
PRODUCTION RUNS ON THE CRAY-1 

by 

Larry Rudsinski 
with 

Gall W. Pieper 

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS 

Prepared far the U. S. DEPARTMENT OF ENERGY 
under Contract W-31 -10Q-Eflga3€! 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



This report was prepared ,m an account of WQA sponsored by an 
agency of t h ~  United States Government. Neither the 
United States nor' any agency thereof, nor my ar their 
employees, makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for any third party's 
use or the results of such use of any information, apparatus, 
product or p r o w  disclosed in this repart, orxepriesents that its 
use by such third party would not infringe privately owned 
rights. Mention of commescial products, their manufacturers, 
or thdr suppliers in this publication does not imply ot connote 
approval or disappraval of the product by Argonne National 
Laboratory or the United States Government. 



Distribution Category: 
Mathematics and Computers 

(UC-32) , 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 

Argonne. Illinois 60439 

PRODUCTION RUNS ON THE CRAY-1 - 
by 

Larry Rudsinski* 

with 

Gail W. Pieper 

Applied Mathematics Division 

July 1979 

NU1 ILt 

mi mport WBI prepared as 8" account of work 
sponsored by the United Slates Covcrnmenl. Neither the 
United States nor the United Stales Deparlmcnt of 
Energy, nor any of  their employees, nor any of their 
contractors. subcontractors, or their employes, maker 
any warranty, express or implied, or anurncs any legal 
liabilily or respon$ibility for the accuracy,complclenen 
M ufulnooa of any i n f o n ~ l i o n .  nppomtor, prrul!ls* or 

p-rr d k l o u d ,  or repmnnu that its urc would i o l  
infringe privately owned righu. 17 

*Current address; 14520 Kaneys Lane, Orland Park ,  1l.ll11ols G04G2 
' I 



. . 

THIS PAGE 

.WAS INTENTHONALLY 

LEFTBLANK 



TABLE.OF CONTENTS 

. . .  

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . .  v 
. . 

I . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .  1 
. . 

I1 . USE OF THE NCAR SYSTEM . . . . . . . . . . . . . . . . . . . . .  2 

I11 . PRODUCTIONRUNS . . . . . . . . . . . . . . . . . . .  -3 

. . . . . . .  . A SAS (Reactor Analysis and Safety) - 3  

B . DIF3D (Applied Physics) . . . . . . . . . . . . . . .  4 

C . Bio-Medical Code (Bio.log. ical and . ; 

. . . . . . . . . . . . . . . . . .  Medical Research) - 5  

IV . ALGORITHM CHANGES . . . . . . . . . . . . . . . . . . . . . . . .  7 

A . DIF3D (Applied Physics) . . . . . . . . . . . . . .  '7 

B . PIC (Chemistry) . . . . . . . . . . . . . . . . . . .  8 

1 . Symmetry . . . . . . . . . . . . . . . . . . .  8 . 

2 . Out-of-bounds Particles . . . . .  - 9  

C . VSQRT Function (Applied Mathematics) . . . . . .  -10 

V . CFTCOMPILER . . . . . . . . . . . . . . .  - 1 1  

VI . SUMMARY AND CONCLUSIONS . . . . . . . . . . .  12 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .  13 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . .  14 



LIST OF TABLES 

No. - 

111. 

I'V.. 

v. . 

VI . 

VII. 

VIII. 

Title 

. . . . . . .  SAS3D Timing Comparisons (in seconds). .4 

. . . . .  Run Times (in seconds) for a DIF3D Kernel. .5 

Relative Execution Rates (in units of 3.9 MFLOPS) 
. . . . . . . . . . . . . . . . . .  for a DIF3D Kernel. 7 

DIF3D Problem Showing Relative Execution Rates 
( i n  1 1 n i t . s  nf .? 9 MFLOBS). . . . . . . . . . . . . . . .  8 

i:t?AY-1 Timinos ( i n  seconds per t i m e  ~ t e p )  for PIC 
. . . . . . . .  (40,000-particle system, 64x64 mesh). 9 

\ 

CRAY-1 Timings (in seconds per time step) for PIC 
(10,000-particle system, 64x64 mesh) . . . . . . . .  10 

Timings (in S ~ C Q ~ ~ S )  of TSHTR. . : .  , . 1 1  

CRAY-1 Timings (in seconds) of SORINV. . 11 



. . ABSTRACT 

Under a grant from the National Center for Atmospheric Research, users from 
several Argonne divisions' executed programs on the CRAY-1. The objectives were 
twofold: (1) to determine the feasibility of implementing large codes on the 
CRAY-1 and (2) to decide what algorithm changes could be made to improve run time 
on a vector machine. In addition; we hoped to evaluate the code produced by the 
new CRAY FORTRAN compiler. 

Large reactor codes were implemented with relative ease, requiring. for 
example, approximately two man-weeks to get a 56,000-card program running 
correctly. Certain difficulties were encountered, however, in transferring the 
large binary files required by a biomedical code. 

We conclude that it is both feasible and desirable to implement large codes 
on the CRAY-1. Better instrlict.ion scheduling in the CRAY compiler has reduced 
run times by 40 percent. With some rewriting in Assembler language to produce 
optimal code, the programs tested ran two to four times faster .than on the IBM 
370/195 or the 3033 at Argonne. Further improvement (up to twofold) was realized 
in several programs by substituting new algorithms to take advantage of the 
vector architecture of the CRAY. 



PRODUCTION RUNS ON THE CRAY-1 

Larry Rudsinski 

w i t h  

Gail W. Pieper 

I. INTRODUCTION 

Argonne National Laboratory (ANL) is engaged in a project to determine the 
impact of advanced scientific computers on Argonne's computing workload. The 
CRAY-1 was chosen to begin our investigation because it was the only machine 
currently available that qualifies as an advanced scientific computer. or Class 
VI (one capable of executing 20 to 60 million floating point operations per 
second). Under a grant from the National Center for Atmospheric Research (NCAR), 
users from several Argonne divisions executed test programs on the CRAY at NCAR 
and made performance comparisons with the IBM 370/195. The results of the 
investigation were published in ANL Report 79-9, entitled E v a l u a t i n g  C o m p u t e r  
P r o g r a m  P e r f o r m a n c e  on the CRAY-1.  

Motivated by the success of the original project, we applied for and received 
an additional grant from NCAR to continue our study of user programs in greater 
depth. Our investigation focused on two areas: the feasibility of putting large 
codes on the CRAY-1 and the implementation of new algorithms to exploit the 
vcctor hardware design of L i i e  CRAY-1. In addition, we paid careful attention to 
the code produced by the CRAY FORTRAN (CFT) compiler to evaluate the 
effectiveness o f  the new scalar coding instructions. 

Production runs were carried out for two large reactor codes, and two other 
programs were successfully loaded and'compiled before the project had to be 
terminated. We found that relatively little effort was required by Argonne 
scientists to get these codes running on the CRAY-1. With only minor 
modifications, L i l t :  cudes rtln two to four times faster on the CRAY-1 than on the 
IBM 370/195; and further improvement (up to twofold) was.realized when portions 
of the codes were rewritten to exploit. vector capabilities. 



11. USE OF THE NCAR SYSTEM 

For the past year, we have been using the NCAR system in Boulder, Colorado. 
to evaluate computer program performance on the CRAY-1. At NCAR, timesharing is 
not available; instead, our jobs were transported, and a CRAY version of UPDATE 
(a batch editor) was used to maintain the source on the NCAR system. 

In transporting the files, we depended heavily on the Remote Job Entry 
Station in Argonne's Applied Mathematics Division. This station made initial 
communications with NCAR possible within a few days, whereas setting up our own 
offsite computing station.would,have taken months. . . 

AMDqs  emote Job Entry Station consists of a VARIAN computer with a tape 
drive. The station uses the UT200 protocol to communicate with NCAR. Rather 
than reading large source files by punched cards, which is the typical way 
programs are transmitted on UT200 terminals, we were able to write source files 
in ASCII on nine-track tapes and use the tape drives on the VARIAN to transmit 
t'he file. 

Our current project, in particular, put the station and the communication 
lines to a stringent test, in that we shipped very large files (13,000 to 27,000 
records), requiring the link L u  sLay up for  One to three h u u r s  t l L  ti I.,~III~.. . 

The major restriction imposed by the Remote Job Entry Station was on the 
record block size of the ASCII tapes. Thus the DIF3D code--consisting of 43,000 
cards--had to be broken down into two files before beiriy seriL Lo NCAR. 

Our experience indicates that remote access to the NCAR system is adequate 
for developing, testing, and executing both small and large user jobs. The NCAR 
CRAY-1 has the necessary hardware and software facilities--including a FORTRAN 
compiler,. a relocatable loader, a capability to stage files between 'the CRAY-1 
and a front-end machine, and a system utility for updating an object file by 
replacing individual routines with new versions. 



111. PRODUCTION RUNS 

Several large codes were compiled on the CRAY-1, and the performance of two 
codes was compared wi'th the IBM 370/195 and the IBM 3033. 

A. SAS (Reactor Analysis and Safety) 

SAS codes are utilized by the Reactor Analysis and Safety (RAS) Division to 
analyze the consequences of hypothetical accidents in fast breeder reactors. 
Currently, limitations in computer capability are inhibiting SAS code extensions 
to two- or three-dimensional models. Because these codes account for 5 to 10 
percent of Argonne's computing usage, RAS scientists were interested in 
determining whether the CRAY-1 would be significantly faster than the IBM 
370/195. Timing studies of one module from the SAS family indicated that a more 
substantial test with the whole SAS3D code (56,000 cards) would be desirable. 

To put SAS3D on the CRAY-1 at NCAR, we first had to write a FORTRAN source 
tape using the ASCII character set required by NCAR. This tape contained three 
files: the source for the UPDAT program needed to modify SAS3D, the SAS3D common 
blocks, and the SAS3D source file. The resultant code was compiled, and both the 
source file and the object file were stored on CRAY-1 di'sks. 

Getting the code to run on the CRAY-1 required a few changes to SAS3D. For 
example, the CDC version has to be overlaid; the CRAY, however, has ample memory 
to store thc entire program. Consequently, all of the overlay cards were 
removed, as well as a special subroutine OVERLAY, and the program executed as a 
non-overlaid job. Other modifications involved replacing the timing routine and 
changing the routines for data-pack storage and retrieval; in addition, a few 
non-standard separators were found and replaced in FORMAT statements. 
Approximately one man-week was needed to complete these changes and to execute 
the tape successfully at NCAR. 

Two different SAS3D cases were run on the CRAY-1. The first.involved the 
initial 300 time steps of a one-channel low-power boiling case (LOWBLA). This 
run tested only the pre-boiling parts.of the code. The second case was a more 
extensive one-channel case: 1000 timc steps for channel 1 o'f a 33-channel 
transient undercooling case. This case extended into sodium boiling, clad 
relocation, and fuel relocation. 

After the initial runs with SAS, we determined that further improvement.could 
be realized by rewriting three linear interpolation routines. The table scanning 
loop in these routines had been written in a somewhat convoluted manner to 
achieve loop-mode on the IBM 370/195. The logic required, however, degraded the 
performnnce nn ,the CRAY, whioh will run a siri~ple FORTRAN DO-loop version as a 
simple in-stack loop. Also, because the CRAY FORTRAN compiler uses only scalar 
instructions to compile the loops in the interpolation routines, further speed 
iu~provement was achieved with CRAY Assembler Language (CAL) versions of these 
routines, which were written to use the vector compare instructions on the 
.CRAY-1 . 

Table I gives the times required to run both the LOWBLA and the one-channel 
case on Argonne's IBM 370/195 and on the NCAR CRAY-1. The last column, CRAY-1 
CAL; refers to runs using CAL versions of the three interpolation routines. 

.SAS3D modifications and timinqs were provided by F. n ~ ~ n n  



TABLE I 

SAS3D Timing Comparisons (in seconds) 

IBM IBM CRAY-1 ( ;HAY-1 
Case - 370/195 - 3033 CFT - CAL 

LOWBLA, 1 44.1 43.8 11.8 9.7 
channel, 300. 
steps, no boiling 

1-channel test, 333.3 309.1 129.6 95.5 
1 of 33, 1000 
steps 

The PORTRAN' vcraion of 6AS3B runs slight 137 f ~ s t - r  nn t h~ TRM 3033 t han  on t h e  
370/195 and a factor of 2.5 to 4 times faster on the CRAY-1 than on the 370/195. 
The use of the vector compare instructions, as well as generally tighter coding, 
in the CAL versions of the linear interpolation routines improves the overall 
running time of SAS3D by 20T25 percent. 

B. DIFSn (Applied Physics] 

DIF3D is a multidimensional multigroup finite-difference diffusion theory ' 

code which is used by the Applied Physics (Ar) Oivision for reHcLur ~llalysis. In 
the near future, its use is expected to escalate to consume between 5 and 10 
percent of the ANL batch computer usage. Consequently, we were interested in 
determining the performance of DIF3D on the CRAY-1. 

DIF3D has two major compute sections--an outer fission source iteration and a 
within-group iteration which uSeS optimized successive li~le yvei~claxation 
(SLOR). The modular nature of DIF3D made it convenient to create a small kernel 
which accounts for 75 percent of all scalar execution time. The kernel largely 
c3nnsist.s of two routines (SORINV and HOWSHC) from the inner iteration section, 
which are easily implemented on any machine. Previous investigations showed that 
SORTNV compiled with CFT cannot effectively exploit the CRAY-1 features because 
of the recursive nature of the SLOR algorithm employed. 

Because SORINV accounts for about 60 percent of the computing time in DIF3D 
on the TRM 370/195 or CDC computers, scientists in the Applied Physics Division 
have been using an optimized Assembler language version of this routine on IBM 
and CDC computers. To obtain a reliable assessment on the CRAY-1, an optimized 
CAL version of SORINV was written.+ The CAL and IBM versions used identical SLOR 
algorithms. 

The case of DIF3D that was timed involved 10 passes thr0ugh.a 50x50 mesh with 
25 inner iterations. Table I1 gives the times obtained. 

+The CAL routine and timings are. the work of F. Dunn 



TABLE I1 

Run Times (in seconds) for a DIF3D Kernel 

I BM I BM CDC 7600 CRAY-1 CDC 7600 CRAY-1 
370/195 3033 FTNI - CFT COMPASS - CAL 

The CFT version of the DIF3D kernel runs 1.7 times as fast on the CRAY-1 as 
on the IBM 370/195. With the CAL version of subroutine SORINV, the code runs 3.8 
times as fast on the CRAY-1 as on the 370/195. It is thus evident that 
substantial performance improvement can be made with inherently scalar code. The 
relatively poor performance on the IBM 3033 results from the fact that the 3033 
has a relatively slow floating-point arithmetic unit, which limits the execution 
speed of SORINV. 

C. Bio-Medical Code (Biological and Medical Research) 

The Bio-Medical Code is a program originally developed for the Texas 
Instruments Advanced Scientific Computers, modified by Argonne's Biological and 
Medical Research (BIM) Division, and subsequently optimized by the Applied 
Mathematics Division to improve the run-time efficiency. The code required very 
little effort to compile correctly on the CRAY-1. However, problems were 
encountered in transferring two large binary files utilized by the code. 

For the first binary file, we wrote a small FORTRAN program* for the IBM 
370/195 that performed the appropriate binary reads followed by the formatted 
writes to tape; the process was then reversed on the CRAY-1, with the appropriate 
formatted reads followed by binary writes. The file required an 800-BPI ASCII 
tape with 27,000 records. 

To generate the remaining file, which was more complex, we obtained from BIM 
the pr 'oy rao t  LIIEIL Lhey use to generate the Tile. AEter several minor changes, it 
executed on the CRAY, giving slightly different results from those obtained on 
the 370/195; consequently, when the original prngrnm was executed, the job 
abortcd with an error. 

Thus, before we can carry out production runs, careful analysis of the second 
program will be necessary. This effort is beyond the time constraints of the 
current project. 

D. TRAC-P1A (Engineering) 

A program TRAC-P~A developed by Los Alamos Scientific Laboratory was obtained 
by Argonne's Engineering Division. To enable editing on the WYLBUR system at 
Argonne, the program (comprising 29.000 cards) had to be broken down into three 
parts. We then modified the CDC UPDATE directives and changed all deck,names to 
be eight characters or less, as required by thc CRAY 1 UPDATE program. 
Additionally, we deleted all the overlay structure, as we had with SAS3D. 

The three files were then written onto three separate ,tapes, set up on the 
Remote Job Entry Station, and submitted to the'CRAY-1, where UPDATE recombined 
them into a single program library. 

*Work on the Bio-Medical Code was carried out in conjunction with Marianne Schiffer. 



The code was compiled and loaded, and execution runs were attempted. Initial 
tests terminated with an error message from one of the TRAC-P1A error-processing 
routines. Work on correcting the error is in progress.. 

*Work on TRAC-PlA was conducted in conjunction with Habib Ahmed. 



IV. ALGORITHM CHANGES 

An obvious question once a code is running on the CRAY-1 is what, if any, 
changes can be made to enhance the performance. Subroutine modifications such as 
those described above for the SAS code are often effective. Occasionally, 
however, improvement in run time can be realized only by changing the algorithm 
that the program is using. Below, we describe algorithm changes to the DIF3D and 
PIC codes, as well as to the square root function. 

A. DIF3D (Applied Physics) 

The nature of DIF3D is such that about 75 percent of all scalar execution 
time on the IBM 370/195 and the CDC.7600 computers is accounted for by the 
Successive Line Overrelaxation (SLOR) algorithm. This algorithm solves a pre- 
inverted tridiagonal system of equations'by means of L-U decomposition, a 
procedure requiring numerous recursive operations that do not lend themselves to 
vectorization. Replacing the algorithm with a vectorized SLOR, involving 
odd/even line ordering on a plane.2-3 resulted in an appreciable improvement in 
running speed, with a 10 percent increase in storage requirements.+ 

Table I11 shows the results of a benchmark test with a 50x50 mesh, using 25 
inner iterations and repeated 10 times, for a total of 625,000 mesh cell 
iterations with 13 floating point operations per cell. 

TABLE I11 

Relative Execution Rates (in units of 3.9 MFLOPS) 
for a DIF3D Kernel 

Met hod CRAY - 1 IBM 370/195 -- 

Scalar FORTRAN 1.8 1.0 

Scalar FORTRAN & CAL 3.5 - 

Vector FORTRAN 5.8 0.8 

The encouraging CRAY-1 performance results attained with the DIF3D kernel 
indicated that.an implementation of the entire DIF3D code (43,000 cards) was of 
interest. This implementation was accomplished with relative ease because DIF3D 
is designed and codeti with portability to large-scale machines in mind. Major 
hardware characteristics such as long-word CDC-type machines or short-word IBM- 
type machines and one- or two-level memory hierarchy machines are accommodated by 
activating/deactivating coding that is bracketed by appropriate comment card 
keywdrds via a small preprocessing program. The coding invoked for the CRAY-1 
was the one-level memory hierarchy storage coding and the CDC long-word coding. 
Because the CDC long-word brackets also invoke CDC-style entry points and the CDC 
overlay calling sequence, manual modifications with the WYLBUR text editor were 
required to obtain the correct entry point formats and to remove the overlay 
calls (as they were also with SAS). Several other minor changes were also needed 
to obtain the CRAY-1 library utility functions and to implement the machine- 
dependent segment of the dynamic storage allocation. 

+Algorithm development and timings reported here were carried out by K. Derstine. 



A two-dimensional two-group problem with a mesh of 170x170 (57,800 unknowns.) 
was subsequently run to evaluate the entire DIF3D performance. Results are 
displayed in Table IV. 

TABLE IV 

DIF3D Problem Showing Relative Execution Rates 
(in units of 3.9 MFLOPS) 

Met hod CRAY - 1 IBM 370/195 -- 

Scalar FORTRAN 1.6 1.0 

Scalar FORTRAN 8 CAL 3.7 - 

Vector FORTRAN 5.3 0.8 

Note that the vectorized SLOR required 30 percent fewer outer iteratiom than 
the scalar algorithm for the same convergence criteria in the two-dimensional 
problem. 

Similar results were obtained with a three-dimensional variant of the 
problem. In this problem, the vectorized algorithm required 15 percent more 
outer iterations than the scalar algorithm. The vectorized SLOR code still ran 
3.5 times faster on the CRAY-1 than the scalar algorithm on the IBM 370/195. 

B. PIC (Chemistry) 

Particle-'in-cell trajectory (PIC) codes are used in Argonne's Chemistry 
Division to study ion-ion piasmas in applied external fields. Since our initial 
use of these codes on the CRAY-1 at NCAR, we were able to examine in greater 
depth ways to improve performance timings. Two algorithm changes have been 
implemented: the exploitation of symmetry and the elimination of out-of-bounds 
particlco: 

1. Symmetry 

In plasma simulation studies, if the initial conditions; boundary 
conditions, and applied field are symmetric, then the simulation particle 
distributions will retain the symmetry during the simulation. Thus, only a 
certain fraction of particles need be explicitly followed to generate the full 
'particle distribution and the space charge forces. To take advantage of this 
feature in the problems under study at Argonne, which have either no symmetry or 
reflection symmetry about the x axis or the x and y axes, we modified the PIC , 

code to track particles in the upper half or the upper right quadrant of the 
initial distribution. An example for x- and y-reflection symmetry is detailed 
h e 1 . n ~ :  

Given that Q E ( , J )  is the charge distribution in the ( I , J )  cell for the 
explicitly followed particles and that MESH1 and MESHJ are the maximum values of 
I and J ,  then the full charge distribution Q ( 1 . J )  is generated by .the code 

*We are indebted to A1 Wagner for the documentation and data presented here. 



MESHJI = MESHJ+l 
MESH11 = MESHI+l 
DO 1 J=l,MESHJ 
DO 1 I=l,,MESHI 
Q(1.J) = QE(MESHI1-I,J) + QE(MESHI1-1,MESHJl-J) 

+ QE(I,MESHJl-J)+ QE(1.J) 
1 CONTINUE 

For each time step in the example shown, the operations necessary to 
advance three quarters of the particles are replaced by simple additions for each 
charge cell. The savings are thus substantial if the full number of simulation 
particles is considerably larger than the number of cells. 

Table V gives the times obtained on the CRAY-1 for a 40,000-particle 
system run over 50 time steps using the modified PIC, which readily vectorizes. 
As the table shows, taking advantage of symmetry improves execution time by 45 to 
70 percent. 

TABLE V 

CRAY-1 Timings (in seconds per time step) for PIC 
(40,000-particle system, 64x64 mesh) 

Symmetry Time 

none 0.171 

x reflection 0.093 

x,y reflection 0.054 

Further exploration of symmetry. is possible in the ~oisson equation 
solver. For example', the imposition of a zero slope boundary condition along the 
x axis or the x and y axes would shrink the region over which the solution must 
be found. Thus the chargedistribution in only a fraction of the full space 
would need to be known, and the resulting solution in the reduced region could 
simply be reflected into the full space. The fast Fourier transform method 
currently used in PIC to solve Poisson's equation for the full space could be 
applied to. solve Poisson's equation, in the upper half of the space, but 
modifications of the code would be required; the method might also be applicable 
to solve Poisson's equation in the upper right quadrant of the space. Work in 
this area i s  under consideration. 

2 .  Out-of-bounds Part ic l e s  

In PIC simulation studies, particles that go out of bounds during a 
particular time step are flagged by the subroutine PARMOVE in such a way that, 
for,subsequent time steps. operations on these particles are masked. If the 
vectors of particle positions and'velocities were periodically condensed to 
include only in-bounds particles, these masking operations could be eliminated. 
Unfortunately. such condensation cannot be vectorized, because, in the loop over 
the index of the full vector. the index of the condensed vector is augmented only 
if the in-bounds test is positive. Thus, the savings from condensation are 
questionable. 

To test the possible advantages, we modified PARMOVE to proviae a current 
count of the total number of out-of-bounds particles and to condense the vectors 
of particle 'bositions and velocities when the count exceeded a threshold value. 
The results ar'e listed in Table VI for a 10,000-particle system run over 100 time 



steps. The average execution time per time step is given as a funtion of IOUT, 
the minimum number of out-of-bounds particles accumulated before condensation. 
For this case, 9940,particles pass out of bounds during the simulation. Table VI 
indicates .no savings realized; a considerably longer run may show small 
advantag.es . 

TABLE VI 

CRAY-1 Timings (in seconds per time step) for PIC 
(10,000-particle system; 64x64 mesh) 

C. VSQRT Function (App1ied.Mathematics) 

An analysis of the vector square root (VSQRT) function, which is supplied by 
CRAY, determined that its execution time could be significantly decreased without 
losing any accuracy. Traditionally, the square root is expressed as X = 2 *f, 
where 1/4<f<l. We chose instead to represent X as X = 2 * F ,  where 1/2<F<2. 
Then x = 2 * F,.and F can be calculated by either of the following methods: 
(1) a second-degree minimax polynomial approximation fol.lowed by three Newton 
iterations. .the first two it.erations using the 30-biL reciyroctll approxi~ualion on 
the CRAY-1 and the final iteration using the full-precision divide; or (2) a 
fourth-degree polynomial fo1,lowed by two Newton iterations, the first using the 
partial-precision.divide and the second using the full-precision divide. 

Based on hand timings, we estimate that the new algorithm will reduce 
execution time on the C U Y - 1  by 40 percent.+ 

+The algoii t i  modifications were made by W. J. Cody. 



V. . CFT COMPILER 

..In our initial studies on the CRAY-1 in the summer and fall of 1978. we noted 
that the CFT compiler used at NCAR was not so sophisticated for scalar ' 

optimization as the FORTRAN H extended opt 2 but was being improved. 

J To test these improvements, RAS scientists reran the, SAS3A.heat transfer 
routine TSHTR with the riew FORTRAN compiler on the CRAY-1: Table VII'.shows the 
timing results. 

TABLE VI I 

Timings (in seconds) of TSHTR 

CRAY - 1 CRAY - 1 
IBM CFT CFT 
370/195 (1978) (BE!) 

In this example. a 40 percent reduction in execution time was realized by 
improved scalar instruction scheduling. One cannot, of course, guarantee that 
all codes will improve by this amount. . . 

Even'this current version of the compiler, however, does not produce optimal 
code. Timing studies with the DIF3D .routine SORINV indicate that the CAL version 
of SORINV runs more than twice as fast as the CFT version (see Table VIII ) . 

TABLE VIII 

CRAY-1 Timings (in seconds) of SOR~NV' 

CAL CFT 
Version Version 

Nevertheless, because of its speed, the CRAY-1 can outperform an IBM 37.0/195. 
even if CFT does not produce very efficient code. CFT compiles programs very 
quickly: It takes only 13.5 seconds of CPU time to compile the whole SAS3D code, 
wherecis the IBM 370/195 FORTRAN extended opt 2 requires 364.1 CPU seconds. 

.TEIITR timings wcrc providcd by P. Dunn. 



VI . SUMMARY AND' CONCLUSIONS 

The primary objective of this investigation was to determine the feasibility 
of running large FORTRAN codes oh the CRAY-1. We have demonstrated that the CRAY 
can compile, load. and execute codes such as SASSD and DIFSD with relative ease.. 
However, the difficulties encountered with the Bio-Medical Code suggest that 
certain programs which rely upon other data sets and are not designed to be 
portable may require more extensive work to run successfully. 

A second,objective was to develop alternate solution strategies that utilize 
the vector and parallel hardware design of the CRAY-1. The codes translated to 
the CRAY ran two to four times faster than on the IBM 370/195. With extensive 
rewriting of the algorithms, execution was reduced further by a factor of two. 

The ability of the CRAY-1 to handle complex codes has generated predominantly 
favorable response from Argonne scientists. The investment of effort required 
was generally less than anticipated, and the improvement in program running times 
rvnc oubctantinl . 



REFERENCES , 

1. L. Rudsinski with G. W. Pieper. Evaluating Computer Program Performance on 
the CRAY-1. Argonne National Laboratory Report ANL-79-9 (January 1979). 

2. D. Boley. B. Buzbee, and S. Porter, On Block Relaxation Techniques, 
University of Wisconsin, Mathematics Research Center Report 1860 (June 1978). 

3. D. Boley. Vectorization of Block Relaxation Techniques: Some Numerical 
Experiments, Proceedings of the 1978 LASL Workshop on Vector and Parallel 
Processors, LA-7491 (September 1978). 



ACKNOWLEDGMENTS 

Most of the documentation and data for this report were provided by the 
following people: Keith Derstine (Applied Physics), Floyd Dunn (Reactor Analysis 

. and Safety). A1 Wagner (Chemistry), and Jim Cody (Applied Mathematics); we are 
grateful for their assistance. We also commend the operating staff of AMD1s 
Remote Job Entry Station for facilitating our communications with NCAR. 



~ i s t r i b u t i o n  f o r  ANL-79-68 

I n t e r n a l  : 

G .  W. P ieper  (73) 
M.  Gibson (14) 
A .  B. Kr isc iunas  
ANL Contract  F i  l e  
ANL L i b r a r i e s  ( 5 )  
TIS F i l e s  ( 6 )  

Externa l :  

DOE-TIC, f o r  d i s t r i b u t i o n  per  UC-32 (191) 
Manager, Chicago Operat ions and Regional Of f i ce ,  DOE 
Chief ,  Of f i ce  of Pa ten t  Counsel, DOE-CORO 
P res iden t ,  Argonne Ur l ivers i t ies  Assoc ia t ion  
Applied Mathematics Div is ion  Review Committee: 

P. J. Ebe r l e in ,  SUNY a t  Buffalo 
G .  E s t r i n ,  U .  C a l i f o r n i a ,  Los Angeles 
W .  M. Gentleman, U.  Waterloo 
J .  M. Ortega,  North Caro l ina  S t a t e  U.  
E. N.  Pinson, Bel l  Telephone Labs. 
S. Rosen, Purdue U.  
D. M. Young, J r . ,  U.  Texas a t  Aust in 




