T i

ANL-79-68 ANL-79-68

“MASTER

\
9,\

%/

PRODUCTION RUNS ON THE CRAY-1
by

Larry Rudsinski
with
Gail W. Pieper

A

Uof G-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona The University of Kansas The Ohio State University

Carnegie-Mellon University Kansas State University Ohio University

Case Western Reserve University Loyola University of Chicago The Pennsylvania State University

The University of Chicago Marquette University Purdue University

University of Cincinnati The University of Michigan Saint Louis University

Illinois Institute of Technology Michigan State University Southern Illinois University

University of Illinois University of Minnesota The University of Texas at Austin

Indiana University University of Missouri Washington University

The University ot lowa Worthwestern University Waync Statc University

Iowa State University University of Notre Dame The University ot Wisconsin-Madison
NOTICE

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the
United States nor any agency thereof, nor any of their
employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s
use or the results of such use of any information, apparatus,
product or process disclosed in this report, or represents that its
use by such third party would not infringe privately owned
rights. Mention of commercial products, their manufacturers,
or their suppliers in this publication does not imply or connote
approval or disapproval of the product by Argonne National
Laboratory or the United States Government.

Printed in the United States of America
Auvailable from

National Technical Information Service

U. S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes 5,
Printed copy: A03—
Microfiche copy: A6+

2

Distribution Category:
Mathematics and Computers

(uc-32)

ANL-79-68

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

PRODUCTION RUNS ON THE CRAY-1

by
Larry Rudsinski-
with

Gail W. Pieper

Applied Mathematics Division

July 1979

NOTICE
This report was prepared 8s an account of work
sponsored by the United States Govemnment. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
or their employ makes

—T

any warranty, express of implied, or assumes any legal
liability or responsibility for the ¥, compl
o ussful of any i i pp , product ar
process disclosed, or represents that its use would not
infringe privately owned rights. *
'
|

*Current address: 14520 Raneys Lane, Orland Park, Illinols 60462

OTRIBUTION OF HHAS BOCGILNT M) Gilull I ER Jg’é[
i
\

|

| THIS PAGE
WAS INTENTIONALLY
- LEFT BLANK

ABSTRACT.

I.

II.

ITT.

IV.

V.

VI.

TABLE OF CONTENTS

INTRODUCTION.

USE OF THE NCAR SYSTEM.

PRODUCTION RUNS.

A.

B.

D.

SAS‘(Reactor Analysis and Safety).
DIF3D (Applied Physics).

Bio- Medlcal Code (Biological and
Medical Research).,

TRAC-P1lA (Engineering).

ALGORITHM CHANGES.

A.

B.

C.

DIF3D (Applied Physics).
PIC (Chemistry).
1. Symmetry.

2. Out-of-bounds Particles.

VSQRT Function (Applied Mathematics).

CFT COMPILER.

SUMMARY AND CONCLUSIONS .

REFERENCES .

ACKNOWLEDGMENTS .

iii

(%1}

.10

.11.

.12
13

.14

IT.

IIT.

IV.

VI.

VII.

VIII.

LIST OF TABLES

Title

SAS3D Timing Comparisons (in seconds).
Run Times (in seconds) for a DIF3D Kernel.

Relative Execution Rates (1n units of 3.9 MFLOPS)
for a DIF3D Kernel.

DIF3D Problem Showing Relative Execution Rates
(in mnits nf 3 9 MFLOPS). v + «

('RAY-1 Timings (in seconds per time‘step) for PIC
(40,000-particle system, 64x64 mesh).

. .
CRAY~-1 Timings (in seconds per time step) for PIC

(10,000-particle system, 64x64 mesh)
Timings (in seconds) of TSHTR.

CRAY-1 Timings (in seconds) of SORINV.

iv

10

11

11

ABSTRACT

Under a grant from the National Center for Atmospheric Research, users from
several Argonne divisions executed programs on the CRAY-1. The objectives were
twofold: (1) to determine the feasibility of implementing large codes on the
CRAY-1 and (2) to decide what algorithm changes could be made to improve run time
on a vector machine. 1In addition, we hoped to evaluate the code produced by the
new CRAY FORTRAN compiler. . .

Large reactor codes were implemented with relative ease, requiring, for
example, approximately two man-weeks to get a 56,000-card program running
correctly. Certain difficulties were encountered, however, in transferring the
large binary files required by a biomedical code.

We conclude that it is both feasible and desirable to implement large codes
on the CRAY-1. Better instruction scheduling in the CRAY compiler has reduced
run times by 40 percent. With some rewriting in Assembler language to produce
optimal code, the programs tested ran two to four times faster .than on the IBM
370/195 or the 3033 at Argonne. Further improvement (up to twofold) was realized
in several programs by substituting new algorithms to take advantage of the
vector architecture of the CRAY.

PRODUCTION RUNS ON THE CRAY-1

by
Larry Rudsinski
with

Gail W. Pieper

I. INTRODUCTION

"Argonne National Laboratory (ANL) is engaged in a project to determine the
impact of advanced scientific computers on Argonne's computing workload. The
CRAY-1 was chosen to begin our investigation because it was the only machine
currently available that qualifies as an advanced scientific computer, or Class
VI (one capable of executing 20 to 60 million floating point operations per
second). Under a grant from the National Center for Atmospheric Research (NCAR),
users from several Argonne divisions executed test programs on the CRAY at NCAR
and made performance comparisons with the IBM 370/195. The results of the
investigation were published in ANL Report 79-9, entitled Evaluating Computer
Program Performance on the CRAY-1.1

Motivated by the success of the original project, we applied for and received
an additional grant from NCAR to continue our study of user programs in greater
depth. Our investigation focused on two areas: the feasibility of putting large
codes on the CRAY-1 and the implementation of new algorithms to exploit the
vector hardware design of (he CRAY-1. In addition, we paid careful attention ‘to
the code produced by the CRAY FORTRAN (CFT) compiler to evaluate the
effectiveness of the new scalar coding 1nstruct10ns

Production runs were carried out for two large reactor codes, and two other
programs were successfully loaded and compiled before the project had to be
terminated. We found that relatively little effort was required by Argonne
scientists to get these codes running on the CRAY-1. With only minor
modifications, Lhe codes ran two to four times faster on the CRAY-1 than on the
IBM 370/195; and further improvement (up to twofold) was .realized when portions
of the codes were rewritten to exploit vector capabilities.

ITI. USE OF THE NCAR SYSTEM

For the past year, we have been using the NCAR system in Boulder, Colorado,
to evaluate computer program performance on the CRAY-1. At NCAR, timesharing is
"not available; instead, our jobs were transported, and a CRAY version of UPDATE
(a batch editor) was used to maintain the source on the NCAR system.

In transporting the files, we depended heavily on the Remote Job Entry
Station in Argonne's Applied Mathematics Division. This station made initial
communications with NCAR possible within a few days, whereas setting up our own
offsite computing station. would have taken months. -

AMD's Remote Job Entry Station consists of a VARIAN computer with a tape
drive. The station uses the UT200 protocol to communicate with NCAR. Rather
than reading large source files by punched cards, which is the typical way
programs are transmitted on UT200 terminals, we were able to write source files
in ASCII on nine-track tapes and use the tape drives on the VARIAN to transmi
the file. ’

Our current project, in particular, put the station and the communication
lines to a stringent test, in that we shipped very large files (13,000 to 27,000
records), requiring the link to stay up for one to three hours al o Lime.

The major restriction imbosed by the Remote Job Entry Station was on the
record block size of the ASCII tapes. Thus the DIF3D code--consisting of 43,000
cards--had to be broken down into two files before beiny sent (o NCAR.

Our experience indicates that remote access to the NCAR system is adequate
for developing, testing, and executing both small and large user jobs. The NCAR
CRAY-1 has the necessary hardware and software facilities--including a FORTRAN
compiler, a relocatable loader, a capability to stage files between the CRAY-1
and a front-end machine, and a system utility for updating an object file by
replacing individual routines with new versions.

III. PRODUCTION RUNS

Several large codes were compiled on the CRAY=1, and the performance of two
codes was compared with the IBM 370/195 and the IBM 3033.

A. SAS (Reactor Analysis and Safety)

SAS codes are utilized by the Reactor Analysis and Safety (RAS) Division to
analyze the consequences of hypothetical accidents in fast breeder reactors.
Currently, limitations in computer capability are inhibiting SAS code extensions
to two- or three-dimensional models. Because these codes account for 5 to 10
percent of Argonne's computing usage, RAS scientists were interested in
determining whether the CRAY-1 would be significantly faster than the IBM
370/195. Timing studies of one module from the SAS family indicated that a more
substantial test with the whole SAS3D code (56,000 cards) would be desirable.

To put SAS3D on the CRAY-1 at NCAR, we first had to write a FORTRAN source
tape using the ASCII character set required by NCAR. This tape contained three:
files: the source for the UPDAT program needed to modify SAS3D, the SAS3D common
blocks, and the SAS3D source file. The resultant code was compiled, and both the
source file and the object file were stored on CRAY-1 disks.

Getting theé code to run on the CRAY-1 required a few changes to SAS3D. For
example, the CDC version has to be overlaid; the CRAY, however, has ample memory
to store the entire program. Consequently, all of the overlay cards were
removed, as well as a special subroutine OVERLAY, and the program executed as a
non-overlaid job. Other modifications involved replacing the timing routine and
changing the routines for data-pack storage and retrieval; in addition, a few
non-standard separators were found and replaced in FORMAT statements.
Approximately one man-week was needed to complete these changes and to execute
the tape successfully at NCAR.

Two different SAS3D cases were run on the CRAY-1. The first involved the
initial 300 time steps of a one-channel low-power boiling case (LOWBLA). This
run tested only the pre-boiling parts.of the code. The second case was a more
extensive one-channel case: 1000 time steps for channel 1 of a 33-channel
transient undercooling case. This case extended into sodium boiling, clad
relocation, and fuel relocation.

After the initial runs with SAS, we determined that further improvement could
be realized by rewriting three linear interpolation routines. The table scanning
loop in these routines had been written in a somewhat convoluted manner to
achieve loop-mode on the IBM 370/195. The logic required, however, degraded the
performance on the CRAY, which will run a simple FORTRAN DO-1loop version as a
simple in-stack loop. Also, because the CRAY FORTRAN compiler uses only scalar
instructions to compile the loops in the interpolation routines, further speed
improvement was achieved with CRAY Assembler Language (CAL) versions of these
routines, which were written to use the vector compare instructions on the
.CRAY-1. .

. Table I gives the times required to run both the LOWBLA and the one-channel
case on Argonne's IBM 370/195 and on the NCAR CRAY-1. The last column, CRAY-1
CAL, refers to runs using CAL versions of the three interpolation routines.

*SAS3D modifications and timings were provided by F. Munn

TABLE I

SAS3D Timing Comparisons (in seconds)

IBM IBM CRAY-1 CRAY-1
Case 370/195 3033 CFT CAL
LOWBLA, 1 44.1 43.8 11.8 9.7
channel, 300
steps, no boiling
l1-channel test, 333.3 309.1 129.6 95.5
1 of 33, 1000
steps

Thie FPORTRAN verocion of S8AS3D runs slightly faster on the TRM 3033 than on the
3707195 and a factor of 2.5 to 4 times faster on the CRAY-1 than on the 370/195.
The use of the vector compare instructions, as well as generally tighter coding,
in the CAL versions of the linear interpolation rout1nes improves the overall
running time of SAS3D by 20-25 percent.

B. DIF3N (Applied Physics)

DIF3D is a multidimensional multigroup finite-difference diffusion theory
code which is used by the Applied Physics (AP) Division for reaclor analysis. 1In
the near future, its use is expected to escalate to consume between 5 and 10
percent of the ANL batch computer usage. Consequently, we were interested in
determining the performance of DIF3D on the CRAY-1.

DIF3D has two major compute sections--an outer fission source iteration and a
within-group iteration which uses optimized successlve line uvverrelaxation
(SLOR). The modular nature of DIF3D made it convenient to create a small kernel
which accounts for 75 percent of all scalar execution time. The kernel largely
consists of two routines (SORINV and ROWSRC) from the inner iteration section,
which are easily implemented on any machine. Previous investigations showed that
SORTNV compiled with CFT cannot effectively exploit the CRAY-1 features because
of the recursive nature of the SLOR algorithm employed.

Because SORINV accounts for about 60 percent of the computing time in DIF3D
on the TBM 370/195 or CDC computers, scientists in the Applied Physics Division
have been using an optimized Assembler language version of this routine on IBM
and CDC computers. To obtain a reliable assessment on the CRAY-1, an optimized
CAL version of SORINV was written.+ The CAL and IBM versions used identical SLOR
algorithms.

The case of DIF3D that was timed involved 10 passes through. a 50x50 mesh with
25 inner iterations. Table II gives the times obtained.

+The CAL routine and timings are the work of F. Dunn.

TABLE 11

Run Times (in seconds) for a DIF3D Kernel

IBM IBM CDC 7600 CRAY-1 CDC 7600 CRAY-1
370/195 3033 FTN4 CFT COMPASS CAL
1.93 4.51 1.74 1.16 1.41 0.59

The CFT version of the DIF3D kernel runs 1.7 times as fast on the CRAY-1 as
on the IBM 370/195. With the CAL version of subroutine SORINV, the code runs 3.8
times as fast on the CRAY-1 as on the 370/195. It is thus evident that
substantial performance improvement can be made with inherently scalar code. The
relatively poor performance on the IBM 3033 results from the fact that the 3033
has a relatively slow floating-point arithmetic unit, which limits the execution
speed of SORINV.

C. Bio-Medical Code (Biological and Medical Research)

The Bio-Medical Code is a program originally developed for the Texas
Instruments Advanced Scientific Computers, modified by Argonne's Biological and
Medical Research (BIM) Division, and subsequently optimized by the Applied
Mathematics Division to improve the run-time efficiency. The code required very
little effort to compile correctly on the CRAY-1. However, problems were
encountered in transferring two large binary files utilized by the code.

For the first binary file, we wrote a small FORTRAN program+« for the IBM
3707195 that performed the appropriate binary reads followed by the formatted
writes to tape; the process was then reversed on the CRAY-1, with the appropriate
formatted reads followed by binary writes. The file required an 800-BPI ASCII
tape with 27,000 records.

To generate the remaining file, which was more complex, we obtained from BIM
the progyram Lhat they use to generate the [ile. After several minor changes, it
executed on the CRAY, giving slightly different results from those obtained on
the 370/195; consequently, when the original program was executed, the job
abortcd with an error.

Thus, before we can carry out production runs, careful analysis of the second
program will be necessary. This effort is beyond the time constraints of the
current project.

D. TRAC-PlA (Engineering)

A program TRAC-PlA developed by Los Alamos Scientific Laboratory was obtained
by Argonne's Engineering Division. To enable editing on the WYLBUR system at
Argonne, the program (comprising 29,000 cards) had to be broken down into three
parts. We then modified the CDC UPDATE directives and changed all deck names to
Lbe eight characters or less, as required by the CRAY 1 UPDATE program.
Additionally, we deleted all the overlay structure, as we had with SAS3D.-

The three files were then written onto three separate tapes, set up on the
Remote Job Entry Station, and submitted to the CRAY-1, where UPDATE recombined
them into a single program library.

*Work on the Bio-Medical Code was carried out in conjunction with Marianne Schiffer.

The code was compiled and loaded, and execution runs were attempted. Initial
tests terminated with an error message from one of the TRAC-PlA error-processing
routines. Work on correcting the error is in progress.*

+Work on TRAC-P1A was conducted in conjunction with Habib Ahmed.

IV. ALGORITHM CHANGES

An obvious question once a code is running on the CRAY-1 is what, if any,
changes can be made to enhance the performance. Subroutine modifications such as
those described above for the SAS code are often effective. Occasionally,
however, improvement in run time can be realized only by changing the algorithm
that the program is using. Below, we describe algorithm changes to the DIF3D and
PIC codes, as well as to the square root function.

A. DIFSD (Applied Physics)

The nature of DIF3D is such that about 75 percent of all scalar execution
time on the IBM 370/195 and the CDC 7600 computers is accounted for by the
Successive Line Overrelaxation (SLOR) algorithm. This algorithm solves a pre-
inverted tridiagonal system of equations by means of L-U decomposition, a
procedure requiring numerous recursive operations that do not lend themselves to
vectorization. Replacing the algorithm with a vectorized SLOR, involving
odd/even line ordering on a plane,2?-3 resulted in an appreciable improvement in
running speed, with a 10 percent increase in storage requirements.+

Table III shows the results of a benchmark test with a 50x50 mesh, using 25
inner iterations and repeated 10 times, for a total of 625,000 mesh cell
iterations with 13 floating point operations per cell.

TABLE III

Relative Execution Rates (in units of 3.9 MFLOPS)
for a DIF3D Kernel

Method CRAY-1 IBM 370/195

Scalar FORTRAN 1.8 1.0
Scalar FORTRAN & CAL 3.5 -

Vector FORTRAN 5.8 0.8

The encouraging CRAY-1 performance results attained with the DIF3D kernel
indicated that an implementation of the entire DIF3D code (43,000 cards) was of
interest. This implementation was accomplished with relative ease because DIF3D
is designed and coded with portability to large-scale machines in mind. Major
hardware characteristics such as long-word CDC-type machines or short-word IBM-
type machines and one- or two-level memory hierarchy machines are accommodated by
activating/deactivating coding that is bracketed by appropriate comment card
keywords via a small preprocessing program. The coding invoked for the CRAY-1
was the one-level memory hierarchy storage coding and the CDC long-word coding.
Because the CDC long-word brackets also invoke CDC-style entry points and the CDC
overlay calling sequence, manual modifications with the WYLBUR text editor were
required to obtain the correct entry point formats and to remove the overlay
calls (as they were also with SAS). Several other minor changes were also needed
to obtain the CRAY-1 library utility functions and to implement the machine-
dependent segment of the dynamic storage allocation.

- +Algorithm development and timings reported here were carried out by K. Derstine.

A two-dimensional two-group problem with a mesh of 170x170 (57,800 unknowns)
was subsequently run to evaluate the entire DIF3D performance. Results are
displayed in Table IV.

TABLE IV

DIF3D Problem Showing Relative Execution Rates
(in units of 3.9 MFLOPS)

Method CRAY-1 1BM 370/195
Scalar FORTRAN 1.6 1.0
Scalar FORTRAN & CAL 2.7 -

Vector FORTRAN 5.8 0.8

Note that the vectorized SLOR required 20 percent fewer outer iterations than
the scalar algorithm for the same convergence criteria in the two-dimensional
problem.

Similar results were obtained with a three-dimensional variant of the
problem. In this problem, the vectorized algorithm required 15 percent more
outer iterations than the scalar algorithm. The vectorized SLOR code still ran
3.5 times faster on the CRAY-1 than the scalar algorithm on the IBM 370/195.

B. PIC (Chemistry)

Particle-in-cell trajectory (PIC) codes are used in Argonne's Chemistry
Division to study ion-ion plasmas in applied external fields. Since our initial
use of these codes on the CRAY-1 at NCAR, we were able to examine in greater
depth ways to improve performance timings. Two algorithm changes have been
implemented: the exploitation of symmetry and the elimination of out-of-bounds
particles. -

1. Symmetry

In plasma simulation studies, if the initial conditions,; boundary
conditions, and applied field are symmetric, then the simulation particle
distributions will retain the symmetry during the simulation. Thus, only a
certain fraction of particles need be explicitly followed to generate the full
‘particle distribution and the space charge forces. To take advantage of this]
feature in the problems under study at Argonne, which have either no symmetry or
reflection symmetry about the x axis or the x and y axes, we modified the PIC
code to track particles in the upper half or the upper right quadrant of the
initial distribution. An example for x- and y-reflection symmetry is detailed
helow: .

) Given that QE(,J) is the charge distribution in the (1,J) cell for the
explicitly followed particles and that MESH! and MESHJ are the maximum values of
I and J, then the full charge distribution Q(!,J) is generated by .the code

*We are indebted to Al Wagner for the documentation and data presented here.

MESHJ1 = MESHJ+1
MESHI1 = MESH+1
DO 1 J=1,MESHJ
DO 1 I=1, ,MESHI
Q(1,4) = QE(MESHI1—1,J) + QE(MESHI1—1 ,MESHJ1-J)
" 4+ QE(I,MESHJ1-J)+ QE(1,J)
1 CONT INUE

For each time step in the example shown, the operations necessary to
advance three quarters of the particles are replaced by simple additions for each
charge cell. The savings are thus substantial if the full number of simulsdation
particles is considerably larger than the number of cells.

Table V gives the times obtained on the CRAY-1 for a 40,000-particle
system run over 50 time steps using the modified PIC, which readily vectorizes.
As the table shows, taking advantage of symmetry improves execution time by 45 to
70 percent.

TABLE V

CRAY-1 Timings (in seconds per time step) for PIC
(40,000-particle system, 64x64 mesh)

Symmetry Time
none 0.171
x reflection 0.093

x,y reflection 0.054

Further exploration of symmetry is possible in the Poisson equation
solver. For example, thée imposition of a zero slope boundary condition along the
x axis or the x and y axes would shrink the region over which the solution must
be found. Thus the charge distribution in only a fraction of the full space
would need to be known, and the resulting solution in the reduced region could
simply be reflected into the full space. The fast Fourier transform method
currently used in PIC to solve Poisson's equation for the full space could be
applied to solve Poisson's equation in the upper half of the space, but
modifications of the code would be required; the method might also be applicable
to solve Poisson's equation in the upper right quadrant of the space. Work in
this area is under consideration.

2. Out-of-bounds Particles

In PIC simulation studies, particles that go out of bounds during a
particular time step are flagged by the subroutine PARMOVE in such a way that,
for subsequent time steps, operations on these particles are masked. If the
vectors of particle positions and velocities were periodically condensed to
include only in-bounds particles, these masking operations could be eliminated.
Unfortunately, such condensation cannot be vectorized, because, in the loop over
the index of the full vector, the index of the condensed vector is augmented only
if the in-bounds test is positive. Thus, the savings from condensation are
questionable. . :

To test the possible advantages, we modified PARMOVE to provide a current
count of the total number of out-of-bounds particles and to condense the vectors
of particle positions and velocities when the count exceeded a threshold value.
The results are listed in Table VI for a 10,000-particle system run over 100 time

steps. The average execution time per time step is given as a funtion of IOUT,
the minimum number of out-of-bounds particles accumulated before condensation.
For this case, 9940 particles pass out of bounds during the simulation. Table VI
indicates no savings realized; a considerably longer run may show small
advantages.

TABLE VI

CRAY-1 Timings (in seconds per time step) for PIC
(10,000-particle system; 64x64 mesh)

Iout Time

64 0.043
128 0.043
512 0.042

1024 0.042

C. VSQRT Function (Applied Mathematics)

An analysis of the vector square root (VSQRT) function, which is supplied by
CRAY, determined that its execution time could be significantly decreased without
losing any accuracy. Traditionally, the square root is expressed as X = 2 «f,
where 1/4<f<1. We chose instead to represent X as X = 2 +«F, where 1/2<F<2.

Then x = 2 +« F,. and F can be calculated by either of the following methods:
(1) a second-degree minimax polynomial approximation followed by three Newton
iterations, the first two {terations using the 30-bit reciprocal approximation on
the CRAY-1 and the final iteration using the full-precision divide; or (2) a
fourth-degree polynomial followed by two Newton iterations, the first using the
partial-precision divide and the second using the full-precision divide.

Based on hand timings, we estimate that the new algorithm will reduce
execution time on the CRAY-1 by 40 percent.+

+The algorithm modifications were made by W. J. Cody.

10

V. . CFT COMPILER

“‘In our initial studies on the CRAY-1 in the summer and fall of 1978, we noted
that the CFT compiler used at NCAR was not so sophisticated for scalar
optimization as the FORTRAN H extended opt 2 but was being improved.

To test these improvements, RAS scientists reran the SAS3A heat transfer
routine TSHTR with the new FORTRAN compiler on the CRAY-1.+ Table VII.shows the

timing results.

TABLE VII

Timings (in seconds) of TSHTR

CRAY-1 ' CRAY-1

IBM CFT CFT
370/185 (1978) (1879)
0.261 0.139 0.081

In this example, a 40 percent reduction in execution time was realized by
improved scalar instruction scheduling. One cannot, of course, guarantee that

all codes will improve by this amount.

Even this current version of the compiler, however, does not produce optimal
code. Timing studies with the DIF3D routine SORINV indicate that the CAL version
of SORINV runs more than twice as fast as the CFT version (see Table VIII).

TABLE VIII

CRAY-1 Timings (in seconds) of SORINV’

CAL CFT
Version Version
0.46 0.98

Nevertheless, because of its speed, the CRAY-1 can outperform an IBM 370/195,
even if CFT does not produce very efficient code. CFT compiles programs very
quickly: It takes only 13.5 seconds of CPU time to compile the whole SAS3D code,
whereas the IBM 370/195 FORTRAN extended opt 2 requires 364.1 CPU seconds.

«TEIITR timings.wcrc provided by . Dunn.

11

VI. SUMMARY AND CONCLUSIONS

The primary objective of this investigation was to détermine the feasibility
of running large FORTRAN codes on the CRAY-1. We have demonstrated that the CRAY
can compile, load, and execute codes such as SAS3D and DIF3D with relative ease.
However, the difficulties encountered with the Bio-Medical Code suggest that
certain programs which rely upon other data sets and are not designed to be
portable may require more extensive work to run successfully.

A second:objective was to develop alternate solution strategies that utilize
the vector and parallel hardware design of the CRAY-1. The codes translated to
the CRAY ran two to four times faster than on the IBM 370/195. With extensive
rewriting of the algorithms, execution was reduced further by a factor of two.

The ability of the CRAY-1 to handle complex codes has generated predominantly
favorable response from Argonne scientists. The investment of effort required
was generally less than anticipated, and the improvement in program running times
wats subgctantial.,

12

»

3

REFERENCES
L. Rudsinski with G. W. Pieper, Evaluating Computer Program Performance on
the CRAY-1. Argonne National Laboratory Report ANL—79—9 (January 1979).

D. Boley, B. Buzbee and S. Porter On Block Relaxation Tbchn1ques
University of Wisconsin, Mathematics Research Center. Report 1860 (June 1978)

D. Boley, Vectorization of Block Relaxation Téchnlques: Some Numerical

Experiments, Proceedings of the 1978 LASL Workshop on Vector and Parallel
Processors, LA-7491 (September 1978).

13

ACKNOWLEDGMENTS

Most of the documentation and data for this report were provided by the
following people: Keith Derstine (Applied Physics), Floyd Dunn (Reactor Analysis
and Safety), Al Wagner (Chemistry), and Jim Cody (Applied Mathematics); we are
grateful for their assistance. We also commend the operating staff of AMD's
Remote Job Entry Station for facilitating our communications with NCAR.

1

14

L

L

@

Distribution for ANL-79-68

Internal:

G. W. Pieper (73)
M. Gibson (14)

A. B. Krisciunas

ANL Contract File
ANL Libraries (5)
TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (191)

Manager, Chicago Operations and Regional Office, DOE

Chief, Office of Patent Counsel, DOE-CORO

President, Argonne Universities Association

Applied Mathematics Division Review Committee:
P. J. Eberlein, SUNY at Buffalo

. Estrin, U, California, Los Angeles

. M. Gentleman, U, Waterloo

. M., Ortega, North Carolina State U,

. N. Pinson, Bell Telephone Labs.

. Rosen, Purdue U.

. M. Young, Jr., U. Texas at Austin

OnmEHG@GE O

-15

