Type Definition

Common Block /CIDENT/

IBUTIL (i) i=1, nbx I utility number of bus i

ILUTIL (1) i=1,nlx I utility number of line i

IBPOOL (i) i=1,nbx I utility number of line i

ILPOOL (1) i=1,nlx I pool to which line i belongs

Common Block /CLINE/

XLINF (i) i=1,nlx R flow on line i (MW)

XLOSSL (1) i=1,nlx R losses in line I (MW)

XH (1) i=1,nlx R changes of flow through line i due
to a change in injection at the
seller bus or at the swing bus of
the selling utility

Common Block /CGWREV/

XWFUEL (1) i=1, nux R generation cost of utiity 1
including the effect of the
wheeling transaction ($)

XFUEL (1) i=1,nux R generation costs of utility 1
excluding the effect of the
wheeling transaction

XPGCA (1) i=1, npx R genertion costs of pool 1
including the effect of the
wheeling transaction ($)

XPGCB (1) i=1,npx R generation costs of pool 1
excluding the effect of the
wheeling transaction ($)

XWCST (1) i=1, nux R scenario hourly cost of wheeling
for utility i (K$)

XWREV (1) i=1, nux R scenario hourly wheeling revenues
for utility 1 (K$)

XWREVG (1) i=1, nux R scenario hourly generation

component of the wheeling revenues
in utility i (K$)

6-17

Table 6-1 (continued)

Variable Dimension Type Definition

XWREVN (1) i=1, nux R scenario hourly network component
of the wheeling revenues in
utility i (K$)

XNTREV (i) i=1,nux R scenario hourly net wheeling
revenues in utility i (KS$)

XNTPER (1) i=1, nux R scenario hourly net revenues per
MWh wheeled for utility i ($)

XWREVL (1) i=1,nlx R scenario hourly line component of
the wheeling revenues (K$)

Common Block RATES

XRATEI (i) i=1,nux R scenario hourly ideal wheeling
rate ($/MWh) ‘

XRATER (1) i=1, nux R Sscenario hourly reconciled
wheeling rate ($/MWh)

XRATIG (i) i=1,nux R scenario hourly generation

: component of the ideal wheeling

rate ($/Mwh)

XRATIN (1) i=1, nux R scenario hourly network component
of the ideal wheeling rate ($/MWh)

XRATIL (1) i=1,nlx R scenario hourly line component of
the ideal wheeling rate ($/Mwh)

XRATRG (1) i=1,nux R scenario hourly generation
component of the reconciled
wheeling rate ($/MWh)

XRATRN (1) i=1, nux R scenario hourly network component
of the reconciled wheeling rate
($/MwWh)

XRATRL (1) i=1,nlx R scenario hourly line component of
the reconciled wheeling rate
($/MWh)

Common_ Block /CPRATE/

XRATEP (1) i=1, npx R scenario (hourly) ideal wheeling

N
I

rate of pool i ($MWh)

18

Table 6-1 (continued)

Variable Dimension Type Definition

XWPREV (1) i=1,npx R scenario (hourly) wheeling
revenues of pool i (K$)

XNPREV (1) i=1,npx R scenario (hourly) net wheeling
revenues of pool i (K$)

XNPPER (1) i=1,npx R scenario (hourly) wheeling
revenues of pool i per unit of
energy wheeled ($MWh)

XWPCST (i) i=1, npx R scenario (hourly) wheeling cost
for pool i (K$)

YRATEP (1) i=1,npx R yearly wheeling rate for pool i
($/MwWh)

YWPREV (i) i=1,npx R yearly gross wheeling revenues for
pool i (KS$)

YNPREV (i) i=1,npx R yearly net wheeling revenues for
pool i (K$)

YWPCST (1) i=1,npx R yearly wheeling costs for pool i
(K$)

Common Block /CSPLIT/

IWFLAG (npx) i=1,npx I flag indication whether a wheeling
rate has been requested for pool
i:

0 - no rate has been requested for
pool i

1 - a wheeling rate has been
requested for pool i

XPRATES (i) i=1, npx R scenario (hourly) wheeling rate
for pool i when the wheeled
quantity is equal to the specified
amount + 10

XPGCI (i) i=1,npx R generation costs of pool 1 when
the wheeled quantity is equal to
the specified amount + 10

XIFUEL (1) i=1,nux R generation costs of utility i when
the wheeled quantity is equal to
the specified amount + 10

Common Block /CDURC/

WHEELT (1) i=1,nsx R probability of scenario i (%)

6-19

Table 6-1 (continued)
Variable Dimension Type Definition
WHEELI (i, 3) i=1,nsx R value of the ideal whee&&ng rate
j=1, nux for utility j at the i point of
the duration curve rate
WHEELR (1, Jj) i=1,nsx R value of the reconciled wheg%ing
j=1, nux rate for utility j at the i
point of the rate duration curve
XPROBI (i, J) i=1,nsx R cumulative probability of
j=1, nux WHEELT (i, 3)
XPROBR (i, Jj) i=1,nsx R cumulative probability of
j=1,nux WHEELR (i, 3)
Common_Block /CNAME/
NAME A80 title of study
Common Block /CINNER/
NSCEN I number of scenarios
KSCEN I current scenario number
PSCEN R probability of scenario (%)
Common Block /CFILES/
IFSPOT I unit number of spot price file
IFSPLIT I unit number of the "split file"
I0UT I unit number of the out put file
IWHEELOUT
IFDURC I unit number of the duration curve

file

6-20

Section 7

FILE DESCRIPTION

This section presents detailed descriptions of the files read and
written by WRATES. The input and output file are described as well as
the intermediate and message files.

SCENARIO FILE

The scenario file, FSCEN.FIL, is a direct access unformatted file
written by the SCENGEN module and read by the ELDM module. It has 3
record types and a maximum of 52 réccrds. The first two records are
wrwritten by subroutine SYSOUT of the SCENGEN module and read by
RSYSTM of the ELDM module. All of the following records (one for each
scenario) are written by SCENGO.FOR of the SCENGEN module and read
also by RSYSTM.FOR of the ELDM module.

The scenario file has the following characteristics:

o FORTRAN unit number: 10

o) Maximum Record Length: 10,528 bytes
o Maximum Number of Records: 52

0 Maximum Size of File: 547,456 bytes

Table 7-1 lists and describes the FSCEN.FIL wvariables. In this table
KSCEN refers to the scenario number.

Table 7-1

VARIABLES IN SCENARIO FILE “FSCEN.FIL"“

Variable Dimension Type Definition
R rd e 1) S em Recor
NAME A80 title of study case
NPOOL I number of pools
NIUTIL I number of independently dispatched
utilities
NUTIL I total number of utilities
NUP number of economically dispatched
entities
NBUS I number of buses
NLINE I number of lines
ISWGBN 1 system swing bus number
XWHEEL R wheeling quantity (MW)
JTSELL I type of selling party:
1 - bus
2 - utility
3 - pool
NSELL I number of the selling party
JTBUY I type ©of the buying party:
1 - bus
2 - utility
3 - pool
NBUYER I number of the buying party
ISWBGS I swing bus of the selling utility
or number of the selling bus
NSCEN I number of scenarios
JELDM I ELDM option:
1 - run ELDM with and without
wheeling
2 - do not run ELDM
3 - run ELDM with wheeling only
4 - run ELDM without wheeling only

Table 7-1 (continued)

Variable Dimension Type Definition

JRATE I wheeling rate option:
1 - ideal rates only
2 - ideal and reconciled rates

JSTAT I statistics option:
1 - do not run yearly statistics
2 - run yearly statistics

JPOOL I pool analysis _
1 - do not run pool analysis
2 - run pool analysis, 1i.e.

apportion the pool wheeling rate
among the member utilities

Record 2 (tvpe 2) Pool Record

IUPOOL (1) i=1,NUTIL I pool to which the utility belongs

IUP (i) i=1, NUPX I user assigned number of the
utility that 1is independently
dispatched

IDISNU (1) i=1,NUTIL program assigned number to the

independently dispatched utility i
IUP(IDISNU(i)) = 1

Record KSCEN + 2 (tvpe 3) Scenario Data

KSCEN I scenario number
PSCEN R probability of scenario (%)
XNETEI (i) i=1,NUP R utility (or pool) net energy

interchange (MW)

IBUTIL (1) i=1,NBUS I utility to which the bus belongs

Table 7-1 (continued)

Variable Dimension Definition

XDEMD (1) i=1,NBUS demand at each bus (MW)

XGENCP (i, 3) i=1,NBUS generation levels at points on

j=1,NPTX the supply curve (MW)
XGENCO (i, 3) i=1,NBUS marginal costs at points on the
j=1,NPTX supply curve ($/MWh)

XUNEGM (i) i=1,NBUS cost of unserved energy at onset
($/MW)

XUNESL (1) i=1,NBUS slope of unserved energy cost at
each bus ($/MW/MW)

IGENPT (1) i=1,NBUS number of points on the marginal
cost curve for each bus

ILUTIL (1) i=1,NLINE utility to which the line belongs

IBEGB (i) i=1,NLINE number of the bus at the beginning
of each line .

IENDB (i) i=1,NLINE number of the bus at the end of
each line

XRES (1) i=1,NLINE resistance of each line (Ohms/VZ2)

XINDUC (1) i=1,NLINE inductance of each line (Ohms/VZ2)

ICONST (i) i=1,NLINE type of constraint for each line:
0 - no constraint
1 - soft constraint
2 - hard constraint

XFLPOS (1) i=1,NLINE positive flow limit (MW)

XFLNEG (1) 1i=1,NLINE negative flow limit (MW)

XPEPOS (1) i=1,NLINE penalty parameter if flow exceeds
limit in the positive direction

XPENEG (1) i=1,NLINE penalty parameter if flow exceeds

limit in the negative direction

SPOT PRICE FILE

The spot price file, FSPOT.FIL, is a direct access unformatted file
which contains computed spot price information. The file is written
by the SCENGEN module and the ELDM module. It is read by the COMPUTM
and the IWHEEL modules. The file contains five record types. The
first four record types occur only once and are the respective first
four records of the file. The remaining records (2 for each scenario)
are of the fifth type.

The first two records, the system record and the pool record, are
written by both subroutine RSPOTP of the COMPUTM module and subroutine
RWHEEL of the IWHEEL module. The third record is the wheeling record.

It contains wheeling information and revenue reconciliation data. It
is written by subroutine SYSOUT of the SCENGEN module and read by
subroutine RSPOTP of the COMPUTM module. If revenue reconciliation

multipliers are computed in COMPUTM, subroutine WSPOTP of that module
rewrites this record. Lastly, the record is read by subroutine RWHEEL
of the IWHEEL module. The fourth record is the topology record. It is
written by subroutine SFOUT of the ELDM module and read by subroutine
RSPOTP of the COMPUTM module and subroutine RWHEEL of the IWHEEL
module. The fifth record type is the spot price record. There are
two spot price records for each scenario: the odd numbered records
contain spot price data without wheeling, and the even numbered
records contain spot price data with wheeling. All of those records
are written by subroutine SWSPOTI of the ELDM module. The odd
numbered records are read by subroutine RSCEN of the COMPUTM module
and by subroutine RWSCEN of the IWHEEL module. The even numbered
records are only read by subroutine RWSCEN of the IWHEEL module.

The spot price file has the following characteristics:

o FORTRAN unit number: 15

o) Maximum record length: 25,948 bytes

o Maximum number of records: 104

o Maximum size of file: 2,698,592 bytes

Table 7.2 lists and describes the FSPOT.FIL variables. In this table
KSCEN refers to the scenario number.

7-5

Table 7-2

VARIABLES IN THE SPOT PRICE FILE "FSPOT.FIL"

Variable Dimension Type Definition
"R d 1l 1 tem Recor
NAME A8Q title of case study
NPOOL I number of pools
NIUTIL I number of independently dispatched
utilities
NUTIL I number of utilities
NUP I number of economically dispatched
entities
NBUS I number of buses
NLINE I number of lines
ISWGBN I system swing bus
XWHEEL R wheeling quantity (MW)
JTSELL I type of selling party:
1 - bus
2 - utility
3 - pool
NSELL I number of the selling party
JTBUY I type of the buying party:
1 - bus
‘2 - utility
3 - pool
NBUYER I number of the buying party
ISWGBS I swing bus of the selling party
NSCEN I number of scenarios
NWLINE I number of lines for which wheeling

revenues or revenue reconciliation
multipliers are to be computed

NWUTIL I number of wheeling utilities for
’ which revenue reconcilation
parameters are specified

Table 7-2 (continued)

Variable Dimension Type Definition
JELDM I ELDM option:

1 - run ELDM with and without

wheeling

2 - do not run ELDM

3 - run ELDM with wheeling only

4 - run ELDM without wheeling only
JRATE I wheeling rate option:

1 - ideal rates only

2 - ideal and reconciled rates
JSTAT I statistics option:

1 - do not run yearly statistics

2 - run yearly statistics
JPOOL I pool analysis option

Record 2 (type 2): Pool Record

IUPOOL (1) i=1,NUTIL I
NPRANK (1) i=1, NPOOL I
IUP (1) i=1, NUPX, I
IDISNU (1) i=1,NUTIL I

Record 3 (tvyvpe 3): Wheeling Record

NUTW (1) i=1,NWUTIL I
IOPTON (1) i=1,NUTW (J) I
3=1, NWUTIL

1 - do not run pool analysis

2 - run pool analysis i.e.
apportion the pool wheeling
rate among the member
utilities

pool to which the utility belongs
number of utilities in pool i

user assigned number of the
independently dispatched utility i

program assigned number to the
independently dispatched utility i
IUP(IDISNU (1)) i

user assigned number of each
wheeling utility for which revenue

reconciliation parameters are
specified

rate option for each wheeling
utility for which revenue
reconciliation parameters are

specified

1 - aggregate

2 - disaggregate
3 - decomposed

Table 7-2

(c

ontinued)

Variable Dimension Type Definition
ICLASS (1) i=1,NUTW (3) I obligation class for each
j=1,NWUTIL wheeling utility for which revenue
reconciliation parameters are
specified
1 - obligation to serve
2 - no obligation to serve
3 - obligation/no obligation to
serve
IREVM (1) i=1,NUTW (3J) I multiplier status for each
j=1,NWUTIL wheeling utility for which revenue
reconciliation parameters are
specified
1 - revenue multiplier provided
2 - revenue multiplier to be
computed
XTREVM (i) i=1,NUTW (3) R total revenue reconciliation for
j=1,NWUTIL each wheeling utility for which
revenue reconciliation parameters
are specified
XGREVM (1) i=1,NUTW (3J) R generation revenue reconciliation
j=1,NWUTIL multiplier for each wheeling:
utility for which revenue
reconciliation parameters are
specified
XNREVM (i) i=1,NUTW (J) R network revenue reconciliation
j=1, NWUTIL multiplier for each wheeling
utility for which revenue
reconciliation parameters are
specified
XTREV (1) i=1,NUTW(3) R total revenue requirement (K$) for
j=1,NWUTIL each wheeling utility for which
revenue reconciliation parameters
are specified
XGREV (1) i=1,NUTW (3) R generation revenue requirement
j=1,NWUTIL (K$) for each wheeling utility for
which revenue reconciliation
parameters are specified
XNREV (i) i=1,NUTW(3) R network revenue requirement (KS$)
j=1,NWUTIL for each wheeling wutility for
which revenue reconciliation

parameters are specified

Table 7-2 (continued)
Variable Dimension Type Definition
NLTW (i) i=1,NWLINE I line number of each line for which
reconciliation multipliers or
revenue requirements are to be
computed
XLREVM (1) i=1,NLTW(3) R line by line revenue
j=1,NWLINE reconciliation multiplier
XLREV (1) i=1,NLTW(3) R line by line revenue requirements
j=1, NWLINE

Record (tvpe 4):

Topology Record

NBUSUP (1) i=1,NUP I
NLINEUP (1) i=1,NUP I
IUSERB (i) i=1,NBUS I
IBUTIL (1) i=1,NBUS I
ILUTIL (1) i=1,NLINE I
IBPOOL (i) i=1,NBUS I
ILPOOL (i) i=1,NLINE I
ISYSTB (i, j) i=1,NBUSUP (j) I

j=1,NUP

ISYSTL (i, 3)

1i=1,NLINEUP (]j) I

j=1, NUP

number of buses in each
independently dispatched entity

number of lines in each
independently dispatched entity

user assigned bus number
utility to which bus i belongs
utility to which line i belongs
pool to which bus i belongs

pool to which line i belongs
system bus n%pger of the 1th bus
in the independently
dispatched entlty

system line %nger of the 1th line
in the independently
dispatched entlty

Record 2*KSCEN + 3 (type 5) Spot Price Without Wheeling

KSCEN I
PSCEN R
XUGCB (1) i=1,NUTIL R
XPGCB (1) i=1,NPOOL R

scenario number
scenario probability (%)

fuel cost for each utility before
wheeling ($)

fuel cost for each pool before
wheeling ($)

Table 7-2 (continued)

Variable Dimension Type Definition

XPENFC (1) i=1,NLINE R . penalty function due to flow
constraint ($)

XGENB (i) i=1,NBUS R generation at each bus (MW)

XDEMD (i) i=1,NBUS R demand at each bus (MW)

XLINF (i) i=1,NLINE R line flow (MW)

XLOSSL (1) i=1,NLINE R losses on each line (MW)

XNETEI (i) i=1, NUP R net energy interchange for each
independently dispatched entity
(MW)

XLOSS (1) i=1,NUP R losses within each independently
dispatched entity (MW)

XGAMMA (1) i=1,NUP R gamma for each independently
dispatched entity ($/MWh)

XSPOTP (i) i=1, NBUS R Spot price at each bus ($/MWh)

XLSPOT (1, 3) i=1,NLINEUP R line components of the spot

(IBPOOL (3)) price at each bus ($/MWh)
j=1,NBUS

Record 2*KSCEN + 4 (type S5) Spot Price with Wheeling

KSCEN I scenario number

PSCEN R scenario probability (%)

XUGCA (1) i=1,NUTIL R fuel cost for each utility
including the effect of wheeling
($)

XPGCA (1) i=1,NPOOL R fuel cost for each pool including
the effect of wheeling ($)

XPENFC (1) i=1,NLINE R penalty function due to flow
constraints ($)

XGENB (1) i=1,NBUS R generation at each bus (MW)

XDEMD (1) i=1,NBUS R demand at each bus (MW)

XLINF (i) i=1,NLINE R line flow (MW)

XLOSSL (1) i=1,NLINE R losses on each line (MW)

7-10

Table 7-2 (continued)
Variable Dimension Type Definition
XNETEI (1) i=1,NUP R net energy interchange for each
independently dispatched entity
(MW)
XLOSS (1) i=1,NUP R losses in each utility (or in each
pool when JPOOL = 2) (MW)
XGAMMA (1) i=1, NUP R gamma of each independently
dispatched entity ($/Mwh)
XSPOTP (1) i=1,NBUS R spot price at each bus ($/MWh)
XLSPOT (i, 3J) i=1,NLINEUP R line component of the spot price
(IBPOOL(J)) at each bus ($/MWh)
j=1,NBUS
XH (1) i=1,NLINE R change in 1line flow due to an
injection change at the swing bus
XPENF (1) i=1,NLINE R derivative of the penalty function
due to overflow on each line
XLR (1) i=1,NLINE R parameter such that line losses =

XLR x line flow squared

11

SPLIT FILE FSPLIT.FIL

The split file, FSPLIT.FIL, is a direct access unformatted file
written by subroutine SWSPOTP of the ELDM lnodulé when the user
specifies that the pool wheeling rates have to be apportioned among
pool members. It has one record type and a maximum of 50 records (one
per scenario). This file is read by subroutine SSPLIT of the IWHEEL
module. It holds the result of the economic dispatch for the case of

wheeling a quantity equal to the specified quantity and 10 MW.

The split file has the following charactertiscs:
o FORTRAN unit number: 16
0 Maximum record length: 1776 bytes
0 Maximum number of Records: 50
0 Maximum size of file: 88,800 bytes

Table 7-3 lists and describes the FSPLIT.FIL variables.

Table 7-3

VARIABLES IN SPLIT FILE "FSPLIT.FIL"

Variable Dimension Type Definition

Record KSCEN (type 1)

KSCEN I scenario number

PSCEN R scenario probability %

XUGCA (1) i=1,NUTIL R fuel costs for each utility inc-
luding the effect of wheeling
(XWHEEL=10)

XPGCA (1) i=1,NPOOL R fuel costs for each pool including

the effect of wheeling (XWHEEL+10)

XPENFC (i) i=1,NLINE R penalty function due to flow
constraints ($)

ERROR FILE ERROR.FIL
The error file ERROR.FIL, contains all of the errors detected in the

input data by the SCENGEN module. Subroutine SERRCR in the SCENGEN
module opens the error file, writes the header information and all the
error messages. A sample error file is shown in Figure 7-1. The
actual errors are detected in subroutines SPPOOL, SRWHEEL, SBASE,
SCENGI, SCHECK and SFCHECK of the SCENGEN module (See Section 9).

ELDM OUTPUT FILE ELDM.OUT

The results of the economic load dispatch module are written to the
DOS ASCII file ELDM.OUT. An example of the ELDM.OUT file is shown in
Figure 7-2. The results are printed by scenario; and for each
scenario there could be up to three sets of results: one for the
prewheeling conditions, one for the conditions including the wheeling
transaction and one for the "incremental wheeling transaction”. At
the beginning of each set is a message written by the ELDM main
routine indicating whether or not ELDM was able to find a coherent set
of bus generations that satisfied the energy balance for all
utilities. A set of results consists of the title of the study,
system information, utility data, bus data and line data. As each
scenario 1is processed, ELDM appends its results to the end of the
file. Each time WRATES is invoked, the data stored in ELDM.OUT from
previous cases are deleted and replaced by the new data; so it is
important to copy the contents of ELDM.OUT to another file or to
rename ELDM.OUT in case the previous data is to be saved.

LOOP FILE FLOOPONE.OUT

The file FLOOPONE.OUT is a counter file which is primarily used by
WRATES to keep track of the last scenario ELDM has processed. The
file is created by the SCENGEN module at the beginning of the main
program. If a problem with the input data is detected during the
execution of the SCENGEN module, FLOOPONE.OUT is deleted. The non-
existence of the file causes the batch file, WRATES.BAT, to halt
execution of the program. If the input data is error free, SCENGEN
writes a "0" in FLOOPONE.OUT. From there on, FLOOPONE.OUT is updated
by ELDM and it contains a single line with one number indicating the
last scenario processed by ELDM. ELDM is called and the wvalue of the
number in FLOOPONE.OUT is incremented by one. When the last scenario
is processed, ELDM deletes FLOOPONE.OUT. This signals to the WRATES

7-14

Wheeling Rate Evaluation Simulator
WRATES
Module: SCENGEN
Error File

Title of problem appears here.

- —— — . —— ——— S —— " — . G ——— — — ——— T~ ————— - —— - — —— — " i G S ——- — —— — . WP WD A T mS s - —

err 190--- Line 3 belongs to pool 1; no capital
revenue is allowed for this line.

err 350--- In scenario 2
there is more than one hard constraint in pool 1.

err 420---
Wheeling utility 1 is the same as the buying utility.

Figure 7-1. Sample Error File ERROR.FIL

7-15

FHESHAHHHHHHHAAAEH A A EH AR SRR RS
WHEELING RATE EVALUATION SIMULATOR --- WRATES

developed by META SYSTEMS INC
Version I

x k* * * * Kk *x *k

Economic Load Dispatch Output
FEFEHHEHHHAAHHH A HHHHHAHHHE A 1445444110444 44

Title of Study

Title of problem appears here.

* Kk Kk k ok ok ok k ok k

congratulations, wrates found a set of bus generations
that satisfy the energy balance in all the utilities

after 5 system iterations
* % Kk %k %k %k %k k Kk k

Scenario number 1

number of pools =1
number of utilities = 6

11

number of buses

14

number of lines

200.00 MW wheeled from utility 1 to utility 6

Figure 7-2. Sample ELDM Output File ELDM.OUT

7-16

number of

bus data (without wheeling)

pool affiliated
utilities
1 3
independently
dispatched
utility
1
2
6
bus pool utility
number number number
6 1 3
8 1 3
3
7 1 4
9 1 4
4
10 1 5
5
1
1 1
1
Figure 7-2

number

of

buses

number

of

buses

scenario 1

data (without wheeling)

number net energy interchange
of (exports minus imports)
lines (MW)
8 -400.00
number net energy interchange
of (exports minus imports)
lines (MW)
1 1000.00
5 -100.00
0 -500.00

scenario 1

demand
(MW)

0.00
4000.00

2500.00
3000.00

2200.00

3000.00

(Continued) .

generation

(MWh)

4500.10
0.00

3017.23
1990.14

2099.62

4000.10

7-17

spot price
($/MWh)

77.28
85.75

78.02
84.95

86.00

35.00

generation
costs
($)

127570.4¢C

127570.4¢0C

220904.50
152412.00

373316.40

161767.4¢C

662654.3C

101853.5C

101853.50

Sample ELDM Output File ELDM.OUT

bW

11

line

number number

10
11
12

wwowoon

14

SO wN

pool utility
number
1 3
1 3
1 3
3
1 4
1 4
1 4
1 4
4
1 5
5
1
1
1
2
2
2
2
2
2

Figure 7-2

300.00

2
2 1500.00
2 1000.00
2 700.00
2
6 2000.00
6_

1923.14

0.00
0.00

1557.82

1500.00

line data (without wheeling)

rio 1

—— v - . ———— - T ———————— T~ ———— —

scena
head tail
bus bus
9 8
6 8
8 10
5 7
7 6
7 9
9 10
10 11
1 2
1 3
3 2 -
3 5
5 4
4 6
(Continued) .

line
head
(MW)

490.56
3791.09
88.07

1259.75
-348.05
2109.36

519.42

503.78

87.26

912.84
1681.54
1078.01

653.32
-357.18

flow
tail
{MW)

-488.17
~3599.90
-87.95

-1244.08
349.27
~2019.85
-516.21

~500.00

-87.17

-896.47
1710.30
-1055.26
~642.82
359.75

79.23
82.01
87.76
85.58

123.33

constraint

1 - soft
2 = hard

124880.60
0.0C

223061.6C

174783.4C

- - —————

174783.4C

flow
limit
(MW)

losses
(MWh)

Sample ELDM Output File ELDM.OUT

7-18

batch file that the ELDM portion of the program is complete and the
program can call the COMPUTM module.

SCENARIO GENERATION FILE, SCENGEN.DATA

The scenario generation file, SCENGEN.DAT, is a DOS ASCII file which
is the input data file to the SCENGEN module. There are two major
sections in the file. The first section contains the base case data,
which includes the title of the study, the wheeling transaction data,
the net energy interchange data, the bus data, and the line data. The
second section of the file contains data for each scenario. The
scenario data includes the demand at each bus and any other data that
differs from the base case.

The file is read by subroutines SRPOOL, SRWHEEL, SBASE and SCENGI of
the SCENGEN module. The first three subroutines read the base case
section of the file, and subroutine SCENGI reads the scenario data
section.

The file SCENGEN.DAT is created by invoking the macro \W, in the
LOTUSTM 123 input spreadsheet. The spreadsheet contains tables that
allow the user to input data. If SCENGEN.DAT already exists, it is
overwritten; if it does not already exist, it is created by the macro.

IWHEEL OUTPUT FILE IWHEEL.OUT

The output of the IWHEEL module is written to the DOS ASCII file
IWHEEL.OUT. It contains the final wheeling rate results of WRATES.
Three subroutines in the IWHEEL module write to the file: WHEELO,
SRATEO and SWANN. Subroutine WHEELO writes the name of the study, the
wheeling contract information, the revenue reconciliation data for the
utilities, and, if the decomposed option has been selected, the
revenue reconciliation data for the lines. Subroutine SRATEO writes
the wheeling rates for each scenario. Subroutine SWANN writes the
annual rates. IWHEEL.OUT is read by the output macro \0, located-in
the LOTUSTM 123 spreadsheet TEMPLATE.QOUT. The macro \0 transfers the
wheeling rate data to LOTUS, sorts them and places them in a table
with the appropriate headings.

DURATION CURVE FILE FDURC.FIL

The wheeling rate duration curve file, FDURC.FIL, is a DOS ASCII file
written by subroutine SWDURC of the IWHEEL module. It contains the
cumulative probabilities of the calculated ideal and reconciled
wheeling rates for each utility. This file is read by the LOTUSTM 123
macro \G, contained in the output spreadsheet, TEMPLATE.OUT. The
macro reads the data and places it in a table ready for graphing.

Section 8

RUNNING WRATES - BATCH PROCESSING

WRATES.BAT 1is a batch file that controls the flow of the WRATES
program. It is a series of DOS commands created under IBM PC DOS
version 3.2. The following requirements must be met for WRATES.BAT to
operate properly:

o The four executable modules, SCENGEN.EXE, ELDM.EXE,
COMPUTM.EXE and IWHEEL.EXE should be in the same
(current) directory as WRATES.BAT.

o) LOTUSTM 123 version 2.0 and higher should be accessible
from the current directory. This is best accomplished
using the DOS path command in the AUTOEXEC.BAT file.

o The LOTUS™™ macro files TEMPLATE.IN and TEMPLATE.OUT
should also be stored in the same directory as
WRATES .BAT.

The batch file WRATES.BAT executes the four WRATES modules as follows:

o The fileS SCENGEN.DAT, ERROR.FIL, FLOOPONE.OQUT,
ELDM.QUT IWHEEL.QUT, WARNING.FIL are deleted.
During its execution WRATES recreates those files
and stores in them the data related to the current
problem.

o TEMPLATE.IN is copied to the file AUT0123.WK1

o LOTUS™ 123 is invoked. The file AUTO123.WK1 is
immediately loaded. It contains an autoexec macro
\0, that prompts the user for an input file to
edit. After the selected file is loaded into the
spreadsheet, control of the program is in the
hands of the user. The user can now edit the
spreadsheet and restart the program by invoking
the macro }ﬁ. Control return to the batch program
when LOTUS 123 is exited. However, the user can
choose to end the batch file in RE of two ways:
either by quitting from LOTUS 123 without
invoking the macro \W, or, if the macro \W is in
progress, the user can press a control break to
halt fafecution of the macro and then quit from
LOTUS 123.

0 The existence of SCENGEN.DAT is checked. If the input

8-1

spreadsheet is exited without invoking the macro \W, then
SCENGEN.DAT has not been created and WRATES.BAT ends.

If SCENGEN.DAT exists the SCENGEN module is
called. 1If errors in the input data are detected,
then the file FLOOPONE.OUT is not created;
otherwise FLOOPONE.OUT is created and a zero is
written into it.

The existence of the file FLOOPONE.OUT is checked. If
FLOOPONE.QUT does not exist, the execution of WRATES.BAT
is terminated.

ELDM module is called once for each scenario. As each
scenario is processed, the number in FLOOPONE.OUT 1is
incremented by one until all scenarios are run. If an

error occurs in the ELDM module for a scenario, it does
not affect the results of the previous or the following
scenarios, it only affects yearly statistics. After the
last scenario is processed, FLOOPONE.OQOUT is deleted; this
signals the batch file to exit the ELDM loop.

The COMPUTM module is called and executed once.

The IWHEEL module is called once. The output of the
IWHEEL module is placed into the file IWHEEL.OUT.

TEMPLATE.OUT is copied to the file AUT0123.WK1l.

Lotus™ 123 is invoked. AUTO123.WKl is immediately
loaded 1into the spreadsheet. This file contains an
autoexec macro \0 that loads the IWHEEL.OUT file into the
spreadsheet. The user can inspgﬁ} the results, print
them save them or just exist LOTUS 123.

End of batch file.

The following errors are detected by WRATES.

module.

the error is detected are listed;

For each error,

Section 9

ERROR AND WARNING MESSAGES

They are grouped by
both the message and the subroutine in which
an appropriate response to correct

the error is also suggested..

SCENGEN Module Error Messages

These errors are detected in the SCENGEN module and printed in the

error file,

error 110:

Subroutine:
Response:

error 115:
Subroutine:
Response:

error 120:

Subroutine:
Response:

error 125
Subroutine:
Response:
error 130:
Subroutine:
Response:

error 135:

Subroutine:

ERROR.FIL.

Pool affiliation is specified for utility -~ and the total
number of utilities is only --.

SRPOQL

Check the utility numbers in the pool affiliation table;
none should exceed the total number of utilities
specified in the title section.

The pool affiliation for utility -- is specified twice.
SRPOOL

Check the utility numbers in the pool affiliation table;
none should be specified twice.

In the pool affiliation table, the poocl number -- appears
but the total number of pools is -- .

SRPOOL

Check the pool numbers in the pool affiliation table;
none should exceed the number of pools specified in the
title section.

The number of independently dispatched entities--
exceeds the maximum allowed (--).

SRPOOL

Check the pool affiliation table; most probably a pool
affiliated utility has not been specified in that table.

is larger than the
(==-).

The specified number of pools (--)
number of pools in the pool affiliation table
SRPOOL

In the pool affiliation table, utilities were assigned to
fewer pools than was specified in the title section.

The number of independently dispatched utilities (--) is
different from the number specified in the input data
(-) .

SRPOOL

Response:

error 140:
Subroutine:
Response:

error 150:

Subroutine:
Response:

error 155:

Subroutine:
Response:

error 160:

Subroutine:
Response:

error 165:
Subroutine:
Response:

error 170:
Subroutine:
Response:

error 175:
Subroutine:
Response:

error 180:
Subroutine:
Response:

error 185:

Subroutine:

Check the pool affiliation table; most probably a pool
affiliated utility has not been specified in that table.

Utility -- Dbelong to pool =--; therefore no revenue
reconciliation data can be specified for it.

SRWHEEL

Remove that utility from the
parameters" table.

"Revenue Reconciliation

In the net energy interchange table, the pool number--
exceeds the total number of pools (--).

SBASE

Check the pool numbers in the net energy interchange
table for pools; none should exceed the number of pools
specified in the title section.

In the net energy interchange table, the number of
specified utilities -- exceeds the number of independent
utilities --.

SBASE

Check the list of utilities in the net energy interchange
table for independently dispatched utilities. The list
should not be longer than the number of independently
dispatched utilities.
Utility affiliation was of--
buses.

SBASE

In the network and supply curve data section of the input
spreadsheet, the utility affiliation should be specified
for all of the buses in the first table of the

only specified for --

spreadsheet. Check that each of the buses specified in
the system 1is. represented in the utility affiliation
table.

Line data was only specified for -- of -- lines.

SBASE

In the network and supply curve data section of the input
spreadsheet, line data must be specified for all lines in
the system. Check that each of the lines specified in
the system is represented in the line data table.

Utility to Utility wheeling is not allowed within a pool.
SBASE

Check the wheeling data, more specifically the seller
type and the buyer type; if they are right, check the
number of the buyer and the number of the seller

Bus to utility wheeling is not allowed within a pool
SBASE
same as error 170

Utility to bus wheeling is not allowed within a pool
SBASE

same as error 170

Line -- belong to pool --; no revenue reconciliation is
allowed for this line

SBASE

Response:

error 190
Subroutine:
Response:
error 220:

Subroutine:
Response:

error 310:
Subroutine:
Response:

error 320:

Subroutine:
Response:

error 330:

Subroutine:
Response:

error 350:

Subroutine:
Response:

error 355:

Subroutine:
Response:

Check the 1line numbers in the table listing the lines
with the decomposed option. Delete the line multiplier
specified for lines belonging to the pools.

Line -- belongs to pool --; no capital revenue is allowed
for this line
SBASE :

Check the line numbers in the table listing the lines
with the decomposed option.

In scenario __ net energy interchange data is given for
utility - which is a pool affiliated utility.

SCENGI '

Check the net energy interchange table for independently
dispatched utilities in the specified scenario. Also
check that there is a row with -1 in its column A at the
end of each table for the specified scenario.

The probability of scenario __ exceeds 100%

SCHECK

In the scenario data section of the input spreadsheet,
the probability of each scenario must be between 0 and
100 percent. For the given scenario, check that the
second column of the first table is between 0 and 100
percent.

The probability of scenario is less than or equal to
zero.

SCHECK

In the scenario data section of the input spreadsheet,
the probability of each scenario must not be less than
zZero. For the given scenario, check that the second
column of the first table is between 0 and 100 percent.

In scenario __ the sum of the net energy interchanges is
not equal to zero.

SCHECK

In each scenario, the net energy interchanges must sum to
zero to maintain the energy balance. For the given
scenario, check that the net energy interchange specified
in the base case data and in the scenario data sum to
zZero.

In scenario
pool
SCHECK

In each scenario, there can only be one hard constraint
for each pool. For the given scenario, check that the
given pool has at most one hard constraint in both the
line data within the scenario and also the 1line data
listed under the network and supply curve data.

__ there is more than one hard constraint in

In scenario -- there is more than one hard constraint in
utility --

SCHECK

In each scenario, there can only be one hard constraint
for each independenly utility. For the given scenario,
check that the given utility has at most one hard

constraint in both the line data within the scenario and

9-3

error 360:

Subroutine:
Response:

error 370:

Subroutine:
Response:

error 380:

Subroutine:
Response:

error 385
Subroutine:
Response:
Error 390:

Subroutine:
Response:

error 410:

Subroutine:
Response:

error 420:
Subroutine:
Response:

also the line data listed under the network and supply
curve data.
In scenario line
utility.

SCHECK

The utility specified for each 1line in the 1line data
table must match either the line’s beginning bus or the
line’s end bus. Check the line data for the given line
in both the scenario data and the base case data.

does not belong to the correct

In scenario ___ the generation levels on the supply curve
of bus ___ are not in the right order.

SCHECK

The generation levels in the marginal cost curves must be
in increasing order. Check both the scenario data and
the base case data to make sure that the marginal cost
curve for the given bus exists and that the generation
levels are in increasing order.

In scenario ___ the marginal costs on the supply curve of
bus __ are not in the right order.

SCHECK

The marginal costs in the marginal cost curves must be in
increasing order. Check both the scenario data and the
base case data to make sure that the marginal cost curve
for the given bus exists and that the marginal costs are
in increasing order.

The slope of the unserved energy for bus -- is less than
zero

SCHECK

Check the unserved energy table. No numberin column C can
be less than zero

The unserved energy cost for bus -- 1is less than its
production costs.

SCHECK

Compare the marginal cost curve specified at that bus to
the cost of unserved energy. The cost of unserved energy
should be larger than the production cost specified for
the last point of the supply curve.
The sum of the probabilities of all scenarios is
different from 100%.

SFCHEK

In the scenario data section of the input spreadsheet,
the probability of a scenario occurring appears 1in the
first table of each scenario. If the yearly statistics
are required, the sum of the probabilities of all
scenarios must equal 100 percent. If the statistics
option is equal to 2 in the option table, make sure that
the sum of the probabilities of all the scenarios is 100
percent.

Wheeling utility _ is the same as the buying utility.
SFCHEK

Within the wheeling data, if the buying party 1is a
utility, this utility cannot also be a wheeling utility.
Check the wheeling data. If the buyer type in column E

9-4

error 430:
Subroutine:
Response:

error 440:
Subroutine:
Response:

error 450:

Subroutine:
Response:

error 460:

Subroutine:
Response:

error 470:

Subroutine

error 475:
Subroutine:
Response:

is 2 (i.e. utility), the wutility number of the buyer
cannot be listed in the second table (wheeling utility
data) .

Wheeling utility @ is the same as the selling utility.
SFCHEK

Within the wheeling data, if the selling party is a
utility, this utility cannot also be a wheeling utility.

Check the first table of the wheeling data. If the
seller type in column C is 2 (i.e. utility), the utility
number of the seller cannot be listed in the second table
(wheeling utility data).

Wheeling utility @ is not represented in the system.
SFCHEK

In the wheeling data section of the input spreadsheet,
the number of each wheeling utility must not be greater
than the number of utilities in the system.

The aggregate option is not allowed with no obligation to
serve (class n). Check utility

SFCHEK

The aggregate option (option 1) for a wheeling utility is
not allowed with no obligation to serve (class 2). For
the given utility, check columns B and C of the second
table in the wheeling data section of the input
spreadsheet to see that this condition is met.

The aggregate option is not allowed with obligation/no
obligation to serve (class on). Check utility

SFCHEK

The aggregate option (option 1) for a wheeling utility is
not allowed with obligation/no obligation to serve (class
3). For the given utility, check columns B and C of the
second table in the wheeling data section of the input
spreadsheet to see that this condition is met.

The obligation to serve class is allowed only if either
the seller or the buyer belongs to the wheeling utility.
Check utility --.

SFCHECK

The number of buses in utility is equal to zero.
SFCHEK T

In the network and supply curve data section of the input
spreadsheet, the second table contains the utility
designation for each bus. Check that at least one bus
belongs to the given utility.

error 480: The number of utilities in pool -- is equal to zero.
Subroutine: SFCHEK

Response: Check the pool affiliation table

ELDM Error Messages

The following error messages are detected in the ELDM module and

printed in the warning file,

are
WARNING.FIL.

9-5

warning/
error 610:

Subroutine:
Response:

warning/
error 620:

Subroutine:
Response:

warning 630:

Subroutine:

Within iteration __ wrates could not find an acceptable
value for mu in __ iterations in utility .
ELDM

This error indicates that ELDM could not find a value for
the Lagrange multiplier "mu" such that the flow on the
line with a hard constraint in the given utility is equal
to the flow limit specified for that line. There are two
possible solutions to this problem:

0 Increase the maximum number of iterations allowed for
the mu loop. This number is stored in the wvariable
NITMMX of the common /CMUE/, and it is initialized in
file BLKDATA.FOR of the ELDM module.

0 Increase the tolerance on the line flow of the line
with a hard constraint. This number is stored in
variable TOLLF of the common /CMUE/ and is also
initialized in the file BLKDATA.FOR of the ELDM
module.

If this error occurs in the last system loop, the line
flow on the line with a hard constraint in the specified
utility will not be equal to the flow limit on that line,
and therefore the dispatch generated does not satisfy all
the specified constraints. In that case a "sorry message"
is printed in ELDM. However, if this error occurs only
within one or more intermediate system loops, the error
message is only printed in the warning file.

In system loop _ and mu loop __ wrates could not find an
acceptable value for gamma in __ iterations for utility
ELDM

This error indicates that ELDM could not compute a value
of gamma for which the energy balance is met. There are
two possible solutions to this problem:

0 Increase the maximum number of iterations allowed for
the gamma loop. This number is stored in NITGMX of
common /CGAMMA/, and it is 1initialized in file
BLKDATA.FOR of the ELDM module. The drawback to this
solution is that it increases the execution time of
the ELDM module significantly.

0 Increase the tolerance on the energy balance. This
number is stored in variable TOLENG of common /CGAMMA/
and it is initialized in file BLKDATA.FOR of the ELDM
module.

If this error occurs in the last "mu loop" of the last
"system loop", then the dispatch generated by ELDM will
not satisfy the energy balance within the specified
utility. However, if this error occurs within an
intermediate loop, it can be disregarded.

An initial guess of gamma for utility __ could not be
made in __ iterations.
SGAMMA

9-6

Response:

error 640:

Subroutine:
Response:

This warning is generated if ELDM cannot calculate an
initial gquess for gamma for which the generation is equal
the demand plus the net energy interchange of the given
utility, with the losses set to zero. The program uses
the value of gamma calculated during the last iteration.

In system loop and mu loop __ and gamma loop __ wrates
could not find a consistent set of spot prices for
utility _ .

SPTMAX

This error is fatal, and when it occur ELDM is
terminated. It indicates that ELDM could not calculate a
value of gamma such that the spot price at all buses of
the specified utility converge to a final value. There
are two possible solutions to this problem:

o0 Increase the maximum number of iterations allowed for
the "spot price and generation loop." This number is
stored in the wvariable NITSMX of the common /CINJ/,
and is initialized in file BLKDATA.FOR of the ELDM

module. This adjustment to resolve the problem is
likely to increase the execution time of ELDM
substantially.

0 Increase the tolerance on the injection at each bus.
This number is stored in variable TOLINJ of the common
/CINJ/ and is also initialized in the file BLKDATA.FOR
of the ELDM module.

Other Messages

The following three messages are written by the ELDM module and appear

in the ELDM.OUT file. One of these messages appears at the beginning
of each set of load dispatch results.

Message:

Subroutine:
Response:

Message:

Subroutine:
Response:

2?22?2272 727272°?°2

SORRY wrates could not find a set of bus generations

that satisfy the energy balance in all the utilities
after __ iterations.

The following results do not constitute an acceptable
solution

2?2222 7272727227

ELDM

This message is printed when ELDM cannot find a coherent
set of generations at all buses of the system. When this
occurs, ELDM prints the results of the 1last system
iteration. The user might find a clue to the problem by
examining the printed output in ELDM.OUT.

2?22?2222 7272°?
SORRY wrates could not find a set of bus generations that

satisfy the line constraints in all the utilities.
2?22?2222 72°?2°2°7 '

ELDM
May be there is no way to bypass the line constraints.

9-17

Message: * k k k k% k k k ok
congratulations, wrates found a set of bus generations

that satisfy the energy balance in all the utilities
after system iterations
* %k k Kk kK K kX

Subroutine: ELDM
Response: Most probably, there are no errors.

9-8

Appendix A

DESCRIPTION OF DISKETTES

This package contains two "high density"” 5 1/4 inch diskettes labelled
"WRATES - Ver 1 Source Code" and "WRATES - Ver 1 Executable Modules"

WRATES, SOURCE CODE

This diskette has four (4) directories, one for each module:
\SCENGEN, \ELDM, \COMPUTM, and \IWHEEL. Each directory contains:

o Common blocks (COMMON.FOR) ;
o) Sub-programs (XXXX.FOR);
o] A command file to compile all the sub-programs of the module

(COMPIL.BAT) ;

0 A response file to create the executable module
(RESPONSE.FIL) .

WRATES, EXECUTABLE MODULES

WRATES II has one (1) directory. It contains:

o Four executable modules:
SCENGEN.EXE
ELDM.EXE
COMPUTM. EXE
IWHEEL.EXE

e} A command file WRATES.BAT that directs the sequential
execution of the separate modules that compose WRATES;

o] A LOTUSTM 123 autoexec file TEMPLATE.IN that directs the
automatic execution of certain macros when the input
worksheet is to be prepared;

o] A LOTUSTM 123 autoexec file TEMPLATE.OUT that directs the
automatic execution of certain maGroes when the output is to
be sorted and displayed in a LOTUS 123 environment;

o] A sample input worksheet - SCENARIO.WK1;

A sample output worksheet - RATES.WK1;

A sample ELDM output file - ELDM.OUT.

Appendix B

INSTALLATION PROCEDURE

The WRATES program is supplied on two high density diskettes as
described in Appendix A. The first diskette, has the source code and
need not be installed to run WRATES. The second diskette contains all
the executable modules and files necessary to run WRATES and must be
installed properly for the program to run.

INSTALLING THE SOURCE CODE

The Source Code diskette has four directories, corresponding to the
four modules: SCENGEN, ELDM, COMPUTM and IWHEEL. The best way to
install the source code is to store each module in its own directory
as it is provided on the diskette. Note that there are files in
different directories with the same name, and therefore it is unwise
to combine the directories. The steps outlined below describe the
procedure to install SCENGEN; however this applies to all four modules
of WRATES.

o] Get into the root directory on the hard disk (often it is the C
disk) by typing "CD\ (return)."
o] Make a new SCENGEN directory by typing "MD SCENGEN (return)”.

o Change to the SCENGEN directory on the hard drive by typing
"CD\ SCENGEN (return)".

o) Insert the SOURCE CODE diskette into the high density floppy
drive.
0 Log onto the floppy drive by typing "A: (return)".

o] Change to the SCENGEN directory on the floppy diskette by
typing CD\SCENGEN (return).

o) Copy all of the files in the SCENGEN directory on the floppy
drive to the SCENGEN directory on the hard drive by typing
"COPY *,* C: (return)".

The installation of the other modules is the same. To facilitate

editing and re-compiling of the program, your program editor, the DOS

LINK command, and the FORTRAN compiler should be accessible from the
B-1

newly created directories on the hard disk. The COMPIL.BAT file in
each of the directories is set up to compile all of the modules using
the Lahey 77L compiler; if you use another compiler, COMPIL.BAT has to
be modified. The RESPONSE.FIL is used with the DOS LINK command to
create the executable modules from the object files and may also have
to be modified if another FORTRAN compiler is used.

INSTALLING THE EXECUTABLE MODULE

The entire contents of this diskette must be transferred to the hard

disk for WRATES to run correctly. The procedure for installing the
files is described below:

o Get into the root directory on the hard disk by typing "CD\
(return)".
o) Make a new WRATES directory by typing "MD WRATES (return)”.

o] Change to the WRATES directory on the hard drive by typing "CD
WRATES (return)".

o] Insert the Executable Modules disk into the high density floppy
drive.

o Log onto the floppy drive by typing "A: (return)".

o] Copy all of the files on the floppy drive to the WRATES
directory on the hard drive by typing *’/COPY *.* C: (return)".

o} Modify the path command in the AUTOEXEC.BAT file of the root
directory of the hard disk so that LOTUSTM 123 can be accessed
from the WRATES directory. (For more information on the PATH
command and the AUTOEXEC.BAT file, please refer to your DOS
manual.)

o) Re-boot the machine before you run WRATES for the first time.

This completes the installation of the WRATES program. To begin your
first WRATES session, make sure you are in the WRATES directory and
simply type WRATES. And remember, no program works from the first time.

