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ABSTRACT

This report describes conceptual design and analysis performed by
General Atomic Company for the U.S. Department of Energy on the direct
cycle gas turbine high-temperature gas-cooled reactor (GT-HTGR). Three

GT-HTGR plant concepts were studied:

1200-MW(e) three-loop non-intercooled cycle,
1200-MW(e) two-loop intercooled cycle,

600-MW(e) one-loop intercooled cycle (demonstration plant).
General Atomic co-operated with the German/Swiss HHT project on

the development of the GT-HTGR concept in the areas of systems analysis,

safety and accident analysis, and PCRV-liner-internals design.
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1. INTRODUCTION

This report describes technical work performed by General Atomic
Company (GA) under the direct cycle gas turbine high-temperature gas-cooled
reactor (GT-HTGR) program, Department of Energy (DOE) Contract EY-76-C-03-
0167;*Project Agreement No. 46, for the period October 1, 1978, through
March 31, 1979. Per agreement with DOE, this is the first of a series of
semiannual reports which replaces the quarterly reporting system. Follow-
ing the report summary in Section 2, technical progress is presented in
Sections 3 through 21 in the numerical sequence of the Contract Work Break-
down Structure (CWBS) (see Contents) for the GT-HTGR specific work. This
CWBS is a portion of that used for identification of work elements in the
total National HTIGR Program. Project Agreement No. 46 scope includes major
program elements involving the GT-HTGR systems and component design and

program management.

The major activities during the first half of FY-79 involved further
concept definition of the commercial version of the GT-HTGR power plant, a
re-definition of the GT-HTGR Program as a result of the steam cycle HIGR
(SC-HTGR) phase-out decision, and cooperation with the German-Swiss HHT

project in the definition of the HHT demonstration plant.

*Effective May 1, 1979, this contract number was changed to
DE-AT03-76SF70046.
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2, SUMMARY

Concept studies for the reference three-loop 1200-MW(e) GT-HTGR plant
were completed, and on this basis an updated plant economic evaluation is
under way. An alternate 1200-MW(e) plant concept having two loops and an
intercooled compressor was completed for the purpose of determining the
differences due to intercooling as compared with the non-intercooled
reference concept. This alternate two-loop plant embodies power conversion
loops (PCLs) similar in size and cycle to that selected by the German/Swiss
HHT project for the HHT demonstration plant. The feature of compressor
intercooling improves plant performance at the expense of additional plant

complexity due to adding the intercooler.

An associated activity was the completion of the conceptual design of
a one-loop 1500-MW(t) intercooled plant intended as a backup design for
the HHT demonstration plant project. This design differs from the HHT
concept primarily in that it features a prismatic core, a single heat
exchanger train, and a significantly smaller prestressed concrete reactor
vessel (PCRV). The design has been forwarded to HHT to supplement its

investigations.

Co-operation with the HHT project in the areas of systems analysis,
safety and accident analysis, and PCRV-liner-internals design has produced
a substantial exchange of relevant technical information which has been
beneficial to both projects. The majority of the work by GA was directed
toward investigation of critical design issues. One issue in particular
is the "warm liner concept," which allows PCRV liner inspection/repair
through elimination of the thermal barrier on the liner. This inspection/
repair feature is desired by German utilities. GA analysis to date has
indicated a number of safety and design problems which neither GA nor the

HHT project has solved to date. The GA project has recommended to HHT
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that an alternate means of meeting the German utility requirement be

developed: as a first goal a leak detection-collection system and secondly

a removable thermal barrier.

Progress in the systems area included transient analysis of the
reference and alternate 3000-MW(t) plants. These transients are being
used to establish requirements for the system and component designs. Other
progress involved the upgrading of the systems optimization code CODER, the
modification of the core auxiliary cooling system (CACS) code RECA to
accommodate the GT-HTGR, and the re-determination of the performance of
the various plant configurations under investigation. The performance of

the reference 3000-MW(t) commercial plant was confirmed at 39.54%.

In the safety/accident analysis and licensing areas, the design basis
depressurization accident (DBDA) of turbine deblading was analyzed, HHT
safety criteria were critiqued, and GT-HTGR licensing requirements were
addressed. Pressure transients from turbine deblading in the area of
the core outlet plenum were calculated in the range of 5.5 to 24.1 MPa/s
(800 to 3500 psi/sec) with 17.2 MPa/s (2500 psi/sec) recommended as a

design basis for the thermal barrier in the core outlet plenum.

In the structures area, the PCRV design requirement for the reference
plant was established taking into account the multi-pressure conditions in
the cavities, the effect of differential pressure onbinner ligaments, and
the proof-test pressure specification. The effect of pressure relief
settings on the PCRV cavity pressure was also addressed. Analysis of the
HHT demonstration plant PCRV bottom head showed that a sufficient number
of tendons to produce the required prestressing could not be provided. An
alternate scheme was proposed which incorporates sufficient horizontal
straight and circumferential tendons in the bottom head to resist the tur-
bine and heat exchanger cavity pressures. Also, for the HHT demonstration
plant investigations, seismic analysis was initiated. In support of the
reference and alternate commercial plant efforts, PCRV, liner, and thermal

barrier conceptual designs were supplied.



Conceptual designs for two-bearing 400-, 500-, and 620-MW(e) turbo-
machines were prepared by United Technologies Power Systems Division (UTC).
Double labyrinth buffer valves have been included to preclude ingress of
lubricating oil into the primary helium. The performance rewards of
increasing the turbomachine outer case diameter were estimated. Sound
power levels at the compressor and turbine inlet and exits were estimated,
and potential methods of attenuation were identified. Critical speed
analysis was performed for both the 400- and 620-MW(e) configurations to
ensure resonance-free normal operation. An approach to remote turbomachine

maintenance was identified.

Heat exchanger design work by Combustion Engineering (CE) to establish
manufacturability of the components led to identification by CE and GA of
areas where further design work is warranted to establish design feasibility.
The designs studied covered the heat exchangers for the demonstration plant

and the reference and alternate commercial plants.
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3. SYSTEM DESIGN METHODS (261002)

3.1. SCOPE
The purpose of this task is to:

1. Modify CACS design, performance, and safety analysis computer

programs for application to the GT-HTGR.

2. Update the cost and design optimization code CODER for use with
the three-loop reference plant design and the two-loop non-
intercooled plant design.

3.2. SUMMARY

3.2.1. Computer Program RECA-GT *

The essential changes to RECA are provisions to receive data from
REALLY and to account for backflow through GT-HTGR main loops. These

changes have been incorporated into the program, but checkout and informal

documentation are not complete.

*%
3.2.2. Computer Program ECSEL-GT

Work has been done on suboptimization within subroutine ECSEL-GT,
which calculates the core auxiliary cooling water system (CACWS) air

blast heat exchanger. However, no revisions have yet been made.

* r
The primary core cooling evaluation code which is used as the basis

for primary system limit evaluations and licensing.
*k .
The sizing code which balances the conflicting system requirements to

obtain the component sizes using costs as the balancing function.
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3.2.3. Computer Program ECSTRA-GT

The capability to model core auxiliary heat exchanger (CAHE) leaks is
being added to ECSTRA. Work is beginning under this subtask to produce a
utility program to translate ECSEL-GT output to ECSTRA input.

3.2.4. Computer Program CODER

In support of evaluations required for the Primary System Parameter
Review Study, CODER has been upgraded to more adequately represent current
design of the 3000-MW(t), three-loop non-intercooled GT-HTGR with a delta
prestressed concrete reactor vessel (PCRV) layout and conventional liner.
This program version is named CODER6. The CODER6 program is now operational
and incorporates the modeling changes and additions briefly reviewed below.
More detailed documentation of the changes to CODER will be included in a
design report specifically established for recording and documenting changes

to CODER.

It should be emphasized that only the fuel, thermal barrier, and
precooler/recuperator costs reflect present-day cost estimating, while all
other costs are 1975 costs escalated to 1979 dollars to account for infla-
tion. Revision of all other equipment cost estimates cannot be incorporated
until June 1979. Nonetheless, it is felt that cost trends resulting from
parameter variations will adequately represent first order effects and pro-
vide guidance on how parameter changes impact overall system costs and

performance.

CODER6 can presently accommodate variations in system temperatures,
pressures, and mass flow rates up to approximately *10%, which is adequate
for the near-term evaluation measurements. To expand the parametric range
beyond *10%, additional modifications to the PCRV, recuperator, and pre-

cooler models may be required.

3-2



The modifications to CODER incorporated in CODER6 are as follows:

1. A new delta PCRV model has been installed and includes repro-
gramming of the following aspects: PCRV elevation view, PCRV
plan view, turbomachine sizing, duct lengths, thermal barrier
areas, helium inventory, concrete volume, liner weight, and

tendon requirements.

2. Duct pressure drop algorithms have been revised for the three-
loop configuration. AP/P values are current estimates and

include turbomachine loss updates.

3. The recuperator pressure drop model and packing efficiency have
been revised to reflect the design change from a central return

duct to an integral return tube configuration.

4. The thermal barrier heat load and gas differential temperature
algorithms have been upgraded to incorporate 34 thermal barrier
zones instead of 25 and include a more rigorous CODER calculation

for heat load.

5. A medium-enriched uranium (MEU) fission product release model
has been incorporated and calculates Cs-134 and Cs-137 as well
as Ag-110m curie releases. An overall fissile particle fraction

is also computed.

6. MEU fuel cycle cost algorithms have been incorporated.
7. The helical finned tube precooler model has been included.
8. All design data for the three-loop configuration have been

revised to reflect present-day knowledge, and the base case

for CODER6 is therefore now current.
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10.

Cost data for the reference design have been upgraded for the
recuperator and precooler components to CE estimates. Fuel-
related and thermal barrier costs are also 1979 estimates. All

other costs are 1975 costs escalated to current dollars.

A plot routine and automated parameter perturbation routine have

been incorporated.
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4. SYSTEM DYNAMICS METHODS DEVELOPMENT (261003)

4.1. SCOPE

The purpose of this task is to develop system dynamics models in the

REALY? code for the GT-HTGR reference commercial plant.

4.2, SUMMARY

The reference commercial plant transient physical system model has
been completed along with modifications to the REALY2 code to improve out-
put and resolve a number of small operational difficulties encountered in
FY-78 analyses. Modeling of the initial operations control and plant
protection system (PPS) functions has been completed and documented to
form the basis for analysis of the component limiting transients of
System Dynamics Task 1003 (see Section 13). Effort has been initiated

on development of a secondary system model.

4.3. DISCUSSION

Some of the changes to the REALY2 code in connection with development

of a GT-HTGR reference commercial model are discussed briefly below:

1. The power distribution in the core was changed to the expected
power distribution for the 625-column core which has been used
in core layout drawings for the reference commercial 3000-MW(t)

design.

2. The number of fuel rod columns has been corrected; 126,082 is

the proper number of fuel rod columns for the 625-column core.



The design point reference gas flow rate for the CORE subroutine
was changed to the steady-state core flow rate which is used in

the reference commercial model.

The section of the CORE subroutine for calculation of approximate
starting temperatures was deleted because it was a non-operational

part of the subroutine and is not needed.

An option now exists which allows selection of either an
exponential or a linear area curve for either the primary bypass

or attemperation valve. The changes were made in HIFLO.

The warm liner options are accounted for by modifications in the

DUCT subroutine.

A problem called "compressor turbining" which occurred in inter-
cooled plant models and restricted the REALY2 predictions of
emergency shutdown transients to a very brief period has been

eliminated by extending the compressor map data.

An improved model of the circulating water system (CWS) to
support the PPS and control system design has been initiated to
simulate precooler leak detection and isolation and also CWS

transients such as pump or cooling tower shutdown.

The REALY2 model (catalogued file REALY2*1) has been updated to
permit the integration of the GT-HTGR configuration variants
(intercooled, non-intercooled, and split-shaft) and the three
current preliminary plant designs [3000-MW(t) reference commer=
cial, 3000-MW(t) alternate commercial, and 1530-MW(t) warm

liner demonstration] into a single computer program.
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5. ALTERNATE DESIGN (630101)

5.1. SCOPE

The purpose of this task is to document one-, two-, and three-loop

plant studies conducted during FY-78 and the first quarter of FY-79.

5.2. SUMMARY
[ ]
During FY-78, work in the GT-HTGR program was directed at two major

areas:

1. Development of a 1530-MW(e), one-loop demonstration plant design
which would be the U.S. version of the HHT demonstration plant.
The features required for follow-on U.S. commercial plants were
incorporated in this design. It was intended that this design
effort would influence the HHT configuration so that the HHT
plant could provide a maximum of information for the U.S. and
European commercial plants. Based on meetings with HHT later
in FY-78, it was agreed that the design should be documented and
act as a backup to the HHT design, providing critical data related

to the evaluation of the "warm liner" concept.

2. Development of a two-loop intercooled and a three-loop non-
intercooled commercial plant conceptual design. The two-loop
design was to maximize the utilization of the demonstration plant
data since it utilized two 620-MW(e) intercooled power conversion
loops (PCLs). The three-loop non-intercooled design effort
represented an update of the existing reference design. A
selection was to be made between the two-loop and three-loop

designs related to risk in proceeding from the demonstration
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plant to the commercial plant, utility requirements, cost,
maintainability, safety, etc. The two-loop and three-loop
efforts were completed and documented, but the selection of

the commercial plant configuration was never made because of the
redirection of the National HTGR Program to adopt the GT-HTGR

as the prime concept. This selection has now been rescheduled
to the end of FY-80 and will cover more than the two plants

which were previously studied.

5.3. DISCUSSION

5.3.1. U.,S. Version of HHT Demonstration Plant Configuration

In FY-78, a study was performed in which 20 plant configurations were
evaluated consistent with the project ground rule for all of the configura-
tions to embody the "warm liner" feature in the core cavity to facilitate

liner inspection.

Essentially two families of plant variants evolved from the study:
(1) configurations which involved eliminating the thermal barrier to the
highest degree possible, and (2) configurations in which the core cavity
warm liner feature was retained, but conventional water-cooled and insulated

liners were featured in the major heat exchanger and turbomachine cavities.

While it is recognized that evaluating and rating a family of plant
variants is difficult, some form of comparative selection criteria was
necessary to identify the candidate plant for specialist design attention.
All the configurations were evaluated on the basis of a simplified and

non-weighted rating system which included the following:

1. Primary system gas flow path complexity (strongly influenced by

major cavity thermal barrier/warm liner requirements).

2. Utilization of one or two heat exchangers (particularly the

recuperator) per PCL.
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3. Adaptability of configuration to a two-loop commercial plant.

4, Maintenance and in-service inspection (ISI) considerations.

5. Plant cost (based on intuitive feeling, since cost data were

not generated).

6. Safety and licensing considerations.
7. Feasibility issues.
8. Attractiveness as a commercial plant [i.e., prestressed concrete

reactor vessel (PCRV) diameter minimization].

The screening and evaluation process led to the following decisions

with regard to plant concept selection:

1. It was felt that the role of the demonstration plant was to
not only prove the direct cycle concept (performance and
integrity) but alsoc to verify the actual components that would
go into the first commercial plant. Accordingly, a concept
was selected embodying full-size [1530 MW(t) loop rating] heat

exchangers.

2, While many major problems exist with the warm liner approach, it
was agreed that for the first time GA would pursue a design con-
cept in which the thermal barrier was eliminated to the highest
degree possible; i.e., all the major cavities would be swept with

fairly low-temperature gas.

Upon selection of the demonstration plant concept, specialist tasks
were initiated in the following areas: (1) PCRV structural design (GA),
(2) reactor internals design (GA), (3) turbomachine design [United

Technologies (UTC)], and (4) heat exchanger sizing and design (GA and
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CE). Toward the end of the 1-yr study, technical inputs from these areas
were factored into the generation of a plant layout drawing, which is
shown in Figs. 5-1 through 5-4. Figure 5-5 is a schematic of the warm
liner flow path. Major plant design parameters are shown in Table 5-1.
The main features of the demonstration plant are given in Table 5-2, and

a description of the plant primary system is given below.

As shown in the plan view of Fig. 5-1, the goal of minimizing the PCRV
diameter was realized by offsetting the core cavity some 2.6 m (8.5 ft).
The chordal orientation of the turbomachine is compatible with the two-
loop commercial plant arrangement. The single, very large recuperator
cavity is positioned over the turbomachine at the turbine discharge end
of the cavity. The plant layout was strongly influenced by the decision
(based on inputs from UTC) to utilize a single core-to-turbine duct. Growth
potential from the 620-MW(e) turbomachine was not a factor in the demon-
stration plant study, but it should be pointed out that for machines much
above this rating the increased mass flow rate would probably necessitate
double turbine inlet ducts. This in turn would essentially mandate dual
turbine exits and two recuperator trains, and the result would be a layout

with features similar to the European demonstration plant.

As seen in Fig. 5-1, both of the helium-to-water heat exchangers are
positioned to the side of (not over) the turbomachine cavity. To comply
with the German requirements, four CACS units, each of 100% capacity, are

incorporated in the primary system.

Referring to Figs. 5-1 through 5-5, the primary system helium gas flow
paths are as follows. After exiting from the core bottom plenum, the
850°C (1562°F) gas is transported in a coaxial duct down to the turbomachine
turbine inlet plane. After expansion in the turbine, the 494°C (921°F)
helium leaves the turbomachine cavity and flows vertically upward into the
low-pressure side of the straight tube modular recuperator. With the low-
pressure gas flowing outside the tubes, there is a regenerative heat trans-
fer (low-pressure to high-pressure gas) of about 1250 MW(t) in this exchanger.

The gas exits radially from the top of the modular assembly at 162°C (324°F)
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TABLE 5-1

MAJOR DESIGN PARAMETERS FOR 1530-MW(t), ONE-LOOP

GT-HTGR DEMONSTRATION PLANT

Turbine inlet temperature
Ambient air temperature
Thermodynamic cycle

Heat rejection mode

Liner type

Compressor pressure ratio

Compressor inlet temperature

Maximum system pressure
Overall system pressure loss, I (AP/P)

Compressor flow

Recuperator effectiveness
Turbine isentropic efficiency, across blading

Compressor adiabatic efficiency, across blading

Generator efficiency

Turbine cooling flow, discs
Precooler water outlet temperature
Intercooler water outlet temperature
CACS parasitic heat loss

Primary system heat loss

Auxiliary power

Station efficiency

Net electrical power output

850°C (1562°F)
15°C (59°F)
Intercooled
Dry cooling
Warm liner
3.0

LP - 28.1°C (82.6°F)
HP - 26.7°C (80.1°F)

7.87 MPa (1142 psia)
14.547

778 kg/s
(6.173 x 10

0.898
92.2%

LP - 90.8%
HP - 90.2%

98.8%

3.6%

87°C (188.5°F)
65.6°C (150°F)
1.8 MW(t)

7.0 MW(t)

8.0 MW(t)
39.65% ()

607 Mi(e) (P

6 1b/hr)

a ; . .
( )Parameter selected on thermodynamic basis; plant not optimized
for minimum power generating cost.

(b)

Initial rating of the turbomachine was 620 MW(e).

However,

the higher than projected primary system pressure losses associated
with the final plant layout resulted in a loss of station efficiency.



TABLE 5-2
MAIN FEATURES OF 1530-MW(t) DEMONSTRATION PLANT

Integrated, Direct Cycle Plant

Prismatic Core, Thermal Rating 1530 MW(t)
MEU Fuel (3-yr Fuel Cycle)

Reactor Core Power Density 6.5 W/cc

Intercooled Cycle with High Degree of Regeneration

av]
I}

7.93 MPa (1150 psia)

max 850°C (1562°F) (a)
3.0 Plant Efficiency = 39.65% a

0.90

max

3
ii

comp

= =
1

recup

Turbomachine Rating 607 MW(e) [620 MW(e) Design]

Warm Liner in Core Cavity [Swept with 110°C (230°F) Gas]
HX and Turbomachine Cavities Swept with 26.7°C (80°F) Gas
PCRV Details

Offset Core Cavity
Diameter 36.3 m (119 ft)
Height 35.4 m (116 ft)

Chordal Turbomachine Position

CACS - 4 x 100% Units (FRG Requirement)

Two-Bearing Turbomachine (Single Turbine Inlet Duct)
Man Access Provision to Bearing Cavity Areas
Straight Tube, Modular Recuperator

Helical Bundle Precooler and Intercooler

Dry-Cooled Plant

Major PCL Components (Turbomachine and Heat Exchangers) Representative for
Two-Loop Commercial Plant

(a)Low cycle efficiency of the intercooled plant is a reflection of
the gas flow path complexity associated with compliance of the warm liner
feature.



and enters the precooler via a short horizontal coaxial duct. With all the
useful thermal energy extracted from the gas stream, the cycle reject heat
is dissipated in the precooler where the primary system helium flowing out-
side the tubes is reduced in temperature to 26.7°C (80°F). The circulating
water in the helical, finned-tube precooler, which is pressurized to avoid
phase change, is increased in temperature from 20.6°C (69°F) to 87.2°C

(189°F), the reject heat transfer rate from the primary system being on
the order of 533 MW(t).

Unlike previous plant arrangements, where the cold helium is trans-
ported directly from the precooler to the compressor, the 26.7°C (80°F) gas
in the demonstration plant is used for liner cooling. As shown in Fig. 5-2,
an annular gas flow path is formed between the precooler shroud and the
cavity liner. The full primary system helium mass flow [at 26.7°C (80°F)
and 2.76 MPa (400 psia)] leaves the bottom of the precooler assembly and
flows vertically upward in the annular passage, effectively keeping the
liner (and concrete) at an acceptable temperature level without the need

for a thermal barrier on the precoocler cavity liner.

Leaving the precooler cavity just above the exchanger bundle, the
26.7°C (80°F) gas is transported via a short horizontal duct to the
recuperator cavity. In a manner identical to that described above, the
cold gas flows downward in an annular passage in the recuperator cavity to
cool the liner. As shown in Fig. 5-2, there is a transition from the
recuperator to the turbomachine cavities to enable this cooling gas to
enter a horizontal annulus passage in the turbomachine cavity. A substantial
steel shield of cylindrical geometry is built into the turbomachine cavity.
This cylinder forms the interface between the vessel and turbomachine. The
cold gas flows axially through this annular passage and via holes in the
turbomachine casing enters the low-pressure compressor. Because of the
large "wetted" areas of shrouds and liners between the precooler outlet
and low-pressure compressor inlet, some regenerative heat transfer has
taken place, and it has been estimated that the helium enters the com-

pressor at a temperature of 28.3°C (83°F).



After compression in the eight-stage low-pressure compressor [to
4.59 MPa (665 psia)] the 112°C (233°F) gas leaves the top of the turbo-
machine cavity and flows to the intercooler in a short coaxial duct as
shown in Fig. 5-4. The intermediate pressure gas flows upward through the
finned-tube, helical intercooler bundle, giving up its compression heat of
around 337 MW(t). The temperature of the water (single phase) following
through the intercooler is increased from 20.6°C (69°F) to 65.6°C (150°F).

The requirement for a two-journal-bearing turbomachine (for man access
inspection and maintenance) necessitates a short distance between the low-
pressure and high-pressure compressors to minimize the bearing span and
hence give acceptable critical speed margins. To accomplish this, a con-
centric inlet (outlet) duct as shown in Fig. 5-3 is necessary. Thus, the
flow paths in the intercooler cavity serve two functions: (1) the 26.7°C
(80°F) gas flowing down the annulus between the exchanger shroud and liner
eliminates the thermal barrier requirement; and (2) it provides an accept-
able gas flow path inlet to the high-pressure compressor. Returning from
the intercooler, the gas at 26.7°C (80°F) and 4.5 MPa (653 psia) enters the
turbomachine through a multiplicity of holes in the casing and enters the

high-pressure compressor.

After compression in the high-pressure compressor, the gas, now at
7.93 MPa (1150 psia) and 110°C (230°F), exits the turbomachine radially
(again through holes in the casing) and flows into the vertical compressor
discharge cavity in the PCRV. It is in this cavity that the hot gas core-
to-turbine duct is installed, and an extremely desirable situation exists
here in that the hot gas duct (which, after the turbomachine, is regarded

as the most critical element in the PCL) is nearly pressure balanced.

From Fig. 5-3 it can be seen that the high-pressure compressor discharge
gas enters the core cavity from a single duct and flows upward in an annulus
formed between the core barrel (thermal shield and the liner). The gas
exits from the top of the cavity via a short coaxial cross duct. The most

difficult feature of the plant is, of course, the embodiment of the warm



liner in the core cavity. To avoid local hot spots on the liner, uniform
flow distribution in the annulus is essential. With a very large diameter
[on the order of 11.7 m (38.5 ft)] annulus having only a single source and
sink, it is mandatory that flow distribution devices (baffles, etc.) be
incorporated. In this phase of the program the necessary detailed fluid
dynamic analyses were not performed to resolve the uncertainties regarding

flow maldistribution in the core cavity outer annulus.

The high-pressure compressor discharge gas [at 110°C (230°F)] flows
from the core cavity via the vertical compressor discharge cavity and a
short coaxial duct to the top of the recuperator cavity. The high-pressure
gas enters the recuperator assembly in a plane just above the main support
plate. The high-pressure gas flows downward inside the tubes, picking up
heat from the low-pressure turbine discharge gas, The heated high-pressure
gas, now at 454°C (850°F), is transferred back to the top of the recuperator
assembly via integral return tubes in each of the 160 modules, thus elimin-~
ating the need for a large central return duct that was featured in earlier
designs. Leaving the recuperator top plenum, the 454°C (850°F) gas is
transported back to the core in a short coaxial duct. This "warm" duct is
surrounded by compressor discharge gas, so it is essentially pressure bal-

anced. With the return of the gas to the top core plenum, the loop circuit

is completed.

The definition of the core auxiliary cooling system (CACS) was not ad-

dressed in the first design iteration of the demonstration plant because of a

combination of (1) limited funding and resources, (2) more urgent SC-HTGR
and GCFR priorities, and (3) perhaps more important, the lack of needed
data from the HHT project. The major problem postulated was the ability

to keep the core cavity liner cooled under CACS operation. A decision was
made to size the CAHE so that gas at about 125°C (257°F) could be utilized
for liner cooling. From Fig. 5-3 it can be seen that the CACS features
resemble those in the SC-HTGR in that a bottom-fed bayonet tube CAHE and a
top-positioned circulator are utilized. 1In fact, the size estimate for the
CAHE was scaled from the 900-MW(e) SC-HTGR. Although the lack of CACS
definition represents a problem in the demonstration plant design, it was

necessary to "phantom'" in a concept to complete the plant layout arrangement.
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5.3.2. U.S. Version of HHT Demonstration Plant Core Study

The reactor core for the single-loop, intercooled GT-HTGR demonstration
plant is designed for operation with MEU fuel. In the initial core layout
studies, the basis for selection of the actual power level [1500 MW(t)
nominal being the GA-HHT ground rule] was the desire to establish a physically
compact arrangement with a minimum number of partial regions at the periphery.
An attempt was made to avoid four-column regions because of problems with

power tilts.

A 1530-MW(t) configuration was selected. The core layout, shown in
Fig. 5-6, has a one-third symmetry. Region identification numbers and the
refueling segments are also shown in Fig. 5-6. The major core design
parameters and thermal and coolant data are shown in Tables 5-3 and 5-4,
respectively. The reactor coolant enters the core at 453°C (848°F) and
exits at 850°C (1562°F). Unlike a highly enriched uranium (HEU) core,
an MEU core cannot support a heavy thorium load owing to the presence of
the second fertile particle U-238. The GT-HTGR demonstration plant core
uses a carbon~to-thorium ratio of 350 during initial core operation and
approximately 580 during equilibrium conditions. The prismatic fuel element
employed in the core is identical to the 10-row FSV element. The designs

of a standard and a control element are shown in Fig. 5-7.

Core performance studies were completed for a conceptual 1530-MW(t)
GT-HTGR demonstration plant. The core is fueled with MEU and has a power
density of 6.5 W/cc and a 3-yr fuel cycle. The fuel particles consist of
fissile TRISO UC2 and fertile TRISO ThO2 and are accommodated in 10-row
FSV type fuel elements. The performance studies included core thermal
behavior, fuel particle failure, fuel kernel migration, fast neutron flux

time histories, coolant flow distribution, and gaseous fission product

release. The significant results of these studies are shown in Table 5-5.

The performance of the GT-HTGR demonstration plant core is good. The

gaseous fission product releases are within limits developed for the SC-HTGR.
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TABLE 5-3

BASIC CORE PARAMETERS OF GT-HTGR DEMONSTRATION PLANT

Core thermal power

Power density

Fuel block design

Fuel in-core lifetime

Reload interval

Fraction of core reloaded annually
Capacity factor

Carbon/thorium initial core reloads
Core volume

Fuel rod diameter

Number of fuel columns

Standard
Control

Number of fuel blocks (8/col.)

Number of control rod pairs

Number of small control rods

Number of reserve shutdown hoppers

Number of flow regions, total
Variable flow control

7-column
5-column

Fixed orifice regions
Number of axial fuel zones

TInlet

TOutlet

1530 MW(t)
6.5

FSV ~ 10 row
3 yr

1 yr

v33%

807

350/580
234.6 m3

1.2 cm

331

282
49

2648
49
49
49
55

37
12

6
4
453°C (848°F)
850°C (1562°F)



TABLE 5-4
THERMAL AND COOLANT FLOW DATA FOR 1530-MW(t)
GT-HTGR DEMONSTRATION PLANT

Coolant (helium) inlet temperature at the core 453°C (848°F)
Coolant outlet temperature at the reactor 850°C (1562°F)
Coolant flow rate 741 kg/s

(5.883 x 10° 1b/hr)

Coolant pressure at core inlet 7.77 MPa (1128 psia)
Core bypass flow fraction 0.13
Core bypass power fraction 0.0935
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TABLE 5-5
1530-MW(t) GT-HTGR DEMONSTRATION PLANT CORE PERFORMANCE SUMMARY
[Tin = 453°C (848°F); T_ = 850°C (1562°F) ]

Peak fuel centerline temperature 1205°C (2200°F)
Time-averaged fuel centerline temperature 1149°C (2100°F)
during 3-yr core residency (maximum)

Peak moderator (H-451 graphite) temperature 1149°C (2100°F)
Time-averaged moderator temperature during 1094°C (2000°F)
3-yr fuel core residency (maximum)

Peak fast neutron fluence 5 x 1021 nvt
Fast neutron fluence design limit 8 x 1021 nvt

Peak burnup (FIMA fraction)

TRISO UC2 0.25

TRISO ThO2 0.035
Total failed fuel particle fraction

TRISO UC2 0.14%

TRISO ThO2 0.07%
Fraction of fissions in failed particles (total)

Computed value 0.00124

Level A‘® 0.0025
Kr-85m (R/B) ratio

807 confidence level 3.11 x 10_5

Level A(® 6.16 x 107°
Xe-138 (R/B) ratio

80% confidence level 2.678 x 107°

Level A(a) 4.57 x 1016

(a)

Level A values refer to the design criteria values based on
safety considerations.
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The use of uniquely optimized axial power and flux profiles coupled with
excellent fuel zoning minimized the peak fuel rod centerline temperatures

and yielded fairly uniform core axial temperature profiles.

The most notable feature of the core performance is the negligible
fraction of failure due to either SiC-fission product attack or kernel
migration (zero on a core average basis). The estimated peak fuel rod
centerline temperature is 1205°C (2200°F) at any time during core operation.
It appears feasible to eliminate the negligible local fuel particle failure
which occurred owing to the SiC-fission product attack by finer adjustments
in the fuel zoning. The total failed fuel fraction and fissions in failed

fuel particles are also within design limits.

Although the results of the studies presented herein predict an
excellent performance by the GT-HTGR demonstration plant core, the metallic
fission product release from the core (studied separately) is the critical
parameter which validates the core design and performance. The present
estimate of cesium release from the core is approximately 36,000 Ci on a

40-yr plateout basis.

5.3.3. GA-HHT Demonstration Plant Comparison

One of the basic criteria established for the demonstration plant
studies was that close technical coordination between GA and HHT must be
observed in order for the GA prismatic core version to be considered a
backup or real alternate to the European design. However, at the initia-
tion of design studies, a renewal of the technical exchange agreement had
not been effected, and both GA and HHT started work without the benefit
of knowing what direction was being taken by the other. Design considera-
tions were adopted which had a lasting effect (in 1978) regarding plant
configuration. A comparison of these design considerations is given in

Table 5-6, and some of the basic issues are briefly discussed below.
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TABLE 5-6

HHT-GA DEMONSTRATION PLANT DESIGN CONSIDERATIONS

Criteria

HHT

GA

Main criteria

PCRV

Diameter [m (ft)]
Height [m (ft)]
Design criteria

Core

Concentric cavity

Cavity diameter [m (ft)]

Turbomachine

Heat exchangers

Size

Inspectability

CACS

Position in PCRV

Dominant criteria

Simulate commercial
plant design

46 (151)

46 (151)

Max. system pressure
in all cavities

1640-MW(t) pebble
bed

Concentric

13.16 (43.2)

675 MW(e), 50 Hz,
dual turbine inlets
and outlets

Growth to

800-900 MwW(e)

Half-size units, two
trains/loop

Ability to inspect
and repair indi-
vidual tubes

4 x 100% capacity

Equispaced

Simulation of
3000-MW(t) plant
PCRV arrangement,
scaling of all
components from
demonstration plant
necessary

Diameter minimization

36.3 (119)
35.4 (116)
System cavity pressure

1530-MW(t) prismatic

Offset as necessary to
minimize PCRV diameter
11.9 (39)

620 MW(e), 60 Hz,
single turbine ducts,
same machine as for
commercial plant

Full-size units as for
two-loop commercial
plant

Module plugging for
recuperator, tube
plugging for water-
to-helium units

4 x 100% capacity

Positioned to minimize
impact on PCRV size

PCRV size minimization
Commercialization
aspects

Utilization of demon-
stration plant proven
components for commer-
cial plant
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The following three criteria established by HHT (with no flexibility
afforded at this stage) had a strong impact on the plant layout:

1. Dual turbine inlet and exits.
2. PCRV plan view to simulate one~loop commercial plant.

3. Four equispaced CACS's.

The first of these criteria understandably stems from the need for
dual inlet and exits in a single machine of 1240 MW(e) and the desire to
scale up from the tested demonstration plant turbomachine. GA has con-
firmed that the adoption of these criteria results in a very large PCRV
diameter. For the HHT project, going from the one-loop demonstration plant
to the one-loop commercial plant necessitates scaling of the turbomachine
power by a factor of two and the diameters of the heat exchangers and ducts

by root two.

The GA established criteria are centered around two basic issues, which
are regarded as vitally important: (1) the commercial plant should utilize
PCL components that have been tested and proven in the demonstration plant,
and (2) efforts should be made to minimize the diameter of the demonstration
plant PCRV, because it may well prove possible to commercialize a plant in
this power class at a future date. The ramifications of the differences
between GA and HHT, as far as the major features of the demonstration plants

are concerned, are given in Table 5-7.

5.3.4. Two-Loop Alternate Commercial Plant Configuration

A study was performed in which 16 plant configurations were established,
evaluated, and rated. The 16 plant concepts can be classified into the

following four general categories:
1. Concepts with a conventional water—cooled and insulated liner

in the core cavity and warm liners in the heat exchanger and

turbomachine cavities.

5-23



TABLE 5-7

MAJOR FEATURES OF HHT AND GA DEMONSTRATION PLANTS

Demonstration Plant Concept HHT Design Alternative GA Design
Core type Pebble bed Prismatic
Core rating [MW(t)] 1640 1530
Output power [MW(e), Hz] |675, 50 620, 60
Core cavity Centralized Offset

Turbomachine

Heat exchangers

CACS

Salient ground rules

Plant status

Dual turbine inlet
and exit ducts

Positioned under
core

Two trains of
exchangers

7-module, straight
tube recuperator

7-module, straight

tube He—H20 units

4 x 1007 capacity
units, equispaced

Simulation of PCRV
arrangement for
1200-MW(e)
commercial plant

Layout dominated by
turbomachine

All components must
be scaled up for
commercial plant,

All of the above,

essentially utility-

directed, ground
rules are fixed.

Plant design to be
pursued and cost
estimates prepared.

Single turbine inlet
and exit duct

Chordal position

Single exchangers

161-module, straight
tube recuperator

Helical geometry

He-HZO units

4 x 100% capacity units,

PCRV diameter
minimization
Commonality with two-
loop commercial plant

Utilization of demon-
stration plant proven
components for
commercial plant

Minimum cost for pos-
sible commercialization
of plant in 600-MW(t)
range

Design work completed
December 1978

Cost estimates made by
March 1979

Further design studies
of this alternative not
planned.
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Concepts with conventional water-cooled and insulated liners

in all cavities where required.

Concepts with warm liners in all cavities.

Concepts with a warm liner in the core cavity and conventional

water-cooled and, where required, insulated liners in the heat

exchanger and turbomachine cavities.

While it is recognized that evaluating and rating a family of plant

variants is difficult, some form of comparative selection criteria was

necessary to identify the candidate plant for specialist design attention.

All the configurations were evaluated on the basis of a simplified and

non-weighted rating system which included the following:

1.

Primary system gas flow path complexity (strongly influenced by

major cavity thermal barrier/warm liner requirements).

Utilization of one or two heat exchangers (particularly the

recuperator) per PCL.

Adaptability of the demonstration plant configuration to a two-

loop commercial plant.

Maintenance and ISI considerations.

Plant cost (based on intuitive feeling, since cost data were

not generated).

Safety and licensing considerations.

Feasibility issues.

Attractiveness as a commercial plant (i.e., PCRV diameter

minimization).
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The screening and evaluation process led to the following decisions

with regard to plant concept selection:

—_
.

Circular PCRV shape.
Chordal turbomachine location; turbomachines not parallel.

Offset core cavity.

&~ LN

Conventional liner approach.

Upon selection of the two-loop plant concept, specialist tasks were
initiated in the following areas: (1) PCRV structural design (GA), (2)
reactor internals design (GA), (3) turbomachine design (UTC), and (4) heat
exchanger sizing and design (GA and CE). Toward the end of the 1-yr study,
technical inputs from these areas were factored into the generation of a
plant layout drawing, which is shown in Figs. 5-8 through 5-11. The main
features of the two-loop plant are given in Table 5-8. Major plant
parameters are given in Table 5-9, and a simplified flow diagram is shown

in Fig. 5-12. A description of the plant primary system is given below.

As shown by the plan view in Fig. 5-8, the goal of minimizing PCRV
diameter was realized by offsetting the core cavity and by establishing a
chordal (as opposed to radial) turbomachine orientation. Each loop contains
a single train of heat exchangers, with the recuperator and precooler
cavities positioned over the turbomachine. The recuperator cavity is very
large, owing to the combined effects of the 1500-MW(e) loop rating, high
effectiveness requirement (0.898), and the decision (based on inputs from
UTC) to utilize a single core-to-turbine duct. This had a strong influence
on the two-loop plant layout, and it should be pointed out that there is
little extension in power range beyond 620 MW(e) for this turbomachine if
the single inlet duct approach remains a requirement. If power growth
potential becomes an important aspect of future two-loop plant studies,
dual turbine inlet and exit ducts will essentially be mandated, requiring
two heat exchanger trains per loop with attendant complications in the

PCRV design.
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TABLE 5-8
MAIN FEATURES OF TWO-LOOP COMMERCIAL PLANT ALTERNATE

Integrated Direct Cycle Plant

Prismatic Core, Thermal Rating 3000 MW(t)
MEU Fuel (3-yr Fuel Cycle)

Reactor Core Power Density 6.8 W/cc

Intercooled Cycle with High Degree of Recuperation

P = 7.93 MPa (1150 psia)

max
Tmax = 850°C (1562°F) Y. Plant Efficiency = 41.2%
R = 3.0

comp

E = 0.90

recup

Turbomachine Rating 620 MW(e) (same as demonstration unit with minor casing
changes)

Water-Cooled and Insulated Liners Throughout

PCRV Details

Offset Core Cavity
Diameter 42.7 m (140 ft)
Height 35.4 m (116 ft)

Chordal Turbomachine Position

CACS - 3 x 100% Units

Two-Bearing Turbomachine (Single Turbine Inlet Duct)
Man Access Provision to Bearing Cavity Areas

Exchangers as for Demonstration

Straight Tube, Modular Recuperator
Plant

Helical Bundle Precooler and Intercooler
Dry-Cooled Plant

Emphasis placed on gas flow simplicity and utilization of components tested
and proven in demonstration plant
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TABLE 5-9

MAJOR DESIGN PARAMETERS FOR 3000-MW(t), TWO-LOOP
GT-HTGR ALTERNATE COMMERCIAL PLANT

Turbine inlet temperature
Ambient air temperature
Thermodynamic cycle

Heat rejection mode

Liner type

850°C (1562°F)

15°C (59°F)
Intercooled
Dry cooling

Conventional

Compressor pressure ratio 3.0

Compressor inlet temperature LP - 26.8°C (80.2°F)

HP - 26.7°C (80.0°F)

Maximum system pressure 7.87 MPa (1142 psia)

Overall system pressure loss, I (AP/P) 11.21%
Compressor flow 753 kg/s 6
(5.978 x 10" 1b/hr)
Recuperator effectiveness 0.898
Turbine isentropic efficiency, across blading 92.2%
Compressor adiabatic efficiency, across blading LP - 90.8%
HP - 90.2%
Generator efficiency 98.8%
Turbine cooling flow, discs 3.6%

Precooler water outlet temperature 87°C (188.5°F)

Intercooler water outlet temperature 65.6°C (150°F)

CACS parasitic heat loss 1.9 MW(t)
Primary system heat loss 15.6 MW(t)
Auxiliary power 11.0 MW(t)
Station efficiency 41.172(a)

Net electrical power output 1235 MW(e)(b)

(a)

Parameter selected on thermodynamic basis; plant not optimized
for minimum power generating cost.

(b)

Initial rating of the turbomachine was 620 MW(e). However,
the higher than projected primary system pressure losses associated
with the final plant layout resulted in a slight loss of station
efficiency.
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Figure 5-8 also shows that each intercooler is positioned to the side
of its turbomachine cavity. The PCRV arrangement includes unpressurized,
small-diameter PCRV cavities adjacent to the precooler and intercooler
cavities to provide maintenance access to the pipe chases that route the
water plumbing to the heat exchangers. The PCRV space allocated for the
two intercooler cavities is counterbalanced to some extent by the three

CACS cavities, each of which houses a 100%Z capacity CACS unit.

Referring to Figs. 5-8 through 5-12, the primary system gas flow paths
can be traced as follows. Hot high-pressure helium at 850°C (1562°F) exit-
ing from the core bottom plenum is transported in a coaxial duct down to
the turbomachine turbine inlet plane. After expansion in the turbine, the
494°C (921°F) low-pressure helium at the turbine discharge leaves the
turbomachine cavity and flows vertically upward to enter the recuperator
cavity, where regenerative heat transfer to high-pressure helium enroute
to the reactor takes place. During this waste heat recovery process,
the low-pressure helium flowing upward on the shell side of the recuperator
is cooled to 161°C (322°F) before it leaves the recuperator cavity via a
sidewall opening located just beneath the recuperator main support plate.
The low-pressure helium then proceeds via cross-ducting embedded in the
PCRV to the precooler, in which the cycle reject heat is transferred to a
pressurized, single-phase circulating water system. After entering the
precooler cavity, the low-pressure helium flows downward across the
helically coiled precooler tube bundle, giving up its heat to the water
flowing upward inside the tubes. At the bottom of the precooler cavity,
the low-pressure helium, which has been cooled to 26.7°C (80°F), re-enters
the turbomachine cavity at the plane of the low-pressure compressor inlet.
The eight-stage low-pressure compressor pumps this helium up to 6.90 MPa
(670 psia) and 110°C (230°F), after which the helium is routed to the
bottom of the intercooler cavity via coaxial ducting. Upon entering the
intercooler cavity, the helium flows upward across the shell side of the
helically coiled intercooler tube bundle, transferring the heat of low-
pressure compression to pressurized, single-phase cooling water flowing

downward inside the tubes. At the top of the intercooler cavity, the
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helium, which has been cooled back down to 26.7°C (80°F), is returned to

the turbomachine cavity via the annular flow passages formed between (1)

the PCRV cavity sidewall and intercooler shroud and (2) the concentric

inlet and outlet cross-ducting connecting the intercooler and turbomachine
cavities. Returning helium from the intercooler enters the turbomachine
through a perforated section of its casing and flows to the high-pressure
compressor, which pumps the gas up to 7.93 MPa (1150 psia) and 110°C (230°F).
The high-pressure helium exits the turbomachine radially (again through
holes in the casing) and flows into the vertical compressor discharge

cavity in the PCRV. It is in this cavity that the hot gas core-to-turbine
duct is installed, providing the highly desirable conditions required to
maintain the hot duct (regarded as the most critical element after the
turbomachine) in a nearly pressure-balanced operating mode. Flowing upward
in this vertical cavity, the high-pressure compressor discharge helium
reaches the high-pressure region of the recuperator cavity via the annular
portion of a short coaxial duct, then flows downward inside the recuperator
tubes and is returned to the top of the recuperator assembly via individual
"return tube" risers provided in the 161 modules (one return tube per module).
This "integral return tube" recuperator concept avoids the need for the
large, high-pressure center return duct that was featured in earlier designs.
Leaving the recuperator top plenum, the 449°C (840°F) gas is returned to the
upper plenum of the core via the inner duct of the coaxial installation at
the top of the recuperator cavity. The downward, heated passage of this

helium through the core completes the cycle.

In comparison with the GA demonstration plant circuitry, which is
predicated on the "warm liner" concept, the gas flow paths in the two-loop
plant are simple and straightforward. The technical aspects of the deci-
sion to employ conventional water-cooled and insulated liners in the two-

loop plant are two-fold:
1. Unresolved technical uncertainties about the warm liner concept

that appeared during the GA demonstration plant study (core

support, cooling flow distribution, etc.).
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2. Questionable operability of a multiple-loop plant embodying a
warm liner in the core. A multiple loop plant concept predicated
entirely on the warm liner approach couples the loops via the
core cavity in such a way that a single-loop rapid shutdown (which
could be triggered by a variety of events) can result in flow
redistributions with potentially adverse impact on primary system
components. Incorporating valves to prevent this problem is not
considered practical at this time. Hybrid liner concepts (e.g.,
conventional/warm liner combinations) conceived specifically to
circumvent this operability issue were beyond the scope of this

study.

In retrospect, the significance of this study lies in the application
of intercooling in conjunction with higher loop thermal capacity to
establish an alternate commercial plant concept that can be compared with
the reference three-loop, non-intercooled plant. The outcome of this study
is a plant design that meets the cycle efficiency goal and offers immediate
prospects for additional performance improvement with further study. How-
ever, the PCRV diameter of 42.7 m (140 ft) is 3.35 m (11 ft) larger than
that of the three-loop non-intercooled commercial plant design, a reflection
of the complexity and packaging inefficiencies associated with incorporating

intercooling and 50% larger primary system components into a circular PCRV.

5.3.5. Three-Loop Non-Intercooled Plant Configuration

The design effort related to the three~loop non-intercooled plant was
aimed at updating the earlier delta reference plant design. It was felt
prudent to also briefly evaluate alternate approaches, particularly in
light of the decision to adopt the warm liner concept for the demonstration

plant. Basically, three different plant concepts were studied:

1. Conventional liner throughout.

2. Conventional liner in core cavity and warm liners in the heat

exchanger cavities.

5-36



3. Warm liners in all cavities with the exception of the turbomachine

cavities.

Because many of the engineering, safety, and licensing problems asso-
ciated with the warm liner (as identified in the demonstration plant) have
not been resolved, a decision was made to pursue a plant variant with con-
ventional water-cooled and insulated liners throughout. It should be
pointed out that partial elimination of the thermal barrier is desirable
for the following reasons: (1) cost reduction, (2) partial liner
inspectibility/repair, and (3) minimization of problems associated with
oil ingress into the primary system. Item 2 warrants further study, since

in 1978 the limited funding and resources did not permit an in-depth study.

The power plant plot plan concept shown in Fig. 5-13 illustrates the
general layout of buildings and dry cooling towers for a twin 3000-MW(t)
plant embodying three PCLs of the non-intercooled type. The reactor
service building and fuel storage facilities are shared by the two reactor
units. Each unit has a separate control building and safety-related
auxiliaries. A runway system is provided for turbomachinery and generator
handling. Space is allocated on the plot plan for an ammonia turbine

building should the binary-cycle option be selected.

Based on the utilization of an existing 3000-MW(t) core design, the
GT-HTGR embodies three PCLs, each rated at 1000 MW(t). The simplified
isometric diagram of the teactor and primary system in Fig. 5-14 shows the
core, turbomachinery, heat exchangers, and entire helium inventory enclosed
in the PCRV. The major design parameters for the non-intercooled plant are
given in Table 5-10. The simplified loop diagram is shown in Fig. 5-15.

As shown in this diagram, each loop includes a single-shaft gas turbine,
a recuperative gas-to-gas heat exchanger, and a precooler (gas-to-water

exchanger) for cycle heat rejection.

Upon selection of the three-loop plant concept, specialist tasks were
initiated in the following areas: (1) PCRV structural design (GA),
(2) reactor internals (GA), (3) turbomachine inputs (UTC), and (4) heat
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TABLE 5-10
MAJOR DESIGN PARAMETERS FOR 3000-MW(t), THREE-LOOP
GT-HTGR COMMERCIAL PLANT

Power conversion loop rating 1000 MW(t)
Turbine inlet temperature 850°C (1562°F)
Ambient air temperature 15°C (59°F)
Thermodynamic cycle Non-intercooled
Heat rejection mode Dry cooling
Liner type Conventional liner
Compressor pressure ratio 2.5
Compressor inlet temperature 26.7°C (80°F)
Maximum system pressure 7.93 MPa (1150 psia)
Overall system pressure loss, I (AP/P) 7.5%
Compressor flow 570 kg/s 6
(4.52 x 10" 1b/hr)/loop

Recuperator effectiveness 0.898
Turbine isentropic efficiency, across blading 91.8%
Compressor adiabatic efficiency, across blading 89.8%
Generator efficiency 98.8%
Turbine cooling flow, discs 3.67%
Precooler water outlet temperature 132°C (270°F)
CACS parasitic heat loss 1.9 MW(t)
Primary system heat loss 15.6 MW(t)
Auxiliary power 11.0 MW(t)
Station efficiency 39.7Z(a)
Net electrical power output 1190 MW(e)

(a)

Parameter based on optimization for minimum power generating
cost for HEU fuel.
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exchanger sizing and mechanical design (GA and CE). Toward the end of the
commercial plant study, inputs from these areas were factored into the
generation of a plant layout drawing, which is shown in Figs. 5-16, 5-17,
and 5-18. The main features of the three-loop plant are given in Table

5-11, and a description of the plant primary system is given below.

Based on the utilization of a 3000-MW(t) core design, the commercial
plant embodies three PCLs, each rated at 400 MW(e). Each loop consists
of a single-shaft gas turbine, a recuperative gas-to-gas heat exchanger,
and a precooler (gas-to-water exchanger) for cycle heat rejection. As
shown in the plan view of the PCRV in Fig. 5-16, the three PCLs are located
symmetrically around and below the central core cavity. The three turbo-
machines are oriented in a delta arrangement, and the heat exchangers are
installed in vertical cavities within the PCRV sidewalls, two for each
loop. This orientation of the major components results in a minimum PCRV
diameter, which is economically important since the PCRV is the largest
cost item in the plant. The elevation views through the PCRV shown in
Figs. 5-17 and 5-18 illustrate the helium gas flow path within the primary
system. The components are connected by large internal ducts within the
PCRV. The horizontal turbomachine cavities are located directly below their
associated loop heat exchangers. The recuperator is positioned directly
above the turbine exhaust, and the precooler is above the compressor inlet.

Three equispaced CACS units are positioned in the PCRV as shown in
Fig. 5-16.

The PCRV is longitudinally prestressed by linear tendons. The circum-
ferential prestrescing is conventional for the top part of the PCRV, with
wire winding in steel-lined channels of precast panels. In the bottom head

section of the PCRV, the wire winding is replaced by diagonal tendons.

5.3.6. Commercial Plant Core Design

The core design related activities were directed toward the demon-

stration plant. Owing to staff/funding limitations, the effort expended
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TABLE 5-11
MAIN FEATURES OF THREE-LOOP COMMERCIAL PLANT ALTERNATE

Integrated Direct Cycle Plant

Prismatic Core, Thermal Rating 3000 MW(t)
MEU Fuel (3-yr Fuel Cycle)

Reactor Core Power Density 6.8 W/cc

Non-Intercooled Cycle with High Degree of Recuperation

P = 7.93 MPa (1150 psia)

max
T - [+] [

max 850°C (1562°F) Plant Efficiency = 39.7%
R = 2.5

comp
E = 0.90

recup

Turbomachine Rating 400 MW(e)
Water—-Cooled and Insulated Liners Throughout

PCRV Details

Central Core Cavity
Diameter 39.3 m (129 ft)
Height 35.4 m (116 ft)

Delta Turbomachine Position

CACS - 3 x 100% units

Two-Bearing Turbomachine (Single Turbine Inlet Duct)
Man Access Provision to Bearing Cavity Areas
Straight Tube, Modular Recuperator l Exchanger Features Nearly
Helical Bundle Precooler ’ Identical to Demonstration Plant
Dry-Cooled Plant

Cycle Adaptable to Waste Heat Rankine Bottoming Plant

Emphasis placed on gas flow path simplicity and minimization of primary
system pressure loss

Parameters and plant layout based on 1976 optimization study (minimum power
generating cost with HEU fuel)
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on the design of the commercial plant(s) reactor core was considerably less
than that devoted to the demonstration plant core. In the initial core
layout studies, emphasis was placed on establishing a compact arrangement
with a minimum number of partial regions at the periphery. The established
3000-MW(t) core layout is regarded as a satisfactory design because there

are no fixed orifice columns or four-column regions.

The design of the prismatic reactor core for the GI-HTGR commercial

plant has the following features:

—_
.

MEU fuel.

Power density of 6.8 W/cc.
Three-year fuel cycle.

Fissile TRISO UC, fuel particles.

2
Fuel particles contained within 10-row FSV type fuel elements.

w W

Table 5-12 compares the major features of this core design with those
of the 1530-MW(t) core. Except for minor differences in inlet helium con-
ditions and flow distribution considerations associated with the number of
loops, the core design requirements and considerations for the two-loop
plant and the three-loop non-intercooled commercial plant designs are

very similar.
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TABLE 5-12
COMPARISON OF GT-HTGR CORE DESIGNS

1530-MW(t) 3000-MW(t)
Demonstration Commercial
Plant Plant
Number of fuel regions 37 85
Number of five~column regions 12 6
Number of fixed orifice columns 12 0
Number of fuel columns 331 625
Power density (MW/m3) 6.5 6.8
Number of refueling penetrations 55 91
Number of control rod drives 49 91
Effective core diameter [m (ft)] 6.92 (22.69) 9.51 (31.2)
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6. MISCELLANEOUS CONTROLS AND AUXILIARY SYSTEMS (630102)

6.1. SCOPE

The purpose of this task is to establish the helium bypass valve

service system requirements and interfaces.

6.2. SUMMARY

A conceptual design for the helium bypass valve operating system has
been developed and is shown in Figs. 6-1 and 6-2. This concept will be the
basis for further studies related to the trim, attemperation, and main
bypass valves. Since the safety trip valve is a two-position valve, the
decision has been made to utilize a different actuation system, and this

design study is now under way.

The trim and attemperation valves utilize a hydraulic system at
10.34 MPa (1500 psia) and the main bypass valve has a system pressure of
17.24 MPa (2500 psia). This selection was made in an attempt to keep the
hydraulic fluid pressure as low as possible in order to minimize potential

leaks and to utilize hardware which is '"off the shelf."

In the selection of the actuator design, pneumatic and electric motor
operators were evaluated. Conventional pneumatic cylinders and diaphragm
operators were found to be too large. Electric motor drives were evaluated
but their inherent "fail as is" mode precluded. them for this application.
High-speed pneumatic turbine drives will be investigated as an alternative

in the future.
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7. STRUCTURAL MECHANICS (630103)

7.1. SCOPE

The purpose of this task in FY-79 is to evaluate the effect of core
barrel restraints on the seismic response of the core for the warm liner

concept and perform PCRV/containment seismic analysis for the HHT plant.

7.2. SUMMARY

An evaluation of proposed GT-HTGR core seismic support and restraint
systems has been completed. Two designs were investigated: the GA one-
loop GT-HIGR demonstration plant and the German HHT 1637-MW(t) pebble bed
demonstration plant. In both designs, the graphite core is contained within
a core barrel. The GA design utilizes spring packs attached to the PCRV
liner and penetrating the core barrel to restrain the graphite core. The
HHT design has no lateral restraint for the core or the core barrel except
at the lower end of the barrel. The evaluation was based on the design
being compatible with a range of soil sites from soft soil to rock with

a safe shutdown earthquake level of 0.3 g. The conclusions are as follows:

1. The GA design with spring packs passing through the core barrel
provides essentially the same restraint to the core as the present
HIGR lateral core restraint system. The core barrel is separately
supported by radial keys to the PCRV liner and should not affect

the seismic response of the core.

2. The HHT core barrel design presented to GA for analysis may not
provide an adequate seismic restraint for the graphite pebble bed
core. The vertical support design is such that the vertical

weight of the core does not appear to be connected to the core
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barrel. The stiffness of the core barrel has not been evaluated.
However, even if it is very rigid, the design of the "dampers"
separating the core barrel and the outer ring of reflector blocks
cannot be counted on to keep the core totally tight. Even a

small amount of gap or looseness is enough to produce a frequency
response in the range of amplification which tends to cause

uplift of the core barrel. Thus, a sophisticated three-dimensional
analysis of the core and core barrel may be required to perform

an accurate analysis. A horizontal restraint at the top of the

core barrel would alleviate this potential problem.

A mathematical dynamic model of the reactor contaimment building
(RCB) /PCRV for the HHT demonstration plant has been initiated. The mass
and stiffness properties of the RCB dome and shell have been calculated.
Effort is continuing to generate the mass and stiffness properties of the
PCRV, PCRV support, and internal structures and components. Development
of the overall dynamic model has been delayed due to the rapidly changing
HHT design.



8, SHIELDING ANALYSIS AND DESIGN (630104)

8.1. SCOPE

The purpose of this task is to provide radiation protection and

shielding analysis and design support to the GT-HTGR Project.

8§.2. SUMMARY

8.2.1. Core Barrel Study

The neutron irradiation effects on the core barrel of the warm liner
concept were evaluated. Calculations were made of the neutron fluxes in
the side regions of the one-loop demonstration plant. Both the CTD one-
dimensional transport/diffusion code and the 2DB two-dimensional diffu-

sion code were used in order to verify the results.

Major differences between the GT-HTGR demonstration plant and the
conventional SC-HTGR include the addition of a third row of replaceable
side reflector blocks and the attachment of a core barrel around the side
thermal shield. An average side reflector thickness of 159 cm (62.6 in.)

was calculated for the GT-HTGR.

The material proposed for the core barrel is A-387 steel. At present,
there is no neutron damage function for A-387 steel. The initial nil

ductility temperature is also unavailable for this material.

Because the thermal flux at the core barrel (1.5 x 1010 n/cmz—s) is
considerably higher than the intermediate or fast flux, the damage to the
core barrel will be caused almost entirely by thermal neutrons. The cor-

responding fluence for 40 yr is n1.5 x 10]9 nvt (without uncertainty factor),



probably resulting in a differential nil ductility temperature of less than
37.8°C (100°F) for low-temperature irradiation. Irradiation tests would
be required to determine the irradiated nil ductility temperature and the

damage functions for A-387 steel and to qualify the material for core barrel

applications.

8.2.2. Fission Product Study

Basic fission product plateout assumptions were made for the purpose
of radiation analysis, shielding design, and decontamination evaluation in

the GT-HTGR plant maintenance study.

Total plateout activities were obtained by scaling the values for the
SC-HTGR with MEU fuel, except that cesium and strontium releases were cal-
culated expressly for the GT-HTGR. A total plateout surface area of
2.2 x 109 cm2 was used to obtain uniform surface activities. Plateout
distributions through the primary circuit were based on analyses performed
earlier. In the interest of conservatism, modifications were made to these
earlier distribution curves so that the plateout activity would not drop

below the uniform level at any point in the primary circuit.

Preferential plateout factors ranged all the way up to 95 for Ag-110m
at the turbine inlet. Only iodine and cesium have low preferential plateout

at the turbine inlet.

Computer printouts were prepared tabulating the uCi/cm2 of plateout
for 18 important nuclides at eight different locations in the primary circuit
for 1-, 3-, 6-, 10-, and 40-yr operation and 0-, 1-, 10-, and 100-day shut-

down times. Both Level A and Level B values were generated.

Each power conversion loop (PCL) consists of four helium control valves:
the safety, bypass, attemperation, and trim valves. The safety valve is
normally closed. Hence, the plateout on the safety valve should be negligible.

The helium flow to other valves is expected to be small. For design purposes,
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the plateout on the bypass, attemperation, and trim valves is assumed to be
10% of the uniform plateout. Similarly, the CAHE system, which is not in the

normal flow path of primary helium during operation, is also assumed to

contain 10% of the uniform plateout.
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9. LICENSING (6302)

9.1. SCOPE

The purpose of this task is to provide design review and licensing

positions to ensure that design features comply with regulatory requirements.

9.2. SUMMARY

Various NRC documents were reviewed for identifiable requirements that
would make a hot test facility (HTF) mandatory. Various licensing questions
or issues which an HTF could resolve were also considered. The following
conclusions were drawn:

v

1. A facility of the magnitude of an HTF is not a requirement.

While licensability could be greatly enhanced by data from
full-scale tests, NRC requirements can be satisfied by rigorous
analyses, component and/or scale tests, and final testing in

the reactor facility.

2, It is not prudent to begin the design of the HTF without per-
forming a thorough failure effects and modes analysis (FEMA)
of the turbomachine, its control system, and related systems.
Without a FEMA, it may be difficult to establish confidence
that the needed tests have been identified and the facility will

be adequate to perform these tests.



9.3. DISCUSSION

9.3.1. HTF Evaluation

Despite Conclusion 1 above, it should be noted that the NRC places
great stock in testing and is particularly cautious about prototype systems
and components. Primarily, the NRC is concerned with safety-related equip-
ment, but at this stage of the design, it cannot be said with certainty
which systems and components will be designated safety class and/or Seismic
Category 1. The NRC is also interested in the ability of the plant to be
a reliable source of generating capacity; lack of confidence in plant
reliability could have a negative impact on licensability through the NRC's
Environmental Report. Furthermore, it has become common at public hearings
for intervenors to challenge applications on the basis of environméntal

evaluations that assume overly optimistic plant availability estimates.

Areas of major importance for facility capability are:
L 4
1. Measurement of the transient response of systems and components

and the validation of transient response computer codes.

2. Experience with the rotating seal and verification of its

performance under transient conditionms.

3. Measurement of acoustic forces developed within the operating
loop.
4, Evaluation of control system response and stability and machine

operating characteristics.

Other facility capability could include the following items, which

probably could be accomplished in lesser facilities:

5. Testing of the overspeed protection system.

6. Non-destructive testing of overspeed integrity.
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Measurement of the flow resistance of the idle machine.
Experience with early operational failures.

Experience with in-service inspection (ISI).



10. SAFETY AND RELIABILITY (6307)

10.1. SCOPE

The purpose of this task is to:

1. Provide safety assessment of design issues and support the
HHT program by reviewing Federal Republic of Germany (FRG)

general safety design criteria and HHT safety criteria.

2. Provide availability input to aid in major feature selections,
generate preliminary estimates of overall plant availability,
provide availability input to incentives reports, and perform

availability assessment of intercooling features.

10.2. SUMMARY

As input to the "Primary System Parameter Review Design Report,' some
qualitative observations relative to temperature and pressure parameters
have been prepared. Higher fuel and graphite temperatures for the same
fuel system will result in larger fractions of failed fuel and greater
release of fission products to the primary coolant system, increasing the
duty of the helium purification system and source term of the design
basis depressurization accident (DBDA). However, the off-site doses
resulting from a DBDA are relatively small compared with postulated acci-~
dents, and the increased fuel temperatures are not expected to alter the
conclusion regarding the DBDA. 1Increased fuel temperatures will reduce
the margins to fuel particle failure during core heatup events. Higher
graphite temperatures will accelerate the reaction with any steam/water

which is introduced into the core.
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An increase or decrease in the turbine differential temperature will
result in a corresponding increase or decrease in the maximum depressuriza-

tion rate for the design of the CACS ducts.

More detailed information will be provided in the design report

referred to above.

Recent RATSAM studies indicate that maximum core outlet plenum and
CACS lower duct depressurization rates resulting from a turbine deblading
event could be as high as 17.24 MPa/s (2500 psi/sec) (maximum average over
any 10-ms period) for the three-loop commercial plant. Depressurization
rates were found to be relatively sensitive to the assumed deblading time,
the method used for simulating the deblading, and the core outlet plenum

volume.

The FRG safety design criteria have been reviewed and comments have
been sent to Hochtemperatur Reaktorbau (HRB). The criteria reviewed
included testability, improvement measures, radiation exposure guidelines,
general definitions, and penetration and closures. Comments on the German
criteria were presented, along with information regarding the U.S. criteria

pertaining to the subject German criteria.

Work was initiated to establish a preliminary availability model for
the reference 3000-MW(t) three-loop plant and to assemble data on component
and system reliability, maintenance, and operational constraints. The
model and data will be employed to generate a preliminary estimate of
GT-HTGR plant availability which may be used to compare the relative avail-
ability of competing systems (e.g., SC-HTGR) and to aid in the selection
of major design features. In addition to the model work, further investi-
gation of failure rates and repair times, to be used in evaluating the
model, is being accomplished. Maintenance philosophies and preliminary
procedures are being developed, separately from the availability analyses,
which will be used as they become available. New failure rate sources for
the GT-HTGR unique'turbomachines, heat exchangers, and valves are being

sought, and evaluations of data currently in hand are being reviewed.
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10.3. DISCUSSION

10.3.1. Depressurization Rates During Turbine Deblading Accident

Depressurization rates for the three-loop commercial plant core outlet
plenum have been calculated to range from 5.52 to 24.13 MPa/s (800 to
3500 psi/sec), depending on the assumptions and forcing functions used in
the analysis (see Table 10-1). The RATSAM forcing functions are believed
to be more realistic than the earlier TUBE forcing functions and appear to
be consistent with the Swiss methods of analysis. RATSAM depressurization
rates are higher and therefore more conservative than prior rates predicted
by TUBE. Thus, it is recommended that for a three-loop commercial plant,
a maximum depressurization rate in the core outlet plenum of 17.24 MPa/s
(2500 psi/sec) be used for the conceptual plant evaluation. This rate
corresponds to an assumed three-loop core outlet plenum volume of 257.7 m3
(9100 ft3), a forcing function approximating a sequential stage-by-stage
deblading, and a deblading time of 150 msec. As a first approximation this

value should be used as the depressurization rate in the CACS lower ducts.

Currently the deblading time is assumed to be 150 ms, so results based
on that time are being quoted for use. However, for the HHT project a
deblading time of 20 ms is being assumed (one turbomachine revolution).
Additional information is being requested from turbomachine vendors to

determine the correct assumption.

It should be noted that the maximum depressurization rate will persist
for a very short period of time. Lesser rates result when longer time
intervals are considered, as shown in Table 10-1, where the maximum depres-
surization rates in the core outlet plenum of a three-loop plant are given

for deblading times of 20 and 150 ms.
Since core outlet plenum (COP) depressurization rates appear to be

very sensitive to COP volume, designers have been advised to incorporate

appropriate margins to allow for design changes and uncertainties.
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TABLE 10-1

7-01

DEPRESSURIZATION RATES IN CORE OUTLET PLENUM AND CORE OUTLET DUCT ENTRANCE(a)
Core Outlet Core QOutlet Duct
Plenum Maximum Entrance Maximum
Deblading Core Outlet Depressurization Depressurization
Time Forcing Plenum Volume Rate Rate
(ms) Function [m3 (ft3)] [MPa/s (psi/sec)] [MPa/s (psi/sec)]
20 K = f(t) 206.7 (7,300) 55.16 (8,000) 208.57 (30,250)
1,415.9 (50,000) 11.93 (1,730) 148.57 (21,570)
K = f(t2) 206.7 (7,300) 51.37 (7,450) 364.88 (52,920)
339.8 (12,000) 38.13 (5,530) 364.06 (52,800)
1,415.9 (50,000) 11.93 (1,730) 363.16 (52,670)
150 K = f(t) 206.7 (7,300) 44.82 (6,500) 58.75 (8,520)
339.8 (12,000) 32.75 (4,750) 54.22 (7,863)
1,415.9 (50,000) 11.24 (1,630) 45.85 (6,650)
28,317.0 (109) 0.67 (97) 44.61 (6,470)
K = f(tz) 206.7 (7,300) 25.24 (3,660) 94.46 (13,700)
339.8 (12,000) 19.72 (2,860) 94.46 (13,700)
1,415.9 (50,000) 7.45 (1,109) 93.77 (13,600)
28,317.0 (10) 0.55 (80) 93.77 (13,600)
(a)

From RATSAM.



It has been observed that an actual progressive deblading would result
in a stage-by-stage decrease in flow resistance. Thus, a sequential
deblading model which considers the effect of increased mass flow during
the deblading should be used in future analyses. A typical resistance
change where K = f(m, t) has been calculated. This representation is also
amenable to simulating partial deblading accidents, which were found to be
more probable than total deblading. It is expected that using such a
forcing function will result in COP maximum depressurization rates less

than those resulting from the liner deblading approximation K = f(t).

Future work will include a reanalysis of the three-loop plant using
dynamic models of the turbomachinery, which have been incorporated in the
GT-HTGR version of RATSAM currently under development. Such an analysis
should show the effects of continued operation or rundown of the intact

loops.

Other depressurization accident sequences will also be analyzed,

including compressor deblading and recuperator failure.
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11. REACTOR TURBINE SYSTEM/BALANCE OF PLANT
(RTS/BOP) INTEGRATION (631001)

11.1. SCOPE

The purpose of this task is to develop the reference plant layout,
develop the conceptual design for major BOP systems, and issue a package

of information for cost basis.

11.2. SUMMARY

Work commenced on this task in March 1979, and the layout drawings
for the 3000-MW(t) reference plant were about 50% complete by the end of
the first half of the fiscal year. This work revealed a problem in routing
precooler water lines through pipe chases in the PCRV. Modifications to

the PCRV design were made to accommodate the piping requirements.

The present design configuration places the main generators inside
the containment building and introduces a requirement for high-voltage,
high-current electrical penetration of the contaimment. A review of current
designs and discussions with manufacturers are in progress, with initial
indications being that a new design will be required. A review is also
being made of the applicability of NRC Regulatory Guides on fire protection

to these penetratioms.

Work items identified for the second half of the fiscal year include
completion of the subtasks discussed above and the maintenance/contamination
evaluation. The objective of the latter subtask is to establish the rela-
tionship between plant maintenance and the contamination level resulting
from varying fuel release levels. A program plan was prepared and dis-

tributed to the interfacing organizations.
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12. SYSTEM DESIGN (631002)

12.1. SCOPE

The purpose of this task is to establish the CACS design criteria and
major features for the GT-HIGR reference design, develop and maintain design
information as required for the primary coolant system, evaluate the refer-
ence plant design primary system parameters holding the turbomachine inlet
temperature to 850°C, and perform CODER evaluations of cycle performance

versus cost for various plant configurations.

12.2. SUMMARY

12.2.1. CACS Design Criteria

Design criteria for the CACS for a multiloop commercial GT-HTGR plant
have been proposed. As one part of this effort, the unique GT-HTGR issues
of (1) the design basis for overall core cooling and (2) criteria imposed
by the CACS on main loop components were examined. The other part con-
sisted of outlining the remaining CACS criteria in the same format as the

equivalent criteria developed for the SC-HTGR plant designs.

12.2.2. One-Loop Demonstration Plant

The performance parameters for the one-loop demonstration plant based
on updated AP/P losses were calculated using CODER-2. The results of the
calculations show the plant efficiency to be reduced from 40.967% to 39.65%.
The one-loop demonstration plant is intercooled and uses the warm liner
concept. Comparison with the reference commercial plant (no intercooling
and with conventional PCRV liners) efficiency of 39.55% indicates the
performance penalty of the warm liner as intercooling is worth an approxi-

mately 1.0 to 1.5 percentage point increase in efficiency.
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12.2.3. One-Loop Demonstration Plant Parametric Study To Reduce Potential
Cesium Release

Fission product release studies showed that cesium release rate is
sensitive to power to flow ratio and that dropping the helium inlet tempera-
ture from approximately 499°C (930°F) to approximately 443°C (830°F) for
the intercooled cycle effectively doubled the cesium release rate. This
impacts turbomachinery maintenance capability in particular, since cesium
concentrates in the turbine and the lower portion of the recuperator. A
parametric study was performed using CODER-2 to determine the impact of
forcing the core inlet temperature up to approximately 499°C (930°F) and
reducing the power/flow ratio to an adequate level. The parameter study shows
that in order to maintain the base core efficiency and to boost the core
inlet temperature to 499°C (930°F), the high-pressure compressor pressure
ratio must be reduced from 1.75 to approximately 1.45 and the recuperator
effectiveness increased from 0.898 to approximately 0.927. The cost effect
was not quantified, but it will be significant since the PCRV size is sensi-

tive to the recuperator size.

12.2.4. Two-Loop Intercooled Plant

The performance parameters for the two-loop intercooled plant with
conventional liner based on updated AP/P losses were calculated using
CODER-2. The results of the calculations show the plant efficiency to be
reduced from 41.70% to 41.17%.

12.2.5. Three-Loop Non-Intercooled Plant

The performance parameters for the two-loop intercooled plant with
conventional liners based on updated AP/P losses were calculated using
updated duct and cavity dimensions and CODER-2. The results showed the

plant efficiency to increase slightly from 39.55% to 39.61%.
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12.2.6. Primary System Parameter Design Report

The turbine inlet temperature for the GT-HTGR has been at or near
850°C (1562°F) for over 5 yr, during which time considerable discussion
has taken place regarding high-temperature component and material limita-
tions for temperatures even lower than 850°C. With the impetus given the
GT-HTGR program, a design report has been initiated to accomplish the

following:

1. Review the design and material problems associated with the

850°C temperature.

2. Establish a course of action for required design verification

and support.

3. Determine economic sensitivity to varying primary system

parameters.
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13. SYSTEM DYNAMICS (631003)

13.1. SCOPE

The purpose of this task is to analyze transient performance, develop
control and PPS requirements, assess and develop system operational require-

ments, and provide transient requirements for component and subsystem design.

13.2. SUMMARY

Documentation of the 12 critical transients for the two-loop 300-MW(t)

alternate commercial plant design has been completed.

Preliminary analysis of the critical component limiting transient is

nearly complete for the 300-MW(t) reference commercial plant design.

Analysis of rapid load recovery capability following a drop load event
was performed. The results showed an 80% load pickup capability in about
5 s for an early reload and a 607 load pickup capability in about 5 s if

the reload is delayed longer than several minutes.

Turbomachine overspeed potential was identified in the GT-HTGR Acci-
dent Initiation and Progression Analysis (AIPA) study as being on the
GT-HTGR safety risk envelope. This event was also investigated using
REALY2 with the objective of reducing the risk by improving the overspeed
protection reliability. It was found that the use of attemperation
valves as backup for overspeed protection cannot control overspeed, at
least in the intercooled turbomachine design because the valves are neither
big enough nor located properly in the loop to provide the overspeed pro-
tection function. Efforts to improve the plant safety via reduction of

turbomachine overspeed potential are expected to continue.
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13.3. DISCUSSION

13.3.1. Alternate Commercial Plant Transient Analyses

The GT-HTGR transient performance analysis program, REALY2, was used
to investigate the two-loop 3000-MW(t) alternate commercial plant design.
Twelve plant transients were analyzed to evaluate plant component design
requirements and assess the expected plant operational requirements under
current preliminary plant control system (PCS) and PPS specifications.

In addition, these transients were reviewed and tentatively classified

in accordance with the Nuclear Safety Event Classification System. The
results showed that all the analyzed PPS setpoints and plant control and
plant component protective actions provide adequate margins for normal

as well as upset plant operation. However, detailed evaluation of indi-
vidual plant component loadings will require further analysis as the plant

design is optimized.

13.3.2. Reference Commercial Plant Transient Analysis

The transient analysis program REALY2 is being utilized to simulate
six plant transients for the 3000-MW(t) GT-HTGR reference commercial plant
design. These transients were selected because they provide some of the
expected "worst case' transient loadings on plant components under current
preliminary PCS and PPS specifications. Limiting design requirements for
several plant components are set by these transient loadings. Table 13-1
presents a summary of plant parameters selected to comparatively describe

the transients in this study.

The specific modeling assumptions used for these transients were
reviewed and accepted by cognizant organizations for correctness and
accuracy and thus provide a set of preliminary design reference transients

for inclusion in the Primary System Parameter Review Study.
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TABLE 13-1

PARAMETERS USED IN COMMERCIAL PLANT TRANSIENT ANALYSIS(a)
Plant Parameters
Max. Max. Max. Max. Max. Max. Max.
Max. Core Power- Max. Press./ Press. at Rate of Max. Flow Max. Rate of Precooler Recuperator | Recuperator
Transient Inlet/Outlet |to-Flow Temp. at Compressor | Pressure Rate at Turbine| Pressure | Inlet/Cutlet Hot End Cold End
Description Temp. Ratio LPR(®) Inlet Inlet Increase LPR Inlet Speed Decrease Temp. Metal Temp. | Metal Temp.

°C °c kPa °C kPa kPa/s 106 kg/h kPa/s °C °C °C °C

(°F) (°F) (psia)] (°F) (psia) (psi/sec) | (10® 1bm/hr) rpm (psi/sec) | (°F) (°F) (°F) (°F)
Full load - 100% 500 850 1.00 3248 537 3185 - 2.05 3600 -- 224 27 513 207
nominal (932) | (1562) (471)] (999) (462) (4.53) (436)1 (80) (955) (405)
Single-loop loss 503 866 1.29 6405 540 6405 1303 5.73 4165 434 241 32 527 221
of load with (938) | (1590) (929) | (1004) (929) (189) (12.65) (63) (466) 1 (90) (980) (430)
overspeed
Single-loop 503 864 1.32 6433 541 6433 1262 5.72 4200 434 242 31 524 220
turbomachine (938) | (1588) (933) [ (1005) (933) (183) (12.60) (63) (467)] (88) (975) (428)
shaft break
Single-loop 506 863 1.18 6998 582 6998 1048 4.58 3600 331 309 149 563 288
total loss of (943) | (1586) (1015) [(1080) (1051) (152) (10.10) (48) (589) | (300) (1045) (550)
precooling
water flow
Plant loss of 519 871 1.00 4758 667 4758 1255 5.45 4170 1179 237 31 546 218
load with (966) | (1600) (690) 1 (1232) (690) (182) (12.02) azn (458)1 (87) (1015) (425)
overspeed
Plant loss of 560 872 1.07 6102 704 6102 814 3.81 3604 531 299 147 596 277
cooling (1040)] (1602) (885) | (1300) (885) (118) (8.40) (77) (570) [ (297) (1105) (530)
water flow
Slow rod runout 512 904 1.29 3468 537 3399 - 2.26 3600 - 245 30 520 218
at design (954) | (1660) | (503) {(999) (493) (4.99) (473)| (87) (968) (425)

(a)
(b)

Underlined numbers are the

Low-pressure recuperator.

highest values predicted for given parameters.



13.3.3. Rapid Recovery from Drop Load Conditions

In the event of total load rejection (TLR), such as might occur during
a grid upset, the ability of a plant to quickly reload (even in minutes)
could be of significant benefit. The GT-HTGR initially responds to TLR by
rapid opening of bypass valves and, after a short-duration overspeed, a
recovery and hold at design speed (standby condition). Subsequent actions
would be a function of the particular utility and power grid needs. These
actions might include automatic or manually initiated reduction of system
temperature and/or system inventory. The options may be chosen dependent
on time and/or other parameters to provide flexibility of action. Until
longer-term (temperature or inventory change) action has been taken, the
GT-HTGR is, in its standby condition, potentially able to rapidly reload
once synchronization and breaker reclosure have been accomplished. Full
temperature, synchronous speed, and relatively high thermal power provide

a unique condition for fast reloading.

While normal load reductions will automatically introduce reduction of
temperature and/or inventory to obtain efficient operation, the response to
TLR may be maintained by bypass control alone. If the standby condition is
maintained strictly by bypass control, the rejected heat load will be rela-
tively high. It is, in part, the transfer of the power going into rejected
heat which enhances load pickup. After several minutes of operation, the
higher rejected heat load will be reflected in a slightly elevated return
water temperature to the precooler inlet. If load is recovered prior to
the increase in return water temperature, a capacity to attain 100% load
will exist. Some subsequent temporary reduction in maximum load will occur
as the higher level of rejected heat is finally reflected in the return
water temperature. Conversely, if the reloading is not done until the
return water temperature has risen, the initial maximum load will be
limited by the cycle bottom temperature Again, as the reloading (and
hence lower rejected heat) is reflected around the CWS loop, the return

temperature will drop and allow a recovery to full load.
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Two cases were evaluated for a preliminary assessment of the rapid
reloading condition. The first case was a sequence of TLR to standby
condition and, after resynchronization at approximately 2.5 min, a step
load demand to full load. The second case was an approximation of reload
from conditions which would exist (higher return water temperature and
hence higher gas temperatures in the low-temperature region of the loop)
following a prolonged hold in standby. Both cases represent extreme reload
rates to assess maximum capability, and it would not be anticipated that
load demand would simply be stepped to 100%. The actual reload rate would
probably depend to a large degree on the existing grid conditions and

would be controlled by the operator.

The results of the study show that a unique and potentially very
useful capability may be provided by the GT-HTGR. The initial load pickup
of v80% ¢an be obtained in 5 s for an early reload, and v60% load pickup
can be achieved in 5 s for the late reload subsequent to resynchronization

and followed by a somewhat slower recovery to full load.

13.3.4. Turbomachine Overspeed Study

The ATIPA study considered a sequence of events initiated by loss of
offsite power (LOSP), followed by failure of the control system to keep
all machines at normal speed and then failure of the primary and backup
protective valves to prevent overspeed. In the present study, the PPS was
considered to fail as in the AIPA sequence. However, a backup to the
redundant safety bypass valve was provided. It was assumed that a backup
overspeed detection would be used to open the attemperation valve in a
further effort to prevent overspeed. Improvement of the detectior

reliability has also been investigated.
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The attemperation valve is smaller and has one~quarter the flow area
of the safety bypass valve. Also, it is located downstream of the low-
pressure compressor for other control purposes. Therefore, it has about
one~third the pressure drop of the safety bypass valve, which is located

downstream of the high-pressure compressor.

The effects of the backup measure were not enough to prevent overspeed,
which was nearly 130% within 5 s. Table 13-2 shows the results and compares
them with the results that are expected when the safety bypass valve func-
tions normally. The rapid reduction in recuperator temperature, which is
an added problem, is due to the turbine exit temperature not increasing as
well as the cold flow introduced by the attemperation valve opening. The

improper bypass action is again responsible.
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TABLE 13-2

RESULTS OF TURBOMACHINE OVERSPEED STUDY

Event 1
(Safety Bypass Valve
Operates Correctly as
Overspeed Backup)

Event 2
(Safety Bypass Fails
and Attemperation
Valve Only Provides
Overspeed Backup)

Bypass flow rate (2.5 s)

Overspeed condition (2.5 s)
Overspeed condition (5 s)

Low-pressure recuperator
inlet temp.

Turbine exit temp. (5 s)

1000 kg/s
(8 x 106 1bB/hr)

113% (peak)
100%

486°C (906°F)

648°C (1199°F)

164 kg/s
(1.3 x 105 1b/hr)

119% (rising)
128% (rising)

410°C (770°F)

472°C (881°F)
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14. PCRV LINERS, PENETRATIONS, AND CLOSURES (631104)

14.1. SCOPE

The purpose of this task is to provide the conceptual design of the
two-loop and three-loop reference plants and to evaluate the warm liner

concept.

14.2. SUMMARY

Drawings of the conceptual liner design for the two-loop and three-
loop reference plants were completed. These drawings, shown in Figs. 14-1
through 14-4, were used to define the technical basis for initial concep-
tual liner cost estimates. The design was based on existing liner configu-
rations except for the turbomachine cavity liner in the two-loop plant.
The turbomachine cavity liner configuration was developed during the

reporting period, and a separate drawing was made to depict its arrangement.

As part of a continuing effort on the use of warm liners, problems
associated with the design and installation of cold concentric ducts were
identified. These ducts are used between the turbomachine and intercooler
and, in the GA warm liner design, between the precooler and recuperator.

A design of a possible leak detection-collection system was also initiated

as an alternative to the warm liner.

A thermal analysis was performed to investigate the consequences of
a dead flow condition for the gas which is channeled to flow between the
core barrel 1id and the top cap liner in the warm liner alternate version
of the GT-HTGR. Since there is a tendency for dead flow conditions to
develop in the head regions and since it was expected that the elevated

liner temperatures, which result from a dead flow condition, would cause
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more severe consequences at a penetration/liner junction, the intersection
of the core cavity liner with a refueling penetration was chosen for this
analysis. The results of the analysis indicate that dead flow conditions
would cause significantly higher liner and insulating concrete temperatures
than would occur under expected flow conditions. The bulk concrete tempera-
tures would exceed the allowables of the ASME Code, Section III, Division 2.
A stress analysis of the liner/penetration junction for cyclic conditions
has been initiated to predict fatigue life under postulated dead flow

conditions.
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15. PCRV STRUCTURES (631105)
15.1. SCOPE

The purpose of this task is to develop PCRV design criteria, review
the HHT PCRV design, and develop the two-loop/three-loop PCRV conceptual

arrangement.
15.2. SUMMARY

A decision has made that the GT-HTGR PCRV will be designed on the

basis of a multi-pressure vessel to minimize the PCRV size.

The HHT design reveals that the bottom section of the PCRV makes it
very difficult to accommodate the required prestressing. Detailed tendon
interface evaluation is required to establish the feasibility of the pro-

posed concept.

Conceptual PCRV arrangement drawings of the two-loop and three-loop

GT-HIGR reference plant for cost estimating purposes were completed.
15.3. DISCUSSION

The PCRV size and prestressing requirements are strongly influenced
by the design conditions, the complexity of component arrangement, and the
resulting tendon layout. The multi-pressure conditions in the PCRV cavi-
ties, the effect of differential pressure on inner ligaments, and the proof
test pressure specification were major considerations in establishing the
PCRV design requirements for the initial sizing of the vessel. The effect
of pressure relief settings on the PCRV cavity pressures was also addressed.

Pressure relief settings as proposed for the GT-HTGR have been based on the
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maximun cperating pressure at the compressor outlet with pressure margins
included for the maximum turbine overspeed transient. Pressure relief
caused by low-probability events at the compressor outlet does not provide
a design basis representative of the overall structural response of the
PCRV. From the standpoint of PCRV design, more realistic overpressure
relief set points can be established from the maximum operating pressure
in the core cavity for the high-pressure region and from the equilibrium
pressure in the side cavities for the low-pressure region. A reassessment
of the pressure relief setting should be made when the internal pressure
relief system for the GT-HTGR reference plant is better defined. With
available information on system pressures, it would appear that a single
uniform proof test pressure corresponding to the highestlequilibrium
pressure can satisfy the purpose of the structural acceptance test and

meet the intent of the ASME Code, Section CB-6000.

The complexity of component arrangement in the PCRV bottom head for
the GT-HTGR introduces problems in the layout of tendons to produce the
required prestressing. A preliminary study of the HHT tendon and com-
ponent layouts in the turbomachine region of the PCRV bottom head showed
that it is extremely difficult, if not practically infeasible, to provide
the required prestressing tendons based on the HHT tendon layout. An
alternative layout scheme for the bottom head prestressing for the HHT
600-MW(e) plant was completed as shown in Fig. 15-1. The proposed scheme
incorporates sufficient horizontal straight and circumferential tendons
in the bottom head to resist the turbine and other heat exchanger cavity
pressures. Detailed tendon interference study and analysis to confirm the
effectiveness of the proposed prestressing scheme are required before com-

plete feasibility can be established.

Considerable technical support was provided to establish an up-to-date
version of the PCRV subroutine in the CODER program for the reference
three-loop non-intercooled plant. The PCRV algorithm for the delta arrange-
ment was generated for use in the primary system parameter review study for

a reactor outlet temperature of 850°C (1562°F).
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The conceptual PCRV for the two-loop GT-HTGR, starting with the "B-2A"
configuration, resulted in the final layout shown in Fig. 15-2. Compared
with the demonstration plant design, the two-loop plant PCRV requires
generally smaller component cavity diameters and has considerably simpler
primary system gas flow paths because the need to provide flow annuli around
the components for the warm liner concept has been obviated. An additional
PCRV simplification resulted from the smaller size and straightforwardness
of the CACS as compared with that which would have been required to accom-
modate core cooling associated with the warm liner concept. The collective
impact of these considerations is a two-loop plant PCRV with a diameter of
42.7 m (140 ft) and a height of 35.4 m (116 ft). Although the two-loop
plant PCRV size reflects considerable economy of scale relative to the PCRV
for the GA demonstration plant, it does not yet compare favorably with its
competing concept, the three-loop, non-intercooled reference commercial
plant, which has a PCRV diameter of 39.3 m (129 ft). Consistent with other
GT-HTGR plant PCRV designs, the two-loop plant PCRV height was governed by
the recuperator height combined with the elevation of the turbomachine in
the bottom head, where space must be provided for horizontal tendons sur-
rounding the turbomachine cavity and for diagonal tensioning between the
turbomachine cavity diameter and the bottom of the PCRV. The orientation
of the vertical compressor discharge cavity also has a potential influence
on PCRV diameter. For this study a vertical, straight compressor discharge
cavity orientation was adopted from considerations of core hot duct replace-
ability. The PCRV support concept is based on a central concrete foundation
under the core cavity, two partial ring supports at the outer periphery,
and two support pads underneath the turbomachine cavities. This approach
provides the space required underneath the PCRV for tendon stressing while
acknowledging ASME Code requirements for accessibility. Three 2.44-m
(8-ft) diameter reactor plant cooling water system pits and two 3.05-m
(10-ft) diameter pipe chase cavities are provided in this PCRV design to
accommodate the required water plumbing. It is intended that each pipe
chase pit will contain the inlet and outlet water piping for both a pre-
cooler and an intercooler. While current layout work has not identified

any infeasible aspects of this ''shared pit" approach, it should be regarded
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as a provisional possibility until specific design/mockup studies establish

its viability.

The PCRV concept for the three-loop, non-intercooled reference commer-
cial plant embodies conventionally insulated and water-cooled liners
throughout the entire primary system and is based on a PCRV design approach
generally similar to that employed for SC-HTGR PCRV design, except that
circumferential prestressing has been replaced by linear horizontal tendons
in the area of the turbomachine cavities. Structural analysis and PCRV
layout work were performed to confirm the general PCRV conceptual design,

culminating in the arrangement shown in Fig. 15-3.

Compared with other commercial GT-HTGR plant arrangements studied
previously, including the two-loop intercooled alternate concept investi-
gated in 1978, this three-loop plant arrangement results in the smallest
PCRV. This efficient utilization of PCRV structure arises mainly from
the tangential orientation of the three turbomachines about the centrally
located core to achieve the so-called "delta" configuration, which is
ideally suited to accommodate the combination of the 1000-MW(t) loop rating
with non-intercooled turbomachines. The collective impact of these con-
siderations is a three-loop plant PCRV with a diameter of 39.3 m (129 ft)
and a height of 35.4 m (116 ft), a structure that is 3.35 m (11 ft) smaller
than that of the competing alternate two~loop intercooled plant concept.
Consistent with other GT-HTGR plant designs, similar layout and stress

requirements control the PCRV sizing.
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16. THERMAL BARRIER (631106)
16.1. SCOPE
The purpose of this task is to provide the two-loop and three-loop
reference GT-HTGR conceptual layout, evaluate the HHT hot duct design,
and conduct higher-temperature thermal barrier design.

16.2. SUMMARY

Two-loop and three-loop reference GT-HTGR plant conceptual layout

drawings for cost estimating purposes were completed.

The HHT hot duct evaluation was continued with special emphasis on

the ring seals, gimballed sections, expansion joints, and supports.
Different insulation systems and materials are being investigated

to accommodate higher-temperature application. In addition to thermal

problems, vibration and venting problems are also being considered in the

design.

16.3. DISCUSSION

16.3.1. Two~ and Three-Loop Layouts

Thermal barrier general arrangements were completed as a basis for
cost estimating. These drawings (Figs. 16-1 and 16-2) define the thermal
barrier zones, classes, thicknesses, and areas for each of the plants.
Technically, from a thermal barrier point of view, there is very little
difference between the two-loop and three-loop plants. The preliminary

coverplate material selection is:

16-1
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Normal Condition

Class Temperature Range Primary Material Alternate Materials
" A To 370°C (700°F) Carbon steel -
B1  370°-650°C (700°-1200°F) Type 316 SS Incoloy 800-H,

Hastelloy-X

B2  650°-927°C (1200°-1700°F) Carbon-carbon (C-C) Inconel 713LC,
Inconel 100,
Inconel 162

C 850°-1170°C (1562°-2140°F) Alumina, silica, Graphite, SiC,
Type 316 SS Hastelloy X

16.3.2. HHT Conceptual Hot Duct Evaluation

This evaluation is still in progress. However, the consensus at this
time is that the ducts are very complex. This is particularly true for
the ring seals, gimballed sections, expansion joints, and supports. If

replaceability is a criterion, then all ducts must be simplified.

16.3.3. High-Temperature Design Development

In conjunction with the parametric study, designs are being developed
that, in particular, are to accommodate vibration and depressurization.
Figure 16~3 shows three types of coverplates and insulation systems that
have been submitted for detailed analyses. These coverplate designs, with
modifications, can be fabricated from carbon-carbon or cast superalloys.

Two approaches to the hot duct design have been investigated (Figs. 16-4
and 16-5). The first is an example of cylindrical carbon-carbon sections
with toroidal insulation washers. Installation, removal, and replacement
are relatively simple, but the concept is expensive because of material

costs.

The other concept involves coverplates that permit rapid venting
by virtue of insulation-side grooves and perforated cruciform seal sheets.
Since vibration is expected to be a dominating parameter, the coverplates
are shown with multiple intrapanel attachments for stability and the insula-

tion is encapsulated and stitched by ceramic cloth.

16-9
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16.3.4. Plant System Parameter Evaluation

Three major issues are of concern in developing reliable thermal barrier
designs for the GT-HTGR: acoustic vibration, core outlet temperatures, and
rapid depressurization rates. In general, except for uncertainties relating
to the fatigue of fibrous insulation and some minor concern regarding
depressurization, the regions having temperatures lower than 650°C (1200°F),
that is, Classes A and B1, are not expected to pose significant technical
problems. It is the lower core plenum and the hot ducts (Class B2) where
the potential problems are sufficiently great to warrant a major design
and design verification and support effort in order to demonstrate

feasibility.

First, and most important, is the issue of vibration. The overall
sound pressure levels generated by the turbomachine are projected to be
in the range of 174 dB. Local narrow band levels could be even higher.
At these levels the fatigue resistance of coverplates, attachments, and
insulation is extremely tenuous. Of the material choices, metallic struc-
tures are given the best chance of survival, primarily due to a relatively
high modulus of elasticity. However, the potential for damage to the
fibrous insulation materials is very great if a "conventional' HTGR thermal
barrier system is to be used. A possible solution to this problem is to
encapsulate and quilt the insulation packages, thereby minimizing fiber

damage.

Second, the core outlet temperature of 850°C (1562°F) narrows the
choice of practical Class B2 material candidates to cast superalloys, the
carbonaceous fiber-reinforced composites (C-C), and hard ceramics. The data
base for these materials is very limited, especially in the areas of
fatigue and long-term creep. Hence, the ability to properly analyze any

of the proposed configurations is greatly lessened.

Finally, there are opposing requirements for controlled convection

within the thermal barrier in order to minimize heat transfer and the
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necessity for rapid venting of the system during a depressurization accident.
It is believed possible to design a coverplate/seal sheet arrangement that

can accommodate the proposed depressurization rates.

In support of the aforementioned issues, design verification and
support programs will be required to establish material properties, evaluate
coverplate/attachment fixture fabricability, determine insulation damage

tolerance, and assess the combined system performance.

16.3.5. Warm Versus Cold Liner Assessment

The thermal barrier is influenced by three factors that are unique to
the warm liner concept: the core barrel design, concentric ducts, and hot

duct/core barrel interface.

The core barrel is made up of segmented interlocking plates. This
leads to a movable base for attachment of the high-temperature thermal
barrier. This is particularly critical for the Class C thermal barrier,
where hard ceramic blocks are part of the thermal barrier and core support
design. In addition, the gaps between the core barrel segments increase
the probability of bypass flow through the thermal barrier, which could

greatly decrease the effectiveness of its function.

In order to allow replaceability of the concentric ducts and insula-
tion, the ducts must be segmented. This makes the design of the thermal
barrier more complex. In addition, the segmented duct presents a non-
rigid foundation for the thermal barrier, which increases the probability

of failure due to bypass flow.

Seismic movements and thermal expansion of the core barrel cause
design problems at the core barrel/cross-duct interfaces. The current
design concept uses a double bellows to accommodate these movements.
Design of a flexible thermal barrier for this interface region will be
extremely difficult and could affect the normal function of the thermal

barrier owing to the possibility of gas bypass.
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All the above problems would require extensive analysis and testing

above that required for the cold liner design.
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17. REACTOR INTERNALS (6317)

17.1. SCOPE

The purpose of this task is to provide two-loop and three-loop

reference plant conceptual arrangement drawings and conduct a hot duct

evaluation.

17.2. SUMMARY

17.2.1. Demonstration Plant

The revised conceptual layout drawing (Fig. 17-1) for the reactor

internals of the GA version of the HHT demonstration plant was issued.

Reactor internals input to the evaluation report on a warm versus
cold liner design was issued. The conclusion of the study is that for the
reactor internals themselves, the only potential advantages identified to
date for internals of the warm liner configuration are that a more limited
zone of the core lateral restraint springpack assembly needs to be able to
resist high temperatures (for which no materials are available in any case)

and that access to the springpacks may be possible in service.

On the other hand, the very real disadvantages must be weighed care-
fully against any advantages of the warm liner configuration which may be

identified for the plant system other than the reactor internals.

For the concentric, high-temperature internal ducts, the problems are
essentially similar in nature for the cold and the warm liner configurations
(Figs. 17-2 and 17-3). However, the number of these ducts and their lengths

are greater in the warm liner configuration considering the additional

17-~1
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horizontal, free-standing sections connecting the ducts to the core barrel.
This results in a penalty for the warm liner configuration. This penalty
must be weighed against the potential advantages of the entire free-
standing ducts of the warm liner configuration with respect to fabrication,

installation, and replaceability.

To summarize, in light of the incomplete information available from
the HHT Project and the limited time and manpower allocated to this study,
it was not possible to reach a definite conclusion regarding the feasibility
of the present design. Instead potential problem areas were identified and

recommendations for needed analytical and experimental programs were made.

17.2.2. Commercial Plant

Reactor internals arrangement drawings (Figs. 17-4 and 17-5) for the

two- and three-loop GA commercial plants were issued.
Conceptual structural and mechanical designs for the core outlet and

inlet ducts were being developed for both two- and three-loop versions

until redirection was received, when this task was closed.
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18. TURBOMACHINE (632001)
18.1 SCOPE

UTC will provide conceptual designs for the GT-HTGR turbomachines and
generators. Currently, 400-, 500-, and 620-MW(e) designs are under study.
Licensing, acoustic, and remote handling requirements will be considered in
addition to conceptual machine configurations. The approach proposed to
meet the extended operating life goal will include a conservative design
and comprehensive quality assurance program. Potential turbomachine test-

ing techniques will be reviewed, and a development plan will be outlined.
18.2 SUMMARY

Conceptual layouts for two-bearing 400-, 500-, and 620-MW(e) turbo-
machines have been prepared. Double labyrinth buffer seals have been
included to ensure there will be no ingress of the lubricating oil into
the helium flow path. An alternate scheme based on centrifugal separation
was reviewed and rejected. Methods for reducing pressure drops by increas-
ing the turbomachine outer case diameter were studied. Optimized configura-
tions were incorporated into the designs. Sound power levels for the
400-MW(e) machine were estimated. The maximum estimated level of 174 dB
occurs at the turbine inlet. Techniques for attenuating this sound level
are being reviewed. One method, increased spacing between the rotor and
stator, has been included in the 500-MW(e) layout. Critical speed analyses
have been performed on both the 400- and 620-MW(e) configurations to ensure

resonance-free conditions within the normal operating range.

An approach to remote handling maintenance has been identified. For
purposes of this study it was assumed that essentially all disassembly and
decontamination would be handled remotely. Major maintenance would be

performed at 6-yr intervals. To assess its maintenance advantages, a

18-1



full-length split case alternate design was reviewed. However, it was
concluded that the necessity for single-piece containment rings around the

compressor and turbine precludes this configuration.

Increasing the turbine inlet temperature to reduce system cost requires
turbine blade and vane cooling to retain life. The amount of cooling flow
for an 82°C (180°F) increase in temperature would be small and of simple
design, with slight impact on turbomachine efficiency. Estimated sizes

for 400- and 620-MW(e) generators were provided.

18.3. DISCUSSION

18.3.1. 620-MW(e) Turbomachine

A 620-MW(e), intercooled, two-bearing turbomachine conceptual design
was prepared in FY-78. Warm and cold liner concepts were prepared. The
warm liner configuration is illustrated in Fig. 18-1. An engineering layout

is presented in Fig. 18-2.

Operating parameters are presented in Table 18-1. The two-bearing
system eliminates the third bearing, which was located between the compressor
and turbine on previous 600-MW(e) designs. The third bearing was removed
because it was inaccessible for maintenance in the installation. The two

outer bearings are accessible through cavities in the PCRV.

A double labyrinth helium buffer seal has also been incorporated to

preclude egress of the lubricating oil to the helium flow path.

Critical speed analyses on a number of variations of the two-bearing

system were performed. These included:

1. Stiffened generator drive shaft.

2. Stiffened generator shaft with a shaft radial support at the

thrust bearing location.
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TABLE 18-1

OPERATING PARAMETERS FOR 620-MW(e) TURBOMACHINE WITH WARM LINER

Design Point

Total flow (compressor inlet)
Actual rotor speed
Overall system pressure loss

Low compressor

Inlet corr. flow
Number of stages
Pressure ratio
Efficiency

Inlet temperature

Intercooler
Helium side temperature change
High compressor

Inlet corr. flow
Number of stages
Pressure ratio
Efficiency

Inlet temperature

Reactor core

Heat generated in core
Plant heat loss
Heat supplied to cycle

Turbine

Efficiency
Expansion ratio
Inlet temperature
Number of stages
Helium cooling flow

Recuperator
Effectiveness
Precooler
Helium side temperature change

Rotor loss

Delivered shaft power

Generator efficiency

Gross electric power generated
Plant auxiliary power requirement
Net electric power generated

Net power plant thermal efficiency

746 kg/s (1650 lbm/sec)
3600 rpm
9.67%

62.52 WAT VBT, /8T
8 2072
1.732

0.9080

26.8°C (80.3°F)

63.4°C (146.2°F)

37.00 WAT v8T,/68T
8 2 2
1.732

0.9020

27.1°C (80.7°F)

1490 MW
9.450 MW
1483 MW

0.9220

2.72

848.9°C (1560°F)
9

3.802%

0.8975

118.8°C (245.9°F)

3.95 MW (5295 hp)

637.34 MW (0.85469 x 10° hp)
0.9880 hp

629.9 MW

5.500 MW

625 MW

0.4184
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Fig. 18«2, Layout for 620-MW(e) turbomachine
warm liner concept






3. Reduced generator shaft length.

4. Turbomachine rotor shortened by 203 cm (80 in.).

The intent was to identify a configuration which eliminates or minimizes
critical rotor speeds within the normal operating range. Although none
of the above éonfigurations was completely successful, the combination
indicated in item 2 lowered the rotor strain energy to 12% in the running

range.

The critical speed analysis procedure was reviewed with Professor
Stephen Crandall of the Massachusetts Institute of Technology Engineering
Department, who is a recognized authority on the dynamics of rotating
equipment. He agreed with UTC analytical procedures and the design cri-

teria established for the GT-HTGR turbomachine. His suggestions included:
1. Include speeds below 500 rpm (not analyzed to date).
2. Introduce damping methods into the case and other non-rotating

parts of the system, since most of the strain energy appears

to reside in the static structure.

3. Avoid damping in the rotor since this may cause hysteresis
instability.

4. Avoid energy transfer paths for subcritical resonances.

5. Provide for multi-plane balancing in the rotor design.

To accommodate shipment of the contaminated turbomachine for main-
tenance, previous designs were restricted to a maximum diameter of
3.5m (11.5 ft). Relaxation of this constraint would allow a reduction
in pressure drop, thereby increasing efficiency. Studies were performed
for 4- and 4.6-m (13- and 15-ft) diameters. Results showed that increasing

the turbomachine diameter to 4 m (13 ft) would offer a 1/27 improvement in
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overall efficiency. Further increase from 4 to 4.6 m (13 to 15 ft) offers
little in pressure drop reduction. The predicted pressure drop changes for
increased diameter are shown in Table 18-2. The associated performance

change is shown in Fig. 18-3.

18.3.2. 400-MW(e) Conceptual Design

The conceptual design layout for the 400-MW(e) turbomachine was up-
dated to incorporate the redundant buffering system. The bearing span has
been increased from 8.67 m (28.75 ft) to 9.30 m (30.5 ft). To accommodate
the revised GA hot duct sealing scheme, the turbomachine outer case diameter
has been increased from 3.51 m (11.5 ft) to 3.96 m (13 ft). The flow path
is unchanged from the optimized configuration previously determined. The
previous configuration is shown in Fig. 18-4 and the revised layout in Fig.

18-5. The operating parameters for this revised configuration are shown
in Table 18-3.

18.3.3. 400-MW(e) Turbomachine Pressure Loss and Distortion Reduction

The 400-MW(e) turbomachine flow path was reviewed, and areas have been
identified where geometric changes could provide a reduction in pressure
loss and flow distortion. Results of this study indicate that optimization
in areas such as the compressor inlet duct to plenum intersection and
the compressor bellmouth could provide a reduction in pressure loss and in
distortion. Reduction in fluid velocities in sections with abrupt area
changes and regions where flows are turned, such as the compressor exit and
turbine inlet, could provide improved pressure loss and flow distortion.
Optimizing the turbine hot duct/turbine volute intersection could reduce
the pressure loss in this region. To provide optimized geometries for
areas such as the compressor inlet and exit and the turbine inlet, scale
model testing is recommended. Table 18-4 presents the estimated pressure

losses at the critical locations for the present layout configuration.

Basically, the suggestions identified in this study are geometric

changes that provide lower fluid velocities and/or improved interaction
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TABLE 18-2
EFFECT OF TURBOMACHINE DIAMETER ON PRESSURE DROP

Cycle Pressure Losses, AP/P (%)
Baseline
[3.5-m (11.5-ft) | 4-m (13-ft) | 4.6-m (15-ft)

Diameter] Diameter Diameter
LPC(a) inlet interface and 0.13 0.13 0.10
shell holes
LPC inlet volute 0.20 0.20 0.20
LPC exit diffuser and dump 1.07 0.58 0.58
LPC exit contraction 0.05 0.05 0.05
#pc(®) inlet interface and 0.07 0.07 0.07
shell holes
HPC inlet volute 0.20 0.20 0.20
HPC exit diffuser and dump 1.18 0.71 0.71
HPC exit shell holes 0.03 0.03 0.02
HPC exit contraction 0.02 0.02 0.02
Turbine inlet volute 0.48 0.58 0.26
Turbine exit diffuser and
struts 0.37 0.37 0.37
Turbine exit contraction 0.02 0.02 0.02

(a)
(b)

Low—pr essure compressor.

High-pressure compressor.
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TABLE 18-3

OPERATING PARAMETERS FOR REVISED 400-MW(e) TURBOMACHINE

Design Point

Total flow (compressor inlet)
Actual rotor speed
Overall system pressure loss

Compressor

Inlet corr. flow
Number of stages
Pressure ratio
Efficiency

Inlet temperature

Reactor core

Heat generated in core
Plant heat loss
Heat supplied to cycle

Turbine

Efficiency
Expansion ratio
Inlet temperature
Number of stages
Helium cooling flow

Recuperator
Effectiveness
Precooler
Helium side temperature change

Rotor loss

Delivered shaft power

Generator efficiency

Gross electric power generated
Plant auxiliary power requirement
Net electric power generated

Net power plant thermal efficiency

571 kg/s (1260 1bm/sec)
3600 rpm
7.10%

41.08 WAT V6T2/6T2
18

2.5

89.8%

26.7°C (80°F)

970.65 MW
6.25 MW
964.4 MW

91.8%

2.322

850°C (1562°F)
8

3.6%

89.8%

180.7°C (357.3°F)

2.32 MW (3110 hp)

405.45 MW (0.5437 x 10° np)
98.7%

400.18 MW

1.25 MW

398.93 MW

41.10%
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TABLE 18-4
400-MW(e) TURBOMACHINE PRESSURE LOSSES [AP/Pt(%)]

Section
Compressor inlet 0.22
Compressor exit 0.70
Diffuser -0.46
Diffuser dump -0.23
Shell holes -0.015
-0.705
Turbine inlet 0.41
Turbine exit 0.15
Diffuser . -0.092
Struts -0.053
-0.145
Total 1.48
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between components (e.g., ducts and volutes, volutes and bellmouth, etc.).
For the most part, those features that result in lower pressure losses also
tend to result in lower distortion. Although the potential advantages of
these recommendations is easily recognizable, the exact geometric configura-

tions must be optimized through model testing and trade-off studies.

The items recommended for consideration for follow-up configuration

updating are described below.

18.3.3.1. Compressor Inlet.

Pressure Loss

Suggested compressor inlet pressure loss improvement features are

as follows:

1. Increase the inlet plenum size by incorporating part of the

plenmum in the PCRV wall or by increasing the engine case

diameter.
2. Optimize ghe inlet duct/plenum intersection.
3. Optimize the bellmouth geometry. Model tests would be required.
4, Add a second inlet duct.
Distortion

In the absence of inlet duct wakes, as was the case with the 620-MW(e)
turbomachine warm liner concept, it is reasonable to assume that those
features which reduce pressure loss also result in a reduction in distor-
tion. It is difficult to quantify the distortion reduction at present,
and model testing would be required to provide an assessment. Model test

studies showed that optimizing the compressor inlet duct/plenum intersection
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and bellmouth geometry could result in a significant improvement as measured

).

by circumferential pressure variation (i.e., P -P ., /P .
max min’ " avg

18.3.3.2. Compressor Exit.

Pressure Loss

The present curved annular diffuser geometry is probably optimum for
this type of diffuser regardless of the space available, since the diffuser
area ratio and diffuser length to diffuser inlet height are the real con-

straint., Suggested features to be considered for loss improvements are:

1. Use a radial diffuser, since it has potential for a larger
area ratio and accompanying lower dump velocity. Model

tests would be required to provide an optimum design.

2, Increase the turbomachine case diameter to provide increased

shell hole flow area.

Distortion

As for the compressor inlet, those features which reduce pressure loss
also reduce distortion. In general, inlet distortion is far more significant

in terms of surge margin reduction and vibration than exit distortion.

18.3.3.3. Turbine Inlet.

Pressure Loss

Suggested turbine inlet pressure loss improvement features are:
1. Increase the turbine hot duct size. This would reduce

the sudden expansion loss from the hot duct to the turbine

inlet volute.
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2. Optimize the hot duct/turbine volute intersection. Model tests

would be required.

3. Add a second hot duct.

Distortion

Reduction in velocities in regions where flow is turned (i.e., hot
duct to turbine volute and turbine volute to turbine inlet) will result in
reduced distortion. Again, the features suggested for improved pressure
loss will also provide improved distortion. Model testing would be required
to quantify the baseline distortion level and any benefits from an improved

flow path, since no other evaluation techniques are currently available.

18.3.3.4. Turbine Exit.

Pressure Loss

Since the turbine exit does not have any provisions for the removal
of a swirl, a trade-off study needs to be conducted which compares losses
associated with an exit vane with potential diffuser loss reduction if
swirl is optimized. In addition, the strut contour and location could be

optimized. In both of these areas, model testing would be important.
Distortion
The impact of distortion on the turbine exit is probably not significant.

18.3.4. 400-MW(e) Turbomachine Noise Estimates

Estimates were obtained for the acoustic power emissions from the inlet
and discharge of the GT-HTGR turbomachine compressor and turbine. Tests on
a two-stage model fan operating in air provided the baseline acoustic data.

Procedures were developed and used to transform the baseline data to the
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GT-HTGR component overall acoustic powers. These scaling procedures involve
use of blade tip Mach number as the primary variable together with modifi-
cations to account for changes between baseline and GT-HTGR components in
diameter, hub-tip ratio, blade loading, blade-vane geometry, and media
densities and sound speeds. Estimates of the spectral distribution of

acoustic power were also obtained.

The results are in close agreement with those presented in previous
GA studies which assumed that only the outermost stage is the noise emitter
emitter. The two-stage baseline tests used here indicate that at least
the two outermost stages contribute. Therefore, to make comparison as
close as possible, 3 dB have been added to the GA values and the resulting
emissions are presented together with the current independent estimates

in Table 18-5.

Two main parts of the procedure for estimating inlet and discharge
acoustic power emissions for the GT-HTGR turbomachine compressor and tur-
bine are (1) obtaining relevant data from geometrically representative
machinery and (2) determining how to scale this information. These are

discussed below.

Baseline Data

After examination of several possible test program results, it was
decided to use the results of extensive tests on an 83.8-cm (32.9-in.)
diameter two-stage fan Q2S (Ref. 18-1). It was believed that a two-stage
machine would be more representative than a single-stage machine for the
purpose of this study. Apart from size and number of stages, the two-stage
fan differed in two significant ways from GT-HTGR geometry: (1) blade/

vane ratios and (2) blade/vane spacing.
Recognition of these differences established overall sound power levels

for inlet and discharge emission that would provide baselines for scaling

the modified Q2S fan data to each of the four emitters in the GT-HTGR
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TABLE 18-5
400-MW(e) GT-HTGR TURBOMACHINE COMPONENT ACOUSTIC POWER EMISSIONS

(OVERALL POWER LEVELS: dB RE 10712 y)
Compressor Compressor Turbine Turbine
Inlet Discharge Inlet Discharge
Present estimates 151.7 150.3 161.5 162.2
GA Est. + 3 dB 152.7 150.6 161.8 163.8
Difference 1 0.3 0.3 1.6
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turbomachinery. This information (without the hub-tip change effect) is
represented in Fig. 18-6 in the form of overall sound power levels as a

function of blade tip circumferential Mach number.

Scaling Parameters

Sealing from the Quiet Fan to the GT-HIGR was accomplished by

considering:

1. Blade loading.
Hub-tip ratio.

Relative rotor size.

~ W N

Shaft power in helium versus air.
The results of this study are shown in Table 18-6.

In addition to the overall power levels, estimates were prepared for
the spectral distribution of power shown in Fig. 18-7. The process involved
selecting representative one-third octave band levels to typify results for
the inlet and for the discharge of the Q2S baseline fan at low operating
Mach numbers and modifying these to account for cut-off and spacing changes

expected in the GT-HTGR components.

Previous GA analysis was made of the sound pressure levels to be
expected in several parts of the reactor system as a consequence of the
turbomachine acoustic power emissions. The GA analysis indicated that the
resulting pressures would be only marginally acceptable in some regions.
The following procedures are suggested for consideration for reducing the

acoustic power generation:

1. As a preliminary step, baseline data supplementary to that of
the Q2SS fan used here should be examined to allow more reliable
estimates to be made. These data may be processed by the methods

described here or by another, indepéndent procedure. Further,
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Fig. 18-6. Quiet two-stage fan baseline overall power levels
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6 dB to estimate effects of close spacing and
cut-on blade-vane combinations)
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TABLE 18-6
PARAMETERS AND RESULTS OF GT-HTGR TURBOMACHINERY NOISE ESTIMATE STUDY

Compressor Turbine
Inlet Discharge Inlet Discharge
GT-HTGR temperature 26.3 177 850 532
[°c °m] (79.4) (350) (1562) (990)
GT-HTGR pressure 3.17 7.93 7.65 3.28
[MPa (psia)] (460) (1150) (1109) (476)
Density ratio referred 4.4 7.3 2.8 1.7
to SLS air
Sound speed ratio referred 2.93 3.59 5.68 4.78
to SLS air
Diameter [cm (in.)] 182.9 176.8 198.6 218.4
(72) (69.6) (78.2) (86)
Hub-tip ratio 0.87 0.90 0.86 0.76
Power per two stages 56 56 225 225
[MW (hp) ] (75,000) | (75,000) (302,000) | (302,000)
Blade-tip mach number 0.34 0.27 0.19 0.25
Q2S power [MW (hp)] 0.15 0.08 0.03 0.06
(200) (1060) (35) (79)
Q2S power including 0.20 0.10 0.04 0.20
scaling and hub tip (274) (136) (56.5) (270)
[MW (hp)]
Q2S sound pressure level 122 119.4 112 118.6
(numerically = PWL) (dB)
Q2S sound pressure level 123.4 120.8 114.1 123.9
scaled to size and hub
tip (dB)
GT-HTGR sound pressure 162.8 164.5 173.6 171.3
level = above plus HP
scaling (dB)
GT-HTGR corresponding 151.7 150.3 161.5 162.2
acoustic power
(dB re 10 2 W)
Acoustic power (W) 1,480 1,070 14,100 16,600
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the spectral distribution should be examined more closely since
this factor will influence the severity of the resultant pressure
problem. At the very least, estimates of the errors in the
prediction process should be sought. Presently, it seems that

these estimates could be in error by something like *6 dB.

With the results of step 1 in hand, the required nature and amount
of source noise reduction can be established to use in evaluating

possible design modifications.

The following is a list of some noise-reduction methods that might
be applicable. All of these concepts have worked in certain
applications, but none of them will always work. The efficacy

of any measure depends greatly on details of the operating environ-
ment, and the practicability of a method also depends on related

factors. Some possibilities for exploration are as follows:

a. Change the acoustic interactions between blades and vanes
in the outermost two stages of the compressor and turbine
from generating propagating modes to decaying modes. This
is usually effected in aircraft turbine components by
increasing the number of stationary vanes relative to the
number of rotor blades. 1In the GT-HTGR, because of the
comparatively low blade Mach numbers, it may be feasible
to effect this change by actually decreasing the vane number.
A preliminary examination suggests that this proven noise
reduction concept may be particularly attractive in the

GT-HTGR application.

b. Increase spacing between blades and vanes in the outermost
two stages of the GT-HTGR components. Whether this step is
required depends on certain details of step (a) above. If
vane numbers cannot be changed sufficiently to produce cutoff

of twice blade passage frequency, increasing the spacing can
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be used to reduce sound pressure levels by at least 10 log

(spacing ratio).

Examine inlet struts and plenum chambers to determine their
effects on inflow non-uniformity and unsteadiness. The
benefits of such noise reduction measures as cutoff stator
design (item a) have been demonstrated (Ref. 18-2) to be
worth at least 20 dB over cut-on designs, but only when
inflow air is smooth, as in aircraft flight conditions.
When inflow is irregular and/or unsteady, as in aircraft
ground operations or in test cells, the interaction of

the rotor with this type of flow generates significant
noise, thus short-circuiting the provisions of cutoff

stator or spaced stator designs.

It is therefore fruitless to change component stage designs
without ensuring that the inflow is satisfactorily uniform

and steady. Great success has been achieved in the aircraft
industry through the use of '"turbulence control structures"

for use around the power plant inlet during static noise

tests. These results suggest that a basically similar approach

may be profitable with the GT-HTGR components.
The discharge regions of the GT-HTGR compressor and turbine
should be examined in an analogous manner. Relatively little

experience in this area is currently available.

Finally, the use of sound-absorbing lining or structures to

dissipate acoustic power near the sources should be examined.
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18.3.5. Graphite Dust Effects on Turbomachine

The effects of graphite dust included in the helium flow stream on the
turbomachine were reviewed. It was indicated that about 177 g (100 1b) per
year of graphite dust will be generated in the reactor core and presumably
carried into the turbine. GA estimates the concentration of this dust at
about 0.3 mg/ft3. This dust is in the form of a very fine powder composed
of ellipsoidal grains with a mean diameter of about 0.3 microns and a mean
length of about 0.7 microns. Trajectory approximation calculations were
made to determine the character of the flow of this particulate material
through the helium turbomachine. Conclusions from this study are summarized

below:

1. Approximations of the trajectories of the particles as they pass
through the helium turbine were made using a theoretical approach
developed by UTS (Refs. 18-3, 18-4). This analysis indicates that
the particles will precisely follow the streamlines through the
machine. The particles are very small and the density of graphite
is quite low compared, for example, with the size and density of
sand particles sometimes ingested into aviation gas turbines
operating in dusty conditions. 1In the case of the graphite
particles in the turbine, the transverse acceleration forces
acting on the particles in the curved flow field are very small
compared with the aerodynamic drag associated with particle
motion perpendicular to the streamlines. Also, the transverse
displacements of the particles are very small during transit
time past a blade row. As a result, the particles follow the
streamlines quite precisely and no impaction occurs on the air
foils except at the stagnation point. Therefore, little or no
erosion is expected to occur in the turbine. 1In the case of the
compressor, a much lower concentration of particulate material
is expected in the gas stream than in the case of the turbine,
since the gas leaving the turbine passes through the recuperator

and the precooler before entering the compressor. These heat
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exchangers should function as fairly efficient separators to
remove a large fraction of the particulate material carried by

the gas. In any event, the situation in the compressor is similar
to that in the turbine with regard to the particle trajectories.
Here again, the very fine particles are expected to follow the

streamlines with little erosive effect on the air foils.

The graphite dust is not expected to be very erosive since
graphite itself is very soft and non-abrasive, as demonstrated
by its wide use as a lubricant. Graphite has a hardness of

0.5 to 2 on the Moh scale compared with a hardness of 7 for
silica and 4.5 to 6.5 for the glass-like substances, such as
those found in fly ash. However, further information on the
erosive characteristics of graphite particles is needed to
confirm their benign character, since graphite is a highly
anisotropic substance and may have impact characteristics which

are quite different from its characteristics on sliding surfaces.

The graphite dust is not expected to build up thick layers on
metallic surfaces in the dry, clean environment of the helium gas
stream even at high temperatures, since graphite is a highly
refractory material and the gas stream and metal temperatures are

far below its melting point.

Attention must be paid to the potential for mechanical accumula-
tion of the graphite dust in critical locations such as cooling
passages. While the total volume of dust generated by the reactor
core in a year is only on the order of 0.03 m3 (1 ft3) and is
miniscule compared with the total volume of the system, experience
with gas turbines has shown that some parts of these machines can
function as very efficient centrifugal separators and can collect
dust in critical locations. Care must be taken in the design of
the turbomachine to avoid dust collection in this type of

location.
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18.3.6. Increased Turbine Inlet Temperature

The present GT-HTGR turbomachine operates with a turbine inlet
temperature of 850°C (1562°F). Turbine blades or vanes are not cooled,
although some cooling flow is supplied to the turbine disc rims and outer
case. System advantages may be gained by allowing the turbine temperature

to increase.

The trade-off between turbine inlet temperature and operating life was
reviewed with reduced system cost associated with the higher temperature as
the incentive. The specific exchange addressed was a 100°C (212°F) increase
in temperature to the non-cooled turbine with a corresponding reduction from
280,000 to 100,000 hr of operating life. Results showed this trade to be
impractical. The solution may be the addition of cooling helium, providing
a significant impact from a simple design. The flow requirement would be

extremely low with negligible impact on efficiency.

Reduction of turbine airfoil metal temperature by cooling the airfoils
with helium taken from the compressor is an extremely effective approach to
increasing the power output of the GT-HTGR turbomachine, either by permitting
increased gas flow or increased turbine inlet temperature, or both. The
allowable stress for a given total creep over a specified time interval is
extremely sensitive to metal temperature. The allowable blade and vane
stresses at a given metal temperature determine the maximum turbomachine
size and power output. At a fixed machine size, the maximum turbine inlet
temperature is set by the allowable blade and vane stresses at the corres-

ponding airfoil metal temperatures.

The effectiveness of airfoil cooling in the GT-HTGR helium turbomachine
is greatly enhanced by the excellent heat transfer properties of helium and
by the relatively low temperature of the cooling gas available from the
compressor. These characteristics permit a very high cooling effectiveness
to be obtained with very simple airfoil coolant passage geometry. This

results in substantial metal temperature reduction with very small coolant
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flows and, consequently, a very small efficiency penalty associated with

turbine airfoil cooling.

The possibility of increasing the allowable turbine inlet temperature
of . the uncooled turbomachine by relaxing the creep life requirement for the
turbine airfoils has been suggested. This is a very ineffective approach
because creep rate at constant stress is extremely sensitive to temperature,
and therefore even a very large reduction in required creep life will result
in only a very small increase in allowable turbine inlet temperature. This

is illustrated in Example 2 below.

The following examples are offered to quantify the foregoing statements:

1. To increase the maximum allowable turbine inlet temperature from
850° to 950°C (1562° to 1742°F) at constant metal temperature
with no change in the turbine flow path, the first five or six
rows of airfoils would have to be cooled. The theoretical cool-
ing flow required for the first row of vanes and the first row
of blades to maintain the metal temperature at 850°C (1562°F) is
about 0.07% of engine air flow for each row. This is probably
below the practical lower limit for cooling flow, and in any case,
the total cooling flow for the first five or six rows would be

less than 1% of engine gas flow.

2. If the 1% creep life requirement is reduced from 280,000 to
100,000 hr for the uncooled turbomachine designed to operate at
850°C (1562°F) turbine inlet temperature, the maximum allowable
turbine inlet temperature could be increased only about 17°C
(63°F). Thus, this is not a practical approach to increasing

turbine inlet temperature.
Although the calculations for the above examples are very rough, they serve

to illustrate the effectiveness of turbine cooling in the GT-HTGR helium

turbomachinery.
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18.3.7. Alternate Helium Buffer Seal

A dynamic seal concept as an alternative to the redundant labyrinth
seal was reviewed. The operating principle is to balance a centrifugally
loaded oil bath against a helium~buffering system. Although this concept

has been previously incorporated in other types of systems, its use in the

GT-HTGR turbomachine is discouraged by the anticipated oil motion on the

impeller tips and the associated power loss.

18.3.8. 400-MW(e) Turbomachine Remote Disassembly Techniques

A preliminary review of the techniques for remote turbomachine dis-
assembly was made to identify design and handling equipment requirements.

The proposed disassembly sequence is as follows:

1. Rotate the turbomachine into the vertical position.
a. Attach the pivotal fixture to the compressor end.
b. Attach the lifting fixture to the turbine case mounting
pins.
c. Lift the engine into the vertical position.
d. Lock the pivotal fixture in this position.

2. Support the power plant at the compressor end flange of the

split case.

3. Remove the split outer case.
a. Attach the removal fixtures to both halves of the case.
b. Remove the bolts from the circumferential flange at the

turbine end.
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C. Replace the turbine rotor locking fixture with a similar
one about 1/3 cm (1/8 in.) shorter to permit raising the
stator assembly.

d. Raise the stator assembly.

e. Remove the bolts from the longitudinal flange and compressor

end circumferential flange.

f. Pull the case halves radially away from the engine.

Remove the compressor discharge ducts.

Provide the support fixture from the compressor stator flange

to the rear of the compressor shaft.

Remove the split turbine inlet duct assembly.

Provide the support fixture from the turbine stator flange to

the exposed turbine shaft.

This is a "go/no-go" decision péint. The entrance and exit
stages of both the compressor and turbine are now accessible

for inspection, presenting the following options:

a. If there were no pre-shutdown anomalies and no visible
signs of hardware distress, the above disassembly steps

may be reversed, and the turbomachine returned to the PCRV.
b. If pre-shutdown performance was suspect, or if hardware

distress is evident, turbomachine disassembly should

continue.
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10.

11.

12.

Remove the bolts from the shaft flange. Lift the turbine assembly
off the compressor and mount it in the vertical position on the

outermost turbine case flange.

Unbolt the aft turbine case flange, and using the rotor/stator
locking fixture, 1ift the turbine assembly out of the containment
ring assembly. Mount the rotor/stator assembly in the vertical

position on the end of the turbine shaft.

Stator assembly removal.

a. Provide support to the outermost exhaust case flange.

b. Attach the removal fixtures to both pieces of the split case
assembly.

C. Remove the shaft support fixtures as supplied in step 7.

d. Unbolt the circumferential flange and lower stator assembly

to clear the flange snap.

e. Unbolt the longitudinal flange.

f. Remove the stator halves radially away from the rotor.
g. Place both pieces in the horizontal fixture to remove the
vanes.

The turbine vanes are now accessible for visual inspection. If
necessary, the vanes can be removed from the case. If vane
removal is unnecessary, hold the stator assemblies for rebuilding

of the engine.
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13. Remove the turbine exhaust case.

a. Assembly is in the vertical position supported on the turbine

shaft flange and exhaust case major flange.

b. Remove the rotor/stator locking fixture.

c. Unbolt the bearing assembly from the bearing support ring,

and remove the bearing.

d. Unbolt the bearing support ring and primary seal rub-strips.
Remove the support ring and primary seal as a unit. Further

disassembly can be done on the bench.

e. Unbolt the secondary seal rub-strips and lift the turbine
exhaust case with the secondary seal system from the rotor.

Further seal disassembly can be done on the bench.

14. Turbine blades are now accessible for visual inspection. If
necessary, blades can now be removed from the drum for repair
or replacement. If blade removal is unnecessary, hold the

rotor assembly for engine rebuilding.

15. To perform compressor disassembly, follow a procedure similar

to steps 10 through 14.

18.3.9. 400-MW(e) Split Case Design Concept

To assess its advantages, a full-length split case design was laid
out around the present 400-MW(e) flow path as shown in Fig. 18-8. This
configuration provides significant benefits with regard to remote handling,
decontamination, and maintenance. The cases can be separated and the rotor
removed as a single unit. Use of this design would require incorporation
of split containment rings. These rings are included for safety purposes

to contain particles in the unlikely event of a blade or rotor failure.
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400-MW(e) split case design concept

18-8.

Fig.






It was necessary to review the containment problem to see if split
containment rings with the necessary longitudinal mechanical joint are
practical. Westinghouse Research Laboratories (Ref. 18-5) has developed
an energy absorption theory of disc fragment containment and correlated
the containment prediction system with the results of large-scale disc
burst tests in which the disc fragments impinged on steel containment
rings. In that analysis, disc failure is treated as a two-stage process.
In stage 1 the disc fragments impact the containment ring, transferring
momentum and kinetic energy to the ring. The energy associated with the
momentum transferred to the ring on impact must be absorbed by plastic
shear and compression strain in the area of impact or the fragments will
perforate the ring and escape. If the fragments do not punch through the
ring, the remainder of the kinetic energy of the fragments must be absorbed
by plastic strain associated with stretching deformation of the ring in
stage 2 of the process. The containment ring must be capable of absorbing
this kinetic energy in plastic strain or it will break and release the disc

fragments as missiles.

The Westinghouse procedure was used to analyze the mechanics of con-
tainment of the eighth-stage turbine disc in the 400-MW(e) helium turbo-
machine at the minimum burst speed condition, which for this machine is
150% of the 3600-rpm operating speed. As a basis for the containment
calculation, it was assumed that the eighth-stage (heaviest) disc burst at
150% overspeed into four approximately equal fragments. This assumption
leads to about the maximum fragment translational kinetic energy which can

be attained.

The results from this study led to the following conclusions:

1. A containment ring of approximately 17.8 em (7 in.) thickness
should be adequate to contain an eighth-stage disc failure if

the ring is extended axially downstream by 38 to 51 (15 to 20

in.) beyond the area of impact.
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2. Varying the thickness of the containment ring along its length
would probably save cost and weight since the disc energy
increases stage by stage through the turbine. Detailed calcu-
lations taking into account the energy of fragments from each
of the turbine discs and the trade between ring thickness and
extension of the ring at the ends of the turbine would be

required for optimum design of the containment ring.

3. The nature of the energy absorption process, which depends upon
large plastic strain in the containment ring, almost certainly
precludes the use of any sort of axial mechanical joints in the

ring.

Based on the results of this study, the split case configuration has

been removed from consideration.

18.3.10. 500-MW(e) Conceptual Design

To accommodate studies of various plant sizes, a 500-MW(e) conceptual
design layout was prepared. This configuration is shown in Fig. 18-9.
Additional spacing has been incorporated between the compressor and turbine
inlet and exit stator and rotors to provide for sound power level attenua-

tion. Table 18-7 presents associated performance characteristics.

18.3.11. Generator Size

Initial system layouts were configured with hydrogen-cooled generators
located outside the secondary containment building (SCB). This precluded
the possibility of hydrogen leakage into the SCB. However, it resulted in
the requirement to penetrate the SCB with the shaft connecting the turbo-
machine and generator. To eliminate this penetration, water-cooled gener-
ators have been investigated, which can be located inside the SCB. Brown,
Boveri and Cie (BBC) has provided information on water-cooled generator

configurations and physical sizes.
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TABLE 18-7

PERFORMANCE CHARACTERISTICS OF 500-MW(e) TURBOMACHINE

Design

Total flow (compressor inlet)
Actual rotor speed
Overall system pressure loss

Compressor

Inlet corr. flow
Number of stages
Pressure ratio
Efficiency

Inlet temperature

Reactor core

Heat generated in core
Plant heat loss
Heat supplied to cycle

Turbine

Efficiency
Expansion ratio
Inlet temperature
Number of stages
Helium cooling flow

Recuperator
Effectiveness
Precooler
Helium side temperature change

Rotor loss

Delivered shaft power

Generator efficiency

Gross electric power generated
Plant auxiliary power requirement
Net electric power generated

Net power plant thermal efficiency

1576 1bm/sec
3600 rpm
7.10%

51.19 WAT VBTZ/GT
2

16

2.5

89.8%

26.7°C (80°F)

1212.55 MW
6.25 MW
1206.3 MW

91.8%

2.322

850°C (1562°F)
8

3.6%

89.8%

181°C (357.3°F)

2.32 MW (3110 hp)
507.72 MW (0.6809 x 10
98.7%

501.12 MW

1.25 MW

499.87 MW

41.22%

6

hp)
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19. CONTROL VALVE (632003)

19.1. SCOPE

The purpose of this task is to determine the trim, attemperation, main
bypass, and safety trip functional requirements and prepare conceptual design

layouts.

19.2. SUMMARY

Conceptual designs for the GT-HTGR bypass valves have been developed,
and this work is reported in Refs. 19-1 and 19-2. Figures 19-1 through
19-4 show the four basic valve configurations: control, safety, trim, and
attemperation. These valves are normally closed when the plant is at 100%
power. They are used in the event of a sudden or slow change in plant load

to control the turbine speed. A summary of the valve requirements is given

in Table 19-1.

19.3. DISCUSSION

Based on the work to date, the following areas of concern have been

identified:

1. High Stem Forces. The existing design of the safety and control

valves will require a stem force of over 22,679 kg (500,000 1b)
just to overcome the fluid forces. This much force will require
a very special, high-powered hydraulic actuator. 1In addition,
the valves have a very fast stroke time, which will mean very
large amounts of energy will be required to both move the valve
and stop it. This problem is not as severe with trim and

attemperation valves.
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TABLE 19-1

THREE-LOOP, 400-MW(e) TURBOMACHINE - NON-INTERCOOLED, REFERENCE PLANT

constant (s)

‘ Attemperation
Control Valve Trim Valve Safety Valve Valve

Design pressure 8.17 8.17 8.17 8.17

[MPa (psig)] (1185) (1185) (1185) (1185)

Design temp. Per analysis Per analysis Per analysis Per analysis
Normal inlet pressure 7.93 7.93 7.93 7.93

[MPa (psia) ] (1150) (1150) (1150) (1150)

Normal temp. 498 498 498 174

[°c (¢°m)] (928) (928) (928) (346)

Flow area, 1007 open 493 x 103 41 x 103 493 x 103 73 x 103

[mn? (in.2)] (765) (65) (765) (113)

0%-1007% travel time 1 1 1 1

open (s)

Control range (%) 0-100 0-100 Not req'd 0-100

Position resolution 0.27% of stroke 0.2% of stroke N/A 0.2% of stroke
Loss of power Open: AP > 20 Open: AP > 20 Open: AP > 20 Open: AP > 20
position Closed: AP < 20 Closed: AP < 20 Closed: AP < 20 Closed: AP < 20
" Maximum press. drop 4.65 4.65 4.65 4.65

[MPa (psi)] (675) (675) (675) (675)

Type of control Linear Equal percent. Quick open Linear

contour

Normal AP [MPa (psi)] | 4.65 4.65 4.65 4.65

(675) (675) (675) (675)

Seat leakage normal 0.19 0.19 0.19 0.19

AP [kg/s (1b/hr)] (1500) (1500) (1500) (1500)

10% step change, time | 0.25 0.25 N/A 0.4




2. Friction and Self-Welding. The valves remain in the closed

position when the plant is base-loaded during normal operation.
Also, leakage has a very negative effect on plant efficiency.
Thus, the designs will tend to have high seat forces to give
good shutoff. The combination of high temperature, high surface
forces, and long hold time in an inert atmosphere could easily
lead to self-welding. Careful material selection and possibly

some testing will be required.

3. Seat Erosion. The normal differential pressure across the valve

seat is sufficient to cause sonic flow and attendant high
velocities, i.e., 1524 m/s (5000 ft/sec). This high velocity
combined with entrained particulate material could be very

erosive.

4. Stem Leakage. The actuator must be housed within the primary

pressure boundary, or a bellows sealed stem must be incorporated.

5. Removal and Maintenance. Attention needs to be directed to the

removal and maintenance requirements. Special provisions must
be made so that the valves may be installed and removed with
remote handling equipment. In addition, those parts which may
become contaminated need to be designed to allow for disassembly

with remote maintenance tools.

6. Flow Noise. The high pressure drop will induce noise which may
lead to vibration problems with the thermal barrier or other

adjacent equipment.

The very high stem forces required for the control and safety valves
could be reduced by adopting a balanced or semibalanced valve disc design.
Examples of such designs would be a double-seated valve, a butterfly valve,

or a valve with an auxiliary balancing chamber.
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A review of the Fort St. Vrain main steam turbine stop and control
valves was made to provide a point of reference. The stop valve must close
in less than 1 s. The valve utilizes a combination of spring force and
fluid force to provide quick closing; the actuator has very limited power
to open the valve. In contrast, the control valve uses a balance chamber
to minimize the stem forces. The seat diameter is 20.3 cm (8 in.), and the
balance chamber diameter is about 17.8 cm (7 in.). This will balance out

most of the fluid forces and allow the use of a modest size actuator.

Future valve investigation will be directed toward designs which will

lower the required stem forces.
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20. HEAT EXCHANGERS (6321)

The heat exchanger design effort is divided between GA and its

subcontractor Combustion Engineering (CE).

20.1. CE EFFORT

20.1.1. CE Scope

The scope of CE's part of the heat exchanger design effort is as

follows:

1. Complete the conceptual mechanical designs, estimated costs,
and schedules for the power conversion loop (PCL) heat

exchangers for three different GT-HTGR plant configurations:

a. 600-MW(e), one-loop intercooled plant.
b. 1200-MW(e), two-loop intercooled plant.
c. 1200-MW(e), three-loop non-intercooled plant.

The mechanical designs and estimates were to be consistent with
performance and interface requirements specified and provided by
GA. Information provided to CE by GA prior to the start of the

effort included:

a. Preliminary designs.

b. Thermal-hydraulic data.

c. Operating requirements and envelope.
d. GA concept selection report.

e. Statement of technical approach.
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All work was to be documented in a final summary report

highlighting:
a. Conceptual mechanical design (drawings).
b. In-service inspection (ISI) concepts.
c. Maintenance and repair concepts.
d. Installation and removal concepts.
2. Review the HHT (Sulzer) heat exchanger drawings and criteria and,

in conjunction with GA, establish the basis for the heat exchanger
designs which will meet the requirements of U.S. and European

GT-HTGR programs.

20.1.2. CE Summary

The GT-HTGR heat exchanger design work being performed by CE is aimed
principally at establishing the manufacturability of the components. The
workscope did not permit detailed structural/thermal analysis of the design,
nor did it include any verification of thermal-hydraulic performance of the
heat exchangers. Numerous items have been identified by CE as warranting
further investigation to resolve some of the uncertainties that exist in
the designs. GA's Heat Exchanger Department has reviewed these items and
has identified certain design issues that must be resolved before complete
justification of design feasibility can be established. For the remainder
of FY-79, CE and the GA Heat Exchanger Department will address these problem

areas, and it is anticipated that most can be resolved by relatively minor

design modification.
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20.1.3. CE Effort Discussion

Figures 20-1 through 20-8 illustrate the mechanical design developed

by CE for the PCL heat exchangers for three different plant configurations:

600-MW(e) One-Loop Intercooled Plant

Figure 20-1 Recuperator
Figure 20-2 Precooler
Figure 20-3 Intercooler

1200-MW(e) Two-Loop Intercooled Plant

Figure 20-4 Recuperator
Figure 20-5 Precooler
Figure 20-6 Intercooler

1200-MW(e) Three-Loop Non-Intercooled Plant

Figure 20-7 Recuperator

Figure 20-8 Precooler

As stated earlier, the basic conceptual designs for the heat exchangers
under consideration were provided to CE by GA as a starting point for the
mechanical design and the manufacturing and shipping studies that followed.
For the most part, the designs offered by GA were retained during the course
of work and are judged by CE to be designs that can be developed to fulfill
the requirements for GT-HTGR heat exchangers. During the course of the
study, certain of the design features were modified by CE to make them more
amenable to manufacture and to reduce costs wherever possible, consistent

with the requirements specified by GA.

Figures 20-1, 20-2, and 20-3 illustrate the recuperator, precooler,
and intercooler for the one-loop plant. From these figures it can be seen
that the basic conceptual design of the heat exchangers is identical to its

counterpart in the two-loop and three-loop plants. The minor variations
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Recuperator for 600-MW(e), one-loop intercooled plant
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Recuperator for 1200-MW(e), two-loop intercooled plant
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Intercooler for 1200-MW(e), two-loop intercooled plant
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that exist in the one-loop and two-loop designs result from the differences

in the type of PCRV liner cooling incorporated into the plant design. The

one-loop plant design utilizes the “warm liner" concept wherein the cool gas
from the precooler and intercooler is circulated within the heat exéhanger
cavities to limit the PCRV concrete temperature. This liner cooling concept

is being investigated in Europe for use in the HHT demonstration plant.

The two- and three-loop plant designs utilize "conventional" PCRV cavity
liner cooling whereby the PCRV concrete temperature is limited by a thermal
barrier and cooling water that is circulated through cooling tubes on the
outside surface of the liner. Irrespective of the other advantages and dis-
advantages associated with these liner cooling concepts, the "warm liner"
imposes more difficulties in interfacing between the heat exchanger and

its surrounding cavity.

The heat exchangers for the three-loop non-intercooled plant are of a
different thermal size from their counterparts in the other plants, but the

basic conceptual design is the same.

Tables 20-1 and 20-2 reflect some of the differences in the three plant
configurations. Table 20-1 compares the recuperators for the three plants
and Table 20-2 compares the precoolers and intercoolers. Note that in the
absence of intercoolers in the three-loop plant, added thermal duty must be
borne by the precoolers. Included in these tables are comparative cost
factors for the heat exchangers in the different plant configurations. The
three-loop recuperator design reflects a cost improvement achieved by
increasing the size of the module. Experience has shown that, normally,
total costs will decrease with a decrease in the number of modules. This
leads to larger modules and, since the three-loop recuperator was designed
later in the study, less time permitted for optimization. These factors
have not been incorporated into the one-loop and two-loop designs and
would, to some extent, result in reduced costs in those heat exchangers.
Limited time and workscope did not permit in~depth attempts at cost optimi-
zation of any of the heat exchangers, but it is recognized that performance

and implementation of parametric studies would result in cost savings.
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TABLE 20-1
RECUPERATOR COMPARISON FOR ONE-, TWO-, AND THREE-LOOP PLANTS

One~Loop Two-Loop Three-Loop
Plant Plant Plant
Loop rating [Mw(t)] | 1530 1500 1000
Recuperator rating 1253 1253 918
[Mw(t) /BX]
Number of HXs/loop 1 1 1
HX surface 42,312 42,312 28,400
[m? (£t2)/8X] (455,406) (455,406) (305,732)
Number of tubes/HX 94,668 94,668 66,732
Number of modules/HX | Hex. 161 Hex. 161 Hex. 83
Number of 588 588 804

tubes/module

Tube size [cm (in.)]

ISI/repair
Shipping mode
Shop/site assembly

Relative cost/HX
Diameter [m (ft)]
Height [m (ft)]

Weight
[tonnes (tons)]

1.1113 x 0.0813
(0.4375 x 0.032)

Module
Barge
Shop

1

6.80
(22.3)

26.1
(85.6)

1043
(1027)

1.1113 x 0.0813
(0.4375 x 0.032)

Module
Barge
Shop

0.86
1.72 for 2

6.70
(22)

21.2
(69.4)

1041
(1025)

1.1113 x 0.114
(0.4375 x 0.045)

Module
Barge
Shop

0.58
1.73 for 3

5.64
(18.5)

20.4
(67)

813
(800)
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TABLE 20-2

PRECOOLER/INTERCOOLER (P/I) COMPARISON FOR ONE-~, TWO, AND THREE-LOOP PLANTS

One-Loop
P/1 Two-Loop P/I Three-Loop P/I

Loop thermal rating 1530 1500 1000
[Mw(t)]
HX thermal rating 533/337 533/337 581/-
[Mw(t)]
Number of HXs/loop 1/1 1/1 1/-
Diameter [m (ft)] 4.9/4.7 4.9/4.7 4.6

(16/15/5) (16/15.5) (15)
Height [m (ft)] 23.8/18.3 23.8/18.3 19.9

(78/60) (78/60) (65)
Weight 559/412 559/412 488
[tonnes (tons)] (550/405) (540/400) (480)
Number of tubes 1196/1118 1196/1118 832
Heat transfer 1/0.86 1/0.86 0.88
surface relative (1.86 x 2 = 3.72) | (0.88 x 3 = 2.65)
to one-loop
precooler
Log mean 9.6/1.6 9.6/1.6 12.7
temperature (49.2/34.8) | (49.2/34.8) (54.9)
difference
[°C (°F)]
Relative cost/HX 0.41/0.36 0.34/0.30 0.26 x 3 =0.78
(one-loop x1=0.77 {x2=1.28
recuperator as
base) R=1.0 R=1.72 R=1.73

P/I = 0.77 P/I = 1.28 = (0.78

Total 1.77 3.00 2.51
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There are several key constraints within which the cost reduction studies

must be made, and these constraints have not yet been clearly defined. .

20.2. GA EFFORT

20.2.1. GA Scope

The scope of GA's portion of the heat exchanger design effort is as

follows:
1. Coordinate the work by the heat exchanger subcontractor (CE).

2. Evaluate the heat exchanger designs developed by CE and identify
any areas which require more detailed study. These areas will be

analyzed in more detail by GA and CE.

3. Evaluate alternate heat exchanger design approaches to increase
safety, increase reliability, reduce cost, and reduce maintenance

downtime.
4. Together with CE, review the HHT (Sulzer) heat exchanger drawings
and criteria in order to establish a common design basis for the

U.S. and European GT-HTGR programs.

20.2.2. GA Heat Exchanger Summary

Following completion of CE's work, described in Section 20.1, the GA
Heat Exchanger Department initiated work in the second quarter of FY-79 to
become familiar with the conceptual designs prepared by CE and to become
involved in the development of the design configurations, alternatives, and

feasibility of the heat exchanger concepts proposed. The GA Heat Exchanger
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Department became involved in the design of the heat exchangers at this
t}me for two principal reasons. Since GA is the GT-HTGR systems designer,
it is necessary that technical heat exchanger information in support of the
system design development be available in-house and that integration of the
heat exchangers into the system and with related components and the balance

of plant (BOP) be conducted to satisfy all interfacing requirements. There-

fore, the two main tasks performed by the GA Heat Exchanger Department were:

1. Review CE's heat exchanger conceptual designs and backup informa-
tion to enable analytical models of the heat exchangers to be
formulated and incorporated in the system optimization/analysis
computer program, CODER. This work relied heavily on the results

of the activities in item 2, below.

2. Conduct a review, and analysis as required, of the CE heat
exchanger designs in order to (1) first gain a full understanding
of the conceptual designs of the components and (2) subsequently
verify feasibility and envelope, determine component performance
characteristics, evaluate the capability of component internal
and external interfaces to satisfy criteria and requirements
imposed, among them being seismic adequacy, removability/
replaceability, and ISI, and define design issues requiring
further resolution in order to achieve viable component designs.
This work, including the interfacing with CE, is also in support
of the interfacing with the HHT heat exchanger designs by Sulzer
to be conducted later in the year, aimed at achieving commonality

of European and U.S. heat exchanger designs.

To accomplish the above tasks, GA began review and familiarization
work on principally the CE recuperator and preccoler conceptual designs in
the second quarter of FY-79. No effort was expended directly on the
intercooler designs, since they are essentially the same as the precoolers.
Preliminary algorithms of the thermal-hydraulic characteristics of the

recuperator and precooler were prepared and submitted for incorporation
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into the CODER code. These algorithms were provided on a preliminary basis
to serve as a starting point for analysis and optimization work. They will
be updated and refined to more accurately represent the heat exchanger
characteristics later in the year and as more detailed information unfolds

on the conceptual design of these two components.

Review of the mechanical, thermal-hydraulic, and structural aspects of
the recuperator and precooler designs was initiated to gain the necessary
familiarization and understanding of the work done by CE. Analyses were
started on the structural and seismic characteristics of principally the
recuperator. The precooler design is a relatively low-temperature,
helical bundle design, and in many ways it parallels the helical bundle
design for the SC-HIGR steam generators. Experience on steam generator
design was applied in the precooler review, resulting in the conclusion
that concerns in this area were not significant. Therefore, work
was focused principally on the recuperator. The recuperator, which
is a higher-temperature component of a straight tube, integral return
tube configuration, was quickly identified as the component which should

receive the most attention.

The structural and seismic review of the recuperator will continue,
leading toward formulation of design issues to be jointly reviewed with

CE.

The mechanical design review focused on the mechanical design aspects
of the two heat exchangers, emphasizing the recuperator, and included
manufacturing concerns. Efforts concentrated on mechanical and manufactur-
ing issues worthy of further attention, many of which have a direct bearing

on mechanical design, structural adequacy, and performance.

The thermal-hydraulic review and assessment of the precooler and,
primarily, the recuperator yielded a number of issues related to pressure
loss and gas bypasses. These issues, again, were closely interrelated
with the mechanical and structural adequacy of the conceptual design

configurations.
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These review and analysis tasks will continue through the third and
fourth quarters of FY-79, during which time they will be reviewed with
CE. Certain issues will be selected for further work and resolution,
leading to joint GA/CE/Sulzer reviews and selection of the recommended
heat exchanger design concepts to be adopted for the GT-HTGR commercial

plant.
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21. PLANT PROTECTION (6332) AND PLANT CONTROL (6333) SYSTEMS
21.1. SCOPE

The purpose of these tasks is to establish conceptual design requirements

and interfaces for the PPS and PCS.

This work includes a review of data which had previously been generated,
identification of major technical problems, and the preparation of con-
ceptual system schematics leading to the initiation of block diagram

development.

21.2. SUMMARY

The review of previous work in the PCS and PPS areas was begun in the
second quarter of FY-79 and has led to the identification of three critical

items that require immediate attention:
1. Determine the controllability of proposed hydraulic valves.

2. Determine the technical and licensing feasibility of assigning

combined control and backup safety functions to one valve.

3. Develop the necessary electrical technology to assess the impact
of bringing main generator power cables into the reactor building,

which affects separation, isolation, and noise rejection.

The first problem will be addressed when requested mid-year funding
becomes available. The second problem is being addressed to the extent
allowed by the current budget. It is proposed to address the third problem
with the generic funding requested for FY-80 and FY-81.
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