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ABSTRACT. Two recent developments in the theory of chemical reaction
dynamics are reviewed. First, it has recently been discovered that
the S-matrix version of the Kohn variational principle is free of the
"Kohn anomalies"™ that have plagued other versions and prevented its
general use. This has considerably simplified quantum mechanical
reactive scattering calculations, which provide the rigorous
characterizations of bimolecular reactions. Second, a new kind of
reaction path Hamiltonian has been developed, one based on the "least
motion" path that interpolates linearly between the reactant and
product geometry of the molecule (rather than the previously used
minimum energy, or "intrinsic" reaction path}. The form of
Hamiltonian which results is much simpler than the original reaction
path Hamiltonian, but more important is the fact that it provides a
more physically correct description of hydrogen atom transfer
reactions.

1. INTRODUCTION

In this paper I will review some of the recent developments in the
theory of chemical reacti<~s. The first topic, qQuantum reactjve
scattering, pertains to the most rigorous theoretical description
fi.e., explicit solution aof <he Schrddinger aqu: .ion «ith appropriite
Joungary conditions, Jf a chemical reaction. Not surpr:aingly, th.s
methodoiogy is currently applicadle only to the simplest che-mical
srocesses (out 1n full 3-dimensional space), e.g., an atom-d:.atom
reaction, A+*BC =+ AB-+C. t i3 nevertheless exciting to see that 1% .s
now becoming possidle to carry out the rigorous quantum calculations
(i.e., a "simulation") that characterize these simplest reactions to
the most complete level of detail allowed by the laws of nature.

The second topic deals with the theoretical description of more
complex chemical systems. Specifically, a new class of reaction path
models is described, namely the diabatic reaction path Hamiltonian.
The difference between this new model and the earlier reaction path
Hamiltonian {s that the present one is based on a least motion
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reference path (i.e., a path that is linear interpolation between
reactants and products) rather than on the minimum energy path the
("intrinsic” reaction path). This new version is more useful for
treating hydrogen atom transfer reactions than is the earlier one
(which is useful for many other kinds of reactions).

Before beginning the discuasion of reactive scattering in Section
2, it is perhaps useful to take a few paragraphs here in the
Introduction to summarize the background to these developments. In
1969 a general rormulat}on of quantum scattering for chemical
reactions was presented’ which was a natural generalization of earlier
work in electron scattering. The novel feature was that the
wavefunction is expressed as a coupled channel expansion in standard
Jacobi coordinates, but in all arrangements (i.e., A+3C, AB+C,

AC+B). Coupling between states of c.fferent arrangements leads to a
non-local, l.e., exchange-type of interaction, and this is what makes
reactive scattering difficult in this formulation. (This reactive
exchange interaction is analogous to electron exchange interactions
that result when the electronic wavefunctions is antisymmetrized,
i.e., expressed as linear combinations 05 different "“arrangements" of
the electrons.) Some other formulations® of chemically reactive
scattering avoid these exchange interactions, which is of course an
advantage, but they have other kinds of disadvantages of their own.

The oniy general way to deal with these exchange interactions
seems to be- to expand the dependence of the wavefunction on the
scattering coordinates in a basis set, using a varjational principle
to determine the ﬁxpansion coefficients. Several such variational
principles exist, and they all _work, but the simplest one to apply is
the Kohn variational principle;- this is because it involves matrix
elements only of the Hamiltonian operator itself and not those
involving the Green's function for a reference problem. The Kohn
principle hgs not been of general use, however, because of "Kohn
anomalies", 7 t.e., spurious singularities that appear in the energy
dependence of the scattering results.

The important recent discovery, however, is that there are no
such "anomalies”™ if _the Kohn principle is applied with S-matrix-type
boundary conditions~ (as opposed to K-matrix boundary conditions).
Witn this rather subtle feature of the Kohn principle now understood,
it provides a reliable and extremely straight-forward approach to
quantum scattering, equally appllcable to reactive or non-reactive
processes. Section 2 describes this S-matrix version of the Kohn
variational principle as it applies %o chemically react:ve
scatzering. Thi3 S-matriz versiaon 3 the Kohn metncl 1as a.so been
recently applied to electron-atom/molecule scattering,’ witnh exceilent
results.

Mentlon should also be made of a number Of recent reastxve
scattering calculations by Kour{, Truhlar, and couor‘xers.1 The?e
workers employ the coupled operator formaliam of Baer and Kouri1
(though the version of it they use makes it identica! to the
formulation of ref. 1), ang then use the Newton var:at:onal .'nez;.“\od‘2
for the amplltude density to solve the equations., These authors
have obtained excellent results for reaction probazii:ities of several
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atom-diatom reactions (H*Hz. 0+H2. Br+H2) for zero total angular
momentum (J=0), though we note the obvious disadvantage that this
approach requires matrix elements of the operat?ﬁ (GO-GOVGO).

The new diabatic reaction path Hamiltonian is described in
Section 3, and more background and the motivation for {ts development
is gliven there. Its most notable feature is that there are no
"curvature couplings™ as in the original reaction path Hamiltonian’5
because the reference path is straight - and the coriolis couplings
between different modes are also eliminated. The kinetic energy is
thus completely Cartesian-like. The price for this simplification of
the kinetic energy is that the quadratic part of the potential energy
now has off-diagonal terms. (There is also a term in the potential
energy that is linear in the "bath'" modes because the reference path
is not the minimum energy path.) This elimination of xinetic energy
coupling, at the expense of introducing coupling into the potential
energy, is analogous to the diabatic electronic representation of a
vibronic Hamiltonian and is the reason for our use of the term. ASs in
the vibronic case, it is often easier to deal with the dynamics when
the coupling appear in the potential rather than the kinetic energy.

2. S-MATRIX VERSION OF THE KOHN VARIATIONAL PRINCIPLE
2.1. General Methodology

All relevant features of the mﬁghodology are illustrated by simple s~
wave potential scattering. It will thus first be deacribed with
regard to this problem, and the generalization to multichannel
rearrangement scattering given at the end.

The Hamiltonian is of the standard form

2
H o= o 0y« V), 2.1

Y]

u

where V(r: + 0 as r + =, The S-matrix version of the Kohn variational
approximation to the S-matrix (at energy E) can be stated as

s - ext(3 - & GH-E[P], (2.2)

where y(r) (s a tr{al wavefunction that is regular at r=0 and has
asymptotic form (as r + =)

PO IS L SRR 1y A (2.3)

where v=Wk/y ({3 the asymptotic velocity. (Note: The convention is
used throughout this paper that the wavefunctions {n the bra symbol
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< l in bra-ket matrix element notation are not complex conjugated. )
"ext™ in EQ. (2.2) means that the quantity in in square brackets is to be
extremized by varying any parameters in y(r). (Note that for a given
trial function y, Eq. (2.2} may also be viewed as the distorted wave
Born approximation, where y {3 the distorted wave.)

A linear variational form is taken for the trial function w(r)

N

wr) = -uo(r) + 151 uz(r)cl. (2.4)

where u,(r) is a function that is regular at r=0 and has the
asymptotic form (as r + =)

uo(rJ - e-ikrv-z. (2.5)
A simple cholice for uo(r) is
-ikrv_%, (2.6)

uo(r) = f(r)e
where f£(r) i3 a smooth cut-off function,

t(r} » 0 ,r +0

tir) =1 ,r =+ = (2.7)

such as f(r)=1-e"% _ (More generally, uo(r) may be the ({rregular)
solution of some (e.g.., long range) distortion potential that has
asymptotic form Eq. (2.5), multiplied by a cut-off function to
regularize it at re=0). The function u,(r) is

#*
- 14
u1(r) uO‘r) ' (2.8)
and the »asis functiona [ui(r)}. 2=2,...,N are real, square-integrable
functions. The coefficienga [cl}. g=1,...,N in £Q. (2.4, are the

variational parameters (n y.

With ¢ of Eq. (2.4) substituted i{nto Eq. (2.2) and the
coefficilents {(c,} varied to extremize [t, one obtains the following
expression for the S-matrix
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where Mo 0 is a 1x1 "matrix", Mo a 1xN matrix, and M an NxN matrix,
) - -

Moo * <ug [H=E|ugy> (2.10a)
(Mg)y = <y, H-Eluy> (2.10b)
(5)1.2' - <u2|H-EIu1,> . (2.10¢)
for ¢,L'=1,...,N, and where "7T" denotes matrix transpose. Note that

all matrix elements {nvolving the unbounded basis functions ug and u,
exist because

uo(r)

u1(r) = 0. (2.11)

tim (H-E) |

r+e

Since the matrix M of Eq. (2.10¢) is complex-symmetric, there are
no real values of E for which the matrix inverse {n Eq. (2.9) {s
aingular, and thus no "Kohn anomalies®". In fact, the condition that
Eq. (2.9) is singular, namely

det (M) = det [(ullH-E[ul,>] -0, (2.12a)

L, 2'=1,...,N, 13 the secular equation for eigenvalues of the
Schradinger equation

(H-E)p{(r) = 0, (2.12b)

with boundary condition (as r=+e)

kr

p(r) = el (2.122)

I.e., Eq. (2.123) {3 the express%gn that has been used before ' for
determining Slegert eigenvalues, the complex energies that are the
(physically correct) complex poles of the S-matrix which characterize
the positlons and widths of scatteri{ng resonances. Eq. (2.9) {s thus
singular only where it 1s supposed to be singular.

For comparison7 the Kohn principle for the K-matrix gives a
similar expression,
~=1

2 (= - T -
K=--g (Ho.o My o -go), (2.13a)
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where the matrix elements_here have the same form as Eq. (2.10) except

that the function uy and u1 are different,

i (r) = -Im u (r) - 2L0KE 2.13
uy (e m u(r —_:Z—_— ( 3o)

g, {r) « Re u_{r) - EEErEE, (2.13¢)
1 0 R

The fact the matrix E is real and symmetric leads to real values of E
for which

det(M) = 0, (2.14)

and thus real v?hues of E for which Eq. (2.13a) is aingular, i.e., the
Kohn anomalies.

To emphasize again, use of the Kohn variational principle with
standing wave boundary conditions to obtain (an approximation to) the
K-matrix, as %n EqQ. (2.13), and then the S-matrix via the relation § =
(1+iK)(1-1K)™', is not equivalent to using the Kohn principle with
running wave boundary conditions to obtain {(an approximation to) the
S-matrix directly, i.e., Egqs. (2.2)-(2.10). And furthermore, as
discussed above, the latter procedure is free of anomalous
singularities and thus the preferred version of the Xohn method.

The S-matrix Kohn approach also allows one to ldentify a
corresponding basis set approximation to matrix elements of_the full
outgoing wave Green's function G'(E) = (E+ig=-H)~'. This 1382

> N -
<afG (E)|b> = - © <aju)> (M ) [b>, (2.15)

NI

I Y

wnere M i3 as above, Eq. (2.10¢), and |a> and |b> are any square-
integrable functiona. Note that the complex-symmetric structure of
the matrix E is ?ngaame as that in complex scaling/coordinate
rotation theory, and for the same reasons. If the functions |a>
and |b> are real, then Eq. (2.15) leads to a useful way for
calculating matrix elements of the density of states operator,

-1 -
<al8{E-H)|2> = -v 'Im<a]G (E)|b>. 12,16

In actual calculations for the S-matrix, Eq. (2.9), one does not
4ish to carry out numerical calculations with the complex symmetri{c
matri{x M. This can be avoided by the usual partitioning methods, so
that EqQ. (2.9) can be written {n the equivalent form

1

i - .
S = i (B - cC-8 -C), (2,17}



u T(r ) - e-iknYrY/v %
on" Y nYy °

! {s a "large" by "large" real symmetric matrix in the composite
space, internal plus translational,

Yy Yy
M) iy ponryr T <um¢n]H~E|ul,n,on,>. (2.20¢)

where {ulz(r )} is a square integrable basis (that need not depend on
n-1i.e., th; same translational basis can be used for every

channel). !0 is a "large" by "small" rectangular matrix

Y Y Yl Y'
(!O)lnY.n'Y' = <uu‘an-EIuonv¢n|>’ (2-20d)

only open channels {nY} are included in the matrices Moo Mo and
the "small™ dimension of M., while open and closed chanfiels dre
required i{n the matrix M aRd the "large" dimension of E .

Eqs. (2.19) - (2.20) thus express the S-matrix for reactive
scattering in an extremely straight-forvward manner: one chooses basis
functions, computes matrix elements of the Hamiltonlian, and then does

a standard linear algebra calculation.
2.2. Appllication to F+H,

Initial appllcationac of the above methodology was made to the
standard benchmark problem, the 3-d Hoﬂz - H2¢H reaction for J (the
total angular momentum Qquantum numberr) = 0. The results showed the S-
matrix version of the Kohn method to be accurate, efficlient, and
stable.

v*-00

“ [ 3 (L ]

40
€ (sv)

Figure 1. Reaction probabilities for Hz(v-j-0)~F + HF(v)<H, summed
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where B and C are the 1x! "matrices”
B =M - M. M ]-M (2.18a)

(2.18b)

when My 4, Mg, and M are as before, Eq. (2.10), except that 2,8' = 2,
.... N li.e”, only the real basis functions), and

%
Mo * <ug [H-E|ug>. (2.18¢)

Here the matrix (M) ,et,2' = 2, ..., N is real and symmetric, and
thus more easily ae&IE with. (One can readily verify that a value of
E for which det(M) = O does not lead to a singularity in Eq. (2.]7.)
Finally, for general multichannel rearrangement scattering,
let (gY.r ) denote the internal coordinates and radia% scattering
(1.e., trinslational) coordinate for arrangement Y; [or(g )} are the
asymptotic channel eigenfunctiona for the internal deg#ee; of
freedom. Eqs. (2.17) and (2.18) generalize as follows

sez-c8 "o, (2.19a)

x|

where §. g. and g are "small" square matrices, the dimension of the
number of open channels, e.g., § = |S ], etc. E and g are glven

by ny,n'y’'
T 1
B - Mo,0 - oM M (2.190)
L S|
C=M,o MM M (2.19¢)
where 50 3 and 51 o are also "small" square matrices
Y v Y Y
(M9,0)ny,nrye = ontnlH-Elug, 0. (2.20a)
T AR ,
(51.o]nv,nvv' = <ugy 4 [HElug e, {(2.200)

uoz(r ) s a function regular at rY = 0 and with asymptotic form
(as ry * -),
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-ik_.r A
Y nyy 2
uOn(rY) -~ e Moy *

§ is a “large" by m"large" real symmetric matrix in the compoaite
space, internal plus translational,

AR Y'Y
M yny,eenryr ™ <, e [H-Eluy i8n, s (2.20c)

where {u Y(r 3} i3 a square integrable basis (that need not depend on
n - {.e.,, the same translational basis can be used for every

channel). §0 is a "large" by "small" rectangular matrix

Yy AR
M) gny,nry ~ <um0n|H Elugni¥pe>- (2.204)

Only open channels {nY] are included in the matrices goo. §1 Q' and
the "small" dimension of M_, while open and closed channels dre
required in the matrix M 3and the mlarge” dimension of M..

Eqs. (2.19) - (2.20) thus express the S-matrix for reactive
scattering in an extremely straight-forward manner: one chooses bagis
functions, computes matrix elements of the Hamiltonian, and then does
a standard linear algebra calculation.

2.2. Application to F+Hjy

Initial applicationac of the above methodology was made to the
standard benchmark problem, the 3-d H+H, + Ho*H reaction for J (the
total angular momentum guantum number) = 0. The results showed the S-
matrix version of the Kohn method to be accurate, efficient, and
atable.

veQ0

[ 2] Y7y .48 052
E (ev)

Figure 1. Reaction probabllitles tor Hz(v-J-0)+F + HF(v)+H, summed
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over final rotational states of HF, for total angular momentum J=0, as
a function of total energy (relative to the minimum of the potential
energy surface in the reactant valley). The squares (v=2) and circles
(v=3) are results of earlier, less accurate calculations cf other
workers.

Much more impressive, though, is the calculationad for the Fell,
HF+H reaction, also for J=0. Because the reaction is 32 keal/mole
exothermic, there are many HF vibrational and rotational states that
must be included in the coupled channel expansion. Fig. 1 shows the
reaction probabilities (the square of the S-matrix elements) for
ground state (v=j=0) H, and various final vibrational states of HF
(summed over final rotational states). These are the first
quantitative calculations for the 3-d version of this reaction, and
one sees the well-known population inversion that leads to the HF
chemi{cal laser.

Q.7 T Y ™ v '

06
0.5
804
4
2> 03F

0.2}

T

T

O.1f -

id. n A I L

0
028 032 03 040 044 048 092
E (ev}

Figure 2. The HF(ve2) result of Fig. i (aolid curve) compared to the
collinear reaction probabiiity (dashed curve) Hz(v-O)'F + HF(v=2)+H of
ref. 23, using the same potential energy surface. The collinear
result has been shifted in energy by Mub*. wp” being the bending
frequency of H-H-F at the saddle point on the potential energy
surface.

Fig. 2 anows the 0+2 rsaction probability compared to the
analogous collinear result, 3 the latter having bteen shifted in energy
by Mw *. ub* being the bending frequency of the "activated complex".
For reactions that have strongly c%klinear potential energy surfaces
({.e., large nmb*) one often finds that the energy-shlifted collinear
reaction probability is a good approximation to the corresponding 3-d
vibrational reaction probabilities {(summed over rotational states).
This 1s seen not to be the case here, presumably because the bending
frequency at the transition state i{s very small for F-H,. Finally,
Fig. 3 shows the distribution of final rotstional states that results
from the F0H2(v-0) + HF(v=2)+H transition. One sees congiderable
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rotational excitation in the products.

2.0 T U T

Figure 3. Reaction probability for HZ(V-J-0)+F + HF(v=2,j)+H, as a
function of j, the rotatiocnal quantum number of HF, also for total
angular momentum J=0.

2.3. Enhancements

There are a number of further developments and enhancements that
should make the S-matrix version of the Kohn variational principle
even more useful for reactive (and elecggon-molecule) scattering. One
of these 1s use of a discrete variable, or pseudo-spectral
representationz6 for the translational basis set. Though this might
require the use of sligntly larger translational bases, it has the
very desirable feature that matrix elements of the potential energy
are diagonal, i.e., 3lmply the value of the potential function at the
grid points. Thus rather than having to evaluate matrix elements by
numerical integration for a 5000x5000 potential energy matrix, say,
one has only to evaluate the potential energy function at S000 points.
The idea of basis set contraction that is commonly used {n
computational quantum chemiatry should also prove usefui for the
present calculation. Thus to reduce the size of the transiticaa
basi{s, one dlagonalizes a zeroth matrix in the translational index
alone and then chooses a sub-set of these eigenfunctions ("better”
basis functions) as the translational basis for the full calculation.
Another extremely impggtant simplification has been pointed out
by Rescigno and Schneider, namely that {t is essentially no
approximation to neglect exchange ({.e., Y$Y') matrix elements in the
"free-free" matrices !00 and M1 , Eqs. (2.20a and b), and in the
"bound-free"” matrix My, EQ. (2.2Bd). It is clear that this will be
possible for the present application because the "free" translatlon-
al functions uOn(rY) include a cut-off function that cause them to
vanish {n the close-{n interaction region where exchange ls
significant. Thus the exchange interaction is mediated entirely by
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the "bound-bound" matrix g. Eq. (2.20c). The practical significance
of this is that "direct" matrix elements (the ones diagonal in the
arrangement index Y) are much easier to compute than exchange ones,
and furthermore it is the matrices g 0" M , and g that must be re-
calculated anew at each scattering energy (Dbecause uOn(ry) is energy-
dependent). This observation thus considerably simplifies the energy-
dependent part of the calculation.

Another strategy that may be useful {3 that suggested
parenthetically after Eq. (2.7), {.e., to incorporaje distorted wave-
like information into the functisn up(r) (and uysuy ). The most
compiste version of this idea would be to use a multichannel distorted
wave for uy. More specifically, consider Egs. (2.19)=(2.20) for the
general multichannel rearrangement case. One modifies the function
uOn(r) in the following way

4on(FI0(9) * o m@uld) (rreee), (2.21)

where f(r) is a cut-off function as before, and u(Sl (r) satisfies the

open channel inelastic coupled-channel Schrddinger equation with
asymptotic boundary conditicn

=ik r
() (r) - Spm i © n, h (2.22)

u
n"en n

(The arrangement index Y has been dropped here because, as noted in
the above paragraph, we do not need to consider matrix elements with
these functions between dirfasent arrangements.) In practice one

determines the functiona (un" (r)} by beginning at large r with the
initial condition of Eq. (2.25? and {ntegrating the inelastic (non-
reactive) coupled channel equations inward as far as (s needed; the
cut-off function f(r) determines how far in this is. The matrices

M 0 and M of Eqs. (2.20a) and (2.20b) (now diagonal in Y) can be
sRéun then to take the very simple form

n (0) ;,,2, (0)
M o)nnr = 35 LIRS Ly IS (2.23a)
in (0) *,_,2, (0) .
(51-°)n.n' *z 6n.n' ﬁn Unmen e nnent’ (2.2307

for each arrangement Y. The rectangular matrix takes a
correspondingly simple form. The virtue of using this more
sopnisticateq function for uy 13 that the short-range basls

functions {u n} now need to span a much smaller region of space s0
that fewer oP thiT will be required. Applications using this approach
are in progress.
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Finally, since it {s the S-matrix that is being calculated, one
has the option of computing the full matrix or only one row of it. If
a general pyrpose {e.g., LU decomposition) algorithm is used to
evaluate M -M _ in Eq. (2.19), then there is little economy in
evaluat1n§ only ogs row of the S-matrix. If iterative methods (e.g.,
Lanczos recursion-€) are used, however, the effort is proportional to
the number of rows of the S-matrix that one evaluates. If one i3
interested in only one, or a few initial states, then such a procedure
wi1l]l be conslderably more efficient, meaning that substantially larger
calculations will be feasible.

3. A DIABATIC REACTION PATH HAMILTONIAN
3.1. Background

The idea of a reactégnsgath is a venerable one in the theory of
chemical reactions.- -’ The minimum energy reaction path on the
Born—Oppenheimgﬁapotentlal energy surface, also called the intrinsic
reaction path, is uniquely defined as the steepest descent path (in
mass-weighted Cartesian coordinates) from the transition state (the
saddle point on the potential surface) down to the local minima that
are the ?guillbrium geometries of reactants and products. More
recently it was shown how to express the (classical or quantum)
Hamiltonian of an N atom molecular system {n terms of the reaction
coordinate, the distance along thi{s reaction path, and 3N-7 local
normal mode coordinates for vibrations orthogonal to it (and three
Euler angles for overall rotation of the N atom system), plus momentum
variables (or operators) conjugate to these coordinates. This
reaction path Hamiltonian has been used successfully sg ggscribe a
variety of processes (n polyatomic ~eaction dynamics.””’

Though the reaction path Hamiltoni{an based on the minimum energy
path has proved useful for many reactions, and wili surely do soc for
many others, there are situations for whlch it i3 not approprlate.
One of the most {mportant of these is H-atom transfer reactions, a
prototype of ug+cn is the symmetric H-atom transfer in
malonaldehyde,

0 Q 0

|
PN c. _ o
H N~ TH o N2 w

o}
| |
H

+

(g]
Q) —0
.

This is a polyatomic version of a heavy + light-heavy mass combination
reaction, for which the proto-type {3 a simple atom-diatom reaction

such as
CL » HCL - CRH + CL. (3.2)
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For this atom-diatom system it is uell—known38 that the minimum energy
path is very sharply curved, so that the relevant dynamical motion
deviates far from it. It is also well-known that the reaction path
Hamiltonian (which reduces to Marcus' natural collision coordinates33b
for an A+BC system) (s not useful in this case.

The situation is actually much worse for H-atom transfer in a
polyatomic system, e&.g., (3.1}, than for the atom-diatom case (3.2),
because the minimum energy path undergoes many sharp turns (in 3N-6
dimensional space) on its way from the transition state down to
reactants and products. In fact one knows in general that the
steepest descent path approaches a local minimum on the potential
surface (i 8., reactznts or products) along the normal mode of lowest
frequency.3 For reaction (3.1), for example, the steepest descent
path begins at the saddle point being mostly motion of the H-atom that
i{s transferred, but in moving downhill it switches successively to
other motions, finally approaching the potential minimum along some
in-plane skeletal vibration, the in-plane mode of lowest frequency.
This "kinky" path i{s clearly not appropriate for defining a reaction
coordinate.

To deal with H-atom transfer reactions bn polyatomic systems,
such as (3.1).u3e have previously suggested3 using a straight-line
Cartesian path on which to base the dvnamical model. The purpose of
this paper {s to develop this idea in a more rigorous fashion than
before, correctly incorporating conservation of total angular (and,
trivially, linear) momentum. We also show rigorously how all coupling
in the kinetic energy part of the Hamiltonian can be eliminated, it
then appearing in the potential energy. For this reason we have
termed this model a diabatic reaction path Hamiltonian {n analogy with
the adiabatic/diabatic language used for describing systems with
electronic and nuclﬁ?r (i.e., vibration, rotation, translation)
degrees of rreed??. Following this analogy, the original reaction
path Hamiltonian would be called the adiabatic reaction path
Hamiltonian since the local vibrational modes orthogonal to the
reaction path are the exact normal modes for a fixed value of the
reaction coordinate (i.e., a fixed position on the reaction path);
coupling between these modes and the reaction coordinate appears in
the kinetic energy, just as does the coupling between nuclear degrees
of freedom and adiabatic electronic states. In the model developed in
this paper, coupling between the reaction coordinate and perpendicular
modes has been transformed from the kinetic to the potential energy,
the same as for a diabatic electronic representation.

It is useful to dilscuss qualitatively why we think a linear
reference, or reaction path, will be useful for H-atom transfer
reactions. Fig. 4a shows the sketch of (contours of) a potential
energy surface typical of a collinear q§ax¥ ¢ light-heavy system,
e.g., reaction (3.2} It 1s well known-"* .1 such cases that the
tunneling dynamics does not follow the minimum energy path (the full
line) but rather "cuts-the-corner™; the linear path from reactants to
products i{s the extreme version of this. Flg. 4a alsn pertains to
certain modes {n a polyatomic system that have a predominantly
symmetric type of coupling; for example, the 2-d potential surface for
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reaction (3.1) that includes the reaction coordinate (s-coordinate:
and the 0-0 atretch (Q-coordinate) looks qualitatively like Fig. la.

.‘I//

Figure 4. Sketch of contour plots for two characteristic potential
energy surfaces. The solid lines indicate the minimum energy path
from the transjition state down to reactants and to prcducta, and the
broken line (s the straight line path from reactants to products.

Fig. 4b, on the other hand, is for a mode with predom{nantly
asymmetric coupling to the reaction coordinate, one for which the
potential well in the reaction coordinate is asymmetric for a fixed
(non-zero) value of the other coordinate, The minimum energy path in
this case will also be sharply curved and not useful for defining a
reaction coordinate. The straight-line path in this case "cuta™ both
corners, passing through the transition state. An example of this
situation i{s the double H-atom transfer in formic acid dimer,

20«-H=0Q

H—C C—H + H-C C—-H, (3.3}
Ng..g=0” No-H---07

where the coco~dinate 3 of Fig. Ub is the concerted motion of the two H

atoms and Q the asymmetric 0-C-Q stretch that is coupled strongly to

ie.

3.2. The Linear, or Least Motion, Reaction Path

Firat some commenta on notation. Three-dimensional Cartesian vectors
are indicated as bold-face quantities with an over arrow. Thus
R, ,i=t,...,N, are the Cartesian coordinates of the N atoms; x . are the
cérresponding mass-weighted coordinates t
- 3
X - /mi Bi' (3.4a)

Bold-face x with no index | is the 3N dimensional vector (xiy),
Yex,y,z, =1, ..., N. We will switch on occasion between vector
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notation and component notation; thus in component notation Eq. (3.4a)
is

Xy /EI Riye (3.4p)

The linear reactjion path |s defined by linear interpolation
between reactant and product geometry, 1.e.,

Xg(s) = Z(§r+§p) + (§p-§r)(s/As) (3.52)
As = lip’irl- (3.5b)

where X., X (i{xi:)}.{xfp)}) are tne 3N mass-weignted Cartesian
coordinates of thé atoms For the equilibrium geometry of Ehe reactants
and products, respectively. In terms of the coordinates 51. Eq. (3.5)

is

80y - (&8P o (BP-E ) 0srae). (3.5¢)

3, the reaction coordinate, is the distance along this path, and as s
varies from -As/2 to +A3/2 the reference geometry varies from that of
reactants to products. We note that

xo(8) = (x -x)/as, (3.6a)

so that
[xg(s)] =1, (3.6b)

where prime denotes (d/ds).

To make the above definitiona concrete we Tuﬁt specify how the
axis system which defines product coordinates Eip is related to the
axis that is used to define the reactant ﬁ%ordinates B"’. mhis is
{ntimately connected with the requirement that the reference path
X4(s) be one for which no linear or angular momentum be generated for
displacements along it. I.e., to use the Hougen-Bunker-Johns -
methodology the path xn5(s) must satisfy the conditions

O=rum ﬁ(o)'

T E (s} (3.7a)
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where T {3 the 3x3 Cartesian rotation matrixuu parameterized by three
Euler Engies that specify the rotation. These three Euler angles are
chosen so that the three equations in Eq. (3.11) are satisfied.

It is useful to see explicitly how this works for the case that
reactant and product molecule are planar, e.g., as for reactions (3.1)
and (3.3). The reactant and product coordinate vectors thus have the
form

(r) (p)
xi xi
+(r) (r) +(p) (p)
Ry =LY AL B A , (3.13)
0 0

and it is then easy to show that Eq. (3.11) reduces to the single
equation

(r) (p) (r) (p)

o - z @, (x Y,

)=z (Bfr) *(p)) (3.18)
1

If EqQ. (3.14) 1s not true, then the pr?d’ct axls system is rotated by
an angle ¢ about the z-axis, whereby R of Eq. (3.13) {s replaced by

Xfp) cosé x(p) + sing Y(p)
Yfp) + QY-sing x(p) + cos9 Y(p) . (3.15)
0 0

With this replacement {t {s a simple calculation to show that (3.14)
becomes

(r), (p) ,(r), (p}
0=-stnera, (X 'xPx P
R TR T £ 7t

+cosp L m (xir)!(p)_y(r)xfp))'

L i i
which (s satisfied by the choice
. mi( (r) (P))
SRR 2
¢ = tan ‘(47, (p) . (3.16)
tm R
{ 1 =t ~1

Thus {f the original product coordinates R (p) do not satisfy Eq.
(3.14), they are rotated according to Eq. f3 15), with the angle ¢
given by Eq. (3.16).

The requirement of no linear and angular momentum along the



-18-

reaction path, Eq. (3.7), thus uniquely defines the axis system for
the product coordinates with respect to that for the reactant.

3.3. Reaction Path Hamiltonlan for a Linear Reaction Path

With the linear reaction path defined as in the previous section, one
can proceed to construct the Hamiltonian in pr?gisely the same manner
as for the original reaction path Hamiltonlan. Thus the reaction
path Hamiltonian for J=0 is given by

3N-7

2
H(Ps.s.{Pk'Qk]) - ylp- = QPrBy o (3]
K,k el
IN-T y 2 : 3N-7 : 3N-7 . )2 2
+ I P "+ V (3)- £ Qf (3)+ £ Y (8)7Q°7, (3.17)
o K 0 el Kk et k K
where
rk(s) = - r Div(s)LiY,k(S) (3.18a)
1y
v
D, (8) = (=— (3.18b)
1 X1y xex,(3)
and
Bk'k,(s) = I le,k (S)Liv.k'(S)' (3.19)

iy

In the above equations (L k(s)]. Ke1, ..., 3N-T are, as before,'
the eigenvectors of the p gjected force constant matrix along the
reaction path, and {w_(s)®} are the eigenvalues.

Eq. (3.17) is the same as the original reaction path
Hamilt‘.onian’5 with two exceptions. First, because the reaction path
is straight, the curvature coupling elements B, N_6(5) » 0, so the
rirst term in the Hamiltonian does not have the 'Pactor

3N-7 >
[ kEI QkBk.3N-6(°)] (3.20)

that appears in the denominator of the previous result.’S Second,
since the present linear reaction path {3 not the minimum energy path,
the potential energy has a term that is linear {n the coordinates
{Qk). We note also that cubjic and quartic terms in coordinates {Qk}
can readlly be added to Eq. (3.17) if the third and fourth Cartesian
derivatives of the potential are evaluated along the reaction path.
The cudbic term, for example, {s
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1 3N-7
I QQ Q. ren(8), (3.21a)
[ Kok kel KKK Crxrk
where
3V
n(8) = I r & |
ki 1y gy gy Ry ey L x (s)
(s)L iy, (8L inym, (s), (3.21)

and the quartic term i{s similar. It is, of course, possible to
include such higher order terms in only some modes k and not in
others. Finally, we note that the Hamiltonian for J>0 is als
constructed in the present case in the same manner as before.

3.4, Elimination of Kinetic Energy Coupling

The final step in obtaining the diabatic reaction path Hamiltonian {s
to eliminate the "coriolis™ coupling terms in Eq. (3.17) which involve
the coupling elements B, .(a) Since this procedure has been carried
out before,?°3 the resulf is given here without derivation. The
diabatic reaction path Hamiltonlan is thus given by (using matrix
notation)

T

2 T - T, W
H(P_,3,P,Q) = %P " = %P P + V,(3) - £(s)"+Q + ¥Q -A(8)+Q, (3.22a3)

with

£T(s) = - pT(s)-M(a) (3.220)
Als) = gT(s)-§(s)-!(s). (3.22¢c)
where the 3Nx(3N-7) transformation matrix M(s) (s
¥(s) = L(s)-U(s). (3.23)

and where the matrix (U (s)}, k, k*'«l, ..., 3N-7, is defined by the

equation Kok

g'(s) = B(s)-u(a). (3.24)
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D(s) and K(s) are the Cartesian gradient and force constant matrix,
and we have emphasized that it i{s only the combination

L(s)+U(s) = M(s) = {Hi k(a)] that is required to construct the
quantities that go In Ihe Hamiltonian. We will discuss below how this
transformation matrix M(s) is determined.

The procedure ror'constructing the Hamiltonian is thus as
follows: First the linear reaction path is properly determined as in
Section 3.2 from the reactant and product equilibrium geometries. One
then computes the energy Vo(s). Cartesian gradien: D(s}, and Cartesian
force constant matrix K(s) along this path (and also higher
derivatives of the potential, eq. Eq. (3.21), if these are desired).
The transformation matrix M(3) is then determined as below and the
quantities f(s) and A(s) are computed via Eq. (3.22b) and (3.22e). If
cubic, quartic, etc.: terms in the potential are required, then the
Cartesian terms, e.g., Eq. (3.21), are transformed from Cartesian
space to Q,-space via the matrix E(s).

To conclude this section we show a simple procedure for
determining the transformation matrix M(s) of Eq. (3.23). (To make
the notation below less cluttered we d5 not always denote the explicit
s-dependence of the quantities L, M, and g.) By using the definition
of the coupling matrix B(s) = {ﬁk k,(s)}.

’

B(s) = LT (s)L(s), (3.25)

and the orthogonality and completeness relations of the matrix of
eigenvectors L(s) = [Liv k(s)}.
- )

LT(s)en(e) = 3 (3.26a)
L()-LT(3) = 1 - p(a), (3.260)
where P(s) = {P (s)} is the proJector15 onto the six directions

tyt
that are overalth}aXalation and rotation of the N-atom system, one
can derive the following first order differential equation for M(s),

¥ () = =P (s)-M(s) (3.21)

which can now take as the fundamental defining equation for M(s). One
needs only to supplement it with a boundary (i.e., initial cBndition),

e.g.,

M(0) = L(0)-Y(0);
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if we choose g(o) - l, then tine initial condition is
M(0) = L(0), (3.28)

where L(0) is obtained by diagonalizing the force constant matrix at
the single position s = 0. With Eq. (3.28) as the initial condition
for M(s), the differential equation Eq. (3.27) determines it at all
other values of s.

Integrating Eq. (3.27) over a short {ncrement (sk_1,sk) glves

e ™ Meer = BB ey (3.29)
where
-k !(sk)
Py = Bls ),

etc. Since

E(S)'!(s) =0

for all s (because P(s)-L(s) = 0), Eq. (3.29) beccmes

ﬂk - (l-fk)-ﬁk_1. (3.30)
Iterating this relation gives
Me = QB (1-B g )eee(1-B)) Y, (3.31)

as a simple way to compute M over a grid of {sy ] values, given the
initial condition 5(0). i{.e., Eq. (3.28).

In summary then, the matrix M(s) that transforms from the
Cartesian space (iY) to the diabatic space (k) Ls given by Eq. (3.31),
where the initial value M(0) ® L(0}, Eq. (3.28), i3 determined by
diagonalizing the projected forde constant matrix at the one position
s « 0. It {s not necessary to diagonalize the projected force
constant matrix at any other values; only the projectors P(s, ) are
needed at the various values of the reaction coordinate in EG. (3.31).

Finally, throughout Section 3 the use of c¢lassical mechanics has
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been ilmplicitly assumed. Because the resulting Hamiltonian, Eq.
(3.22), has a Cartesian kinetic energy, though, it is trivial to
tranaform the result to a quantum mechanical Hamiltonian operator;
i.e., In Eq. (3.22) one makes the standa, . replacements

4., CONCLUDING REMARKS

It has been a pleasure to present this work to a group consisting
largely of quantum chemists, for ] believe that both topics are quite
timely for this audience. First, the approach to reactive scattering
i3 seen to reduce to quite standard quantum mechanics: choosing basis
functions, computing matrix elements of the Hamiltonian, and then
performing a large linear algebra calculation. Because quantum
chemists have so much experience and have developed sophisticated
methodologies for carrying out these tasks in electronic structure
calculations, I believe that much of their expertise can now be
fruitfully applied to reactive scattering.

Second, the new diabatic reaction path Hamiltonian gives one a
framework for using ab initio quantum chemistry calculations to treat
a new class of dynamical processes in polyatomic molecules. It is
actually auch simpler to apply than the coriginal version, based on the
minimum energy path, because for the new diabatic version one does not
need to generate the minimum energy path. I.e., cne needs to
determine only the reactant and product geometries and then compute
the energy, gradient, and force constant matrix {(and higher
derivatives if desired) along a pre-determined (i.e., the linear
interpolation) path. The form of the diadatic reaction path
Hamiltonian, having a Cartesian kinetic energy, is also much simpler
for purposes of carrying out dynamics calculations. It should be
especially useful for describing H-atom transfer reactions {n
polyatomic systems.
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