skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microwave processing of Tantalum capacitors. CRADA final report

Technical Report ·
DOI:https://doi.org/10.2172/604347· OSTI ID:604347

A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and AVX Tantalum Corporation (AVX) of Biddeford, Maine, was initiated in October 1991. [Lockheed Martin Energy Research Corp. (LMER) has replaced LMES]. The completion date for the Agreement was March 1996. The purpose of this work is to explore the feasibility of an advanced microwave processing concept to develop higher capacitance tantalum anodes. Tantalum capacitors are used where high reliability is needed (e.g., pacemakers, hearing aids, and military devices). Two types of tantalum powder are used: sodium-reduced powder and electron beam-refined powder. Sodium-reduced powder has higher surface area, but lower purity; electron beam-refined powder has higher purity for working voltages, but somewhat lower surface area. The powder is pressed into pellets using traditional methods and then placed in the microwave furnace for processing. It is of interest to determine if variable-frequency microwave sintering can increase quality while decreasing processing time and decreasing or eliminating surface contamination; these issues must be addressed while retaining the maximum surface area of the anode. Meeting each of these needs will result in a higher quality anodic film, which will thereby increase the dielectric strength. Additionally, microwave sintering might enable the authors to develop a strong sintered anode without excessive grain growth. The variable-frequency microwave furnace (VFMF), located at the Y-12 Plant, allows the authors to study the effects of sintering over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT), originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC05-96OR22464
OSTI ID:
604347
Report Number(s):
ORNL-98051731; ON: DE98051731; CRN: C/ORNL--91-0056; TRN: 98:002018
Resource Relation:
Other Information: PBD: [1998]
Country of Publication:
United States
Language:
English