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PREFACE 

Extreme value statistics Is a statistical specIalty that Is seldom 

understood by researchers applying statistics to everyday problems. It Is 

relevant to bIological, engIneering and envIronmental studies because often 

extreme or unusual condItions are more Important than the usual condItions. 
For example, In carcInogenesIs studIes, the response to the maxImum human 

dose of a chemIcal or the mInImum level of radiatIon that could cause 

cancer Is more Important than the typIcal dose of the chemIcal or level of 

exposure. Extreme val ue statistIcal methods have been used to great 

advantage In hydrol Ic engIneerIng and In archItecture to predict floods or 

droughts, maximum wInd gust force on buildIngs, and mInImum breaking 

strength of materials. 

Good high-level extreme value statistical theory books are available, 

such as those by Gumbel and Galambos. Most order statistics text also 

contaIn the mathematIcs of extreme value theory, and an occasIonal good 

artIcle appears In journals of various special fields. However no text of 

appl led methods for the professional without a statistical degree now 

exist. The basic concepts of extreme value statistics are simple, few In 

number, and have wide applicability. Extreme value statistics differ from 

'ordinary' statistics more In the way data Is collected than In data 

analysis. The data analysis aspects of extreme values use densitIes and 

dIstrIbutIons, estImators, probability plots, and many more statIstical 
tools commonly found In al I other types of statIstical analysis. The level 

of presentation used here Is for the scientist or engIneer who uses 

statistics frequently, but who Is not formally traIned as a statIstIcian. 

With the wide use of automated data acquIsItion methods In the past 

few years, very large data sets have become common. Such data sets are 

troublesome to ordinary statIstical methods because of the time needed to 

review and anallze them, the size of computer required for storage and 

analysis, the accumulation of roundoff and truncation errors, and the 



difficulty humans have In fIndIng some kinds of data characterIstIcs In 

charts and graphs of large numbers of data values. Extreme value 

statistics offers one way of simpl ifying massIve amounts of data, by 

subdividing the data and anal izing the extremes of the subdivisions. Some 

mIght argue that such a procedure throws away InformatIon, however the 

extremes cannot be found unless al I the data values are examIned. Such a 

procedure has a statistIcal advantage, the extremes 

subsets of data have good statIstIcal propertIes that 

of large sets or 

are not strongly 

dependent upon the statIstIcal propertIes of al I the data. 

This monograph has few examples and exercIses. ThIs Is because the 

authors extreme value work has been with proprIetary data, thus the 

examples and exercises had to be fabrIcated or taken from the literature. 

Contributions of data, examples, and exercIses Is solIcIted and material 

included In future editions wil I be acknowleged. 
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1.1 PURPOSE 

CHAPTER 1 
INTRODUCTION 

The statistical theory of extreme values Is a wei I established part of 

theoretical statistics. Unfortunately, It Is seldom part of appl led 

statistics and is Infrequently a part of statistical curricula except In 

advanced studies programs. This has resulted In the Impression that it Is 

difficult to understand and not of practical value. In recent 

environmental and pollution literature, several short articles have 

appeared with the purpose of documenting al I that Is necessary for the 

practical appl icatlon of extreme value theory to field problems (for 

example, Roberts, 1979). These articles are so concise that only a 

statistician can recognise al I the subtleties and assumptions necessary for 

the correct use of the material presented. 

The Intent of this text is to expand upon several recent articles, and 

to provide the necessary statistical background so that the 

non-statistician scientist can recognize an extreme value problem when It 

occurs In his work, be confident In handling simple extreme value problems 

himself, and know when the problem is statistically beyond his capabilities 

and requires consultation. 

1.2 INTRODUCTION TO EXTREME VALUES 

The purpose of the statistical theory of extreme values Is to 

mathematically and logically explain observed extremes In samples of some 

specified size. In this text size of samples refers to the number of data 

points In a related group or set of values. It does not refer to the 

volume, weight or dimensions of the object being measured. The essential 
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conditions are that (1) the phenomena belr.g measured Is a statistical 

(stochastic) variable (what is commonly but erroneously called a 

parameter), (2) that the initial distribution from which the samples with 

extreme values have been drawn remains constant from one set of samples to 
the next (or that any change that occur~ may be measured and a 

transformation of the data may be found to eliminate the effects of the 

change), and (3) that the observed extremes should be statistically 

Independent. The literature Is full of "practical rules" for dealing with 

the lack of Independence, and claims of validity and lack of validity of 

these rules. Only through an understanding of some of the underlying 

statistical theory can the lack of Independence be recognized and 

consistently managed. Environmental data Is one of the most dl-fflcult 

kinds to anal Ize for Independence. 

A literature search over the last 20 or so years will seem to Indicate 

that there has been very little recent theoretical work by statisticians In 

extreme value problems. This Is a not so, the study of this theory has 

Simply been generalized and Its name changed to ~ statistics. Order 

statistics Is an extension from the study of the largest, or smal lest, 

values of a sample to the study also of the second largest, and third 

largest, and so on. Extreme values are thus a subset of order statiistlcs. 

A literature search on order statistics wll I yield a great deal of recent 
work and some fine contemporary textbooks (for example, David, H. A., 

1970). Extreme values, being a special but Important case of order 
statistics, are typically described In a chapter or two within such 

textbooks. A complete and rigorous study of extreme value statistics 

requires an understanding of order statistics In general. For the purpose 

of this text such a comprehensive understanding Is not required, and the 

logical backround of the theory wll I be skipped and only those theorems and 

results that have practical application wll I be presented. It must be 

emphasized that this results In a 'cookbook' type presentation with Its 

well known and real pitfalls. 

I 
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The distributions of extremes may be characterized by certain 

statistics such as means, medians, modes, and a new statistic cal led the 

expected extreme. In ordinary statistics the common measure of central 

tendency Is the mean because It has great advantages In most appl ied 

problems. In extreme value distributions the mode is preferred because it 

posseses advantages In extreme value problems. The Initial distribution 

from which the samples containing the extremes are obtained and the size of 

these samples must be known In order to derive the exact extreme value 

theory for any specific problem. However, methods have been developed 

which require only a know lege of sample size and the general type of 

Initial distribution, and where forecasts are based exclusively on past 

observed extremes. Also, If the type of distribution is known and sample 

sizes are large, the asymptotic theory can be used. In practice, the 

asymptotic theory Is almost exclusively used because It yields elegantly 

simple formulations for statistical tests on extreme values. This 

discussion of extreme value statistics wll I be concerned only with this 

asymptotic theory. 

1.3 APPLICATIONS 

1.3.1 Forecasting Floods 

The prototype extreme value problem used by E. J. Gumbel (1941) was to 

predict annual floods. Hence, It is sometimes assumed that extreme value 

theory originated In hydrology. Section 1.4 of this chapter wll I explain 
that this is not the origin. However the study of floods was one of the 

early and very fruitful applications of the theory. The economic 

Importance of accurately predicting floods has been realized since ancient 

times by agrarian societies. Today the Army Corps of Engineers Is 

responsible for the management of rivers. Also, agriculture is dependent 

upon river management for both irrigation and avoidance of floods that 

destroy crops and soi Is. 
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Until the 1930's there were numerous attempts by engineers to find a 

mathematical formula for forecasting floods. In part their lack of success 

resulted from the endeavor to find mathematically exact solutions rather 

than statistical solutions. The statistical solutions were not then 

available. The engineers used Instead arbitrary safety factors, such as 

double the largest flood that had occurred In the last 50 years. Such 
rules wll I, In the fol lowing chapters, be shown to be very conservative, 

and thus very costly to use as construction or design criteria. 

Floods are the annual maxima of dally rIver discharges, and droughts 
are the annual minima. The analysis of droughts Is essential In planning 

for Irrigation, publ ic health, and stream pollution. A key difference 

between floods and droughts Is that droughts are bounded and floods are 

not. No matter how severe a flood one can always Imagine a worse flood. 

But once a river runs dry there Is no conceivable worse drought. 

1 .3.2 Env I ronmenta I Po I I ut I on 

Meterologlcal phenomena are Important In the study of air pollution. 

This Is perhaps the field of study currently of greatest Interest In 

extreme value theory studies. The major unknown, and the root of much 

controversy, Is the relatIon of extreme pollutant concentratIons to health 

effects In humans. The response of humans, or any biological system, to 

typical pollutant concentrations Is Itself an e>:treme value phenomena since 

only the few most sensItive persons respond. Thus envIronmental pollution 

can be conceived as a compounding of several Hxtreme value distributions: 

those that descrIbe when, where, and the magnitude of occurrence of extreme 

pollutant concentrations, and those that describe who wll I be where the 

max I rna occurs and how they w II I respond to thOSE) max I rna. At the present 

time there Is no unified or general statistical theory for analyzing these 

compound problems. Each part must be treated as a separate and Independent 

problem. 

, 
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Currently in the medical and environmental literature there Is a 

controversy about how to extrapolate toxicologic and carcinogenic data in 

order to predict dose-effect relationships at exposure levels much lower 

than those practical to use In laboratory studies. Linear extrapolation Is 

often used to predict threshold levels. But the conclusion that saccarlne 

Is harmful In small amounts because It Is harmful at very high doses has 

been challanged. There Is the paradox that airplane travel Is more 

hazardous than automobile travel because airplanes expose one to more 

cosmic rays than does automobile travel yet more people are kil led In autos 

than In alrplalnes. These dilemmas should be recognized as arising from 

attempts to treat such phenomena deterministically rather than 

statistically. Even when It appears that statistics has been used, often 

the practitioners are unfamiliar with extreme value theory or unaware that 

they have an extreme value theory phenomena. This situation Is analogous 

to that of the hydrologic engineers and dam builders before the use of 

extreme value theory to study floods. Recal I that the deterministic study 

of floods yielded safety rules that were very conservative. 

1.3.3 Strength of Materials 

Two situations In which extreme value theory is being effectively used 

are to determine maximum wind gust and minimum breaking strength of 

materials. Both of these are Important to aircraft designers and to 

architects of large buildings. Minimum strength of materials Is Important 

to all types of manufacturing from simple consumer products to heavy 

equipment. When someth ing breaks, repair cost and down-time cost are 

usua Ily substantial relative to the Initial cost. Furthermore, human 

safety may be compromised. However, If too much extra strength is bu II t 

into an Item, an economic disadvantage results from the cost of excess 

materials. 



INTRODUCTION Page 1-6 

1.3.4 Identifying Outlying Observations 

The final application outlined, and the most statistical in nature, is 

the problem of identifying outlying observations. Every scientist has a 

favorite ad hoc "rule" for handling outliers that has advantages over those 

used by other scientists. Yet he Is really somewhat uncomfortable with his 

rule, particularly when he reflect upon its logical and statistical 

foundations. Extreme value theory has much to contribute to the study of 

outliers, sl nce an ear I y mot I vatl on for stcltl stic I ans to I nvestl gate 

extreme value problems was to identify outliers. 

A major problem In Identifying outl iers In a data set, especially for 

small sample sizes, Is that calculated means, standard deviations, and 

probabll ities associated with some hypotheses are considerably influenced 

by the observed maxima and minima In the samples. These statistics are the 

basis for Interpreting the data and for making forecasts, and such 

Interpretations and forecasts should not be permitted to be erroneously 

influenced by Invalid observations. On the other hand, the extremes may 

ref I ect Important I nformatl on. Perhaps they are a key to understand I ng the 

true principles governing the observed phenomena. Extreme value theory Is 

the foundation of al I sophisticated techniques for Identifying outlying 

observations. 

1.4 HISTORY 

The first students of extreme value statistics were early astronomers 

who had the problem of deciding whether to accept or disregard a suspect 

(outlying) observation that appeared to differ greatly from the rest of a 

data set. Like many other statistical problems discovered by early 

astronomers, their mathematical tools were too crude to solve this problem. 

They can only be credited with the clear recognition and statement of the 

problem. 

" -
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The modern history of extreme value statistics started In Germany In 

1922 with a fundamental paper by L. von Bortkiewicz on the distribution of 

the range and the mean range In samples from a Gaussian (Normal) 

distribution as a function of sample size. These proved to be very 

difficult problems which were not solved In mathematical generality until 

recent times. Bortklewlcz found good numerical approximations, and cal led 

attention to the fact that the largest values of samples taken from 

Gaussian populations are new variables having separate distributions. 

Bortklewlcz thus deserves credit for being the first to clearly state the 

extreme value problem In statistical terms. 

In the following year, 1923, R. von Mlses, also In Germany, Introduced 

the mathematically fundamental concept of the expected value of the largest 

member of a sample of observations. This was the start of the study of the 

asymptotic distribution of extreme values In samples from Gaussian 

distributions. 

The founders of probability and statistical theory, such as Laplace, 

Pascal, Fermat, and Gauss, were too occupied with the general behavior of 

statistical masses to be Interested In extreme values. The oldest remarks 

In the statistical literature about extreme values are perhaps those due to 

Fourier In 1824. He stated that for the Gaussian distribution, the 

probability of a deviation being more than 3 times the square root of 2 

standard deviations from the mean Is about 1 In 50,000, and the observation 

associated with this deviation could therefore be neglected. This seems to 

be the origin of the common but erroneous statistical "rule" that plus or 

minus 3 standard deviations from the mean should be considered the maximum 

range of valid sample values from a Gaussian distribution Irrespective of 

the number of samples taken. In 1877, Helmert stated correctly that the 

probability of surpassing any specified value depends upon the size of the 

sample. The fal lacy of the 3 standard deviations rule should be obvious. 

If the statistical distribution being sampled Is unlimited, no matter how 

smal I the probability of the limits given by a rule, then the largest, or 
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smallest, sample value Is also unlimited. As the sample size Increases, 

the largest value encountered In a sample ~III I I ikewlse increase since 

there Is more opportunity for Inprobable values to occur. The statistical 

study of extreme values attempts to describe the relationship between 
samp I e size and magn I tude of the observed e>:treme va I ues. For sma I I 

samples the "three sigma rule" Is too conservcltlve. For large samples It 

is too weak. 

Largest values fran distributions other than the Gaussian were first 

stud I ed In 1923 by E. L. Dodd. A major ~;tep occur red In 1925 when 

L. H. C. Tippet published tables of the largest values and corresponding 

probabilities for various sample sizes from cl Gaussian distribution, and 

the mean range of such samples <TIppet, L.H.C., 1925). In 1927 M. Frechet 

published, In a remote journal, the first paper to obtain the asymptotic 

distribution of the largest value from a class of Individual distributions. 

The next year, 1928, R. A. Fisher and L. H. C. Tippet published the paper 

that Is now considered the foundation of the asymptotic theory of extreme 

value distributions. They Independently found Frechet's asymptotic 

distribution, and constructed two others. These, three distributions have 

been found adequate to describe the extreme, value distributions of all 

statistical distributions (Fisher, R. A., and Tippet, L.H.C., 1928). 

Fisher and Tippet, In this paper, were the first to stress the extremely 
slow convergence of the distribution of the largest value In samples from a 

Gaussian distribution toward Its asymptote. Thus they showed the reason 

for the difficulties encountered by prior Investigators. 

The use of the Gaussian distribution as a starting point had hampered 

the development of the theory since none of the fundamental extreme value 

theorems are related In a simple way to the Gaussian distribution. It was 

reasonable to assume a Gaussian distribution for study purposes since this 

distribution Is a foundation stone of much modern statistical reasoning. 

The theory of largest values ought to be based upon the Exponential 

distribution because It leads to simple development and expression of the 

-. -
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fundamental theorems of extreme value statistics. The results can then be 

generalized to other distributions. 

The authors mentioned above were interested In extreme values only 

from the standpoint of statistical theory. In the middle 1930's 

E. J. Gumbel began studying the application of this theory, first In 

Germany, then In the U. S. when World War I I engulfed Europe. Gumbel's 

first application was to old age, the consideration of the longest duration 

of life. He then showed that the statistical distribution of floods, long 

studied by engineers, can be understood using extreme value theory (Gumbel, 

1941). These procedures have also been extensively appl led to other 

meteorological phenomena, to stress and breaking strength of structural 

materials, and to the statistical problem of outlying observations. 

1.5 SUMMARY 

The history of extreme value statistics began late with respect to 

statistical history In general because early statisticians were concerned 

with the behavior of statistical masses rather than with the study of rare 

events. Fisher and Tippet (1928) made a major contribution by finding the 

asymptotic distributions of extremes. The application of extreme value 

theory began' In the middle 1930's with the work of E. J. Gumbel. In 

contemporary times extreme value theory has become a part of the more 

generalized study of order statistics. 

Several applications of current Interest are discussed In this 

chapter. These Include those classically associated with extreme values 

such as floods and the breaking strength of materials; applications which 

now use extreme value theory. Also discussed are some new applications In 

the biological and environmental sciences which currently do not yet use 

extreme value theory, but which have much to gain If this theory were 

effectively appl led. 
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CHAPTER 2 
DATA AND STATISTICS 

2.1 INTRODUCTION 

The research scientist first considering data as an extreme value 

situation usually finds several different procedures seem to be appl icable. 

Only one procedure is usually applicable because of the 'scale' or 'level' 

of the measurements. The levels of the measurements Inherent In a data set 

determine which statistics can be used with that data. Extreme value 

statistics can logically be divided Into two types based upon scale of 
measurement. One type considers the number of extremes that occur. The 

second type considers the magnItude of extremes. In this division, the 

first type Is relavent to what are cal led nominal scale measurements, and 

the second type to interval and ratio scale measurements. These scales are 

Inherent characteristics of data and al I statistical test procedures are 

valid only for particular data measurement scales. The ordinal scale, a 

fourth type of measurement, Is not used in extreme value statistics, 

however It Is important In the general study of order statistics. This 

chapter discusses these four types of measurement scales and reviews some 

statistical basics. This wll I provide part of the foundation needed for 
studying extreme value statistics. Readers already famil iar with these 

topics can skip to chapter 3. 

Associated with every statistical procedure is a mathematical model 
and some data. The procedure Is val id under certain conditions or 

underlying assumptions. The model and measurement techniques specify these 

conditions. Even something as simple as calculating an average assumes 

that the average Is a reasonable measure of the 'central tendency' of the 

population. Populations that are best modeled as skewed or multlmodal have 

estimators of central tendency that are better than the common mean. AI I 
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statistical results inherently carry the qual ification: 'if the model used 

was correct and if the measurement requirements were satisfied'. Such 

statistical assumptions and requirements are cften violated In subtle but 

important ways. Statistics courses typically teach one to recognize model 

assumptions, but measurement requ i rements are rclre I y stud i ed. 

Mathematical models of data, cal led statistical distributions, and 

measurement theory are Important for understanding extreme value 

statistics. Measurements and distributions in general are the tOlPic of 

this chapter. The distributions unique to e'xtreme value statistics are 

discussed in the fol lowing chapter. For extreme value work It is 

convenient to talk about statistical distributions in terms of the 

'Exponential family', the 'Cauchy type', and distributions with limits. 

These descriptors are beyond the level of elementary statistics and wil I be 
explained in the next chapter. 

2.2 MEASUREMENTS 

Measurement characteristics can be divided into two parts; scale or 

level of measurement, and independence of observations. Correlation 

analYSis is the usual technique for measuring independence, but correlation 

is not synonomous with independence. Independence is a population 

attribute, and correlation Is a sample attribute,. For small samples the 

correlation can be very different from the underlying dependence. However 

for large samples there is little practical difference. Since extreme 

va I ue work typ I ca' I y uses large samp I es, th is te,xt w II I assume Independence 

Is well approximated by correlation. Observatlc'ns are Independent If the 

selection of one value from a population for Inclusion In a sample does not 

Influence the chances of any other value being selected for Inclusion In 

the same sample. A common source of dependence In extreme value wort< comes 

from the use of serial data, such as a time series of data values. Dally 

max I ma of pol I utant concentrations are depende,nt (corre I ated) because the 

causes of pollution are phenomena that last for many days. Dai Iy 

, . 
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temperatures are dependent because they are Influenced by the length of 

day, which has an annual cycle. A later chapter wil I consider technlGues 

for recognizing and el iminatlng data dependence • 

2.3 LEVELS OF MEASUREMENT 

Measurement Is the activity of mapping or assigning numbers to objects 

or observations. Levels of measurement are a way of describing the 

characteristics of data obtained from measurements. the description 

contains Information about the way data Is collected and Inherent 

characteristics of the things measured. 

2.3.1 Nominal Scale 

When numbers, or symbols, are used to Identify groups or classes to 

which various objects belong, the scale of measurement Is said to be 

nominal. The numbers are used only as a name for the group or category to 

which each observation belongs. In addition to group Identification, 

nominal data typically Includes a second part, a count of the number of 

Items within each group. These counts are cal led freQuencies. 

can only assume Integer values, there cannot be 2.5 persons In 

family. 

Frequencies 

the Jones 

Sports teams are Identified by their home town. They 

Identified with 1, 2, ••• , or 101, 102, ••• , or A, B, C, 

The Identity of a team Is a nominal scale data value and 

coul d al so be 

. . . , 
the 

and so on • 

number of 

players on a team Is the corresponding frequency. Social security numbers 

can be considered as the group Identification part of a nominal data value 

for which the frequency of each group Is one. Arithmetic can be performed 

upon the frequencies but not on the group Identification. The number of 

players on a footbal I team Is meaningful, but the sum of the numbers on 

thler Jerseys contains no information. 
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2.3.2 Ordinal or Ranking Scale 

The categories or classes into which objects are partitioned may stand 

in some kind of unmeasurable relationship --0 each other in addition to 

being identifiable as different categories. Tho essential feature of the 

ordinal scale is that the relative order of the objects or classes can be 

identified but not quantified. In a beauty con-rest first and second place 

contestants are identified, but one cannot say how much more beautiful the 

first place contestant is over the second place contestant. Ordinal 

relationships are typically assigned consecutive Integer numbers for 

Identification. These identifications are called ranks, 1,2,3, or first, 

second, third, and so on. 

Air pollution Indices are usually on an ordinal scale of measurement. 

Although such indices may appear to be more precise than ranks, they 

typically do not meet the requirements of the higher measurement scales 

that wi I I be discussed next. A po I I ut i on index of 50 does not i nd i cate 

that the air is twice as hazardous as air with an Index of 25. The higher 

index indicates a more hazardous condition, but the magnitude of the 

difference cannot be quantitated. 

An order preserving transformation of the category Indices does not 

change the Information contained in ordinal data. It does not make any 

difference whether the Index 1 Is assigned to 1(lst place, 2 to second from 

last, and on up; or the index 1 is assigned to first place with ranking 

downward. 

The median is the statistic most appropriate for describing the 

'central tendency' of measurements on an ordinal measurement scale. 

Sometimes the median value cannot be quantified; in a beauty contest the 

median is that contestant for which half the contestants are more beautiful 

and half are less beautiful. 

.. -
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2.3.3 Interval Scale 

When measurements have al I the characteristics of an ordinal scale, 

and in addition the interval sizes (distances) between objects or groups Is 

measurable, the measurements are said to be at the interval level. An 

Interval scale Is characterized by a 'unit of measurement' which assigns a 

real number to the relationship (distances) between al I pairs of objects or 

groups. 

Temperature measurements are a good example of Interval scale 

measurement. Fahrenheit, Celsius, and Kelvin scales are commonly used and 

these demonstrate the arbitrary nature of the zero point and the distances 

that are typical of an Interval scale. 

Any transformation or mathematical operation on Interval scale data 

values must preserve not only the ordering of the objects but also the 

relative differences between the objects. 

The Interval scale Is the first quantitative measurement scale 

presented. The nominal scale names and counts objects or attributes of 

objects, and the ordinal scale arranges objects. 

2.3.4 Ratio Scale 

A measurement that has al I the characteristics of an Interval scale 

plus a physically definable zero point Is at the ratio measurement scale. 

For this scale, the ratio of any two measured values Is Independent of the 

units of measurement. Zero Is the measure that defines the absence of a 

quantity. The ratio of the height to the width of a room is the same 

whether Engl Ish or metric units are used. However the ratio of dally 

maximum temperature to the dally minimum changes from Fahrenheit to Celsius 

temperatures; thus length is a quantitative measure at the ratio level of 

measurement, and temperature Is not. measurements of weight, mass, length, 
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width, and flow are typical ratio level measure~;. 

2.3.5 Col lapsing Measurement Scales 

An Important aspect of this system of measurement is that a higher 

level can always be col lapsed Into a lower level. For example, persons 

weights can always be grouped Into underwEtight, Ideal weight, and 

overweight. In this example, a ratio scale meclsurement has been collapsed 

I nto an ord I na I sca I e. Note that th Is operal"lon on the data has no 

Inverse. That Is, having groups of people classified as underweight or 

overweight does not al low reconstruction of their actual weights because 

the distinctions between groups are arbitrarly defined and are not always 

Intuitively obvious. Weight groupings can de~lend upon age, sex, bone 

structure, and so on. Sometimes a 140 pound person is overweight, 

sometimes at Ideal weight, and sometimes overweight. 

A simple, but Interesting, question Is: what Is the measurement level 

associated with the measurement of time (seconds, minutes, hours)? 

2.4 STATISTICAL CONCEPTS 

This section provides a brief review of Important statistical concepts 

frequently used with extreme value analysis. Most statements resulting 

from scientific Investigations are really InferEinces which are uncertain In 

character. Statistics is the formal study of t~is uncertainty, It attempts 

to both descr I be and to meas ure uncerta I nty. Probab i I I ty I s a me as ure of 

how likely is the occurrence of a chance event. 

2.4.1 Data 

An experiment is a carefully defined procedure whose outcome Is 

observable but Is not completely predictable In advance. Data Is obtained 

when the observed outcomes are measured. The set of al I possible outcomes 

Is cal led the sample~. A sample Is a particular set of data values 

, " 
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obtained when an experiment Is repeated a number of times. The term 

'experiment' is used both to refer to a procedure that yields a single data 

value, and to collectively refer to all such procedures that yield a data 

set. 

2.4.2 Random Variables, Distributions, and Densities 

A rule or mathematical function that associates a real number with 

each possible outcome of an experiment is cal led a random yarlable. A 

discrete random variable can take on only a finite or denumerable number of 

values, otherwise the random variable Is continuous. 

A density function Is a mathematical rule which assigns a probability 

to each possible value of a (discrete) random variable. The density 

function Is a I ink between the sample space and probabilities. Such rules 

for asslglnlng probabilities have two distinct forms depending upon whether 

the random variable Is discrete or continuous. 

For discrete random variables the probability associated with each 

value, x, within the sample space of a random variable X may be enumerated. 

For each possible value xCi], the discrete density f(x[I]) assigns a 

specific probability 

( 2.1> Prob(x[I]) = f(x[I]) • 

The axioms of probabi Iity Impose the following restrictions on f(x[i]). 

(2.2) 
o .$. f(x [i J) .$. 1 

L: f (x[!]) = 1 
al I I 

for a I I I 

An alternate representation Is the cumulative density function or 

distribution F(x[I]), 
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(2.3) F(x[iJ) = L f(X) 
XSX[i] 
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The density, F, specifies the probabll ity that the random variable, X, 

assumes a value less than or equal to x[iJ. The axioms of probability 

require that 

(2.4 ) 

o ~ F(x[i]) < 

F(-oo) = 0, 

f(+oo) = 1. 

for a I I I, 

Formula 2.3 relates the density to the distribution for discrete random 

variables. The distribution Is a mathematical function that accumulates or 

integrates probabilities from the lowest possible value up to any specified 

value x[iJ. 

For contInuous random varIables a dIfferent formulation of the density 

function Is required. Since there Is an Inflrlte number of values within 

the sample space, It fol lows that 

(2.5) f(x[IJ) = 0 for each I 

That Is, the probability of any specific value Is zero. ThIs does not mean 

that a value Is ImpossIble, but that a value Is extremely unlikely given 

the InfinIte number of alternate values. Also, the probabi Iity "that a 

random variable assumes a value In the Irterval between two distinct 

pOints, say a and b, wll I generally not be zero. The points a and b can 

represent the preCision of a measuring Instrument. A scale that measures 

to the nearest gram can weigh objects with an Irflnite number of possible 

weights between 20 and 21 grams, but the val ue recorded will be eIther 20 

or 21 grams. Because of such considerations, the density as defined for a 

dIscrete random variable Is replaced In the continuous case by a densIty 

-" 
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function f{x) defined by an Integral, 

(2.6 ) 

b 

Prob{a ~ X ~ b) = f f{X)dX 

a 
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To be consistent with the axioms of probability, a continuous density 

function must satisfy the fol lowing conditions: 

f (x) ~ 0 , and 

(2.7 ) +00 

f f{x)dx = 

- 00 

The distribution function, F(x), for the continuous case Is defined as 

x 

(2.8) F(x) = f f{y)dy 

-00 

The distribution F(x) defines the probability that a continuous random 

variable X assumes a value less than or equal to x. 

2.4.3 Expected Value and Moments 

Although a random variable Is completely specified by either Its 

density or distribution, It Is often convenient to work with some 

descriptive measure or statistic which summarizes Information about the 

random variable • The expected value of a random variable Is such a 

summary. The expected ~ of any function of a random value Is defined 

as the weighted average (weighted by the probability of occurrence) of the 
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function over the sample space. The symbol E[:I Is used to denote the 

expected value of whatever appears within the brackets. Thus the expected 

value of the function g() on the random variable X is denoted by E[g(X)]. 

For a discrete random variable X, with demilty f(), the expected value 

of a function g(X) Is defined as 

(2.9a) E[g(X)] = L: g(x)f(x) 
all x 

For a continuous random variable the corresponding definition is 
+00 

(2.9b) E[g(X)] = J g(x)f(x)dx 

-00 

The mean and variance of a random variable are special cases of the 

expected value function. The ~ Is a measure of centeral tendency and is 

defined by g(X) = x in equations 2.9a and 2.9b. The variance describes the 

spread or dispersion of the possible values of a random variable about the 

mean and Is defined by 

(2.10) g(x) = (x - E[X])2 

The symbol VeX] Is often used to denote the variance. The variance may 
also be interpreted as the average squared deviations from the mean. The 

standard deyiatlon, s, is defined to be the positive square root of the 

variance, and has the advantage of having the s,ame units of measurement as 

the mean. 

The mean and standard deviation are often referred to as location and 

~ parameters respectively. It is comme,n practice in statistics to 

express a random variable as a distance from its mean In multiples of its 

standard deviation. This Is cal led a ~ardlzed random variable and 

formally is the transformation 
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(2.11> _ x - E[X] 
z - --------s 

The new random variable Z with values of z has a mean of zero and a 

variance of one. 

A function of two random variables that has special Importance In 

statistics is the product of their deviations from their corresponding 

means. The expected value of this function Is the covarIance, defined as 

(2.12) Cov[X,Y] = E[(x - E[X])(y - E[Y])] 

The covariance Is Important because It measures the linear association, If 

any, between the two random variables. If X has no Influence on Y then X 

and Yare saId to be Independent and their covariance wll I be zero. 

A measure of dependence which Is related to the covariance Is the 

correlation coeffIcient, r, defined as 

(2.13) 

The correlation has a range from -1 to +1 with a value of zero Indicating 

Independence. A positive correlation Indicates that Y tends to have values 

of the same sign as X and a negative correlation Indicates that Y tends to 

have values of the opposite sign from X. 

2.4.4 Prototype Random Variables 

For extreme value statistics, two kinds of random variables are used 

to describe exceedances and magnitudes respectively. These classifications 

are discussed InCh apter 3. For nom ina I and ord I na I I eve I data the extreme 

value distributions available are limited to the distribution of counting 

exceedances. The theoretical basis of this distribution Is the binomial 

family of distributions. For Interval and ratio level data the magnitude 
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of extreme values can be measured and a second level of distributions 

becomes important. Three famll ies of dlstri'butlons are used in extreme 

value statistics: the Welbull family when the sample space Is bounded, the 

Exponential family when the sampl ing Is fr~1 the more common continuous 

random var I ab I es, and the Cauchy fam i I Y for extr-emes fran random var i ab I es 

with non-finite variance. A typical random variable of the Exponential 

family, which Is the most Important family, Is the Gaussian or Normal 

distribution. 

2.4.5 Sample and Population Moments 

A major goal of statistical analysis Is to make Inferences about a 

population fran a sample. Usually the denslt~ function f(XiP) Is assumed 

known, but contains unknown parameters p. There are two kinds of 

statistical Inference: estimates and hypothesis tests. Estimation Is 

further divided Into point estimation and Interval estimation. A S±atlstlc 

Is a mathematical function of sample values which does not contain any 

unknown parameters and In sane sense extracts Information fran the sample. 

An estimator of a population parameter, p, Is cl statistic that is designed 

to produce numer Ical val ues that represent thEI numerical val ue of the 

parameter. An estimate Is the numerical value produced by an estimator 

using sample data. A variety of statistical criteria are available In 

statistics for judging how representative an E!stfmate Is for a parameter. 

These criteria In turn use such concepts as 'unbiased', 'robust', 'minimum 

variance', 'consistent', and combinations of thEise. 

An approximation of a population density function that Is derived from 

a sample and has no unknown parameters Is the empirical density. The 

corresponding empirical dIstrlbytlon Is then an approximation to the 

distribution of the population being sampled. Let x[1], x[2], ••• x[n] 

represent an ordered (fran smallest to largest) sample of size n "from a 

(continuous or discrete) random variable f(XiP). In this ordered form the 

xCi] are referred to as the ..Q.C.dw: statistics,. The empirical density 

, -
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function Is defined as 

(2.14) { 
l/n 

hex) = 0 
for x=x[I], 1=1,2, ••• n 

elsewhere • 

The corresponding empirical distribution Is defined as 

for x < x[1] 

(2.15) for xCi] ~ x ~ x[I+1] 

for x ~ x[n] 

The empirIcal distrIbutIon Is equal to the fraction of a sample that Is 

less than or equal to any given value of x. 

Sample moments are defined by substituting the empirical density, 

hex), for the population densIty, f(x), In equation 2.9a. Sample moments 

are especially important statistics because the expected value of a sample 

moment Is equal to the corresponding population moment. It Is Important to 

conceptually separate population moments and sample moments. It Is always 

possible to compute a sample moment because the form of hex) Is always 

known and contains no unknown parameters. The population moments may not 

be computabl_e because: 1) the form of the function f(x) Is unknown, 2) 

f(x) contains unknown parameters, or 3) f(x) Is of such a mathematically 

complex form that the expectation cannot be derived. The sample mean and 

sample varIance are the most used (and often mlssused) sample statistics • 
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CHAPTER 3 
FAMILIES OF DISTRIBUTIONS 

3.1 INTRODUCTION 

The properties of the most useful mathematical models for describing 

the random fluctuations of data are wei I presented In statistics courses. 

These models are the distribution functions defined In Chapter 2, and are 

given names such as: Normal, Gaussian, Students-t, Gamma, Binomial, 

Poisson, and so on. Extreme value statistics Is not concerned with 

Individual distributions, but rather with groups of distributions defined 

by common mathematical and statistical properties. It Is necessary to 

understand these groupings or families of distributions before one can 

understand the statistical theory of extreme values. A verbal discussion 

with a few mathematical formulas should show adequately the structure and 

relationships within this statistical theory. Many textbooks are available 

to fill In details and add rigor. 

There are three asymptotic extreme value distributions. These 

asymptotic distributions are not a good place to start a discussion for an 

understanding of the relationships between the several parts of extreme 

value theory. To start with, It Is more Important to note that extreme 

value statistical procedures can be divided Into (I) those that count the 

number of occurrences of extreme events, and (II) those procedures that 

measure the magnitude of extreme events. An understanding of the 

differences between counts and magnitudes was the motivation for the 

portion of the previous chapter on measurement scales. This division of 

procedures also has an analogy to the division In statistics between 

discrete and continuous distributions. 
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3.2 COUNTING EXTREME VALUES 

The first type of procedure Is the enumeration of rare events. The 

data consl st of the number of rare event~; that occurred in some tl me 

interval or perhaps In a group of experiments. The terminology used for 

this Is 'the distribution of the number of exce!edances'. The magnitude of 

a measurement which determines what Is a rare event or an extreme value is 

def Ined, and then the number of such rarE! events I s counted. The 

statistical procedures for analyzing exceedance~; will be given In the next 

three chapters. 

There are two ways of specifying the definition of a rare event. The 

most common way Is an arbitrary declaration derived from physical, 

chemical, or biological principles, such as 'e,xposure to more than 50 

mililrems radiation per year Is hazardous'. Just as with the example of 

classifying people as over- or underweight, :;0 mlilirems Is sometimes 

hazardous and sometimes not. Setting stancards of maximum allowable 

exposure Is a common problem of environmental and health regulations. Once 

a standard has been set, exceedances can be' counted, regardless of the 

validity of that standard. Even though some standards may have been based 

upon emotion, fear, or politics, Instead of scientific evidence, 

exceedances can be statistically anal yzed for any given standal~d. A 

current example Is 

Extreme value theory 

what magnitude the 

the controversy over how much saccarlne Is too much. 

for exceedances Is not concerned with how, why, or at 

standard Is set. Of course, the statistician must 

emphasize that the resulting statistics are no more or no less reasonable 

than the standards themselves. 

In some situations It may not be necessary to use fixed or arbitrary 

standards. A future data set can be compcred to a past set. In this 

situation, exceedances are stll I counted, but the standards are not fixed 

quantities. This differs from a fixed stc,ndard as Illustrated In the 

following example. Consider the study of air pollutant oxidant levels In a 

~, 
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city. Using an arbitrary standard, a concentration over one part per 

mil I ion Is declared an exceedance and causes an air pollution alarm. Using 

past data the maximum oxidant levels recorded over the last, perhaps 20 

years, Is tabulated and then the number of times the current data exceeds 

the 20 year maximum Is counted. The standard could also be chosen to be 

the second, or third highest level In the 20 year data. Here exceedances 

are stll I being counted, but the definition of an exceedance has changed. 

The exceedance definition Is derived from past data and Its magnitude Is a 

sample value from a random variable. 

Definition of exceedances using past data Is, of course, only possible 

If past data exist. It does, however, offer one way to alleviate the 

problems Inherent In using arbitrary standards. Note that this type of 

standard defines a transformation from an Interval or ratio level of 

measurement to a nom i na I I eve I • 

Statistically, exceedances are modeled with discrete distributions. 

Depending upon the specifics of the problem, the Binomial, Poisson, 

Geometric, or Hypergeometric distribution could be used. These situations 

wll I be examined In detail In Chapter 5. 

In elementary statistics courses the Poisson distribution Is sometimes 

cal led 'the distribution of rare events'. The Poisson Is a distribution 

that counts rare events and does not measure their magnitudes. Thus, It 

does not def Ine a rare event. It models the number of occurrences that are 

defined so that the probabl I Ity of an occurrence Is extremely smal I. The 
probability of an occurrence Is assumed to be fixed and known. Rare events 

are Identified and then counted at the nominal measurement level, while 

extreme values are Inherently at the ratio or Interval level. Because 

measurement scales can be col lapsed but not expanded, extreme values are 

rare events but rare events are not extreme values. 
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3.3 THE MAGNITUDE OF EXTREME VALUES 

The second type of procedure for analyzIng extreme values uses the 

magnitude of the rare event. In the oxidant e>:ample gIven above, the data 

would include not on I y a count of the number of oxidant levels observed to 

be over one part per millIon, but would also I :st al I the readings in this 

class. Typically the single value that Is the maximum Is the most 

Important Item in such a I 1st. 

Extreme value data Is typically collected In fixed-size groups, such 

as the 24 hourly oxidant levels In each day. When studying exceedances, 

the proport I on of those 24 meas urements th at e>:ceeded the one pa rt per 

mil lion criteria is determined. When studying extremes the single maximum 

of those 24 measurements Is used. The groupln~1 of the measurements is 

usually easy to define because groups are der-Ived from uses of the data. 

Floods are grouped by annual maxima rather than dally maxima for obvious 

reasons. Ox I dant I eve I s are typ I ca I I y grouped on a da II y bas I s because the 

acute hea I th effects response to high ox I dant I Elve I s deve I op over a day or 

so of exposure, rather than over years. 

After a number of extreme values have been collected, such as dally 

maximum oxidant levels, weekly maximum radon levels In air over a uranium 

mil I tailings pile, annual floods, and so on, these data may be modeled by 

a statistical distribution. The kinds of distributions used in this 

context are called extreme value distributions. Theorems that hav l9 been 

developed allow mathematical derivation of the extreme value distributions 

from the distribution of the original data and the 

mathematical derivations are often extrEmely 

appropriate asymptotic distribution is usually used. 

derive these distributions are given in te>:tbooks 

Th I s text w II I use on I y the asymptot Ic d I str I b Lit ions, 

simple cases. 

sample size. The 

difficult, thus the 

The deta II s of how to 

on order statistics. 

except for a few 

'., 
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A speclal characteristic of al I extreme value distributions that 

facilitates appl jed work is the simple form of their asymptotes as the size 

of the group from which the extreme Is extracted becomes large. These 

asymptotes converge to only three distributions. These three distributions 
were first derived by Fisher and Tippet in 1928. The history of this 

lmportant contribution was given In the first chapter. The problem of 
choosing the correct extreme value distribution is made easier by the fact 

that the choice depends upon some general characteristics of the data 

distribution from which the extremes are extracted. 

AI I continuous statistical distributions can be classlfled Into three 

families; the Exponential family, the Cauchy family, and the Welbul I 

family. One of the three extreme value distributions is associated with 

each of these three types of data distributions. (The three asymptotic 

extreme value dlstrlbutlons are members of the Exponentlal family). The 

classification of data distrlbutions can be difficult. Fortunately, al I 

the commonly used statistical distributions have already been classified. 

The Exponential family of distributions permit unlimited values of the 

variables. The area under the tails of the distribution curve must 

converge to zero for large (positive or negative) values of the variate, at 

least as strongly as the area under the tall of the exponential function, 

EXP(-x). AI I moments exist for the members of this family. However, not 

al I distributions where al I moments exist are of the Exponential family. 
Most of the common statistical distributions belong to this family. The 

family includes the Normal (Gaussian), Exponential, logistic, log-normal, 

Gamma, and Chi-square distributions. 

Other distributions, which are also unl lmlted, have a very long tall 

so that they converge less strongly than the exponential function. These 

distributions have no moments beyond a certain order. The Cauchy 

distribution Is the only wei I known member of this family, which Is cal led 

the Cauchy family. The members of this family are rarely encountered In 
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appl led statistics, an exception Is the dlstrltlutlon of ratios which often 

belong to this family. 

The third family of extreme value asymptotic distributions Is easy to 

recognize. These are the distributions with an upper or lower limit. The 

largest, or smal lest, extreme value Is thus bounded, the limits become 

parameters of the extreme value distribution. Higher-order moments also do 

not exist for the members of this family of distributions. The prototype 

of the limited distributions Is the Welbull, ~,hlch is used extensively In 

engineering stress problems. This family Is called the Welbull family. 

Strength of materials, dielectric strength, "nd failure time of machines 

usually follow a Welbull distribution. The Bet" distribution also belongs 

to this family. The Exponential, Cauchy, and Welbull distributions are 

defined In the appendix to this chapter. 

Some further simplifications can be made. It Is only necessary to 

consider data from one tall of a data distribution, either the largest 

extreme or the smal lest extreme. A distribution often belongs to different 

families depending upon whether large valu€!s or small values are being 

studied. The Exponential data distribution Is bounded below because only 

positive values of the variate are al lowed, but It is unbounded above. 

Thus, even though it Is the prototype for thE! Exponential family, the 

prototype behav lor applies onl y to extreme I arge, val ues. For extreme smal I 

values, the Exponential data distribution belon~ls to the Welbull family. 

The distinction between the Exponential family and the Cauchy family 

of distributions Is usually made by examining ci data distribution function 

for the existence of higher moments. It Is the parent data distribution 

that needs to be considered; that is, the distribution which models the 

physical, chemical, or biological mechanism from which sample measurements 

are derived. There Is also a sampling dlstrltutlon associated with every 

statistical problem. The most common example of this association Is that 

samples from a Gaussian (Normal) distribution have a Students-t 

• 
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distribution. 

A sample data distribution Is not adequate for such a determination. 

This usually means that the Identification of this distribution must be 
derived from physical-chemical, or mathematical principles rather than from 

examination of data sets. 

The existence of a sample variance does not mean that a corresponding 

population variance exists. This can be very confusing for the Cauchy 

distribution. Mathematical statistics teaches that the Cauchy distribution 

can be recognized by the fact that It has no variance, and yet a sample 

variance can always be computed for any sample from a Cauchy distribution. 

Why doesn't the sample variance tel I us something about the parent 

distribution? An experiment can explain this unexpected characteristic of 

the Cauchy distribution. Suppose you were to take a series of samples, of 

Increasingly larger size, from both a Gaussian and a Cauchy distribution, 

calculate the sample variances, then plot them against sample size. You 

would discover that for the Gaussian distribution the sample variances 

converge to the population variance as the sample size gets large. 

However, for the Cauchy distribution no such convergence wll I be seen. The 

sample variance wll I Increase In an unbounded way as sample size gets 

large. This suggests that the variance Is Infinite for Infinite-sized 

samples from a Cauchy distribution. It can be shown mathematically that 

this Is true. These results of comparing sample variances of the Cauchy 
and Gaussian distributions could have been predicted from theormes of 

mathematical statistics. These theormes require a great deal of background 

to use, but the general Ideas can be explained simply. First one must 

distinguish between sample variances and the variance of the population 

from which the sample was taken. 

The population variance Is defined as the second moment about the 

mean, u. Formally, for a statistical density function f(x), the variance v 

Is: 
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+co 

V = !(X-u )2f(x)dx • 

-co 

When f(x) is replaced by the formula for a particular density function and 

the integration is performed, one may find that the variance is degenerate, 

Infinite, or some other Intractable mathematical phenomena. One Is then 

led to ask how the commonly used estimator of the variance was obtained? 

This estimator Is: 

A 2 2 
v = S = r (x-x) / (n-1 ) 

This formula came from assuming f(x) to be the Gaussian density function. 

First the Gaussian density f(x) was substituted into the above Integral to 

show that the variance existed, and Is equal to that parameter of f(x) that 

has been named the variance. Then the maximum I Ikel I hood equations for a 

sample from a Gaussian distribution were solved In order to express the 

variance estimate In terms of sample data values. Finally the equation 

derived from maximizing the I Ikel I hood function was adjusted to be 

unbiased. This yielded the common formula for estimating the variance. It 

Is Important to note that the sample variance estimates a parameter of the 

Gaussian distribution and that other distributions do not contain this 
parameter. Often, but not always, an algebraic relationship can be found 

so that the sample variance can be used to estimate a parameter of a 

non-Gaussian distribution. The existence of such an algebraic relationship 

does not Imply that the estimated parameter Is a variance, or even that 

such a parameter measures the spread of a distribution. The sample 

variance has come to be used as a descriptive measure of the spr-ead or 

amount of variability In a data set. It Is convenient and usefu I for this 

purpose, but this uti Iity does not Imply any ut I I Ity as a parameter 

estimator. 

" 
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3.4 RELATIONSHIPS AMONG EXTREME VALUE DISTRIBUTIONS 

The three extreme value distributions are related through logarithmic 

transformations. These transformations al low extreme values from both the 
Cauchy and Welbul I families to be analyzed using statistics derived from 

the Exponential family. Because of these relationships, the extreme value 

distribution derived from the Exponential family Is usually cal led 'the 

extreme value distribution'. 

A logarithmic transformation of the data converts a Cauchy type 

extreme value to an Exponential type (Sarhan and Greenberg, 1962). 

Formally, If y has a Cauchy type extreme value distribution, then x=ln(y) 

has an Exponential 

natural logarithm). 

easily be confused 

type extreme value distribution ('In' denotes the 

This simple relationship of types of extremes could 

with the relationship between the Gaussian and 

Log-normal distributions. Both the Normal and the Log-normal are members 

of the Exponential family of distributions. Extreme samples from these two 

distributions have extreme value distributions of the same form but with 

different parameters. Since the logarithms of a Log-normally distributed 

sample can be analyzed as a Gaussian distributed sample, algebraic 

relationships can be found between the parameters of these two 

distributions and the parameters of corresponding extreme value 

distributions. The logarithm of the extreme value from a Log-normal 

distribution Is equivalent to the the extreme value from the corresponding 

Gaussian distribution. 

The logarithms of the samples from a Cauchy distribution do not have a 

Gaussian, a Log-normal, or any other wei I known distribution. Nor do the 

logarithms of the extremes from a Cauchy type distribution correspond to 

the extremes from a Gaussian distribution In any definitive way. However 

the logarithms of the extremes from a Cauchy type distribution do have the 

same form of extreme value distribution (with unique parameter values) and 

thus the same general statistical properties as the extremes of any members 
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of the Exponential family. 

The logarithmic transformation for extremes from the Weibull fami Iy 

are somewhat more complicated. Some of the parameters of the extreme value 

distrlbutlom must be known or estimated before the logarithmic 

transformation can be applied. Let z be the var-Iable with the Welbull type 

distribution. Let x be the variable with an Exponential type extreme value 

distribution, derived from z through some logarithmic transformation. Also 

let w be an upper bound on z (a reflection wll I be obvious for bounding 

from below). Two parameters are used In this transformation: u Is the 

mode of the x's, and v Is the mode of the z's. The transformation Is 

(Sarhan and Greenberg, 1962): 

x = I n ( !-:-~) + u 
W - Z 

This transformation Is not easy to use because the values of u and v are 

usually unknown. The value of the bound, w, mayor may not be known. 

Often the value of w Is fixed by physical-chemical principles. 

Modern computer algorithms for generallze,d functional maximization 

such as the Simplex method CO'Nelll, 1971) can be used to sImultaneously 

maximize the likelihood that x has an extreme vcilue distribution and also 

to find the maximum likelihood estimates of u, v, and, If needed, of w. 

This algorithm will be used In the examples glve,n in subsequent chapters. 

In order to use the Simplex method one must know computer programming and 

have access to a general purpose scientific computer. 

' .. 
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3.6 APPENDIX 3-A 

Distributions and Densities 

Exponent! a I 
Ra nge: 0 < x < + 00 

Mean = Standard Deviation = 1/b, b > O. 
Mode = 0, Median = In(2)/b 

Density 

f(x) = b*exp(-b*x) 

Distribution 
F(x) = - exp(-b*x) 

Cauchy 
Range - 00 < x < + 00 

Location parameter = a, the median and mode. 
Scale parameter = b. 
(P I = 3. 1 41 59 ••• ) 

Density 

f(x) = 1/(PI*b«(x - a)/b)2 +1) 

Distribution 

F(x) = 1/2 + PI-1*atan«x - a)/b) 

Welbu I I 
Range 0 < x < + 00 

Scale parameter = b, b>O 
Shape parameter = c, c>O. 

Dens Ity 
c-1 c f(x) = (c*x /b *exp (-(x/b) ) 

Distribution 
F(x) = 1 - exp(-(x/b)c) 

Page 3-12 
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CHAPTER 4 
COUNTING EXCEEDANCES 

4.1 INTRODUCTION 

The statistical theory used for studying exceedances Is a union of 

many parts of statistics, some old and some new. The discussion In chapter 

2 shows that exceedances are at the nominal measurement level. That Is, 

the data consists of a count of events classified as extreme or exceeding a 

fixed criteria. Statistical methods for analyzing nominal data are some of 

the oldest, and are associated with the origins of statistics. Statistics 

and probability started In the eighteenth century when wealthy gamblers 

called upon mathematicians to determine the correct odds In their games, so 

they could find the best bettl ng strategies. From this beglnlng, 

probab I I I ty theory developed what Is now ca I led the Bernou I II c I ass of 

distributions. This class Includes the Binomial, Negative B i nom i a I, 

Multinomial, Geometric, Hypergeometrlc, Pascal, and Poisson distributions. 

The statistics of exceedances are nonparametrlc or distribution free 

since the 

continuous 

methods require 

distribution. 

only 

It Is 

nom ina I 

assumed 

level data from an underlying 

that the observations are 

Independent and that the parameters of the underlying distribution do not 
change (over time) or that they change In a known way. The basic problem 

Is to forecast the average number of cases that wll I exceed a specified 

value within the next N trials (or time periods) • 

The Bernoul II class wll I be emphasized and, In the next chapter, 

Exceedances distributions and statistical tests derived from them. These 

distributions consider counts or frequencies of extremes, and the time or 

number of samples between occurrences of extremes. They al low estimation 

of how often extremes may occur. They do not consider the magnitude of the 
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extremes. Many appl led problems work with limited and unreliable data. 

Using the statistics of counts or frequencies al lows the derivation of 

useful conclusions with a minimum of underlying assumptions. 

A critical factor In the use of Bernoul I i distributions Is that the 

parameters of the distribution are ~ ~stants. In tossing a coin, 

throwing dice, or dealing cards, the probability of winning or losing can 

be determined exactly. Although substantial algebra may be requIred to 

determine these probabilities, they are mathematical consequences of simple 

wei I known physical facts: two sides to a coin, six sides on a die, 52 

cards In a deck, and so on. 

In the study of exceedances the probabl I Ity of an exceedance occurring 

usually cannot be estimated as accurately as In a gambl ing situation. 

Typically the probability of an extreme event must be estimated from 

limited past data using the assumption of no time dependent changes, or 

from concomitant data which has measurement error. The Bernoul II 

distributions may be used when substantial Information Is available so that 

the probability of an exceedance occurring Is wei I established. When this 

probability must be estimated from data and there Is significant error In 

the estimate, the Bernoul II distributions should not be used. When error 

Is significant a version of the 'Distribution of Exceedances' should be 
used. This distribution was first publ ished by S. S. Wllk in 1927 (Wilk, 

1942). Note that the distribution of exceedances came along two centuries 

after the Bernoul I I distrIbutions. The Distribution of Exceedances is the 

topic of chapter 5. 

4.2 THE BERNOULLI DISTRIBUTIONS 

This section reviews relationships between the common Bernoul II 

distributions. Elementary statistics and probability textbooks provide 

additional details. The best known of these distributions Is the Binomial, 

which gives the probability of the number of 'successes' In a fixed number 

.. 

a, 



• 

, 

COUNTING EXCEEDANCES Page 4-3 

of trials In which sampling with replacement Is assumed. When there are 

more than two kinds of outcomes (e.g. highly pol luted, slightly pol luted, 

and not pol luted), the Binomial generalizes Into the Multinomial 

distribution. When sampling Is without replacement, the probabl I Ity of an 

outcome changes as each sample Is taken, such as In the game of Bingo. 

Then the correct distribution Is the Hypergeometrlc. 

Instead of counting the number of successes In a fixed number of 

trials, suppose the number of successes Is fixed and the number of trials 

Is counted. The Geometric distribution counts the number of trials 

necessary to achieve the first success. For example, with a specified 

probability of a pollution episode, the Geometric distribution would count 

the days between episodes. The Pascal distribution Is the extension of the 

Geometric distribution that counts the number of trials to achieve the min 

success rather than the first success. The extensions to sampling without 

replacement have not been named but are discussed In probability textbooks. 

The negative Binomial distribution Is a variation of the Pascal. It counts 

the number of failures before the m±h success while the Pascal counts the 

number of trials up to and Including the mth success. 

There are also two Important asymptotic extensions that start with the 

Binomial distribution, and consider what happens as the number of trials 

becomes very large. When the probability of success remains constant and 

the number of trials approaches Infinity, the Binomial distribution 

asymptotically approaches a Gaussian (Normal) distribution with mean value 

Np and variance Np(1-p). N is the number of trials and p is the 

probability of success. In practical applications this approximation has 

been found reasonable for values of N as smal I as 20 If P Is not very close 

to zero or one. In extreme value problems p Is usually close to zero, so 

one should be cautious about using this approximation. 

The second asymptotic situation Is one In which the probability of 

success decreases as the sample size Increases In such a way that the 
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product is constant. That Is, as N -+ co and p -+ 0, then Np -+ c, where 

c is a constant. This asymptote yields the Poisson distribution with 

parameter c. The Poisson distribution Is commonly cal led the distribution 

of rare events. More correctly, It should be cal led the distribution of 

the number of rare events because It is a distribution of how often rare 

events occur, not of the magnitude of rare events. A more comprehensive 

reference to statistical distributions Is Hastings and Peacock (1974). 

These distributions are also Included In the comprehensive statistical 

reference by Beyer (1966). 

4.3 EXAMPLES USING THE BERNOULLI DISTRIBUTIONS 

Example 1 

A large Industry claims that It emits pHrceptlble smoke from Its 

Incinerator on 5 or less percent of the days. The city In which the 

Industry Is located has hired a consultant to Investigate this claim. The 

consultant monitors the stack on 20 randomly chosen days over a summer and 

uses the decision rule to accept the Industry claim if smoke Is observed on 

zero or one observation day, and reject the claim If smoke Is observed on 

two or more days. The consultant chose this claim because one day Is 5% of 

20 days of sampling. What Is the probabi I tty that the consultant wll I 

reject the Industrial claim even though it Is correct? What Is the 

probability that the consultant will accep-j" the claim If the true 

probability Is 0.1? The first of these questions concerns binomial 

confidence Intervals, and the second concerns binomial power. 

A table of binomial probabilities Is used i"o answer these questions. 

Table 4.1 is a portion of such a table; N is the sample size and X Is the 

observed frequency of success. The body of the table contains the 

probabi Iity that X successes occur In N trials where N=20. The columns of 

the table correspond to the probability of X successes In 20 trials with 

.. 
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the true probability of success equal to 0.05 and 0.10 • 

I8Bll W 
P(x successes In N=20 tr I al s) 

X 0.05 0.10 
---------------------
0 .3585 .1216 
1 .3774 .2702 
2 .1887 .2852 
3 .0596 .1901 
4 .0133 .0898 

The probability of zero or one success If the true probability of each 

success Is 0.05 is the sum of the first two enterles In the 0.05 column, 

.3585 + .3774 = .7359. The probabi I Ity Is 1.0 - 0.7359 = 0.2641 that the 

consultant wll I reject the Industry claim even though it Is correct. Thus, 

the consultant has about a 26% chance of making an error against the 

Industry. What should the consultant's rule be for him to have less than a 

5% chance of making this error? Continue adding up the 0.05 column and 

subtracting the total from one until the answer Is less than .0500. If his 

rule Is to accept the Industry claim If 0, 1, 

observed, his error probability Is about 0.08. 

or 2 smokey days are 

If his rule Is 3 or less 

smokey days his error probability Is about 0.02. Thus to keep his error 

rate under 5% the consultant should not reject the Industry claim until he 

observes smoke on more than 3 of his 20 days of observation. 

Solving the same problem using a true probability of observing smoke 
of 0.10, no smoke In 20 observations wll I then occur with probability 0.12, 

smoke on 0 or 1 day would occur with probabi I Ity 0.39, and on 0, 1, or 2 

days with probability 0.68. Using the consultant's original rule, there Is 

a probability of 0.39 of erroneously accepting the Industry claim of 0.05 

when the true probability of smoke Is 0.10. Thus, for the original rule, 

the consultant has a 55% chance of making some kind of error (1 (1 
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.26)(1 .39) = .55). If the consultant protects himself against 

erroneously rejecting the Industry claim by changing his rule to 3 or more 

days, he w II I erroneous I y accept with probab i I Ity 0.87 when the true 

probability Is 0.10. 

The consultant should obviously take more than 20 samples In order to 

control both kinds of errors. The steps In i-his example can be repeated 

for successIvely larger sample sIzes until a sample size and decision rule 

Is found to give acceptable probabilities for" both kinds of errors. For 

larger samples, the normal approximation to the binomial Is useful. 

I tIs I mportant to see exact I y how th lSi examp I e re I ates to the 

assertion that the Bernoul II distrIbutions can be used only with known 

parameters. Here a known va I ue for the ~Irobab i I Ity of success Is 

hypothesized, and data sets are compared wIth this hypothesIs. The basIc 

questIon was: could thIs data have come fran a Bernoul I I dIstrIbution with 

the hypothes I zed parameter? The probab II Ity clf success was not estl mated 

from this data set (or any other data set of similar size). 

Example 2. 

Suppose a city must decIde where to put a rew sewage treatment plant. 

It has two possible Sites, A and B. If A Is chosen, the cost wll I be much 

higher, and If B is chosen, residents might object to the odor. The city 

council decides that B is acceptable If odors can be detected on five or 

fewer days of a year. The city engineer has good meteorological data and 

finds that the wind blows from the B site over residential areas onl .4% of 

the days of the year. Most available tables of the Binomial distribution 

do not go beyond a sample size of 20, and calculating the binomial function 

for samples of 365 would be tedious. ThIs Is a situation where the Poisson 

approximation to the Binomial can be used since the sample size Is large 

and the probability of success Is smal I. (Recal I that the GaussIan 

.. 
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approximation to the Binomial is used when the probability of success does 

not get sma I I with increasing sample sizes.) 

The parameter of the Poisson distribution Is found by multiplying the 
Binomial probability of success (p) by the number of trials (N). In this 

example Np = 365*.014 = 5.11. This parameter Is both the mean and the 

variance of the relevant Poisson distribution, so the standard deviation Is 

2.26. For plant site B there should be a yearly average of just over 5 

days (exactly 5.11 days) of odor from the proposed plant. Hence, there Is 

about a 50% chance that the city council's criteria wll I be satisfied In 

anyone year. The city council might not consider this statistic much help 

In decision making. A 95% confidence Interval can be approximated on the 

number of days of odor per year by taking the mean plus and minus two 

standard deviations, 5.11 ± (2)(2.26) or 0.59 to 9.63 days. A confidence 

Interval on Poisson observations should be stated as Integers (without 

fractional parts). Hence, there Is approximately a 0.95 probability that 

odor from site B wll I be detected by residents at least once but less than 

10 times In a year. 

Using a table of Poisson probabl I Itles, It Is easy to check the 

accuracy of this approximate confidence Interval. Such tables are found Tn 

most statistics text. One section of such a table Is reproduced as Table 

4.2. The X column Is the number of successes. The next column contains 

the probability of exactly X successes if the Poisson parameter is 5.1. 

The last column Is the cumUlative sum of the probabi I Itles and Is thus the 

probability of X or fewer successes • 
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Poisson probabi Iities for a ml3an of 5.1 

cumulative 
x probe probe 
----------------------
0 .0061 .0061 
1 .0311 .0372 
2 .0793 .1165 
3 .1348 .2513 
4 .1917 .4232 
5 .1753 .5985 
6 .1490 .7475 
7 .1086 .8561 
8 .0692 .9253 
9 .0392 .9645 
10 .0200 .9845 

This table Indicates that the confidence Interval approximations are 
somewhat In error. First consider the mean. Previously a 50 - 50 chance 

was assumed that an annual count of odorous days would be below the mean of 

5.1. The last column of Table 2 shows that the objectional odor has almost 

a 60% chance of occurring on 5 or fewer days per year. Perhaps the city 

counci I would accept 60 - 40 odds but not 50 - 50 odds of meeting their 

criteria. The mode of the distribution Is 4, that Is, observing 4 days of 

odor per year has the highest probabl I Ity of al I outcomes. The 95% 

confidence Interval Is obtained by studying thH cumulative probabilities 

column and picking a set of X values for which the cumulative probabi Iity 

Is between 2.5% and 97.5%. This gives 1 to 9 days rather than 1 to 10 days 
as found by the approximation. 

Symmetric confidence bounds are used mainly out of habit learned from 

working with continuous distributions. With continuous distributions a 95% 

confidence Interval Is obtained with the Interval from exactly the 2.5% 

va I ue to exact I y the 97.5% va I ue. A 95% I nterva I can a I so be obta I ned from 

1% to 96%, or many other combinations. To choose between these many 

alternatives It Is assumed that symmetry about the mean value Is a 

... 
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desirable attribute of confidence Intervals. Since the Bernoul I I 

distributions have discrete Jumps In probability, exact symmetry or exactly 

95% confidence levels cannot usually be aChieved. The confidence Interval 

of 1 to 9 successes Is chosen on the basis of getting as close to symmetry 

as possible; that Is, choosing the endpoints as close as possible to 2.5% 

and 97.5%. An examination of the cumulative probability column of the 

Poisson table shows that a 92.7% conf Idence level Is actually achieved 

(96.45% - 3.72% = 92.73%). To find the true confidence level of the 1 to 

10 successes derived from the approximation, subtract the cumulative 

probability of one success from the cumulative probability of 10 successes 

to get 94.7%. This Is much closer to the desired 95% level than Is the 

Interval of 1 to 9 which was chosen for symmetry. The Interval of 0 to 9 

successes has an exact confidence of 95.8%. This example shows that there 

Is some leeway In specifying confidence Intervals for discrete 

distributions because no single criteria for choosing endpoints Is 

universally applicable. 

Four different Intervals for this sample data have been Illustrated. 

AI I are reasonable 95% confidence limits. The first was obtained from 

asymptotes. The second, from exact probabilities restricted to be as close 

to symmetrical (In probabi I Ity) as possible. The third was from exact 

probabilities as close to 95% as possible. The fourth was from exact 

probabilities and was as close as possible to a confidence Interval with ~ 

laas± 95% probability. It Is Important to Indicate the criteria used to 
choose confidence Intervals of discrete distributions. 

4.4 SUMMARY 

This chapter discusses counting extremes when the probability of an 

extreme value occurring Is wei I establ ished. This situation Is handled 

statistically with the wei I known Bernoul I I class of distributions. 
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The logical relationships between the membE~rs of the Bernoul II class 

were reviewed, and their uses were II Justrated. The critical condition for 

use was emphasized; that the probability of thEl extreme occurring be known 

without significant error. -
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CHAPTER 5 
DISTRIBUTION OF THE NUMBER OF EXCEEDANCES 

5.1 INTRODUCTION 

Suppose a Bernoul I I trial situation but the probabl I Ity of a success 

Is not known. It Is necessary to estimate this probability from historical 

data. Historical data often Is of poor quality or badly documented. Such 

estimates of probability obviously Introduce a source of error In addition 

to sampling error. Sampling error Is the only source of error assumed to 

exist by the Bernoul Ii distributions. 

The formal solution of this problem can be found In the 'Bayesian 
Estimation' sections of contemporary mathematical statistics textbooks. 

First a compound, conditional distribution of the binomial event Is derived 

given that the binomial probability parameter Is a random variable. Then, 

the marginal distribution of the event may be derived by Integration. This 

requires that the distribution of the parameter Itself be known. The early 

workers In extreme value theory didn't have the tools of modern Bayesian 

theory. However they essentially performed the same steps In the 

derivation outlined In the next section. 

5.2 DERIVING THE DISTRIBUTION 

The early workers in extreme value statistics found a way of 

circumventing the explicit estimation of the probability of success from 

data. Their method has the desirable attribute of being nonparametrlc. 

Instead of expl icltly estimating the probabi I Ity of an exceedance or 

choosing a criteria for classifying observations as extremes, they 

expressed the unknown distribution parameters as functions of past 

observations. A historical or reference data set Is examined to determine 



DISTRIBUTION OF THE NUMBER OF EXCEEDANCES Page 5-2 

how many values In this data set exceed a criteria. The criteria Is 

expressed as the rank of the observation in the reference data set that Is 

closest to the criteria. The question to be answered Is: In how many 

cases, x, wll I the m1h observation out of a toted of n observations In the 

past data be equal led or exceeded In N futLre trials? The n reference 

observations are assumed ranked so that m=1 denotes the largest 

observation, and m=n Is the smallest. ThereforEt the m1h observation Is the 

min largest. A symmetry wll I be obvious so one could rank from the bottom 

and consider smal I observations. Because of this symmetry, only large 

extreme values will be discussed In detail. Noi'e that all available sample 

values are used, the extremes are not picked oui' for analysis. 

The sample size for which the forecast Is wanted, N, Is often not the 

same as n, the sample size of the reference data. The number of cases, x, 

called the number of exceedances, Is a new statistical variate. Its 

density Is denoted by w(x;n,m,N) where n, m, and N are parameters. The 

starting point Is a special case of a distribution studied by Wllk (1942). 

A dichotomy Is constructed based on the 1Tcth. largest of the past n 

observations. The probability of a new data value being less than the min 

past value Is denoted by F and Is unkn~n. The probability of an 

exceedance Is 1-F. This Is a Binomial situation except that the 

probability of a success (exceedance) Is unknown. If a Binomial 

distribution with F as the probability of success Is formulated and 

Integrated over all possible values of F, density of Exceedal1ces Is 

obta I ned. 

N 
(5.1) w(x;n,m,N) LW= 1.0 

x=O 

where 0 ~ x ~ Nand 1 ~ m < n. The large brackets represent the binomial 

coeff I cl ent: 

" 
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The usefu I symmetry for extreme sma I I va lues is: 

(5.2) w(x;n,m,N) = w(N-x;n,n-m+1,N) • 

The cumulative density or distribution Is denoted by W(x;n,m,N) where 

values of ware summed from 0 to x. 

Restated In words, w Is the probability that there wll I be exactly x 

values In a new sample of size N that wll I equal or exceed the m±h value In 

the reference sample of size n. For W, 'exactly x' In the previous 

sentence Is changed to 'x or fewer'. 

Nothing Is assumed known about the variate from which the two samples 

were taken except that It Is continuous and does not change between the 

time of the two samplings. Thus the distribution of Exceedances Is 

distribution free or nonparametrlc. 

The probability Is 1/2 that the largest (m=1) of N reference 

observations wll I not be exceeded (x=O) In N future observations. 

N! N! --------*--------
w{O;N,1,N) 11 (N-1) 1 O!(N-O) 1 ----(2N=rrr------

2N*-------------O! (2N-1 -0) 1 

Since N!=N(N-1 >I, this formula simplifies to: 

w = 
~£~=lll * ~l 

(N-1)! N! N 
= = 

;~-;-I~N:III 2N 
(2N-1 ) I 

1/2 
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The probabi I Ity that the largest of N past observations wil I always be 

exceeded can be calculated using x=n, or more simply by using the Inverse 

probab II Ity: 

P(always) = 1 - P(never) = 1-1/2 = 1/2. 

By symmetry It Is clear that the sma I lest of N past observations has a 

probabi I Ity of 1/2 of never or always being exceeded In N future 

observations. 

The formula for w reveals some Interesting aspects of the Exceedances 

density for special values of x, m, n, and N. The probability that the m.:th 

largest value from n Initial observations will be exceeded at least once In 

N new observations Is: 

(5.3) P(x ~ 1) = 1 - _~li~~=ml!_ = 1 - P(x = 0) 
( n-m) I ( N+n ) I 

When m=1 this Is the probabl I Ity that the largest value from the Initial 

distribution wll I always be exceeded In N new observations, and Is: 

(5.4) P = 1 - _Q- = -~­n+N n+N 0 

The probability that all N of the new obsE!rvations will exceed the 

largest (m=1) of the original n observations Is given by: 

(5.5) _ n!*N! 
w(N;n,1,N) - (N+nrT 

This Is a very smal I probability for even smal I values of nand N. 

If n (the reference sample size) Is odd, then m=(n+1)/2 corresponds to 

the median of the Initial variable. From the definition of median, It Is 

'. 
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equally probable that the median of n past observations is exceeded x or 

N-x times in N future trials. The density of the number of exceedances 

above the median is symmetrical. 

5.2.1 Example: Design of Experiments 

Formulas 5.1 through 5.4 can be used to design an experiment to 

approximate the "worst case condition". The number of observations to 

take, n, such that x or more values greater than the largest of these n 

wil I occur with probability p in N future observations can be calculated 

from these equations. Typically x and p are set small. When N Is known 

equation 5.1 can be solved by summing over the values of x. If x Is 

restricted to x=1 then the problem is simplified since no summation Is 

needed, and equation 5.4 can be used. Suppose a 90% chance that weekly 

pollution maxima wil I not exceed the largest value in a reference data set 

Is desired. How many weeks of data should be collected to obtain this 

maximum value? To use formula 5.4 this 90% must be stated as a 10% chance 

of observing one or more values larger than the largest of the reference 

data set. Solving equation 5.4 for n with p=0.1 gives n=9N. Thus, If the 

maximum of 9 weeks of data Is taken, there Is a 90% certainty that another 

single (N=1) weekly maximum wll I not exceed this value. For a 90% 

certainty for al I the weekly maxima over a year, 9 years of data Is needed. 

5.3 MOMENTS OF THE DISTRIBUTION OF EXCEEDANCES 

The moments of this distribution may be obtained from properties of 

the hypergeometrlc and binomial functions (Gumbel I, 1958, section 2.2.2). 

The mean number of exceedances over the m1h largest value In N future 

trials Is: 

(5.6 ) - N x = m*---m n+1 
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The mean number of exceedances over the smal lest value (m=n) Is n times the 

mean number of exceedances over the largest value (m=1). Clearly the mean 

Increases with m. If N=n+1, the mean number Ism. If n I s odd and m = 

(n+1)/2, the mean number of exceedances over the median is N/2. If both n 

and N are large, the mean number of exceedances over the largest value is 

approximately unity. 

The varl ance of the number of exceedances over the m1h I argest va I ue 

Is: 

(5.7) V m*N*(n-m+1)(N+n+1) 
m = (~~2)(~~~)2------

From this formula It can be seen that thEl variance Increases with 

Increasing N and decreases with increasing n. The variance Is maximum for 

m = (n+1)/2; that Is, for the median of the original observations. 

The quotient of the variances of the number of exceedances above 

(greater In magn I tude) the med I an, and above thE! extremes Is: 

(5.8) 

Consequent I y, the var I ance of the number of excE!edances above the med I an Is 

about n/4 times as large as the variance of the number of exceedances above 

the extremes. In this sense, the extremes arE! more rei lable than the 

median and this quality Increases with increasing sample size. 

The variance of the exceedances Is largE!r than the corresponding 

binomial variance because the probabl I Ity Is a known parameter for the 

binomial case, while for exceedances only the rank of the observation, m, 

that corresponds to the probability Is known. For N=n+3 the variance of 

exceedances Is approximately twice the variance of the corresponding 

Binomial distribution. 

, ' 
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The coefficient of variation, CV, Is obtained from: 

(N+n+1) (n-m+1) 
(5.9) 

N(n+2)m 

The fol lowing simple example using these formulas shows the effect of 

sample size on the accuracy of estimates. Suppose 9 readings of radon 

exposure to workers who have Just finished working In an Isotope storage 

building. Compute an estimate of how many of the 20 workers on the next 

shift wll I be exposed to more than the mean of the previous shift. Using 

formula 5.6 with N=20, n=9, and m=5 (the middle reading of the nine) gives 

a mean number of exceedances of 10. This Is, of course, Intuitive since 

the means of the past and future groups should be the same. If some change 

In exposure Is suspected and a simple test for such a change Is to be done, 

formula 5.7 could be used to obtain a standard deviation on the count of 

exceedances and If the actual count Is more than two standard deviations 

from the expected count one would conclude that a ch ange occur red. 
However, such a test may not be possible with small samples because the 

relative accuracy Is large. Using formula 5.9 for this example yields a 

relative accuracy or coefficient of variation of 37%. This says the mean 

cannot be estimated very wei I. Ten workers times 37% Is about 4, two 

standard deviations would be 8 workers. Thus a mean plus or minus two 

standard deviations would include a larger range than the sample size 

Itself, not a very useful statistic. 

If there had been 900 workers on the previous shift, and 2000 on the 

next, formula 5.4 can be applied to get a mean of 1000. Formula 5.9 gives 

a coefficient of variation of 4%, showing that the relative accuracy has 

increased greatly. The mean -times the coefficient of variation gives a 

value of 40 workers. So while the relative accuracy Increases, the 

absolute accuracy decreases • 
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The median number of exceedances Is found by summing values of 'If over 

Increasing values of x until the cumulative pr'obability Is 1/2. Let M be 

the value of x that corresponds to the median. Then the median can be 

found by solving the fol lowing equation for m. 

M N 
(5.10) E w(z;n,m,N) = 1/2 = )'w(z;n,n-m+l,N) 

z=O z=~M 

Such a number need not exist. 

1/2, and the distribution 

For example, If N=n, then w(o;n,l,N) exceeds 

of the number of E~xceedances over the largest 

value does not posses a median. 

5.4 EXAMPLE: Nitrous Oxides In Urban Air 

Typical nitrogen oxide levels for urban areas were used to sImulate 

the data In the fol lowing computational example. 

Suppose a small Industrial area has a good air pollution control 

system. Their regulations require that some ty~es of Industrial operations 

shut down until weather conditions change when cally nitrogen oxide levels 

exceed 0.1 part per mil lion. From the previous summer's data one finds 

that 90 dally measurements were made and on 12 of these days the criteria 

was exceeded. During the coming summer how mary times per month (30 days) 

should the Industries expect to have to shut do~n? 

Using Formula 5.6, the mean number of exceE!dances Is estimated to be 

3.95. Formula 5.7 gives a corresponding standar'd deviatIon of 2.13. These 

give an approximate 95% confidence Interval of -.21 to 8.12 exceedances. 

Rounding this Interval to the nearest Integers gives 0 to 8 exceedances. 

These approximations can be checked using formula 5.1 to compute the 

exact probab I I Ity of any specl f led number of exceedances. Let nF12, N=30, 

n=90, and x vary from zero to 12 or 15 to Include all Significant 

~ 

, -

'. 
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probab i I It I es. The computational difficulties caused by large factorials 

are a significant consideration with these formulas. In such a sequence of 

probabi I Itles a recursive formula can often be found for obtaining a 

probabi I ity In a simple way from the previous member of the series • 

Formula 5.1 we can be used to compute the probabi I Ity, w, for x=O, then the 

only part of the formula that changes for values of x=1,2,3, ••• Is the 

bottom term in one of the binomIal coeffIcIents of the numerator and In one 

of the denomInator. A little algebra with binomial coeffIcients shows 

that: 

C) = C~l) * I-J+1 --)--

This formula gives a simple recursive relationship for calculating 

successive val ues of w as x increases sequentl ally. The numerator and 

denominator of formula 5.1 are each multlpl led by a simple fraction. This 

was done to produce Table 5.1. 

IA6.I.f. 2.a.1 
Distribution of Exceedances for 

Nitrous OxIde Example 

X Probab i I Ity 
o .02598 
1 .08660 
2 .15256 
3 .18806 
4 .18134 
5 .14507 
6 .09977 
7 .06036 
8 .03265 
9 .01596 
10 .00711 
11 .00290 
12 .00109 
13 .00038 

Cumu I atlve 
fI:.Q.b..... 

.02598 

.11258 

.26514 

.45320 

.63454 

.77961 

.87938 

.93974 

.97239 

.98835 

.99546 

.99836 

.99945 

.99983 
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For values of x greater than 13 the probabi I Itles become so smal I that 

these numbers of exceedances are of no consequElnce. This table shows that 

the mode occurs at x=3 (the largest single probability). The median can be 

found by Interpolating between x=3 and x=4 to find a "point" at which the 

50% cumulative probability would occur; this value is 3.26. The 

theoretical mean can be found by summing i"he product of the number of 

exceedances mu I tip I I ed by the correspond I ng probab i I Ity; th I s sum Is 

3.952, very close to the answer given by for'mula 5.6. The variance can 

likewise be calculated from formulas for the second moment about the mean. 

The variance thus estimated Is 4.46, which ylulds a standard deviation of 

2.11. This Is close to the value given by formula 5.7. 

This table can also be used to find conf IdElnce limits on the number of 

exceedances expected In a future 30 day perioel. Suppose a 95% confidence 

I nterva I I s of Interest. The tab I e I s searched for va I ues of the 

cumulative probabi Iity close to 0.025 and 0.975. For x=O the probability 

slightly exceeds 0.025, so this value of x should be Included In the 

Interval. Now the 0.95 point rather than a 0.975 point Is required because 

the Interval does not exclude any values at the lower end. This leads to 

two chol ces for the upper end, 7 or 8 exceedancEls. Seven exceedances has a 

cumulative probability of 0.94 which is closer' to 0.95 than the 0.97 

cumu I at I ve probab i I I ty assoc I ated with 8 exceElda nces. However 8 wou I d be 

chosen If the conf Idence Interval Is to be ..a..t lilaSi 95%. There Is ,another 

possibility. The Interval 1 to 8 exceedancesi has a probability of 0.946 

and this Is as close to 95% as can be achlElved. This Is a similar 

situation to that discussed In Section 4.3 where a variety of possible 

confidence Intervals was found when working with Bernoulli distributions. 

The simulation presented In the following para~lraphs suggest that the 1 to 

8 exceedances Is the best Interval, but generally, simulations do not 

provide a very strong justification. 

'. 

. -
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A simple computer program was written to perform 500 simulations of 30 

day nitrogen oxide readings and to count the occurrences exceeding 0.1 ppm. 

The results of this simulation are given In Table 5.2 • 

.I8B.I...E ~ 
Summary of Simulated Nitrous Oxide Exceedances 

Observed Cumu I atlve Observed Cumu I atlve 
Count Frequency Frequency Probab i I I ty Probab i I Ity 

---------------------------------------------------------------------------
0 8 8 .016 .016 
1 36 44 .072 .088 
2 65 109 .130 .218 
3 79 188 .158 .376 

4 98 286 .196 .572 
5 81 367 .162 .734 
6 56 423 .112 .846 

7 34 457 .068 .914 
8 23 480 .046 .960 
9 12 492 .024 .984 

10 5 497 .010 .994 
11 3 500 .006 1.00 
12 0 500 .000 1 .00 
13 0 500 .000 1.00 

The number of exceedances In 30 days of simulated nitrogen oxides 

measurements ranged from 0 to 11, with a mean of 4.30, a mode of 4, and a 

standard deviation of 2.25. The median can be approximated by linear 

Interpolation between the counts of 3 and 4 to find a value associated with 

a cumulative probability of 0.5. This value Is 3.63. 

Interval of 1 to 8 Is closest to 95% (actually 94.4%> • 

A confidence 

Table 5.1 gives the theoretical values that should occur In the 

probability columns of Table 5.2. The theoretical values of the mean, 

median, mode, and standard deviation are Just slightly smaller than the 

"observed" values. To see how wei I the data In Table 5.2 fit the 
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theoretical distribution, a Chi-square goodness of fit test can be used. 

First the probabilities In Table 5.1 are multl~'lled by 500 to get expected 

frequencies. These are compared with the observed frequencies In Table 5.2 

with the Chi-square test. The Chi-square valUE is 15.6 with 11 degrees of 

freedom. This corresponds to about an 85% confidence level, so the "fit is 

acceptable but not really good. The 11 degrees of freedom from the "14 rows 

In the tables Is a result of grouping rows for 10 through 13 to avoid smal I 

frequencies In the Chi-square calculation. 

5.5 SUMMARY 

The probability that the m±h largest among n observations wll I be 

exceeded x times In N future trials Is given by the Distribution of 

Exceedances. It Is analogous to a Binomial distribution except that the 

probability of success Is a variable quantity. The mean number of 

exceedances Is the same as the mean of the corresponding Binomial 

distribution. However, the variance 

for 

Is 

the 

larger. This variance of the 

median value of the Initial number of exceedances is largest 

distribution, ~nd smal lest at 

increases with sample size. 

I ts extremes. This advantage of extremes 

In 1/2 of al I cases the largest (or smal lest) of n reference 

observations wll I never (always) be exceeded in n future trials. 

" 

.. 
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CHAPTER 6 
~iORE ABOUT EXCEEDANCES 

6.1 INTRODUCTION 

The previous chapter Introduced a general form of the Distribution of 

Exceedances, emphasizing that this distribution Is a generalization of the 

Binomial distribution, but using an estimate of the probability of success. 

The asymptotic behavior of this distribution was not given for the case 

when the two sample sizes are large and rare exceedances are of Interest. 

These asymptotes are one of the subjects of this chapter. 

6.2 EXTRAPOLATION FROM SMALL SAMPlES 

It Is common with environmental studies to make rather sweeping 

statements about future events based on limited previous Information. In 

terms of the Distribution of Exceedances, this Is equivalent to assuming a 

large N and a smal I n. Typically m Is also smal I. Instead of using x, q = 

x/N, (0 < q ~ 1), the proportion of future exceedances Is used. Since N Is 

large, x and therefore q can be approximated as continuous variables. 

Gumbel I (1958, section 2.2.5) shows that the distribution of q Is given by 

(6.1> f(qon m N) = N*m*(n) ~lig~±m:llliu:g~±u:mll 
", m (N+n)l(qN)I(N-qn)! 

Stlrl lng's formula leads to the approximation 

(6.2) (n) m-1 n-m f(q;n,m) = m *mq (l-q) 

The associated cumulative distribution function Is 
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(6.3) 

q 

F = J f ( t ; n , m ) dt 

o 

Page 6-2 

The solution of this Integration Is a recursive Integral function of m and 
n. Appendix A shows how to find the value of --his Interval fran tables of 

the Incanplete Beta distribution. 

The probabi I Ity that at most some proportion q of the new observations 

wll I exceed the sma I lest of the n previous observations Is 

(6.4 ) F(q;n,n) = qn 

The probabi Iity that In a future large sample a-- most some proportion q 

wll I exceed al I of the old observations Is 

(6.5) F(q;n,1) = l_(1_q)n 

By symmetry this Is also the probability that at most a fraction q will be 

less than the smal lest value In the original sample. 

6.2.1 Example; Design of Experiments 

Formulas 6.1 through 6.5 can be used to design an experiment when N (a 

new sample size) Is unspecified but known to be very large. Suppose one 
wishes to collect enough reference data to get cl 90$ chance that a't most 

10$ of future data wll I exceed the largest valuEl In the reference data set. 

Using formula 6.5 this problem can be set up as 'q = 0.1 and F - 0.9. 

Solving for n 

o .9 = 1 - ( 1 -. 1 ) n or n = I og ( • 1 ) / I og ( .9) = 21.85 

Appl ylng this to the example of weekly air polldlon maxima, the maximum of 

26 weeks of data has a 90$ chance that, of al I future weekly maxima, only 

10$ wi I I exceed this maxima. 

... 
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6.3 THE LAW OF RARE EXCEEDANCES 

If both nand N become large, two special cases are of Interest. In 

the first, the rank m Increases with n such that the quotient min 

approaches a constant value, and the m1h value Is near the median. In the 

second, m Is constant and much smaller than n so that m Indexes extreme or 

rare values. 

For the first case consider the situation where n = N = 2k-1~ Since N 

and n are large then k also wll I be large. Then m=k is the rank of the 

median of the Initial distribution, and to a very close approximation, m = 

N/2 = n/2. Gumbel (1958, section 2.2.6) shows that for large Nand n, and 

m In the neighborhood of the median, the number of exceedances over the m1h 

value Is asymptotically Normally distributed with both mean and variance 

equal to k. This variance Is very large relative to the mean. This Is 

cal led the Distribution Qi Normal Exceedances. 

In the second case, Nand n are large, and m and x are smal I. 

shows that 

(6.6) w(x;n,m,N) ~ (X - ______ _ +m 1) nmNx 
\ x (N+n)m+x 

Gumbel 

The probability that the mih value Is never exceeded Is the situation where 

x~; 

(6.7) 

The probability that the largest value Is exceeded In x future observations 
Is 

(6.8) 
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This Is a geometric series decreasing with x. 

becomes 

(6,9) 
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When N=n, formula 6.6 

wh Ich is the asymptot Ic probab II Ity that the rnj:h I argest va I ue w I I I be 

exceeded x times In N future trials. This probability Is Independent of n 

and contains the single parameter m. Since m I~i small compared to n, this 

Is ca I led the .J...aw. .Qf .Ra.c.a Exceedances, and deno"i"ed simp I y as 

(6.10) w(x;m) = (X~-1)*(1/2)m+X. 

The probability that the largest value will be E!xceeded x times In future 

observations Is obtained by substituting m=l into 6.10, giving 

(6. 11) w(x,l) = (1/2)x+1 

It follows that the probability that the largest value previously observed 

wll I be exceeded at most x times In future observations Is 

(6.12) w = 1 - (1/2)x+1 

This probability converges rapidly to unity 

asymptotic formulas are useful because th~ 

sizes. But they can be misinterpreted If one 

as x Increases. These 

are Independent of sample 

forgets that they assume 

large samples for both the reference and the future data sets, and that the 

underlying distribution Is constant over time. 

The mean and variance of the distribution of rare exceedances can be 

obtained fram formulas 4.7 and 4.8. The mean Is m and the variance Is 2m. 

Thus, this distribution Is similar to a Poisson distribution except that 

the variance of rare exceedances Is twice thai" of a corresponding Poisson 

variate. The difference Is Intuitively JustlflE!d. If the Poisson law were 
• 
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appl led to rare exceedances, It must be assumed that the mean number of 

exceedances is known. With rare exceedances a sample estimate of this mean 

Is used. Consequently, the variance must be larger than for the Poisson 

case. 

Both the distribution of rare events (Poisson) and the distribution of 

rare exceedances may be standardized by y = (x - mean)/SD, so that y 

converges to a standardized Gaussian dlstrlbutlon. 

The variance of rare exceedances, 2m, Is much smaller than the 

variance of normal exceedances, N/2. The variance of rare exceedances Is 

smal lest for m=l, the largest value observed. 

6.4 RETURN PERIOD 

The concepts presented so far wll I now be used to develop useful tools 

for the next chapter, which Introduces the magnitudes of extreme values. 

The first of these tools Is the return period, Important when time ls a 

statlstlcal variable of Interest. Flood control engineers are Interested 

In the time Interval between floods; the mean of these Intervals Is the 

return period for floods. 

Consider flrst a discrete variate generator, for example 

probabl I Ity that any speclfled face occurs on a toss Is 1/6. 

dice. The 

Therefore the 

speclfled face Is expected, In the long run, and on the average, once In 

slx trlals. For a continuous variate there Is no probabll lty for any 

speclflc value of the variate, such as x, so a dichotomy Is constructed. 

The probabll lty of observations equal to or larger than x ls 1-F(x), where 

F Is the distribution (cumulative density) functlon of the variate x. 

Observatlons are made at regular lntervals of time and an experiment stops 

when a speclfled value X of x has been exceeded once. The probabll lty that 

thls exceedance happens on trial v ls to be found. The varlable v has a 

geometrlc dlstrlbutlon with probabll lty parameter p = 1-F(X). The return 
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period Is defined to be the mean value of v, denote this mean by T(x). 

-(6.13) v = -
p 

= T(x) = __ L __ 
1-F (x) 

The variance of T(x) Is T2-T, and the median number of v Is 

(6.14) .69315 _ ------7-- - 0.69315*T - 0.34657 -In(1-1 T) 

The mean Is about 44% larger than the median, and there Is as much chance 

for the event to happen prior to .69*T(x) as after. 

Every distribution has a return period fLnctlon, and every return 

period has an associated distribution. Thus 11' Is Incorrect to write down 

an arbitrary function and call It a return period. 

The return period Is most Interesting If observations are made at 

equidistant Intervals of time. Then the return period can be Identified as 

a number of observations. This Is the origin of the name. 

As an example, suppose a measurement Is mace dally and the largest 

val ue In one year Is of Interest. The return period Is the nlJllber of 

365-day periods (years) that would on the average elapse before an 

exceedance of the specified magnitude would OCCLlr again. 

The return period of the median is 2, of t~e upper quartile is 4, and 

so on. Starting at the median, the return period increases with increasing 

values of the variate. For values smaller than the the median, the return 

period Is smaller than 2. For the first quartile It Is 4/3. The return 

period converges to unity for decreasing values of the variate. 

The value of x for which the return period Is doubled, 0, Is found 

from 

.. 

.. 
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(6.15) F(D) = (1+F(X»/2 

Conversely, the return period of 2X is the solution for 

(6.16) T(2X) = 1/(l-F(2X». 

For a given distribution, F, 0 is obtained as a function of X, and T(2X) as 

a function of T(x) since X is a function of T. 

6.5 EXPECTED EXTREMES AND EXTRAPOLATION TO LOW DOSES 

Let F be the cumulative density function of the previous section, and 

let n be the number of observations In a (large) sample. Then a specific 

large value of the variate, cal I It u[nJ, Is uniquely defined by stating 

that Its cumulative probability Is defined by 

(6.17) F(u[nJ) = l-l/n. 

This equation Is another way of writing the return period since n Is 

analogous to T(x). The equation may be rewritten as 

(6.18) n(l-F(u[nJ» = 1. 

In this form the product on the left side Is the number of values equal to 

or exceeding u[nJ. Since this product is unity, u[nJ Is cal led the 

expected largest~. Note that the expected largest value Is not the 

mean largest value (which in the next section wil I be shown to be 

determined from F(u) = 1 - 1/(n+l) ). By symmetry the expected smal lest 

value is 

(6.19) F(u[lJ) = lin. 

The two percentiles u[nJ and u[l] are functions of n and differ for 

different distribution types and for parameter values within a given 

distribution type. If the Initial data distribution Is symmetric, the two 
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expected extremes are equal In size about the mean but differ In sign. 

Equation 6.19 Is used Impl icltly by authors who use the "weakest I Ink" 

argument to establ Ish environmental criteria. This argument contends that 

the criteria should be such that even the most susceptible of a population 

should not be affected by the pollutant. With an assumed form for F at 

small values of the argument, and an estimate 01 population size, 6.19 can 

be used, and u[l] becomes the basis of pollutant criteria. 

The current controversy about extrapolcltlon to low doses for 

carcinogenicity criteria can be Interpreted as a disagreement about the 

form of the density function F. Usually reasonclble arguments can be found 

to establ Ish n, but agreement on F Is seldom realized. This Is Important 

because this procedure uses extrapolation to tho tails of the curve. By 

using the asymptotic theory for magnitudes of response (to be studied In 

later chapters) this problem can be studied with I imlted Information about 

the function F. It has proven difficult for' many persons to accept the 

concept that the asymptotic theory al lows one to establ ish criteria without 

complete know lege of the response function. For example, In carcinogenesis 

studies arguments are common about how the response at low doses should be 

modeled; by linear extrapolation, by quadratic extrapolation, or If a 

backround response should be considered, and so on. The asymptotic theory 

shows that such details can be Irrelevant. Agr'eement Is necessary only on 
the type of distribution: Exponential class, Cauchy class, or Welbul I 

class. 

6.6 PLOTTING POSITION 

For this section, It Is convenient to change the notation so that 

observations are ranked from the smallest to the largest. In order to 

eliminate as much confusion as possible, the symbol r will denote this new 

ranking, and the symbol m wi II be retained as l"he rank from the largest to 

smallest. For a sample of size n, m = n-r+1 and r = n-m+1. 

r' 
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Probability plotting, which is described In Section 7.2, Is an 

extremely useful 

distribution. It 

graphical tool for working with the Extreme Value 

Is easily done with ordinary graph paper and an 

electronic hand calculator with scientific features. For this tool it is 

necessary to discuss the ways available to calculate plotting position, and 

choose the best one for extreme values. In probability plotting the data 

Itself Is plotted on one axis, and on the other axis Is plotted an expected 

probability transformed by the Inverse of the density function. The 

standardized Extreme Value distribution Is a double exponential (see 

appendix of Chapter 3). The Inverse Is calculated as a double natural 

logarithm of the appropriate percentile. It Is not easy to decide how this 

percentile or expected probability should- be determined. There Is a 

substantial amount of published literature about this problem, and most of 

It Is applicable only to the Gaussian (Normal) distribution. 

Of the many proposed formulas for calculating the expected 

probability, the fol lowing three are In common use because of their 

simplicity and near optimum statistical properties: 

1) P = (r-1/2)/n 

2) p = r/(n+1) 

3) p = (r-3/S)/(n+1/4) 

Klmbal I (1960) discusses these and some others that are rather difficult to 

compute. 

If the first of these probabilities Is used to compute an expected 

return period for the largest observation, It leads to a logical 

contradiction. In formula 6.13 replace the cumulative probability, F(x), 

by the percentile of the largest observation, p = (n-1/2)/n. This gives 

T(x n) = ----k:f7i- = 2n 
1 - -----

, 
n 
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which claims that an event which has happened once In n trials wil I on the 

average occur once in 2n trials. 

The second choice of expected probabilities Is based upon percentiles. 
The expected value of the rih value from a sample of size n from a uniform 

distribution on the unit Interval (rectangular dl'strlbutlon on the Interval 
o to 1) Is r/(n+1). A statistical theorem (Mood & Graybill, 1963, Theorem 

6.1> gives the following rule for relating any density function to the 

density of the unit uniform: 

Theorem 
Any density for a continuous variate X may be 

transformed to the uniform densi-), fey) = 1, 

o < Y < 1, by letting Y = F(X), where F(x) Is 

the cumulative distribution of X. 

Then for any distribution represented by Its density function F, solving 

r/(n+l) = p = F(x) for x yields the expected value of the p.:th percentl Ie of 

that distribution. 

The third choice of expected probabilities was developed for graphical 

estimation of parameter values of a Gaussian distribution. The slope of 

the I I ne on a Gauss I an probab II Ity plot can tie used to est I mate the 

standard deviation. This third choice was developed to give almost 

unbiased estimates of the standard deviation fr~l the slope of a regression 

line on these plots. 

Klmbal I (1960) found that the third choice Is best for estimating the 

variance of a Gaussian distribution. AI I three choices do reasonably wei I 

for estimating the mean of a Gaussian distribution. The second choice was 

found best for extreme value work because It gives almost unbiased 

graphical estimates of the parameters of the Extreme Value distribution. 

For the remainder of this text only p = r/(n+1) will be used. 

" . 

". 



MORE ABOUT EXCEEDANCES Page 6-11 

6.7 SUMMARY 

This chapter extends the Distribution of Exceedances to the 

consideration of counting the frequencies of rare events. The concepts 

that are Introduced were then used to develop some tools that wll I be 

useful In the next chapters. These tools are the Return Period, Rare 

Exceedances, Expected Extremes, and plotting position. 

Also, these statistical tools are sometimes the only reasonable 
statistics available for many appl led problems. With current 

environmentally sensitive and politically active demands upon science, one 

could be asked to analyze extremely sparse and Incomplete data. What 

conclusions can be reached, for example, when the available data Is that 

three toxicity cases have been observed In 10 to 20 thousand workers 

exposed to compound X? Ordinary statistics are of no value In such 

situations. Nothing might be known about the magnitudes of exposure or the 

distribution of responses. Stll I, an estimate of a return period and Its 

standard deviation Is useful, expected extremes can be discussed, and the 

laws of Rare Exceedances can be used. 
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6.9 APPENDIX 6-A 

A usef u I I dent I ty a II ows one to find the cumu I at I ve probab i II ty of 

formula 5.3 from tables of the Incomplete Beta distribution. Formulas 5.2 

and 5.3 are: 

Jq (n) 1q m-1 n-m FCq;n,m) = ofCt;n,m)dt = m m * ot C1-t) dt 

For typographical purposes Indicate the Gamma function with G( ). Then the 

Incomplete beta function Is: 

G(a+b) 1q a-1 b-1 I(q;a,b) = G{a)G{b)* t (l-t) dt 
o 

Equating powers within the Integrals for I(q;a,b) and F(q;n,m) gives: 

m-1 = a-lor a = m 

b-1 = n-m or b = n-m+1 • 

Next consider the multipliers of the Integrals. 

G(a+b) G(m+n-m+1) 
G(8)G{b) = GfrTi)GCn=ffi+,) = K 

For Integer values, G(a) = (a-1)1, 

(m+n-m+1-1)1 n! 
K = ---------------- = ------------(m-1)! (n-m+1-1)! (m-1)! (n-m)! 

n! 
(rTi=,fCn=rTiH-

, 

and this Is Identical to the multiplier for F( ). 

Thus, F(q;n,m) = I(q;m,n-m+l) • 
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Tables of the Incomplete Beta distribution are given In Beyer (1966). 

A useful Identity for the Incomplete Beta dlstrfbutlon Is: 

If I (q;a,b) = P 

then I (1-q;b,a) = 1-P • 

As an example of using this Identity consider the probabl I Ity 

F(.25;8,1). From formula 6.5 this value Is: 

1-(1-.25)8 = .9 • 

The tables In Beyer (1966) must be used In an Inverse Interpolation mode. 

Beyer has tables of I(q;a,b) = P with successive tables for various values 

of P, q In the body of the table, and a and b Indexing the rows and columns 

of the tables. Look in these tables In rows and columns of 8 and 1 

respectively for an entry of approximately O.2~j, no such value can be 

found. Invoking the 'useful Identity' look In rows and columns of 1 and 8 

for an entry of approximately .75, It Is found In the table for P=10%. 

That Is: 

If 1(1-q;b,a) = l-P then 1(.75;1,8) = .1 

and If I (q;a,b) = P then 1(.25;8,1) = .9 

which is the desired result. 

Appendix Reference 

Beyer, W.H. (Ed.), 1966, Handbook Qf Tables iQc Probabi I Ity and StatIstIcs, 

The Chemical Rubber PublIshIng Co. 

• 
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CHAPTER 7 
THE MAGNITUDE OF EXTREME VALUES 

7.1 I NTRODUCT ION 

The previous chapters have concentrated upon counting the number of 

extreme values. This chapter begins the study of the magnitude of 

extremes, but first, a word of caution. The magnitude of the exposure 

(e.g. the level of styrene vapors In air) can be measured or the number of 

persons II I from the Insult can be counted. However, It Is Important to 

distinguish that this Is not the same as the magnitude of the response, 

e.g. the degree of Illness. The error of equating the magnitude of the 

exposure to the magnitude of the response Is often found In articles and 

reports. 

This chapter assumes that a ratio or Interval scale measurement Is 

available and appropriately defined for the problem at hand. 

7.2 EXPLORATORY DATA ANALYSIS OF EXTREMES 

Simple graphical methods are a good starting point for any data 

analysis. Probability plotting Is easy In extreme value distribution work. 

In a sample of n Independent observations, one of them (or perhaps several 

identical ones) Is the smal lest or the largest. If N such samples of size 
n are gathered, a sample of N extreme values Is obtained. The distribution 

of this sample is of interest under the conditions that n Is large, that 

the variate, say x, Is unlimited In the direction of the extreme under 

consideration (largest or smal lest values), and that the Initial 

distribution sampled Is from the Exponential family. It was noted In the 

Chapter 2 that a transformation can change variables from the Cauchy family 

and fram the Welbul I family to the Exponential family. 
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Let f(x) be a density function, and let F(x) be the corresponding 

distribution function. In Chapter 6 a large value, u, was defined as the 

expected extreme us I ng the cumu I atl ve probab i I lory formu I a 

(7.1) F(u) = 1 - 1/n • 

Define a new parameter, a, by 

(7.2) 1/a = n*f(u) • 

Then, for the exponential fami Iy, the asymptotic: probability (distribution) 

for the largest value, denoted as x[n], Is (Gumbel, 1958, Chapter 5) 

(7.3 ) 

(7.31) 

H(x[n]) = exp(-exp(-y» , where 

y = (x[n] - u)/a • 

The variable y Is defined to be the reduced ~~. This Is analogous to 

the familiar standardized Gaussian (Normal) var-Iate. The parameter u Is a 

measure of the central tendency of the extreme value distribution, but It's 

not the mean of that distribution. likewise, the parameter a (or more 

exactly, 1/a) Is a measure of dispersion, but it's not the standard 

deviation. Usually the Indicator of SamplE! size Is dropped from the 
notation unless It Is variable In the problem a-- hand, and x[n] Is replaced 

with x. 

Formula 7.3 can be defined as a function of y rather than of x. Then, 

Just as for the standardized Gaussian distribution, a single reduced 

extreme value distribution can represent al I possible extreme value 

distributions. The reduced distribution Is denoted by the expression: 

(7.4) H(y) = exp(-exp(-y» • 

This reduced extreme value probability distribution function has an 

.. 
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Important advantage over the standardized Gaussian distribution; namely, 

the Inverse of the extreme value distribution Is easy to compute, 

(7.5) y = -In(-ln(H(y))) 

The corresponding Inverse of the standardIzed Gaussian distrIbution Is the 
Inverse of a non-analytical exponential Integral. 

The asymptotic probabilities of the smal lest values are obtained by 

changing y Into -y and H(x) Into 1 - H(x). Thus, only the largest extreme 

values need be considered. 

The parameter definitions 7.1 and 7.2 require knowledge of the parent 

density or distribution function. Since such knowledge is lacking in most 

cases, a method is needed to estimate these parameters from the observed 

largest sample values alone. A mathematical study of the Extreme Value 

dIstribution shows that u is the modal largest value in a sample of size N, 
and that 11a Is the rate of Increase of the most probable largest value 

with the natural logarithm of the number of samples N, and is proportional 

to the standard deviatIon of the extremes. 

If the data are from any distribution that Is in the Exponential 

family, then the N observed extreme values x[mJ (m=1,2,3 ••• N), ordered In 

increasing magnitude, should be scattered about a straight line when 
plotted against their expected cumulative relative frequencies. The 

quantity used for the expected cumulative relative frequency Is obtained by 

substituting 

(7.6) H(y) = RTx[m]J = m/(N + 1) 

Into equation 7.5. (The over-line indicates average or sample expected 

value.) The rationale for this was discussed In Section 6.6. 
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Typically, the observed magnitudes of the N extremes, x, are plotted 

vertically, and the corresponding y values, the solution to equations 7.6 

and 7.5, are plotted horizontally. This arrange1ment, opposite that usually 

employed In statistics for plotting cumulative distributions, has been 

adopted In extreme value statistics In order to have sampl ing variation 

operative in the vertical direction only, as Is customary for curve 

fitting. The values of x depend upon the exper"lmental measurements, and 

the va I ues of yare determ I ned by the sclmp I e size, N, and the Index 

associated with the order of the data values. The values of y should 

usually be within the range of -2 to +8. These (x,y) pairs should then 

scatter about the line 

(7.7) x = u + a*y • 

Using the Return Period defined In Section 6.4, and equations 7.3, 

7.5, and 7.6, the return period can be defined as: 

(7.8 ) T(x[m]) = 1/(1 - H(y» = 1/(1 - m/(N+l» = (N+l)/(N-m+l) • 

This gives the average number of observations necessary to obtain one value 

equal to or larger than x. For large values of x, the return period 

converges towards exp(y). 

These equations facilitate probability plotting of extreme values on 
ordinary linear-linear graph paper. Extreme value probability paper can 

sometimes be found, It was an Important tool before scientific hand-held 

calculators made exponentiation a trivial operation. These special 

probability papers have I inear scales for the observed variate x and the 

reduced variate y. They also Include, paral lei to the y scale, two 

nonlinear scales for the return period and cumUlative probabll lty or 

frequency. The relationship between these three variables Is shown In the 

fol lowing BASIC computer program, which prints a table of corresponding 

values of the three quantities. In this program Y Is the reduced variate, 

- . 
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P is the cumulative probability, and T Is the return period. This program 

Is an Implementation of equations 7.3, 7.5, and 7.8. 

10 FOR Y=8 TO -2 STEP -.1 
20 P=EXP(-EXP(-Y» 
30 T=1./(l.-P) 
40 PRINT Y,P,T 
50 NEXT Y 
60 END 

A probabi I Ity plot of an extreme value data set Is always advisable, 

even when the data Is automatically collected or Is a replicate of previous 

data. A deviation from a straight line plot can easily be spotted. 

Whenever a curved line Is suspected, first check If the extremes were 

correctly collected and recorded. Then one of the logarithmic 

transformations of the x variable discussed In Section 3.4, should be 

plotted to see if the data then plot as a straight line. A formal 

statistical test to determine If the data conforms to a Cauchy, Welbul I, or 

an Exponential extreme value distribution Is beyond the level of this text. 

One possible test Is to use a general algorithm for maximizing the 

I Ikel Ihood function for the observed data with each of the three extreme 

value distributions, then compare the goodness-of-flt using the I Ikel ihood 

ratio test. 

7.2.1 Probability Plot Example 

In an urban area, the annual maxima of weekly average parts per 

mlllTon nitrous oxide levels for each of 10 years were: 0.108,0.063, 

0.111,0.077,0.081,0.085,0.097 0.083, 0.078, 0.062. These 'x' values 

were ranked from smal lest to largest, their cumUlative relative frequencies 

calculated using equation 7.6, and their reduced variates, y, calculated 

using equation 7.5. The results are: 
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ImL.E. 1....1 
Observed Data and Reduced Var I ate 

m m/ (N+1) x y 
------- ----- ------

1 0.091 0.062 -0.875 
2 0.182 0.063 -0.533 
3 0.273 0.077 -0.262 
4 0.364 0.078 -0.012 
5 0.455 0.081 +0 .238 
6 0.545 0.083 0.501 
7 0.636 0.085 0.794 
8 0.727 0.097 1.144 
9 0.818 0.108 1.606 
10 0.909 0.111 2.351 

Figure 7.1 Is a plot of the data in Table 7.1 with the x values on the 

vertical axis and y values on the horozontal axis. 

This plot suggests a I inear relationship of x and y. A least-squares 

I inear regression of x on y gives: x = 0.0767 + 0.0162y. The standard 

errors of these regression coefficients are 0.0014 and 0.0013, 

respecttvely. Equation 7.7 relates these regression estimates to the 

scale, a, and position, u, parameters of the Extreme Value distribution. 

.. 

' .. 

• 
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FIGURE ~ 
Observed Nitrous Oxide In ppm on Ordinate, 

Reduced Variate on Abscissa. 

7.3 MAXIMUM LIKELIHOOD ESTIMATES 

Page 7-7 

Although these graphical and regression estimates of the parameters of 

the extreme value distribution are easy to compute, they are accompanied by 

an Important statistical question of bias. For example, there Is good 

reason to argue that a weighted regression should be used. Most computer 

centers have algorithms available for the generalized maximization of any 
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analytic (well behaved) function. These al90rithms have such names as: 

Dav I don-F I etcher-Powe I I, F I etcher-Reeves, Conjugate Grad lents, 

Newton-Raphson, and Nedler-Mead Simplex. For illustration the Nedler-Mead 

Simplex algorithm <O'Neill, 1971) will be used to directly maximize the 

likelihood function of the extreme value distribution. 

The extreme value density Is obtained by 

distribution 7.3 to get: 

(7.9) 

(7.9 f) 

hex) = exp(-y - exp(-y»/a , 

where y = (x - u)/a • 

differentiating the 

(Equation 7.9' Is Identical to 7.3'.) The I'kellhood function is the 

product of the h(x)'s for the observed values ot x: 

(7.10) 
N 

L = TT h(x[I]) 
1=1 

Typically, the log-likelihood function Is maximized, 

N 
(7.11) = In(L) = L In(h(x[I]) 

1=1 

The N = 10 data points x[l] of Example 7.2,,1 <Table 7.1) were Input to 

the SIMPLEX algorithm along with formulas 7.11 and 7.9. The algorithm 

searched for those va I ues of a and u that max I mized the I Ike I I hood for th Is 

data set. A simplification of 7.11 Is possible: 

(7.12) 
N 

= N* I n ( 1/ a) - L: (y + exp ( -y» 
1= 1 

Since al I generalized functional maximization algorithms are 

Iterative, they require Initial parameter es--Imates. The results of the 

I I near regress I on are reasonab I e I nit I a I est I mates; the I I ke I I hood 

• 
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maximization wll I tend to eliminate any biases. 

maximization for the example data are: 

Parameter Value Standard Error 

u 
a 

0.0771 
0.0136 

0.0064 
0.0047 

Page 7-9 

The results of this 

A comparison of these values with those obtained from the least-squares 

linear regression shows that the parameter values are about the same, but 

the standard deviations estimated by the regression are too smal I by a 
factor of almost five. 

The asymptotic correlation between the maximum I Ikel I hood estimates 

for u and a Is 0.313 (Johnson and Kotz, Chapter 21). The estimated 

correlation for these parameters In this example Is 0.324. 

7.4 FORMAL PROPERTIES 

No attempt wll I be made to show the derivation of the formulas 

presented In this section. Some depend upon material presented In several 

chapters of mathematical development In Gumbel I's book (1958). 

7.4.1 Reduced Variate 

The structural similarity of the reduced variate used In extreme value 
work, and the standardized Gaussian or Normal variate used In many wei I 

known applications of statistics Is obvious. The reduced variate, y = (x -

u)/a given In equation 7.3', has location parameter u and scale parameter 

a. A standardized normal variate Is obtained by subtracting the mean from 

a data value and then dividing by the standard deviation, for example 

(7.13) t = ex - M)/SD • 
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I f the mean M and standa rd dev i at Ion SO are otta I ned f rom a samp I e of 

extreme values, then the reduced variate y, Is roelated to the corresponding 

standardized variate t by: 

(7.14) 

The mean 

Euler's 

extremes 

Extreme 

Then, 

<7.15) 

<7.16) 

t = SQRT(6)*(y-E)/pi , 
where E Is Euler's constant 0.5772156649, 
and pi = 3.1415927 •••• 

value of a reduced variable, y, (the expected 

constant. Then the expected largest value In 

can be derived from equation 7.3' • Let ME 

val ue and SDE denote the Standard C'ev I atlon 

ME = u + aE 

SDE = pi*a/SQRT(6) • 

largest value) Is 

terms of the sample 

sign I fy the Mean 

of Extreme values. 

The mean and standard deviation of a sample of E'xtremes can be computed, 

then equations 7.16 and 7.15 can be used to estimate a and then u, the 

parameters of the reduced variable. 

(7. 1 5a) 

(7. 16a) 

The variance 
(Johnson and 

'" - - aE u = x 

'" s*SQRT(6)/pl a = 

of these estimates 
Kotz, Chapter 21) 

VCu) ~ 1.1678a2/n 

V C a) ~ 1. 1 a2/ n 

based on sample moments are approximately 

The effeciency of these estimators, relative 1"0 the maximum I Ikel I hood 

estimators, Is about 95 percent for u and onl y clbout 55 percent for a. 

"", 
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The mean and standard deviation of the sample of 10 extremes used In 

Example 7.2.1 are 0.0845 and 0.0166, which yield estimates of a = 0.0130 

and u = 0.0770. These estimates are a I ittle closer to the maximum 

I ikel I hood estimates than are those derived from the least-squares equation 

for this particular data set • 

The return period may be estimated for large values of the reduced 

variate from the asymptotic relationship: 

(7.17) T(x) = exp(y) , 

which Gumbel I claims to be reasonably good for y > 5. 

7.4.2 Relation of Parent Distribution to Extreme Values 

If the mean, m, and variance, v, of a density function are known 

(smal I sample estimates wll I not suffice), then an upper limit on the mean 

extreme value of samples of size n from that density Is given by 

(7.18) ME ~ m + v*(n - 1)/SQRT(2n - 1) • 

The variance of a set of extreme values Is smaller than the variance 

of the parent distribution. However, ~ should ~ ~ extremes ~ a 
iQcl 1c maka Inferences ~ parent distributions because the extremes do 

not contain Information about the central tendency of the parent 

distribution. Extremes are used to make inferences about other possible 

extremes. Appendic 7-C presents an example that Illustrates how much In 

error conclusions can be if this warning is Ignored. 

It Is valid to derive Inferences about extremes from a known parent 

distribution. In practice, one would have a hypothesized distribution and 

wish to explore the behavior of extremes under the condition that the 

hypothesis Is correct. In general such an Investigation Involves difficult 
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algebra and asymptotic theory, and has been analytically solved for only a 

few common parent distributions. If x(l) Is a sequence of Independent 

Identically distributed (I.I.d.) Gaussian (Normal) random variables with a 

mean of m and standard deviation of s, then the maximum of n such variables 

Wen), when n Is large, has the following ExtremE! Value distribution: 

(7.19) P(W(n) ~ z) = exp(-exp(-(z-u(n»/a(n~» 
where a(n) = s*u(n)/SQRT(2*ln(n» 

u(n) = s*c(n) + m 
c(n) = SQRT(2*ln(n» -

(In(lnCn» + InC4*pl»/(2*SQRT(2*ln(n») 

Furthermore, the expected value of WCn) Is: 

EVCW(n» = u(n) + E*aCn) • 

It may be more convenient to standardize the parent distribution 
before determining the distribution of extrE~es. Then the fol lowIng Is 

equIvalent to equatIon 7.19. If x(1) Is a sequE!nCe of I.I.d. standardized 

Gaussian random variables Cmean=O, standard dE!viatlon=1> then the maximum 

of n such variables WCn) has the fol lowing ExtrE~e Value distribution: 

(7.20) PCaCn)*CWCn) - uCn» ~ z) = expC-exp(-z» 
where a(n) = SQRTC2*lnCn» 

u(n) = SQRTC2*lnCn» -
(In(4*pl> + InClnCn»)/t:2*SQRTC2*ln(n»). 

7.4.3 Sample Size 

Samples from an Extreme Value distribution also have an Extreme Value 

distribution with the same scale parameter. If xCi], I = 1,2, ••• n are n 

extreme values each wIth mode u and scale parameter a, then MAX(x[i]) has 

an Extreme Value distribution with 

(7.21> 
(7.21 f) 

mode = u + a*ln(n), and 
scale parameter = a • 

Equivalently, If y Is the reduced varIate correspondIng to the x's, then 

• 
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the reduced variate corresponding to the maximum of n x's Is 

(7.22) y' = y - In(n) • 

This equation Is derived as follows: 

new reduced variate = 1~_:_i~_~_2~1~i~111 
a 

= ~_=_~_:_2~lDl~1 = ~-:-~ - In(n) 
a a 

= old reduced variate - In(n) 
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Equation 7.22 can be used to pass from one sample size of extremes to 

another that Is not necessarily an Integer multiple of the original sample 

size. If the x's are extremes from samples of size m then the maximum of n 

x's Is the extreme from a sample of size m*n. On extreme value probability 

plots a change In sample size appears as a shift In the line to larger (or 

smaller) values of the variate, but not a change In the slope of the line. 

This al lows for the extrapolation of the magnitude of extremes to larger 

(or smaller) populations than the one from which the sample of extremes was 

obtained. It Is Important to make the dIstinction between thIs and the 

counting of exceedances, discussed In Chapters 5 and 6, as population size 

Increases. (Also, both sItuatIons are dIstinct from the situation of 

recognIzIng more exceedances In a fIxed sample sIze because measurement 

methods are better.) 

Suppose, from the example of maxima of weekly nitrous oxide averages 

for each of 10 years In Section 7.2.1, a predictIon of a maxima for 25 

years of data Is required. Using the maximum I Ikel I hood parameter 

estimates and equations 7.21 gives 

mode = 0.0769 + 0.0136*ln(2.5) = 0.0896 • 

The scale parameter remaIns at 0.0136. That Is, If 10 years of data 
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resulted in a mode of 0.0769, then 25 years o·f data should give a mode of 

maximum weekly values of about 0.0896. 

7.4.4 Other Statistics 

The median extreme value, In the scale of the original variable x, can 

be calculated from 

(7.23) median = u - a*ln(ln(2» • 

The corresponding values for the reduced extreml~ variate can be derived 

from the equations given above. They are tabulated In Table 7.2. 

Statistics .Qf..aD¥. Reduced Wr:.!m. Variate 

Statistic 
Mean 
Median 
Mode 
Standard Deviation 

.Y..a.J...u.e. 
Euler's Constant = 0.57722 
-In(ln(2)) - 0.36651 
0.0 
pi /SQRTC 6) -- 1 .28255 

Final I y, a tab I e of cumu I atl ve probab I I Itll~S of the reduced Extreme 

Value variate Is not needed because they can easily be computed on a 

scientific hand calculator using the equation: 

<7.24) P(y ~ k) = exp(-exp(-k» • 

Two commonly used probability statements are: the one-sided upper 95% 

confidence Interval which has Its limit at a y value of 2.97, and the 99% 

Interval at 4.60. The two - sided 95% probabi I Ity Interval for the Extreme 

Value distribution Is -1.3 < y < 3.7. Plus and minus two standard 

deviations of a sample of extremes about their mean encompasses 92.6% of 

the probability. For example 7.2.1, find the upper 95% limit for 25 yearly 

-. 
.. 
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maxima of weekly nitrous oxide averages. Substituting the mode of 0.0896, 

the scale parameter of 0.0136, and a y (reduced variate) value of 2.97 Into 

equation 7.3', and solving for x gives: 

2.97 = (x - 0.0896)/0.0136, 
x = 0.130 • 

This says that for 25 yearly maxima of weekly averages of nitrous oxide 

levels, there Is 95% confidence that the overal I maxima wll I not be greater 

than 0.130 parts per mil lion. 

7.5 GENERALIZED EXTREME VALUE DISTRIBUTION 

On occasion none of the three asymptotic extreme value distributions 

wll I be applicable to a particular problem at hand. Maritz and Munro 

(1967) present a Generalized Extreme Value distribution which can describe 

extremes of small samples as wei I as large ones. This distribution Is the 
three parameter function: 

(7.25) [ [ h (x - a) ] 1 / h] 
F(x) = exp - ---S----

As h approaches zero this distribution approaches the Extreme Value 

distribution, It Is of the Cauchy family for h less than zero, and of the 

Welbul I family for h greater than zero. 

Parameter estimates can be obtained using tables given In Marltz and 

Munro, or by using the generalized maximization of a I Ikel I hood function, 

discussed In Section 7.3. Special care is required when computing the 

I Ikel Ihood function if h approaches zero, In this case roundoff error wll I 

cause severe computational problems. For some arbitrary smal I constant e, 

which depends upon the computer being used, a switch should be made from 

the Generalized Extreme Value density to the Extreme Value density whenever 

the estimated value of h is smaller than e. 
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7.6 SUMMARY 
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This chapter contaIns basic tools for working wIth the magnitude of 

extreme values. SInce the Extreme Value dIstrIbutIon Is just another 

statIstIcal dIstrIbution I Ike the GaussIan or the Student-t dIstrIbutIons, 

statistIcal tools I Ike the mean, medIan, mode, standard deviatIon, and 

probabIlIty plotting can be used. In extreme vclue work emphasIs Is placed 

upon the mode rather than the mean, and on a scale parameter rather than 

the varIance. Overal I, the bIggest dIfference tetween extreme value and 

the usua I stat I st I ca I proced ures I sin the, way the data I s co I I ected; 

extreme value Inference Is concerned with only € smal I subset of al I the 

data. 

This chapter started with a discussion of data plotting, an Important 

step In any data analysis. Then the reduced variate and the meanIng of 

return period were discussed. These concepts were Illustrated with an aIr 

pollutIon example. Maximum I Ikel I hood was presented as a good way of 

obtaIning unbiased parameter estImates. And finally, many of the formal 

propertIes of the Extreme Value dIstrIbutIon were outlined. Beach (1975) 

has an Interesting report that uses some of the statIstIcs presented In 

this chapter. 

" 

. . 
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7.8 EXERCISES 

The fol lowIng data sets are taken from Changery (1982). The first 

exercIse Is worked, only the data Is presented for the remainder. For each 

data set, estImate the location and scale parameters, make a probability 

plot, and calculate the 2, 5, 10, 20, 50, 100, 200, and 500 year return 

period wind speeds. 

7.8.1 Maximum Annual Wind Speeds for New London, Connecticut. 

YEAR M&. WINO (MPH) YE..8R M8X ~ I ~O H1Etn 
1873 70 1885 47 
1874 41 1886 47 
1875 48 1887 60 
1876 59 1888 46 
1877 54 1889 51 
1878 59 1890 60 
1879 42 1891 51 
1880 42 1892 38 
1881 50 1893 54 
1882 42 1894 43 
1883 45 1895 44 
1884 53 

Mean = 49.826, St.Dev = 7.89, N = 23 

Moment estImates Qi parameters 

a = SD*SQRT(6)/pl = 7.89*0.7797 = 6.1513 

u = mean - a*E = 49.826 - 6.1513*0.57722 = 46.2755 
RegressIon estImates Qi parameters 

The Independent regressIon variable Is 
Y = -In(-In(m/(N+l») 

where m Is the rank of the wind speed 

THE REGRESSION EQUATION IS 
Y = 46.1 + 7.14*Max WInd 

PARAMETER 
u 
a 

ESTIMATE 
46.0685 
7.1401 

ST. DEV. 
OF ESTM. 

0.2213 
0.1852 

T-RATIO = 
ESTM/S.D. 

208.08 
38.54 
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THE ST. DEV. OF Y ABOUT REGRESSION LINE IS 
S = 0.9533 WITH (23-2) = 21 DEGREES OF FREEDOM 

R-SQUARED = 98.6 PERCENT 

ANALYSIS OF VARIANCE 

DUE TO OF 
REGRESS I ON 1 
RESIDUAL 21 
TOTAl 22 

MAX MIH 
72.0+ 

63.0+ 

54.0+ 

45.0+ 

36.0+ 
* 

SS 
1350.219 

19.084 
1369.304 

* 3 

* 
** 

* * 2 

MS=SS/DF 
1350.219 

0.908 

2 

* * 2 

2 2 

* 

+---------+---------+---------+----·-----+---------+Y 
-1.5 -0.5 0.5 1.5 2.5 3.5 

Probability plot 

Return Period 
Return period = T = 1/(1 - Prob) 
then Prob = 1 - liT 
Y = -In(-ln(Prob)) 
X = u + aY = wind speed predicted from retllrn period. 
M = X calculated from moment estimates of II and a, 
R = x calculated from regression estImates of u and a. 

Page 7-20 
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BaiLlc!] ~cIQd E.r:.QQ. 'i M E 
2 .500 .3665 49 49 
5 .800 1.500 56 57 

10 .900 2.250 60 62 
20 .950 2.970 65 67 
50 .980 3.902 70 74 

100 .990 4.600 75 79 
200 .995 5.296 79 84 
500 .998 6.214 84 90 

7.8.2 Maximum Annual Wind Speeds for New Haven, Connecticut. 

rEm 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 

MM WINPCMPH) 
38 
37 
39 
41 
25 
33 
55 
40 
37 
35 
45 
42 

.'rUB. 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 

MM WINOCMPH) 
33 
37 
34 
49 
42 
45 
45 
51 
44 
43 
49 
45 
44 

7.8.3 Maximum Annual Wind Speeds for Apalachicola, Florida 

XUR 
1975 
1976 
1977 

MM WI NPCMPH) 
32 
26 
30 

.'rUB. 
1978 
1979 

MAX WINPCMPH) 
32 
31 
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7.8.4 Maximum Annual Wind Speeds for Fort Myers, Florida 

YE1B. MAX ~1t::JQ(~PH} YEAR MM ~1t::JD(~EI:I} 
1920 40 1927 39 
1921 48 1928 64 
1922 36 1929 61 
1923 33 1930 37 
1924 57 1931 39 
1925 40 1932 47 . . 
1926 65 

AI 

7.8.5 Maximum Annual Wind Speeds for Hartford, Connecticut 

:tfffi. MM ~ I t::JQ (MPH} YEAR MM ~I t::JDU1PH} 
1940 34 1960 47 
1941 43 1961 43 
1942 39 1962 43 
1943 43 1963 45 
1944 59 1964 55 
1945 43 1965 42 
1946 50 1966 39 
1947 47 1967 58 
1948 39 1968 44 
1949 42 1969 40 
1950 67 1970 46 
1951 37 1971 51 
1952 54 1972 54 
1953 48 1973 37 
1954 48 1974 46 
1955 43 1975 40 
1956 43 1976 46 
1957 39 1977 43 
1958 43 1978 54 
1959 42 1979 70 
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7.9 APPENDIX 7-A 

A sheet of Extreme Value Probability Paper 
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7.10 APPENDIX 7-8 

Goodness Qi Eli Iesi fQc ~ Extreme ~ Distribution 

Whenever data are analyzed the statistical methods are based upon 

several underlying assumptions that are rarely stated except In elementary 

textbooks. Testing the validity of such assumptions Is rarely mentioned, 

although such tests are an essential part of good statistical analysis. 

That the randomness In the data may be described by some specified 

statistical distribution function Is an assumption common to al I parametric 

statistical-methods. Goodness of fit tests are used to test this type of 

assumption. The Chi Square test Is the best known of these tests, however, 

It should not be used with smal I sample sizes because It Is sensitive to 

the way In which the data are divided Into groups. The Komogorov-Smlrnov 

test Is very powerful for al I sample sizes. However It requires known or 

hypothesized values rather than estimates for the distribution parameters. 

The Shaplro-Wllk test Is most universally applicable. However, It suffers 

somewhat from not yet being available In elementary textbooks, being rather 

tedious to compute, and having references that are difficult to obtain 

since they are now over 10 years old. Confidence bands for the extreme 

value distribution, which serve a similar statistical function as goodness 

of fit tests, are described by Cheng and lies (1983). 

Another goodness-of-flt test, asymptotically equivalent to the 

Shaplro-Wilk test, has been Independently proposed by FI I Ilben (1975) and 

by Ryan et. al. (1980). This test Is the Correlation Coefficient Goodness 

of Fit Test. Its main advantage Is that It Is easy to compute, and Its 

main disadvantage Is that It requires special probability tables. Such 

tables have only been published for testing goodness of fit to the Gaussian 

(Normal) distribution. Table 7.8.1 Is a new probabl I Ity table for testing 

goodness of fit to an exponentIal type Extreme Value dIstribution. The 

papers by FII Ilben and by Ryan should be consulted for the theoretical 
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background of such correlation tests and their relationship to other 

goodness of fit tests. 

The correlation coefficient goodness-of-1'it test is performed by 

computing the Pearson product-moment correlation coefficient between data 
values and the corresponding expected values of a reduced variate, computed 
from equations 7.5 and 7.6; these expected values are cal led 'scores'. 

The hypothesis of a good fit Is then evaluated ty comparing the computed 

correlation with an appropriate table of critical values. Some may object 

to cal ling the computed value a correlation coefficient because the scores 

are not random variables. The word correlation in this test is used to 

describe the computational procedure, not the statistical characteristics 

of the numbers used In the computation. It must be emphasized that none of 

the test statistics applicable to true correlation coefficients, such as a 

test for no correlation, are applicable to these goodness-of-flt 
correlations. 

Table 7.B.l was derived from Monte Carlo simulations using a standard 

THE MAGNITUDE OF EXTREME VALUES Page 7-27 

Cheng, R. C. H., and lies, T. C., 1983, 'ConfidBnce Bands for Cumulative 

Distribution Functions of Continuous Random Variables', Technometrics, 

Vol. 25, No.1, pp 77 - 86. 

~ Laa.1 
Approximate Critical Values, Correlation Coefficient 

Goodness of Fit Test to an Exponential Type 
Extreme Va I ue D Istr I but'i on 

Lower Ta II Area 
n .01 .05 .10 

5 .815 .872 .898 
10 .854 .904 .925 
15 .814 .921 .939 

,; 
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Is less than 

distribution. 

a one percent chance that the data have an Extreme Value 

Also for a sample size of 5, a correlation of 0.840 means 

that there Is between a one percent and a five percent chance that the data 

have an Extreme Value distribution. 

Detal's ~ Performing ~ Ies± 

The n extreme data values of a sample are ranked from 1 to n (smal lest 

to largest). Let i denote the rank associated with data point x(I). Its 

corresponding score is the corresponding standard reduced Extreme Value 

distribution value: 

y(t) = -In(-In(i/(n+l») • 

A plot of xCi) versus y(i) is the Extreme Value probabil ity plot discussed 

in section 7.2. The Pearson product-moment correlation coefficient between 

xCi) and y(i), I = 1,2, ••• n, is computed. The goodness-of-fit to an 

exponential type Extreme value distribution is evaluated by comparing this 

computed correlation to the critical values given in Table 7.B.l. 

References ±Q AppendIx a 

Fliliben, J. J., 1975, 'The Probabil ity Plot Correlation Coefficient Test 

for Normality', Technometrics, Vol. 17, No.1, pp 111 - 117. 

Ryan, T. A., Joiner B. l., and Ryan, B. l., 1980, Mlnltab Reference Manual, 

Statistics Dept., Pennsylvania State U., (section 11.7) • 
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Cheng, R. C. H., and lies, T. C., 1983, 'Confidonce Bands for Cumulative 

Distribution Functions of Continuous Random Variables', TechnometrIcs, 

Vol. 25, No.1, pp 77 - 86. 

~1.JW. 
Approximate Critical Values, Correla'"ion Coefficient 

Goodness of Fit Test to an Exponential Type 
Extreme Value Distribution 

Lower Ta il Area 
n .01 .05 .10 

5 .815 .872 .898 
10 .854 .904 .925 
15 .874 .921 .939 
20 .888 .931 .948 

25 .898 .939 .954 
30 .906 .946 .959 
40 .918 .953 .965 
50 .927 .959 .970 

60 .933 .963 .973 
70 .939 .967 .976 
80 .943 .969 .978 
90 .947 .972 .980 

100 .951 .974 .981 
200 .970 .983 .988 

... . . . . 
.; . 

• 
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7.11 APPENDIX 7-C 

Extremes ~ Population Inference 

The reason for not making inferences about a parent population from 

extreme values is Illustrated in the following example from Galambos (1978, 

page 90). The level of mathematics required to fol low the computations 

presented here is higher than that required for the regular chapter 

material, however the conclusions are easy to appreciate. 

If X is a lognormal Iy distributed random variable (that Is, In(x) has 

a standard Gaussian distribution), then the distribution of the function 

(7.21 ) xe - 1 Y = ------e 

converges to a standard Gaussian distribution as e approaches zero. For 

smal I values of e it wil I, for practical purposes, be impossible to 

distinguish between samples from the distribution of Y and fram a standard 

Gaussian distribution. 

Suppose an experimenter collects a sample of size 50 from the 

disrtlbutlon of Y with e=0.1. A goodness of fit test is performed and 

accepts the hypothesis that the parent distribution Is Gaussian. Find the 
probability that the maximum of the sample has a value less than 2.6. 

When It Is (Incorrectly) assumed that the parent distribution Is 

Gaussian, Equation 7.20 gives the probabil ity for any given value of an 

arbitrary value z. For n=50, a(50)=2.797, and u(20=2.101, then 

P(2.797*(w - 2.101) ~ z) = exp(-exp(-z» • 

This may be converted algebraically to 
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(7.22) P(x ~ 0.3575*z + 2.101) = exp(-exp(-z» • 

Since the problem calls for pew ~ 2.6), solve for z in 

2.6 = 0.3575*z + 2.101 

which gives z=1.396. The desired probabIlity 1~5 then exp(-exp(-1.396» = 

0.78. In words, If the data are really from a standard Gaussian 

distribution, then there Is a 78 percent chancH that the largest of a 

sample of 50 values will be less than 2.6. 

But the data Is not from a Gaussian distribution, rather it is fran a 

distribution that Is Indistinguishable fran a Gaussian. The correct 

probabi Iity Is obtained by starting with the normalizing formula for the 

lognormal distribution and working through the transform Equation 7.21. 

Let u'=exp(u(n» and a'=u'/a(n). Then the equation equivalent to 7.22 Is 

pew ~ u' + a'*z) = exp(-exp(-z» • 

For n=50, u'=8.174 and a'=2.922.Let w' be the lognormal equivalent of the w 

used above for the Gaussian distribution. Tho value of w' Is obtained by 

replacing y In Equation 7.21 with wand x with ~I'. Since e=O.l, 

w = 10(w.,·1 - 10 

An equivalent to 7.22 is 

pew ~ 10(w.,·1 - 10) = exp(-exp(-zn 

Since pew ~ 2.6) Is required, solve for z In 

2.6 = 10(8.174 + 2.922*z)·1 - 10 , 

which gives z=0.6544. Then exp(-exp(-0.6544n=0.59. Thus, assuming a 

t' 
., 

.-. 
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Gaussian distribution rather than a look al Ike transformed lognormal 

distribution, causes an error of about 0.2 (0.78 - 0.59) In probabi I Ity 

when computing the probability that the largest value of a sample of size 

50 will be less than 2.6. 

This example shows how sensitive the extremes are to subtle changes In 

the parent distribution. The converse Is that Inferences about the parent 

population wll I also be very sensitive to subtle differences In the shape 

of the tails of the distribution. 



., 
.. 



.~ 

.' 
., 

CHAPTER 8 
EXTREMES OF DATA CONTAINING TRENDS 

8.1 INTRODUCTION 

In Chapter 7 the 'classic' extreme value situation was presented, in 

which al I samples are Identically and Independently distributed. Such a 

situation rarely describes any real data set. One must deal with lack of 

Independence between observations, measurement errors, and many other 

pr act I ca I aspects of data co I I ect i on and ana I ys Is. Th i s ch apter con s I de rs 

some methods for handling the most common cause of lack of Independence: 

correlations caused by time trends In the data. 

The Extreme Value distribution Is robust against correlations within a 

data set. Berman (1964) has shown that extreme value theory can be appl led 

to stationary autocorrelated Gaussian seq~ences provided that: 

, 

where r( I) Is the autocorrelation of order I. Autocorrelatlons can be 

computed and examined to see If they satisfy Berman's condition. For 
example, suppose some autocorrelatlons are examined and 

SI nce 
co 

L 1/21 = 1.0 , 
1=1 

these autocorrelatlons satisfy Berman's condition and the data may analyzed 

relying upon the robustness of extreme value procedures. In general, If a 

plot of the autocorrelation function Indicates Significant autocorrelation 
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for only a finite number of lags, then this condition Is satisfied. 

Berman's result applies only to the form of the lImIting distribution 

(Extreme Value distribution from a Gaussian sequence). The possIbility 

that autocorrelatlons might result In biased parameter estimates Is not 

addressed In his work. Berman's condition Is In general not satisfied If 

there are periodicities In the data (sine or cc)slne functions des_crlbing 

the trend) since there would be Infinite valU4~s of i for which of r(l) is 

significantly different from zero. 

If the autocorrelatlons of all orders are high, the variance of an 

average (square of the standard error) can actually Increase as sample size 

Increases. If V is the varlanve of a sIngle reading, then the varIance of 

the average of n readings Is 

where r Is the average autocorre atlon 
between the n data va lues. 

When the average autocorrelation Is zero this equation simplifies to the 

familiar equatIon for standard error. When thE~ average autocorrelatIon Is 

1/ n the var I ance of an average of n samp I es I s --he same as the var I anve of 

a single sample. For average autocorrelatlons larger than 1/n the variance 
of the mean Increases with increasing n. If Berman's condition holds, the 

average autocorrelation Is zero since the sum of an Infinite number of 

autocorrelatlons squarred must be a constant less than Infinity. Gardenler 

(1982) shows that the expected number of exceedances Is also significantly 

Increased by autocorrelatlons, thus trends must also be considered when 

usIng the statistics presented In Chapters 4, 51' and 6. 

As a general rule of statistical analysis, one should remove al I the 

correlations that can be found. The tool~; of ordinary statistics for 

removing correlations In data can also be used with extreme value data. 

The most cammon of these tools Is data transformation. When multivariate 

, .... 



EXTREMES OF DATA CONTAINING TRENDS Page 8-3 

data is being analyzed, rotations of axes are often used to gain 

independence. Principal Components and Factor Analysis are typically used 

for such rotations. These procedures have the added advantage of reducing 

the dimension of the multivariate problem. Often, only one Component or 

Factor Is used In order to reduce the multivariate problem to a univariate 

problem. A later chapter wll I discuss multivariate extreme values. 

Clearly, the maximum of a stationary continuous random process Is at 

least as large as the maximum of any sampled values. It Is Important to 

know If these two maxima can be significantly different In magnitude, or If 

the sample data has a distribution of extremes different from that of the 

continuous maximum. Leadbetter (1977) found that, under very weak 

regularity conditions (which are typically satisfied In any practical data 

analysis), the distribution of extremes of a continuous process and sample 

extremes from such a process obey the same extreme value law and may be 

treated as Independent samples. 

Intuitively a finely spaced sampling scheme upon a continuous 

stationary random process should guarantee approximate equality of the 

continuous and sample maxima. If samples are Independent rather than from 

a stationary process, then there are many (however smal I) Intervals between 

samples In which values above the sampled maxima are possible. Even though 

such high values In anyone Interval are very unlikely, the large number of 

such intervals can lead to significant differences between the extremes of 
the samples and the phenomena being sampled. On the other hand, If a 

continuous stationary random process Is being sampled, It fol lows that for 
sufficiently fine sampling Intervals, there wll I be little difference 

between the maximum of the samples and the maximum of the phenomena because 

the sample values must be locally highly correlated. The underlying random 

process may be envisioned as a high frequency filter which removes most of 

the variability between sampling times. Air pollutant levels are filtered 

by diffusion and mixing time processes. The robustness of the extreme 

value distribution Is due to the local correlations caused by these 
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continuous stationary random processes. When a trend Is Introduced, 

correlations also occur because the underlying phenomena becomes a 

nonstatlonary random process. This chapter discusses some of the special 

problems that occur when a nonstatlonary process Is decomposed into a 

stationary process and a trend before the data Is analyzed for extreme 

val ues. 

8.2 REMOVING TRENDS BEFORE ANALYSIS 

The first step In a data analysis Is to Hxamine the data for the 

exlstance of potentl al trends. This Is u!;ually done using graphic 

techn Iques. Typ Ica Ily a smoothing algorithm Is used to mask the visual 

effects of randomness In the data. I f no trends are apparent, then the 

techniques of Chapter 7 are Immediately applicable. The most direct way of 

handling an obvious trend Is to subtract It ()ut of the data and then use 

the techniques of Chapter 7 on the residuals. This Is equivalent to an 

extension of the extreme value distribution so that the mode Is a function 

of sampling time. The reduced variate of formula 7.3 would then be written 

y = (x(t) - u(t»/a Indicating that the observEld values x and the location 

parameter u are both functions of sampling time. 

Often the mode u Is assumed to be a polyn~lial function over time such 

as 

(8.1) u(t) = a + bt + ct2 

Environmental work Is often concerned with repe-·ltlve yearly cycles which 

are typically modeled with a harmonic (trlgonomE!trlc) series, 

(8.2) u (t) = a + b*s I n (ct - d) + EI*S I n (2ct - d) + •••• 

For short Intervals of a cyclic trend, such ac· .. dally maximum one hour 

average ozone concentrations over a single year, most authors prefer a 

quadratic polynomial rather than a harmonic function. One could combine 

.. 
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equations 8.1 and 8.2 to get a mixture of the two kinds of trends. 

To accompl Ish removal of trend, standard regression procedures are 

used on the data before the analysis for extreme value parameters. The 

trend Is then subtracted out of the data. Finally, the extreme value 

analysis Is done. For example, suppose 50 years of flood (peak flow) data 

are available from a local stream. The flow Is suspected to have been 

decreasing because of diversion of water for urban use. The first step In 

this data analysis Is to plot the yearly floods versus year on 

linear-linear graph paper. On such a plot, the data may seem to show a 

linear decline. Then a straight line would be fit to the data and this 

line gives estimates of u(t). 

Such a linear regression model cannot be used for u(t) because u(t) Is 

the mode of the extreme data and least squares procedures estimate the 

mean. However, a linear (mean) trend can be subtracted from the data to 

eliminate the correlations Induced by the trend. Then the extreme value 

analysis described In Chapter 7 can be performed. The resulting value 

computed for u wll I be the difference between the mode and the mean and Is 

constant over time If the trend has been removed. Section 7.4.4 shows that 

the magnitude of the difference between the mean and mode should equal 

Euler's constant times the scale parameter (except for the effects of 

random error). 

Trends based upon measures other than time should be considered. 

Suppose a plot of the flood data shows some rather sharp declines, with 

level Intervals between the declInes. ThIs would be diffIcult to fit to a 

polynomIal. However the sharp declines might correspond to the startup 

times of new Industries in the area. A plot of floods versus population 

size would then show a linear trend, and population size would be a more 

meaningful measure of trend. 
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Another methodology for describing trend that is becoming Increasingly 

more popular is to use an 'autoregressive procHss'. In Its simplest form, 

autoregression describes the current data value as a function of the 

previous value(s) plus an Independent random erl"or: 

(8.3) x(t) = a*x(t-1) + error 

The reader Is referred to the many texts on autoregression and moving 

averages for a detailed explanation (e.g. Box and Jenkins (1976), and 

Ne I son (1 973 ) ). 

Autoregress i ve theory y I e I ds a I gor I thms for- est I mat I ng the parameter 

a, and the magnitude of the error In equation 8.3. Of course, much more 

complicated forms than 8.3 ·are typically used for real data analyses. This 

theory also yields 'filters' for removing the ~-rend from an autoregressive 

process. 

A simp I e method for remov I ng trends In extr-eme va I ue data I s to se I ect 

out that portion of the data In which the extremes are expected to occur. 

For example, If annual high temperatures are of Interest, one would collect 

data only during summer months to remove sEtasonal varlabl I Ity from the 

data. The 'cost' of this method Is a smaller sample size from which to 
choose the extreme. There Is also some chance that the true annual maxima 

wll I occur outside the chosen sampling period. The advantage of this 

method Is Its simplicity, It requires no mathematical description of the 

trend, and untrained persons can perform such an analysis. 

8.3 INCLUDING TREND IN THE DATA ANALYSIS 

When trend Is removed from the data a subtle problem Is created: the 

observed max I ma are then the extreme dev I atl on~i from the trend rather than 

the extremes over time. This mayor may not be the variable of interest. 

For example, weekly maxima of one hour OZOnEt concentrations are usually 
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assumed to have a lognormal distribution and also have a harmonic trend 

peaking In the late summer (Larsen, 1969). To remove trend from such data, 

one would regress a periodic function (sines and cosines of multiples of 

the time variable) on the logarithms of the data. When this periodic 

function Is subtracted from the data a sequence of Identically distributed 

extreme values result. The maxima of these detrended sample values might 

wei I occur In the middle of the winter, even though the annual maxima of 

ozone concentratlonsoccurs In the summer. 

The detrended sample values are studied to test the adequacy of the 

underlying assumptions of the statistical procedures, but the numbers of 

practical significance usually Include the trend. The rest of this section 

presents a technique due to Horowitz (1980) which simultaneously treats the 

trend and the maximum values. 

Let x(t), t=1,2, ••• n, be a sequence of samples from a continuous 
random process of the form 

(8.4) x(t) = f(t) + e(t) 
where: 
1) f(t) Is a bounded deterministic function 
2) the sequence e(t) Is a Gaussian stationary 

process satisfying: 
a) E(e(t» = 0 for all t 
b) E(e(t)*e(t» = v = variance, a constant 
c) E(e(t)*e(t+k»/v = r(k) 

for al I t and k 2 1 

d)I:r(k)2<oo 
k=1 

E( ) Is the statistical expectation function. In equation 8.4 the x(t) can 

either be the data or a transformation of the data, such as the logarithm 

of air pollutant concentrations mentioned previously. The assumption that 

the e(t) have a Gaussian distribution may seem to defeat the purposes since 

most of the data of Interest are extremes from a Gaussian distribution 

rather than data from a Gaussian. Typical I variables of Interest are such 
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th I ngs as how annua I floods change over the yeal-s, how week I y max I rna of one 

hour ozone averages change over the year, and so on. RI ver depths and 

ozone averages (or their logarithms) have approximately a Gaussian 

distribution, thus their maxima have an E;<treme Value distribution. 
Leadbetter (1977, theorem 4.1> shows that an Extreme Value result that 

holds for a parent distribution also holds fc)r sample extremes from that 
distribution. Leadbetter's theorem Is an Important addition to Horowitz's 

work since It al lows the same statistical analysis techniques to be appl led 

to samples and to extremes of samples. 

Define zen) to be the maximum of n observa-rlons, 

(8.5) zen) = max(x(1),x(2), ••• x(n» 

Then Horowitz shows that an asymptotic approximation for the probability 

distribution of zen) that Is valid for large n "s given by: 

(8.6) 

(8.7) 

p(z(n) .5. Z) = exp(-exp(-(Z-b(n»/a(n») , 
where: 
den) = SQRT(2*ln(n» 

s = SQRT(v) 
a(n) = s*b(n)/d(n) 
ben) = s*c(n) + g(n) @ 
c(n) = den) - (In( In(n»+ln(4*pi »/(2*d(n» 
g(n) = h(n)/d(n) 

n 
h (n) = -I n (n) + In ( 2: exp (d (n) *f (,") / s) ) 

t=1 

@ The formula for ben) given by Horowitz (1980) Includes an 
exponentiation which Is omitted here. Horowitz restricts his derivation to 
the distribution of the natural logarithm of the data rather than the data 
values. Study of similar work by Leadbetter (1977, section I I), Epstein 
(1960, pp 39 - 40), and Slngpurwalla (1972, AppEindlx) Indicates that the 
formula for ben) can be used without exponentiation to anal Ize data. 

~' 

.. " 
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Some algebra shows that equations 8.7 are identical to equations 7.19 

if f(t) Is a constant. The key difference between the Independent 

identically distributed samples of equations 7.19 and the samples from a 

nonstatlonary random process of equations 8.7 Is the term hen), which 

itself Includes a term that is a summation over the expected values of the 

data, f(t). The expected value of zen) Is ben) + E*a(n), where E is 

Euler's constant. 

8.3.1 Example, Trend In Annual Floods. 

Twenty years of flood data were simulated by creating a sample from an 

Extreme Value distribution, applying an autoregressive process to the 

sample, and finally adding a linear trend. This data Is plotted In Figure 

8.1 and listed In Table 8.1. 

Table 8.1 
Annua I Floods versus Years 

TI~ DATA TIME DATA 

1 26.3717 11 22.0139 
2 20.8157 12 20.1129 
3 20.4614 13 20.3941 
4 20.7928 14 18.8047 
5 20.4814 15 19.5~8 
6 27.9141 16 18.5526 
7 26.1495 17 21 .0049 
8 19.3770 18 20.6239 
9 23.3212 1 9 17.3935 

10 19.5338 20 16.0694 
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DATA 
30.0+ 

27.0+ 

24.0+ 

21.0+ 

18.0+ 

15.0+ 

* 

* * 
* * 

* 

* 
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* 

* 
* * * 

* * 
* 

* * 

* 
* 

+---------+---------+--------.-+---------+---------+ T I ME 
0.0 4.0 8.0 12.0 16.0 20.0 

Figure 8.1 
Annua I Floods versus Yeclrs 

A sample of size 20 is much smaller than ariY real data set, and too 
small to really test for significance of statistical trend processes within 

the data. Such a smal I sample Is used here to cl low the reader to easily 

repeat the computations. 

Figure 8.1 suggests that a I inear, and possibly a quadratic, function 

might describe the trend. These regressions were done, and compared to 

each other and also to a no trend model (zero slope) using the General 

Linear Hypothesis to test for significant differences between trend models. 

' .. 



EXTREMES OF DATA CONTAINING TRENDS Page 8-11 

These tests showed that a linear trend Is significantly better than the no 

trend model (confidence = 99.5%) and that -a quadratic model Is not 

signifIcantly better than the linear (confIdence = 50%). The estimated 

linear trend model Is: 

DATA = 24.13 - 0.299*TIME 

The R-squared value for this regressIon Is 35.8%. 

A tIme serIes analysIs of the residuals (MINITAB ARIMA command) 

Indicated no signIfIcant autoregressive pattern. Thus, one can conclude 

that the data show a linear trend with Independent random errors. 

Next the residuals from the regressIon are analyzed to determIne If 

they can be described by an Extreme Value distribution. Figure 8.2 is an 

Extreme Value probabl I ity plot of these resIduals. This type of plot was 

discussed in section 7.3. The resIduals appear to be close to a straight 

I I nee 

Applying the correlation test for goodness-of-flt discussed in 

AppendIx 7-B yields a correlatIon of 0.990. This value fal Is close to the 

90in percentile of the distrIbution of correlations for sample size 20, 

Indicating a good fit. A correlation test for goodness of fit was also 

done for the Gaussian distrIbution (Ryan et. al., 1980, section 11.7), 
giving a correlation of 0.963 which fal Is at about the lOin percentile of 

the corresponding distribution. Thus one may conclude that the residuals 

from the linear trend model can be described by either an Extreme Value 

distribution or a Gaussian distribution. The Extreme Value dIstribution is 

a slIghtly better fIt. 
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REGRESSION RESIDUALS (STANDARDIZED) 
3.0+ 

2.0+ 

1.0+ 

0.0+ 

-1.0+ 
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-2.0+ 

* 

* ** * 

* 
* ** 

** 
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* 

* 

* 

* * * 

* 

+---------+---------+-------·--+---------+---------+SCO RE 
-2.0 -1.0 0.0 1.0 2.0 3.0 

Figure 8.2 
Extreme Va I ue Probab I I I ty Plot of 

Li near Regress I on Res f d lIa Is 

If the trend Information were Ignored when computing the parameters of 

the Extreme Value distribution of floods equations 7.19 would be used, with 

the overal I mean and variance of flood data, to compute the distribution of 

the maximum over 20 years. The description of the flood data Is: 

sample size = n = 20 
mean = 20.989 
standard deviation = 2.96 

'" ... ' 



EXTREMES OF DATA CONTAINING TRENDS 

Applying equations 7.19 yields: 

c(n) = 1.707 
u(n) = 26.02465 
a (n) = 31 .471 

Page 8-13 

These results show that, for the flood data, the mode of the extremes of 20 

observations Is just over 26, which Is reasonably close to the observed 

maximum of 28. The value of the scale factor a(n) relative to u(n) suggest 

that there Is a great deal of uncertainty In any estimate derived from this 

data. Applying equations 7.15 and 7.16 yields a mean of 44.19 and a 

standard deviation of 40.36, which along with u(n) and a(n) shows a 

long-tailed distribution over the high values. The mean (44.19) Is 

approximately twice the mode (18.17, computed from Equation 7.15). 

When the trend Is Included In the analysis, equations 8.7 are used 

rather than 7.19. Separating the computations Into parts gives: 

n = 20 
den) = SQRT(2*ln(20» = 2.44775 
f(t) = expected value at time t from the linear regression 

= 24.13 - 0.2995*t 

n 

s = square root of linear regression mean-square-error 
= 2.436 

~exp(d(n)*f(t)/s) = 7.8566El0 
t=l 

hen) = -In(20) + In(7.8566El0) = 22.091473 
g(n) = h(n)/d(n) = 9.0252 
c(n) = den) - 3.6282129/(2*d(n» = 1.70655 
u(n) = 2.436(c(n) + g(n» = 26.1425 
a(n) = 26.017 

The mean and standard deviation computed from equations 7.15 and 7.16 

after adjustment for the trend are 45.8 and 33.4, respectively. Thus, In 

this example, adjusting for the trend gives essentially the same mode and 

mean as without adjustment, but using the trend reduces the scale factor 

and standard deviation. With large sample sizes one would expect 
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(Horowitz, 1980) that excluding trend Information would cause a substantial 

overestimation of the magnitude of extremes. T~ls occurs because without 

the trend removed the estimate of e(t) Is Inflated by the effect of the 

trend. In analysIs of varIance terminology, this Is combining the between 

time period effects with the within time perlod~; effects. 

The reduced spread produced by using trend Information wll I result In 

a substantially smaller upper confIdence limit on the expected extreme 

values. The relations given In section 7.4.4 ar'e used to calculate the 

upper 95% confidence I imlt for these floodE,. Accounting for the trend 

gives a I imit of 103, while IgnorIng It gives a confidence lImIt of 119. 

If a flood control project were beIng deslgneid, the upper 95% confidence 

lImIt Is a reasonable desIgn criteria. A 16 fOCit dIfference In flood level 

Is of substantIal economic Importance when engineerIng for flood control. 

8.4 OTHER CONSIDERATIONS 

Equations 8.4 to 8.7 offer an effIcIent way to obtaIn estimated maxima 

over long duration cyclIc trends. Suppose one wIshes to estImate the 

distrIbutIon of maxImum annual pollutant concentratIons, assumIng there Is 

no trend other than the annual seasonal cycles. One way to find such a 

dIstribution would be to collect data for many years, select out the maxima 

from each years data, and apply the techniques given In Chapter 7. 

Equations 8.4 to 8.7 can achieve the same goal wIth only one years data. 

Another InterestIng application of these formulas Is to explore the 

effects of various hypothetIcal trends upon a (known) stationary process. 

EnvIronmentalists often predIct the changes that would be expected If a new 

Industry came Into a regIon, or If a cleanup strategy is Implemented. 

These predIctIons are usually estImated changes In average values. Such 

estImated means could be added to f(t) In equations 8.4 to 8.7 In order to 

predIct the accompanyIng changes In the extremes. 

: 
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8.5 SUMMARY 

The commonly used procedure for estimating the Extreme Value 

distribution of a sequence of measurements Implicitly assumes the samples 

are from a stationary random process. Ignoring trends results In an 

overestimate the magnitude of the extremes and their associated statistics. 
This chapter presents procedures for Including such trends within the 

parameter estimation algorithm. 
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9.1 INTRODUCTION 

CHAPTER 9 
PARAMETER ESTIMATION 

In Chapter 7 three ways of estimating the location and scale 

parameters of the Extreme Value distribution are given: 1) by linear 

regression on the cumUlative probability plot, 2) by transformation of the 

extreme's sample mean and variance (method of moments), and 3) by maximum 

I Ikel I hood. The discussion In that chapter concludes that the maximum 

I Ikel Ihood estimates are the best, but are difficult to compute. 

Transformation of the mean and variance Is computationally easy and gives 

values close to the maximum I Ikel I hood estimates, but Is Inefficient for 

the scale parameter estimate. This method Is preferred when simplicity Is 

desired. The regression estimates have good logical and Intuitive basis, 

but are biased. AI I the above parameter estimating methods require the raw 

data values and no missing values. 

There are many special cases In which additional parameter estimation 

methods are desirable. There may be so much data that It Is not practical 

to use It al I In computations. This could occur If one were analyzing the 

data on a smal I computer with limited memory. Data Is sometimes collected 

In such a way that It Is censored. In this chapter a method that uses 

censored samples and a method using Information about quantlles of the data 

are presented. These are arbitrary selections from many estimation methods 

available In the literature. Along with these selected methods, it wll I be 

shown how Gumbel's regression method can be used to solve, In a crude but 

easily-computed way, the same problems. 
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9.2 ESTIMATING PARAMETERS FROM LARGEST OBSERVATIONS 

There Is a wealth of recent literature describing estimation 

techniques for censored samples. Most of these methods are associated with 

the Welbul I distribution and with life testing of mechanical systems or of 

consumer products. These methods can be adapted to the Extreme Value 

distribution through the logarithmic relationship between Extreme Value 

variables and Welbull variables discussed In ~;ectlon 3.4. A transform of 

data val ues and an I nverse transform of parametE!r val ues often Introduces 

statistical bias. A prominent feature of most Welbul I distribution methods 

is that they requ I re spec I a I tab I es of coeff Ic I Emts. The method presented 

In this section Is less efficient than the Welbul I-type methods, but It 

requires no tables and Is simple enough for hano computation. 

Suppose the 10 maximum yearly ozone concentrations from the 50 largest 

urban areas of the United States are available, and Inferences about the 

yearly maxima over al I 50 areas are desired. Formula 7.21 can be used to 

make Inferences about larger sample sizes from a given data set. However, 

this formula is not appl icable to this urban area problem because It 

assumes the data available is a random subset of al I possible data values. 

For this example, the data reported Is not random. The 10 largest values 

must be analyzed using methods derived from the theory of order statistics. 

9.2.1 Regression Estimators. 

The simplest method for estimating the loccltlon and scale parameters 

from a censored subset of the data Is to use Gumbel's regression technique 

discussed In Section 7.3, but use only those values of the regressor, 

1/(n+1), for which data are available. For the urban areas example, let 

the 10 known values, ranked from lar'gest to smallest, be 

x(l),x(2), ••• x(10)' These would be plotted ancl regressed on the predictor 

variables y(l), ••• y(10) where the y's are the e)c.treme value scores given In 

formulas 7.5 and 7.6, y( I) = -In(-ln(I/(n+1))), Here, n = 50 and I ranges 

.. : 
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from 41 to 50. The dIfference between this regression and the method 

presented In SectIon 7.3 Is that In Chapter 7, I ranges from 1 to n. The 

Intercept and slope from the regressIon are estimates of the location and 

scale parameters, respectIvely. (The reason for reversing the usual roles 

of the x's and y's was discussed In Section 7.2.) 

This regression technique can be used for any kind of censoring or any 

pattern of missing data If the total sample size Is known and If the known 

values can be assigned ranks within the total sample. One chooses the 

values of I to be the ranks assocIated wIth the known data values. Perhaps 

Instead of the 10 highest yearly ozone maxImum values of 50 urban areas, 

the 5 highest and 5 lowest were given. Values of I equal to 1 to 5 and 46 

to 50 would be used. This regressIon method Is the only one available that 

can be generally appl led In censored and missIng data values sItuatIons. 

One should be especIally aware that missing data values can Introduce 

substantial bias Into the estimates calculated by regression programs, 

particularly Into the estimated standard deviations of the parameter 

val ues. 

9.2.2 Minimum Variance Unbiased EstImates. 

For the case In which the k largest data values from an extreme value 

sample are known, Weissman (1978) gives formulas for maximum I Ikel I hood 

estImates and mInimum varIance unbIased estImates of the location parameter 

a and scale parameter b. Let x(1),x(2), ••• x(k) be the ordered (largest to 

smal lest) k largest values from a sample of sIze n. Let m(k) be the mean 

of these k values, and define: 

(9.1) 

( 9.2) 

k-1 -1 
S(k) = L j 

j=l 

12 k~_2 
V(k) = ~6- - LJj 

j=l 

where pI = 3.14159 ••• 
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Maximum I ikel ihood estimates of the Extreme Vc:.lue distribution location 

parameter a and scale parameter bare: 

(9.3) 

(9.4 ) 

A A 

a = b*ln(k) + x(k) 

b = m(k) - x(k) 

Equation 9.3 Is Identical to equation 7.21, except for a change In the 

meaning of the letters denoting the statistical quantities. Let E 

represent Euler's constant (0.57721 ••• ). Minimum variance unbiased 

estimates are: 

(9.5) a = b*(S(k) - E) + x(k) 

( 9.6) b = m(k-1) - x(k) 

and the corresponding variances are: 

(9.7) 

(9.8 ) 

V(a) = b*«S(k) - E)2/(k-1) + V(k» 

V(b) = b/(k-1) 

These equations seem to emphasize the kfh data point over al I other values. 

(Points k+1 to n are unknown.) This Importance Is apparent rather than 

real, because the actual value used for x(k) Is unknown until al I the data 

are collected and ranked. Thus, x(k) Is a random variable conditioned upon 

al I other data values. 

9.3 ESTIMATING PARAMETERS FROM SAMPLE QUANTILES 

Large data sets are often recorded as frequencies that occur within 

groups or Intervals of measurement values. This data summarizing reduces 

the volume of data, but It doesn't al low application of statistical methods 

that use raw data values. Such grouping of data can be handled by 

I ikel I hood maximization methods. Generalized I Ikel I hood maximization 

techniques (algorithms such as Simplex, which is discussed In section 

7.3.1) are easy to adapt to grouped data and to the Extreme Value 

distribution. The I Ikel I hood function to be maximized Is: 

.-

"-" 
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(9.9) 
k 

L=TIp(f)n(1) 
1=1 

where 
k = number of groups of data, 
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n(l) = number of observatIons In the lib class, and 

x( I) 

p(1) = jf(Z)dZ = F(x(l» - F(x<t-l» 

x<T-1> 

For the Extreme Value distribution, F(x) Is gIven by equations 7.3; F(x) = 

H(x) = exp(-exp(-y» with y = (x - u)/a. The scale parameter a, should be 

relatively large compared to the length of the Intervals, x(l) - x(l-l). 

This condItion Is also satisfied If the standard deviation of the x's Is 

large compared to Interval length. Computationally, it Is convenient to 

maximize the logarithm of the I Ikel I hood function: 

k 
In(L) =L:n(J)*ln(p(l» 

1=1 

Gumbel's method of regression can also be used with grouped data to 

estimate the location and scale parameters. The extreme value scores used 

as the predictor variable are calculated by replacing the term I/(n+l) with 

the value of the quantlles. For example, suppose that In a large number of 

dally maxima of hourly nitrous oxide measurements, 75% of the values are 
,less than 0.1 part per mil lion. The data point used for the Gumbel 

regression would be 0.1 for the x component and -In(-ln(.75)) for the y 

component. The estimates of varIances of the parameters produced by most 

regression programs are Invalid In this sItuation because they do not 

correctly account for the degrees of freedom. They typIcally assume each 

data point represents only one observatIon. Also, the correlatIon 

coeffIcIent goodness of fIt test given In Appendix 7-6 Is not applicable 

because It is not based on grouped data. Grouping smooths the data and 
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produces correlations that are biased towards high values. The estimators 

for the location and scale parameters using Gumbel IS regression technique 

on grouped data are simple enough to calculate on most programmable hand 

calculators. Also, elementary statistics textbooks give formulas for 

calculating the mean and standard deviation fr~ grouped data. These, with 

formulas 7.15a and 7.16a, can be used to estimate the Extreme Value 
location and scale parameters from grouped data. The efficiency and bias 

in such methods have not been studied, thus, such methods cannot be 

recommended unless computational simplicity Is essential. 

Published techniques for evaluating the Extreme Value distribution 

with grouped data require special tables of coefficients. The method of 

Hassaneln (1972) Is the germ of many subsequent papers on grouped data 

parameter estimation. The papers published since Hassaneln are primarily 

devoted to the analysis of the Welbul I distribution and to eliminating 

biases. Some of these are discussed In Chapter 12. 

Hassaneln proposes that the Extreme Value location and scale 

parameters be estimated by linear combinations of order statistics. He 

chose the particular order statistics that maximize the relative efficiency 

of the estimates, and tabulates the coefficients needed to form these 

linear combinations. The user selects the number of order statistics used 
In the estimation. Hassaneln's results are asymptotic. Mann and Fertig 

(1977) give bias corrections to Hassaneln's equations for smal I to moderate 

sample sIzes. 

Quantile estimators reduce the computatIonal burden by making use of 

selected observations. 

from data fol lowing 

Assume a large ordered sample of size N is taken 

the Extreme Value distribution. Let x(N,l), 

x(N,2), ••• x(N,k) 

of the location 

[N*p(I)+l], 

be the k sample quantlles to be used In forming estimates 

parameter u, and the scale parameter a. Let (N,I) = 
= 1,2, ••• k, where [z] denotes the largest integer not 

exceeding z. Assume the data Is ordered from smal lest to largest, so that 

• 

". 
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x(l) Is the smallest extreme, x(2) Is the second smallest, and so on. 

(This ordering Is opposite from the ordering used for making probability 

plots of extreme values.) Hassaneln gives optimum choices of p(l) and the 

corresponding coefficients for the linear combinations. He also gives 

factors to be used In computing variances of the estimators. Tables of 

these factors and coefficients are given In Appendix 9-A. 

are linear combinations of the form: 

(9. 1 0) 

(9.11) 

k 
U = L: c( !) *y[N*p ( I )+1] 

1=1 

k a =L:d(!)*y[N*p(I)+1] 
1=1 

The estimators 

The values of c(I), d(I), and p(l) are tabulated In Appendix 9-A for k = 

to 7. 

Hassaneln also gives multipliers for determining the variances and 

covarlances of the location and scale parameters. These are given In 

Appendix 9-A as E(l), E(2), and E(3), where: 

,,2 
(9. 1 2) V(u) a = --- * E (1) N 

,,2 
(9. 13) Veal a = -ir * E(2) 

"-2 
(9.14) Cov(u,a) = _ _2_ * 

N 

9.3. 1 Numer I ca I Examp Ie. 

Hassaneln's equations are 

concentrations, In plcocurles per 

data Is summarized In Table 9.1. 

, 

, and 

EO) 

used to analyze the maximum radium 

I Iter, for 485 drinking water wei Is. The 

(The notation [0.2,0.4) means that the 

data group Includes values from 0.2 plcocurles up to but not including 0.4 

plcocurJes per liter.) 
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I.abl..e 2.J. 
MaxImum RadIum Levels In DrInkIng Wa--er Wells (pCr/l) 

RadIum ConcentratIon 
[0.2,0.4) 
[0.4,0.6) 
[0.6,0.8) 
[0.8,1.0) 
[1.0,1.2) 

[1.2,1.4) 
[1.4,1.6) 
[1.6,1.8) 
[1.8,2.0) 
[2.0,2.2) 

[2.2,2.4) 
[2.4,2.6 ) 
[2.6,2.8 ) 
[2.8,3.0) 
[3.0,3.2) 

[3.2,3.4) 
[3.4,3.6) 
[3.6,3.8) 
[3.8,4.0) 

FreQuenc¥ 
4 

11 
27 
48 
62 

58 
55 
60 
61 
36 

17 
18 
8 
7 
6 

3 
1 
2 
1 

.CWlIU I atl ye FreQuenc¥ 
4 

15 
42 
90 

152 

210 
265 
325 
386 
422 

439 
457 
465 
472 
478 

481 
482 
484 
485 
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Suppose the location and scale estimators are calculated using two 

quantlles; k = 2. From Table 7.B.l the quantlles that gIve maxImum 

effIciency are: p(1) = 0.087 and p(2) = 0.7~;4. Next determine which 

observatIons best estimate these quantlles usin~1 [N*p(J)+l]. N = 485, so 

[N*p(l)+l] = 43, 

[N*p(2)+1] = 356. 

SInce x(43) and x(356) are not dIstInct among the groups gIven In Table 

9.1, It is necessary to Interpolate to recovElr their approximate values. 

x(356) fal Is at about the middle of the Interval between x(325) = 1.8 pCil1 

and x(386) = 2.0 pCi/l. This Interval has a ~rldth of 0.2, an upper bound 

of 2.0, and a lower bound of 1.8. Using linear InterpolatIon, the 

fractional dIstance wIthin the Interval of x(356) Is 

.; 
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(356 - 325)/(386 - 325) = 31/61 = 0.5082 • 

The fractional distance times Interval width plus lower bound Is 

0.5082 * 0.2 + 1.8 = 1.9016 • 

Thus, the value of x(356) reconstructed by linear Interpolation Is 

approximately 1.902 plcocurles of radium per I Iter of drinking water. 

Similarly, x(43) = 0.804. 

The values have been determined for the most efficient two quantlles 

for estimating the location and scale parameters. Next these quantlles are 

used with the coefficients given In Table 9.A.2 to form the linear 

combinations that estimate the parameters. From Table 9.A.l, c(l) = 

0.5680, c(2) = 0.4320, and from Table 9.A.3 d(l) = -0.4839, d(2) = 0.4839. 

The scale and location parameter estimates are then: 

u = 0.5680 * 0.8042 + 0.4320 * 1.9016 = 1.2783 

a = -.4839 * 0.8042 + 0.4839 * 1.9016 = 0.5311 

That Is, based on the grouped data the Extreme Value distribution mode 

(location parameter) Is 1.3 plcocurles per I Iter and the scale parameter Is 

0.5 plcocurles per liter of Radium In wei I water. 

The variances and covarlances of these estimates are calculated using 
the multipliers given In Table 9.A.4 and equations 9.12 through 9.14. From 

this table, E(l) = 1.5106, E(2) = 1.0749, and E(3) = -0.3401. 

V(u) = (0.5311 2/485)*1.5106 = 0.00088 

yea) = (0.5311 2/485)*1.0749 = 0.00063 

Cov(u,a) = -(0.5311 2/485)*-0.3401 = 0.0002 
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and the corresponding standard deviations are: 

SD(u) = 0.0296 

SD ( a ) = 0.0250 

Correlation(u,a) = 0.27 

The location and 

Assuming that a 95% 

scale parameters 

confidence Interval 

are significantly correlated. 

or the distribution of the 

parameter values Is ±2 standard deviations, the 95% confidence Interval for 

the location parameter Is 1.2783 ± 2*0.0296 plcocurles per I Iter, or 1.22 

to 1.34. Similarly the 95% confidence Interval for the scale parameter Is 

0.48 to 0.58 plcocurles per I Iter. 

9.4 SUMMARY 

This chapter presents some of the available methods for obtaining 

parameter estimates for an Extreme Value distribution from grouped or 

censored data. A method is given to obtain minimum variance unbiased 

estimates when only the largest extremes are reported. A simple regression 

method for the same kind of data Is given. When sample size Is large, the 

data Is sometimes reported as frequencies within specified intervals or 

groups. Several methods are discussed to obtain parameter estimates from 
grouped data. Finally, a rigorous method of calculating the location and 

scale parameters from sample quantlles Is presented. 

.. " 

-.. 
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9.6 APPENDIX 9-A 

EXTREME VALUE DISTRIBUTION 
Tables for Calculation of Location and 

Sca I e Parameters from Group.~d Data 

Table 9.A.1 
Coefficients for Choosing Quantlles for Maximum 

k = number of quanti I es to be used 
I = Index of coefficient 
Body of Table contains p(l) 

k 
2 3 4 5 6 

1 .087 .055 .028 .018 .011 
2 .734 .439 .193 .114 .071 
3 .850 .604 .404 .251 
4 .896 .726 .547 
5 .931 .799 
6 .951 
7 

Table 9.A.2 
LI near Comb i nation Coeff Ic I ents for 

Determining Location Parar~eter 
k = number of quanti I es to he used 
I = Index of coefficient 
Body of table contains c(l) 

k 
2 3 4 5 6 

1 .5680 .3386 .1566 .0994 .0623 
2 .4320 .5184 .4316 .3030 .2027 
3 .1430 .3250 .3673 .3315 
4 .0868 .1804 .2564 
5 .0499 .1144 
6 .0327 
7 
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.-
Effeclency 

7 

.008 

.047 

.163 

.396 

.652 

.849 

.964 

7 

.0439 

.1382 

.2649 

.2813 

.1727 
,- ~ 

.0764 .. .. 
• 0226 

-.. 



... 

.. 

PARAMETER ESTIMATION 

Table 9.A.3 
Linear Combination Coefficients for 

1 
2 
3 
4 
5 
6 
7 

2 
------
- .4839 
0.4839 

Determining Scale Parameter 
k = number of quanti les to be used 
I = Index of coefficient 
Body of Table Contains d(l) 

k 
3 4 5 6 

------ ------ ------ ------
-.4372 -.2845 -.2047 -.1454 
0.1602 -.1526 -.2236 -.2189 
0.2770 0.2651 0.1012 -.0481 

0.1720 0.2208 0.1733 
0.1063 0.1673 

0.0718 

Table 9.A.4 

7 
------
-.1112 
-.1854 
-.1254 
0.0780 
0.1680 
0.1251 
0.0508 

Multipliers for ~symptotlc Variances and Covarlances 
of Location and Scale Parameters 
k = number of quantlles to be used 

k 
2 3 4 5 6 7 

------ ----- ------ ------ ------ ------
Var( u) 1.5106 1.2971 1.2287 1. 1924 1.1706 1 .1 567 
Var(a) 1.0749 0.9028 0.7933 0.7374 0.7043 0.6825 
Cov(u,a) -.3401 -.2579 -.2570 -.2674 -.2657 -.2638 

Page 9-13 
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10.1 INTRODUCTION 

CHAPTER 10 
EXTREMES OF SMALL SAMPLES 

In previous chapters It Is assumed that the samples from which the 

extremes were selected are large. Fisher and Tippet show that for samples 

from a Gaussian distribution, the sample size has to be Infinite for the 

Extreme Value distribution to hold exactly (Chapter 1). In statistics, 

approximate asymptotic properties are usually adequate. However there are 

some situations In which the asymptotic distributions yield significantly 

biased results. No general rules exist that al low one to determine when 

_asymptotlcs are adequate. 

This chapter outl ines statistics that can be used when sample sizes 

are smal I. The specialties of 'Order Statistics' and 'Simultaneous 

Inference' contain the mathematical tools necessary to analyze smal I sample 

extremes. The results are not as simple as for the asymptotic 

distributions, but this Is the price of smal I samples. Order statistics 

gives the densities and distributions of the largest and smal lest members 

of a sample of known size. SimUltaneous Inference shows how to 

collectively consider a set of (possibly correlated) probability 

statements. 

The principal references for this chapter are the textbooks by David 

(1970) and by Miller (1966). Most mathematical statistics textbooks 

contain the basic Ideas of order statistics, often Indexed by such terms as 

'the dIstribution of the range', or 'the distribution of quantlles'. 
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10.2 ORDER STATISTICS 

Order statistics studies the statistical properties of maximum and 

minimum values, the range, extreme deviates from the mean, quantlles, the 

second from largest value, and the joint distributions of these statistics. 

In this short overview only the largest extreme from a smal I sample wil I be 

considered. 

If X(1),X(2), ••• X(n) Is a random sample frcm a continuous population, 

the rih largest of these values Is cal led the rIh order statistic, its 

value will be denoted as x[rJ. Thus, the smal lest sample value Is x[lJ and 

the largest Is xCnJ. Since the distribution of the X's, F(x), may be 

Interpreted as the probability that X has a value less than or equal to 

some specified value x, the probability that exactly j of the X's I Ie In 

the closed Interval (-oo,x] and (n-j) lie In the open Interval (x, co) Is 

obtained from substituting F(x) for the probabi I Ity in the Binomial series: 

C1 0.1) 

The event x[rJ ~ Z occurs If and only if r or more of the X(I)'s I Ie In the 

Interval (- co ,zJ. Thus, 

(10.2) 

In particular, the distribution function of the largest and smal lest 

members of a sample from a population with distribution F(X) are: 

(10.3 ) F(x[nJ) = (F(X»n , and 

( 1 0.4 ) F(x[1]) = 1 - (1 - F(x»n 

The corresponding density functions are found by differentiation to be 

.. ' 

.' . 
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(10.5) f(x[n]) = nf(X)F(X)n-1 , and 

(10.6 ) f(x[l]) = -nf(X)(l - F(X) )n-1 

This statistical reasoning can be extended to show that the 

distribution of the rth order statistic Is 

(10.7> [] = n f r-1 n-r f(x r) (r:Trr(~:r)rf(X)F(X) (1 - F(X» 

An InterestIng result of order statIstics concerns the samplIng 

dIstrIbutIon of the medIan of the densIty f(x). Let M(x) denote the 

medIan. Then for large n, the samplIng dIstributIon of M(x) for random 

samples of sIze (2n+1) Is approxImately Gaussian wIth mean equal to the 

populatIon medIan and varIance (Wilk, 1947, Chapter 4) 

(10.8) 

If X Is Gaussian dIstributed, then the varIance of the medIan Is 

approxImately 

(where 5 Is the standard devIatIon of the distrIbutIon and pI = 

3.14159 •••• ) ComparIng thIs wIth the varIance of the mean, which for 

samples of size (2n+1) Is 

, 

shows that, for large samples from a Gaussian populatIon, the mean has a 

smaller varIance than the medIan. 



EXTREMES OF SMALL SAMPLES Page 10-4 

10.2.1 Approximating the Distribution of a Sln~le Order Statistic. 

Consider the summation of binomial terms of equation 10.2, the 

probability that j of the x(l) are less than or equal to some specified 

value. There Is a relationship between binomial sums and the Incomplete 

beta function I, that gives 

(10.9) F(x[r] ~ z) = I(F(z),r,n-r+l) 

Tables of the Incomplete beta function are available In Beyer (1966). In 

order to use such tables It Is often necessary to employ the Inversion 

relationship: 

(10.10) I(P,a,b) = l(l-P,b,a) 

As an example, suppose one wishes to find the upper 5% limit of the 

fourth order statistic, x[4], from a sample of size 5, from a standardized 

(mean of 0.0, varIance of 1.0) GaussIan dIstrIbutIon. EquatIons 10.2 and 

10.9 show that this Is equivalent to fInding z such that 

I(F(z),4,2) = 0.95 , or 

1(1-F(z),2,4) = 0.05 • 

The tab I e on page 210 of Beyer g t ves the lower 5:' po I nt of the I ncomp I ete 

beta function, which by the Inversion formula 10.10 Is equivalent to the 

upper 95% potnt. To read the table use v(l) = 2'tb = 2*4 = 8, and v(2) = 

2*a = 2*2 = 4. The tabled value Is 0.07644 whIch Is the desired value for 

l-F(z). Next use a table of the GaussIan dlstrll)utlon to fInd that value 

of z that corresponds to F(z) = 1 - 0.07644 = 0.92356. ThIs value Is very 

close to z = 1.43. Then for a standardIzed GaussIan distrIbutIon, the 

second largest observation In a sample of sIze 5 wll I be less than or equal 

to 1.43 with probabll tty of 0.95. 

lo' 

.. " 

" . 
.. 
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Frequently several simple statistical tests are performed on the data 

from a single experiment. Suppose river water Is sampled and tested for 

concentrations of 10 pollutants using a Student's t-test with 14 degrees of 

freedon for each pollutant. An experiment-wide 95% confidence (probabi I Ity 

of a type I error) Is desIred. That Is, wIth 95% confidence the statement 

is to be made that the combined t-tests Indicate that no significant levels 

of any pollutants was found. This Is equivalent to the statement: the 

maximum t-value of the 10 t-tests performed Is within the 95% confidence 

I imlt of the largest order statistic In a sample of size 10 of a 

t-dlstrlbutlon with 14 degrees of freedom. Using the Incomplete beta 

functIon, this may be formulated as: find t such that 

I(F(t),10,1> = 0.95 , 

where F(t) Is a Student's t distrIbutIon function with 14 degrees of 

freedom. In order to use the tables of the Incomplete beta function It Is 

necessary to apply the Inversion relationship, 

1(1-F(t),1,10) = 0.05 • 

The tabulated value for 1 - F(t) Is 0.028358. From a table of the 

t-dlstributlon, the value of t that corresponds to F(t) = 0.9716 for 14 

degrees of freedom Is approximately 2.068. Thus, to be 95% confident that 

al I of 10 t-tests are Simultaneously not significant, the maxImum of those 

ten 14 degree of freedom tests has to have a t-value less than 2.068, which 

Is the 97% ~Ignlflcance crItIcal value for a single test. A 2% penalty Is 

payed for consIdering the 10 tests as a sIngle experiment. The t-value for 

95% confIdence on a single t-test wIth 14 degrees of freedom Is 1.761. If 

It seemed that al I 10 pollutant measures might be signifIcant, the lower 

confidence limit or 5% significance I imlt of the maximum of the 10 t-tests 

would be used to test the hypothesIs that al I the pollutants were 

SignIfIcant. More complicated sItuatIons arIse if only some of the 

t-values are significant; this Is best handled by a multivariate test 
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procedure. 

If tables of the cumulative Binomial distribution are available 

(Beyer, 1966, Table 111.2, or National Bureau of Standards, 1950) equation 

10.2 can be solved without the need to transform Into an Incomplete beta 

function. For the example above, enter the tables In Beyer at n=5 and 

x'=2, then look across the line for the value of p that has a table entry 

of 0.05. Interpolation between table enterlos of 0.0226 for p=0.05 and 

0.07326 for p=0.10 is necessary. A linear Interpolation yields p=0.07326. 

Using tables of the Gaussian distribution to 1:lnd z such that - F(z) = 

0.07326 yields z=1.452. The table In Beyer gives the summation of binomial 

terms from r to n. A more commonly avallablH form of such tables <Odeh 

et. al., 1977, Table 24; or Conover, 1971, TablEl 3) gives the summation 

from zero to r. This type of table Is o~:ten found In nonparametrlc 

statistics textbooks. Such tables can be used with the relationship that 

the probability summed over al I values If j must equal unity, thus 

(10.11) 
n r-1. 
L (~)Fj (1-F )n- j = 1 - L (~)Fj (1-F )n-J 
j=r J j=O J 

If a computer Is available, the value of F(,() In I(F(x),r,n-r+1) can 

be calculated using an algorithm for the Invorse of the Incomplete beta 

function (Majumder and Bhattacharjee, 1973; update by Cran et. al., 1977). 

These examples are both an Introduction to those aspects of order 

statistics that are most applicable to the s"rudy of extreme values from 

smal I samples, and also background for the next section which addresses the 

same problem In a different way. 

,,", 

~, 
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10.3 SIMULTANEOUS STATISTICAL INFERENCE 

In Section 10.2 the concept of finding one probability statement for a 

group of statistical tests Is Introduced~ rather than considering each test 

separately. If 20 t-tests are performed at the 95% confidence level~ on 

the average~ one of the results wll I be In error. The basic purpose of 

simultaneous Inference Is that~ by treating the tests as a group~ a 

probability statement can be made that Is simultaneously valid for al I 

members of the group. For 20 t-tests~ one Is able to say that al I 20 are 

not significant with 95% confidence rather than that each of the 20 is not 

significant at 95% confidence. In the latter case there Is high 

probability (64% to be exact) that at least one such conclusion In a group 

of 20 is In error. A philosophical point arises here~ how big should the 

group be? The general opinion among statisticians Is that a group should 

Include all statistical tests performed on a single data set. An extensive 

study of simultaneous Inference Is given by Mil ler (1966~ 1977). 

Order statistics and simultaneous Inference approach the problem of 

testing groups of hypotheses In different ways. The approaches are 

equivalent and the choice of approach depends upon convenience and the 

specifics of the problem. Order statistics picks the maximum (or minimum) 

of the group and derives a probability statement about the maximum (or 

minimum) as a function of sample size. 

statistic hypothesis of not exceeding 

If the maximum satisfies an order 

Its expected value~ then It 

necessarily fol lows that al I values of the test statistic smaller than the 

maximum also satisfy the hypothesis. Simultaneous Inference approaches the 

same problem by altering the probability test appl led to each statistic of 

the group so that an overal I probability statement can be made about the 

group as a whole If al I of the Individual statistics satisfy the altered 

test. 

The most familiar application of simultaneous Inference Is In analysis 

of variance. Whenever the analysTs concludes that there Ts a significant 



EXTREMES OF SMALL SAMPLES Page 10-8 

difference between means, the next step Is to examine the relationships 

between those means to find the source of the significance. The tests for 

these relationships are familiar under the names F-projectlon or Scheffe 

test, multiple range test or Duncan test, least significant differences or 
Fisher test, and Studentlzed range or Tukey test. 

The Bonferront Inequality, one of many available methods from 

simultaneous Inference, Is presented In this chapter. Miller (1977> 

observes: 'I have become even more Impressed with the tightness of the 

bound ••• ', In his discussion of studies of the Sonferroni Inequality over 

the years 1966 to 1976. 

10.4 Bonferroni Statistics. 

The Bonferronl method Is a simple adjustment of probabl I Ity levels 

that can be appl led to any statistical hypothesis test or confidence limit 

procedure to produce results that are valid for a group of statistics. If 

A(I) Is an event that can be assigned a probability and If there are n such 

events In a group, the Sonferronl Inequality states that 

(10.12) The probability of the Intersection of n events A(I) Is greater 

than or equal to 1.0 minus the sum of the compliments of the 

probabilities of the Individual events. 

The term' Intersection' Is the mathematically precise way of saying that 

al I events are considered as a group. This Inequality is a simple 

extension of Boole's Inequality: 

(10.13) peA or B) ~ peA) + PCB) 

The Sonferronl statistic Is obtained 

Inequality to any group of statistical tests. 

by applying the Bonferroni 

The stated error level, for 

• 

.. 
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example an error level or alpha of 5%, is divided by the number of tests in 

the group to obtain a new error level, cal I this b. The sum of n b's 

represents the sum of probabll ities on the right hand side of equation 

10.13. The inequality of this equation then al lows this sum to be related 
to the intersection of the events. For example, suppose the second example 

of section 10.2 is reanalyzed, in which 10 pollutants in a single water 

sample are analyzed using t-test. A 95% significance level corresponds to 

an error level of 0.05. With 10 tests in the group the blevel is 0.05/10 

or 0.005. The Sonferroni statistic tel Is one to test each of the 

pollutants at the 99.5% significance level; if al I 10 tests show no 

significance individually at 99.5% significance, then, with at least 95% 

significance, al I 10 pollutants are simultaneously not significant. The 

t-test critical value for 99.5% significance and 14 degrees of freedom is 

2.98. (The corresponding 95% critical value is 1.76.> The critical value 

found in section 10.2 was 2.07. The difference between 2.98 and 2.07 is an 

expression of the inequal ity within the Sonferronl statistic: It gives an 

upper bound. The advantages of the Sonferroni statistic are Its great 

simplicity, special tables are not required, and Its appl Icabll Ity to al I 

statistical situations. 

Care should be used when finding the new critical values from a table 

of probabilities. Many tables do not contain very smal I error levels such 

as those that result from dividing by the number of tests In the group. 

Also, tables differ widely In how they express error levels; one or two 

sided, using error levels or significance levels (tailor central areas). 

In the example, a one-sided t-test and a one-sided table Is used. If a 

two-sided test Is desired from one-sided tables, the Sonferronl statistic 

divides the error level by 2*n. 

Dunn (1959) showed that the Sonferroni statistic is appl icable to 

correlated as wei I as to Independent statistical tests. The order 

statistic results presented In section 10.2 are also valid for correlated 

statistics. In order to prove this, It Is necessary to use the 
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Union-Intersection principle (Morrison, 1967, section 4.2). 

10.5 COMBINING INDEPENDENT PROBABILITIES 

Two simple techniques are available to comb'ne Independent probabi I ity 

tests Into an overal I probability for a group of statistical tests; the 

sum of Chi-square values and Fisher's method. 

When a number of Independent tests of 

sometimes happens that although none can 

significance are appl led it 

bo I nd I v I d ua I I y c I a I med as 

Significant, the aggregate gives the Impression that on the whole, the 

probabilities are lower, or higher, than would bo obtained by chance alone. 

Two theorems found In statistics textbooks are useful I In deriving an 

aggregate significance statement about a group of Independent statistical 

tests. 

THEOBEM 1 
The sum of Independent Chi-square values Is 

also a Ch I-square value with degrees of 

freedom equal to the sum of degrees of 

freedom of the Individual val ues. 

Perhaps a series of Chi-square contingency table analyses are performed and 

all are Just a few percent too low to be JudgE!d significant. Many tests 

that are close to significance Is unlikely to be an aggregate event that is 

due to chance alone. Theorem 1 gives the theorotlcal basis to sum all the 

Chi-square values to obtain an aggregate test of significance. The second 

theorem allows this technique to be extendEld to tests that obtain 

significance levels from a Gaussian distribution. 

THEOBEM 2. 
The square of a standard I zed (subtract mean 

and divide by standard deviation) 

Gaussian-distributed value Is a Chi-square 

distributed value with one degree of freedom. 

.' 

. . 
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Suppose a series of Mann-Whitney Rank Sums tests (the Wilcoxon Rank Sums 

test is algebraically equivalent) are performed and an aggregate situation 

similar to the-one mentioned for the contingency table tests Is found. If 

Individual sample sizes are large, the significance of each Rank Sums test 

Is determined by calculating a value that has approximately a Gaussian 

distribution. Then the Individual significance levels can be closely 

approximated using a table of the Gaussian distribution. The aggregate 

significance can be obtained by squaring and summing these values, and 

comparing the sum to a Chi-square table using degrees of freedom equal to 

the number of Items summed. These two theorems are useful only when 

Chi-square or Gaussian values are available. They cannot handle other 

distributions or combinations of several distributions. 

Fisher's Combination of Probabilities Test of Significance (Fisher, 

1970, section 21.1) can be used to test the significance of an aggregate of 

any group of significance levels from any distribution or even several 

different distributions. Let P(I) represent the significance (or 

probab II Ity) 

found that 

distribution 

that: 

(10.14) 

resulting from the I.:tb. test 

minus twice the natural 

with 2 degrees of freedom. 

n 
X(2n) = -2L In(P(f» 

1=1 

In an aggregate of size n. Fisher 

logarithm of P(I) has a Chi-square 

It fol lows then from Theorem 1 

has a Chi-square distribution with 2n degrees of freedom. The aggregate 

probability may then be found by comparing X(2n) to a Chi-square table • 

For an example of these two methods of combining Independent 

probabilities, suppose a group of 5 Student's t-tests each showing 90% 

confidence. The corresponding probability Is 0.10, and -2*ln(0.10) = 

4.605. The sum of 5 such Identical values Is 23.026. For 10 degrees of 
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freedom, a Chi-square table shows that the aggre~late significance Is 98.9%. 

Intuitively 5 tests at 90% significance sugges'" an aggregate significance 

even though I nd I vi dua I I Y the sign I f Icances do n01" meet the usua I accepted 

criteria of exceeding 95% (the 95% criteria for significance was proposed 
by R. A. Fisher In 1926). Fisher's method shows that the aggregate Is 

highly significant. This example also shows that if Instead of a group of 

5 t-tests, one has a group of 5 Chi-square tests each with 2 degrees of 

freedom and values of 4.605 (90% significance:', the aggregate would have 

98.9% significance. Likewise, a group of 5 z-tests, each with a value of 

1.645 (90% significance) would be significant. Squared and summed, these 

give a Chi-square value of 13.530 with 5 degrees of freedom. A Chi-square 

table shows this aggregate to have 98.1% significance. 

10.5.1 Maximum Chi Square 

In the discussion of Section 10.4 It was assumed that the 

probabi Iities or distributions being comblnE,d are Independent. For 

combining Independent .QJ:. dependent Chi-squarE' values, the Union 

Intersection principle of Roy (1953) leads to thE! following result. 

Theorm 1 
The maximum of p Qfia degree of freedom 

Chi-square val ues has a Chi-square 

distribution with p degrees of frE,edom. 

Thus, If one anal Izes 10 correlated 2-by-2 contIngency tables and finds 

that the maximum Chi-square value Is less than the 95% deviate of a 10 

degree of freedom Chi-square distribution, then It may be concluded that 

simultaneously al I 10 contingency tables show no significance at the 95% 

confidence level. 

It can be shown, using characterIstic functions and EquatIon 10.3, 

that the maxImum Chi-square prInciple holds for Independent Chi-square 

values with any degrees of freedom. The maximum of a group of Independent 

.. 

•• 
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Chi-square values has a ChI-square distrIbutIon with degrees of freedom 

equal to the sum of the degrees of freedom of the group. 

10.6 SUMMARY 

A necessary assumption for al I the technIques presented In previous 

chapters Is that the extreme values be obtaIned from a large sample. ThIs 

chapter has presented alternatives that can be used when this assumption 

cannot be accepted. Extremes of smal I groups of statistical tests and of 

smal I samples are Important because they are a common sItuation. Three 

complementary statistIcal methods were presented. 

Order statIstics show how to derIve the exact distribution of the 

extreme of a smal I sample If the distributions of the elements of the 

sample are known. Often the algebra of this derivation Is Intractable. As 

an alternative, order statistIcs offers a way, through the use of binomial 

sums and the Incomplete beta function, to compute probabilities wIthout 

finding the expression for the distribution of an extreme. 

Simultaneous statIstical Inference yields methods for obtaining an 

aggregate probability statement about a series or group of statistical 

tests. The most common use of these methods Is to Identify the source of 

significance wIthin an analysis of variance problem. The simplest of such 

statIstIcal tools, the Bonferroni InequalIty, Is presented. This 
InequalIty gIves an upper bound for aggregate confidence statements and 

hypothesis testing. It has the advantages of being sImple to Implement, 

and being valId with correlated data or correlated statIstical tests. 

In the specIal sItuation In whIch the elements of the group of tests 

are statistically independent, some theorems from probabi I Ity theory can be 

used to derive an aggregate probabi I ity statement about the group as a 

whole. These techniques are based upon the properties of the Chi-square 

dIstrIbutIon, and upon a relatIonshIp, discovered by R. A. Fisher, between 
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the Chi-square distribution and the natural loga~ithm of a probability. 

-. 
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11 • 1 I NTRODUCT ION 

CHAPTER 11 
MULTIVARIATE EXTREMES 

The currently available statistical theory of multivariate Extreme 

Value distributions considers each component of a (standardized) 

multivariate observation separately. The maximum (or minimum) of each of n 

components of the vector Is determined and the Joint distribution of these 

maxima Is studied (Galambos, 1978). It Is Important to note that this 

theory does not consider a single multivariate (vector) measurement that is 

the extreme, but rather It abstracts pieces from many measurements and 

consl~ers these pieces Jointly. For example, rather than considering the 

most toxic mixture of chemicals, the most toxic concentration of each 

chemical Is considered, Ignoring the synergistic effects of the mixture. 

Consider the univariate unit (mean = 1.0) Exponential distribution 

F(x) = P(X<x) = l-exp(-x). The Simplest of many possible two-dimensional 

analogs Is 

F(x,y) = 1 - exp(-x) - exp(-y) + l/(exp(x) + exp(y) -1) • 

The smal I sample distribution of the maximum of this distribution, the 

multivariate analog of equation 10.3, for a sample size of n Is 

n (F(x,y» 

and the asymptotic distribution on large sample size, the multivariate 

analog of equation 7.4, Is 

H(x,y)=exp(-exp(-x»*exp(-exp(-y»*exp(1/(exp(x)+exp(y») 
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Galambos (1978) gives the theory for deriving such equations for any kind 

of distribution. This example shows that the limit distribution H is not 

determined by the univariate marginal distrlbutlJns. However, the marginal 

distributions of H are univariate Extreme Value distributions. 

This mathematical theory considers 
componentwlse. The probability that the 

:nu I t I var i ate observations 
max I ma of a I I components w II I 

occur In the same observation Is smal I and Is a decreasing function of 

sample size. There Is no special theory of multivariate extreme values for 

the case In which one Is Interested In the particular multivariate 

observation from a sample that Is extreme when al I components are 

considered simultaneously. For example, one might be Interested In 

Identifying the smoggiest day of the year from dally averages of carbon 

monoxide, nitrous oxides, sulfur oxides, and hy,jrocarbons. There Is no 

reason to expect that the maxima of these component chemicals In a year of 

data would occur together, nor that the maxima of any component would occur 

on the day that was perceived by humans "to have the maximum smog 

concentration. 

Even though no special statistical theory exists to determine the 

simultaneous extreme, a few useful techniques ai~e available that allow one 

to statistically analyze such data. These techniques are derivatives of 
statistical concepts used In multivariate statistics. The basis of these 

techniques Is to transform the multivariate data into an equivalent 

univariate number, and then apply the methods presented In previous 

chapters. Each of the transformation techniques presented In this chapter 

emphasizes different data characteristics. The transformations are not 

equivalent, and will not yield the same conclu::;ions. The choice of a 

transformation depends upon the purpose of the s"tudy. Since these emphases 

are manifold, particularly for the cluster analysis techniques, details are 

not discussed here. Complete discussions are available in textbooks and In 

the statistics literature. 

... 
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Radioisotope concentrations represent a special class of multivariate 

measurements, because al I the Isotopes In a sample can be measured In the 

same cumulative units. If soil samples are measured for uranium, thorium, 

lead and radium concentrations, al I In picocurles per gram, the total 

radioactivity Is the sum of the picocurles per gram of each component. The 

sum of the radioactivity could also be expressed In rems or rads, but not 

in micrograms of Isotope per gram of soil. Air pollutants cannot not be 

summed because there Is now no measure of concentration for toxic gasses 

that Is analogous to the way rem's quantify biological activity, or to the 

way the Curle measures nuclear disintegrations. 

11.2 DISTANCE MEASURES 

If the covariance matrix of the components of the multivariate 

measurements Is known or can be estimated, the 

(generalized distance, Euclidian distance, 1-2 norm) 

Mahalanobis distance 

can be calculated. 

Let Yill be a vector observation In a sample of size n, I = 1,2, ••• n. Each 

Xill has several components, such as measurements of Isotope concentrations 

of different elements In a single sample. Let Y be the covariance matrix 

of the components of Y. Then the univariate generalized distance of Y1ll 

from the origin Is the square root dCI) of OCI) where: 

(11.1> 

The n values of d(1) or of 0(1) can be treated as a univariate sample. If 

n Is large, the maximum of the n values Is approximately a sample from an 

extreme value distribution. If some of the elements of the Yill are 

considered more Important, a weighting matrix can be Included In the 

distance calculation; this [s discussed In textbooks on multlvar[ate 

stat[stlcs. This distance measure cannot be thought of as analogous to any 

particular element of Yill; It must be considered as an abstraction that 

Incl udes all elements. 
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As an examp I e, suppose an overa I I meas ure o·r max I mum a I r pol I ut I on Is 

desired. Dally averages are available In parts per million of ozone, 

nitrous oxides, sulfur oxides, and hydrocarbons. These are the four 

components of each YiJJ. vector, and there Is one such vector for each day 

of a year (I = 1,2, ••• 365). The covariance matrIx of the elements can be 

estimated from the 365 .Y1lJ. vectors. Then 365 gunerallzed distances can be 

computed and the largest Is the maximum overall pollution for the year. If 

thIs procedure Is repeated for N years, the N maximum values of the 

dIstance can be used to find an extreme value distribution sInce n, the 

sample size withIn each year, Is large. For a !lIven distance, there Is no 

unique set of values of the components. 

The generalIzed distance usually wi II not yIeld a maximum that 

corresponds to the maximum of anyone of the indivIdual pollutants. Nor 

w I I I It necessar II y Y I e I d a max I mum that cor responds to the greatest 

pollutIon perceIved by the resIdents of the area., 

In th Is examp I e on I y gasseous pol I utants that are typ I ca I I y measured 
In parts per mIllion are Included: thIs wa!; IntentIonal. SIgnIfIcant 

artifacts can be Introduced by a naive choice of components and units. 

Many multivariate statIstIcal test are not InvarIant to changes In scale 

and orIgin of the measurements. 

For a small sample of sIze n from a multIvariate Gaussian 

dIstrIbutIon, the distribution of the 0(1) has a Hotel lIng's dIstrIbutIon 

if the covarlances are estImated from the data, and a Chi-square 

dIstributIon If the covarlances are known aprlorl. Hypotheses can be 

tested usIng the methods of simultaneous Inference outlIned In Chapter 10. 

The generalIzed dIstance becomes computa-rJonally unstable If the 

components of the 1.LU vector are highly correia-red. In such a case, It Is 

advIsable to use a generalIzed matrIx InversIon algorithm to Invert the 

covarIance matrix. ThIs yields a mInimum dIstance measure. SpecIfIcally, 
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if the covariance matrix Is singular, it Is known from matrix algebra that 

no unique Inverse exists. This is the same as asserting that an Infinite 

number of inverses do exist (Boul lion and Odel I, 1971). In this case, a 

different value of the generalized distance wil I result for each of the 

Infinite number of possible Inverses. However If the generalized matrix 

Inverse Is used, the resulting generalized distance wll I be the minimum of 

al I the possible values. Using a generalized matrix Inversion algorithm Is 

a good way of avoiding the computational problems of nearly singular 

matrices. 

Another possible multivariate to univariate transformation Is to use a 

probability value from the multivariate distribution function of the data. 

The multivariate observation (x,y,z, ••• ) is replaced by the probability 

that values smaller than those observed would occur, that is p = 
P(X<x,Y<y,Z<z, ••• ). Since the range of values of p Is zero to unity, the 

extreme of the p values must be of the Welbul I family of distributions. 

When determining the value of p, the multivariate distribution of the data 

must be known (or hypothesized) and It must account for the covarlances 

between the components of the measurements. The only multivariate 

distribution that Is wei I established for more than two components Is the 

Multivariate Gaussian. 

11.3 ORTHOGONAL ROTATIONS 

A multivariate to univariate transformation may also be obtained from 

an orthogonal rotation of the multivariate axes fol lowed by a choice of one 

of the resulting projections. The typical way of performing such 

calculations Is to use either factor analysis or principal components 

analysis. These are described in multivariate statistics textbooks. 

Principle components studies the variance of the multivariate data 

elements, while factor analysis studies the correlations of these elements. 

Both procedures yield a series of linear combinations of the data values 

that are ranked In Importance by the amount of Information from the data 
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that Is explained by each linear combination. For extreme value analysis, 

the first principle component or the first factor can be used as a 

univariate generalization of the data. Using only one factor or component 

does not use al I the Information available In the data. However, the 

purpose of these procedures Is to simplify the data structure, and these 

techniques do this by dividing the Information Into parts and Ignoring the 

less significant parts. There Is no requIrement that the fIrst component 

or factor be chosen for extreme value analysis. In the air pollutant 

example, perhaps a second or thIrd factor or component would be better 

associated with the severity of pollution as p.ercelved by humans. The 

currently available statistical analysis computer program packages contain 

good algorithms for obtaining principle components and factors. Thus, It 

is easy to use (and mlssuse) these procedures for the multivariate to 

univariate transformation needed for extreme valJe analysis. 

MULTIVARIATE EXTREMES Page 11-8 

For computational purposes In this example, only one of the 4 species, ~ 

setosa Is considered In detail. 

Fisher gives the covariance matrix of this species: 

TABLE 11.1 
I r I s setosa Cov ar i ance Ma-rr Ix 

6.0882 4.8616 0.8014 0.5062 
7.0408 0.5732 0.4556 

(SymmetriC) 1.4778 0.2974 
0.5442 

The Inverse of this matrix Is: 

TABLE 11.2 
I nverse of Covarl ance MatI" Ix 

0.38860 -.25316 -.09184 ··.09747 
0.31777 0.02268 ··.04294 
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the extremes of each component Into a single measure of extreme value. 

11.5 CLUSTER ANALYSIS TECHNIQUES 

Cluster analysis offers the most general methods of 

distances between multivariate observations. These methods 

recently available In textbooks (Everitt, 1980). However, 

measuring 

are only 

statistical 

journals contain ample Information on the wide variety of clustering 

techniques available. It Is Important to emphasize that this variety 

results from a diversity In the type of Information authors are attempting 

to expose from within their data. Clustering algorithms range from 

parametric to nonparametrlc In genesis, and originate from a variety of 

scientific fields. 

Analyzing extreme values of cluster distances Is a powerful tool 

because the variety of distance measures available offers a choice 

appropriate to the purpose of the analysis at hand. The theories of 

cluster analysis are wei I developed statistically, but the clustering 

algorithm must be chosen carefully In order to assure an appropriate 

measure for the problem being anal Ized. 

11.6 EXAMPLE 

A classic data set of the statistical literature, R. A. Fisher's 
(1936) Iris data, Is used as an example. It has an analogy to pollutant 

data. This Iris data had a key role In the development of Discriminant 

Analysis (Fisher, 1936, 1938), a technique that uses Mahalanobls distance 

measure. Fisher (1936) gave tables of 50 observations on each of 4 species 

of Iris. Each observation consisted of 4 components: septal width, septal 

length, petal width, and petal length. As an analogy, suppose that the 4 

species are 4 pollution measurement stations and that the 4 components are 

concentrations of ozone, nitrous oxides, sulfur oxides, and hydrocarbons. 

For each station, 50 hourly averages of the four pOllutants are available. 
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For computational purposes In this example, only one of the 4 species, ~ 

setosa Is considered In detaIl. 

Fisher gives the covariance matrix of this :;pecles: 

TABLE 11.1 
I r I s setosa Cov ar i ance Ma"t"r Ix 

6.08824.86160.80140.5062 
7.0408 0.5732 I) .4556 

(Symmetric) 1.4778 0.2974 
0.5442 

The Inverse of this matrIx Is: 

TABLE 11.2 
I nverse of Covarl ance Mati-Ix 

0.38860 -.25316 -.09184 --.09747 
0.31777 0.02268 '-.04294 

(Symmetric) 0.79135 'D.36620 
2.16420 

The data (too voluminous to present here) Is summarized In the following 

histograms of the values of the 4 components and of the Mahalanobis 

distances. 
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MIDDLE OF NUMBER OF 
INTERVAL OBSERVATIONS 

2.2 0 
2.4 1 * 
2.6 0 
2.8 0 
3.0 7 ******* 
3.2 9 ********* 
3.4 11 *********** 
3.6 9 ********* • 3.8 7 ******* 
4.0 3 *** 
4.2 2 ** 
4.4 1 * 

FIGURE IT.2 
Septa I Width 

MIDDLE OF NUMBER OF 
INTERVAL CBSERVATIONS 

1.0 1 * 
1 .1 1 * 
1.2 2 ** 
1 .3 7 ******* 
1.4 13 ************* 
1 .5 13 ************* 
1 ~6 7 ******* 
1.7 4 **** 
1.8 0 
1.9 2 ** 

FIGURE 11.3 
Petal Length 

"". ,. 



MULTIVARIATE EXTREMES 

MIDDLE OF 
INTERVAL 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

MIDDLE OF 
INTERVAL 

1.90 
1.95 
2.00 
2.05 
2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 

NUMBER OF 
OOSERVATIONS 

5 ***** 

Page 11-10 

29 ***************************** 
7 ******* 
7 ******* 
1 * 
1 * 

FIGURE 11.4 
Petal Width 

NUMBER OF 
OOSERVATIONS 

1 * 
3 *** 
2 ** 
3 *** 
2 ** 
3 *** 

13 **********i,** 
5 ***** 
7 ******* 
5 ***** 
3 *** 
2 ** 
1 * 

FIGURE 11.5 
Mahalanobls Distance 

• 

. 
I 



,. 

MULTIVARIATE EXTREMES Page 11-11 

TABLE 11.3 
Partial Listing of Iris Data 

.RQl1 .s.L.. $i1 .El.. .Eli OISI8t::lCE 
1 5.1 3.5 1.4 0.20 2.23489 
2 4.9 3.0 1.4 0.20 2.19540 
3 4.7 3.2 1.3 0.20 2.05929 
4 4.6 3.1 1.5 0.20 2.09104 
5 5.0 3.6 1 .4 0.20 2.18819 

19 5.7 3.8 1.7 0.30 2.52440 

50 5.0 3.3 1 .4 0.20 2.20816 

Using equation 11.1 to compute generalized distances gives the numbers 

summarized In Figure 11.5. Table 11.3 gives a few of the data values. The 

maximum of the 50 distances was found to be at data row 19. Since al I the 

measurements are In the same units (millimeters) the maximum Mahalanobls 

distance Is 2.524 millimeters. In general the measurement units of the 

elements of a multivariate measurement wll I not be Identical, then the 

distance Is only a mathematical number. Scanning this data set reveals 

that the maximum distance does not occur at the maximum of any of the 

Individual components of the multivariate data values. A correlation 

coefficient goodness-of-flt test for the Gaussian distribution, discussed 
In Appendix B of Chapter 7, was performed on the computed distances. This 

test concluded that the distances are reasonably described by a Gaussian 
distribution. Thus, the maximum value wll I be In the exponential family of 

extreme values. If similar computations are performed for the other 3 Iris 

species of Fishers article, the resultant 4 univariate extreme distance 

measures can be used to estimate the location and scale parameters of a 

reduced Extreme Value distribution. 
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It Is tempting to try to Invert this problem; given an extreme 

pollution measurement and a covariance matrix, what Is the range of 

Individual pollutant values that could produce the given extreme pollution 

Index? Although It Is mathematically possible to compute such ranges, the 

ranges are highly correlated and at least one range can always take on 

Infinite values. Thus, such calculations should be avoided unless a great 

deal of additional Information Is available about limits of such ranges. 

11.7 SUMMARY 

This chapter has outlined the statistical techniques that can be used 

for extreme value analysis of multivariate data. AI I the techniques 

suggested are derived from multivariate statistical procedures, ranging 

from classic discriminant analysis to modern cluster analysis algorithms. 

The common feature of these Is to transform the multivariate observations 

Into a univariate quantity which can be analyzed using the extreme value 

techniques presented In previous chapters. 

.. 

• 

; 
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CHAPTER 12 
THE WEIBULL DISTRIBUTION 

12.1 INTRODUCTION 

The Weibul I distribution has been found experimentally to describe the 

rei lability of mechanical systems such as the minimum breaking strength of 

steel beams, or the minimum operating time between failures of an assembly 

line. To a lesser extent, the Welbul I has been used to study biological 

phenomena such as the response to stress. For example, Peto et. al. (1972) 

describe age-specific cancer Induction rates with a Welbul I distribution. 

This distribution Is named after Walodl Welbul I, who In 1939 derived It In 

an analysis of breaking strength. It had been derived In 1928 by Fisher 

and Tippet as the third asymptotic distribution of extreme values. 

In this chapter the notation of previous chapters Is changed to agree 

with the literature on the Welbul I distribution. This distribution Is used 

to study smallest extremes. The variable measured Is typically time to 

failure or load that causes failure. The measurements are ordered from 

smallest, x[1], to largest, x[nJ. 

An Important distinction between the Extreme Value and Welbul I 

distributions Is that the Welbul I al lows a lower bound below which the 

probability Is zero that an event, such as failure, wll I occur (this bound 

can be zero). No matter how much carcinogen an animal Is exposed to, there 

is a minimum time necessary for a tumor to kl II the animal. This Is 

distinct from receiving so much carcinogen that the animal Is ki lied by the 

direct toxicity of the carcinogen Itself. Upper bound situations can be 

analyzed by changing the sign of the data values. 
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The Weibull distribution has rece I ve::! little attention in 

environmental and biological research. Morbi::!ity from air pollutants is 

directly analogous to the mortal ity from carcino~ens reported by Peto. The 

effects of most pOllutants are generally assume,j to have a threshold. The 

lower bound parameter of the Weibul I distribution Is a measure of such a 

threshold. The medical use of drugs Involves a threshold dose above which 
toxicity becomes more Important than therapeutic effect. The Weibul I lower 

bound can measure the dose at which toxicity Is expected In the most 

sensitive member of a population. 

When statistically modeling the effects on ,3 population of exposure to 

a pollutant, one should consider the confound distribution of an Extreme 

Value distribution of maximum exposure with a Weibul I distribution of 

response to minimum Insult. Confound distributions occur when the response 

being studied depends upon the sequential or simultaneous actions of two or 

more statistical processes. In the pollutant example, the response of 

humans to a fixed and known pollutant exposure I!; a statisttcal phenomena 

describing variability between Individuals. The exposure an individual 

receives Is also a statistical phenomena that varies with such things as 

time of day, weather conditions, and location of persons during the day. 

Thus the morbidity within the population Is a function of two statistical 

processes, the exposure and the response. This combination of two 
distributions Is cal led a confound distribution, and mathematical methods 

exist for deriving a single statistical distribution if the two 

distribution functions for exposure and effect are known. The people 

within the population are exposed depending upon both where they are 

located and the time of day. The subpopu I atl on -rhat rece I ves the max I mum 

exposure Is to be considered. The magnitude of this maximum exposure might 

be described by an Extreme Value distribution and the minimum exposure that 

wll I cause a response might be described by a Welbul I distribution. The 

combination of these two statistical distributions can be expressed as the 

confound distribution of response and exposurH. It does not follow that 

the most sensitive person, nor the person maximally exposed, wi II show the 

• 
; 



• 

T 

" 

THE WEIBULL DISTRIBUTION Page 12-3 

maximum response. 

Most pollutants have natural or background levels. The actual 

exposure of humans, animals and plants Is the sum of the natural background 

levels plus what man adds. For example, In addition to the hydrocarbons 

added to air pollution by man, there are the natural terplnes emitted by 

trees and brush. The study of the effects of man-made pollution should 

adjust for the background levels of the pollutant in order to study the 

response In excess of that caused by the background. In such a situation 

It might be reasonable to allow a negative value of the Welbull lower bound 

and assume that the portion of the Welbull distribution that falls between 

the lower bound and zero measures the proportion of the total response that 

is due to the background levels of the pollutant. 

12.2 THE WEIBULL DISTRIBUTION AND DENSITY 

The mathematics of the Welbul I distribution are presented first as a 

two parameter function, and then with the additional condition of a 

threshold. 

Assume a variate x In the range 0 ~ x ~ +~ which depends upon two 

parameters, band C; b Is cal led the characteristic life parameter, and c 

Is cal led the shape parameter. The distribution function Is 

(12.1> F(x) = 1 - exp(-(x/b)c) , 

and the density function Is 

(12.2) c-1 c c f(x) = (cx /b )exp(-(x/b) ) 

Let G() signify a Gamma function. The mean of the Welbul I density Is 

( 12.3) mean = b*G«c+1)/c) , 

the variance Is 
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(12.4) 

and the mode Is 

(12.5) mode = b(l - l/c)l/c 
= 0 

for c>l 
for cs..l 

Page 12-4 

By the method of maximum likelihood, estimates o'F band c are the solutions 

of the simultaneous equations 

b = fc1/n)*tx~)l/C and 
\' 1=1 

( 1 2.6) 

These equations must be solved Iteratively. 

The Welbull Is also rei ated to two other statistical distributions. 

The Welbull with the shape parameter fixed at a value of unity, c = 1.0, Is 

an Exponential distribution with a mean of b. 11; the characteristic life 

parameter Is fixed at a value of two, b = 2.0, a Raleigh distribution with 

parameter c Is obtained. 

If a threshold parameter, u, Is Included In the Welbul I distribution 

function, the variate x in equations 12.1 and 12.2 Is replaced by x - u. 

The dIstrIbution function Is then 

( 12.7 ) F(x) = 1 - exp(-«x-u)/b)c) 

and the density function Is 

( 12.8 ) c-1 c f(x) = c/b * «x-u)/b) *exp(-«n-u)/b» 
=0 

for x ~ u 
for x < u 

with the restrictions that the parameters band c: are greater than zero. 

'f 

; 
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12.3 PARAMETER ESTIMATION 

Substantial literature exists on parameter estimation for the Welbul I 

distribution. A sampling of this wll I be presented here. The literature 

fal Is Into three classes: 1) simple estimators, 2) estimation from 

censored samples, and 3) construction of tolerance and confidence limits. 

Through the use of the logarithmic relationship between the Welbul I and 

Extreme Value distributions, discussed In Chapter 3, al I the statistics 

outlined In this section may also be appl led to estimation for the Extreme 

Value distribution. In fact, many estimators used for the Welbul I are 

based upon this transformation. 

The generalized maximum I Ikel I hood procedure discussed In Section 7.3 

can be used for the Welbul I distribution by substituting either equation 

12.2 (two parameter Welbul I) or 12.7 (three parameter Welbul I) for h(x) In 

the equations of Section 7.3. This procedure yields al I the statistical 

properties of Maximum Likelihood Estimators, but a general purpose 

scientific computer capable of executing a functional maximization 

algorithm Is necessary. 

12.3.1 Simple Estimators. 

The method of moments, using functions of the mean and variance of the 

data, cannot be used directly for parameter estimation for the Welbul I 

dIstribution. Equations 12.3 and 12.4 show that this method would requIre 

the Inverse of a Gamma function be used In simultaneous equations. 

However, for the two-parameter Welbul I, the logarIthmic transformation and 

equations 7.15 and 7.16 yield estimates of the Welbul I characteristic life 

and shape parameters. Thus, the method of moments can be used by analyzing 

the logarithms of the data as an Extreme Value distribution, then 

performing an Inverse transformation on the parameters: 

(12.9) Welbul I scale parameter = exp(Extreme Value location parameter) 
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(12.10) Welbul I shape parameter = 1.0/(Extreme Value scale parameter) • 

When usIng equatIons 12.9 and 12.10, equatIon 7.15 Is changed from a form 
for the largest extreme to a form appropriatE! for the smal lest extreme. 

ThIs Is accomplIshed by a change of sIgn so that equation 7.15 becomes mean 

= mode sca I e parameter * Eu I er' s constant. Equation 7.16 for the 

standard deviatIon remaIns unchanged. 

The method of moments Is frequently used, but the statistIcal 

consIderatIons of bIas, efficIency, and suf':lclency are not yet fully 

studied. Since moments are easy to compute with a hand calculator, It Is a 

practIcal Welbul I estImation procedure. This method may also be used for 

the three parameter Welbull when the locatIon par-ameter Is known. In this 

case, the known locatIon parameter value Is subtracted from al I the data 

values and then analysIs proceeds as for a two parameter dIstrIbutIon. 

All the techniques of Chapter 9 may be used wIth the logarIthmIc 
transformatIon of the data and the correspondln~J Inverse transformatIon of 

the parameters when the I ocatl on parameter I s known. Gumbe I 's regress ion 

estImators for censored samples, dIscussed In section 9.2.1, Is a simple 

estimatIon technique for censored samples with a Welbul I dIstributIon. 

A refInement Is avaIlable to compensate for the bIas Introduced by 
sImple parameter estImators. Engelhardt and Baln (1974), and Engelhardt 

(1975) dIscuss such compensatIon for both complete and 

These papers a I so conta I n a good rev lew 01: the 

references may be found In Baln and Engelhardt (1981). 

censored samples. 

literature, Recent 

. .. 

.' 
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12.3.2 Statistical Inference from Censored Welbul I Samples. 

A variety of computIng methods are avaIlable for censored samples. 

The few methods outlined here were chosen because they are available In 

current statIstical journals. 

A characteristic of most Welbul I parameter estimation techniques for 

censored samples Is that specIal tables of 'unbiaslng factors' are needed. 

These are gIven In the lIterature. Blilmann, Antle, and Baln (1972) offer 

a method and gIve tables of unblaslng parameters for the two-parameter 

case. Lemon (1975) gIves the correspondIng InformatIon for the 

three-parameter Welbul I. Cohen (1975) proposes a three parameter technique 

that does not requIre specIal tables. 

12.3.3 ConfIdence and Tolerance LimIts for the Welbul I DIstributIon. 

ConfIdence lImIts are upper and lower bounds determIned so that the 

Interval between these lImIts wll I Include the true value of the parameter 

wIth the specIfIed confIdence. SometImes It Is desirable to ob~aln an 

Interval which wll I cover a fixed portion of the distribution with a 

specified confidence. Such Intervals are cal led tolerance Intervals, and 

the end points of such Intervals are cal led tolerance limits. These 

Intervals can be appl led to either the dIstribution of parameter estimates, 

or to the dIstribution of the data. When used on the data distribution, 

they are sometimes cal led prediction Intervals. 

The methods reviewed In this section depend on simulatIon results and 
on the relation between the Welbul I and Extreme Value distributions. 

Lawless (1975) gives a method for estimating quantlles or tolerance bounds 

for a varIable with a Welbul I or an Extreme Value distribution. His method 

Is applIcable for censored data. Mann and FertIg (1977) give a method 

usIng quantlles of the data for estImatIng confidence bounds of parameter 

estImates and tolerance or predIctIon Intervals for the measured varIable. 
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Their method Is an extension with bias correctl~n of the work of Hassaneln 

discussed In Section 9.3. Fertig, Meyer, and Mann (1980) discuss methods 

for obtaining a prediction Interval with a pre-specified probability of 

containing a future observation. This paper also uses tables of bias 

correction factors, and Is a good review of the literature up to 1980. 

Baln and Engelhardt (1981) find good approxlmatl~ns to the distributions of 

the parameters of the Welbul I distribution and use these to construct 

approximate confidence Intervals for the parameter estimates, and tolerance 

limits on the data values. 

12.4 LIFE TESTING 

Life testing Is a part of statistics cal led stochastic processes, and 

Is a special case of order statistics that can be used In many of the 

problems for which the Welbull distribution Is used. A ful I discussion of 

life testing theory can be found In stochastic processes textbooks (for 

example, Parzen, 1962, section 4.3). Much of t,e statistical theory of 

life testing has been published by Epstein (1953, 1960a, 1960b). 

Life testing statistics are not completely analogous to using the 

Welbul I distribution, but many kinds of problems can be analyzed either 

way. Life testing typically describes the time to failure of a known 

(typically small) number of items (appliances, machines, death of animals, 

etc.) subjected to a constant stress. Although life testing Is usually 

used to describe the average failure time of th'3 population from which the 
Items are sampled, It contains al I the statistic,:! I tools needed to study 

the first failure; thus It can be used to study the statistical properties 

of the smal lest extreme value. The Welbul I distribution Is more general In 

scope; It can be used to describe the failures In a changing environment 

that cause the first failure, as wei I as tha time to failure under 

conditions of constant environment. Statistically, It Is usually 

preferable to use the Welbul I for changing environmental conditions and 

life testing for studies of time to failure. For example, suppose a smal I 

.: .. 

.. 
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town bul Ids a wooden bridge over their stream. If the mayor Is Interested 

In estimating how many months before the bridge needs repair (assuming no 

unusual conditions), he should use life testing statistics. If, Instead, 

he Is Interested In estimating how big a truck can use the bridge before It 
fal Is, he should use Welbull statistics. 

In the simplest form of life testing failures are regarded as events 

having a Poisson distribution with mean time to failure of l/g. It then 

fol lows that the time to the first failure In a group of n Items has an 

Exponential distribution with a mean of gIn. The times of successive 

failures are Independent and Exponentially distributed. If T Is the 

observed time of the first failure, then 2nT/g Is Chi-square distributed 

with 2 degrees of freedom. An unbiased estimate of g Is nT. From these 

assertions, a 100a% confidence Interval for the mean life g may be stated 

after the first failure In a group of size n Is observed to be 

(12.11) 2nT 2nT -2------- ~ g ~ -2---------
X (2,a/2) X (2,1-a/2) 

where X2C2,a/2) Is the 100a%/2 value found In a table of 

the Chi-square distribution with 2 degrees of freedom. 

For a 95% confidence Interval on g, with a=0.05, 

X2(2,0.025)=7.378, and X2(2,0.975)=0.0506. 

For example, suppose a manufacturer places 10 units of a new kind of 
ozone measurement device around a city, and observes the first breakdown 

after 5.3 weeks of operation. At that time, his best estimate of the mean 

time to failure of each of this type of unit Is 53 weeks, with a 95% 

confidence Interval of 14 to 2094 weeks (37 years). This Is not a very 

useful confidence Interval, but one should not expect that some other 

approach would give better results. The manufacturer also wishes to 

estimate how many repair men he needs to maintain 100 units. Using the 

fact that the time between failures Is exponentially distributed with mean 

of g/100 (assuming each unit Is repaired as soon as It falls so that the 
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sample size, n, remains constant), the manufacturer can expect an average 

of just over two failures per week, and with 95% confidence successive 

failures wll I occur between 0.048 week (just over 8 hours) and 6.96 weeks 

(2.5% and 97.5% tolerance I imlts of an Exponential distribution with a mean 

of 53/100). These limits are obtained by solving the Exponential density 

function, F(x) = exp(-t/m), for t when F(x) Is set to the desired 

probability limit and the mean, m, Is known. 

12.5 SUMMARY 

This chapter presents an Introduction to the Welbull or Fisher Type 3 

Extreme Value distribution. This distribution Is used In the study of 

reliability and In materials failure studies. Tile density and distribution 

functions are presented along with formulas for several estimable 

statistics. The Welbull distribution allows thl9 option of Including a 

third parameter, In addition to scale and shape parameters, which 

represents a threshold below which the probability of an effect or a 

measured response Is zero. Simple parameter e:;tlmators are given, and It 

is noted that such estimators usually depend upon the logarithmic 

relationship between the Welbull and Extrerrll~ Value distributions. The 

I iterature on parameter estimation Is reviewed and papers are cited that 

propose unbiased and efficient estimators for parameter values, confidence 

Intervals, and tolerance limits, and that can be used with censored 

samples. Finally, the use of life testing s-ratlstlcs for extreme value 

problems Is discussed. 

... 
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13.1 INTRODUCTION 

CHAPTER 13 
MISCELLANEOUS TOPICS 

This chapter contains a variety of unrelated topics that do not 

logically fit into other chapters and whose discussions are too short to 

constitute separate chapters. 

13.2 RECORD TIMES 

A sequence of record times is obtained by sequentially examining a 

data list, or sequentially collecting data, and extracting a subl 1st of 

records. A record Is the maxima (or minima) of the data so far examined or 

collected. Previous records are not discarded when a new record is found, 

thus the subl 1st consist of a sequence of Increasingly better records and 

as the subl 1st gets longer additions to It become less frequent. The key 

element of this concept Is that the size of the groups of data values 

between record values Is not fixed, but rather Is a sequence of Increasing 

random variables. This variable group size results In the distribution of 

record values being approximately Gaussian rather than one of the extreme 

value distributions. 

are derived from a 

sizes. 

Extremes are derived from fixed sample sizes, records 

sequence of Increasingly larger and variable sample 

Let A[n] and B[n] be the location and scale parameters respectively 

for examlnlmg n data values, and let N(n) be the number of records 

extracted from the n data values. Designate the N record values as R[1], 

R[2], ••• R[N], and for any arbitrary value of n designate the overal I record 

as R[N(n)]. One might expect that the quantity 
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(R[N(n)] - A[n])/B[n] 

would converge In probability to a reduced Extreme Value distribution. 

This quantity actually converges to a distribution closely related to the 

Gaussian. 

Thus, If a data set of n values Is sequentially examined and N 

records, R, are extracted, the statistical distribution law of the R's wll I 

look Gaussian rather than I Ike an extreme valuf~ distribution. This Is 

because the R's are not the maxima (or minima) of equal sized subsamples, 

and also the R's are sequentially correlated. A rlgerous mathematical 

development of this concept may be found In Galambos (1978, Sections 6.3 

and 6.4). 

13.3 MIXTURES OF EXTREME VALUE DISTRIBUTIONS 

Scmet I mes a data set I s composed of samp I es f rom two or more 

populations mixed together. This situation can be caused by such things as 

a change In measurement conditions, or by collecting data from a 

nonhomogeneous population. When data Is collectf~d over a long time period, 

such as meterologlcal or air pollution data, the location of measurement 

stations can change and Instruments are often upgraded, Introducing bias 

and a change of variance. The data set of al I weights of new employees of 

a company Is a mixture of two biological phenanena because there are both 

male and female employees. 

In many data analysis situations the mixture Is caused by much less 

obvious conditions than the examples of the previous paragraph, and data Is 

not collected on some auxi Ilary variables nHcessary to Identify the 

components of the mixture. When such auxiliary variables are available or 

can be found I n other records, the data can be sf~parated I nto subsets for 

statistical analysis or the auxiliary variable can be used as a covariate. 

,. 
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Often It Is possible to recognize a mixture on a probability plot, 

where mixtures appear as a segmentation of the data Into clusters or 

segments of lines. Once a mixture Is recognized, or suspected, It Is 

possible to define a mixed distribution function and use maximum I Ikel I hood 

methods (Section 7.3) to find estimates for the parameters of the component 
distributions of the mixture. 

A mixed density function Is defined as a weighted sum of component 

densities where the weights describe the proportion of each density In the 

total. 

(13.1> 

where x = the data variable, 

fMC ) = the mixed density function, 

fl( ) = the lih component density, 

91 = parameters of the lih component, 

PI = the mixing weight, 

Restriction: Pl + P2 + •••• Pn = 1.0 

The mixing weight Is the probability that a data value comes from the lih 

density. For data values x[j], j = 1,2, ••• J, maximum I Ikel I hood parameter 

estimates are found by maximizing the function L defined In Equation 13.2. 

( 13.2) 

The use of a generalized functional minimization algorithm, such as Simplex 

described In Section 7.3, can be used to find the parameter values that 

maximize L or I, the logarithm of L. 

Changery (1982) describes a mixture of extreme value distributions for 

wind speed. He Identifies storms of two types, tropical and nontropical. 

The annual extreme wind speeds of tropl·cal storms appear to follow a 
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Weibul I distribution, and the extreme wind speeds of nontropical storms 

appear to fol Iowan Extreme Value distribution. A mixture of tropical and 

nontropical storms Is typical for weather stations located In Florida and 

along the gulf coast. A list of annual maxlmurl wind speeds from such 

stations is a sample from a mixture of e:(treme value distributions. 

Changery actually Identified tropical storms by reviewing historical 

weather maps for the days on which the annual mi~Ima occurred (that is, he 

used aux I I I ary var I ab I es) • He then separated thl~ data I nto two subsets, 

for each subset he used appropriate parameter estimation techniques, then 

used a mixed distribution function to compute wind speeds versus return 

period. In this discussion the more general I ikel I hood function approach 

will be used. 

Table 13.1 gives 30 years of annual Hxtreme wind speeds for 

Jacksonville, Florida, the storm type is that dotermined by Changery. The 

wind speeds are corrected to be mil es per hour at 10 meters he I ght. 

Tab Ie 13.1 
Extreme wind speeds, Jacksonvll Ie, FL 

T I nd I cates a trop I ca I storm. 

YEAR MEli IY.EE. YEAR MEl::!. IY.EE. 
1950 65 T 1965 52 T 
1951 38 T 1966 44 T 
1952 51 1967 69 
1953 47 1968 47 T 
1954 42 1969 53 
1955 42 1970 40 
1956 44 1971 51 
1957 42 1972 48 
1958 38 1973 53 
1959 34 1974 48 
1960 42 T 1975 68 
1961 44 1976 46 
1962 49 1977 36 T 
1963 56 1978 43 
1964 74 T 1979 37 

, 

.. 
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Figure 13.1 
Extreme Value Probability Plot 

of Jacksonvll Ie, FL Data 

Figure 13.1 Is an extreme value probability plot of the data In Table 

13.1. The numbers Indicate that more than one data value fal Is on the same 

plotting position. This figure clearly shows the segmented I I ne 

characteristic of a mixed distribution, 

displaced to higher wind speeds than would 

from the 26 lower values. A comparison of 

the four largest values are 

be obtained by extrapolating 

Figure 13.1 and Table 13.1 shows 

that the tropical storms Identified by Changery are not the second 

population suggested by the figure, In fact the tropical storm data Is 

rather evenly mixed among the nontropical storm data. Thus, there appears 
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to be more than one basis for separating populations from this storm data. 

In order to Illustrate the use of the maximum likelihood estimation 

technique using a mixed density function, the r.~alnder of this discussion 

wll I Ignore the classification given In Table 1:>.1 and Instead use the 

population structure suggested In Figure 13.1. 

An examination of Figure 13.1 suggest that the two segments are wei I 

represented by straight lines. This In turn suggest that both segments are 

samples fran different Extreme Value distributions. Additional plotting, 

not shown here, using logarithms Indicated that a Welbull or Cauchy 

distribution are not good choices for either sogment. Admittedly, four 

data points are scant Information for such a choice of distributions, but 

that's al I the Information there Is In the upper data segment. 

The Extreme Value density function Is given In Equation 7.9. Using 

the definition of a mixed density given In Equa--Ion 13.1, the density of a 

mixture of two Extreme Value distributions Is tho five parameter density 

given In Equation 13.2. 

(13.2) fM(x[i]) = p*h1(x[I]) + (1-p)*h 2(x[I]> 

h1(x[I]) = exp(-Y1[1] -exp(-Y1[1]~>/a1 

y,[I] = (x[l] - u, )/a1 

h2 (x[ I ]) = exp ( -y 2[ I] -exp ( -y 2[ i ];, ) / a2 
Y2[1] = (x[l] - u2)/a2 

The five parameters are the two modes, the two scale parameters, and the 

probability that a data value Is a member of the first population. 

In order to use a generalized Iterative function maximization 

algorithm to find the maximum I Ikel I hood estimates of the parameters of 

Equation 13.2, Initial estimates of al I parameter values are required. An 

.... 
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initial estimate of p Is simply the proportion of the data points that 

appear to be In the lower population In Figure 13.1: p ~ 26/30 = 0.867. 

Initial estimates for the modes and scale parameters can be obtained from 

regressions on subsets of the data, or by the method of moments appl led to 
the sUbsets. The method of moments defined In Equations 7.15a and 7.16a Is 

used here. The 4 data points In the upper segment have a mean of 69.00 and 
a standard deviation of 3.74, yielding an estimated mode of 67.32 and scale 

parameter of 2.92. The data points of the lower segment have a mean of 

44.89 and a standard deviation of 5.81. The corresponding estimate of the 

mode Is 42.27 and the estimate of the scale parameter Is 4.53. 

The SIMPLEX algorithm was 

density defined In Equation 

Initial estimates described In 

given In Table 13.2. 

used to maximize the logarithm of the mixed 

13.2 using the data In Table 13.1, and the 

the previous paragraph. The results are 

TABLE 13.2 
Maximum Likelihood Estimates using a Mixed Extreme 

Value Density and Jacksonvll Ie, FL Data 

Eacametec Estl mate Sta mig cd .E.cr:.or. 
p 0.885 0.092 

u1 42.29 1.70 

u2 67.63 2.37 

a1 5.59 1.32 
a2 2.62 1.64 

The same technique was used to find the maximum I Ikel I hood parameter 

estimates using a single Extreme Value density function. The results are 

given In Table 13.3. 
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TABLE 13.3 
Maximum likelihood Estimates Using a :,ingle Density, 

Jacksonvll Ie, FL data 

Parameter Estimate 
u 43.74 
a 7.230 

Standa r(1 Er.r:.m: 
1.962 
1.495 

Page 13-8 

These two sets of parameter estimates can bo evaluated by comparing 

the empirical distribution of the data to the distribution models on 

probabi Iity plots. For thiS, the densities he,,) In Equation 13.2 are 

replaced by the corresponding distributions H(x), and the equation Is 

solved for each data value x[iJ. The results fo,- the mixed distribution 

are shown In Figure 13.2. This figure suggest a good fit to the data was 

achieved. 

.... 
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FIGURE 13.2 
Observed (0) and Expected (e) Probabilities 

Extreme Value Probability Plot 
Mixed Density Model 

The corresponding plot for the single density model Is given In Figure 

13.3. A visual comparison of Figures 13.2 and 13.3 shows that a single 
density does not model the four highest wind speeds as wei I as the mixed 

density model does. 
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FIGURE 13.3 
Observed (0) and Expected (e) Probabi Iities 

Extreme Va I ue Probab I I I ty F'I ot 
Single Density Model 

Consideration of the return periods shc~s the consequencees of 

choosl ng the wrong densl ty mode I • Return per I od~, are def I ned and discussed 

In Section 7.2, Equation 7.8 Is used except that H(y) Is replaced with the 

single or mixed distribution model using the appropriate maximum likelihood 

parameter est I mates. The return per lod usl ng thE! sl ng I e dens I ty mode I can 

be solved analytical Iy, however the mixed censlty model requires an 

iterative solution to find the value of x corres~londlng to a given value of 

T(x). The results are listed In Table 13.3. 

.' 
I 
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TABLE 13.3 
Return Period Versus Wind Speed, Jacksonv II Ie, FL 

Prob = probability of the given wind speed 
occurring In any single year (l-F(x» 

rex) = return period (years) 

x (1) = single density model wind speed (MPH) 

( 2) 
mixture of densities model wind speed x = 

Er:Qb. I.W 
(1) (2) 

x x 
0.50 2 46 45 
0.20 5 55 55 
0.10 10 60 67 
0.05 20 65 70 
0.04 25 70 70 
0.02 50 72 73 
0.01 100 77 75 
.005 200 82 77 
.002 500 89 80 
.001 1000 94 83 

Table 13.3 shows that the expected wind speeds do not differ much between 

the single density and the mixed density models for return periods less 

than 100 years. For return periods of 100 years or more, the single 

density model predicts higher wind speeds than does the mixed density 

model. The displacement of the upper segment in Figure 13.2 to higher wind 

speeds suggest that the mixed model should yield higher speeds than the 
simple model for the return periods over 100 years. The scale parameter of 

the upper segment of the mixture density model Is less than half the scale 

parameter of the single density model so that extrapolation beyond the 

figure yields lower wind speeds for the mixed model. 

The correlation coefficient goodness of fit test, discussed In 

Appendix 7-8 Is based upon a theoretical consideration of a single 

population distribution. There is no reason to assume It is applicable to 

a mixture of distributions situation. 
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13.4 BIOASSAY AND EXTREME VALUES 

The Extreme Value distribution can be used as a dose-response model In 

bioassay. This use Is not an extreme value situation because al I data Is 

used rather than just the extremes, The shape of the Extreme Value 

distribution Is used as another possible bioassay model. A better 

terminology Is 'the double exponential bioassay nodel'. The most commonly 

used bioassay models are the probit (Gaussian) and logistic distributions. 

Any of the special features of the Extreme Value distribution that result 

from using extreme data values, such as extrapolation to larger sample 

sizes (Section 7.4.3), are not applicable to bioassay. 

In bioassay work a plot or regression Is made of a nonlinear function 

of a biological response versus dose or a function of dose (such as the 

logarithm of dose). If the right functions are:hosen, the resulting plot 

wi II be a straight line. Statistical Inferen,:es and hypothesis test can 

then be derived from the line. Suppose groups of animals are exposed to a 

sequence of Increasing concentrations of a pollutant. Let d[i] represent 

the· dose for the 1m group, and let p[ i] repl~esent the proportion of 

subjects or animals responding In the lih group (p[i] = number If 

responders In 1m group/total exposed In group). The response can be any 

yes-no type measurement such as sick or wei I, dead or alive, active or 

Inactive and so on. The data points (d[I],p[i]) are transformed Into 

values (x[I],y[i]) where 

A plot of the 

exponential 

bioassay only 

y[I] = In(-ln(l - p[i]» , 

x[I] = f(d[I]) • 

x's and y's Is a dose-response 

bioassay mode I. Th Is situation 

In the substitution of the I nver:;e 

curve for the double 

dl ffers from 'ordinary' 

of the Extreme Val ue 

distribution for the Inverse of the Gaussian Ol~ logistic distributions In 

the computation of the y's. 

... 

• "II 

. .. 
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The simulated data given In Table 13.4 show the computations used In a 

typ I ca I bioassay ana I ys I s. The natura I I ogar Ithms are used as the data 

transformation to derive the XIS. Suppose 5 groups of laboratory animals 

are exposed to Increasing doses of an air pollutant in an environmental 

chamber for one hour each day and the weight of each animal at the 

beginning and end of the experiment is recorded. A response Is defined to 

be a loss of weight during the experiment. The proportion of animals 

responding Is given In the p column of Table 13.4, the dose d Is the 

concentration of pollutant In parts per mil lion In the chamber. For 

comparison with 'ordinary' bioassay, the normal deviates are Included In 

the INVNORM column, these are calculated as the Inverse Gaussian 

distribution function of the p'S. 

TABLE 13.4 
Bioassay Data 

J. .dW ,o[JJ .l.!:Udl. .'tW I t-PlfjQRM 
1 7. 0.05 2. -3. -1.7 
2 20. 0.13 3. -2. -1 .1 
3 55. 0.31 4. -1. -0.5 
4 148. 0.63 5. O. 0.3 
5 403. 0.93 6. 1. 1 .5 

Figure 13.4 plots the raw data In two ways, the proportion responding 

versus dose and versus the natural logarithm of the dose. 
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FIGURE 13.4 
Log Dose (x) versus Proportion Responding and· 

Dose (0) versus proportion Responding 

Neither of these curves are close to a straight line, suggesting that 

a transformation of the response should be considered. Figure 13.5 plots 

the Inverse Gaussian transformation of the proportion of responders versus 

dose and natural logarithm of the dose. 
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Bioassay 
FIGURE 13.5 

Plot Using Gaussian Distribution 
x = I n (Dose) ; 

o = Dose 

The dose-response plots of Figure 13.5 also are not close to a 

straight line. The upward curve on an Inverse Gaussian plot suggest a 

double exponential model. Figure 13.6 is the corresponding plot for the 

double exponential model, that Is a double logarithmic transformation of 

the response. 
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FIGURE 13.6 
Bioassay Plot Using Double Exponential Model 

x = I n (Dose) , 
o = Dose 

The double exponential 

transformation of the dose 

combinations of response and 

response model along with a logarithmic 

describes the data very wei I, and the other 

dose transformations do not result In a 

reasonably straight line on the bioassay plots. 

Fitting data to bioassay lines, comparison of models, and other 

statistical uses of bioassay models 15 not a Simple regression problem. A 

review of a bioassay text, such as Finney (1971), Indicates that an 

Iteratively rewelghted regression 15 required to get unbiased estimates of 

regression parameters. The weights are a functl~n of the expected value of 

. .. 
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the proportion responding, using the observed proportion yields biased 

estimates. The likelihood function approach to parameter estimation 

(Section 7.3) can also be used with bioassay models. The I Ikel I hood 

function approach, which Is mathematically equivalent to the Iteratively 

rewelghted regression approach, Is presented only In recent bioassay text 

because the necessary computer hardware and software was not available In 

the 1930's and 1940's when the theory of bioassay was being developed. 
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