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REACTIVE SCATTERING AND IN REACTION PATH HAMILTONIANS 
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Materials and Chemical Sciences Division, Lawrence Berkeley 
Laboratory, Berkeley, California 9«720 USA 

ABSTRACT. Two recent developments in the theory of chemical reaction 
dynamics are reviewed. First, it has recently been discovered that 
the S-matrlx version of the Kohn variational principle is free of the 
"Kohn anomalies" that have plagued other versions and prevented its 
general use. This has considerably simplified quantum mechanical 
reactive scattering calculations, which provide the rigorous 
characterizations of blmolecular reactions. Second, a new kind of 
reaction path Hamiltonian has been developed, one based on the "least 
motion" path that interpolates linearly between the reactant and 
product geometry of the molecule (rather than the previously used 
minimum energy, or "intrinsic" reaction path). The form of 
Hamiltonian which results is much simpler than the original reaction 
path Hamiltonian, but more important Is the fact that it provides a 
more physically correct description of hydrogen atom transfer 
reactions. 

1. INTRODUCTION 

In this paper I will review some of the recent developments [n the 
theory of chemical reactl'-s. The first topic, quantum reactive 
scattering, pertains to the most rigorous theoretical description 
'i.e., explicit solution of tne SchrOdinger °qu= ion .-ith approp'-i ite 
boundary conditions, jf a chemical reaction. Not 3urpr:aiigi/, this 
•nethodoiogy is currently applicaSle only to the simplest che-iical 
processes (5ut in fail j-dinensional space), e.g., an atom-diatom 
reaction, A»8C * A3*C. It is nevertheless exciting to see that it is 
no* becoming possible to carry out the rigorous quantum calculations 
(i.e., a "simulation") that characterize these simplest reactions to 
tne most complete level of detail allowed by the laws of nature. 

The second topic deals with the theoretical description of more 
complex chemical systems. Specifically, a new class of reaction path 
models is described, namely the dlabatic reaction path Hamiltonian. 
The difference between this new model and the earlier reaction path 
Harniitonlan is that the present one is based on a least motion 
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reference path (i.e., a path that is linear interpolation between 
reactants and products) rather than on the minimum energy path the 
("intrinsic" reaction path). This new version is more useful for 
treating hydrogen atom transfer reactions than is the earlier one 
(which _i_s useful for many other kinds of reactions). 

Before beginning the discussion of reactive scattering in Section 
2, it is perhaps useful to take a few paragraphs here in the 
Introduction to summarize the background to these developments. In 
1969 a general formulation of quantum scattering for chemical 
reactions was presented which was a natural generalization of earlier 
work in electron scattering. The novel feature was that the 
wavefunction is expressed as a coupled channel expansion in standard 
Jacobi coordinates, but in all arrangements (i.e., A-3C, AB*C, 
AOB). Coupling between states of different arrangements leads to a 
non-local. i.e., exchange-type of interaction, and this is what makes 
reactive scattering difficult in this formulation. (This reactive 
exchange interaction is analogous to electron exchange interactions 
that result when the electronic wavefunctions is antisymmetrized, 
i.e., expressed as linear combinations of different "arrangements" of 
the electrons.) Some other formulations of chemically reactive 
scattering avoid these exchange interactions, which is of course an 
advantage, but they have other kinds of disadvantages of their own. 

The only general way to deal with these exchange interactions 
seems to be^ to expand the dependence of the wavefunction on the 
scattering coordinates in a basis set, using a variational principle 
to determine the expansion coefficients. Several such variational 
principles exist, and they all work, but the simplest one to apply is 
the Kohn variational principle;5 this is because it involves matrix 
elements only of the Hamiltonian operator itself and not those 
involving the Green's function for a reference problem. The Kohn 
principle has not been of general use, however, because of "Kohn 
anomalies", '' i.e., spurious singularities that appear in the energy 
dependence of the scattering results. 

The important recent discovery, however, is th^t there are no 
such "anomalies" if„the Kohn principle is applied with S-mat.-ix-type 
boundary conditions (as opposed to K-matrix boundary conditions). 
Wltn this rather subtle feature of the Kohn principle now understood, 
It provides a reliable and extremely straight-forward approach to 
quantum scattering, equally applicable to reactive or non-reactive 
processes. Section 2 describes this S-matrix version of the Kohn 
variational principle as it applies to chemically -eactive 
scattering. Tnis S-matrix version jf the Kohn metio^ has also been 
recently applied to electron-atom/molecule scattering, wi tn excellent 
results. 

Mention should also be made of a number of recent reactive 
scattering calculations by Kourl, Truhlar, and coworkers. These 
workers employ the coupled operator formalism of Baer and Kouri 
(though the version of it they use makes it identical to the 
formulation of ref. 1), and then use the Newton variational method'2 

for the amplitude density ^ to 3o!ve the equations. These authors 
have obtained excellent results for reaction prooati1itles of several 
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atom-diatom reactions (H*H2. 0+H2, Br+H2) for zero total angular 
momentum (J-0), though we note the obvious disadvantage that this 
approach requires matrix elements of the operator (G 0-G oVG o). 

The new diabatic reaction path Harailtonian is described in 
Section 3i and more background and the motivation for Its development 
is given there. Its most notable feature is that there are no 
"curvature couplings" as in the original reaction path Hamiltonian ' -
because the reference path is straight - and the coriolls couplings 
between different modes are also eliminated. The kinetic energy is 
thus completely Cartesian-like. The price for this simplification of 
the kinetic energy is that the quadratic part of the potential energy 
now has off-diagonal terms. (There is also a term in the potential 
energy that i3 linear in the "bath" modes because the reference path 
is not the minimum energy path.) This elimination of kinetic energy 
coupling, at the expense of introducing coupling into the potential 
energy, is analogous to the diabatic electronic representation of a 
vlbronlc Hamiltonlan and is the reason for our use of the term. As in 
the vibronic case, it is often easier to deal with the dynamics when 
the coupling appear in the potential rather than the kinetic energy. 

2. S-MATRIX VERSION OF THE KOHN VARIATIONAL PRINCIPLE 

2.1. General Methodology 

All relevant features of the methodology are illustrated by simple s-
wave potential scattering. It will thus first be described with 
regard to this problem, and the generalization to multichannel 
rearrangement scattering given at the end. 

The Hamiltonian is of the standard form 

where V(r! * 0 as r * ». The S-matrix version of the Kohn variational 
approximation to the S-matrix (at energy E) can be stated as 

S - ext[S • i <i|H-E|i>], 12.2) 

wnere *(r) Is a trial wavefunction that is regular at r-0 and has 
asymptotic form (as r » ») 

*(r> - - e" l k lV y' • e l k rv" y» S (2.3) 

where v-Mk/y Is the asymptotic velocity. (Note: The convention is 
used throughout this paper that the wavefunctions In the bra symbol 
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< | in bra-ket matrix element notation are not complex conjugated.) 
"ext" in Eq. (2.2) means that the quantity in square brackets is to be 
extremized by varying any parameters in iji(r). (Note that for a given 
trial function i|i, Eq. (2.2) may also be viewed as the distorted wave 
Born approximation, where <ii is the distorted wave.) 

A linear variational form is taken for the trial function ij)(r). 

N 
I 
i-1 

•(r) - -uQ(r) • Z u (r)c , (2.K) 

where Ug(r) is a function that is regular at r-0 and has the 
asymptotic form (as r •* ») 

uQ(r) - e~ i kV y*. (2.5) 

A simple choice for uQ(r) is 

uQ(r) - r(r)e~ i k rv~ V j. (2.6) 

where f(r) is a smooth cut-off function, 

f(r) * 0 , r + 0 

f(r) - 1 , r - -, (2.7) 

such as f(r)-1-e~ar. (More generally, u Q(r) may be the (Irregular) 
solution of some (e.g., long range) distortion potential that has 
asymptotic form Eq. (2.5), multiplied by a cut-off function to 
regularize it at r-0). The function u^r) Is 

u,(r) - u 0!r)*. (2.8) 

and the basis functions {Uj(r)!, A»2 ,V are real, square-integrabie 
functions. The coefficients (c,), l-l N in Eq. (2.4, are the 
variational parameters in *. 

With * of Eq. (2.«) substituted into Eq. (2.2) and the 
coefficients {ĉ } varied to extremize it, one obtains the following 
expression for the S-matrlx 

S -R ( Mo.o -*oV'-V' (2-9) 
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where M Q 0 is a 1x1 "matrix", M 0 a IxN matrix, and M an NxN matrix, 

Mo,o • < u o l H " E I V C 2- 1 0 a ) 

(M 0) £ - <u£|H-E|u0> (2.10b) 

tM ) t i l , - <u£|H-E|u£,> , (2.10c) 

for l,l'-l N, and where "T" denotes matrix transpose. Note that 
all matrix elements involving the unbounded basis functions u Q and u, 
exist because 

u (r) 
Urn (H-E) [ , . - 0. (2.11) 
r-»» u l l r J 

Since the matrix M of Eq. (2.10c) is complex-symmetric, there are 
no real values of E for which the matrix inverse in Eq. (2.9) is 
singular, and thus no "Kohn anomalies". In fact, the condition that 
Eq. (2.9) is singular, namely 

det(M) - det [<u |H-E|u >] - 0, (2.12a) 

l,i'-l,...,N, is the secular equation for eigenvalues of the 

SchrOdinger equation 

(H-E)i(i(r) - 0, (2. 12b) 

with boundary condition (as r*«) 

•<r) » e l k r . (2.12c) 
I.e., Eq. (2.12a) is the expression 
determining Slegert eigenvalues, ' the complex energies that are the 
(physically correct) complex poles of the S-matrix which characterize 
the positions and widths of scattering resonances. Eq. (2.9) is thus 
singular only where it is supposed to be singular. 

For comparison, the Kohn principle for the K-matrix gives a 
similar expression, 
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where the matrix elements_here have the same form as Eq. (2. in) except 
that the function CL and u are different, 

u (r) - -Im u (r) - 3 l r V k r (2.13b) 
v * 

u (r) - Re u (r) - C 0 3 i k r . (2.13c) 
v 2 

The fact the matrix M is real and symmetric leads to real values of E 
for which 

det(M) - 0, (2.1U) 

and thus real values of E for which Eq. (2.13a) is singular, i.e., the 
Kohn anomalies. 

To emphasize again, use of the Kohn variational principle with 
standing wave boundary conditions to obtain (an approximation to) the 
K-matrix, as in Eq. (2.13), and then the S-matrix via the relation S » 
(1+iK)(1-iK) , is not equivalent to using the Kohn principle with 
running wave boundary conditions to obtain (an approximation to) the 
S-tnatrlx directly, I.e., Eqs. (2.2)-(2.10). And furthermore, as 
discussed above, the latter procedure la free of anomalous 
singularities and thus the preferred version of the Kohn method. 

The S-matrix Kohn approach also allows one to Identify a 
corresponding basis set approximation to matrix elements of the full 
outgoing wave Green's function G*(E) • (E*ie-H) . This is 

N -1 
<a|G (E)|b> - - Z <a|u,> CM ), ,,<u|1I|b>, (2.15) 

t.r-i i - i.» i 
where M 13 as above, Eq. (2.10c), and |a> and |b> are any square-
integrable functions. Note that the complex-symmetric structure of 
the matrix M is the same as that in complex scaling/coordinate 
rotation theory, ' and for the same reasons. If the functions |a> 
and |b> are real, then Eq. (2.15) leads to a useful way for 
calculating matrix elements of the density of states operator. 

<a|«(E-H)|S> - -if"'lra<a|G (E)|b>. ;2.16) 

In actual calculations for the S-matrix, Eq. (2.9), one does not 
wish to carry out numerical calculations with the complex symmetric 
matrix M. This can be avoided by the usual partitioning methods, so 
that EqT (2.9) can be written in the equivalent form 

S - i (B - C-B*"' -C), f2.17 > 
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uOn«V e n T Y/v nT 

M Is a "large" by "large" real symmetric matrix in the composite 
space, internal plus translational, 

'S'lnY.t'n'V <u^|H-E|u r^,« n,>, (2.20c) 

where (u Y(r )} is a square integrable Oasis (that need not depend on 
n - i.e.^thl same translational basis can be used for every 
channel). M i3 a "large" by "small" rectangular matrix 

("o5lnY,n'Y' tn*n' •^On-V^ (2.20d) 

Only open channels (nT} are included in the matrices M Q 0, M, Q. and 
the "small" dimension of M Q, while open and closed channels are of M n, while open ana ciosea cnannei 

M 2nd the "large" dimension of MQ. 
23) thus express the S-matrix for rt 

required in the matrix _ _ u 

Eqs. (2.19) - (2.23) thus express the S-matrix for reactive 
scattering in ajs extremely straight-forward manner: one chooses basis 
functions, computes matrix elements of the Hamiltonian, and then does 
a standard linear algebra calculation. 

2.2. Application to ?*H2 

Initial application80 of the above methodology was made to the 
standard benchmark problem, the 3"d H»H2 » H2*H reaction for J (the 
total angular momentum quantum number) - 0. The results showed the S-
matrlx version of the Kohn method to be accurate, efficient, and 
stable. 

.••00 

Figure 1. Reaction probabilities for H2(v-j.0)*F - HF(v)-H, summed 



where B and C are the 1x1 "matrices" 

B - Mo,o -sS'H" 1-^ (2-l8a) 

c " Mi,o - C ' U " 1 - ^ ' (2-l8b) 

when M 0 Q, MQ, and M are as before, Eq. (2.10), except that i,i* • 2, 
.... N ti.eT, only the real basis functions), and 

M 1 > 0 - <u0*|H-E|u0>. (2.18c) 

Here the matrix (M) .,,1,1' - 2, ..., N Is real and symmetric, and 
thus more easily Sealt with. (One can readily verify that a value of 
E for which det(M) • 0 does not lead to a singularity in Eq. (2.17.) 

Finally, for general multichannel rearrangement scattering, 
let (gY.r ) denote the internal coordinates and radial scattering 
(i.e., translational) coordinate for arrangement Y; ($ (gv)l are the 
asymptotic channel eigenfunctions for the internal degrees of 
freedom. Eqs. (2.17) and (2.18) generalize as follows 

S - i (B - C T'B*' 1-C), (2.19a) 

where S, B, and C are "small" square matrices, the dimension of the 
number'of open channels, e . g . , S - [s _. . _ . ] , e t c . B and C are given • nT,n'Y J • * by 

S-So.o-tf-Sf'-So (2-19b) 

S - Hi.o - sST*5"1*Ho» (2-19c) 

where M and M, . are also "small" square matrices 

(So.oWn-r " ̂ o X l ^ K n - * ^ C 2 - 2 0 a ) 

(Bl.oU.n'Y- " ̂ ' • n l ^ l C ^ ' * ' ( 2 - 2 0 b ) 

Y 
u (r ) is a function regular at r - 0 and with asymptotic form 
(as r + • ) , 
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"oX> - '"'V'« nY 

M is a " large" by "large" real symmetric matrix in the composite 
space, in ternal plus t r ans l a t i ona l , 

Y \ Y \ 
WinT.rn-Y. " ^ i n ^ l ^ ^ f n ^ n - * ' (2.20c) 

where (u Y(r )} U a square integrable basis (that need not depend on 
n - i.e.^the same translational basis can be used for every 
channel). M Q is a "large" by "small" rectangular matrix 

TJfi Y' Y\ 
'So'lnY.n'f " < uln*nl H- El U0n.*n. > 

(2.20d) 

Only open channels {nY} are included in the matrices M 0 Q. M,Q' a n d 

the "small" dimension of H Q, while open and closed channels are 
required In the matrix M aHd the "large" dimension of M Q. 

Eqs. (2.19) - (2.23) thus express the S-matrix for reactive 
scattering in an extremely straight-forward manner; one chooses basis 
functions, computes matrix elements of the Hamiltonian, and then does 
a standard linear algebra calculation. 

2.2. Application to F+H2 

Initial application80 of the above methodology was made to the 
standard benchmark problem, the 3-d H*H2 * H2*H reaction for J (the 
total angular momentum quantum number) - 0. The results showed the S-
matrlx version of the Kohn method to be accurate, efficient, and 
stable. 

•»oo 

»m M I 

Figure 1. Reaction probabilities for H2(v->0)-F * HF(v)+H, summed 
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over final rotational states of HF, for total angular momentum J-0, as 
a function of total energy (relative to the minimum of the potential 
energy surface in the reactant valley). The squares (v-2) and circles 
(v-3) are results of earlier, less accurate calculations of other 
workers. 

Much more impressive, though, is the calculation for the F*H2 * 
HF+H reaction, also for J-0. Because the reaction is 32 kcal/mole 
exothermic, there are many HF vibrational and rotational states that 
must be included in the coupled channel expansion. Fig. 1 shows the 
reaction probabilities (the square of the S-matrix elements) for 
ground state (v-j-0) H 2 and various final vibrational states of HF 
(summed over final rotational states). These are the first 
quantitative calculations for the 3~d version of this reaction, and 
one sees the well-known population Inversion that leads to the HF 
chemical laser. 

0.7 

0.6 
0.S 

S 0.4 1 
0.2 
0.1 
0 
0.28 0.32 0.36 0.40 0.44 0.48 0.52 

E <«V) 

Figure 2. The HF(v-2) result of Fig. i (solid curve) compared to r.he 
collinear reaction probability (dashed curve) H2(v-0)+F •» HF(v-2)*H of 
ref. 23, using the same potential energy surface. Tha collinear 
result has been shifted In energy by Miuw , fc being the bending 
frequency of H-H-F at the saddle point on the potential energy 
surface. 

Fig. 2 shows the 0*2 reaction probability compared to the 
analogous collinear result, ^ the latter having teen 3hiftad in energy 
by Hwb*, <ub* being the bending frequency of the "activated complex". 
For reactions that have strongly colllnear potential energy surfac?s 
(i.e., large nuj,*) one often rinds2 that the energy-shifted colllnear 
reaction probability is a good approximation to the corresponding 3-d 
vibrational reaction probabilities (summed over rotational states). 
This Is seen not to be the case here, presumably because the bending 
frequency at the transition state is very small for F-H2. Finally, 
Fig. 3 shows tha distribution of final rotational states that results 
from the F+H2(v-0) * HF(v*2)+H transition. One sees considerable 
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rotational excitation in the products. 
2.0 

1.6 
b 

a" 0.8 

0.4 

0' 
0 3 6 9 12 

i 
Figure 3. Reaction probability for H2(v-j-0)+F * HF(v-2,j)+H, as a 
function of J, the rotational quantum number of HF, also for total 
angular momentum J-0. 

2.3* Enhancements 

There are a number of further developments and enhancements that 
should make the S-matrlx /ersion of the Kohn variational principle 
even more useful for reactive (and electron-molecule) scattering. One 
of these is use of a discrete variable," or pseudo-spectral 
representation for the translational basis set. Though this might 
require the use of slightly larger translational bases, it has the 
very desirable feature that matrix elements of the potential energy 
are diagonal, I.e., simply the value of the potential function at the 
grid points. Thus rather than having to evaluate matrix elements by 
numerical Integration for a 5000x5000 potential energy matrix, say, 
one has only to evaluate the potential energy function at 5000 points. 

The idea of basis set contraction that is commonly used in 
computational quantum chemistry2' should also prove useful for the 
present calculation. Thus to reduce the size of the transitlor.a.l 
basis, one diagonalizes a zeroth matrix in the translational Index 
alone and then chooses a sub-set of these eigenfunctions ("better" 
basis functions) as the translational basis for the full calculation. 

Another extremely important simplification has been pointed out 
by Rescigno and Schneider, 8 namtly that It is essentially no 
approximation to neglect exchange (i.e., Y*Tf•) matrix elements in the 
"free-free" matrices M Q Q and M. _, Eqs. (2.20a and b), and in the 
"bound-free" matrix MQ, Eq. (2.20d). It Is clear that this will be 
possible for the present application2' because the "free" translation­
al functions u Q^(r T) include a cut-off function that cause them to 
vanish in the close-in Interaction region where exchange is 
significant. Thus the exchange interaction is mediated entirely by 
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the "bound-bound" matrix M, Eq. (2.20c). The practical significance 
of this is that "direct" matrix elements (the ones diagonal in the 
arrangement index y) are much easier to compute than exchange ones, 
and furthermore it is the matrices M Q 0, M. Q , and M Q that must be re­
calculated anew at each scattering energy (Decause'uQ^CrY) i3 energy-
dependent). This observation thus considerably simplifies the energy-
dependent part of the calculation. 

Another strategy that may be useful is that suggested 
parenthetically after Eq. (2.7), i.e., to incorporate distorted wave-
like information into the funcr.J w u0(r) (and U ^ U Q ). The most 
complete version of this idea would be to use a multichannel distorted 
wave™ for u Q. More specifically, consider Eqs. (2.19)-(2.20) for the 
general multichannel rearrangement case. One modifies the function 
u Q n(r) in the following way 

u 0 n { p ^ n ( 3 ) * z •n" (9 ) un»*n ( r ) f ( r >' ( 2 " p l ) 

n" 

where f ( r ) is a cut-off function as before, and u „^ (r) s a t i s f i e s the 
open channel ine las t i c coupled-channel SchrOdinger equation with 
asymptotic boundary condition 

u ( ^ ( D - « „ e " i l < n r v **. (2.22) 
n"*n n",n n 

(The arrangement index T has been dropped here because, as noted in 
the above paragraph, we do not need to consider matrix elements with 
these functions between different arrangements.) In practice one 
determines the functions {u _(i"H t>y beginning at large r with the 
initial condition of Eq. (2.227 and integrating the Inelastic (non-
reactive) coupled channel equations inward as far as is needed; the 
cut-off function f(r) determines how far in this is. The matrices 
M and M of Eqs. (2.20a) and (2.20b) (now diagonal in y) can be 
shown then to take the very simple form 

for each arrangement y. The rectangular matrix takes a 
correspondingly simple form. The virtue of using this more 
sophisticated function for u n is that the short-range basis 
functions (u ) now need to span a much smaller region of space so 
that fewer of thera will be required. Applications using this approach 
are in progress. 
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Finally, since it is the S-matrix that is being calculated, one 
has the option of computing the full matrix or only one row of it. If 
a general purpose (e.g., LU decomposition) algorithm is used to 
evaluate M -M Q in Eq. (2.19), then there is little economy in 
evaluating only one row of the S-matrix. If iterative methods (e.g., 
Lanczos recursion^2) are used, however, the effort is proportional to 
the number of rows of the S-matrix that one evaluates. If one is 
interested In only one, or a few initial states, then such a procedure 
will be considerably more efficient, meaning that substantially larger 
calculations will be feasible. 

3. A DIABATIC REACTION PATH HAMILTONIAN 

3-1. Background 

The idea of a reaction path Is a venerable one in the theory of 
chemical reactions."i3 fh e minimum energy reaction path on the 
Born-Oppenheimer potential energy surface, also called the intrinsic 
reaction path,^ is uniquely defined as the steepest descent path (in 
mass-weighted Cartesian coordinates) from the transition state (the 
saddle point on the potential surface) down to the local minima that 
are the equilibrium geometries of react ants and products. More 
recently ' it was shown how to express the (classical or quantum) 
Hamiltonian of an N atom molecular system In terms of the reaction 
coordinate, the distance along this reaction path, and 3N-7 local 
normal mode coordinates for vibrations orthogonal to It (and three 
Euler angles for overall rotation of the N atom system), plus momentum 
variables (or operators) conjugate to these coordinates. This 
reaction path Hamiltonian has been used successfully to describe a 
variety of processes In polyatomic reaction dynamics." •'" 

Though the reaction path Hamiltonian based on the minimum energy 
path has proved useful Tor many reactions, and will surely do so for 
many others, there are situations for which It 13 not appropriate. 
One of the most Important of these Is H-atom transfer reactions, a 
prototype of which la the symmetric H-atom transfer in 
malonaldehyde," 

0 0 0 0 
I II - II I 
C ^ C ^C _C. (3-D 

H' ^ C / VH K' \ C < ^ X H 
I I 
H H 

This Is a polyatomic version of a heavy « light-heavy mass combination 
reaction, for which the proto-type is a simple atom-diatom reaction 
such as 

CI • HCl * CIH • Ct. (3.2) 
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For this atom-diatom system it is well-known3 that the minimum energy 
path is very sharply curved, so that the relevant dynamical motion 
deviates far from it. It is also well-known that the reaction path 
Hamilton!an (which reduces to Marcus' natural collision coordinates^15 

for an A*BC system) is not useful in this case. 
The situation is actually much worse for H-atom transfer in a 

polyatomic system, e.g., (3.1), than for the atom-diatom case (3.2), 
because the minimum energy path undergoes many sharp turns (in 3N-6 
dimensional space) on its way from the transition state down to 
reactants and products. In fact one knows In general that the 
steepest descent path approaches a local minimum on the potential 
surface Uag-i reactsnts or products) along the normal mode of lowest 
frequency.™ For reaction (3-U, for example, the steepest descent 
path begins at the saddle point being mostly notion of the H-atora that 
is transferred, but in moving downhill It switches successively to 
other motions, finally approaching the potential minimum along some 
in-plane skeletal vibration, the in-plane mode of lowest frequency. 
This "kinky" path is clearly not appropriate for defining a reaction 
coordinate. 

To deal with H-atoo transfer reactions In polyatomic systems, 
such as (3.1)..we have previously suggested'' using a straight-line 
Cartesian path on which to base the dynamical model. The purpose of 
this paper is to develop this idea in a more rigorous fashion than 
before, correctly Incorporating conservation of total angular (and, 
trivially, linear) momentum. We also show rigorously how all coupling 
in the kinetic energy part of the Hamiltonlan can be eliminated, it 
then appearing In the potential energy. For this reason we have 
termed this model a dlabatic reaction path Hamiltonlan in analogy with 
the adlabatlc/dlabatic language used for describing systems with 
electronic and nuclear (i.e., vibration, rotation, translation) 
degrees of freedom. Following this analogy, the original reaction 
path Haralltonlan ' would be called the adlabatlc reaction path 
Hamlltonian since the local vibrational modes orthogonal to the 
reaction path are the exact normal modes for a fixed value of the 
reaction coordinate (i.e., a fixed position on the reaction path); 
coupling between these modes and the reaction coordinate appears in 
the kinetic energy. Just as does the coupling between nuclear degrees 
of freedom and adiabatic electronic states. In the model developed in 
this paper, coupling between the reaction coordinate and perpendicular 
modes has been transformed from the kinetic to the potential energy, 
the same as for a diabatlc electronic representation. 

It is useful to discuss qualitatively why we think a linear 
reference, or reaction path, will be useful for H-atom transfer 
reactions. Fig. Ma shows the sketch of (contours of) a potential 
energy surface typical of a collinear heavy • light-heavy system, 
e.g., reaction (3.2) It Is well known-* 3 , Z .n such cases that the 
tunneling dynamics does not follow the minimum energy path (the full 
line) but rather "cuts-the-corner"; the linear path from reactanta to 
products is the extreme version of this. Fig. 4a also pertains to 
certain modes in a polyatomic system that have a predominantly 
symmetric type of coupling; for example, the 2-d potential surface for 
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reactlon (3.1) that Includes the reaction coordinate (s-coordinatt: 
and the 0-0 stretch (Q-coordlnate) looks qualitatively like Fig. 4a. 

Figure 14. Sketch of contour plots for two characteristic potential 
energy surfaces. The solid lines indicate the minimum energy path 
from the transition state down to reactants and to products, and the 
broken line Is the straight line path from reactants to products. 

Fig. *4b, on the other hand, is for a mode with predominantly 
asymmetric coupling to the reaction coordinate, one for which the 
potential well In the reaction coordinate is asymmetric for a fixed 
(non-zero) value of the other coordinate. The minimum energy path in 
this case will also be sharply curved and not useful for defining a 
reaction coordinate. The straight-line path in this case "cuts" both 
corners, passing through the transition state. An example of this 
situation is the double H-atoo transfer in formic acid dlmer, 

„ 0 - H - 0 
H—C v

 X C - H 
^ 0 - H - 0 " 

H-0 
H-C N C-H, 

•0-H-
(3.3) 

where the coo-dinate a of Fig. 44b is the concerted motion of the two H 
atoms and Q the asymmetric O-C-0 stretch that is coupled strongly to 
it. 
3.2. The Linear, or Least Motion, Reaction Path 
First some comments on notation. Three-dimensional Cartesian vectors 
are indicated as bold-face quantities with an over arrow. Thus 
R.,1-1 N, are the Cartesian coordinates of the N atoms; x. are the 
corresponding mass-weighted coordinates "i 

*l 3r (3. Ha) 

Bold-face x with no Index 1 i s the 3N dimensional vector (x ,^J , 
Y-x,y,z, 1-1, N. He will switch on occasion between vector 
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notatlon and component notation) thus in oomponent notation Eq. G.'ta) 
is 

*1Y " "^7 R1Y - ( 3 - " b ) 

The linear reaction path is defined by linear interpolation 
between reactant and product geometry, i.e., 

x„(s) - y,(x_+x„) • (X_-X_)(S/AS) (3.5a) : 0 ^ ' ' ^ 2 r 2 p ' ^ p c r' 

43 - |xp-xr|. (3.5b) 

where x r, j 0 ("{*IY !•(*,? J) a r e t h e 3N mass-weighted Cartesian 
coordinates of the atoms for the equilibrium geometry of the reactanta 
and products, respectively. In terms of the coordinates R., Eq. (3.5) 
is 

R ; O )

( S ) . y 1 ( i j r ) *R; p ) ) • (R; p ) -R{ r ) ) (s / i 3 ) . < 3 . 5 o 

s, the reaction coordinate, Is the distance along this path, and as 3 
varies from -43/2 to *4s/2 the reference geometry varies from that of 
reactants to products. We note that 

x_(s) - (x -x )/As, (3.6a) 
-u -p -r 

so that 

|x'(s)| - 1. (3.6b) 

To make the above definitions concrete we must specify how the 
els system which defines product coordinates jjjp^ is related to the 
cis that Is used to define the reactant coordinates jj>r • This is 

intimately connected with the requirement J that the reference path 
XQ(S) be one for which no linear or angular momentum be generated for 
displacements along It. I.e., to use the Hougen-Bunker-Johr.s ^ 
methodology the path xQ(s) must satisfy the conditions 

0 - r • R < 0 ,'(a) (3.7a) 
1 " l 
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where T is the 3x3 Cartesian rotation matrix parameterized by three 
Euler angles that specify the rotation. These three Euler angles are 
chosen so that the three equations In Eq. (3-11) are satisfied. 

It is useful to see explicitly how this works for the case that 
reactant and product molecule are planar, e.g., as for reactions (3.1) 
and (3.3)- The reactant and product coordinate vectors thus have the 
form 

•(r) S(P) (3.13) 

and It is then easy to show that Eq. (3.11) reduces to the single 
equation 

0 - Z mL (xlrVi')-*lrV>)) - Z mL (t[r)xi[p))z. (3.1*) 

If Eq. (3.1t) is not true, then the product axis system is rotated by 
an angle * about the z-axls, whereby SJP of Eq. (3-13) is replaced by 

'cos* x| p ) • sin* YJ P ) 

0 
, (p ) (3-15) 

With this replacement it is a simple calculation to show that (3.1*) 
becomes 

o - - sin* Z . t (x ; r >x{ p , *Y; p \ ( p ) ) C p ) y C p h Y ( P > Y C p h 
*1 1 1 ' 

( r ) v ( p ) v ( r ) v ( p ) . • cos* l m 1 (x^'^'-^'x^1), 

which is satisfied by the choice 

tan -1 
W 3 i r ) s t 5 , ( p ) ) , -i 

(3.16) 

Thus If the original product coordinates R.p do not satlsry Eq. 
(3.1"). they are rotated according to Bq.~t3-15). with the angle * 
given by Eq. (3.16). 

The requirement of no linear and angular momentum along the 
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reactlon path, Eq. (3-7), thus uniquely defines the axis system for 
the product coordinates with respect to that for the reaetant. 

3.3. Reaction Path Hamiltonian for a Linear Reaction Path 

With the linear reaction path defined as in the previous section, one 
can proceed to construct the Hamilton!an in precisely the same manner 
as for the original reaction path Hamlltonlan. ' Thus the reaction 
path Hamiltonian for J-0 is given by 

3N-7 ? 

H ( p s - s ' { VV) - ^ V J , . , Vk.'k.k.'"" 
3N-7 p 3N-7 3N-7 _, ? 

I V,Pk • V.(a) - I Q„f„(s) • Z W ( a ) X . ̂ 3.17) 

where 

k k k-1 k-1 k-1 

fk(s) - -^1 D n(.)L 1 Y f k(5) (3.18a) 

D._(«) - (=|^-) (3.18b) 
1 7 3 xir x-x0(s) 

and 

is straight, the curvature coupling elements B k , N_g 
first term in the Hamlltonlan does not have the'factor 

Bk.k- ( S ) ' ^ W ( 3 ) LlY.k< ( 3 )- ( 3 " 1 9 ) 

In the above equations (L. k(sH> k _ 1 • •••* 3N-7 are, as before,1^ 
the eigenvectors of the projected force constant matrix along the 
reaction path, and {u. (s) } are the eigenvalues. 

Eq- (3;17) is the same as the original reaction path 
Hamlltonlan 5 with two exceptions. First, because the reaction path 

__.fi(s) » 0, so the 
:s not have the'f'a 

3N-7 -
[' V., Q'V3N-6 t 3 ) ] ( 3- 2 0 ) 

that appears in the denominator of the previous result.1^ Second, 
since the present linear reaction path is not the minimum energy path, 
the potential energy has a term that Is linear in the coordinates 
)Q k). We note also that cubic and quartic terms In coordinates fQk) 
can readily be added to Eq. (3.17) If the third and fourth Cartesian 
derivatives of the potential are evaluated along the reaction path. 
The cubic term, for example, is 

http://__.fi
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, 3N-7 
Z „ * , Qk Qk-V CkK-k" ( 3 )' ( 3 - 2 1 a ' k,k',k"»1 

where 

3'V 
Ckk'k» C s ) " Z E £ lj7 3 x ax 

K K iY i'Y1 i"Y" " I Y ' V Y ' " i"Y" X - X (s) 

• LiY.k { 3 ) [-i'Y-.k- ( 3 ) Li"Y".k" ( 3 )' < 3 " 2 1 b ) 

and the quartic term is similar. It is, of course, possible to 
include such higher order terms in only some modes k and not In 
others. Finally, we note that the Hamlltonlan for J>0 is ala°,-
constructed In the present case in the same manner as before. ' 
3.«. Elimination of Kinetic Energy Coupling 
The final step in obtaining the diabatic reaction path Hamiltonlan is 
to eliminate the "corlolis" coupling terms in Eq. (3.17) which involve 
the coupling elements B k ^rCs). Since this procedure has been carried 
out before,^ a the result is given here without derivation. The 
diabatic reaction path Haoiltonian is thus given by (using matrix 
notation) 

H(P .a.P.Q) - V,P3
2 * V,PT'P • V Q(s) - f(s)T'9 • ̂ QT-A(s)-Q. (3.22a) 

with 
f T(s) - - DT(s)-M(s) (3.22b) 

A(s) - MT(s)-K(s)'M(s), (3.22c) 

where the 3Nx(3N-7) transformation matrix M(s) 13 

M(s) » L(s)-U(s). (3.23) 

and where the matrix (Uk k,(3)h K. k*-l 3N-7, is defined by the 
equation ' 

U (s) - B(s)«U(s). (3.2M) 
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D(s) and K(s) are the Cartesian gradient and force constant matrix, 
and we have emphasized that it is only the combination 
L(s)'U(s) » M(s) • (M, i<(s') t n a t i 3 required to construct the 
quantities tfiat go in tfte Hamiltonlan. He will discuss below how this 
transformation matrix M(3) is determined. 

The procedure for'constructing the Hamiltonian is thus as 
follows: First the linear reaction path is properly determined as in 
Section 3.2 from the reactant and product equilibrium geometries. One 
then computes the energy Vg(s), Cartesian gradient DCs), and Cartesian 
force constant matrix K(s) along this path (and also higher 
derivatives of the potential, eq. Eq. (3.21), If these are desired). 
The transformation matrix M(s) is then determined as below and the 
quantities f(s) and A(s) are computed via Eq. (3.22b) and (3.22c). If 
cubic, quartic, etc., terms in the potential are required, then the 
Cartesian terms, e.g., Eq. (3-21), are transformed from Cartesian 
space to Qk-space via the matrix M(s). 

To conclude this section we show a simple procedure for 
determining the transformation matrix M(s) of Eq. (3.23). (To make 
the notation below less cluttered we do not always denote the explicit 
s-dependence of the quantities L, M, and U.) By using the definition 
of the coupling matrix B(s) • {§. "(s)}," 

B(s) - LT'(s)'L(s), (3.25) 

and the orthogonality and completeness re la t ions of the matrix of 
eigenvectors 1(a) • (L, Y (,(*)'> 

L T (s)-L(s) - l (3.26a) 
w w w 

L(s)-L T (s ) - 1 - P (s ) , (3.26b) 

where P(s) * {? ,,T,(s)J Is the projector15 onto the six directions 
that are overall translation and rotation of the N-atom system, one 
can derive the following first order differential equation for M(s), 

»'(s) - -P'(s)-M(a) (3.27) 

which can now take as the fundamental defining equation for M(s). One 
needs only to supplement it with a boundary (i.e., initial condition), 
e.g.. 

M(0) - UO)'U(O); 
• W W 
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if we choose U(0) - 1, then the initial condition is 

M(0) - L(0). (3.28) 

where L(0) is obtained by diagonallzing the force constant matrix at 
the single position s - 0. With Eq. (3.28) as the initial condition 
for M(s), the differential equation Eq. (3.27) determines it at all 
other values of s. 

Integrating Eq. (3-27) over a short Increment (sk_i .3|<) gives 

where 

2k " 2 ( 3 k> 

£k - . p ( a k > -

etc. Since 
P(s)-M(s) - 0 

for all s (because P(s)-L(s) - 0), Eq. (3.29) becomes 

M„ - (1-P„)-MV .. (3.30) 

Iterating this relation gives 

\ • U-PJ-U-K ,)"-(1-P,)-Mn (3.31) 
• k • »k • «k-l • «l mO 

as a simple way to compute M over a grid of (s^l values, given the 
initial condition M(0), l.e!, Eq. (3.28). 

In summary then, the matrix H(s) that transforms from the 
Cartesian space (IT) to the dlabatlc space (k) is given by Eq. (3.31), 
where the Initial value M(0) • L(0), Eq. (3-28), is determined by 
dlagonallzlng the projected force constant matrix at the one position 
s « 0. It is not necessary to diagonallze the projected force 
constant matrix at any other values; only the projectors P(3 ) are 
needed at the various values of the reaction coordinate In Eq. (3.31). 

Finally, throughout Section 3 the use of classical mechanics has 
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been implicitly assumed. Because the resulting Hamlltonian, Eq. 
(3.22), has a Cartesian kinetic energy, though, it is trivial to 
transform the result to a quantum mechanical Hamiltonian operator; 
i.e., In Eq. (3.22) one makes the standard replacements 

y P
 2 > - "lil. 

v P 2 * - HI -1L. 1 k 2 307' 

1. CONCLUDING REMARKS 

It has been a pleasure to present this work to a group consisting 
largely of quantum chemists, for I believe that both topics are quite 
timely for this audience. First, the approach to reactive scattering 
is seen to reduce to quite standard quantum mechanics: choosing basis 
functions, computing matrix elements of the Hamiltonian, and then 
performing a large linear algebra calculation. Because quantum 
chemists have so much experience and have developed sophisticated 
methodologies for carrying out these tasks In electronic structure 
calculations, I believe that much of their expertise can now be 
fruitfully applied to reactive scattering. 

Second, the new diabatic reaction path Haolltonlan gives one a 
framework for using ap_ initio quantum chemistry calculations to treat 
a new class of dynamical processes In polyatomic molecules. It is 
actually much simpler to apply than the original version, based on the 
minimum energy path, because for the new diabatic version one does not 
need to generate the minimum energy path. I.e., one needs to 
determine only the reactant and product geometries and then compute 
the energy, gradient, and force constant matrix (and higher 
derivatives if desired) along a pre-determlned (I.e., the linear 
interpolation) path. The form of the diabatic reaction path 
Hamiltonian, having a Cartesian kinetic energy, is also much simpler 
for purposes of carrying out dynamics calculations. It should be 
especially useful ror describing H-atom transfer reactions in 
polyatomic systems. 
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