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A GEOMETRIC OPTICS APPROXIMATION TO A
MODEL OF PHASE-COMPENSATED WHOLE-BEAM THERMAL BLOOMING*

I. GENERAL THEORY AND NUMERICAL VERIFICATION
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ABSTRACT

We develop a geometric optics series expansion approximation to a
model of phase-compensated whole-beam thermal blooming of high-power
laser beams. The model consists of a nonlinear medium whose thermal
blooming coupling coefficient decreases exponentially with the
propagation distance from the laser and whose motion relative to the
laser beam is taken to be unidirectional, a Gaussian high-power intensity
profile at the laser, and a collimated beam boundary condition at an exit
plane that is many e-folding scale lengths from the laser. The series
expansion parameter is directly proportional to Smith's geometric optics
distortion parameter. [D. C. Smith, Proc. IEEE 65, 1697 (1977).]
Expansion formulae are derived for both the intensity and phase at all
propagation distances. The exit plane intensity profiles obtained from
these formalae qualitatively agree with numerical results obtained from
the wave-optics thermal blooming code FOURD, except when the FOURD
results indicate that caustics are forming; quantitative agreement is
also excellent, except for small differences in fine structure near the
downwind edge of the beam. FOURD's return-wave phase-compensation
iteration provides an estimate that the r.m.s. error in the initial phase
obtained from our series approximation truncated at third-order is
approximately 0.5% over the range of values we investigated.

*Work performed jointly under the auspices of the U. S. Department of Energy
by Lawrence Livermore National Laboratory under contract number
W-7405-ENG-48, for the U. S. Army in support of MIPR No. W31RPD-7-D4041.



1. INTRODUCTION

Herein, we study phase-compensated whole-beam thermal blooming of
high-power laser beams in a medium whose thermal blooming strength
decreases exponentially with propagation distance. HWe use a model
developed by Aitken, Hayes, and Ulrich [1] which is described in Fleck,
Morris, and Feit [2]. To include the effect of thermal heating on the
index of refraction, this model uses linearized hydrodynamics with
isobaric and steady-state approximations. An unidirectional wind is
assumed.

The shape of the high-power beam at the laser is taken to be an
infinite Gaussian. We seek the phase correction at the laser that will
produce a collimated beam after traversing the nonlinear medium. No
analytic solution to the model is known and the nonlinear index of
refraction makes the existence of one unlikely. Therefore, we use a
series expansion technique. First we make a geometric optics
approximation to the model, justified by a large Fresnel number, and
restrict our analysis to whole-beam effects. The geometric optics
approximation introduces a small parameter directly proportional to
Smith's [3] geometric optics distortion parameter and a solution to this
approximation is found as a power series in the parameter. The terms in
this series are computed using the symbolic manipulating computer program
MACSYMA.

In Sec. 2, we introduce the model of Aitken, Hayes, and Ulrich [11],
make the geometrical optics approximation and develop the series
solution. In Sec. 3, we compare the irradiance profiles after traversing
the nonlinear medium as computed by our geometrical approximation to
those obtained from numerical calculations. We also use the numerical
results to estimate the accuracy of the phase at the laser obtained from
the geometric approximation. 1In the Appendix, we list the first few
terms on the geometrical optics approximation to the irradiance profiles
for many e-folding lengths from the laser and the phase profiles at the
laser.




2. FORMULATION AND METHOD OF SOLUTION

The Basic Model

Maxwell's wave equation in the steady-state parabolic or Fresnel
approximation is

oE 2 2,2
2ik 3z ™ le + K°(n®-1) E QD)
where kK = 2w/\, A is the wavelength of the laser, and

X
1-n? B expl-2/24] §  |ECx,.y.2)|2dx, (2)

is the hydrodynamically induced change in the permitivity. In (2), Zg is
the characteristic length associated with g8

2o dn
B = Cp Tv dp (3)

where « is absorption coefficient, %% is the density refractive
coefficient, Cp is the heat capacity of the air, T is the ambient air
temperature, and v is the wind speed all evaluated at z=0. The wind velocity
is taken to be in the positive x-direction. At the laser the intensity of the
beam is taken to be the Gaussian

IE(x,y,O)I2 = 2P exp[-2(x2+y2)/a2]/(wa2) (4)
where P is the power in the beam and a is its effective radius.

It is convenient to introduce the following scaling in (1), (2), and (4):

(x,y) = a(x,y)/IV2 (5)

Z =252 (6)

E - [2p/(ra®)1'/2 £ 7)



The result is

X
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where NF = ka2/220 js the Fresnel! number,

§ = Bzgp/(z‘/Z«a3) - V7 NN 10)
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and NX is the total peak optical path difference (in waves) due to thermal
blooming when intensity reshaping and transmission losses are ignored.

In (8), (9), and the sequel we have dropped the overbars on E, x, y, and z.

Geometric Optics Approximation
Let

1/2

E=A exp[-128NF¢] an

where A > 0 and ¢ is real. Then after multiplying (8) by exp[iZ&NF¢], the
imaginary and real parts become

@, 2679+ VA + 28Avi¢ -0 (12)
.-z X 2 2,1/2,-1 _2,,1/2
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The geometric optics limit of (13) is the NF - o limit. For cases of
interest NF > w103 and § > 0.006, so we have

sn% >> 1 (14)




Therefore we approximate (13) by ignoring the right-hand side, thus

X
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Upon substitution of (11) into (9) we find that A satisfies the initial
condition

A(x,y,0) = exp[-x2 - y2] (16)
The condition that the beam is collimated in space becomes

¢(x,y,») = 0 | a7
Thus, we seek the solutions to (12) and (15) that satisfy (16) and (17).

Geometric Optics Solution

At power levels of interest we can assume,

§ << ] ' (18)

Therefore, we take

® m
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Upon substitution of (19) and (20) into (12), and setting the coefficients of
the terms &§™e "% equal to zero yields

0
8Am

2z - 0, m=20,1, ... (21)
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Since Ag is only a function of x and y, (21) is automatically satisfied.
These functions are chosen to satisfy the initial condition (16). Thus,

Ag - exp(—x2 - yz) (23)
0 M el
A =-1 A , mMm=0, 1, ... (24)
m+1 n=0 m+1
Next substitution of (19) and (20) into (15) and setting the coefficients of
the terms §™e -(n+1)z equal to zero yields
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The remaining condition (17) is automatically satisfied by (20).

In summary, Ag and ¢0 are defined by (23) and (25), respectively. Then
for fixed m, AJ and ¢ for j=0,1, ..., me are recursively defined in
terms of known quantit1es by (22), (24). (26), and (27). These computations

have been performed using the symbolic manipulating program MACSYMA.




The quantities of physical interest are the irradiance profile many
e-folding lengths from the laser

-]

A(X,.Y’“) = I

L Ag(x.y) (28)
m=0

and the phase profile at the laser

<

m ™
$(x,y,0) = L & I ¢m(x,y) (29)
m=0 n=0

0

M n
m(x,y) and I ¢m(x,y),

In the Appendix, we 1ist the various terms of A
n=0

form=1, 2.

3. COMPARISON WITH WAVE-OPTICS CALCULATIONS

To evaluate the accuracy of the analytic model, including the impact of
omitting diffraction and transmission loss due to absorption, we compare its
results to those obtained from our wave-optics thermal blooming code, FOURD.
For initial conditions in the FOURD calculations we use the z = O phase given
by Eq. (29) truncated at m = 3 and multiplied by § NF’ as in Eq. (11),
plus a Gaussian intensity profile. Figure 1 shows these initial phase
profiles as contour plots with a one wave level separation and a base
zero-wave level (not shown) far upwind of the high-power beam. HWe evaluate
the FOURD code results for a propagation path length of 520, a Fresnel
number NF = 741 (at zo), and a 0.02 optical depth due to absorption.
Finally, we use a steady-state return-wave phase-compensation iteration to
estimate how close the analytic model came to a "best correction." (The above
choice of path length, Fresnel number, and optical depth is our compromise
between modeling the total absorption optical depth, staying at parameter
values for which geometric optics is an excellent approximation, and modeling
interesting laser systems.)




Figure 2 shows the extent to which the near-field intensity analytic
results given by Eq. (28) truncated at m = 4 agree with the corresponding
results obtained from FOURD at the end of the propagation path; the results
are displayed as contour plots drawn with levels at the peak intensity and at
0.9, 0.8, ... thereof. The analytic model reproduces the qualitative behavior
of and also achieves reasonable quantitative agreement with the FOURD results,
except at the largest § value. The principal quantitative difference is the
resolution of fine structure near the downwind edge of the beam; this
difference increases monotonically with increasing §, and is probably due to
truncation of the series in Eq. (28). At the largest & value the analytic
model's intensity profile has two regions of negetive values (inside the open
U-shaped contours above and below the symmetry axis), indicating that its
region of validity for truncation at m = 4 has been exceeded. The
corresponding wave-optics result shows evidence of two caustics in the
downwind fine structure.

Table 1 characterizes the accuracy of the analytic model in several
ways. The Strehl ratio in column 2 approximately measures extent to which the
analytic model has produced a flat phase at the end of the propagation path.
The change in the Strehl ratio achieved with a return-wave phase-compensation
iteration measures the combined effects of truncating the analytic phase
series at m = 3 and of differences between the equations solved by the
analytic model and by FOURD. Column 5 contains an r.m.s. phase difference,
&6, obtained by equating the ratio of these two Strehl ratios to
exp[-(2«8¢)2]. These differences are approximately 0.5% of optical path
difference (OPD) due to thermal blooming given in column 4, and some of this
small difference is due to the finite optical depth and finite path length in
the FOURD calculations (discussed below).

In the FOURD calculations, we used a constant 0.25 « Z, propagation step
and a square mesh whose width was 4 times the e"2 diameter of the Gaussian
high-power beam. For & = 0.0221 and 0.0442 we used a 256 by 256 mesh; for
6§ = 0.0331 and 0.0662 we used a 512 by 512 mesh. The return-wave
phase-compensation iteration employs a wave-optics algorithm starting with a
collimated tenth-power super-Gaussian beacon at z = 520 whose diameter at
el is approximately 2.3 times the e 2 diameter of the Gaussian high-power
laser beam at z = 0 and whose wavelength equaled that of the high-power laser
beam.




For the highest § value the maximum spectral density at the Nyquist
boundary is approximately 10"7 times the peak spectral density, which
usually indicates that the calculation is free of spectral aliasing.
Nevertheless, the downwind fine structure above and below the two intensity
maxima closest to the symmetry axis is suspiciously reminiscent of such
aliasing and may be an artifact of inadequate resolution. A1l the other
calculations are definitely free of aliasing.

We have examined the effects of various differences between the equations
of the analytic model and those solved by FOURD. The effect of the finite
Fresnel number, NF = 741, was evaluated by running the § = 0.0221 and
0.0331 cases at NF = 1482. The effect of finite optical depth due to
absorption was estimated by running the § = 0.0331 case with an optical
depth a factor of 10'3 smaller. For both the increased Fresnel number and
the smaller optical depth cases the intensity results at the end of the
propagation path were indistinguishable from those in Figure 2.




Table 1.
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Measures of the accuracy of the analytic model obtained from FOURD
calculations at NF = 741.

Strehl ratios for Estim hase (wav
Analytic One return-wave peak OPD r.m.s. difference
§ Phase iteration from ¢8 from return-wave
0.0221 0.961 0.984 4.6 0.024
0.0331 0.925 0.974 6.9 0.036
0.0442 0.884 0.950 9.2 0.043
0.0662 0.709 0.758 13.9 0.041
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APPENDIX

In this Appendix, we give the first few terms appearing in the series in
(28) and (29). HKe write

m
A= I B;(x) y2n exp[-(m+l)y2]
n=0

2n

m 2
¥y = I3 wm(x) y© expl-(m+1)y~]
n=0

(.Y

-
3
[]
I3

n=0

Then
B] = e{2pf + 2p + 8xe }

B] = -8pe{f+1}

2 2 2

B) = e(10p%f2 + 20p%f + 28pxef + 10p% + 28pxe + 108x%e? - 38¢%)

2

B) = -e{114(pF)? + 228p%F + 120pxef + 114p% + 120pxe - 96 €?)

Bg = 108p%e {f% + 2f + 1}
2

1 1.2
*1 =3 e” + rl (f+])2

¥ = -3 pA(FeD)?
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¥ = 5 (-2xe® - peliehy + L p3014m3 - 37 214t,)

¥y = 2 pr2e?1ef) - 3p201.0)3 4 2 "/2148,))

w |

N
Wi

p3(1+£)3

Here

f=-"71T e dt = Erf(x)




Figure 1

Figure 2
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FIGURE CAPTIONS

Initial phase profiles predicted by the geometric optics series
expansion truncated at third order. The normalized values of the
expansion model have been scaled to physical phase values in waves
for a case with a Fresnel number of 741. The contour separation is
one wave and the base contour (not visible) is at the ambient
optical path which occurs infinitely far to the left on these plots.

Comparison of path end near-field intensities. The FOURD
wave-optics numerical results are at 520, while the series
expansion results are at infinity. The contour levels in each plot
are at the peak intensity of that plot and 0.9, 0.8, ... times
thereof.
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