





3 3679 00058 9095 PNL-4690
Uc-32

APPLIED EXTREME VALUE STATISTICS

R.R. Kinnison
Senior Research Statistician

May 1983

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352






PREFACE

Extreme value statistics is a statistical speclalty that Is seldom
understood by researchers applying statistics to everyday problems. It Is
relevant to blological, engineering and environmental studlies because often
extreme or unusual conditions are more Important than the usual condltions.
For example, In carcinogenesis studles, the response to the maxImum human
dose of a chemical or the minimum level of radiation that could cause
cancer Is more Important than the typlcal dose of the chemlcal or level of
exposure, Extreme value statistical methods have been used to great
advantage In hydrollic engineering and in architecture to predict floods or
droughts, maximum wind gust force on bulldings, and minimum breaking

strength of materials.

Good high-level extreme value statistical theory books are available,
such as those by Gumbel and Galambos. Most order statistics text also
contaln the mathematics of extreme value theory, and an occasional good
article appears In journals of various speclal flelds. However no text of
appl ied methods for the professional without a statistical degree now
exlst. The basic concepts of extreme value statistics are simple, few In
number, and have wlde applicability. Extreme value statistics differ from
'ordinary' statistics more In the way data Is coliected than In data
analysis. The data analysis aspects of extreme values use densitles and
distributions, estimators, probabliity plots, and many more statistical
tools commonly found In ail other types of statistical analysis. The level
of presentation used here Is for the scientist or engineer who uses
statistics frequentiy, but who Is not formally trained as a statistician.

With the wide use of automated data acquisition methods 1in the past
few years, very large data sets have become common. Such data sets are
troublesome to ordinary statistical methods because of the time needed +o
review and anaiize them, the size of computer required for storage and

analyslis, the accumulation of roundoff and +runcation errors, and +the



difficulty humans have 1in finding some kinds of data characteristics in
charts and graphs of large numbers of data values. Extreme value
statistics offers one way of simplifylng massive amounts of data, by
subdividing the data and anallzling the extremes of the subdlivislons. Some
might argue +that such a procedure throws away information, however the
extremes cannot be found unless all the data values are examined. Such a
procedure has a statistical advantage, +the extremes of large sets or
subsets of data have good statistical properties +hat are not strongly
dependent upon the statistical properties of all the data.

This monograph has few examples and exercises. This 1Is because +tThe
authors extreme value work has been with proprietary data, thus the
examples and exercises had to be fabricated or taken from +he |lterature.
Contributlions of data, examples, and exercises Is solicited and materlal
included in future editlons will be acknow!eged.
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CHAPTER 1
INTRODUCT ION

1.1 PURPOSE

The statistical theory of extreme values is a well established part of
theoretical statistics. Unfortunately, I+ 1Is seldom part of applied
statistics and is Infrequently a part of statistical curricula except Iin
advanced studles programs. This has resulted In the Impression that it Is

difficult to understand and not of practical value. In  recent
environmental and pollution |iterature, several short articles have
appeared with the purpose of documenting all +that 1is necessary for the

practical application of extreme value theory to fleld problems (for
example, Roberts, 1979). These articles are so concise that only a
statlistician can recognise all the subtleties and assumptions necessary for

the correct use of the material presented.

The Intent of this text is to expand upon several recent artlicles, and
to provide the necessary statistical background so that the
non-statlistician sclentist can recognize an extreme value problem when It
occurs In his work, be confident In handlIng simple extreme value problems
himsel f, and know when the problem is statlistical |ly beyond his capabllities

and requires consultatlion.

1.2 INTRODUCTION TO EXTREME VALUES

The purpose of +the statistical theory of extreme values 1Is +to
mathematically and logically explaln observed extremes In samples of some
speclifled size. In this text size of samples refers to the number of data
polnts In a related group or set of values. |t does not refer to the

volume, welght or dimensions of the object being measured. The essentlal
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conditions are that (1) +the phenomena belirg measured is a statistical
(stochastic) variable (what is commonly but erroneously called a
parameter), (2) +that the initial distribution from which the samples with
extreme values have been drawn remains constant from one set of samples ‘o
the next (or that any change that occure may be measured and a
transformation of the data may be found to eliminate the effects of the
change), and (3) +that the observed extremes should be statistically
Independent. The |lterature is full of "practical rules" for dealing with
the lack of independence, and claims of vallidity and lack of vallidity of
these rules. Only through an understanding of some of +the underlying
statistical theory can the lack of Independence be recognized and
consistently managed. Environmental data is one of +the most difficult

kinds to analize for independence.

A |iterature search over the last 20 or so years will seem to indicate
that there has been very little recent theoretical work by statisticians in
extreme value problems. This is a not so, the study of +this +theory has
simply been generallzed and its name changed to order statistics. Order
statistics Is an extension from the study of the l|argest, or smallest,
values of a sample to the study also of the second largest, and third
largest, and so on. Extreme values are thus a subset of order statistics.
A Iiterature search on order statistics will yleld a great deal of recent
work and some fine contemporary textbooks (for exampie, David, H. A.,
1970). Extreme values, being a special but Iimportant case of order
statistics, are typically described in a chapter or two within such
textbooks. A complete and rigorous study of extreme value statistics
requires an understanding of order statistics in general. For the purpose
of this text such a comprehensive understanding is not required, and the
logical backround of the theory will be skipped and only those theorems and
results that have practical application wiil be presented. I+ must be
emphasized that this results in a 'cookbook! +type presentation with its

wel | known and real pitfalls.
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The distributions of extremes may be characterized by certaln
statistics such as means, medians, modes, and a new statistic called the
expected extreme. In ordinary statistics the common measure of central
tendency is the mean because it has great advantages in most applied
problems. In extreme value distributions the mode is preferred because it
posseses advantages in extreme value problems. The initial distribution
from which the samples contalning the extremes are obtained and the size of
these samples must be known in order to derive the exact extreme value
theory for any specific problem. However, methods have been developed
which require only a knowlege of sample size and the general type of
Initial distribution, and where forecasts are based exclusively on past
observed extremes. Also, if the type of distribution is known and sample
sizes are |arge, the asymptotic theory can be used. In practice, the
asymptotic +theory 1Is almost exclusively used because It ylields elegantly
simple formulations for statistical +tests on extreme values. This
discussion of extreme value statistics will be concerned only with this

asymptotic theory.

1.3 APPLICATIONS
1.3.1 Forecasting Floods

The prototype extreme value probiem used by E. J. Gumbel (1941) was to
predict annual floods. Hence, it Is sometimes assumed that extreme value
theory originated in hydrology. Section 1.4 of this chapter will explaln
that +this 1Is not the origin. However the study of floods was one of the
early and very fruitful applications of the theory. The  economic
Importance of accurately predicting floods has been realized since ancient
times by agrarian societies. Today the Army Corps of Engineers Is
responsibie for the management of rivers. Also, agriculture s dependent
upon river management for both irrigation and avoidance of floods that

destroy crops and soils.
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Until the 1930's there were numerous attempts by engineers to find a
mathematical formula for forecasting floods. |In part their lack of success
resulted from the endeavor to find mathematically exact solutions rather
than statistical solutions. The statistical solutions were not then
available. The engineers used instead arbitrary safety factors, such as
double +the largest flood +that had occurred in the last 50 years. Such
rules will, In the following chapters, be shown to be very conservative,

and thus very costly to use as construction or design criteria.

Floods are the annual maxima of daily river discharges, and droughts
are the annual minima. The analysis of droughts Is essential in planning
for irrigation, public health, and stream pollution, A key difference
between floods and droughts 1is that droughts are bounded and floods are
not. No matter how severe a flood one can always Imagine a worse flood.

But once a river runs dry there 1s no conceivable worse drought.

1.3.2 Environmental Pol lution

Meterological phenomena are important in the study of air pollution.
This 1s perhaps the field of study currently of greatest interest in
extreme value theory studies. The major unknown, and the root of much
controversy, Iis the relation of extreme pol lutant concentrations to health
effects In humans. The response of humans, or any biological system, to
typical pollutant concentrations is itself an extreme value phenomena since
only the few most sensitive persons respond. Thus environmental pol lution
can be conceived as a compounding of several extreme value distributions:
those that describe when, where, and the magnitude of occurrence of extreme
pol lutant concentrations, and those +that describe who will be where the
maxima occurs and how they will respond to those maxima. At the present
time there is no unified or general statistical theory for analyzing these
compound problems. Each part must be treated as a separate and Independent

probiem,
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Currently in the medical and environmental! |Iiterature there Iis a
controversy about how to extrapolate toxlicologic and carcinogenic data in
order to predict dose-effect relationships at exposure levels much lower
than those practical to use in laboratory studies. Linear extrapolation Is
often used to predict threshold levels. But the conclusion that saccarine
Is harmful 1In small amounts because it Is harmful at very high doses has
been challanged. There Is the paradox that airplane travel Is more
hazardous than automobile +travel because airplanes expose one to more
cosmlic rays than does automobile travel yet more people are killed in autos
than 1In airplaines. These dilemmas should be recognized as arising from
attempts to treat such phenomena deterministically rather than
statistical ly. Even when It appears that statistics has been used, often
the practitioners are unfamiliar with extreme value theory or unaware that
they have an extreme value theory phenomena. This situation Is analogous
to that of the hydrologic engineers and dam builders before the use of
extreme value theory to study floods. Recall that the deterministic study

of floods ylelded safety ruies that were very conservative.

1.3.3 Strength of Materials

Two situations In which extreme value theory is being effectively used
are to determine maximum wind gust and minimum breaking strength of
materials. Both of these are Important to alrcraft designers and +to
architects of large bulldings. Minimum strength of materials Is important
to all types of manufacturing from simple consumer products to heavy
equipment. When something breaks, repair cost and down-time cost are
usual ly substantial relative to the initial cost. Furthermore, human
safety may be compramised. However, [f too much extra strength is bullt
into an item, an economic disadvantage results from +the cost of excess

materials.
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1.3.4 Identifying Outlying Observations

The final application outlined, and the most statistical in nature, is
the problem of identifying outlying observations. Every scientist has a
favorite ad hoc "rule" for handiing outliers that has advantages over those
used by other scientists. Yet he Is really somewhat uncomfortable with his
rule, particularly when he reflect upon 1its logical and statistical
foundations. Extreme value theory has much to contribute to the study of
outlliers, since an early motivation for statisticlans to investigate

extreme value problems was to identify outlliers.

A major problem in Identifying outliers In a data set, especlially for
small sample slzes, Is that calculated means, standard deviations, and
probabil Itles associated with some hypotheses are considerably influenced
by the observed maxima and minima In the samples. These statistics are the
basis for interpreting the data and for meking forecasts, and such
interpretations and forecasts should not be permitted to be erroneously
influenced by invalid observations. On the other hand, the extremes may
reflect important information. Perhaps they are a key to understanding the
true principles governing the observed phenomena. Extreme value theory Is
the foundation of all sophisticated techniques for Identifying outlying

observations.

1.4 HISTORY

The first students of extreme value statistics were early astronomers
who had +the problem of deciding whether to accept or disregard a suspect
(outlying) observation that appeared to differ greatly from the rest of a
data set. Like many other statistical prcblems discovered by early
astronomers, their mathematical tools were too crude to solve this problem.
They can only be credited with the clear recognition and statement of the

problem.
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The modern history of extreme value statistics started in Germany In
1922 with a fundamentai paper by L. von Bortkiewicz on the distribution of
the range and the mean range in samples from a Gaussian (Normal)
distribution as a function of sample size. These proved to be very
difficult probiems which were not solved in mathematical generality until
recent times. Bortkiewicz found good numerical approximations, and cal led
attention to the fact +that +the largest values of samples taken from
Gaussian populations are new variables having separate distributions.
Bortkiewlcz thus deserves credit for being the first to clearly state the

extreme value probiem In statistical terms.

In the fol lowing year, 1923, R. von Mises, also In Germany, introduced
the mathematical ly fundamental concept of the expected value of the largest
member of a sample of observations. This was the start of the study of the
asymptotic  distribution of extreme values 1In samples from Gaussian

distributions.

The founders of probability and statistical theory, such as Laplace,
Pascal, Fermat, and Gauss, were too occupied with the general behavior of
statistical masses to be interested in extreme values. The oldest remarks
In the statistical |iterature about extreme values are perhaps those due to
Fourier In 1824. He stated that for +the Gaussian distribution, the
probability of a deviation being more than 3 times the square root of 2
standard deviations from the mean is about 1 in 50,000, and the observation
assocliated with this deviation could therefore be neglected. This seems to
be the origin of the common but erroneous statistical "rule" that plus or
minus 3 standard deviations from the mean should be considered the maximum
range of valid sample values from a Gaussian distribution Irrespective of
the number of samples taken. In 1877, Helmert stated correctly that the
probabi! ity of surpassing any specified value depends upon the size of the
sampie. The fallacy of the 3 standard deviations rule should be obvious.
If the statistical distribution being sampled is unlimited, no matter how
small +the probability of the |imits given by a rule, then the largest, or
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smal lest, sample value Is also unlImited. As the sample size Increases,
the largest value encountered in a sample will |ikewise increase since
there Is more opportunity for inprobable values to occur. The statistical
study of extreme values attempts to describe the relationship between
sample size and magnitude of the observed extreme values. For smail
samples the "three sigma rule" is too conservative. For large samples 1t

is too weak.

Largest values from distributions other than the Gaussian were first
studied In 1923 by E. L. Dodd. A major step occurred 1In 1925 when
L. H. C. Tippet published tables of the {argest values and corresponding
probabil ities for various sample slzes from a Gaussian distributlion, and
the mean range of such samples (Tippet, L.H.C., 1925). in 1927 M. Frechet
published, In a remote journal, the first paper to obtaln the asymptotic
distribution of the largest value from a class of individual distributions.
The next vyear, 1928, R. A. Fisher and L. H. C. Tippet publ ished the paper
that Is now considered the foundation of the asymptotic theory of extreme
value distributions. They Independently found Frechet's asymptotic
distribution, and constructed two others. These three distributions have
been found adequate to describe the extreme value distributions of all
statistical distributions (Fisher, R. A., and Tippet, L.H.C., 1928).
Fisher and Tippet, 1in this paper, were the first to stress the extremely
slow convergence of the distribution of the largest value in samples from a
Gausslan distribution toward Its asymptote. Thus they showed the reason

for the difficulties encountered by prilor investigators.

The use of the Gaussian distribution as a starting point had hampered
the development of the theory since none of the fundamental extreme value
theorems are reiated In a simple way to the Gaussian distribution. It was
reasonable Yo assume a Gausslan distribution for study purposes since this
distribution Is a foundation stone of much modern statistical reasoning.
The theory of largest values ought to be based upon the Exponentlal

distribution because 1t leads to simple development and expression of the
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fundamental theorems of extreme value statistics. The results can then be

general ized to other distributions.

The authors mentioned above were interested In extreme values only
from the standpoint of statistical theory. In the middle 1930's
E. J. Gumbe! began studying the application of +this +theory, first in
Germany, then In +the U. S. when World War Il engul fed Europe. Gumbel's
first application was to old age, the consideration of the longest duration
of |ife. He then showed that the statistical distribution of floods, long
studied by engineers, can be understood using extreme value theory (Gumbel,
1941). These procedures have also been extensively applied to other
meteorological phenomena, to stress and breaking strength of structural

materials, and to the statistical problem of outlying observations.

1.5 SUMMARY

The history of extreme value statistics began l|ate with respect +to
statistical history in general because early statisticians were concerned
with the behavior of statistical masses rather than with the study of rare
events. Fisher and Tippet (1928) made a major contribution by finding the
asymptotic distributions of extremes. The application of extreme value
theory began 'in the middle 1930's with the work of E. J. Gumbel. In
contemporary times extreme value theory has become a part of the more

general ized study of order statistics.

Several appliications of current interest are discussed In +this
chapter. These Include those classically associated with extreme values
such as floods and the breaking strength of materials; applications which
now use extreme value theory. Also discussed are some new applications In
the biologlical and environmental sciences which currently do not vyet use
extreme value theory, but which have much to gain if this theory were

effectively applied.
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CHAPTER 2
DATA AND STATISTICS

2.1 INTRODUCTION

The research scientist first considering data as an extreme value
situation usual ly finds several different procedures seem to be applicable.
Only one procedure 1s usually applicable because of the 'scale' or !'level!
of the measurements. The levels of the measurements inherent in a data set
determine which statistics can be used with +that data. Extreme value
statistics can logically be divided into two types based upon scale of
measurement. One type considers the number of extremes that occur. The
second type considers +the magnitude of extremes. In this division, the
first type Is relavent to what are cailed nominal scale measurements, and
the second type to interval and ratio scale measurements. These scales are
Inherent characteristics of data and all statistical +test procedures are
valid only for particular data measurement scales. The ordinal scale, a
fourth type of measurement, 1Is not used in extreme value statistics,
however 1t 1Is Important 1in the general study of order statistics. This
chapter discusses these four types of measurement scales and reviews some
statistical basics. This will provide part of the foundation needed for
studying extreme value statistics. Readers already familiar with these

topics can skip to chapter 3.

Associated with every statistical procedure is a mathematical model
and some data. The procedure 1Is valld under certain conditions or
underlying assumptions. The model and measurement techniques specify these
conditions., Even something as simple as calculating an average assumes
that the average Is a reasonable measure of the 'central tendency' of the
population. Populations that are best modeied as skewed or multimodal have

estimators of central tendency that are better than the common mean. All
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statistical results Inherently carry the qual ification: 'If the model used
was correct and 1f the measurement requirements were satisfied'. Such
statistical assumptions and requirements are cften violated in subtle but
important ways. Statistics courses typically teach one to recognize model
assumptions, but measurement requirements are rerely studied.

Mathematical models of data, called statistical distributions, and
measurement  theory are Important for understanding extreme value
statistics. Measurements and distributions In general are the +toplic of
this chapter. The distributions unique to extreme value statistics are
discussed 1In the following chapter. For extreme value work It s
convenient to +talk about statistical distributions 1In terms of the
'Exponential family', the 'Cauchy type', and distributions with |Imits,
These descriptors are beyond the level of elementary statistics and will be
explained In the next chapter.

2.2 MEASUREMENTS

Measurement characteristics can be divided into two parts; scale or
level of measurement, and Iindependence of observations. Correlation
analysis Is the usual technlique for measuring independence, but correlation
Is not synonomous with independence. Independence is a population
attribute, and correlation is a sample attribute. For small samples the
correlation can be very different from the underlying dependence. However
for large samples there is |ittle practical d¢Ifference. Since extreme
value work typically uses large samples, this text will assume Independence
Is wel | approximated by correlation. Observaticns are Independent [f +the
selectlion of one value from a population for inclusion In a sample does not
Influence the chances of any other value being selected for Inclusion In
the same sample. A common source of dependence in extreme value work comes
from the use of serial data, such as a time series of data values. Dally
maxima of pollutant concentrations are dependent (correlated) because the

causes of pollution are phenomena that [ast for many days. Daily
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temperatures are dependent because they are Influenced by the length of
day, which has an annual cycle. A later chapter will conslder +tfechnigues

for recognizing and eliminating data dependence.

2.3 LEVELS OF MEASUREMENT

Measurement 1s the activity of mapping or assigning numbers to objects
or observations, Levels of measurement are a way of describing the
characteristics of data obtained from measurements. the description
contains  Information about +the way data Is collected and Inherent

characteristics of the things measured.

2.3.1 Nominal Scale

When numbers, or symbols, are used to ldentify groups or classes ‘o
which various objects belong, the scale of measurement Is sald to be
nominal. The numbers are used only as a name for the group or category to
which each observation belongs. In addition +to group Identification,
nominal data typically includes a second part, a count of the number of
items within each group. These counts are called frequencies. Frequencies
can only assume Integer values, there cannot be 2.5 persons In the Jones

famlly.

Sports teams are Identifled by thelr home town. They could also be
ldentifled with 1, 2, ..., or 101, 102, ..., or A, B, C, ..., and so on.
The 1dentity of a team is a nominal scale data value and the number of
players on a team Is the corresponding frequency. Social security numbers
can be considered as the group identification part of a nominal data value
for which the frequency of each group Is one. Arithmetic can be performed
upon the frequencies but not on the group Ildentification. The number of
players on a football +tfeam Is meaningful, but the sum of the numbers on

thier Jerseys contains no information.
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2.3.2 Ordinal or Ranking Scale

The categories or classes Into which objec’s are partitioned may stand
In some kind of wunmeasurable relationshlip o each other in addition to
being identiflable as different categories. The essential feature of the
ordinal scale 1Is that the relative order of the objects or classes can be
Identiflied but not quantified. |In a beauty contest first and second place
contestants are identifled, but one cannot say how much more beautiful the
first place contestant Is over the second place contestant. Ordinal
relationships are typically assigned consecutive Iinteger numbers for
identification. These identifications are cal led ranks, 1, 2, 3, or first,

second, third, and so on.

Air pollution indices are usually on an ordinal scale of measurement.
Although such indices may appear to be more precise than ranks, they
typical ly do not meet the requirements of the higher measurement scales
that wlil! be discussed next. A pollution index of 50 does not Indicate
that the air is twice as hazardous as alr with an Index of 25. The higher
Index Indicates a more hazardous condition, but the magnitude of the
difference cannot be quantitated.

An order preserving transformation of the category Iindices does not
change the Information contained In ordinal data. |t does not make any
difference whether the index 1 s assigned to last place, 2 to second from
last, and on up; or the Index 1 is assigned to first place with ranking

downward.

The medlan Is the statistic most appropriate for describing the
'central “tendency' of measurements on an ordinal measurement scale.
Sometimes the median value cannot be quantified; 1In a beauty contest the
medlan is that contestant for which half the contestants are more beautiful
and half are less beautiful.
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2.3.3 Interval Scale

When measurements have all the characteristics of an ordinal scale,
and in addition the interval sizes (distances) between objects or groups is
measurable, the measurements are said to be at +he interval level. An
interval scale Is characterized by a 'unit of measurement! which assigns a
real number to the relationship (distances) between all pairs of objects or

groups.

Temperature measurements are a good example of interval scale
measurement, Fahrenheit, Celsius, and Kelvin scales are commonly used and
these demonstrate the arbitrary nature of the zero point and the distances

that are typical of an interval scale.

Any transformation or mathematical operation on Interval scale data
values must preserve not only the ordering of the objects but also the

relative differences between the ob jects.

The 1Interval scale Is +the first quantitative measurement scale
presented. The nominal scale names and counts objects or attributes of

objects, and the ordinal scale arranges objects.

2.3.4 Ratio Scale

A measurement that has all the characteristics of an Interval scale
plus a physically definable zero point Is at the ratio measurement scale.
For this scale, the ratio of any two measured values is Independent of the
units of measurement. Zero 1s the measure that defines the absence of a
quantity. The ratio of the height to the width of a room 1is the same
whether English or metfric wunits are used. However the ratio of daily
max imum temperature to the dally minimum changes from Fahrenheit to Celsius
temperatures; thus length is a quantitative measure at the ratio level of

measurement, and temperature Is not. measurements of welight, mass, length,
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width, and flow are typical ratio level measures.

2.3.5 Col lapsing Measurement Scales

An Important aspect of this system of measurement is that a higher
level can always be collapsed into a lower levei. For example, persons
welghts can always be grouped Iinto underweight, ideal welight, and
overweight. In this examplie, a ratio scale measurement has been col lapsed
Into an ordinal scale. Note that this operaftion on the data has no
Inverse, That 1Is, having groups of people classifled as underweight or
overwelght does not allow reconstruction of their actual weights because
the distinctions between groups are arbitrarly defined and are not always
Intultively obvious. Welght groupings can depend upon age, sex, bone
structure, and so on. Sometimes a 140 pcound person is overwelght,

sometimes at Ideal weight, and sometimes overweight.

A simple, but interesting, question is: wrat Is the measurement level

associated with the measurement of time (seconds, minutes, hours)?

2.4 STATISTICAL CONCEPTS

This sectlion provides a brief review of Important statistical concepts
frequently used with extreme value analysis. Most statements resulting
from sclientific investigations are really Inferences which are uncertain in
character. Statistlics is the formal study of ttis uncertainty, 1t attempts
to both describe and to measure uncertainty. Probability Is a measure of

how ilkely is the occurrence of a chance event.

2.4.1 Data

An experiment is a carefully defined procedure whose outcome Is
observable but Is not completely predictable In advance. Data is obtained
when the observed outcomes are measured. The set of all possible outcomes
Is called the sample space. A sample Is a particular set of data values
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obtained when an experiment is repeated a number of +times. The term
'experiment' is used both to refer to a procedure that yields a single data
value, and to col lectively refer to all such procedures that yield a data

set.

2.4.2 Random Variables, Distributions, and Densities

A rule or mathematical function that associates a real number with
each possible outcome of an experiment is called a random variable. A
discrete random variabie can take on only a finite or denumerable number of
values, otherwise the random variable Is gontinugus.

A density function is a mathematical rule which assigns a probability
to each possible value of a (discrete) random variable. The density
function is a link between the sample space and probabilities. Such rules
for assigining probabilities have two distinct forms depending upon whether

the random variable is discrete or continuous.

For discrete random variables the probability associated with each
value, x, within the sample space of a random variable X may be enumerated.
For each possibie value x[i], the discrete density f(x[i]) assigns a

specific probabil ity
(2.1) Prob(x[1]) = f(x[1D]) .

The axioms of probability impose the fol lowing restrictions on f(x[iJ).

0 < f(x[1h <1 for all i

> fx[id) =1
all 1

(2.2)

An alternate representation is the cumulative density function or

distribution F(x[il),
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(2.3) FxCiD = 2 £(X)
X<x[i]

The density, F, specifies the probabiltity that +the random variable, X,
assumes a value less than or equal to x[i]. The axioms of probabil ity

require that

0 <Fx[iD <1 for all 1,
(2.4) F(-w) =0,
flrw) = 1,

Formula 2.3 relates the density to the distribution for discrete random
variables. The distribution Is a mathematical function that accumulates or
integrates probabilities from the lowest possible value up to any speciflied

value x[i].

For continuous random variables a different formulation of the density
function 1Is required. Since there Is an Infirite number of values within

the sampie space, it fol lows that

(2.5) f(x[(1]) =0 for each 1 .

That is, the probability of any specific value is zero. This does not mean
that a value 1Is Impossible, but that a value Is extremely unlikely given
the infinite number of alternate values. Also, the probability that a
random variable assumes a value In the Interval between two distinct
points, say a and b, will generally not be zero. The points a and b can
represent the precision of a measuring instrurent. A scale that measures
to the nearest gram can weigh objects with an irfinite number of possible
weights between 20 and 21 grams, but the value recorded will be either 20
or 21 grams. Because of such considerations, the density as defined for a

discrete random variable 1is replaced in the continuous case by a density



DATA AND STATISTICS Page 2-9

function f(x) defined by an integral,

b

(2.6) Prob(a < X < b) =ff(X)dX .

a

To be consistent with the axioms of probability, a continuous density
function must satisfy the fol lowing conditions:

f(x) >0, and

(2.7) + o

Jff(x)dx =1 .

- 00

The distribution function, F(x), for the continuous case is defined as

X

(2.8) F(x) =f fly)dy .

- 00

The distribution F(x) defines the probability that a continuous random

variable X assumes a value less than or equal to x.

2.4.3 Expected Value and Moments

Although a random variable Is completely specified by elther Iits
density or distribution, 1+ 1Is often convenient to work with some
descriptive measure or statistic which summarizes information about +the
random variable. The expected value of a random variale Is such a
summary. The expected value of any function of a random value 1Is defined
as the welghted average (weighted by the probability of occurrence) of the
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function over the sample space. The symbol E[ | 1s used to denote the
expected value of whatever appears within the brackets. Thus the expected

value of the function g() on the random variable X is denoted by E[g(X)].

For a discrete random variable X, with density f(), the expected value
of a function g(X) is defined as

(2.92)  E[g(X)] = ) gtx)f(x) .
all x

For a continuous random variable the corresponding definition Is
+ o

(2.9b) ELg(x)] =fg(x)f(x)dx

- 00

The mean and varltance of a random varliable are special cases of the
expected value function. The mean is a measure of centeral tendency and Is
defined by g(X) = x In equations 2.9a and 2.9b. The yariance describes the
spread or dispersion of the possible values of a random variable about the

mean and Is defIned by

(2,100 g(x) = (x -~ ELXDZ .

The symbol V[X] is often used to denote the variance. The varlance may
also be Interpreted as the average squared deviations from the mean. The
standard deviation, s, Is defined to be the positive square root of the
variance, and has the advantage of having the same units of measurement as

the mean.

The mean and standard deviation are often referred to as location and
scale parameters respectively. I+ Is common practice In statistics to
express a random variable as a distance from its mean in multiples of Its
standard deviation. This 1s <called a stancardized random variable and

formally is the transformation
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(2.11)  z = X-2-=LAd )

The new random variable Z with values of z has a mean of zero and a

variance of one.

A functlon of two random varlables that has speclal importance In
statistics is the product of +thelr deviations from thelr corresponding
means. The expected value of this function is the covariance, defined as

(2.12) Cov[X,Y] = E[(x - EXxD(y - ELYDT .

The covariance is Important because 1t measures the |lnear assoclation, If
any, between +the two random varlables. |If X has no Influence on Y then X
and Y are sald to be Independent and their covarlance will be zero.

A measure of dependence which is related to the covariance Is the
correlation coefficient, r, deflined as

(2. 1 3) r = --QQ\LEKLXJ—T7§
(VEXT*VLYD)

The correlatlion has a range from -1 to +1 with a value of zero Indlcating
Independence. A positive correlation indicates that Y tends to have values
of the same sign as X and a negative correlation indicates that Y tends +to

have values of the opposite sign from X.

2.4.4 Prototype Random Varlables

For extreme value statlstics, two kinds of random variables are used
to describe exceedances and magnitudes respectively. These classiflcations
are discussed in Chapter 3. For nominal and ordinal level data the extreme
value distributions available are IImited to the distributlion of counting
exceedances. The theoretical basls of this distributlion 1Is the binomial
family of distributions. For Interval and ratlo level data the magnltude
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of extreme values can be measured and a second level of distributions
becomes important. Three families of distributions are used in extreme
value statistics: the Welbull family when the sample space is bounded, the
Exponential family when +the sampling is from the more common continuous
random variables, and the Cauchy family for extremes from random variables
with non-finite variance. A +typical random variable of the Exponential
family, which Is the most important family, Is the Gaussian or Normal
distribution.

2.4.5 Sample and Population Moments

A major goal of statistical analysis Is to make inferences about a
population from a sample. Usually the density function f(x;p) is assumed
known, but contains unknown parameters p. There are +two kinds of
statistical Inference: estimates and hypothtesis tests. Estimation Is
further divided into point estimation and interval estimation. A statistic
Is a mathematical function of sample values which does not contain any
unknown parameters and in some sense extracts information from the sample.
An estimator of a population parameter, p, Is a statistic that is designed
to produce numerical values that represent the numerical value of the
parameter. An estimate 1Iis the numerical value produced by an estimator
using sample data. A variety of statistical c¢riteria are available In
statistics for judging how representative an estimate is for a parameter.
These criteria In turn use such concepts as tuntiased!, 'robust', 'minimum

variance!, 'consistent!, and combinations of these.

An approximation of a population density function that Is derived from
a sample and has no unknown parameters Is the emplrical density. The
corresponding empirical distribution 1Iis then an approximation to the
distribution of +the population being sampled. Let x[1], x[2], ...x[n]
represent an ordered (from smal lest to largest) sample of size n from a

(continuous or discrete) random variable f(x;p). In this ordered form the
x[i] are referred to as the grder statistics. The empirical density
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function is defined as

1/n for x=x[i], 1=1,2,...n
(2.14) hix) =
0 elsewhere.

The corresponding empirical distribution is defined as
0 for x < x[1]

(2.15) H(x) = i/n for x[i] < x < x[1+1]
1 for x > x[n]

The empirical distribution Is equal to the fraction of a sample +that Iis

less than or equal to any gliven value of x.

Sample moments are defined by substituting the empirical density,
h(x), for the population density, f(x), in equation 2.9a. Sample moments
are especlally important statistics because the expected value of a sample
moment is equal to the corresponding population moment. It Is important to
conceptual ly separate population moments and sample moments. It Is always
possible to compute a sample moment because the form of h(x) is always
known and contains no unknown parameters. The population moments may not
be computable because: 1)  +the form of the function f(x) is unknown, 2)
f(x) contains unknown parameters, or 3) f(x) is of such a mathematically
complex form that the expectation cannot be derived. The sample mean and

sample varlance are the most used (and often missused) sample statistics.






CHAPTER 3
FAMILIES OF DISTRIBUTIONS

3.1 INTRODUCTION

The properties of the most useful mathematical models for describing
the random fluctuations of data are well presented in statistics courses.
These models are the distribution functions defined in Chapter 2, and are
given names such as: Normal, Gaussian, Students-t, Gamma, Binomial,
Polsson, and so on. Extreme value statistics Is not concerned with
indlvidual distributions, but rather with groups of distributions defined
by common mathematical and statistical properties. I+ Is necessary to
understand these groupings or famillies of distributions before one can
understand the statistical theory of extreme values. A verbal discussion
with a few mathematical formulas should show adequately the structure and
relationships within this statistical theory. Many textbooks are avallable
to fill In detalls and add rigor.

There are three asymptotic extreme vélue distributions. These
asymptotic distributions are not a good place to start a discussion for an
understanding of the relationships between the several parts of extreme
value theory. To start with, It Is more important to note that extreme
value statistical procedures can be divided into (1) those that count +the
number of occurrences of extreme events, and (I1) those procedures that
measure the magnitude of extreme events. An understanding of  the
differences between counts and magnitudes was the motivation for the
portion of the previous chapter on measurement scales. This division of
procedures also has an analogy to the division In statistics between

discrete and continuous distributions.
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3.2 COUNTING EXTREME VALUES

The first type of procedure is the enumeration of rare events. The
data consist of +the number of rare events that occurred in some time
Interval or perhaps in a group of experiments. The terminology used for
this [Is 'the distribution of the number of exceedances!'. The magnitude of
a measurement which determines what Is a rare event or an extreme value |is
defined, and then +the number of such rare events is counted. The
statistical procedures for analyzing exceedances will be given in the next

three chapters.

There are two ways of specifying the definition of a rare event., The
most common way |Is an arbltrary declaration derived from physical,
chemical, or biological principles, such as 'exposure to more than 50
millirems radiation per vyear Is hazardous'. Just as with the example of
classifying people as over- or underweight, 20 milllrems 1is sometimes
hazardous and sometimes not. Setting stancards of maximum allowable
exposure is a common problem of environmental and health regulations. Once
a standard has been set, exceedances can be counted, regardless of the
val idity of that standard. Even though some standards may have been based
upon emotion, fear, or politics, Iinsteadc of scientific evidence,
exceedances can be statlistically analyzed for any given standard. A
current example Is the controversy over how much saccarine is too much.
Extreme value theory for exceedances is not concerned with how, why, or at
what magnltude +the standard Is set. Of ccurse, the statisticlan must
emphasize that the resulting statistics are no more or no less reasonable

than the standards themselves.

In some situations it may not be necessary to use fixed or arbitrary
standards. A future data set can be compered to a past set. In this
situation, exceedances are still counted, but the standards are not flIxed
quantities. This differs from a flixed stendard as illustrated In the

fol lowing example. Consider the study of air pol lutant oxldant levels In a
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city. Using an arbitrary standard, a concentration over one part per
million is declared an exceedance and causes an alr pollution alarm. Using
past data the maximum oxidant levels recorded over the last, perhaps 20
years, Is tabulated and then the number of times the current data exceeds
the 20 year maximum is counted. The standard could also be chosen to be
the second, or third highest level in the 20 year data. Here exceedances
are still beling counted, but the definition of an exceedance has changed.
The exceedance definition is derived from past data and its magnitude is a

sample value from a random variable.

Definition of exceedances using past data is, of course, only possible
if past data exist. I+ does, however, offer one way to alleviate the
problems inherent in using arbitrary standards. Note that this +type of
standard defines a transformation from an interval or ratio level of

measurement to a nominal level.

Statistically, exceedances are modeled with discrete distributions.
Depending upon the specifics of the problem, the Binomial, Poisson,
Geometric, or Hypergeometric distribution could be used. These situations

will be examined in detall in Chapter 5.

In elementary statistics courses the Polsson distribution Is sometimes
called 'the distribution of rare events'. The Polsson is a distribution
that counts rare events and does not measure their magnitudes. Thus, It
does not deflne a rare event. |t models the number of occurrences that are
defined so that the probability of an occurrence Is extremely small. The
probabil ity of an occurrence Is assumed to be fixed and known. Rare events
are ldentified and then counted at the nominal measurement level, while
extreme values are inherently at +the ratio or interval level. Because
measurement scales can be col lapsed but not expanded, extreme values are

rare events but rare events are not extreme values.
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3.3 THE MAGNITUDE OF EXTREME VALUES

The second type of procedure for analyzing extreme values uses the
magnitude of the rare event. In the oxldant example glven above, the data
would include not only a count of the number of oxidant levels observed +to
be over one part per milllion, but would also | ‘st all the readings in this
class. Typically the single value that 1s +the maximum Is the most
Important item in such a |ist.

Extreme value data is typically collected in fixed-size groups, such
as the 24 hourly oxidant levels in each day. When studying exceedances,
the proportion of those 24 measurements that exceeded the one part per
million criteria Is determined. When studying extremes the single maximum
of those 24 measurements Is used. The grouping of +the measurements |is
usually easy to defline because groups are derived from uses of the data.
Floods are grouped by annual maxima rather than daily maxima for obvious
reasons. Oxidant levels are typically grouped on a daily basis because the
acute health effects response to high oxidant levels develop over a day or

so of exposure, rather than over years.

After a number of extreme values have been collected, such as daily
maximum oxidant levels, weekly maximum radon levels In air over a uranium
mili{ tailings pile, annual floods, and so on, these data may be modeied by
a statistical distribution. The kinds of distributions used In this
context are cal led extreme value distributions. Theorems +that have been
developed allow mathematical derivation of the extreme value distributions
from the distribution of the original data and the sample slze. The
mathematical derivations are of ten extremely difficult, +thus the
appropriate asymptotic distribution Is usually used. The detalls of how to
derive +these distributions are given 1In textbooks on order statistics.
This text will use only the asymptotic distributions, except for a few

simple cases.

‘e
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A special characteristic of all extreme value distributions +that
facilitates applied work is the simple form of their asymptotes as the size
of the group from which the extreme Is extracted becomes I[arge. These
asymptotes converge to only three distributions. These three distributions
were first derived by Fisher and Tippet in 1928. The history of +this
Important contribution was given In +the first chapter. The problem of
choosing the correct extreme value distribution Is made easier by the fact
that +the choice depends upon some general characteristics of the data
distribution from which the extremes are extracted.

All continuous statistical distributions can be classified into three
families; the Exponential family, the Cauchy family, and the Weibull
family. One of the three extreme value distributions is associated wlith
each of these three types of data distributions. (The three asymptotic
extreme value distributions are members of the Exponential family). The
classification of data distributions can be difficult. Fortunately, al!l
the commonly used statistical distributions have already been classified.

The Exponential family of distributions permit unlimited values of the
variables. The area under the +talls of +the distribution curve must
converge to zero for large (positive or negative) values of the variate, at
least as strongly as the area under the tall of the exponential function,
EXP(=x). All moments exist for the members of this family. However, not
all distributions where all moments exist are of the Exponential family.
Most of the common statistical distributions belong to this family. The
family includes +the Normal (Gaussian), Exponential, loglistic, log-normal,

Gamma, and Chi-square distributlions.

Other distributions, which are also unlimited, have a very long tall
so that they converge less strongly than the exponential function. These
distributions have no moments beyond a certain order. The Cauchy
distribution 1Is the only well known member of this famlly, which Is called
the Cauchy family. The members of this family are rarely encountered In
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applied statistics, an exception Is the distribution of ratios which often
belong to this family.

The third family of extreme value asymptotic distributions is easy to
recognize. These are the distributions with an upper or lower |imit. The
largest, or smailest, extreme value Is +thus bounded, the |Iimits become
parameters of the extreme value distribution. Higher-order moments also do
not exist for the members of this family of distributions. The prototype
of the I|Imited distributions is the Weibull, which is used extensively In
engineering stress problems. This family is called the Welbull famlily.
Strength of materials, dielectric strength, and failure time of machines
usual ly follow a Welbul | distribution. The Beta distribution also belongs
to this family. The Exponential, Cauchy, and Weibull distributions are
defined In the appendix to this chapter.

Some further simplifications can be made. It 1Is only necessary +to
consider data from one *tail of a data distribution, either the largest
extreme or the smallest extreme. A distribution often belongs to different
familles depending upon whether large values or small values are being
studied. The Exponential data distribution is bounded below because only
positive values of the variate are allowed, but it Is unbounded above,
Thus, even though it Is the prototype for +the Exponential family, the
prototype behavior applies only to extreme large values. For extreme smal |
values, the Exponential data distribution belongs to the Welbull famlily.

The distinction between the Exponential family and the Cauchy family
of distributions Is usually made by examining & data distribution function
for the existence of higher moments. |t Is the parent data distribution
that needs to be considered; +that is, the distribution which models the
physical, chemical, or biological mechanism from which sample measurements
are derived. There Is also a sampling distritution associated with every
statistical problem. The most common example of this association 1Is that
samples  from a Gausslan (Normal) distribution have a Students-t
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distribution.

A sample data distribution Is not adequate for such a determination.
This wusually means that the identification of this distribution must be
derived from physical-chemical, or mathematical principles rather than from

examination of data sets.

The existence of a sample varlance does not mean that a corresponding
population variance exists. This can be very confusing for the Cauchy
distribution. Mathematical statistics teaches that the Cauchy distribution
can be recognized by +the fact that I+ has no variance, and yet a sample
variance can always be computed for any sample from a Cauchy distribution.
Why doesn't the sample variance tell us something about the parent
distribution? An experiment can explain this unexpected characteristic of
the Cauchy distribution. Suppose you were to take a series of samples, of
increasingly larger size, from both a Gaussian and a Cauchy distribution,
calculate the sample variances, then plot them against sample size. You
would discover that for the Gaussian distribution the sample variances
converge to the population variance as the sample size gets large.
However, for the Cauchy distribution no such convergence will be seen. The
sample variance will Increase In an unbounded way as sample size gets
large. This suggests that the variance Is Infinite for Infinite-sized
samples from a Cauchy distribution. It can be shown mathematical ly that
this Is true. These resuits of comparing sample variances of the Cauchy
and Gaussian distributions could have been predicted from theormes of
mathematical statistics. These theormes require a great deal of background
to use, but the general Ideas can be explained simply. First one must
distinguish between sample varlances and the varlance of +the population

from which the sample was taken.

The population variance Is defined as the second moment about +the
mean, u. Formally, for a statistical density function f(x), the variance v

is:



FAMILIES OF DISTRIBUTIONS Page 3-8

+ o

v =f(x-u)2f(x)dx .

When f(x) is replaced by the formula for a particular density function and
the integration is performed, one may find that the variance [s degenerate,
infinite, or some other Intractable mathematical phenomena. One 1Is then
led to ask how the commonly used estimator of the variance was obtalned?
This estimator Is:

2 25 (xx)2/(n=1)

v=S5
This formula came from assuming f(x) to be the Gaussian density function.
First +the Gaussian density f(x) was substifuted Into the above Integral to
show that the varlance existed, and Is equal to that parameter of f(x) that
has been named the variance. Then the maximum |lkel lThood equations for a
sample from a Gausslan distribution were solved in order to express +the
variance estimate In +terms of sampie data values. Finally the equation
derived from maximizing the |Ilkellhood function was adjusted to be
unbiased. This yielded the common formuia for estimating the varlance. It
Is Important to note that the sample varlance estimates a parameter of the
Gaussian distribution and +that other distributions do not contain this
parameter. Often, but not always, an algebralc relationship can be found
so that the sample varlance can be used to estimate a parameter of a
non-Gausslan distribution. The existence of such an algebralic relationship
does not Imply +that +the estimated parameter Is a variance, or even that
such a parameter measures the spread of a distribution. The sample
variance has come to be used as a descriptive measure of the spread or
amount of variabillity In a data set. It Is convenient and useful for this
purpose, but this utility does not Imply any utlility as a parameter

estimator.
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3.4 RELATIONSHIPS AMONG EXTREME VALUE DISTRIBUTIONS

The three extreme value distributions are related through logarithmic
transformations. These transformations allow extreme values from both the
Cauchy and Welbull famillies to be analyzed using statistics derived from
the Exponential family. Because of these relationships, the extreme value
distribution derived from the Exponential family 1Is wusually called 'the

extreme value distribution!.

A logarithmic transformation of the data converts a Cauchy +type
extreme value to an Exponential +type (Sarhan and Greenberg, 1962).
Formally, 1f y has a Cauchy type extreme value distribution, then x=In(y)
has an Exponential type extreme value distribution ('In' denotes the
natural logarithm). This simple relationship of types of extremes could
easlly be confused with +the relationship between +the Gaussian and
Log-normal distributions. Both the Normal and the Log-normal are members
of the Exponential family of distributions. Extreme samples from these two
distributions have extreme value distributions of the same form but with
different parameters. Since the logarithms of a Log-normailly distributed
sample can be analyzed as a Gaussian distributed sample, aigebraic
relationships <can be found Dbetween the parameters of these two
distributions and +the parameters of corresponding extreme value
distributions. The logarithm of the extreme value from a Log-normal
distribution is equivalent to the the extreme value from the corresponding

Gaussian distribution.

The logarithms of the samples from a Cauchy distribution do not have a
Gaussian, a Log-normal, or any other well| known distribution. Nor do the
fogarithms of the extremes from a Cauchy type distribution correspond +to
the extremes from a Gaussian distribution In any definitive way. However
the logarithms of the extremes from a Cauchy type distribution do have the
same form of extreme value distribution (with unique parameter values) and

thus the same general statistical properties as the extremes of any members
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of the Exponential family.

The logarithmic transformation for extremes from the Welbull family
are somewhat more complicated. Some of the parameters of the extreme value
distributiom must be known or estimated ©before the logarithmic
transformation can be applied. Let z be the variable with the Welbuil type
distribution. Let x be the variable with an Exponential type extreme value
distribution, derived from z through some logarithmic transformation. Also
let w be an upper bound on z (a refliection will be obvious for bounding
from below). Two parameters are used in this transformation: u is the
mode of the x's, and v Is the mode of the z's. The +transformation Is

(Sarhan and Greenberg, 1962):

This transformation Is not easy to use because the values of u and v are
usually unknown. The value of the bound, w, may or may not be known.

Often the value of w Is fixed by physical=chemical principles.

Modern computer algorithms for generallzed functional maximization
such as the Simplex method (O'Neill, 1971) can be used to simultaneously
maximize the |lkelihood that x has an extreme value distribution and also
to find The maximum |ikelihood estimates of u, v, and, [f needed, of w.
This algorithm will be used In the examples given in subsequent chapters.
In order to use the Simplex method one must know computer programming and

have access to a general purpose scientific computer,
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3.6 APPENDIX 3-A

Distributions and Densities

Range: 0 < x < +o

Mean = Standard Deviation = 1/b, b > 0.

Mode = 0, Median = In(2)/b

Density

f(x) = b*exp (=-b*x) -
Distribution

F(x) =1 = exp(~-b¥*x)

Cauchy

Range - ® < x < +

Location parameter = a, the median and mode.
Scale parameter = b.

(Pi = 3,14159...)

Dens 1ty

£(x) = 1/(PT*b(((x = a)/b)2 +1)
Distribution

F(x) = 1/2 + Pi~ '*atan((x - a)/b)
Welbull

Range 0 < x < +

Scale parameter
Shape parameter

Dens ity

f(x) = (c*xc_l/b *exp(-(x/b)c)
Distribution

F(x) = 1 = exp(=(x/b)°)

uon 8

b, b>0
c, ¢>0.



CHAPTER 4
COUNTING EXCEEDANCES

4.1 INTRODUCTION

The statistical theory used for studying exceedances Is a union of
many parts of statistics, some old and some new. The discussion In chapter
2 shows that exceedances are at the nominal measurement Ilevel. That s,
the data consists of a count of events classified as extreme or exceeding a
fixed criteria. Statistical methods for analyzing nominal data are some of
the oldest, and are associated with the origins of statistics. Statistics
and probabil ity started In the eighteenth century when wealthy gamblers
cal led upon mathematicians to determine the correct odds In their games, so
they could find the best betting strategles. From +this begining,
probabil ity theory developed what 1Is now called the Bernoul |1 class of
distributions. This class includes the Binomial, Negative Binomial,

Multinomial, Geometric, Hypergeometric, Pascal, and Polsson distributions.

The statistics of exceedances are nonparametric or distribution free
since the methods require only nominal level data from an underlyling
contlinuous distribution. I+ Is assumed that the observations are
Independent and that the parameters of the underlying distribution do not
change (over time) or that they change In a known way. The basic problem
Is to forecast the average number of cases that will exceed a specified

value within the next N trials (or time periods).

The Bernoulll class will be emphasized and, 1In the next chapter,
Exceedances distributions and statistical tests derived from them. These
distributions consider counts or frequencies of extremes, and the +time or
number of samples between occurrences of extremes. They al low estimation

of how often extremes may occur. They do not consider the magnitude of the
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extremes. Many applied problems work with limited and unreliable data.
Using the statistics of counts or frequencies allows the derivation of

useful conclusions with a minimum of underlying assumptions.

A critical factor In the use of Bernoul Il distributions 1is that the
parameters of +the distribution are known copstants. In tossing a coin,
throwing dice, or dealing cards, the probability of winning or losing can
be determined exactly. Although substantial algebra may be required to
determine these probabilities, they are mathematical consequences of simple
well known physical facts: two sides to a coin, six sides on a die, 52
cards In a deck, and so on.

In the study of exceedances the probability of an exceedance occurring
usually cannot be estimated as accurately as in a gambling situation.
Typical ly the probability of an extreme event must be estimated from
I imited past data using the assumption of nc time dependent changes, or
from concomitant data which has measurement error. The Bernoul |
distributions may be used when substantial Information is available so that
the probabil ity of an exceedance occurring is well| establ ished. When this
probabii ity must be estimated from data and there Is significant error in
the estimate, the Bernoul |l distributions should not be used. When error
Is significant a version of the 'Distribution of Exceedances! should be
used. This distribution was first published by S. S. Wilk in 1927 (Wilk,
1942). Note that the distribution of exceedances came along two centuries
after the Bernoulll distributions. The Distribution of Exceedances is the

topic of chapter 5.

4.2 THE BERNOULL! DISTRIBUTIONS

This sectlion reviews relationships between the common Bernoulli
distributions. Elementary statistics and probability textbooks provide
additional details. The best known of these distributions is the Binomial,

which gives the probability of the number of 'successes' in a fixed number
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of trials In which sampling with replacement s assumed. When +there are
more than two kinds of outcomes (e.g. highly polluted, slightly polluted,
and not polluted), the Binomial generalizes Into the ~ Multinomial
distribution. When sampling s without replacement, the probabi!ity of an
outcome changes as each sample Is taken, such as in the game of Bingo.

Then the correct distribution is the Hypergeometric.

Instead of counting the number of successes iIn a fixed number of
trials, suppose +the number of successes is fixed and the number of trials
Is counted. The Geometric distrlbution counts the number of +trials
necessary to achlieve the first success. For example, with a specifled
probabil ity of a pollution episode, the Geometric distribution would count
the days between episodes. The Pascal distribution Is the extenslion of the
Geometric distribution that counts the number of trials to achieve the mth
success rather than the first success. The extensions to sampling without
replacement have not been named but are discussed In probabillty textbooks.
The negative Binomlial distribution is a variation of the Pascal. |t counts
the number of fallures before the mth success while the Pascal counts the

number of trials up to and inciuding the mth success.

There are also two Important asymptotic extensions that start with the
Binomial distribution, and consider what happens as the number of trlals
becomes very large. When the probabl| Ity of success remains constant and
the number of +trials approaches infinity, +the Binomial distribution
asymptotical |ly approaches a Gaussian {(Normal) distribution with mean value
Np and variance Np(1-p). N is the number of +trlials and p Is the
probabil Ity of success. |In practical applications this approximation has
been found reasonable for values of N as small as 20 if p Is not very close
to zero or one. |In extreme value problems p is usually close to zero, so

one should be cautious about using this approximation.

The second asymptotic situation Is one in which the probability of

success decreases as the sample slize increases In such a way that the
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product is constant. That is, as N - and p » 0, then Np > c, where
c 1Is a constant, This asymptote vyields the Poisson distribution with
parameter c. The Poisson distribution Is commonly callied the distribution
of rare events. More correctly, It should be called the distribution of
the number of rare events because It is a distribution of how oftfen rare
events occur, not of the magnitude of rare events. A more comprehensive
reference to statistical distributions 1Is Hastings and Peacock (1974).
These distributions are also included In the comprehensive statistical

reference by Beyer (1966).

4,5 EXAMPLES USING THE BERNOULL! DISTRIBUTIONS

Example 1

A large Industry claims that 1t emits perceptible smoke from its
Incinerator on 5 or |less percent of +the days. The city in which the
Industry Is located has hired a consultant to Investigate this claim. The
consultant monitors the stack on 20 randomly chosen days over a summer and
uses the decislion rule to accept the industry claim if smoke Is observed on
zero or one observation day, and reject the claim If smoke Is observed on
two or more days. The consultant chose this claim because one day Is 5% of
20 days of sampling. What 1Is the probabil ity that the consultant will
reject the Industrial claim even though it 1is correct? What 1Is the
probabil ity that +the consultant will accept the claim Iif the +true
probabil Ity is 0.1? The first of +these questions concerns binomial

confidence Intervals, and the second concerns binomial power.

A table of binomial probablilities 1s used o answer these questions.
Table 4.1 is a portion of such a tabie; N is the sample size and X Is the
observed frequency of success. The body of +the +tfable contains the
probabil ity that X successes occur In N trials where N=20. The columns of
the tabie correspond to the probabiiity of X successes in 20 +trials with
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the true probabil ity of success equal to 0.05 and 0.10.

TABLE 4.1

P(x successes In N=20 trials)

X 0.05 0.10

0 3585 1216

1 3774  ,2702

2 .1887  .2852 -
3 0596  .1901

4 0133  ,0898

The probabil ity of zero or one success if the true probability of each
success Is 0.05 is the sum of the first two enteries in the 0.05 column,
.3585 + 3774 = .7359. The probability is 1.0 - 0.7359 = 0.2641 +that the
consuitant will reject the industry ciaim even though it Is correct. Thus,
the consultant has about a 26% chance of making an error against the
industry. What should the consultant's rule be for him to have less than a
5% chance of making this error? Continue adding up the 0.05 column and
subtracting the total from one until the answer is less than .0500. |If his
rule Is to accept the industry claim 1if 0O, 1, or 2 smokey days are
observed, his error probability Is about 0.08. |If his rule is 3 or less
smokey days his error probability Is about 0.02. Thus to keep his error
rate under 5% the consultant should not reject the Industry claim until he

observes smoke on more than 3 of his 20 days of observation.

Solving the same problem using a true probability of observing smoke
of 0.10, no smoke in 20 observations will then occur with probability 0.12,
smoke on 0 or 1 day would occur with probability 0.39, and on 0, 1, or 2
days with probabi| ity 0.68. Using the consultant's original rule, there is
a probability of 0.39 of erroneously accepting the industry claim of 0.05
when the +true probability of smoke is 0.10. Thus, for the original rule,

the consultant has a 55% chance of making some kind of error (1 - (1 -
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26)(1 - ,39) = ,55), If the consultant protects himself against
errcneously rejecting the industry claim by changing his rule to 3 or more
days, he will erroneously accept with probability 0.87 when the true
probabil ity Is 0,10,

The consul tant should obviously take more than 20 samples in order to
control both kinds of errors. The steps in this example can be repeated
for successively larger sample sizes until a sample size and decision rule
Is found +to glve acceptable probabilities for both kinds of errors. For

larger samples, the normal approximation to the binomial is useful.

It is important to see exactly how +this example relates to +the
assertion that the Bernoulli distributions can be used only with known
parameters. Here a known value for the probability of success Iis
hypothesized, and data sets are compared with this hypothesis. The basic
question was: could this data have come from a Bernouill distribution with
the hypothesized parameter? The probability of success was not estimated

from this data set (or any other data set of similar size).

Example 2

Suppose a city must decide where to put a rew sewage treatment plant.
I+ has two possibie sites, A and B. |If A Is chosen, the cost wil! be much
higher, and if B is chosen, residents might object to the odor. The cifty
council decides that B is acceptable If odors can be detected on five or
fewer days of a year. The city engineer has gocd meteorological data and
finds that the wind blows from the B site over residential areas on 1.4% of
the days of the year. Most available tables of the Binomial distribution
do not go beyond a sample size of 20, and calculating the binomial function
for samples of 365 would be tedious. This is a situation where the Poisson
approximation to the Binomial can be used since the sampie size Is large
and the probability of success 1is small, (Recal | that the Gaussian
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approximation to the Binomial Is used when the probabii ity of success does

not get small with increasing sample sizes.)

The parameter of the Polsson distribution is found by multiplying the
Binomial probability of success (p) by the number of trials (N). |In this
example Np = 365%,014 = 5,11, This parameter is both +the mean and the
varliance of the relevant Poisson distribution, so the standard deviation is
2.26. For plant site B there should be a yearly average of just over 5
days (exactly 5.11 days) of odor from the proposed plant. Hence, there Is
about a 50% chance that the city council's criteria will be satisfied In
any one year. The city council might not consider this statistic much help
In decision making. A 95% confidence Interval can be approximated on the
number of days of odor per year by taking the mean plus and minus two
standard deviations, 5.11 + (2)(2.26) or 0.59 to 9.63 days. A confidence
Interval on Polsson observations should be stated as integers (without
fractional parts). Hence, there is approximately a 0.95 probability that
odor from site B will be detected by residents at least once but less than

10 times In a year.

Using a table of Polsson probabilities, it 1Iis easy to check the
accuracy of this approximate confidence interval. Such tables are found in
most statistics text. One section of such a table is reproduced as Table
4,2, The X column is the number of successes. The next column contalns
the probabil ity of exactly X successes if the Poisson parameter is 5.1.
The last column Is the cumulative sum of the probabilities and Is thus the

probabl | ity of X or fewer successes.,
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TABLE 4.2

Poisson probabilities for a msan of 5.1

cumulative

X prob. prob.
0 .0061 .0061
1 L0311 0372
2 .0793 1165
3 .1348  ,2513
4 1917 4232
5 .1753  .5985
6 .1490  .7475
7 .1086  .8561
8 0692 9253
9 0392  ,9645
10 0200 .9845

This table Indicates that the confidence interval approximations are
somewhat In error. First consider the mean. Previously a 50 - 50 chance
was assumed that an annual count of odorous days would be below the mean of
5.1. The last column of Table 2 shows that the objectional odor has almost
a 60% chance of occurring on 5 or fewer days per year. Perhaps the clty
council would accept 60 - 40 odds but not 50 - 50 odds of meeting their
criteria. The mode of the distribution is 4, that Is, observing 4 days of
odor per vyear has the highest probablilty of all outcomes. The 95%
conflidence interval Is obtained by studying t+he cumulative probabilities
column and picking a set of X values for which the cumulative probabil ity

Is between 2.5% and 97.5%. This glves 1 to 9 days rather than 1 to 10 days
as found by the approximation.

Symmetric confldence bounds are used malniv out of habit learned from
working with continuous distributions. With continuous distributions a 95%
confidence interval Is obtalned with the Interval from exactly the 2.5%
value to exactly the 97.5% value. A 95% Interval can also be obtalned from
1% to 96%, or many other combinations. To choose between these many

alternatives [t 1Is assumed that symmetry about the mean value Is a
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desirable attribute of confidence Intervals. Since the Bernoul |l
distributions have discrete Jumps in probability, exact symmetry or exactly
95% confidence levels cannot usually be achleved. The conflidence Interval
of 1 to 9 successes Is chosen on the basis of getting as close to symmetry
as possible; that Is, choosing the endpoints as close as possible to 2.5%
and 97.5%. An examination of the cumulative probablllty column of the
Polsson table shows that a 92.7% conflidence level Is actually achieved
(96.45% - 3.72% = 92.73%). To find the true confldence level of the 1 to
10 successes derived from the approximation, subtract the cumulative
probability of one success from the cumuiative probability of 10 successes
to get 94.7%. This is much closer to the desired 954 level than Is the
Interval of 1 to 9 which was chosen for symmetry. The Interval of 0 to 9
successes has an exact confidence of 95.8%. This example shows that there
Is some leeway In  specifying confldence Intervals for discrete
distributions because no single criteria for choosing endpoints Is

universal ly applicable.

Four different intervais for this sampie data have been Il lustrated.
All are reasonable 95% confidence |imits. The flirst was obtalned from
asymptotes. The second, from exact probabilities restricted to be as close
to symmetrical (In probability) as possible. The third was from exact
probabilities as close to 95% as possible. The fourth was from exact
probabil Ities and was as close as possible to a confidence interval with at
least 95% probability. It Is Important to Indicate the criteria used +to
choose confidence intervals of discrete distributions.

4.4 SUMMARY

This chapter discusses counting extremes when the probabillity of an
extreme value occurring 1is well established. This situation Is handled

statistically with the well known Bernoul |l class of distributions.
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The logical relationships between the members of the Bernoulli class
were reviewed, and their uses were illustrated. The critical condition for

use was emphasized; +hat the probability of the extreme occurring be known

without significant error.
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CHAPTER 5
DISTRIBUTION OF THE NUMBER OF EXCEEDANCES

5.1 INTRODUCTION

Suppose a Bernoul|i trial situation but the probability of a success
Is not known. It Is necessary to estimate this probability from historical
data. Historical data often is of poor quality or badly documented.  Such
estimates of probability obviously introduce a source of error in addition
to sampling error. Sampling error Is the only source of error assumed to

exist by the Bernoulli distributions.

The formal solution of this problem can be found in the 'Bayesian
Estimation! sections of contemporary mathematical statistics textbooks.
First a compound, conditional distribution of the binomial event is derived
given that the binomial probability parameter is a random variable. Then,
the marginal distribution of the event may be derived by integration. This
requires that the distribution of the parameter itself be known. The early
workers In extreme value theory didn't have the tools of modern Bayesian
theory. However they essentlially performed the same steps Iin the

derivation outlined in the next section.

5.2 DERIVING THE DISTRIBUTION

The early workers in extreme value statistics found a way of
circumventing the explicit estimation of the probability of success from
data. Their method has the desirable attribute of being nonparametric.
Instead of explicitly estimating the probabillty of an exceedance or
choosing a criterla for classifying observations as extremes, they
expressed the unknown distribution parameters as functions of past

observations. A historical or reference data set Is examined to determine
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how many values 1In this data set exceed & criteria. The criteria Is
expressed as the rank of the observation in the reference data set that Is
closest to the criteria. The question to be answered is: 1in how many
cases, X, will the mth observation out of a total of n observations in the
past data be equalled or exceeded in N futire trials? The n reference
observations are assumed ranked so that m=1 denotes  the largest
observation, and m=n s the smal lest. Therefore the mth observation is the

mth largest. A symmetry will be obvious so one could rank from the bottom
and consider small observations. Because of this symmetry, only large
extreme values will be discussed in detail. Note that all available sample

values are used, the extremes are not picked out for analysis.

The sample size for which the forecast is wanted, N, Is often not +the
same as n, the sample size of the reference data. The number of cases, x,
cal led the number of exceedances, Iis a new statistical variate. Its
density 1is denoted by w(x;n,m,N) where n, m, and N are parameters. The
starting point Is a special case of a distribution studied by Wilk (1942).
A dichotomy Is constructed based on +the mth largest of the past n
observations. The probability of a new data value being less than the mth
past value 1Is denoted by F and 1Is unknown. The probability of an
exceedance Is 1-F, This 1is a Binomial situation except that the
probabil ity  of a success (exceedance) 1Is unknown, If a Binomial
distribution with F as the probability of <uccess Is formulated and

Integrated over all possible values of F, density of Exceedances Is
obtained.
W
= MMM =
(5.1) wixzn,m,N) = T )(N+n-1) , ;g%w 1.0
x+m=1

where 0 < x < Nand 1 <m < n., The large brackets represent +the binomial

coefficient:
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Xy = XD
(y) y! (x=y)! '
The useful symmetry for extreme small values is:

(5.2) wix;n,m,N) = w(N-x;n,n-m+1,N) .

The cumulative density or distribution 1Is denoted by W(x;n,m,N) where

values of w are summed from 0 to x.

Restated in words, w is the probability that there will be exactly x
values In a new sample of slize N that will equal or exceed the mth value In
the reference sample of slize n. For W, ‘'exactly x' 1in +the previous

sentence Is changed to 'x or fewer!'.

Nothing is assumed known about the variate from which the two samples
were taken except that It is continuous and does not change between the
time of the +two samplings. Thus the distribution of Exceedances Is

distribution free or nonparametric.

The probabillity 1is 1/2 +that the largest (m=1) of N reference

observations willl not be exceeded (x=0) In N future observations.
1*(N)(N) THET T
w(O;N, 1,N) = 12N01 = N:;NI1?: =
2N* ') N L 2N=
( 0 0l(2N-1-0)1

Since NI=N(N=1)1, thls formula sIimplifles to:

N(N=IDL o N
(N-1)1 N1 N
N x DL A
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The probabil ity that the largest of N past observations will always be
exceeded can be calculated using x=n, or more simply by using the inverse
probabil Tty:

P(always) = 1 = P(never) = 1-1/2 = 1/2.

By symmetry 1t Is clear that the smallest of N past observations has a
probability of 1/2 of never or always being exceeded in N future
observations,

The formula for w reveals some interesting aspects of the Exceedances
density for special values of x, m, n, and N. The probability that the mth
largest value from n initial observations will be exceeded at least once In

N new observations Is:

(5.3) Plx21) =1~ nemll_ oy _px=0) .
(Ntn) !

When m=1 this Is the probabllity that the largest value from the initial

distribution will always be exceeded In N new otservations, and Is:
=1 -0 = N
(5.4) P - 1 n+N n+N ©
The probability that all N of the new observations will exceed the

targest (m=1) of the original n observations Is given by:

(5.5) wiN;n,1,N) = s&e=ze

This I1s a very small probabil ity for even small values of n and N.

If n (the reference sample size) is odd, then m=(n+1)/2 corresponds to
the median of the initial variable. From the definition of median, It is
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equal ly probable that the median of n past observations Is exceeded x or
N-x times in N future trials. The density of the number of exceedances

above the median is symmetrical.

5.2.1 Example: Design of Experiments

Formulas 5.1 through 5.4 can be used to design an experiment +to
approximate the "worst case condition". The number of observations to
take, n, such that x or more values greater than the largest of +these n
will occur with probability p In N future observations can be calculated
from these equations. Typically x and p are set small. When N s known
equation 5.1 can be sofved by summing over the values of x. If x Is
restricted to x=1 then the problem is simplifled since no summation Is
needed, and equation 5.4 can be used. Suppose a 90% chance that weekly
pol lution maxima will not exceed the largest value in a reference data set
Is desired. How many weeks of data should be collected to obtain this
maximum value? To use formula 5.4 this 90% must be stated as a 10% chance
of observing one or more values larger than the largest of the reference
data set. Solving equation 5.4 for n with p=0.1 gives n=9N. Thus, 1f the
maximum of 9 weeks of data is taken, there is a 90% certainty that another
single (N=1) weekly maximum will not exceed this value. For a 90%
certainty for ali the weekly maxima over a year, 9 years of data is needed.

/

5.3 MOMENTS OF THE DISTRIBUTION OF EXCEEDANCES

The moments of this distribution may be obtained from properties of
the hypergeometric and binomial functions (Gumbell, 1958, section 2.2.2).
The mean number of exceedances over the mth largest value 1In N future

trials is:

(5.6) m*—=e

Xt
3
n
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The mean number of exceedances over the smal lest value (m=n) is n times the
mean number of exceedances over the largest value (m=1). Clearly the mean
Iincreases with m. |f N=n+1, the mean number ism. I|f nils odd and m =
(n+1)/2, the mean number of exceedances over the median is N/2. If both n
and N are large, the mean number of exceedances over the largest value Iis
approximately unity.

The variance of the number of exceedances over the mth largest value

iss

(5.7) y = MEN¥(n-m+1) (N+nt])
m (n+2)(n+1)2

From this formula it can be seen that the variance Increases with
Increasing N and decreases with increasing n. The varlance is maximum for

m = (n+1)/2; +that is, for the median of the original observations.

The quotient of the variances of the number of exceedances above
(greater in magnitude) the median, and above the extremes is:

(5.8) Yarnzz | wn? _ Vengz
) V1 4*n Vn .

Consequently, the variance of the number of exceedances above the median is
about n/4 times as large as the variance of the number of exceedances above
the extremes. In this sense, the extremes are more reliable +than the

median and this qual ity increases with increasing sample size.

The variance of the exceedances 1Is larger than the corresponding
binomial variance because the probability Is a known parameter for the
binomial case, while for exceedances only the rank of the observation, m,
that corresponds to the probability is known. For N=nt+3 the variance of
exceedances is approximately twice the variance of the corresponding
Binomial distribution,
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The coefficient of variation, CV, Is obtained from:

v (N+n+1) (n=m+1)
(5.9) CVE = =5= = cemmecmemeee .
X N(n+2)m

The following simple example using these formulas shows the effect of
sample size on the accuracy of estimates. Suppose 9 readings of radon
exposure to workers who have just finished working In an isotope storage
building. Compute an estimate of how many of the 20 workers on the next
shift will be exposed to more than the mean of the previous shift. Using
formula 5.6 with N=20, n=9, and m=5 (the middle reading of the nlne) gives
a mean number of exceedances of 10. This is, of course, Intuitive since
the means of the past and future groups should be the same. |f some change
In exposure Is suspected and a simple test for such a change is to be done,
formula 5.7 could be used tfo obtain a standard deviation on the count of
exceedances and If the actual count Is more than two standard deviations
from the expected count one would conclude +that a change occurred.
However, such a test may not be possible with small samples because the
relative accuracy Is large. Using formula 5.9 for this example yields a
relative accuracy or coefficient of varlation of 37%4. Thls says the mean
cannot be estimated very well. Ten workers times 37% Is about 4, two
standard deviations would be 8 workers. Thus a mean plus or minus two
standard deviations would include a Ilarger range than the sample size

itself, not a very useful statistic.

If there had been 900 workers on the previous shift, and 2000 on +the
next, formula 5.4 can be applied to get a mean of 1000. Formula 5.9 gives
a coefficient of variation of 4%, showing that the relative accuracy has
Iincreased greatly. The mean "times the coefficient of variation gives a
value of 40 workers. So while the relative accuracy Increases, the

absolute accuracy decreases.
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The medlan number of exceedances is found by summing values of w over
Increasing values of x until the cumulative probability is 1/2. Let M be
the value of x that corresponds to the median. Then +the median can be

found by solving the fol lowing equation for m.

M N
(5.10) > wlzzn,m,N) = 1/2 = w(z3n,n=m+1,N)

z=0 z=N-M
Such a number need not exist. For example, 1f MN=n, then w(oj;n,1,N) exceeds
1/2, and the dlistribution of the number of exceedances over the largest

value does not posses a medlan.

5.4 EXAMPLE: Nitrous Oxides in Urban Alr

Typical nltrogen oxlde levels for urban areas were used to simulate

the data In the following computational example.

Suppose a small industrial area has a gcod alir pollution control
system. Their regulations require that some types of Iindustrlal operations
shut down untli weather conditions change when caily nitrogen oxide levels
exceed 0.1 part per million. From the previous summer's data one finds
that 90 dally measurements were made and on 12 of these days the criterla
was exceeded. During the coming summer how mary times per month (30 days)
should the Industrles expect to have to shut down?

Using Formula 5.6, the mean number of exceedances Is estimated ‘o be
3.95. Formula 5.7 glves a corresponding standard deviation of 2.13. These
glve an approximate 95% confidence interval of -.21 to 8.12 exceedances.

Rounding this interval to the nearest integers ¢gives 0 to 8 exceedances.

These approximations can be checked using formula 5.1 to compute the
exact probability of any specified number of exceedances. Let m=12, N=30,

n=90, and x vary from zero to 12 or 15 tc¢ Include all significant
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probabilities. The computational difficulties caused by large factorials
are a significant consideration with these formulas. [n such a sequence of
probabilities a recursive formula can often be found for obtaining a
probability Tn a simple way from the previous member of the series.
Formula 5.1 we can be used to compute the probability, w, for x=0, then the
only part of the formula that changes for values of x=1,2,3,... Is +the
bottom term in one of the binomial coefficients of the numerator and In one
of the denominator. A little algebra with binomial coefficients shows
that:

(1) = (1) = =4t

This formula glves a simple recursive relationship for calculating
successive values of w as x increases sequentially. The numerator and
denominator of formula 5.1 are each multiplied by a simple fraction, This

was done to produce Table 5.1.

Distribution of Exceedances for
Nitrous Oxide Example

Cumulative

X Propability Prob.
0 .02598 .02598
1 .08660 .11258
2 «15256 .26514
3 .18806 .45320
4 .18134 63454
5 .14507 77961
6 09977 .87938
7 .06036 93974
8 .03265 97239
9 01596 .98835
10 00711 .99546
11 .00290 .99836
12 .00109 .99945

13 .00038 .99983
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For values of x greater than 13 the probabilitles become so small that
these numbers of exceedances are of no consequence. This table shows that
the mode occurs at x=3 (the largest single probability). The median can be
found by Interpolating between x=3 and x=4 to find a "polnt" at which the
504 cumulative probability would occur; this value 1is 3.26. The
theoretical mean can be found by summing the product of the number of
exceedances multiplied by +the corresponding probability; this sum Is
3.952, very close to the answer given by formula 5.6. The varlance can
| ikewise be calculated from formulas for the second moment about the mean.
The variance thus estimated is 4.46, which yields a standard deviation of
2.11. This 1Is close to the value given by formula 5.7.

This table can also be used to find confidence |imits on the number of
exceedances expected In a future 30 day perfod. Suppose a 95% conf ldence
Interval is of Interest. The +table 1Is searched for values of the
cumulative probability close to 0.025 and 0.975. For x=0 the probabll ity
sl ightly exceeds 0.025, so this value of x shtould be 1included in the
Interval. Now the 0.95 point rather tham a 0.975 point is required because
the Interval does not exclude any values at the lower end. This leads +to
two cholces for the upper end, 7 or 8 exceedances. Seven exceedances has a
cumulative probabil ity of 0.94 which 1is closer to 0.95 +than the 0.97
cumulative probabillty associated with 8 exceedances. However 8 would be
chosen 1f the confidence Interval Is to be at least 95%. There is another
possibility. The interval 1 to 8 exceedances has a probabil ity of 0.946
and this Is as close to 95% as can be achieved. This 1is a similar
situation to +that discussed 1In Section 4.3 where a variety of possible
conflidence Intervals was found when working with Bernoulli distributions.
The simulation presented in the fol lowing paragraphs suggest that the 1 to
8 exceedances is the best Interval, but generally, simulations do not

provide a very strong justiflication.
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A simple computer program was written to perform 500 simulations of 30
day nitrogen oxide readings and to count the occurrences exceeding 0.1 ppm.

The results of this simulation are given in Table 5.2.

JABLE 5.2
Summary of Simulated Nitrous Oxide Exceedances

Observed Cumulative Observed Cumulative
Count  Frequency Frequency Probabl |l ity Probabil ity
0 8 8 .016 .016
1 36 44 .072 .088
2 65 109 .130 .218
3 79 188 .158 376
4 98 286 .196 572
5 81 367 .162 .734
6 56 423 112 .846
7 34 457 .068 914
8 23 480 .046 .960
9 12 492 .024 .984
10 5 497 .010 .994
11 3 500 .006 1.00
12 0 500 .000 1.00
13 0 500 .000 1.00

The number of exceedances in 30 days of simulated nitrogen oxides
measurements ranged from O tfo 11, with a mean of 4.30, a mode of 4, and a
standard deviation of 2.25. The median can be approximated by IInear
Interpolation between the counts of 3 and 4 to find a value associated with
a cumulative probability of 0.5. This value 1Is 3.63. A confidence
Interval of 1 to 8 Is closest to 95% (actually 94.4%).

Table 5.1 gives the theoretical values +that should occur 1in +the
probabil ity columns of Table 5.2. The theoretical values of the mean,
median, mode, and standard deviation are just siightly smaller than +the

Yobserved" values. To see how well the data in Table 5.2 fit the



DISTRIBUTION OF THE NUMBER OF EXCEEDANCES Page 5-12

theoretical distribution, a Chi-square goodness of fit test can be used.
First +the probabilities in Table 5.1 are multiplied by 500 to get expected
frequencies. These are compared with the observed frequencies in Table 5.2
with the Chi-square test. The Chi-square value is 15.6 with 11 degrees of
freedom. This corresponds to about an 85% confidence level, so the fit s
acceptable but not really good. The 11 degrees of freedom from the 14 rows
In the tables is a result of grouping rows for 10 through 13 to avoid small

frequencies In the Chi-square calculation.

5.5 SUMMARY

The probabil ity that the mth largest among n observations will be
exceeded x times in N future +trials 1Is given by the Distribution of
Exceedances. |t is analogous to a Binomial distribution except that the
probability of success is a varlable quantity. The mean number of
exceedances Is the same as the mean of the corresponding Binomial
distribution. However, the variance 1Is larger. This variance of the
number of exceedances is largest for the median value of +the initial
distribution, and smallest at its extremes. This advantage of extremes

Increases with sample slze.

In 1/2 of all cases the largest (or smallest) of n reference

observations wil| never (always) be exceeded in n future trials.
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CHAPTER 6
MORE ABOUT EXCEEDANCES

6.1 INTRODUCTION

The previous chapter introduced a general form of the Distribution of
Exceedances, emphasizing that this distribution is a generallzation of the
Binomial distribution, but using an estimate of the probability of success.
The asymptotlic behavior of thls distribution was not given for the case
when the two sample sizes are large and rare exceedances are of Interest,

These asymptotes are one of the subjects of this chapter.

6.2 EXTRAPOLATION FROM SMALL SAMPLES

It Is common wlth environmentai studles to make rather sweeping
statements about future events based on |imlited previous Information. In
terms of the Distribution of Exceedances, this Is equivalent to assuming a
large N and a smail n. Typically m Is also small. instead of using x, q =
x/N, (0 < q £ 1), the proportion of future exceedances is used. Since N Is
large, x and therefore q can be approximated as continuous varlables.
Gumbeil (1958, sectlion 2.2.5) shows that the distribution of q is glven by

NI(gN+m=1)!(n-gN+n-m) !
(N+n) I (gN) I (N-gn)! :

(6.1) f(qzn,m,N) = N*m*CD
Stirling's formula leads to the approximation
(6.2) f(qzn,m) = (;)*mqm-1(1-q)n_m .

The associated cumulative distribution function is
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q
(6.3) F = ‘[f(f;n,m)df .

0

The solutlon of thls integration is a recursive integral function of m and
n. Appendix A shows how to find the value of —his Interval from tables of
the Incomplete Beta distribution,

The probabil ity that at most some proportion q of the new observations

will exceed the smallest of the n previous observations Is

(6.4) F(qzn,n) = q" .

The probabil ity that in a future large sample a- most some proportion q
will exceed all of the oid observations is

(6.5)  Flqsn,1) = 1-(1-q)" .

By symmetry this is also the probabi!ity that at most a fraction q will be
less than the smal lest value in the original sample.

6.2.1 Example; Design of Experiments

Formulas 6.1 through 6.5 can be used to design an experiment when N (a
new sample size) |Is unspecified but known to be very large. Suppose one
wishes to collect enough reference data to get a 90% chance that at most
10% of future data will exceed the largest value in the reference data set.
Using formula 6.5 this problem can be set up as 'q = 0.1 and F = 0.9,

Solving for n

0.9 = 1=(1=.1)" or n = log(.1)/10g(.9) = 21.85

Applying this to the example of weekly alr pollLtion maxima, the maximum of
26 weeks of data has a 90% chance that, of all future weekly maxima, only
10% will exceed this maxima.
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6.3 THE LAW OF RARE EXCEEDANCES

If both n and N become large, two special cases are of Interest. In
the first, the rank m increases with n such that the quotient m/n
approaches a constant value, and the mth value is near the median. In +the
second, m Is constant and much smal ler than n so that m indexes extreme or

rare values.

For the first case consider the situation where n = N = 2k-1, Since N
and n are large +then k also will be large. Then m=k is the rank of the
median of the Initlal distribution, and to a very close approximation, m =
N/2 = n/2. Gumbel (1958, section 2.2.6) shows that for large N and n, and
m In the nelghborhood of the median, the number of exceedances over the mth
value Is asymptotically Normally distributed with both mean and variance
equal to k. This variance Is very large relative to the mean. This 1Is

cal led the Distribution of Normal Exceedances.

In the second case, N and n are large, and m and x are small. Gumbel

shows that

(6.6) wixzn,m,N) = {77 ') eecce==
The probability that the mth value is never exceeded is the situation where
x=0;

n \M
(6.7) w(O;n,m,N) = (ﬁiﬁ) .

The probabil ity that the largest value is exceeded In x future observations
Is

X

. _n N
(6.8) wix;n,1,N) = ﬁ;ﬁ*(ﬁiﬁ) .
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This is a geometric series decreasing with x. When N=n, formula 6.6
becomes

(6,9  w(x,n,m,n) = (x+2“)*(1/2)m+x.

which is the asymptotic probabillty that the mfth Ilargest value wlll be

exceeded x times In N future trials. This probablility Is Independent of n
and contains the single parameter m. Since m Is small compared to n, this

Is called the Law of Rare Exceedances, and denoted simply as

(6.10) wixm) = (x+:“)*(1/2)m*x.

The probability that the largest value will be exceeded x times In future
observations is obtalined by substituting m=1 info 6.10, giving

(6.11) wix,1) = (/2%

It fol lows that the probablility that the largest value previously observed

will be exceeded at most x times in future observations Is

(6.12) w=1- /2%

This probabllity converges rapidly to unity as x Increases. These
asymptotic formulas are useful because they are Independent of sample
sizes. But they can be misinterpreted If one forgets +that +they assume
large samples for both the reference and the future data sets, and that the

underltying distribution Is constant over time.

The mean and variance of the distribution of rare exceedances can be
obtalned from formulas 4.7 and 4.8. The mean is m and the varlance Is Zm,
Thus, this distribution is simiiar to a Poisson distribution except that
the varlance of rare exceedances Is twice thal of a corresponding Poisson

varlate. The difference is Intuitively justified. |f the Poisson law were
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applled to rare exceedances, It must be assumed that the mean number of
exceedances is known. With rare exceedances a sample estimate of this mean
Is used. Consequently, the variance must be larger than for the Polisson

case.

Both the distribution of rare events (Polsson) and the distribution of
rare exceedances may be standardized by y = (x - mean)/SD, so thaty

converges to a standardized Gaussian distribution.

The variance of rare exceedances, 2m, Is much smaller than +the
variance of normal exceedances, N/2. The varlance of rare exceedances Is

smal lest for m=1, the largest vaiue observed.

6.4 RETURN PERIOD

The concepts presented so far will now be used to develop useful tools
for the next chapter, which Introduces the magnitudes of extreme vaiues.
The first of these toois Is the return period, important when time 1is a
statistical variable of interest. Flood control engineers are Interested
In the time Interval between floods; the mean of these Intervals 1Is the

return period for floods.

Consider first a discrete variate generator, for example dice. The
probabliity that any speciflied face occurs on a toss is 1/6. Therefore the
specified face 1s expected, in the long run, and on the average, once In
six trials. For a contlinuous variate there Is no probablility for any
speclific value of the variate, such as x, so a dichotomy Is constructed.
The probability of observations equal to or larger than x Is 1-F(x), where
F 1s the distribution (cumulative density) function of +the variate x.
Observations are made at regular intervals of time and an experiment stops
when a speciflied value X of x has been exceeded once. The probabil ity that
this exceedance happens on trial v Is to be found. The variable v has a
geometric distribution with probability parameter p = 1-F(X). The return
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period Is defined to be the mean value of v, denote this mean by T(x).

<l
]

(6.13)

oI
p—

[}
M—
o~
X
~

The variance of T(x) is TZ-T, and the medlan number of v Is

089315 __ . *T -
(6.14) Gyl 0.69315%T - 0.34657 .
The mean Is about 44% larger than the median, and there Is as much chance

for the event to happen prilor to .69%¥T(x) as aftler.

Every distribution has a return period function, and every return
period has an associated distribution. Thus it is Incorrect to write down

an arbitrary function and call it a return perlod.

The return period Is most interesting [f observations are made at
equidlistant intervals of time. Then the return period can be identified as

a number of observations. Thls is the origin of the name.

As an example, suppose a measurement Is mace dally and +the Ilargest
value In one vyear Is of interest. The refurn period is the number of
365-day periods (years) +that would on the average elapse before an

exceedance of the specifled magnitude would occur agaln.

The return perlod of the median Is 2, of tte upper quartile is 4, and
so on. Starting at the median, the return pericd Increases with increasing
values of the variate. For values smal ler than the the median, the return
period Is smaller than 2. For the flirst quartiie It is 4/3. The return

period converges to unity for decreasing values of the variate.

The value of x for which the return period is doubled, D, is found
from
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(6.15) F(D) = (1+F(X))/2 .

Conversely, the return period of 2X Is the solution for

(6.16) T(2X) = 1/(1=F(2X)).

For a given distribution, F, D is obtained as a functlon of X, and T(2X) as

a function of T(x) since X Is a function of T.

6.5 EXPECTED EXTREMES AND EXTRAPOLATION TO LOW DOSES

Let F be the cumulative density function of the previous section, and
let n be the number of observations in a (large) sample. Then a sﬁeclflc
large value of the varlate, call It u[n], is uniquely defined by stating
that i+s cumulative probabl| ity is defined by

(6.17) F(u[n]) = 1-1/n.

This equation Is another way of writing the return period since n Iis

analogous to T(x). The equation may be rewritten as
(6.18) n(1=F(u[n])) = 1.

In this form the product on the left side Is the number of values equal to
or exceeding uln]. Since this product is unlty, u[n] Is called the
expected largest value. Note that the expected largest value Is not the
mean largest value (which in the next section wIlll be shown to be
determined from F(u) =1 = 1/(n+1) ). By symmetry the expected smallest

vafue is
(6.19) Fl1]) =1/n .

The two percentiles u[n] and u[1] are functions of n and differ for
different distribution +types and for parameter values within a given
distribution type. If the initial data distribution Is symmetric, the +two
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expected extremes are equal In slze about t+he mean but differ In sign.
Equation 6.19 Is used Implicitly by authors who use the "weakest |Ink"
argument to establ Ish environmental criterfa. This argument contends that
the criteria should be such that even the most susceptible of a population
should not be affected by the pollutant. With an assumed form for F at
smal | values of the argument, and an estimate of population slize, 6.19 can

be used, and u[1] becomes the basls of pol lutant criteria.

The current controversy about extrapolation to low doses for
carclnogenicity criteria can be Interpreted as a disagreement about the
form of the density function F. Usually reasonable arguments can be found
to establish n, but agreement on F Is seidom reallzed. This Is Important
because this procedure uses extrapolation to the talls of the curve. By
using the asymptotic +theory for magnitudes of response (+o be studied In
later chapters) this problem can be studied with |imited Information about
the functlion F. It has proven difflcult for many persons to accept the
concept that the asymptotic theory allows one to establish criteria without
complete knowlege of the response function. For example, In carclnogenesis
studles arguments are common about how the response at low doses should be
modeled; by Ilnear extrapolation, by quadratic extrapolation, or if a
backround response should be conslidered, and so on. The asymptotic theory
shows that such detalls can be Irrelevant. Agreement Is necessary only on
the type of distribution: Exponential class, Cauchy class, or Welbull

class.

6.6 PLOTTING POSITION

For thls sectlon, It Is convenient to change the notation so that
observations are ranked from the smallest 1o the largest. |In order to
el Iminate as much confuslon as possible, the symbol r will denote this new
ranking, and the symbol m will be retalned as the rank from the largest to

smal lest, For a sample of size n, m = n-r+1 and r = n-m+1,
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Probabil Ity plotting, which 1is described in Section 7.2, is an
extremely useful graphical tool for working with +the Extreme Value
distribution, I+ is easlly done with ordinary graph paper and an
electronic hand calculator with scientific features. For this tool It is
necessary to discuss the ways avallable to calculate plotting position, and
choose the best one for extreme values. In probability plotting the data
Itself Is plotted on one axis, and on the other axis is plotted an expected
probabil ity transformed by the Iinverse of +the density function. The
standardized Extreme Value distribution is a double exponential (see
appendix of Chapter 3)., The Inverse is calculated as a double natural
logarithm of the appropriate percentile. |t Is not easy to decide how tThis
percentile or expected probability should- be determined. There is a
substantial amount of published |iterature about this problem, and most of

It 1s applicable only to the Gaussian (Normal) distribution.

Of +the many proposed formulas for calculating the expected
probabil ity, the following three are 1in common use because of their

simplicity and near optimum statistical properties:

1) p = (r=1/2)/n
2) p = r/(n+1)
3) p = (r=3/8)/(n+1/4) .

Kimball (1960) discusses these and some others that are rather difficult to

compute.

If the first of these probabilities is used to compute an expected
return period for the largest observation, it leads to a logical
contradiction. In formula 6.13 replace the cumulative probability, F(x),

by the percentile of the largest observation, p = (n=1/2)/n. This gives

S, W
Tlxg) = —====j75= = 2n

n
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which claims that an event which has happened once in n trials will on +the

average occur once in 2n trilals.

The second choice of expected probabilities Is based upon percentiles.
The expected value of the rih value from a sample of size n from a unlform
distribution on the unit interval (rectangular distribution on the interval
0 to 1) Is r/(n+1). A statistical theorem (Mood & Graybill, 1963, Theorem
6.1) glves the fol lowing rule for relating any density function to +the
density of the unit uniform:

Theorem
Any density for a contlnuous variate X may be

transformed to the unliform densi-y f(y) =1,
0 <y < 1, by letting Y = F(X), where F(x) Is
the cumulative distribution of X.

Then for any distribution represented by its density function F, solving
r/(n+1) = p = F(x) for x yields the expected value of the pth percentile of
that distribution.

The third choice of expected probabilitles was developed for graphical
estimation of parameter values of a Gaussian distribution. The slope of
the |ine on a Gaussian probabiiity plot can be used to estimate the
standard devliation. This +third choice was deveioped to glve almost
unbiased estimates of the standard deviation from the slope of a regression
| Ine on these plots.

Kimbal! (1960) found that the third cholce is best for estimating +the
variance of a Gaussian distribution. All three cholces do reasonably well
for estimating the mean of a Gaussian distribution. The second choice was
found best for extreme value work because It glives almost unbiased
graphical estimates of the parameters of the Exireme Value distribution.

For the remainder of this text only p = r/(n+1) will| be used.
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6.7 SUMMARY

This chapter extends +the Distribution of Exceedances to the
conslderation of counting the frequencles of rare events. The concepts
that are introduced were then used to develop some tools that will be
useful In +the next chapters. These tools are the Return Period, Rare

Exceedances, Expected Extremes, and plotting position.

Also, these statlistical +tools are _sometimes the only reasonable
statistics avallable for many applled probiems. With current
environmental ly sensltive and pol itical ly active demands upon sclence, one
could be asked to analyze extremely sparse and incomplete data. What
conclusions can be reached, for example, when the available data 1s that
three toxlclty cases have been observed In 10 to 20 thousand workers
exposed to compound X?  Ordinary statistics are of no value In such
situations. Nothing miIght be known about the magnitudes of exposure or the
distribution of responses. Still, an estimate of a return period and Its
standard devlation 1Is useful, expected extremes can be dlscussed, and the

laws of Rare Exceedances can be used.
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6.9 APPENDIX 6-A
A useful ldentity aliows one to find the cumulative probability of

formula 5.3 from tables of the Incomplete Beta distribution. Formulas 5.2

and 5.3 are:

n

f(qzn,m) m(;)qm-1(1-q)n_m,

q q. i}
Fgsn,m = [ f3n,mdt = m( )ﬁ' P Ty
0 0

n
m
For typographical purposes indicate the Gamma function with G( ). Then the

Incomplete beta function Is:

_  G(a+b) q a1 b-1
|(q,a,b) = ézsyczss fo+ (1-1) dt .

Equating powers within the Integrals for I(q;a,b) and F(q;n,m) gives:

m=1 a-1 or a

b-1

m
n-m+1 .

n-m or b

Next conslider the multipliers of the Integrals.

m ml (n=m)! m{m=1) ! (n-m) | (m=1! (n-m)! ’
G(a+b) _ G(m+n-m+1)

STa)6(6) = SmG-m) ~ ¢

For integer values, G(a) = (a=1)1!,

K = (m+n-m+1-1)! - ___.nl
(m=-1)!(n-m+1-1)! (m=1)1(n=-m)! ’

and this is identical to the multiplier for F( ).
Thus, F(q;n,m) = 1(qsm,n-m+1) .
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Tables of the Incomplete Beta distribution are given in Beyer (1966).
A useful identity for the Incomplete Beta distribution is:

1f I(q;a,b) =P
then 1(1-q;b,a) = 1-P .,

As an example of using thls Identity conslider +the probablilty
F(.25;8,1). From formula 6.5 this value is:

1-(1-.25)8 = .9 .

The tables In Beyer (1966) must be used In an Inverse Interpolation mode.
Beyer has tables of I(q;a,b) = P with successlve tables for various values
of P, q in the body of the table, and a and b indexing the rows and columns
of +the tables. Look in these +tables In rows and columns of 8 and 1
respectively for an entry of approximately 0.2%, no such value can be
found. Invoking the 'useful identity' look In rows and columns of 1 and 8
for an entry of approximately .75, It Is found in +the table for P=10%.
That Is:

I 1(1-q;b,a) = 1-P then 1(.75;1,8)
and 1f 1(q;a,b) = P then 1(.25;8,1)

(]
L]

.9

which is the desired resul+t.

AppendIx Reference

Beyer, W.H. (Ed.), 1966, Handbook of Tables for Probability and Statistics,
The Chemical Rubber Publishing Co.



CHAPTER 7
THE MAGNITUDE OF EXTREME VALUES

7.1 INTRODUCTION

The previous chapters have concentrated upon counting +the number of
extreme values. This chapter begins the study of the magnitude of
extremes, but first, a word of caution. The magnitude of +he exposure
(e.g. the level of styrene vapors in alr) can be measured or the number of
persons [1| from the insult can be counted. However, it Is Important +to
distinguish that +this 1Is not the same as the magnitude of the response,
e.g. the degree of illiness. The error of equating the magnitude of the
exposure Yo the magnitude of the response [s often found In articles and
reports.

This chapter assumes that a ratio or Interval scale measurement Is

avallable and appropriately defined for the problem at hand.

7.2 EXPLORATORY DATA ANALYSIS OF EXTREMES

Simple graphical methods are a good starting point for any data
analyslis. Probability plotting Is easy In extreme value distribution work.
Iin a sample of n independent observations, one of them (or perhaps several
Identical ones) Is the smal lest or the largest. |f N such samples of size
n are gathered, a sample of N extreme values Is obtained. The distribution
of this sample Is of Interest under the conditions that n Is large, that
the varlate, say x, is uniimited in the dlirection of the extreme under
conslideration (largest or smallest values), and that the Initlal
distribution sampled is from the Exponential family, I+ was noted 1in the
Chapter 2 that a transformation can change variables from the Cauchy family
and from the Weibul!l family to the Exponential famlly.
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Let f(x) be a density function, and let F(x) be +the corresponding
distribution function. In Chapter 6 a large value, u, was defined as the

expected extreme using the cumulative probability formula
(7.1) Fu =1-1/n. ‘o
Define a new parameter, a, by
(7.2) 1/a = n¥f(u) .

Then, for the exponential family, the asymptotic probability (distribution)
for the largest value, denoted as x[n], Is (Gumbel, 1958, Chapter 5)

(7.3) H(x[n]) = exp(-exp(-y)) , where
(7.3") y = (x[n] - u)/a .

The variable y Is defined to be the reduced variate. This is analogous +to
the famillar standardized Gaussian (Normal) variate. The parameter u is a
measure of the central tendency of the extreme value distribution, but it's
not the mean of that distribution. Likewise, the parameter a (or more
exactly, 1/a) is a measure of dispersion, but 1it's not the standard
deviation. Usually the indicator of sample size |is dropped from the
notation unless 1t is variable In the problem a* hand, and x[n] Is replaced
with x.

Formula 7.3 can be defined as a function of y rather than of x. Then,
Just as for the standardized Gaussian distribution, a single reduced
extreme value distribution can represent all possible extreme value “»
distributions. The reduced distribution Is denoted by the expression:

(7.4) H(y) = exp(=exp(-y)}) .

This reduced extreme value probabil ity distribution function has an
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Important advantage over the standardized Gaussian distribution; namely,

the Inverse of the extreme value distribution is easy to compute,

(7.5) y = =In(=In(H(y))) .

The corresponding inverse of the standardized Gaussian distribution Is the
Inverse of a non-analytical exponential Integral.

The asymptotic probabil ities of the smal lest values are obtained by
changing y Into =y and H(x) Into 1 = H(x). Thus, only the largest extreme

values need be considered.

The parameter definitions 7.1 and 7.2 require knowledge of the parent
density or distribution function. Since such knowledge Is lacking In most
cases, a method is needed to estimate these parameters from the observed
largest sample values alone. A mathematical study of the Extreme Value
distribution shows that u Is the modal largest value In a sample of size N,
and that 1/a 1is the rate of Increase of the most probable largest value
with the natural logarithm of the number of samples N, and is proportional

to the standard deviation of the extremes.

If the data are from any distribution that 1is 1In the Exponential
family, then +the N observed extreme values x[m] (m=1,2,3...N), ordered in
Increasing magnitude, should be scattered about a straight |ine when
plotted against thelr expected cumulative relative frequencies. The
quantity used for the expected cumulative relative frequency is obtained by
substituting

(7.6)  H(y) = ATREAIT = m/(N + 1)

Into equation 7.5. (The over-line indicates average or sampie expected
value.) The rationale for this was discussed In Section 6.6.
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Typically, the observed magnltudes of the M extremes, x, are plotted
vertically, and the corresponding y values, the solution to equations 7.6
and 7.5, are plotted horizontal ly. This arrangement, opposite that usually
employed iIn statistics for plotting cumulative distributions, has been
adopted in extreme value statistics In order to have sampling variation
operative in the vertical dlrection only, as Is customary for curve
fltting. The values of x depend upon the experimental measurements, and
the values of y are determined by +the sample slze, N, and the index
associated with the order of the data values. The values of y should
usually be wlthin the range of -2 to +8. These (x,y) palrs should then
scatter about the Ilne

(7.7) X = u + aky ,

Using the Return Perliod defined in Section 6.4, and equations 7.3,
7.5, and 7.6, the return period can be defined es:

(7.8) T(x[m]) = 1/(1 = H(y)) = 1/C1 = m/(N#1)) = (N+1)/(N-m+1) .

This gives the average number of observations necessary to obtaln one value
equal to or larger +than x. For large values of x, the return period

converges towards exp(y).

These equations facllltate probability plotting of extreme values on
ordinary linear-I|Inear graph paper. Extreme value probability paper can
sometimes be found, [t was an important tool before scientific hand-held
calculators made exponentiation a +trivial operation. These special
probabil ity papers have |inear scales for the observed varlate x and the
reduced variate vy. They also include, paraliel to the y scale, two
nonl Inear scales for +the return perlod and cumulative probability or
frequency. The relationship between these three variables Is shown In the
fol lowing BASIC computer program, which prints a table of corresponding
values of the three quantitles. In this program Y Is the reduced varlate,
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P is the cumulative probability, and T is the return period. This program

is an implementation of equations 7.3, 7.5, and 7.8.

10 FOR Y=8 TO -2 STEP -.1
20 P=EXP(-EXP(-Y))

30 T=1./(1.=P)

40 PRINT Y,P,T

50 NEXT Y

60 END

A probabil ity plot of an extreme value data set is always advisable,

even when the data is automatically col lected or is a replicate of previous

data. A deviation from a straight Iline plot can easily be spotted.
Whenever a curved Iline Is suspected, first check if the extremes were
correctly collected and recorded. Then one of  the logarithmic

transformations of the x variable discussed 1in Section 3.4, should be
plotted to see if the data then plot as a straight Iine. A formal
statistical test to determine If the data conforms to a Cauchy, Welbull, or
an Exponential extreme vaiue distribution is beyond the level of this text.
One possible test 1s to use a general algorithm for maximizing the
I Tkel Thood function for the observed data with each of the three extreme
value distributions, then compare the goodness-of-fit using the |Ilkel lhood

ratio test.

7.2.1 Probability Plot Example

In an urban area, the annual maxima of weekly average parts per
million nitrous oxide levels for each of 10 years were: 0,108, 0.063,
0.111, 0.077, 0.081, 0.085, 0.097 0.083, 0.078, 0.062., These 'x' values
were ranked from smallest to largest, their cumulative relative frequencies
calculated using equation 7.6, and their reduced variates, vy, calculated

using equation 7.5. The results are:
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JABLE 7.1
Observed Data and Reduced Variate
m m/(N+1)  x y
1 0.091 0.062 -0.875
2 0.182 0.063 ~0.533
3 0.273 0.077 -0.262
4 0.364 0,078 -=0.012
5 0.455 0,081 +0.238
6 0.545 0.083 0.501
7 0.636 0.085 0.794
8 0.727 0.097 1.144
9 0.818 0.108 1.606
10 0.909 0.111 2.351

Figure 7.1 is a plot of the data in Table 7.1 with the x values on the

vertical axis and y values on the horozontal axis.

This plot suggests a |Inear relationship of x and y. A least-squares
| inear regression of x ony gives: x = 0,0767 + 0,0162y. The standard
errors of these regression coefficients are 0.0014 and 0.0013,
respectlively. Equation 7.7 relates these regression estimates to the

scale, a, and position, u, parameters of the Extreme Value distribution.
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EIGURE 7.1

Observed Nitrous Oxide In ppm on Ordinate,
Reduced Variate on Abscissa.

7.3 MAXIMUM LIKELIHOOD ESTIMATES

Although these graphical and regression estimates of the parameters of
the extreme value distribution are easy to compute, they are accompanied by
an important statistical question of bias. For example, there 1Is good
reason to argue that a weighted regression shouid be used. Most computer

centers have algorithms available for the general ized maximization of any
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analytic (well behaved) function. These algorithms have such names as:
Dav idon-Fletcher-Powel |, Fietcher-Reeves, Con jugate Gradients,
Newton-Raphson, and Nedler-Mead Simplex. For illustration the Nedler-Mead
Simplex algorithm (O'Nelli, 1971) will be used to directly maximize the

| ikel Thood function of the extreme value distribution.

The extreme value density 1Iis obtalined by differentiating the
distribution 7.3 to get:

(7.9) h(x) = exp(-y - exp(-y))/a ,
(7.97) where y = (x - u)/a .

(Equation 7.9' is identical to 7.3'.) The | 'kelihood function Is the
product of the h(x)'s for the observed values of x:

(7.10) L hixCi])y .

1

v=

Typical ly, the log-likel Thood function is maxIimized,

(7.11)

N
tn(L) =3 Inth(x[1D)
i=1

The N = 10 data points x[i] of Example 7.2.1 (Table 7.1) were input to
the SIMPLEX algorithm along with formulas 7.11 and 7.9. The algorithm
searched for those values of a and u that maximized the |ikellhood for this

data set. A simplification of 7.11 is possible:

N
(7.12) | = N¥In(1/a) =) (y + exp(-y)) .
- =1
Since alil generallzed functlonal maxImization algorithms are

Iterative, +they require Inltial parameter es-Imates. The results of the

| Inear regression are reasonable 1Initlal estimates; the | ikel i hood
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maximization will tend to eliminate any biases. The results of this

maxImlzation for the example data are:

Parameter Value Standard Error

u 0.0771 0.0064
a 0.0136 0.0047

A comparison of these values wlth those obtalned from +the Ieast-squares
|Inear regression shows that the parameter values are about the same, but
the standard devlatlions estimated by the regression are too small by a
factor of almost five.

The asymptotlic correlation between the maxIimum |ikellhood estimates
for u and a 1is 0.313 (Johnson and Kotz, Chapter 21). The estimated

correijation for these parameters in this example Is 0.324.

7.4 FORMAL PROPERTIES

No attempt will be made to show the derivation of +the formulas
presented In this sectlon. Some depend upon materiai presented In severai

chapters of mathematical development in Gumbel|'s book (1958).

7.4.1 Reduced Variate

The structurai simllarity of the reduced varlate used in extreme value
work, and the standardized Gaussian or Normal variate used In many well
known appllcatlions of statlstics Is obvlious. The reduced varlate, y = (x =
u)/a given in equation 7.3', has location parameter u and scale parameter
a. A standardized normal variate Is obtalned by subtracting the mean from

a data value and then dlviding by the standard deviation, for example

(7.13) t=(x -M/SD.
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If the mean M and standard deviation SD are ottained from a sample of
extreme values, then the reduced variate y, is related to the corresponding
standardized varlate t by:

(7.14) t = SQRT(6)*(y-E)/pi ,
where E is Euler's constant 0.5772156649,
and pi = 3.1415927.... .

The mean value of a reduced variable, y, (the expected largest value) Iis
Euler's constant. Then the expected largest value In terms of the sample
extremes can be derived from equation 7.3'. Let ME signify the Mean
Extreme value and SDE denote the Standard Ceviation of Extreme values.
Then,

(7.15) ME = u + aE
(7.16) SDE = pi*a/SQRT(6) .

The mean and standard deviation of a sample of extremes can be computed,
then equations 7.16 and 7.15 can be used to estimate a and then u, the
parameters of the reduced variable.

(7.15a) 0=x - aE

o>
[}

(7.16a) s*¥SQRT(6)/pi .

The variance of these estimates based on sample moments are approximately
(Johnson and Kotz, Chapter 21)

V(@) = 1.16783%/n
V(3) = 1.18%/n .
The effeciency of these estimators, relative to the maximum |ikellhood

estimators, is about 95 percent for u and only about 55 percent for a.
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The mean and standard deviation of the sample of 10 extremes used In
Example 7.2.1 are 0.0845 and 0.0166, which yleld estimates of a = 0.0130
and u = 0.0770. These estimates are a little closer to the maximum
| ikel Thood estimates than are those derived from the least-squares equation

for this particular data set.

The return period may be estimated for large values of the reduced

variate from the asymptotic relationship:

(7.17) T(x) = exply) ,

which Gumbel | clalms to be reasonably good for y > 5.

7.4.2 Relation of Parent Distribution to Extreme Values

If the mean, m, and variance, v, of a density function are known
(smal| sample estimates will not sufflice), then an upper |Iimit on the mean

extreme value of samples of size n from that density is glven by

(7.18) ME <m+ v¥(n = 1)/SQRT(2n - 1) .,

The variance of a set of extreme values Is smal ler than the varlance
of the parent distribution. However, one should never use extremes as a
Yool 1o make inferences about parent distributions because the extremes do
not contain Information about +the central tendency of the parent
distribution. Extremes are used to make Inferences about other possible
extremes. Appendic 7-C presents an example that illustrates how much in

error conclusions can be if this warning is Ignored.

I+ 1s valid to derive inferences about extremes from a known parent
distribution. In practice, one would have a hypothesized distribution and
wish to explore the behavior of extremes under the condition +that the

hypothesis Is correct. |In general such an investigation involves difficult



THE MAGNITUDE OF EXTREME VALUES Page 7-12

algebra and asymptotic theory, and has been analytically solved for only a
few common parent distributions. If x(1) Is a sequence of independent
Identically distributed (1.1.d.) Gaussian (Normal) random variables with a
mean of m and standard deviation of s, then the maximum of n such variables

W(n), when n is large, has the fol lowing Extreme Value distribution:

(7.19) P(W(n) < z) = exp(~-exp(~(z-u(n))/a(n}))
where a(n) = s*u(n)/SQRT(2*In(n))
uin) s¥c(n) +m
c(n) SQRT(2*tIn(n)) -
(In(In(n)) + In(4%p1))/(2%SQRT(2*In(n)))

Furthermore, the expected value of W(n) is:

EV(W(n)) = u(n) + E*a(n) .

I+ may be more convenient to standardize the parent distribution
before determining +the distribution of extremes. Then the following Is
equivalent to equation 7.19. |If x(1) Is a sequence of I.1.d. standardized
Gaussian random variables (mean=0, standard deviation=1) then the max!mum

of n such varlables W(n) has the fol lowing Extreme Value distribution:

(7.20) Pla(n)*(W(n) = u(n)) £ z) = exp(-exp(-2))
where al(n) = SQRT(2*¥In(n))
u(n) = SQRT(2*In(n)) -
(In(4*p1) + In(in(n)))/(2%¥SQRT(2¥In(n))) .

7.4.,3 Sample Size

Samples from an Extreme Value distribution also have an Extreme Value
distribution with the same scale parameter. If x[1], | = 1,2,...n are n
extreme values each with mode u and scale parameter a, then MAX(x[i]) has

an Extreme Value distribution with

(7.21) mode = u + a*in(n), and
(7.211) scale parameter = a .

Equivalently, if y Is the reduced variate corresponding to the x's, then
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the reduced variate corresponding to the maximum of n x's Is

(7.22) yt* =y - In(n) .

This equation Is derlved as fol lows:

(x_=_(u + a*In(n)))
a

new reduced varlate =

- - g% - u
X_-_U_=_a*In(n) _ x - In(n)
a a

old reduced variate = In(n)

Equation 7.22 can be used to pass from one sample size of extremes to
another that Is not necessarily an integer muitiple of the original sample
size. |If the x's are extremes from samples of size m then the maximum of n
x's Is the extreme from a sample of slze m*n. On extreme value probabil Ity
plots a change In sample size appears as a shift In the |IIne to larger (or
smal ler) values of the variate, but not a change In the slope of the IIne.
This allows for the extrapolation of the magnltude of extremes to Ilarger
(or smaller) populations than the one from which the sample of extremes was
obtained. It Is important to make the distinction between +this and the
counting of exceedances, discussed In Chapters 5 and 6, as population slze
increases. (Also, both situations are distinct from the situation of
recognizing more exceedances 1Iin a flixed sample slze because measurement

methods are better.)
Suppose, from the example of maxima of weekly nitrous oxlde averages
for each of 10 years In Section 7.2.1, a prediction of a maxima for 25

years of data Is required. Using the maximum |ikellhood parameter
estimates and equations 7.21 glves

mode = 0.0769 + 0.0136%[In(2.5) = 0.0896 .

The scale parameter remalns at 0.0136. That 1s, [if 10 vyears of data
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resulted in a mode of 0.0769, then 25 years of data should give a mode of

max imum weekly values of about 0.0896.

7.4.4 Other Statistics

The median extreme value, In the scale of ‘the original varlable x, can
be calculated from

(7.23) median = u - a*In(In(2)) .

The corresponding values for the reduced extreme variate can be derived

from the equations given above. They are tabulated In Table 7.2.

IABLE 7.2
Statistics of any Reduced Extreme Yariate
Statistic Yalue
Mean Euler's Constant = 0.57722
Median -In{1n(2)) = 0.36651
Mode 0.0
Standard Deviation pi/SQRT(6) == 1,28255

Finally, a table of cumulative probabilities of the reduced Extreme
Value variate 1Is not needed because they can easily be computed on a
scientific hand calculator using the equation:

(7.24) P(y £ k) = exp(=exp(-k)) .

Two commonly used probabil ity statements are: the one-sided upper 95%
confldence Interval which has its |imit at a y value of 2.97, and the 99%
Interval at 4.60. The two - sided 95% probabil ity interval for the Extreme
Value distribution 1is =-1.3 < y < 3,7, Plus and minus two standard
deviations of a sample of extremes about thelr mean encompasses 92.6% of
the probability. For example 7.2.1, find the upper 95% limit for 25 yearly
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maxima of weekly nitrous oxide averages. Substituting the mode of 0.0896,
the scale parameter of 0.0136, and a y (reduced variate) value of 2.97 into

equation 7.3', and solving for x glives:

2.97
X

(x - 0.0896)/0.0136,
0.130 .

This says that for 25 yearly maxima of weekly averages of nitrous oxide
levels, there Is 95% confldence that the overall maxima wlll not be greater

than 0.130 parts per million,

7.5 GENERALIZED EXTREME VALUE DISTRIBUTION

On occaslon none of the three asymptotic extreme value distributions
will be applicable to a particular problem at hand. Maritz and Munro
(1967) present a General ized Extreme Value distribution which can describe
extremes of small samples as well as large ones. This distribution Is the

three parameter function:

- 1/h
(7.25) F(x) = exp [- [ﬁi’i---él] ] X

As h approaches zero this distribution approaches the Extreme Value
distribution, It Is of the Cauchy family for h less than zero, and of the

Weibull famiily for h greater than zero.

Parameter estimates can be obtained using tables given In Maritz and
Munro, or by using the general ized maximization of a |lkel ihood function,
discussed In Section 7.3, Special care Is required when computing the
| Tkel Tthood function 1f h approaches zero, in this case roundoff error will
cause severe computational problems. For some arbitrary small constant e,
which depends upon +the computer being used, a switch should be made from
the General ized Extreme Value density to the Extreme Value density whenever

the estimated value of h is smal ter than e.
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7.6 SUMMARY

This chapter contalns basic tools for working with the magnitude of
extreme values. Since the Extreme Value distribution is just another
statistical distribution |lke the Gaussian or the Student-t+ distributions,
statistical +tools |lke the mean, median, mcde, standard deviation, and
probablil ity plotting can be used. In extreme velue work emphasis Is placed
upon the mode rather than the mean, and on a scale parameter rather than
the variance. Overall, the biggest difference tetween extreme value and
the wusual statistical procedures Is 1In the way the data Is col lected;
extreme value Inference Is concerned with only & small subset of all +the
data.

This chapter started with a discussion of data plotting, an Iimportant
step In any data analysis. Then the reduced variate and the meaning of
return period were discussed. These concepts were illustrated with an air
pol lution example. Maximum |ikelihood was presented as a good way of
obtalning unblased parameter estimates. And finaily, many of the formal
properties of +the Extreme Value distribution were outlined. Beach (1975)
has an Interesting report that uses some of the statistics presented In

this chapter.
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7.8 EXERCISES

The fol lowing data sets are taken from Changery (1982). The first
exerclise Is worked, only the data Is presented for the remainder. For each
data set, estimate the location and scale parameters, make a probability

plot, and calculate the 2, 5, 10, 20, 50, 100, 200, and 500 year retfurn

period wind speeds.

7.8.1 Maximum Annual Wind Speeds for New London, Connecticut.

YEAR  MAX ﬂlNDi%Eﬂl YEAR  MAX WIND(MPH)
7

1873 1885 47
1874 4 1886 47
1875 48 1887 60
1876 59 1888 46
1877 54 1889 51
1878 59 1890 60
1879 42 1891 51
1880 42 1892 38
1881 50 1893 54
1882 42 1894 43
1883 45 1895 44
1884 53

Mean = 49,826, St.Dev = 7.89, N =23

Moment estimates of parameters
a = SD*SQRT(6)/pl1 = 7.89%0.7797 = 6.1513
U = mean -~ a*E = 49,826 - 6.1513%0.57722 = 46,2755

estimates of
The Independent regression variable Is
Y = =In(=In(m/(N+1)))

where m is the rank of the wind speed

THE REGRESSION EQUATION IS

Y = 46,1 + 7.14%Max Wind
ST. DEV. T=-RATIO =
PARAMETER ESTIMATE OF ESTM, ESTM/S.D.
u 46,0685 0.2213 208.08

a 7.1401 0.1852 38.54
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THE ST. DEV. OF Y ABOUT REGRESSION LINE IS
S = 0.9533

R-SQUARED = 98.6 PERCENT

ANALYSIS OF VARIANCE

WITH (23-2) = 21 DEGREES OF FREEDOM

DUE TO DF SS MS=SS/DF
REGRESSION 1 1350.219 1350.219
RESIDUAL 21 19.084 0.908
TOTAL 22 1369.304

MAX M/H
72.0+
63.0+
- 2
54.0+ 2
- *
- * 2
- *
- * 2
45,0+ *
- %* %*
- * 3
-
36.0+
-1.5 -0.5 0.5 1.5 2.5 3.5
Probabil ity plot
Return Period

Return period = T = 1/(1 - Prob)
then Prob = 1 - 1/T
=In{(=in(Prob))

O X X<
nun un

u + a¥Y = wind speed predicted from return period.
X calculated from moment estimates of u and a,
x calculated from regression estimates of u and a.

Page 7-20
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B.e:r_ur;nmr_l_qci Prob Y M R
.500 3665 49 49

5 .800 1.500 56 57

10 .900 2.250 60 62

20 .950 2.970 65 67

50 .980 3.902 70 74

100 .990 4,600 75 79

200 .995 5.296 79 84

500 .998 6.214 84 90

7.8.2 Maximum Annual Wind Speeds for New Haven, Connecticut.

IEABMA&W_LNMMEH.)_IEARMA&W_%MMH&

1944 38 1956
1945 37 1957 37
1946 39 1958 34
1947 41 1959 49
1948 25 1960 42
1949 33 1961 45
1950 55 1962 45
1951 40 1963 51
1952 37 1964 44
1953 35 1965 43
1954 45 1966 49
1955 42 1967 45
1968 44

7.8.3 Maximum Annual Wind Speeds for Apalachicola, Florida

YEAR MA&WJ.NQ(MB:L). YEAR  MAX WIND(MPH)
1975 1978 32

1976 26 1979 31

1977 30
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7.8.4 Maximum Annual Wind Speeds for Fort Myers, Florida

YEAR
1920
1921

1922
1923
1924
1925
1926

MA&W_E(:I)D_(.MEH)_

48
36
33
57
40
65

YEAR
1927
1928
1929
1930
1931

1932

MAXW_%J;_D_LMEM

64
61
37
39
47

7.8.5 Maximum Annual Wind Speeds for Hartford, Connecticut

YER
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

MAX WIND (MPH)
34
43
39
43
59
43
50
47
39
42
67
37
54
48
48
43
43
39
43
42

YEAR
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

MAX WIND(MPH)
47
43
43
45
55
42
39
58
44
40
46
51
54
37
46
40
46
43
54
70
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7.10 APPEND!X 7-B

Goodness of Fit Test for the Extreme Value Distribution

Whenever data are analyzed the statistical methods are based upon
several underlying assumptions that are rarely stated except in elementary
textbooks. Testing the validity of such assumptions Is rarely mentioned,
although such tests are an essential part of good statistical analysis.
That the randomness in the data may be described by some specified
statistical distribution function is an assumption common to all parametfric
statistical methods. Goodness of fit tests are used to test this +type of
assumption. The Chil Square test is the best known of these tests, however,
It should not be used with smal| sample sizes because It 1Is sensitive o
the way 1In which the data are divided into groups. The Komogorov-Smirnov
test 1s very powerful for all sample sizes. However it requires known or
hypothesized values rather than estimates for the distribution parameters.
The Shapiro-Wilk test Is most universally applicable. However, it suffers
somewhat from not yet being avallable In elementary textbooks, being rather
tedlous to compute, and having references that are difficuit 1o obtain
since they are now over 10 years old. Confidence bands for the extreme
value distribution, which serve a similar statistical function as goodness
of fit tests, are described by Cheng and lles (1983),

Another goodness-of-fit test, asymptotically equivalent +to the
Shapiro=Wilk test, has been independently proposed by Fillilben (1975) and
by Ryan et. al. (1980). This test is the Correlation Coefficient Goodness
of Fit+ Test. Its main advantage Is that it Is easy to compute, and its
main disadvantage is that I+ requires special probability tables. Such
tables have only been published for testing goodness of fit to the Gaussian
(Normal ) distribution. Table 7.B.1 Is a new probability table for +testing
goodness of fit ‘o an exponential type Extreme Value distribution. The

papers by Filliben and by Ryan should be consulted for the +theoretical
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background of such correlation tests and +thelr relationship to other

goodness of fit tests.

The correlation coefficlent goodness-of-1it +test 1Is performed by
computing the Pearson product-moment correlation coefficient between data
values and the corresponding expected values of a reduced variate, computed
from equations 7.5 and 7.6; these expected values are called 'scores'.
The hypothesis of a good fit Is then evaluated ty comparing the computed
correlation with an appropriate table of critical vaiues. Some may ob ject
to calling the computed value a correlation coefflcient because the scores
are not random variables. The word correlation In this test Is used to
describe the computational procedure, not the c=tatistical characteristics
of the numbers used In the computation. |+ must be emphasized that none of
the test statistics applicable to true correlation coefficients, such as a

test for no correlation, are applicable to +these goodness-of-fit
correlations.,

Table 7.B.1 was derived from Monte Carlo simulations using a standard
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Cheng, R. C. H., and lles, T. C., 1983, 'Confidence Bands for Cumulative
Distribution Functions of Continuous Random Varifables', Jechnomeirics,
Vol. 25, No. 1, pp 77 - 86.

Jable 7.B.1
Approximate Critical Values, Correlation Coefficient
Goodness of Fit Test to an Exponential Type
Extreme Value Distribution

Lower Tall Area
n .01 .05 .10
5 .815 .872 .898
10 .854 .904 925
15 R74 Q21 - Q3Q



THE MAGNITUDE OF EXTREME VALUES Page 7-26

Is less than a one percent chance that the data have an Extreme Value
distribution. Also for a sample size of 5, a correlation of 0.840 means
that there Is between a one percent and a flve percent chance that the data

have an Extreme Value distribution.

Detalls of Performing the Test

The n extreme data values of a sample are ranked from 1 to n (smallest
to largest). Let | denote the rank assocliated with data point x(1). I+ts
corresponding score Is the corresponding standard reduced Extreme Value

distribution value:
y(1) = =In(=In(1/(n+1))) .

A plot of x(1) versus y(1) Is the Extreme Value probability plot discussed
In section 7.2, The Pearson product-moment correlation coefflicient between
x(1) and y(1), 1T = 1,2,...n, 1Is computed. The goodness-of-fit to an
exponential +type Extreme value distribution Is evaluated by comparing this

computed correlation to the critical values given in Table 7.B.1.

References 1o Appendix B

Filllben, J. J., 1975, 'The Probablility Plot Correlation Coefficient Test
for Normality', Iechnometrics, Vol. 17, No. 1, pp 111 = 117,

Ryan, T. A., Jolner B. L., and Ryan, B. L., 1980, Minltab Reference Manual,
Statistics Dept., Pennsylvania State U., (section [1.7),
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Cheng, R, C. H,, and lles, T. C., 1983, 'Conflidence Bands

Distribution Functions of Continuous Random Variables!', Iechnomeirics,

Vol. 25, No. 1, pp 77 - 86.

Table 7.B.1

Approximate Critical Values, Correla-ion Coefficlent
Goodness of FI+ Test to an Exponential Type

Extreme Value Distribution

Lower Tall Area

100
200

.01 .05 .10
.815 872 .898
.854 .904 «925
.874 921 .939
.888 931 .948
.898 «939 .954
«906 «946 «959
.918 .953 +965
«927 959 970
.933 «963 973
.939 967 976
.943 969 .978
.947 972 .980
+951 974 .981
.970 .983 .988

for
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7.11 APPENDIX 7-C

Extremes and Population Inference

The reason for not making Inferences about a‘ parent population from
extreme values Is illustrated in the fol lowing exampie from Galambos (1978,
page 90). The level of mathematics required to follow the computations
presented here 1Is higher than +that required for the regular chapter

material, however the conclusions are easy to appreclate.

If X Is a lognormal ly distributed random variable (that is, In(x) has
a standard Gaussian distribution), then the distribution of the function

e
(7.21) y = ’i-é:-l

converges to a standard Gaussian distribution as e approaches zero. For
smail values of e it will, for practical purposes, be Impossible to
distingulsh between samples from the distribution of Y and from a standard

Gausstian distribution.

Suppose an experimenter collects a sample of size 50 from the
disrtibution of Y with e=0.1. A goodness of fit test Is performed and
accepts the hypothesis that the parent distribution Is Gaussian. Find the
probabl| Ity that the maximum of the sample has a value less than 2.6.

When It is (Incorrectly) assumed that the parent distribution Iis
Gaussian, Equation 7.20 glves the probabillty for any given value of an
arbitrary value z. For n=50, a(50)=2,797, and u(20=2,.101, then

P(2.,797%(w = 2,101) £ z) = exp(=-exp(-2)) .

This may be converted algebraically to
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(7.22) P(x < 0.3575%z + 2.101) = exp(-exp(~2)) .

Since the problem calls for P(w < 2.6), solve for z in

2.6 = 0.3575%z + 2.101

which glves z=1,396. The deslired probability 15 then exp(-exp(-1.396))
0.78. In words, If the data are really from a standard Gaussian
distribution, then there Is a 78 percent chance that the largest of a

sample of 50 values will be less than 2.6.

But the data is not from a Gausslan distribution, rather it is from a
distribution that 1Is indistinguishable from a Gaussian. The correct
probabil ity is obtalned by starting with the normallzing formula for +the
lognormal distribution and working +through the transform Equation 7.21.

Let u'=exp(u(n)) and a'=u'/a(n). Then the equation equivalent to 7.22 Is
P(w < u' + a'¥*z) = exp(-exp(-z)) .

For n=50, u'=8.174 and a'=2.922.Let w' be the lognormal equivalent of the w
used above for the Gaussian distributlon. The value of w! Is obtained by

replacing y in Equation 7.21 with w and x with w'. Since e=0.1,
w=10w"" - 10 .

An equivalent to 7.22 Is
Plw < 10w * ] = 10) = expl-exp(-2)} .

Since P(w £ 2.6) Is required, solve for z In

1 .

2.6 = 10(8.174 + 2.922*z)* " - 10 ,

which gives z=0.6544. Then exp(-exp(-0.6544):=0.59, Thus, assuming a
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Gaussian distribution rather than a look allke transformed lognormal
distribution, causes an error of about 0.2 (0.78 - 0.59) 1In probability
when computing +the probability that the largest value of a sample of slze
50 will be less than 2.6.

This example shows how sensitive the extremes are to subtle changes In
the parent distribution. The converse Is that Inferences about the parent
population wiil also be very sensitive to subtle differences In the shape
of the talls of the distribution.






CHAPTER 8
EXTREMES OF DATA CONTAINING TRENDS

8.1 INTRODUCTION

In Chapter 7 the 'classic' extreme value sltuation was presented, In
which all samples are ldentically and Independently distributed. Such a
situation rarely describes any real data set. One must deal with lack of
Independence between observations, measurement errors, and many other
practical aspects of data col lection and analysis. This chapter considers
some methods for handling the most common cause of lack of independence:

correlations caused by time trends in the data.

The Extreme Value distribution is robust against correlations within a
data set. Berman (1964) has shown that extreme value theory can be applied

to stationary autocorrelated Gausslan sequences provided that:

[e -]

S rlca
i=1

where r(1) is the autocorrelation of order I. Autocorrelations can be
computed and examined to see if +they satisfy Berman's condition. For
example, suppose some autocorreiatlions are examined and

r2 < 172" .

Ms
——
~
N

[[]
.
[an ]
-

Since
1=1

these autocorrelations satlisfy Berman's conditlon and the data may analyzed

relying upon the robustness of extreme value procedures. In general, If a

plot of the autocorrelation function Indicates signiflcant autocorrelation
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for only a finite number of lags, then “this condition Is satisfled.
Berman's result applies only to the form of the |lImiting distribution
(Extreme Value distribution from a Gaussian sequence). The possibillty
that autocorrelations might result in biased parameter estimates 1is not
addressed 1In his work. Berman's condition Is in general not satisfied if
there are periodicities in the data (sine or cosine functions describing
the +trend) since there would be Infinite values of i for which of r(i) is

significantly different from zero.

If the autocorrelations of all orders are high, the varlance of an
average (square of the standard error) can actually Increase as sample size
Increases. If V is the varianve of a single reading, then the variance of

the average of n readings Is

Vn] = '\El'” + (n=1)%F*n)

where r Is the average autocorre atlon
between the n data values.
When the average autocorrelation is zero this equation simplifies to the
familiar equation for standard error. When the average autocorrelation Is
1/n the varlance of an average of n samples Is —~he same as the varlanve of
a single sample. For average autocorrelations |arger than 1/n the variance
of the mean Increases with increasing n., 1f Berman's condition holds, the
average autocorrelation is zero since the sum of an infinite number of
autocorrelations squarred must be a constant less than Infinity. Gardenier
(1982) shows that the expected number of exceedances Is also signiflicantly
Increased by autocorrelations, thus trends must also be considered when

using the statistics presented in Chapters 4, 5, and 6.

As a general rule of statistical analysis, one should remove all +the
correlations that can be found. The +tools of ordinary statistlics for
removing correlations In data can also be used with extreme value data.

The most common of these tools Is data transformation. When multivariate
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data Is being analyzed, rotatlons of axes are offen used to galn
Independence. Principal Components and Factor Analysis are typlcal iy used
for such rotations. These procedures have the added advantage of reducing
the dimension of +the multivarlate problem. Often, only one Component or
Factor Is used In order to reduce the multivarlate problem to a univarlate

problem. A later chapter will discuss multivarlate extreme values.

Clearly, the maxImum of a stationary contlinuous random process Is at
least as large as the maximum of any sampled values. |t Is Important to
know if these two maxIima can be significantly different in magnitude, or if
the sample data has a distribution of extremes different from that of the
continuous maximum. Leadbetter (1977) found that, under very weak
regularity conditlons (which are typlically satisfied In any practical data
analysis), the distribution of extremes of a continuous process and sample
extremes from such a process obey the same extreme value |aw and may be

treated as independent samples.

Intuitively a finely spaced sampling scheme upon a continuous
stationary random process should guarantee approximate equality of the
continuous and sample maxIma. |f samples are independent rather than from
a stationary process, then there are many (however small) intervals between
samples In which values above the sampled maxima are possible. Even though
such high values in any one Interval are very unllkely, the large number of
such intervals can lead to significant differences between the extremes of
the sampies and the phenomena belng sampied. On the other hand, If a
continuous statlonary random process Is belng sampled, 1t fol lows that for
sufficlently fine sampling (intervals, there will be |ittie difference
between the maximum of the samples and the maximum of the phenomena because
the sample values must be locally highly correlated. The underlying random
process may be envisioned as a high frequency fllter which removes most of
the variabillity between sampling times. Alr pollutant levels are filtered
by diffusion and mixing time processes. The robustness of +the extreme

value distribution Is due to +the local correlations caused by these
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continuous stationary random processes. When a trend is Introduced,
correlations also occur because the underlying phenomena becomes a
nonstationary random process. This chapter discusses some of the special
problems that occur when a nonstationary process Is decomposed into a
stationary process and a trend before the data Is analyzed for extreme

val ues.

8.2 REMOVING TRENDS BEFORE ANALYSIS

The first step in a data analysis is to examine the data for the
existance of potential +trends. This Is wusually done using graphlc
techniques. Typically a smoothing algorithm Is used to mask the vlisual
effects of randomness in the data. |f no tirends are apparent, then the
techniques of Chapter 7 are Immediately applicable. The most direct way of
handling an obvious +trend Is to subtract It out of the data and then use
the techniques of Chapter 7 on the residuals. This Is equivalent to an
extension of the extreme value distribution so that the mode is a function
of sampling time. The reduced varlate of formuia 7.3 would then be written
y = (x(+) = u(t))/a Indicating that the observed values x and the location

parameter u are both functions of sampling time.

Often the mode u is assumed to be a polynomial function over time such
as

(8.1) u(t) = a + bt + ct? .

Environmental work Is often concerned with repe—itive yearly cycles which

are typically modeled with a harmonic (trigonometric) series,
(8.2) u(t) = a + b¥sin(ct - d) + e¥sin(2ct - d) + ....
For short iIntervals of a cyclic trend, such as dally maximum one hour

average ozone concentrations over a single year, most authors prefer a

quadratic polynomial rather than a harmonic function. One could combine

4
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equations 8.1 and 8.2 to get a mixture of the two kinds of trends.

To accomp!lish removal of trend, standard regression procedures are
used on the data before the analysis for extreme value parameters. The
trend Is then subtracted out of the data. Finally, the extreme value
analysis 1Is done. For example, suppose 50 years of flood (peak flow) data
are avallable from a local stream. The flow 1Is suspected to have been
decreasing because of diversion of water for urban use. The first step in
this data analysis 1Is to plot the yearly floods versus year on
| Inear-|1near graph paper. On such a plot, the data may seem to show a
| Inear decline. Then a straight Iine would be fit fo the data and this

ITne gives estimates of u(t).

Such a Ilnear regression model cannot be used for u(t) because u(t) is
the mode of +the extreme data and least squares procedures estimate the
mean. However, a |lnear (mean) trend can be subtracted from the data +to
el Iminate the correlations Induced by the frend. Then the extreme value
analysis described in Chapter 7 can be performed. The resulting value
computed for u will be the difference between the mode and the mean and Is
constant over time [f the trend has been removed. Section 7.4.4 shows that
the magnitude of the difference between the mean and mode shouid equal
Euler's constant times the scale parameter (except for the effects of

random error),

Trends based upon measures other than +time should be considered.
Suppose a plot of the flood data shows some rather sharp declines, with
level Intervals between the declines. This would be difficult to fit to a
polynomial. However +the sharp dec!ines might correspond to the startup
times of new Industries in the area. A plot of floods versus population
size would then show a llinear trend, and population size would be a more

meaningful measure of trend.
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Another methodology for describing trend that is becoming increasingly
more popular is to use an tautoregressive process'. |In Its simplest form,
autoregression describes the current data value as a functlon of the

previous value(s) plus an Independent random error:

(8.3) x(t) = a*x(+-1) + error .

The reader Is referred to the many +texts on autoregression and moving
averages for a detalled explanation (e.g. Box and Jenkins (1976), and
Nelson (1973)).

Autoregressive theory ylelds algorithms for estimating +he parameter
a, and the magnitude of the error In equation 8.3. Of course, much more
compl icated forms than 8.3 .are typically used for real data analyses. Thlis
theory also yields 'filters! for removing the “rend from an autoregressive

process.

A simple method for removing trends In extreme value data Is to select
out that portion of the data in which the extremes are expected to occur.
For example, If annual high temperatures are of interest, one would collect
data only during summer months to remove seasonal! variabillty from the
data. The 'cost! of this method Is a smalier sample size from which to
choose the extreme. There is also some chance that the true annual maxima
will occur outside the chosen sampling perliod. The advantage of +thlis
method 1s 1Its simpilclity, It requires no mathematical description of the

trend, and untrained persons can perform such an analysls.

8.3 INCLUDING TREND IN THE DATA ANALYSIS

When trend is removed from the data a subtle problem Is created: the
observed maxima are then the extreme devlations from the trend rather than
the extremes over time. This may or may not be the variable of interest.

For example, weekly maxima of one hour ozone concentrations are usually
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assumed to have a lognormal distribution and also have a harmonic +trend
peaking in the late summer (Larsen, 1969). To remove trend from such data,
one would regress a perlodic function (sines and cosines of multiples of
the time varlable) on the logarithms of the data. When this periodic
function Is subtracted from the data a sequence of Identicaliy distributed
extreme values result. The maxima of these detrended sample values might
wel !l occur In the middle of the winter, even though the annual maxima of

ozone concentrationsoccurs in the summer.

The detrended sample values are studied to test the adequacy of the
underlying assumptions of +the statistical procedures, but the numbers of
practical significance usually include the trend. The rest of this section
presents a technique due to Horowitz (1980) which simultaneously treats the

trend and the maximum values,

Let x(+), t=1,2,...n, be a sequence of samples from a continuous

random process of the form

(8.4) x(+) = f(+) + e(t)

where:

1) f(+) Is a bounded deterministic function

2) the sequence e(t) Is a Gaussian stationary

process satisfying:
a) E(e(t+)) =0 for all +
b) E(e(t)*e(+)) = v = variance, a constant
c) E(e(t)*e(++k))/v = r(k)
for all t+ and k > 1

wu

Drk? <o
k=1

E( ) Is the statistical expectation function. In equation 8.4 the x(t) can
elther be +the data or a transformation of the data, such as the logarithm
of air pollutant concentrations mentioned previously. The assumption +that
the e(t) have a Gaussian distribution may seem to defeat the purposes since
most of the data of Interest are extremes from a Gaussian distribution

rather +than data from a Gaussian., Typicall variables of interest are such
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things as how annual floods change over the years, how weekly maxima of one
hour ozone averages change over the year, and so on. River depths and
ozone averages (or their logarithms) have approximately a Gaussian
distribution, +thus thelr maxima have an Extreme Value distribution,
Leadbetter (1977, theorem 4.1) shows that an Extreme Value result that
holds for a parent distribution also holds for sample extremes from that
distribution. Leadbetter's theorem is an important addition to Horowitz's
work since It allows the same statistical analysis techniques to be applied

to samples and to extremes of samples.
Define z(n) to be the maximum of n observations,
(8.5) z{n) = max(x(1),x(2),...x(n)) .

Then Horowltz shows that an asymptotic approximation for the probability
distribution of z{(n) that is valid for large n "s given by:

(8.6) P(z(n) £ Z) = exp(-exp(-(Z-b(n))/a(n))) ,
where: :
(8.7) d(n) = SQRT(2¥In(n))
s = SQRT(v)
a(n) = s*b(n)/d(n)
b(n) = s*c(n) + g(n) @

c(n) = d(n) = (In(In(n))+in(4%pl))/(2%d(n))
g(n) = h{n)/d(n)

n
h(n) = =In(n)+In( ) exp(d(n)*f(+)/s)) .

=1

@ The formula for b(n) given by Horowitz  (1980) Includes an
exponentiation which is omitted here. Horowitz restricts his derivation to
the distribution of the natural logarithm of the data rather than the data
values. Study of similar work by Leadbetter (1977, section I1), Epstein
(1960, pp 39 - 40), and Singpurwal la (1972, Appendix) indicates that +the
formula for b(n) can be used without exponentiation to anal ize data.
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Some algebra shows that equations 8.7 are identical to equations 7.19
if f(+) 1Is a constant. The key difference between +the Independent
Identically distributed samples of equations 7.19 and the samples from a
nonstationary random process of equations 8.7 1Is the term h(n), which
itself Includes a term that is a summation over the expected values of the
data, f(t). The expected value of z(n) 1is b(n) + E*a(n), where E is

Euler's constant.

8.3.1 Example, Trend in Annual Floods.

Twenty years of flood data were simulated by creating a sample from an
Extreme Value distribution, applying an autoregressive process to the
sample, and finally adding a |Inear trend. This data Is plotted In Figure
8.1 and |isted In Tabie 8.1.

Tablie 8.1
Annual Floods versus Years
TIME DATA ' TIME DATA
1 26.3717 1 22.0139
2 20.8157 12 20,1129
3 20.4614 13 20.3941
4 20.7928 14 18.8047
5 20.4814 15 19.5%8
6 27.9141 16 18.5526
7 26.1495 17 21.0049
8 19,3770 18 20.6239
9 23.3212 19 17 .3935
10 19,5338 20 16.0694



EXTREMES OF DATA CONTAINING TRENDS Page 8-10

DATA
30.0+
- *
27.0+
- * *
24.0+
- *
- .).
21.0+ * * *
- * * *  * *
- * *
- *
- * *
18.0+
- *
- *
15.0+
+ = +=- = +T I ME
0.0 4.0 8.0 12.0 16.0 20.0
Flgure 8.1

Annual Floods versus Years

A sample of size 20 Is much smaller than ary real data set, and too
smal |l to real ly test for significance of statistical trend processes within
the data. Such a small sample is used here to zllow the reader to easily
repeat the computations.

Figure 8.1 suggests that a iinear, and possibly a quadratic, function
might describe the +tfrend. These regressions were done, and compared to
each other and also to a no trend model (zero slope) using the General

Linear Hypothesis to test for significant differences between trend models.
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These tests showed that a |inear trend is significantly better than the no
trend model (confidence = 99.5%) and that -a quadratic model is not
significantly better than the |inear (confidence = 50%). The estimated

i Inear frend model Is:
DATA = 24,13 = 0,299%TIME
The R~squared value for this regression Is 35.8%.

A time series analysis of the residuals (MINITAB ARIMA command)
indicated no significant autoregressive pattern. Thus, one can conclude

that the data show a |inear trend with independent random errors.

Next the residuals from the regression are analyzed to determine Iif
they can be described by an Extreme Value distribution. Figure 8.2 is an
Extreme Value probabil ity plot of these residuals. This type of plot was
discussed in section 7.3. The residuals appear to be close to a straight

i Ine.

Applying the correlation test for goodness-of-fit+ discussed In
Appendix 7-B yields a correlation of 0.990. This value falls close to the
90th percentile of the distribution of correlations for sample size 20,
Indicating a good fit. A correlation test for goodness of fit was also
done for the Gaussian distribution (Ryan et. al., 1980, section 11.7),
giving a correlation of 0.963 which falls at about the 10th percentile of
the corresponding distribution. Thus one may conclude that the residuals
from the Iinear tfrend model can be described by either an Extreme Value
distribution or a Gaussian distribution. The Extreme Value distribution is
a slightly better fit.
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REGRESSION RESIDUALS (STANDARDIZED)

3.0+
- x
2.0+
- *
- *
1.0+
- * %
- *
0.0+ *%
- *
- * X%
- *
-1.0+ * XX ®
- * *
-2.0+
+ += = + += +SCORE
-2.0 -1.0 0.0 1.0 2.0 3.0
Figure 8.2

Extreme Value Probabi| ity Plot of
Linear Regression Residuals

If the trend Information were ignored when computing the parameters of
the Extreme Value distribution of floods equations 7.19 would be used, with
the overal | mean and variance of flood data, to compute the distribution of

the maximum over 20 years. The description of the flood data is:

sample size = n = 20
mean = 20.989
standard deviation = 2.96
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ApplyIng equations 7.19 ylelds:

cln) = 1.707
u(n) = 26.02465
a(n) = 31.471

These results show that, for the flood data, the mode of the extremes of 20
observations Is just over 26, which is reasonably close to the observed
maximum of 28. The value of the scale factor a(n) relative to u(n) suggest
that there Is a great deal of uncertalnty In any estImate derlved from this
data. Applying equations 7.15 and 7.16 yields a mean of 44.19 and a
standard devliation of 40.36, which along with u(n) and a(n) shows a
long-talled distribution over the high values. The mean (44.19) s
approximately twlce the mode (18.17, computed from Equation 7.15).

When the trend is included in the analysis, equations 8.7 are used
rather than 7.19. Separating the computations into parts gives:

n=20
d(n) = SQRT(2*¥In(20)) = 2,44775
f(+) = expected value at time t+ from the |inear regression
= 24,13 = 0,2995%+
s = square root of |inear regression mean-square=error

2.436

n
D exp(d(n)*f(+)/s) = 7.8566E10
=1

h(n) = =In(20) + In(7.8566E10) = 22.091473
g(n) = h(n)/d(n) = 9.0252

c(n) = d(n) - 3.6282129/(2%d(n)) = 1.70655
uln) = 2,436(c(n) + g(n)) = 26.1425

a(n) = 26.017 .

The mean and standard deviation computed from equations 7.15 and 7.16
after adjustment for the trend are 45.8 and 33.4, respectlively. Thus, In
this example, adjusting for the trend gives essentlal ly the same mode and
mean as without adjustment, but using the ftrend reduces the scale factor

and standard deviation. With large sampie sizes one would expect
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(Horowitz, 1980) that excluding trend Information would cause a substantial
overestimation of the magnitude of extremes. Tris occurs because without
the trend removed the estimate of e(t) Is Inflated by the effect of the
trend. In analysis of variance terminology, this is combining the between
time period effects with the within time periods effects.

The reduced spread produced by using trend information will resuit in
a substantlially smaller upper confidence |imit on the expected extreme
values. The relatlions given In section 7.4.4 are used to calculate the
upper 95% confidence Iimit for these floods. Accounting for the trend
gives a limit of 103, while Ignoring it gives a confidence Iimit of 119.
If a flood control project were being designed, the upper 95% confidence
I Tmit is a reasonable design criteria. A 16 foot difference in flood fevel

Is of substantial economic Importance when engireering for flood control.

8.4 OTHER CONSIDERATIONS

Equations 8.4 to 8.7 offer an efficient way to obtaln estimated maxima
over long duration cyclic +trends. Suppose one wishes to estimate the
distribution of maximum annual pol lutant concentrations, assuming there Is
no trend other than the annual seasonal cycles. One way to find such a
distribution would be to collect data for many years, select out the maxima
from each vyears data, and apply the +tfechniques given 1In Chapter 7.
Equations 8.4 to 8.7 can achieve the same goal with only one years data.

Another Interesting application of these fcrmulas is to explore +the
effects of various hypothetical trends upon a (known) stationary process.
Environmental ists often predict the changes that would be expected If a new
Industry came Into a reglion, or If a cleanup strategy is Implemented.
These predictions are usual ly estimated changes in average values. Such
estimated means could be added to f(t+) in equations 8.4 to 8.7 in order to

predict the accompanying changes In the extremes.
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8.5 SUMMARY

The commonly used procedure for estimating the Extreme Value
distribution of a sequence of measurements implicitly assumes the samples
are from a stationary random process. Ignoring trends results 1in an
overestimate the magnitude of the extremes and thelr assoclated statistics.
This chapter presents procedures for Including such +tfrends within the
parameter estimation algori+hm.
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CHAPTER 9
PARAMETER ESTIMATION

9.1 INTRODUCTION

In Chapter 7 +three ways of estimating the location and scale
parameters of the Extreme Value distribution are given: 1) by llnear
regression on the cumulative probability plot, 2) by transformation of the
extreme's sample mean and variance (method of moments), and 3) by maxImum
iikel Thood. The discussion in that chapter concludes that the maxImum
likel Thood estimates are +the best, but are difficult to compute.
Transformation of the mean and varlance Is computationally easy and gives
values close to +the maximum |ikel thood estimates, but is inefficlent for
the scale parameter estimate. This method is preferred when simplicity s
desired. The regression estimates have good logical and Intuitive basls,
but are biased. All the above parameter estimating methods require the raw

data values and no missing vaiues.

There are many speclal cases In which addltional parameter estimation
methods are desirable. There may be so much data that it is not practical
to use 1t all In computations. This could occur if one were analyzing the
data on a small computer with |imited memory. Data is sometimes col lected
In such a way that it Is censored. |In this chapter a method that uses
censored samples and a method using Information about quantliles of the data
are presented. These are arbitrary selectlions from many estimation methods
available In the literature. Along with these selected methods, it will be
shown how Gumbel's regression method can be used to solve, In a crude but

easily-computed way, the same problems.
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9.2 ESTIMATING PARAMETERS FROM LARGEST OBSERVATIONS

There 1s a wealth of recent |Iiterature describing estimation
techniques for censored samples. Most of these methods are associated with
the Weibull distribution and with |1fe testing of mechanical systems or of
consumer products. These methods can be adapted to the Extreme Value
distribution through the logarithmic relationship between Extreme Value
variables and Welbull varlables discussed in Section 3.4. A transform of
data values and an Inverse transform of parameter values often Introduces
statistical bias. A prominent feature of most Weibul |l distribution methods
is that they require special tables of coefficients. The method presented
In this section Is less efficient than the Welbul I-type methods, but 1t

requires no tabies and is simple enough for hanc computation.

Suppose the 10 maximum yearly ozone concentrations from the 50 largest
urban areas of the United States are avallable, and Inferences about the
yearly maxIma over all 50 areas are desired. Formula 7.21 can be used +to
make Inferences about larger sample sizes from a given data set. However,
this formula Is not applicable to this urban area problem because It
assumes the data available Is a random subset of all possible data values.
For this example, the data reported is not random, The 10 largest values

must be analyzed using methods derived from the theory of order statistics.

9.2.1 Regression Estimators.

The simplest method for estimating the location and scale parameters
from a censored subset of the data Is to use Gumbel's regression technique
discussed In Section 7.3, but use only those values of the regressor,
i/(n+1), for which data are avallable. For the urban areas example, let
the 10  known values, ranked from largest to smallest, be
x(1),x(2),...x(10),  These would be plotted and regressed on the predictor
variables y(1),...y(10) where the y's are the extreme value scores glven in
formulas 7.5 and 7.6, y(i) = =In(=In(i/(n+1))). Here, n = 50 and | ranges
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from 41 to 50. The difference between this regression and the method
presented In Section 7.3 Is that In Chapter 7, | ranges from 1 to n. The
Intercept and slope from the regression are estimates of the location and
scale parameters, respectively. (The reason for reversing the usual roles

of the x's and y's was discussed in Section 7.2.)

This regression technique can be used for any kind of censoring or any
pattern of missing data if the total sample size is known and 1f the known
values can be assigned ranks within the total sample. One chooses the
values of 1 to be the ranks associated with the known data values. Perhaps
instead of the 10 highest yearly ozone maximum values of 50 urban areas,
the 5 highest and 5 lowest were given. Values of | equal to 1 to 5 and 46
to 50 would be used. This regression method Is the oniy one available that
can be generally applied in censored and missing data values situations.
One should be especially aware +that missing data values can introduce
substantial bias 1into the estimates calcuiated by regression programs,
particularly into the estimated standard deviations of +the parameter

values.

9.2.2 Minimum Vartance Unbiased Estimates.

For the case In which the k largest data values from an extreme value
sample are known, Weissman (1978) gives formulas for maximum |ikel ihood
estimates and minimum variance unbiased estimates of the location parameter
a and scale parameter b. Let x(1),x(2),...x(k) be the ordered (largest to
smal lest) k |largest values from a sampie of size n. Let m(k) be the mean

of these k values, and define:

k=1 _,
(9.1 S(k) =3 ]
J=1

2 k-l
(9.2) Vik) = B - _‘21]'2
J:

where pi = 3.14159,..
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Maximum [ tkel Thood estimates of the Extreme Vezlue distribution location

parameter a and scale parameter b are:

(9.3) a = b*In(k) + x(k)

o>
]

(9.4) m(k) - x(k) .

Equation 9.3 is identical to equation 7.21, except for a change in the
meaning of the letters denoting the statistical quantities. let E
represent Euler's constant (0.57721...). Minimum varlance unbiased

estimates are:

(9.5) 3 = b*(S(k) = E) + x(k)

(9.6) b = m(k=1) - x(k)
and the corresponding variances are:

(9.7) V(E) = BX((S(k) = EDZ/(k=1) + V(K))

i

(9.8) V(b) = B/(k=-1) .

These equations seem to emphasize the kih data point over all other values.
(Points k+1 to n are unknown.) This Importance Is apparent rather than
real, because the actual value used for x(k) Is unknown unti] all the data
are col lected and ranked. Thus, x(k) is a random varlable conditioned upon

all other data values.

9.3 ESTIMATING PARAMETERS FROM SAMPLE QUANTILES

Large data sets are often recorded as frequencies that occur within
groups or Intervals of measurement values. This data summarizing reduces
the volume of data, but It doesn't allow appl ication of statistical methods
that use raw data values. Such grouping of data can be handled by
likel ihood maximization methods. General ized |ikellhood maximization
techniques (algorithms such as Simplex, which is discussed In section
7.3.1) are easy to adapt to grouped data and to the Extreme Value

distribution. The |ikel Thood function to be maximized I1s:
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n(i)

(9.9) L =TT p(i)

1

=

where
k = number of groups of data,
n(i) = number of observations in the ith class, and

x(1)
pH)=j}uMz=FuH))-FuH4)) .

x(1=-1)

For the Extreme Value distribution, F(x) is given by equations 7.3; F(x) =
H(x) = exp(=exp(-y)) with y = (x - u)/a. The scale parameter a, should be
relatively large compared to the length of the intervals, x(i) - x(i-1).
This condition 1Is also satisfied If the standard deviation of the x's Is
large compared to Interval length. Computationally, it 1Is convenient to
maxIimize the logari+hm of the |ikellhood function:

k
In(L) =) n(D)*in(p(1)) .
i=1

Gumbel 's method of regression can also be used with grouped data to
estimate the location and scale parameters. The extreme value scores used
as the predictor variable are calculated by replacing the term 1/(n+1) with
the value of the quantiles. For example, suppose that In a large number of
dally maxima of hourly nltrous oxide measurements, 75% of the values are
less than 0.1 part per million. The data polnt used for the Gumbel
regression would be 0.1 for the x component and =In(~In(.75)) for the vy
component. The estimates of varlances of the parameters produced by most
regression programs are Invalld In +this situation because they do not
correctly account for the degrees of freedom. They typlcally assume each
data point represents only one observation. Also, the correlation
coefficient goodness of fit test given In Appendix 7-B Is not appllcable
because it Is not based on grouped data. Grouping smooths +he data and
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produces correlations that are biased towards high values. The estimators
for the locatlon and scale parameters using Gumbel's regression technique
on grouped data are simple enough to calculate on most programmable hand
calculators. Also, elementary statistics textbooks glve formulas for
calculating the mean and standard deviation from grouped data. These, with
formulas 7.15a and 7.16a, can be used to estimate the Extreme Value
location and scale parameters from grouped data. The efflclency and bias
in such methods have not been studied, +thus, such methods cannot be

recommended unless computational simplicity is essentlal.

Publ ished techniques for evaluating the Extreme Value distribution
with grouped data require special tables of coefficients. The method of
Hassanein (1972) s the germ of many subsequent papers on grouped data
parameter estimation. The papers published since Hassaneln are primarily
devoted to the analysis of the Weibull distribution and to eliminating
blases. Some of these are discussed in Chapter 12.

Hassanein proposes +that +the Extreme Value location and scale
parameters be estimated by Ilnear combinations of order statistics. He
chose the particular order statistics that maximize the relative efficlency
of the estimates, and tabulates the coefficients needed to form these
| Inear combinations. The user selects the number of order statistics used
In the estimation. Hassanein's results are asymptotic. Mann and Fertig
(1977) give blas corrections to Hassanein's equations for smali to moderate
sample slzes.

Quantile estimators reduce the computational burden by making use of
selected observations. Assume a large ordered sample of size N is taken
from data following the Extreme Value distribution, Let x(N,1),
x(N,2),...x(N,k) be the k sample quantiles to be used In forming estimates
of the locatlion parameter u, and the scale parameter a. Let (N,I) =
[N*p(D)+1], 1 = 1,2,...k, where [z] denotes the largest integer not
exceeding z. Assume the data is ordered from smallest to largest, so that
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x{(1) Is +the smallest extreme, x(2) is the second smal lest, and so on.
(This ordering is opposite from the ordering used for making probability
plots of extreme values.) Hassaneln gives optimum choices of p(i) and the
corresponding coefficients for the I!linear combinations. He also gives
factors to be wused In computing variances of the estimators. Tables of
these factors and coefficients are given In Appendix 9-A. The estimators

are |linear combinations of the form:

(9.10) U= c(*y[N*p(1)+1]

k
(9.11) a =) dh*y[Np(D+1] .

The values of c(1), d(i), and p(i) are tabulated In Appendix 9~-A for k = 1
to 7.

Hassanein also gives multipllers for determining the varlances and
covariances of the location and scale parameters. These are given In
Appendix 9-A as E(1), E(2), and E(3), where:

a2
(9.12) V(o) = -ﬁ- *E(D)
n 32
(9.13) V(a) = N * E(2) , and
52
(9.14) Cov(d,a) = - - *EG .

9.3.1 Numerical Example.

Hassanein's equations are used to analyze the maximum radium
concentrations, In plcocuries per |iter, for 485 drinking water wells. The
data is summarized In Table 9.1. (The notation [0.2,0.4) means that the
data group Inciudes values from 0.2 picocuries up to but not including 0.4

plcocurles per |liter.)
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Table 9.1
Maximum Radium Levels In Drinking Wa—er Wells (pCi/l)

Radlum Concentration E:3Qﬁeng¥ Cunulative Ecequensx

[0.2,0.4)

[0.4,0.6) 1 15
[0.6,0.8) 27 42
(0.8,1.0) 48 90
£1.0,1.2) 62 152
[1.2,1.4) 58 210
[1.4,1.6) 55 265
[1.6,1.8) 60 325
[1.8,2.0) 61 386
[2.0,2.2) 36 422
[2.2,2.4) 17 439
[2.4,2.6) 18 457
[2.6,2.8) 8 465
[2.8,3.0) 7 472
[3.0,3.2) 6 478
[3.2,3.4) 3 481
[3.4,3.6) 1 482
[3.6,3.8) 2 484
[3.8,4.0) 1 485

Suppose the location and scale estimators are calculated using two
quantites; k = 2. From Table 7.B.1 the quantiles that glve maxImum
efficiency are: p(1) = 0.087 and p(2) = 0.734. Next determine which
observations best estimate these quantiles using [N¥p(i)+1]. N = 485, so

[N*p(1)+1] = 43,
[N*p(2)+1] = 356.

Since x(43) and x(356) are not distinct among the groups gliven 1in Table
9.1, it 1is necessary to Interpolate to recover their approximate values.
x(356) falls at about the mlddie of the Interval between x(325) = 1.8 pCi/|l
and x(386) = 2.0 pCi/l. This Interval has a width of 0.2, an upper bound
of 2.0, and a lower bound of 1.8, Using Ilinear Interpolation, +the
fractional dlistance within the interval of x(356) is
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(356 - 325)/(386 = 325) = 31/61 = 0.5082 .

The fractional distance times Interval width plus lower bound Is

0.5082 * 0.2 + 1.8 = 1.9016 .

Thus, the value of x(356) reconstructed by |inear Interpolation Is
approximately 1.902 plcocurles of radlum per |iter of drinking water.
Simllarly, x(43) = 0.804,

The values have been determined for the most efficient two quantiles
for estimating the location and scale parameters. Next these quantlies are
used with the coefflclents given In Table 9.A.2 to form the linear
combinations that estimate the parameters. From Table 9.A.1, c(1) =
0.5680, c(2) = 0.4320, and from Table 9.A.3 d(1) = -0.4839, d(2) = 0.4839.

The scale and location parameter estimates are then:

u = 0.5680 * 0.8042 + 0.4320 * 1,9016 = 1.2783

-.4839 * 0,8042 + 0.4839 * 1,9016 = 0.5311

a
That is, based on the grouped data the Extreme Value distribution mode

(locatlion parameter) Is 1.3 plcocurles per |lter and the scale parameter Is

0.5 picocurles per |iter of Radium In well water.

The variances and covariances of these estimates are calculated using
the multipliers given in Table 9.A.4 and equations 9,12 through 9.14. From
this table, E(1)} = 1,5106, E(2) = 1.,0749, and E(3) = -0.3401,

V() = (0.53112/485)%1.5106

n
n

0.00088

V(3) = (0.53112/485)%1.0749

1
n

0.00063

Cov(l,a) = -(0.53112/485)%-0.3401 = 0.0002
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and the corresponding standard deviations are:

SD(u) = 0.0296

H

SD(a) = 0.0250

Correlation(d,a) = 0.27 .

The location and scale parameters are significantly correlated.
Assuming that a 95% confidence Interval or +the distribution of the
parameter values 1s +2 standard deviations, the 95% confldence Interval for
the locatlon parameter is 1.2783 + 2*0.0296 picocuries per liter, or 1,22
to 1.34. Similarly the 95% confidence interval for the scale parameter Is
0.48 to 0.58 picocurlies per |iter.

9.4 SUMMARY

This chapter presents some of the avallable methods for obtalning
parameter estimates for an Extreme Value distribution from grouped or
censored data. A method Is given to obtaln minimum variance unbiased
estimates when only the largest extremes are reported. A simple regression
method for the same kind of data is given. When sample size Is large, the
data Is sometimes reported as frequencies within specified Intervals or
groups. Several methods are discussed to obtain parameter estimates from
grouped data. Finally, a rigorous method of calculating the location and

scale parameters from sample quantiles Is presented.
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9.6 APPENDIX 9-A

Coefficients for Choosing Quantiles for Maximum
k = number of quantiles to be used

~NOoOUMesE WN— ]| —

~N o WN— | —

EXTREME VALUE DISTRIBUTION
Tables for Calculation of Location and

Scale Parameters from Grouped Data

Table 9.A.1

I = Index of coefficient

Body of Table contains p(i)

Effeciency

k
2 3 4 5 6 7
.087 055 .028 .018 011 .008
134 .439 193 114 071 .047
.850 604 .404 «251 163
.896 126 547 «396
.931 .799 652
951 .849
.964
Table 9.A.2
Linear Combination Coefficlients for
Determining Location Parameter
k = number of quantiles to be used
I = Index of coefficient
Body of table contalns c(i)
k
2 3 4 5 6 7
.5680 .3386 .1566 .0994 .0623 .,0439
.4320 5184 .4316 .3030 .20Z7 .1382
.1430 3250 .3673 .3315 .2649
.0868 .1804 .2564 .2813
0499 1144 17277
0327 .0764
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Table 9.A.3
Linear Combination Coefficients for
Determining Scale Parameter
k = number of quantiles to be used
I = Index of coefficient
Body of Table Contains d(1)

k
i 2 3 4 5 6 7
1 -.4839 -.4372 -.2845 -.,2047 -.1454 -.1112
2 0.4839 0.1602 =-.1526 =-.2236 =-.2189 -.1854
3 0.2770 0.2651 0.1012 -,0481 =-.1254
4 0.1720 0.2208 0.1733 0.0780
5 0.1063 0.1673 0.1680
6 0.0718 0.1251
7 0.0508
Table 9.A.4
Multipllers for -Asymptotic Variances and Covariances
of Location and Scale Parameters
k = number of quantiles to be used
k
2 3 4 5 6 7
Var(u) 1.5106 1.2971 11,2287 1.1924 1.1706 1.1567
Var(a) 1.0749 0.9028 0.7933 0.7374 0.7043 0.6825
Cov(u,a) =.3401 =-,2579 =.2570 =-.2674 =-.2657 -.2638
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CHAPTER 10
EXTREMES OF SMALL SAMPLES

10.1 INTRODUCTION

In previous chapters It Is assumed that the samples from which +the
extremes were selected are large. Flisher and Tippet show that for samples
from a Gausslian distribution, the sample size has to be infinite for +the
Extreme Value distribution to hold exactly (Chapter 1). In statistics,
approximate asymptotic properties are usually adequate. However there are
some slituations in which the asymptotic distributions yleld significantly
blased results. No general rules exlst that allow one to determine when

.asymptotics are adequate.

This chapter outlines statistics that can be used when sample sizes
are small. The speclalties of 'Order Statistics' and !'Simultaneous
Inference' contaln the mathematical tools necessary to analyze small sample
extremes. The results are not as simple as for +the asymptotic
distributions, but this is the price of small samples. Order statistics
gives the densities and distributions of the largest and smal lest members
of a sample of known size. Simultaneous inference shows how to
collectively consider a set of (possibly correlated) probability
statements. .

The principal references for this chapter are the textbooks by David
(1970) and by Miller (1966). Most mathematical statistics textbooks
contain the basic ldeas of order statistics, often indexed by such terms as
'the distribution of the range', or 'the distribution of quantiles'.
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10.2 ORDER STATISTICS

Order statistics studies the statistical properties of maximum and
minimum values, +the range, extreme deviates from the mean, quantiles, the
second from largest value, and the joint distributions of these statistics.
in This short overview only the largest extreme from a small sample will be

considered.

If X(1),X(2),...X(n) is a random sample frcm a continuous population,
the rih Ilargest of these values is called the rth order statistic, its
value will be denoted as x[rJ]. Thus, the smailest sample value is x[1] and
the largest 1is x[n]. Since the distribution of the X's, F(x), may be
Interpreted as the probability that X has a value less than or equal +to
some specified value x, the probability that exactly J of the X's |ie In
the closed interval (-«,x] and (n-j) lie in the open interval (x,«) Is
obtained from substituting F(x) for the probability in the Binomial serles:

(10.1) (’J‘.)FJ'<><)<1 - FeeMd

The event x[r] < Z occurs if and only if r or more of the X(i)'s lie In the
interval (-,Z]. Thus,

n . .
(10.2) F(x[rD = P(x[r] < 2 =Z(3)FJ(Z)(1 - FEn™d
j=

In particular, the distribution function of +the largest and smallest

members of a sample from a population with distribution F(X) are:

(10.3) Fix[n]) = (F(XNH™ , and

(10.4) F(1D) =1 =1 = Fee" .

i}

The corresponding density functions are found by differentiation to be
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(10.5) F(x[n]) = nfOOFOO™ ! and

(10.6) F(x[1]) = nFOO (1 = Fe™

This statistical reasoning can be extended to show that  the
distribution of the rth order statistic Is

1

(10.7) fFIX[r]) = 7o—eerii——em f(X)F(X)r- (1 -rFexN™C

An Interesting resuit of order statistics concerns +the sampling
distribution of the median of +the density f(x). Let M(x) denote the
medlan. Then for large n, the sampling distribution of M(x) for random
samples of slze (2n+1) Is approximately Gaussian with mean equal to the
population median and variance (Wilk, 1947, Chapter 4)

(10.8) v = ----1---5- .
8(f(M(X))*n

I1f X 1Is Gausslan distributed, then the varlance of +the medlan Is

approximately

pi*s2/(4n)

(where s 1Is the standard deviation of +the distribution and pi =
3.14159... .) Comparing this with +the variance of the mean, which for
samples of size (2nt1) Is

sz/(2n+1) ,

shows that, for large sampies from a Gaussian population, the mean has a

smal ler varlance than the median.
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10.2.1 Approximating the Distribution of a Single Order Statistic.

Consider the summation of binomial +terms of equation 10.2, +the
probability +that j of the x(1) are less than or equal to some speclfied
value. There is a relationship between binomlal sums and the 1Incomplete

beta function |, that gives
(10.9) F(x[r] < 2) = I(F(2),r,n=-r+1) .

Tables of the incomplete beta function are avallable In Beyer (1966). In
order to use such tables 1t Is often necessary to empioy the inversion
relationship:

(10.10) I(P,a,b) = 1(1-P,b,a) .

As an example, suppose one wishes to find the upper 5% |imit of the
fourth order statistic, x[4], from a sample of size 5, from a standardized
(mean of 0.0, variance of 1.0) Gaussian distribution. Equations 10.2 and
10.9 show that this Is equivalent to finding z such that

I(F(z),4,2) = 0.95 , or
1(1-F(2),2,4) = 0.05 .

The table on page 210 of Beyer gives the lower 5% point of the Incomplete
beta function, which by the inversion formula 10.10 Is equivalent to the
upper 95% point. To read the table use v(1) = 2%b = 2%¥4 = 8, and v(2) =
2%a = 2%2 = 4, The tabled value 1s 0.07644 which is the desired value for
1-F(z). Next use a table of the Gaussian distribution to find that value
of z that corresponds to F(z) =1 - 0.07644 = 0,92356. This value is very
close to z = 1,43, Then for a standardized Gaussian distribution, the
second largest observation in a sample of size 5 will be less than or equal
to 1.43 with probability of 0.95.
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Frequently several simple statistical tests are performed on the data
from a single experiment. Suppose river water Is sampled and tested for
concentrations of 10 pollutants using a Student's t-test with 14 degrees of
freedon for each pollutant. An experiment-wide 95% confidence (probabil Ity
of a type | error) Is desired. That is, with 95% confidence the statement
is to be made that the combined t-tests indicate that no significant levels
of any pol lutants was found. This Is equivalent to the statement: the
maximum t-value of +the 10 t-tests performed is within the 95% confidence
limit of the largest order statistic in a sample of size 10 of a
t-distribution with 14 degrees of freedom.. Using the Incomplete beta
function, this may be formulated as: find t such that

1(F(+),10,1) = 0.95,

where F(1) Is a Student's +t distribution function with 14 degrees of
freedom. In order to use the tables of the incomplete beta function it is

necessary to apply the Inversion reiationship,

P(1=-F(+),1,10) = 0.05 .

The tabulated value for 1 - F(+) 1is 0.028358. From a table of the
t-distribution, +the value of +t that corresponds to F(t+) = 0.9716 for 14
degrees of freedom is approximately 2.068. Thus, to be 95% confident that
all of 10 t-tests are simultaneously not significant, the maximum of those
ten 14 degree of freedom tests has to have a t-value less than 2.068, which
Is the 97% significance critical value for a single test. A 2% penalty Is
payed for conslidering the 10 tests as a single experiment. The t-value for
95¢ conflidence on a single t-test with 14 degrees of freedom Is 1.761. If
I+ seemed that all 10 pollutant measures might be significant, +the lower
confidence |imit or 5% significance |Imit of the maximum of the 10 t-tests
would be used to test the hypothesis that all +the pollutants were
significant. More complicated situations arise If oniy some of the

t-values are significant; this Is best handled by a multivariate tfest
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procedure.

If tables of +the cumulative Binomlal distribution are avallable
(Beyer, 1966, Table 111.2, or Natlonal Bureau of Standards, 1950) equation
10.2 can be solved without the need to transform Into an incomplete beta
function. For the example above, enter the tables Iin Beyer at n=5 and
x'=2, then look across the |ine for the value of p that has a table entry
of 0.05. Interpolation between +table enteries of 0.0226 for p=0.05 and
0.07326 for p=0.10 is necessary. A |inear Interpolation ylelds p=0.07326.
Using tables of +the Gausslian distribution to find z such that 1 = F(z) =
0.07326 ylelds z=1.452. The table in Beyer gives the summation of binomial
terms from r to n. A more commonly available form of such tables (Odeh
et. al., 1977, Table 24; or Conover, 1971, Table 3) glves the summation
from zero to r. This +type of table 1Is o“ten found In nonparametric
statistics textbooks. Such tables can be used with the relationship that

the probabil 1ty summed over all values 1f j must equal unity, thus

LN qeyt=d o 1 S e qp 0=l
(10.11) J;r(j)FHF) 1 j;o(j)FuF_»

If a computer is available, the value of F(x) In I (F(x),r,n=r+1) can
be calculated using an algorithm for the inverse of the incomplete beta
function (Majumder and Bhattacharjee, 1973; update by Cran et. al., 1977).

These examples are both an Introduction to those aspects of order
statistics that are most applicable to the study of extreme values from
smal | samples, and also background for the next section which addresses the

same problem In a different way.
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10.3 SIMULTANEOUS STATISTICAL INFERENCE

In Section 10.2 the concept of finding one probability statement for a
group of statistical tests is introduced, rather than considering each test
separately. |f 20 t-tests are performed at the 95% confidence level, on
the average, one of the results will be in error. The basic purpose of
simultaneous Inference is that, by +*reating the tests as a group, a

probabil [ty statement can be made that is simultaneously valid for all

members of the group. For 20 t-tests, one Is able to say that all 20 are
not signiflicant with 95% conf ldence rather than that each of the 20 is not
significant at 95% confldence. In the latter case there Is high

probabil ity (64% to be exact) that at least one such conclusion in a group
of 20 is in error. A philosophical point arises here, how big should the
group be? The general opinlon among statisticians Is that a group should
Include all statistical tests performed on a single data set. An extensive
study of simultaneous Inference is given by Miller (1966, 1977).

Order statistics and simultaneous Inference approach the problem of
testing groups of hypotheses In different ways. The approaches are
equivalent and the cholce of approach depends upon convenience and the
speciflcs of the problem. Order statistics picks the maximum (or minimum)
of the group and derives a probabllity statement about the maximum (or
minimum) as a function of sample size. |f the maximum satisfles an order
statistic hypothesis of not exceeding Its expected value, then it
necessarlly follows that all values of the ftest statistic smal ler than the
maximum also satisfy the hypothesis. Simultaneous Inference approaches the
same problem by altering the probabitity test appiied to each statistic of
the group so that an overall probability statement can be made about the
group as a whole 1f all of the Individual statistics satisfy the altered
test.

The most famlllar application of simultaneous Inference Is In analysls

of variance. Whenever the analysis concludes that there Is a significant
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difference between means, the next step Is to examine the relationships
between +those means to find the source of the significance. The tests for
these relationships are famillar under the names F-projection or Scheffe
test, multiple range test or Duncan test, least significant differences or
Fisher test, and Studentized range or Tukey test.

The Bonferront Inequality, one of many available methods from
simultaneous inference, 1Is presented Iin +this chapter. Miller (1977)
observes: 'l have become even more impressed with the +tightness of the
bound...', In his discussion of studies of the Bonferroni Inequal ity over
the years 1966 to 1976.

10.4 Bonferroni Statistics.

The Bonferroni method is a simple adjustment of probability levels
that can be applied to any statistical hypothesis test or confidence |imit
procedure to produce results that are valid for a group of statistics. 1 f
A(1) is an event that can be assigned a probabl|ity and i f there are n such

events In a group, the Bonferroni inequal ity states that

(10.12) The probabil ity of the intersection of n events A(i) 1Is greater
than or equal to 1.0 minus the sun of the compl Iments of the
probabl|ities of the individual events.

The term 'intersection!' is the mathematically precise way of saying that
all events are considered as a group. This Inequality 1is a simple

extension of Boole's inequality:

(10.13) P(A or B) < P(A) + P(B) .

The Bonferroni statistic Is obtained by applying the Bonferroni
Inequal Ity to any group of statistical tests. The stated error level, for
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example an error level or alpha of 5%, is divided by the number of tests In
the group to obtain a new error level, call this b. The sum of n b's
represents the sum of probablllties on the right hand side of equation
10.13.  The inequality of this equation then allows this sum to be related
to the intersection of the events. For example, suppose the second exampie
of section 10.2 1is reanalyzed, In which 10 pollutants in a single water
sample are analyzed using t-test. A 95% significance level corresponds to
an error level of 0.05. With 10 tests in the group the b level is 0.05/10
or 0.005. The Bonferroni statistic tells one to test each of +the
pol lutants at the 99.5% signiflicance level; if all 10 tests show no
slgnificance indlvidually at 99.5% signlflcance, then, with at least 95%
significance, all 10 pollutants are simultaneous!y not significant. The
t-test critical value for 99.5% significance and 14 degrees of freedom Is
2,98, (The corresponding 95% critical value Is 1.76.) The critical value
found in section 10.2 was 2.07. The dIfference between 2,98 and 2.07 is an
expression of the lnequal Ity within the Bonferron! statistic: 1t gives an
upper bound. The advantages of the Bonferroni statistic are Its great
simpllcity, special tables are not required, and its app!lcability to all

statistical situations.

Care should be used when finding the new critical values from a table
of probabilitles. Many tables do not contain very small error levels such
as those that result from dividing by the number of tests Iin the group.
Also, tables differ widely in how they express error levels; one or fwo
slded, using error levels or significance levels (t+all or central areas).
In the example, a one-sided t-test and a one~-slded table is used. If a
two-sided test is desired from one-sided tabies, the Bonferronl statistic

divides the error level by 2*n.

Dunn (1959) showed that the Bonferroni statistic 1Is appllicable to
correlated as well as +to Independent statistical tests. The order
statistic results presented In section 10.2 are also valid for correlated
statistics. In order to prove +this, 1t 1Is necessary to use the
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Union-Intersection principte (Morrison, 1967, section 4.2).

10.5 COMBINING INDEPENDENT PROBABILITIES

Two simple techniques are avallable to combine Independent probabil ity
tests Into an overall probability for a group of statistical tests; the

sum of Chl-square values and Fisher's method.

When a number of Independent tests of significance are applied It
sometimes happens that although none can be Individually claimed as
significant, the aggregate gives the impression that on the whole, the
probabil Ities are |ower, or higher, than would be obtalined by chance alone.
Two theorems found In statistics +textbooks are usefull In deriving an
aggregate significance statement about a group of independent statistical

tests.

1

The sum of independent Chi-square values |Is
also a Chi-square value with degrees of
freedom equal to the sum of degrees of

freedom of the Individual values.

Perhaps a series of Chi-square contingency tabie analyses are performed and
all are Just a few percent too low to be judged significant. Many tests
that are close to significance Is unlikely to be an aggregate event that is
due to chance alone. Theorem 1 gives the theoretical basis to sum all the
Chi-square values to obtaln an aggregate test of significance. The second
theorem allows this technique to be extended to tests +that obtaln

significance levels from a Gaussian distribution,.

THEOREM 2

The square of a standardized (subtract mean
and divide by standard deviation)
Gausslan-distributed value 1is a Chi-square
distributed value with one degree of freedom.
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Suppose a series of Mann-Whitney Rank Sums tests (t+he Wilcoxon Rank Sums
test is algebraical ly equivalent) are performed and an aggregate situation
similar to the-one mentloned for the contingency table tests Is found. I f
Individual sample sizes are large, the significance of each Rank Sums test
Is determined by calculating a value that has approximately a Gaussian
distribution. Then the individual significance levels can be closely
approximated using a table of the Gaussian distribution. The aggregate
significance can be obtalned by squaring and summing these values, and
comparing the sum to a Chi-square table using degrees of freedom equal *to
the number of Items summed. These two +theorems are useful only when
Chi-square or Gaussian values are avallable. They cannot handle other
distributions or combinations of several distributions.

Fisher's Combination of Probabilities Test of Significance (Fisher,
1970, section 21.1) can be used to test the significance of an aggregate of
any group of significance levels from any distribution or even several
different distributions. Let P(I) represent the significance (or
probability) resulting from the ith test in an aggregate of size n. Flsher
found that minus +twice the natural logarithm of P(1) has a Chi-square
distribution with 2 degrees of freedom. |t follows then from Theorem 1
that:

n
(10.14) X(2n) = =2y In(P(1))
i=1

has a Chi-square distribution with 2n degrees of freedom. The aggregate
probabl| 1ty may then be found by comparing X(2n) to a Chi-square table.

For an example of these two methods of combining Independent
probabilitles, suppose a group of 5 Student's t-tests each showing 90%
confidence. The corresponding probability 1is 0.10, and -2¥In(0.10) =
4.605. The sum of 5 such Identical values is 23.026. For 10 degrees of
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freedom, a Chi-square table shows that the aggregate significance is 98.9%.
Intuitively 5 tests at 90% significance sugges* an aggregate signiflcance
even though individually the significances do not meet the usual accepted
criteria of exceeding 95% (+he 95% criteria for significance was proposed
by R. A. Fisher in 1926)., Fisher's mefhod shows that +the aggregate Is
highly significant. This example aiso shows that if Instead of a group of
5 t-tests, one has a group of 5 Chl-square tests each with 2 degrees of
freedom and values of 4.605 (90% significance!, the aggregate would have
98.9% significance. Likewlse, a group of 5 z-tests, each with a value of
1.645 (90% significance) would be significant. Squared and summed, these
give a Chi-square value of 13,530 with 5 degrees of freedom. A Chi-square
table shows this aggregate to have 98.1% signlflicance.

10.5.1 Maximum Chi Square

In the discussion of Section 10.4 it was assumed that the
probabil ities or distributions belng combined are independent. For
combining Iindependent or dependent Chi-square values, the Union =
Intersection principle of Roy (1953) leads to the following result.

Theorm 3

The maximum of p qne degree of freedom
Chi=-square values has a Chi-square

distribution with p degrees of freedom.

Thus, 1f one analizes 10 correlated 2-by-2 contingency tables and finds
that the maxImum Chi-square value is less than the 95% deviate of a 10
degree of freedom Chi-square distribution, then i+ may be concluded that
simultaneously all 10 contingency tables show no significance at the 95%

confldence level.

It can be shown, using characteristic functlions and Equation 10.3,
that +the maximum Chi-square principle holds for independent Chi-square

values with any degrees of freedom. The maximum of a group of independent
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Chi~square values has a Chi=-square distribution with degrees of freedom

equal to the sum of the degrees of freedom of the group.

10.6 SUMMARY

A necessary assumption for all the techniques presented in previous
chapters [s that the extreme values be obtained from a large sample. This
chapter has presented alternatives that can be used when +thlis assumption
cannot be accepted. Extremes of small groups of statistical tests and of
smal | sampies are Important because they are a common situation. Three

complementary statistical methods were presented.

Order statistics show how to derive the exact distribution of the
extreme of a small sample If the distributions of the elements of the
sample are known., Often the algebra of this derivation is intractable. As
an alternative, order statistics of fers a way, through the use of binomlal
sums and the Incomplete beta function, to compute probabilitlies without

finding the expression for the distribution of an extreme.

Simultaneous statistical Inference yields methods for obtalning an
aggregate probability statement about a serles or group of statistical
tests. The most common use of these methods Is to Identify the source of
significance within an analysis of variance problem. The simpliest of such
statistical +ools, the Bonferroni inequality, Is presented. This
Inequal ity glves an upper bound for aggregate confidence statements and
hypothesis testing. |+ has the advantages of being simple +to Implement,
and being valid with correlated data or correlated statistical tests.

In the special situation In which the elements of the group of tests
are statistical ly independent, some theorems from probabil ity theory can be
used to derive an aggregate probabillty statement about the group as a
whole.  These techniques are based upon the properties of the Chi-square
distribution, and upon a relationship, discovered by R. A. Fisher, between
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the Chi-square distribution and the natural loga-~ithm of a probability.
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CHAPTER 11
MULT I VARIATE EXTREMES

11.1  INTRODUCTION

The currently avallable statistical theory of multivariate Extreme
Value distributions considers each component of a (standardized)
multivariate observation separately. The maximum (or minimum) of each of n
components of the vector is determined and the joint distribution of these
maxima Is studied (Galambos, 1978). It Is Important to note +that +this
theory does not consider a single multivariate (vector) measurement that is
the extreme, but rather It abstracts pieces from many measurements and
considers these pieces jointly. For example, rather than considering the
most toxic mixture of chemicals, the most +toxic concentration of each
chemical is considered, ignoring the synerglistic effects of the mixture.

Consider the univariate unit (mean = 1.0) Exponentlial distribution
F(x) = P(X<x) = 1=-exp(=x). The simplest of many possible two-dimensional

analogs Is
F(x,y) =1 = exp(~x) - exp(-y) + 1/(exp(x) + exp(y) =1) .

The small sample distribution of the maximum of +this distribution, the

multivariate analog of equation 10.3, for a sample size of n Is

(F(x,y))"

and the asymptotic distribution on large sample slze, the multivariate

analog of equation 7.4, Is

H(x,y)=exp (-exp (=x) Y*exp (=exp (-y) Y*exp (1/(exp(x)+exp(y))) .
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Galambos (1978) glves the theory for deriving such equations for any kind
of distribution. This example shows that the [imit distribution H is not
determined by the univariate marginal distributions. However, the marginal

distributions of H are univariate Extreme Value distributions.

This mathematical theory considers multivariate observations
componentwise. The probability that the maxima of all components will
occur in the same observation is small and Is a decreasing function of
sample size. There Is no special theory of multivarlate extreme values for
the case In which one 1Is Iinterested in +the particular multivariate
observation from a sample +that Is extreme when all components are
considered simultaneously. For example, one might be Interested In
Identifying the smoggiest day of the year from daily averages of carbon
monoxide, nitrous oxides, sulfur oxldes, and hydrocarbons. There 1Is no
reason to expect that the maxima of these component chemicals In a year of
data would occur together, nor that the maxima of any component would occur
on the day that was perceived by humans to have +the maximum smog

concentration.

Even though no special statistical +theory exlIsts to determine the
simultaneous extreme, a few useful techniques a-~e avallable that al low one
to statistically analyze such data. These techniques are derivatives of
statistical concepts used In multivariate statistics. The basis of these
techniques Is to ftfransform the multivariate data Into an equivalent
univariate number, and then apply the methods presented In previous
chapters. Each of the fransformation techniques presented In this chapter
emphasizes different data characteristics. The transformations are not
equivalent, and will not yleld the same conclusions. The cholce of a
transformation depends upon the purpose of the study. Since these emphases
are manifold, particularly for the cluster analysis techniques, detalls are
not discussed here. Complete discussions are avallable In textbooks and In

the statistics | Iterature.
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Radloisotope concentrations represent a speclal class of multivariate
measurements, because all the isotopes In a sample can be measured in the
same cumulative units. |f soil samples are measured for uranium, thorium,
lead and radium concentrations, all in picocuries per gram, the total
radioactivity Is the sum of the picocuries per gram of each component. The
sum of the radioactivity could also be expressed In rems or rads, but not
in micrograms of Isotope per gram of soil. Air pollutants cannot not be
summed because there Is now no measure of concentration for toxic gasses
that is analogous to the way rem's quantify biological activity, or to the

way the Curie measures nuclear disintegrations.

11.2 DISTANCE MEASURES

If the covariance matrix of +the components of the multivariate
measurements is known or can be estimated, the Mahalanobis distance
(general ized distance, Euclidian distance, |-2 norm) can be calculated.
Let Y(I) be a vector observation in a sampie of size n, | = 1,2,...n. Each
Y(1) has several components, such as measurements of i(sotope concentrations
of different elements in a single sample. Let ¥ be the covariance matrix
of the components of Y. Then the univariate general ized distance of Y(i)

from the origin is the square root d(i) of D(I) where:

(11.1) Deny =YWy lvany .

The n values of d(1) or of D(i) can be treated as a univariate sample. If
n fIs large, the maximum of the n values Is approximately a sample from an
extreme value distribution., |f some of +the elements of +the Y(i) are
considered more Important, a weighting matrix can be included in the
distance calculation; +this |Is discussed 1In textbooks on multivariate
statistics. This distance measure cannot be thought of as analogous to any
particular element of Y(i); I+ must be considered as an abstraction that

includes all elements.
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As an example, suppose an overal| measure of maximum air pollution Is
desired. Dally averages are avallable In parts per million of ozone,
nitrous oxldes, sulfur oxides, and hydrocarbons. These are the four
components of each Y(I) vector, and there is one such vector for each day
of a year (i = 1,2,...365). The covariance matrix of the elements can be
estimated from the 365 Y(I) vectors. Then 365 generalized distances can be
computed and the largest Is the maximum overall pollution for the year. If
this procedure is repeated for N years, the N maximum values of the
distance can be used to find an extreme value distribution since n, the
sample size within each year, is large. For a given distance, there is no

unique set of values of the components.

The generalized distance usually will not yield a maximum that
corresponds to the maximum of any one of the individual pollutants. Nor
will it necessarily yield a maximum that corresponds to the greatest

pol lution perceived by the residents of the area.

In this example only gasseous pol lutants that are typically measured
in parts per million are Included: +this was Intentional. Slgniflcanf
artifacts can be introduced by a naive choice- of components and units.
Many muitivariate statistical test are not Invariant to changes In scale

and origin of the measurements.

For a small sample of size n from a multivariate Gausslan
distribution, +the distribution of the D(1) has a Hotelling's distribution
if the covariances are estimated from +the data, and a Chi-square
distribution 1f +the covariances are known apriori. Hypotheses can be

tested using the methods of simultaneous Inference outlined In Chapter 10.

The generalized distance becomes computationally unstable 1f the
components of the Y(i) vector are highly correlated. In such a case, it Is
advisable fto use a generallzed matrix inversion algorithm +to invert the

covariance matrix. This yields a minimum distance measure. Specifically,
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if the covariance matrix is singular, it Is known from matrix algebra that
no unique Iinverse exists. This is the same as asserting that an infinite
number of inverses do exist (Boul lion and Odell, 1971). In +this case, a
different value of +the generallzéd distance will result for each of the
infinite number of possible inverses. However if the generalized matrix
Inverse 1Is used, the resulting general ized distance will be the minimum of
all the possible values. Using a general ized matrix Inversion algorithm is
a good way of avoiding the computational problems of nearly singular

matrices.

Another possible multivariate to univariate transformation Is to use a
probabil ity value from the multivariate distribution function of the data.
The multivariate observation (x,y,z,...) Is replaced by the probabillty
that values smaller than +those observed would occur, that is p =
P(X<x,Y<y,Z<z,...). Since the range of values of p Is zero to unity, the
extreme of +the p values must be of the Weibull famlly of distributions.
When determining the value of p, the multivariate distribution of the data
must be known (or hypothesized) and It must account for the covarlances
between the components of +the measurements. The only multivariate
distribution +that 1is well established for more than two components is the

Multivariate Gaussian.

11.3 ORTHOGONAL ROTATIONS

A muitivariate to univariate transformation may also be obtained from
an orthogonal rotation of the multivariate axes fol lowed by a choice of one
of the resulting projections. The +typical way of performing such
calculations Is to use elther factor analysls or principal components
analysls. These are described In multivarliate statistics textbooks.
Principle components studies the variance of +the multivariate data
elements, while factor analysis studies the correlations of these elements.
Both procedures vyleld a serles of |inear combinations of the data values

that are ranked In Importance by the amount of Information from the data
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that 1Is explained by each |inear combination. For extreme value analysis,
the first principle component or +the first factor can be used as a
univariate generallization of the data. Using only one factor or component
does not use all the information available In +the data. However, the
purpose of these procedures Is to simplify the data structure, and these
techniques do this by dividing the information into parts and ignoring the
less significant parts. There is no requirement that the first component
or factor be chosen for extreme value analysis. In the air pollutant
example, perhaps a second or third factor or component would be better
assoclated with the severity of pollution as pearceived by humans. The
currently available statistical analysis computsr program packages contain
good algorithms for obtaining principle components and factors. Thus, It
is easy to use (and missuse) +these procedures for the multivariate to

univariate transformation needed for extreme valie analysis.,
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For computational purposes In this example, only one of the 4 species, lris
setosa Is considered in detall.

Fisher gives the covarliance matrix of this specles:

TABLE 11 .1
Iris setosa Covariance Matrix

6.0882 4.8616 0.8014 10,5062
7.0408 0.5732 0.4556
(Symmetric) 1.4778 0.2974
(1.5442

The inverse of this matrix is:

TABLE 11.2
Inverse of Covariance Mati-ix

0.38860 -.25316 -.09184 --,09747
0.31777 0.02268 --.04294
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the extremes of each component Into a single measure of extreme value.

11.5 CLUSTER ANALYSIS TECHNIQUES

Cluster analysis offers the most general methods of measurling
distances between multivarliate observations. These methods are only
recently avallable In +textbooks (Everitt, 1980), However, statistical
Journals contaln ample Information on +the wlde varlety of clustering
techniques avallable. I+ is Important to emphasize that Thls varlety
results from a diversity In the type of information authors are attempting
to expose from within thelr data. Clustering algorithms range from
parametric to nonparametric In genesis, and origlinate from a variety of
sclentiflc fields.

Analyzing extreme values of cluster dlstances 1Is a powerful ‘ool
because the variety of distance measures avallable offers a choice
approprlate to the purpose of +the analysls at bhand. The +theorles of
cluster analysis are well developed statistlically, but the clustering
algorithm must be chosen carefully In order to assure an appropriate

measure for the problem being analized.

11.6 EXAMPLE

A classic data set of +the statistical |l1terature, R. A. Fisher's
(1936) Iris data, Is used as an example. |+ has an analogy to pol lutant
data. Thls Iris data had a key role In the development of Dliscriminant
Analysis (Fisher, 1936, 1938), a technique that uses Mahalanobls dlstance
measure. Fisher (1936) gave tables of 50 observations on each of 4 species
of Iris. Each observation consisted of 4 components: septal wldth, septal
length, petal width, and petal length. As an analogy, suppose that the 4
specles are 4 pollutlion measurement stations and that the 4 components are
concentrations of ozone, nifrous oxldes, sul fur oxides, and hydrocarbons.

For each statlion, 50 hourly averages of the four pol lutants are available.
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For computational purposes In this example, only one of the 4 specles, Irls
setosa Is considered In detall.

Fisher gives the covariance matrix of this specles:

TABLE 11.1
Iris setosa Covariance Matrix

6.0882 4.8616 0.8014 01,5062
7.0408 0.5732 0.4556
(Symmetric) 1.4778 10,2974
0.5442

The inverse of this matrix Is:

TABLE 11.2
Inverse of Covarlance Matiix

0.38860 -.25316 -.09184 --,09747
0.31777 0.02268 --.04294
(Symmetric) 0.79135 -,36620
2.16420

The data (too voluminous to present here) Is summarized In the following
histograms of +the values of +the 4 components and of the Mahalanobis
distances.
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TABLE 11.3
Partial Listing of Iris Data

ROW SL N eL Jud ] DISTANCE

, 1 5.1 3.5 1.4 0.20  2.23489
2 4.9 3.0 1.4 0.20  2.19540

3 4.7 3.2 1.3 0.20  2.05929

4 4.6 3.1 1.5  0.20  2.09104

5 5.0 3.6 1.4  0.20  2.18819

19 5.7 3.8 1.7 0.30 2.52440

50 5.0 3.3 1.4 0.20  2.20816

Using equation 11.1 to compute general ized distances gives the numbers

summarized in Figure 11.5. Table 11.3 gives a few of the data values. The

maximum of the 50 distances was found to be at data row 19. Since all the
measurements are In the same units (millimeters) the maximum Mahalanoblis
distance Is 2.524 millimeters. |In general the measurement units of the
elements of a multivariate measurement will not be identical, then the

distance Is only a mathematical number. Scanning this data set reveals
that the maximum distance does not occur at the maximum of any of the
Individual components of the multivariate data values. A correlation
coefficlent goodness-of=fit test for the Gaussian distribution, discussed
In Appendix B of Chapter 7, was performed on the computed distances. This
test concluded +that the distances are reasonably described by a Gaussian
distribution. Thus, the maximum value will be in the exponential famlly of
extreme values. |f similar computations are performed for the other 3 Irls
species of Fishers article, the resultant 4 wunlvariate extreme distance
measures can be used +to estimate the location and scale parameters of a

reduced Extreme Value distribution.
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It 1s tempting to try to Invert +this problem; given an extreme
pol lution measurement and a covariance matrix, what Is the range of
Individual pollutant values that could produce the given extreme pollution
Index?  Although it Is mathematicaliy possible to compute such ranges, the
ranges are highly correlated and at ieast one range can always take on
Infinite values. Thus, such calculations shouid be avoided unless a great
deal of additlonal Information is avallable about I|imits of such ranges.

11.7 SUMMARY

This chapter has outlined the statistical techniques that can be used
for extreme value analysis of multivariate data. All the techniques
suggested are derived from multivariate statistical procedures, ranging
from classic discriminant analysis to modern cluster analysis algorithms.
The common feature of these is to transform the multivariate observations
Into a univarlate quantity which can be analyzed using the extreme value

techniques presented In previous chapters.



MULTIVARIATE EXTREMES

11.8 REFERENCES

Page 11-13

Boullion, T. L., and Odell, P. L., 1971, Generalized lnverse Matrices,

Wiley Interscience.

Everi++, B., 1980, Cluster Analysis, John Wiley - Halstead Press.

Fisher, R. A., 1936, 'The Use of Multivariate Measurements In
Problems', Annals of Eugenics, Vol. 7, Part 2, pp 179 - 188.

Fisher, R. A., 1938, 'The Statistical Utilization of
MéasuremenTs', Annals of Eugenics, Vol. 8, Part 4, pp 376 - 386.

NOTE
Both the Fisher papers are reprinted In:

Fisher, R. A., 1950, Contributions 1o
Mathematical Statistics, John Wiley and Sons.

Taxonomic

Muitiple

Gaiambos, J., 1978, The Asymptotic Theory of Exireme Qrder Statistics, John

Wiley and Sons, (Chapter 5).






CHAPTER 12
THE WEIBULL DISTRIBUTION

12.1 INTRODUCTION

The Welbul |l distribution has been found experimental ly to describe the
rellabillty of mechanical systems such as the minimum breaking strength of
steel beams, or the minimum operating time between fallures of an assembly
IlTne. To a lesser extent, the Welbull has been used to study biological
phenomena such as the response to stress. For example, Peto et. al. (1972)
describe age-speciflc cancer Induction rates with a Welbull distribution.
This distribution Is named after Walodi Welbull, who in 1939 derived It In
an analysis of breaking strength. It had been derived In 1928 by Fisher
and Tippet as the third asymptotic distribution of extreme values.

In this chapter the notation of previous chapters is changed to agree
with the I|lterature on the Welbull distribution. This distribution s used
to study smal lest extremes. The variable measured is typically time +to
fallure or load +that causes fallure. The measurements are ordered from

smal lest, x[1], to largest, x[n].

An Important dIstinction between +the Extreme Value and Weibull
distributions 1Is +that the Welbull allows a lower bound below which the
probabil ity Is zero that an event, such as fallure, will occur (this bound
can be zero). No matter how much carcinogen an animal is exposed to, there
is a minimum time necessary for a tumor to kIll the animal. This Is
distinct from recelving so much carcinogen that the animal is killed by the
direct toxicity of the carcinogen [tself. Upper bound situations can be

analyzed by changing the sign of the data values.
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The Weibull distribution has received little attention in
environmental and biological research. Morbidity from air pollutants Is
directly analogous to the mortal ity from carcinogens reported by Peto. The
effects of most pol lutants are general ly assumei to have a threshold. The
lower bound parameter of the Welbull distribution is a measure of such a
threshold. The medical use of drugs involves a threshold dose above which
toxicity becomes more important than therapeutic effect. The Welbull lower
bound can measure the dose at which +tfoxicity is expected in the most

sensitive member of a population.

When statistical ly model ing the effects on a population of exposure to
a pollutant, one should consider the confound distribution of an Extreme
Value distribution of maximum exposure with a Welbull distribution of
response to minimum Insult. Confound distributions occur when the response
being studied depends upon the sequentlial or simuitaneous actlions of two or
more statistical processes. In the pollutant example, the response of
humans to a fixed and known pol lutant exposure 15 a statistical phenomena
describing varliability between individuals. The exposure an Individual
recelves [s aiso a statistical phenomena that varies with such things as
tIime of day, weather conditions, and location of persons during the day.
Thus the morbidity within the population is a function of two statistical
processes, the exposure and the response. This combination of +wo
distributions is called a confound distribution, and mathematical methods
exist for deriving a single statistical distribution If the +two
distribution functlions for exposure and effect are known. The people
within the population are exposed depending upon both where they are
located and the time of day. The subpopulation that receives +the maxIimum
exposure Is to be considered. The magnitude of -this maximum exposure might
be described by an Extreme Value distribution and the minimum exposure that
will cause a response might be described by a Welbull distribution. The
combination of these two statistical distributions can be expressed as the
confound distribution of response and exposure. |t does not follow that

the most sensitive person, nor the person maximal ly exposed, will show the
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maxmum response.

Most pollutants have natural or background levels. The actual
exposure of humans, animals and plants is the sum of the natural background
levels plus what man adds. For example, in addition to the hydrocarbons
added to air pollution by man, there are the natural terpines emitted by
trees and brush. The study of the effects of man-made pollution should
adjust for +the background levels of the pol lutant in order to study the
response in excess of that caused by the background. In such a situation
1T might be reasonable to allow a negative value of the Weibul | lower bound
and assume that the portion of the Weibull distribution that falls between
the |ower bound and zero measures the proportion of the total response that

is due to the background levels of the pol lutant.

12.2 THE WEIBULL DISTRIBUTION AND DENSITY

The mathematics of the Weibull distribution are presented first as a
two parameter function, and then with +the additional condition of a
threshol d.

Assume a variate x In the range 0 < x < +o which depends upon two
parameters, b and ¢; b is called the characteristic |ife parameter, and ¢
Is called the shape parameter. The distribution function Is

(12.1) F(x) = 1 = exp(=(x/b)®) ,

and the density function is

(12.2) £0x) = (T Srexpl=(x/b)) .

Let G() signify a Gamma function. The mean of the Welbull density Is

(12.3) mean = b*G((c+1)/¢c) ,

the variance Is
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2

(12.4) v = b“(6((ct2)/c) - (G((c+1)/c))2) ’

and the mode Is

b(1 - 1/c)1/c for c>1
0 for c<i .

(12.5) mode

By the method of maximum !lkellhood, estimates of b and ¢ are the solutions

of the simultaneous equations

o>
n

(1/n)f§%xi and

\

(12.6)

) .

(9D
[}

I\n A n
61CxS " Cx - .
n/((1/b) ,Z%xl Intx ;) ggln(xl

These equatlions must be solved Iteratively.

The Welbull Is also related to two other statistical distributions.
The Welbull with the shape parameter fixed at a value of unity, ¢ = 1.0, Is
an Exponentlal distribution with a mean of b. |If the characteristic |Ife
parameter Is fixed at a value of two, b = 2.0, a Raleigh distributlion with
parameter c Is obtained.

1f a threshold parameter, u, is included in the Welbull distribution
function, the variate x in equations 12.1 and 12.2 Is replaced by x - u.
The distributlon function is then
(12.7) F(x) = 1 = exp(=({x=u)/D)¢) ,
and the density functlon Is

/b * (x=u) /D) kaxp (=((x=u) /D)) for x
0 for x

(12.8) f(x)

Iu

>u
<u

with the restrictlions that the parameters b and ¢ are greater than zero.
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12.3 PARAMETER ESTIMATION

Substantial literature exists on parameter estimation for the Welbull
distribution. A sampling of this will be presented here. The |lterature
falis 1Into three classes: 1) simple estimators, 2) estimation from
censored samples, and 3) construction of tolerance and conflidence |imits.
Through the use of the logarithmic relationship between +the Welbull and
Extreme Value distributions, discussed 1In Chapter 3, all the statistics
outiTned in this section may also be appllied to estimation for the Extreme
Value distribution. In fact, many estimators used for the Welbull are

based upon this transformation.

The general ized maximum |Tkel Thood procedure discussed In Section 7.3
can be wused for the Welbull distribution by substituting either equation
12.2 (two parameter Weibull) or 12.7 (three parameter Welbull) for h(x) In
the equations of Section 7.3, This procedure ylelds all the statistical
properties of Maximum Likellhood Estimators, but a general purpose
scientiflc computer capable of executing a functional maximization

algorithm Is necessary.

12.3.1 Simple Estimators.

The method of moments, using functlions of the mean and variance of the
data, cannot be wused dlrectly for parameter estimation for the Welbul |
distribution. Equations 12.3 and 12.4 show that this method would require
the Inverse of a Gamma function be wused in simultaneous equations.
However, for the two-parameter Welbull, the logarithmic transformation and
equations 7.15 and 7.16 yleld estimates of the Weibull characteristic |lfe
and shape parameters. Thus, the method of moments can be used by analyzing
the logarithms of +the data as an Extreme Value distribution, then

performing an Iinverse transformation on the parameters:

(12.9) Welbul | scale parameter = exp(Extreme Value location parameter)
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(12.10) Welbul | shape parameter = 1.0/(Extreme Value scale parameter) .

When using equations 12,9 and 12.10, equation 7.15 is changed from a form
for the largest extreme +to a form appropriate for the smal lest extreme.
This Is accomplished by a change of sign so that equation 7.15 becomes mean
= mode - scale parameter * Euler's constant. Equation 7.16 for the

standard deviation remains unchanged.

The method of moments 1Is frequently used, but the statistical
considerations of bias, efficiency, and sufficiency are not yet fully
studied. Since moments are easy to compute with a hand calculator, It Is a
practical Welbull estimation procedure. This method may also be used for
the three parameter Welbul| when the location parameter Is known. In this
case, the known location parameter value Is subtracted from all the data

values and then analysis proceeds as for a two parameter distribution.

Al'l the techniques of Chapter 9 may be used with the logarithmic
transformation of the data and the corresponding inverse transformation of
the parameters when the location parameter Is known. Gumbel's regression
estimators for censored samples, discussed in section 9.2.1, is a simple

estimation technique for censored samples with a Weibul!l distribution.

A refinement Is avallable to compensate for the bias Introduced by
simple parameter estimators. Engelhardt and Bain (1974), and Engelhardt
(1975) discuss such compensation for both complete and censored samples.
These papers also contain a good review of the |Iterature, Recent

references may be found In Baln and Engelhardt (1981).
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12.3.2 Statistical Inference from Censored Weibuil Sampies.

A variety of computing methods are avallable for censored samples.
The few methods outlined here were chosen because they are avallable in

current statistical journals.

A characteristic of most Welbul| parameter estimation techniques for
censored samples Is that special tables of 'unbiasing factors'! are needed.
These are gliven In the |l1terature. Billmann, Antle, and Baln (1972) offer
a method and glve tables of unblasing parameters for the two-parameter
case. Lemon (1975) glves the corresponding Information for  the
three-parameter Weibull. Cohen (1975) proposes a three parameter technique

that does not require special tables.

12.3.3 Confldence and Tolerance Limits for the Welbull Distribution.

Confidence {imits are upper and lower bounds determined so that +the
intervali between these IImits will Include the true value of the parameter
with the specified confldence. Sometimes It 1is deslirable to ob+aln an
Interval which will cover a fixed portion of the distribution with a
specifled confidence. Such Intervals are cal led tolerance Intervals, and
the end points of such Intervals are called tolerance |imits. These
Intervals can be applied to elther the distribution of parameter estimates,
or to the distribution of the data. When used on the data distribution,

they are sometimes called prediction intervals.

The methods reviewed In this sectlion depend on simulation results and
on the relation between the Weibull and Extreme Value distributions.
Lawless (1975) gives a method for estimating quantiles or tolerance bounds
for a variable with a Weibull or an Extreme Value distribution. His method
is applicable for censored data. Mann and Fertig (1977) give a method
using quantiles of the data for estimating confidence bounds of parameter

estimates and tolerance or prediction Intervals for the measured variable.
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Their method is an extension with blas correction of the work of Hassaneln
discussed In Section 9.3. Fertig, Meyer, and Mann (1980) discuss methods
for obtaining a prediction Interval with a pre-speciflied probabillity of
containing a future observation. This paper also uses tables of blas
correction factors, and Is a good review of the |lterature up to 1980.
Baln and Engelhardt (1981) find good approximations to the distributions of
the parameters of +the Welbull distribution and use these to construct
approximate confidence Intervals for the parameter estimates, and tolerance

limits on the data values.

12.4 LIFE TESTING

Life testing is a part of statistics cal led stochastic processes, and
Is a special case of order statistics that can be used 1n many of the
problems for which the Weibull distribution is used. A full discussion of
Iife testing theory can be found In stochastic processes textbooks (for
example, Parzen, 1962, section 4.3). Much of tie statistical +theory of
I1fe testing has been published by Epstein (1953, 1960a, 1960b).

Life testing statistics are not completely anaiogous to using the
Weibull distribution, but many kinds of problems can be analyzed either
way. Life testing typically describes the time +to fallure of a known
(typically small) number of Items (appliances, machines, death of animals,
etc.) subjected to a constant stress. Although Ilife testing 1is wusually
used to describe the average fallure time of ths population from which the
items are sampled, It contains all the statistical tools needed to study
the first fallure; thus It can be used to study the statistical properties
of the smal lest extreme value. The Welbull distribution Is more general In
scope; 1T can be used to describe the failures In a changing environment
that cause the first fallure, as well as the +time +to failure under
conditions of constant environment, Statistically, it 1Is wusually
preferable to use the Weibull for changing environmental conditions and

life testing for studies of time to failure. For example, suppose a small
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town builds a wooden bridge over thelr stream. 1f the mayor Is Interested
In estimating how many months before the brldge needs repalr (assuming no
unusual condlitions), he should use |ife testing statistics. If, Instead,

he Is interested in estIimating how big a truck can use the bridge before It
falls, he should use Welbuil statistics.

In the simplest form of |ife testing faliures are regarded as events
having a Polsson distributlion with mean time to fallure of 1/g. It then
follows that the time to the flrst fallure In a group of n Items has an
Exponential distribution with a mean of g/n. The times of successlve
fallures are independent and Exponentialiy distributed. If T 1Is the
observed time of +the flirst failure, then 2nT/g Is Chi-square distributed
with 2 degrees of freedom. An unbiased estimate of g is nT. From these
assertions, a 100a% confidence interval for the mean life g may be stated

after the first fallure in a group of slze n Is observed to be

(12.11) 2nT___ ¢ g < -z--201

x(2,a/2)  X%(2,1-a/2)

where X2(2,a/2) is the 100a%/2 value found In a table of
the Chi-square distribution with 2 degrees of freedom.
For a 95% confidence interval on g, with a=0.05,

x2(2,0.025)=7.378, and X2(2,0.975)=0.0506.

For example, suppose a manufacturer places 10 units of a new kind of
ozone measurement device around a city, and observes the flirst breakdown
after 5.3 weeks of operation. At that time, hls best estimate of the mean
time +to fallure of each of +this +type of unit is 53 weeks, with a 95%
confldence interval of 14 to 2094 weeks (37 years). This 1Is not a very
useful confidence Interval, but one should not expect that some other
approach would glve better resuits. The manufacturer aiso wishes +to
estimate how many repalr men he needs to malntain 100 units. Using the
fact that the time between failures Is exponentially distributed with mean
of g/100 (assuming each unit is repalred as soon as It falls so that the
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sample size, n, remains constant), the manufacturer can expect an average
of Just over +two fallures per week, and with 95% confldence successive
failures will occur between 0.048 week (just over 8 hours) and 6.96 weeks
(2.5% and 97.5% tolerance |imits of an Exponential distribution with a mean
of 53/100). These |limits are obtained by solving the Exponential density
function, F(x) = 1 - exp(-t/m), for t when F(x) Is set to the desired
probabil Ity limit and the mean, m, Is known.

12.5 SUMMARY

This chapter presents an introduction to tha Weibull or Fisher Type 3
Extreme Value distribution. This distribution 1Iis used In the study of
rel fabil ity and In materlials fallure studies. The density and distribution
functions are presented along with formulas for several estimable
statistics. The Welbuli distribution allows the option of Including a
third parameter, In addition to scale and shape parameters, which
represents a threshold below which the probability of an effect or a
measured response Is zero. Simple parameter estimators are given, and It
Is noted that such estimators usually depend upon the logarithmic
relationship between +the Welbull and Extreme Value distributions. The
| iterature on parameter estimation Is reviewed and papers are cited that
propose unblased and efficient estimators for parameter values, confldence
Intervals, and tolerance |imits, and that can be used with censored
samples. Finally, the use of Ilfe testing statistics for extreme value

problems Is discussed.



THE WEIBULL DISTRIBUTION Page 12-11

12.6 REFERENCES

Bain, L. J., and Engeihardt, M., 1981, !'Simple Approximate Distribution
Results for Confldence and Tolerance Limits for the Weibul |l Dis+ribution

Based on Maximum Likel lhood Estimators', Technometrics, Vol. 23, No. 1, pp
15 - 20.

Billmann, B. R., Antle, C. E., and Baln, L. J., 1972, 'Statistical
Inference from Censored Welbul |l Samplies', Jechnometrics, Vol. 14, No. 4, pp
831 - 840.

Cohen, A. C., 1975, 'Multi-censored Sampling In the Three Parameter Weibul |
Distribution', Iechnometrics, Vol. 17, No. 3, pp 347 - 351,

Engel hardt, M., and Bain, L. J., 1974, 'Some Results on Polnt Estimation
for the Two=-Parameter Weibul | or Extreme-Value Distribution?',
Jechnometrics, Vol. 16, No. 1, pp 49 - 56.

Engel hardt, M., 1975, 'On Simple Estimation of +the Parameters of the
Weibull or Extreme Value Distributton', Technometrics, Vol. 17, No. 3, pp
369 - 374.

Epstein, B., and Sobel, M., 1953, 1'Life Testing', .. Amer. Stafistical
Assoc,, Vol. 48, pp 486 - 502,

Epsteln, B., 1960a, !'Statistical Life Test Acceptance Procedures!,



THE WEIBULL DISTRIBUTION Page 12-12

Jechnometrics, Vol. 2, No. 4, pp 435 - 446.

Epsteln, B., 1960b, 'Estimation From Life Te2st Data', Iechnometrics,
Vol. 2, No. 4, pp 447 - 454,

Fertlg, K. W., Meyer, M, E., and Mann, N, R., 1980, 'On Constructing
Prediction Intervals for Samples From a Weibull or Extreme Value

Distribution', Jechnometrics, Vol. 22, No. 4, pp 567 - 573,

Lawless, J. F., 1975, 'Construction of Tolerance Bounds for +the Extreme
Value and Welbull Distributions', Iechnometrics, Vol. 17, No. 2, pp 255 =
261 L]

Lemon, G. H., 1975, 'Maximum Llkel lhood Estimation for the Three Parameter
Welbul! Distribution Based on Censored Samples', Technometrics, Vol. 17,
No. 2, pp 247 - 254,

Mann, N. R., and Fertig, K. W., 1977, 1'Efficient Unblased Quantlie
Estimators for Moderate-Size Compiete Samples from Extreme Value and
Weibull Distributions; Confldence Bounds and Tolerance Prediction

Intervals', Technometrics, Vol. 19, No. 1, pp 87 - 93,

Parzen, E., 1962, Stochastic Processes, Holden-Day.

Peto, R., Lee, P. N., and Page, W. S., 1972, 'Statistical Analysls of +the
Bloassay of Continuous Carcinogens', Br. J. Cancer, Vol. 26, pp 258 - 261,



CHAPTER 13
M1SCELLANEOUS TOPICS

13.1  INTRODUCTION

This chapter contains a varliety of unrelated topics that do not
logically fit 1Into other chapters and whose discussions are too short to

constitute separate chapters.

13.2 RECORD TIMES

A sequence of record times is obtained by sequentially examining a
data |1lst, or sequentially collecting data, and extracting a sublist of
records. A record is the maxima (or minima) of the data so far examined or
col lected. Previous records are not discarded when a new record Is found,
thus the sublist consist of a sequence of Increasingly better records and
as the sublist gets longer additions to it become less frequent. The key
element of this concept Is that the size of +the groups of data values
between record values is not fixed, but rather Is a sequence of increasing
random variables. This variable group size results in the distribution of
record values belng approximately Gaussian rather than one of the extreme
value distributions. Extremes are derived from fixed sample sizes, records
are derived from a sequence of Increasingly larger and variable sample

slzes.

Let A[n] and B[nJ] be the location and scale parameters respectively
for examinimg n data values, and let N(n) be the number of records
extracted from the n data values. Designate the N record values as R[1],
RC21,...R[N], and for any arbitrary value of n designate the overall record
as R[N(n)]. One might expect that the quantity
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(RCN(n)J = A[n])/B[n]

would converge in probablility to a reduced Extreme Value distribution.
This quantity actually converges to a distribution closely related to the
Gausslian.

Thus, [f a data set of n values Is sequentially examined and N
records, R, are extracted, the statistical distribution law of the R's will
look Gaussian rather than |ike an extreme value distribution. This s
because the R's are not the maxima (or minima) of equal slzed subsamples,
and also the R's are sequentially correlated. A rigerous mathematical
development of +this concept may be found in Galambos (1978, Sectlons 6.3
and 6.4).

13.3 MIXTURES OF EXTREME VALUE DISTRIBUTIONS

Sometimes a data set Is composed of samples from +fwo or more
populations mixed together. This situation can e caused by such things as
a change In measurement conditions, or by collecting data from a
nonhomogeneous population. When data Is col lected over a long time period,
such as meterologlical or air pollution data, the location of measurement
stations can change and Instruments are often upgraded, introducing blas
and a change of varlance. The data set of all weights of new employees of
a company Is a mixture of two biologlcal phenomena because there are both

male and female employees.

In many data analysis situations the mixture Is caused by much less
obvious conditions than the examples of the previous paragraph, and data is
not collected on some auxillary varlables necessary to Identify the
components of the mixture. When such auxillary variables are available or
can be found in other records, the data can be separated into subsets for

statistical analysis or the auxillary variable can be used as a covariate.
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Often 1t 1Is possible to recognize a mixture on a probability plot,
where mixtures appear as a segmentation of +the data into clusters or
segments of lines. Once a mixture Is recognized, or suspected, it Is
possible to define a mixed distribution function and use maximum |ikel I hood
methods (Section 7.3) to find estimates for the parameters of the component

distributions of the mixture.

A mixed density function is deflned as a welghted sum of component
densities where the welghts describe the proportion of each density In the
total.

(13.1) fM(x) = p1f1(91,x) + pzfz(ez,x) +....pnfn(9n,x)

where x = the data variable,
fM( ) = the mixed denslty function,
f[( ) = the 1th component density,
0, = parameters of the I[th component,

i
Py = the mixing welght,

Restriction: P + Py +....pn =1.0 .

The mixing welght is the probabillty that a data value comes from the 1th
density. For data values x[jl, j = 1,2,...J, maximum |ikel ihood parameter

estimates are found by maxImlizing the functlion L defined In Equation 13.2,

J
(13.2) L =3 £, .
J=1

The use of a generallzed functional minimizatlion algorithm, such as Simplex
described In Section 7.3, can be used to find the parameter values that

maximize L or |, the logarithm of L.

Changery (1982) describes a mixture of extreme value distributions for
wind speed. He ldentifles storms of two types, tropical and nontropical.

The annual extreme wind speeds of +tropical storms appear to follow a



MISCELLANEOUS TOPICS Page 13-4

Weibull distribution, and the extreme wind speeds of nontropical storms
appear to follow an Extreme Value distribution. A mixture of tropical and
nontropical storms 1is typical for weather stations located in Florida and
along the gulf coast. A list of annual maximun wind speeds from such
stations 1s a sample from a mixture of extreme value distributions.
Changery actually Identified +tropical storms by reviewing historical
weather maps for the days on which the annual maxima occurred (that is, he
used auxl!llary varlables). He then separated the data Into +two subsets,
for each subset he used appropriate parameter estimation techniques, then
used a mixed distribution function to compute wind speeds versus return
period. In +his discussion the more general |likellhood function approach

will be used.

Table 13.1 gives 30 years of annual extreme wind speeds for
Jacksonville, Florida, the storm type is that determined by Changery. The
wind speeds are corrected to be miles per hour at 10 meters helight.

Table 13.1
Extreme wind speeds, Jacksonville, FL
T Indicates a tropical storm.

.Y_EARM.EHHEE IEABMEI:[]XEE
1950 65 1965 52
1951 38 T 1966 44 T
1952 51 1967 69
1953 47 1968 47 T
1954 42 1969 53
1955 42 1970 40
1956 44 1971 51
1957 42 1972 48
1958 38 1973 53
1959 34 1974 48
1960 42 T 1975 68
1961 44 1976 46
1962 49 1977 36 T
1963 56 1978 43

1964 74 T 1979 37
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MAX SPEED
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Figure 13.1
Extreme Value Probabillty Plot
of Jacksonvi]le, FL Data

Figure 13.1 s an extreme value probability plot of the data In Table
13.1. The numbers Indicate that more than one data value falls on the same
plotting position. This figure clearly shows the segmented I Tne
characteristic of a mixed distribution, +the four largest values are
displaced to higher wind speeds than would be obtained by extrapolating
from the 26 lower values. A comparison of Figure 13.1 and Table 13.1 shows
that the +tropical storms identified by Changery are not the second
population suggested by the figure, In fact the tropical storm data is

rather evenly mixed among the nontropical storm data. Thus, there appears
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to be more than one basls for separating populations from this storm data.
In order to Illustrate the use of +the maximum |ikelihood estimation
technique using a mixed density function, the remainder of this discussion
will ignore the classification given In Table 13.1 and Instead use the
population structure suggested In Figure 13.1.

An examination of Figure 13.1 suggest that the two segments are well
represented by straight llnes. This in turn suggest that both segments are
samples from different Extreme Value distributions. Additional plotting,
not shown here, using logarithms indicated that a Weibull or Cauchy
distribution are not good cholices for elther segment. Admittedly, four
data points are scant information for such a cholce of distributions, but

that's all the Information there Is in the upper data segment.

The Extreme Value density function Is given In Equation 7.9. Using
the definition of a mixed density given In Equa—ion 13.1, the density of a
mixture of two Extreme Value distributions Is the flve parameter density
glven In Equation 13.2.

(13.2) fM(x[i]) = p*h1(x[l]) + (1-p)*h2(x[1])

h1(x[I])
y,L1]

h,(xC1D) = exp(-y,L[1] -exp(-y,[11M)/a,
y L1l = (x[1] - u,)/a,

exp(-y1[I] -exp(—y1[I]))/a1
(x[1] - uy)/a,

The flve parameters are the two modes, the two scale parameters, and the
probabil ity that a data value Is a member of the first population.

In order to use a generalized Iterative function maximization
algorithm +to find the maximum !ikelihood estimates of the parameters of

Equation 13.2, Initial estimates of all parameter values are required. An
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inftial estimate of p 1Is simply the proportion of the data points that
appear to be in the lower population in Figure 13.1: p = 26/30 = 0.867.
Inttial estimates for the modes and scale parameters can be obtained from
regressions on subsets of the data, or by the method of moments applied to
the subsets. The method of moments defined in Equations 7.15a and 7.16a Is
used here. The 4 data points In the upper segment have a mean of 69.00 and
a standard deviation of 3.74, yielding an estimated mode of 67.32 and scale
parameter of 2.92. The data points of the lower segment have a mean of
44,89 and a standard deviation of 5.81. The corresponding estimate of the

mode is 42.27 and the estimate of the scale parameter Is 4.53.

The SIMPLEX algorithm was used to maximize the logarithm of the mixed
density defined 1In Equation 13.2 using the data in Table 13.1, and the
Initial estimates described In the previous paragraph. The results are
given in Table 13.2,

TABLE 13.2
Maximum Likel Thood Estimates using a Mixed Extreme
Value Density and Jacksonville, FL Data

Parameter Estimate Standard Error

p 0.885 0.092
u 42 .29 1.70
u, 67.63 2.37
a, 5.59 1.32
a, 2.62 1.64 ]
The same technique was used to find the maximum |lkelihood parameter

estimates using a single Extreme Value density function. The results are

given in Table 13.3.
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TABLE 13.3
Maximum Likel Thood Estimates Using a Single Density,
Jacksonville, FL data

Parameter Estimate Standard Error
u 43,74 1.962

a 7.230 1.495

These two sets of parameter estimates can be evaluated by comparing
the empirical distribution of the data to +the distribution models on
probabll ity plots. For this, the densities h(x) In Equation 13.2 are
replaced by the corresponding distributions H(x), and the equation Is
solved for each data value x[1]. The results for the mixed distribution

are shown In Figure 13.2. This figure suggest a good fit to the data was
achieved.
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FIGURE 13,2

Observed (o) and Expected (e) Probabilities
Extreme Value Probability Plot
Mixed Density Model

The corresponding plot for the single density model

13,3, A visual comparison

density does not model the four highest wind speeds as well

density model does.

Is given In Figure
of Flgures 13.2 and 13.3 shows that a single
as the mixed
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FIGURE 13.3

Observed (o) and Expected (e) Probabilltles
Extreme Value Probabllity Flot
Single Denslty Model

Consideration of the return periods shows the consequencees of
choosing the wrong density mode!. Return perlods are defined and discussed
In Section 7.2, Equation 7.8 Is used except that H(y) Is replaced with the
single or mixed distribution model using the appropriate maximum | ikel Ihood
parameter estimates. The return perlod using the single density model can
be solved ‘analytlically, however the mixed censlty model requlres an
iterative solution to find the value of x corresponding to a gliven value of
T(x). The results are Ilsted In Table 13.3,
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TABLE 13.3
Return Period Versus Wind Speed, Jacksonville, FL

Prob = probability of the given wind speed
occurring in any single year (1-F(x))

T(x) = return period (years)
x(1) = single density model wind speed (MPH)
x(2) = mixture of densities model wind speed
Prol T(x) &(1) &(2)
0.50 2 46 45
0.20 5 55 55
0.10 10 60 67
0.05 20 65 70
0.04 25 70 70
0.02 50 72 73
0.01 100 77 75
.005 200 82 77
.002 500 89 80
.001 1000 94 83

Table 13.3 shows that the expected wind speeds do not differ much between
the single density and the mixed density models for return periods less
than 100 years. For return periods of 100 years or more, the single
density model predicts higher wind speeds than does the mixed density
model. The displacement of the upper segment in Figure 13.2 to higher wind
speeds suggest that the mixed model should yield higher speeds than the
simple model for the return periods over 100 years. The scale parameter of
the upper segment of the mixture density model is less than half the scale
parameter of the single density model so that extrapolation beyond the

figure ylelds lower wind speeds for the mixed model.

The correlation coefficient goodness of fit +test, discussed In
Appendix 7-B Is based upon a theoretical consideration of a single
population distribution. There Is no reason to assume it Is applicable +to

a mixture of distributions situation.
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13.4 BIOCASSAY AND EXTREME VALUES

The Extreme Value distribution can be used as a dose-response model In
bioassay. This wuse is not an extreme value situation because all data is
used rather than just +the extremes, The shape of +the Extreme Value
distribution |Is used as another possible bioassay model. A better
terminology 1s 'the double exponentlal bioassay model!. The most commonly
used bioassay mode!s are the probit (Gaussian) and logistic distributions.
Any of the special features of the Extreme Value distributlion +that result
from using extreme data values, such as extrapolation to larger sample

sizes (Section 7.4.3), are not applicable to bioassay.

In bioassay work a plot or regression Is made of a nonlinear function
of a blological response versus dose or a function of dose (such as the
logarithm of dose). If the right functions are chosen, the resulting plot
will be a stralght Ilne. Statistical inferences and hypothesis test can
then be derived from the |ine. Suppose groups of animals are exposed to a
sequence of Increasing concentrations of a pollutant. Let d[i] represent
the dose for the ith group, and let pLi] represent +the proportion of
subjects or anlimals responding In +the 1ith group (pLiJ = number I1f
responders in Ith group/total exposed In group). The response can be any
yes-no type measurement such as sick or well, dead or alive, active or
Inactive and so on. The data points (d[iJ,p[i]) are transformed Into
values (x[1]1,y[i]) where

yLid = Int(=tn(1 - pL1IM) ,
xCil = f(d[i1D) .

A plot of the x's and y's is a dose-response curve for +the doubie
exponential bioassay model. This situation differs from 'ordinary!
bioassay only in the substitution of the Inverse of +the Extreme Value
distribution for +the Inverse of the Gaussian or logistic distributions In

the computation of the y's.
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The simulated data gliven In Table 13.4 show the computatlions used In a
typlcal bioassay analyslis. The natural logarithms are used as the data
transformation to derlve the x's. Suppose 5 groups of Ilaboratory anlmals
are exposed to Increasing doses of an air pollutant in an environmental
chamber for one hour each day and the weight of each animal at the
beginning and end of the experliment Is recorded. A response Is defined to
be a loss of weight during the experiment. The proportion of animals
responding Is given In the p column of Table 13.4, the dose d [s the
concentration of pollutant In parts per milllon in +the chamber. For
comparison wlth ‘'ordinary! bioassay, the normal deviates are included In
the INVNORM column, +these are calculated as the Inverse Gausslan
distribution function of the p's.

TABLE 13.4
Bloassay Data

i diil plil Intd) 13

1 7. 0.05 2. =3, -1.7
2 20. 0.13 3. -2, -1.1
3 55. 0.31 4, -1. -0.5
4 148, 0.63 5. 0. 0.3
5 403, 0.93 6. 1. 1.5

Figure 13.4 plots the raw data In two ways, the proportion responding

versus dose and versus the natural logarlthm of the dose.
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FIGURE 13.4
Log Dose (x) versus Proportion Responding and-
Dose (o) versus proportion Responding

Neither of these curves are close to a straight line, suggesting +that
a transformation of the response should be considered. Figure 13.5 plots
the Inverse Gaussian transformation of the proportion of responders versus

dose and natural logarithm of the dose.
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FIGURE 13.5
Bloassay Plot Using Gaussian Distribution
x = In{(Dose),
o = Dose

The dose-response plots of Figure 13.5 also are not close to a
straight Iine. The upward curve on an inverse Gaussian plot suggest a
double exponential model. Figure 13.6 is the corresponding plot for the
double exponential model, +that is a double logarithmic transformation of

the response.
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FIGURE 13.6
Bioassay Plot Using Double Exponentlal Model
x = In(Dose),
o = Dose

The double exponential response mode! along with a logarlthmic
transformation of the dose describes the data very well, and the other
combinations of response and dose transformations do not result In a

reasonably stralght iine on the bioassay plots.

Fitting data to bloassay |ines, comparlison of models, and other
statistical uses of bioassay models is not a simple regression problem. A
review of a bioassay text, such as Finney (1971), indlcates that an
Iteratively rewelghted regression Is requlired to get unbiased estimates of

regression parameters. The weights are a functlon of the expected value of
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the proportion responding, using the observed proportion ylelds biased
estimates. The |ikellhood function approach to parameter estimation
(Section 7.3) can also be used with bloassay models. The [lkelihood
function approach, which is mathematically equivalent to the Iteratively
reweighted regression approach, Is presented only In recent bioassay text
because the necessary computer hardware and software was not avaliable In
the 1930's and 1940's when the theory of bioassay was being developed.
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