

DOE/ER/13262-1

Final report

for the period July 1, 1978 to June 30, 1994

**EXCITATION OF ATOMS AND MOLECULES
IN COLLISIONS WITH HIGHLY CHARGED IONS**

Principal Investigator

Rand L. Watson, Professor of Chemistry

Cyclotron Institute

Texas A&M University

College Station, TX 77843

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	Page
I. INTRODUCTION	1
II. SUMMARY OF ACCOMPLISHMENTS	1
III. STUDENTS	4
IV. PUBLICATIONS	5

I. INTRODUCTION

This report summarizes progress in research supported by DOE Grant DE-FG05-84ER13262 during the period July 1, 1978 to June 30, 1994. Contained herein are a summary of the final year's work, the names of students and postdoctoral associates who have participated in work performed under this grant, and a list of publications which evolved from completed projects.

II. SUMMARY OF ACCOMPLISHMENTS

This research program has focused on a variety of topics involving the interaction of fast heavy-ions with matter. Recent activity has centered about investigations of ion-atom and ion-molecule collisions. The particular areas of interest included (a) atomic charge transfer mechanisms, (b) ionization and fragmentation of molecules, (c) charge distributions of ions interacting with gases and solids, (d) inner-shell ionization and decay processes, and (e) atomic structure of few-electron ions. This year's activities have concentrated on the investigation of L x-rays produced during the passage of energetic Xe and Kr ions through solid targets, the measurement of charge distributions for noble gas recoil-ions created in 8 MeV/u Xe, Kr, and Ar collisions, and the delineation of double-foil effects on the charge distributions of Xe ions emerging from carbon targets. Work on a major project concerning the dependence of electron ionization and capture cross sections for diatomic molecules on the orientation of the internuclear axis had to be postponed because of the failure of a major component of the 3-D imaging detector system employed in this study. This component (a fiberoptic with phosphor screen) has now been replaced, and new results are expected to be obtained early in the 1994-95 project year with the support of another funding agency.

Spectra of L x-rays from Xe (6 and 8 MeV/u) and Kr (6 and 12 MeV/u) ions traveling in a variety of solid targets have been measured with a curved crystal spectrometer. The Xe L x-ray structure displayed a striking dependence on the target atomic number over the Z_2 range from 3 to 10. For low- Z_2 targets, the Xe spectra were characterized by partially resolved peaks which broadened and merged together as the target atomic number increased beyond $Z_2 = 6$. The main components were identified to be $L\alpha_1$ and $L\beta_1$ pairs from projectile initial states having 1 to 4 L-shell vacancies. Detailed spectral analysis provided estimates of the average projectile charges and the average L- and M-electron populations inside the solids.

In the case of Kr projectiles, relatively well-resolved L x-ray structure associated with transitions to the L-shell from the M-, N-, and O-shells was observed. Preliminary analysis of the spectra indicated that the relative subshell population distributions and fluorescence yields were about the same for each of the shells. The relative intensities of various components in the spectra directly reflected the projectile charge distributions. Target L x-ray spectra produced by the interaction of 6 MeV/u Kr ions with Rb, Mo, and La also were examined. These spectra were characterized by several sharp lines adjacent to or superimposed upon one or more very broad peaks. The sharp lines were found to be $L\alpha$, $L\beta_1$, and $L\beta_{2,15}$ lines fluoresced by the high fluxes of photons produced inside the targets with energies just above the L absorption edges. The broad peaks were due to L x-rays from target atoms having multiple L- and M-vacancies produced by ion-atom collisions.

Charge distributions of noble gas recoil-ions produced in collisions with 8 MeV/u Xe, Kr, and Ar projectiles have been measured for two incident charge states. The lower-charged projectiles were employed to explore the systematics of collisions in which target ionization

was accompanied by electron loss from the projectile (LI) while the higher-charged projectiles probed collisions in which target ionization was accompanied by electron capture by the projectile (CI). The average recoil-ion charges were much higher for the CI collisions than for the LI collisions. In addition, the CI charge distributions obtained with projectiles having charges $\geq 32+$ were found to be charge state independent, suggesting that the ionization probabilities for the outer-electrons have reached a saturation limit.

Charge distributions of 8 MeV/u Xe ions emerging from thin carbon foils were measured as a function of target thickness using an analyzing magnet and a one-dimensional position-sensitive microchannel plate detector. It was noticed that charge distributions obtained with a combination of two carbon foils sandwiched together differed from those obtained with single carbon foils of the same total thickness. Moreover, it was found that the resulting charge distribution depended on the relative ordering of the two foils. A simple model was developed in an effort to understand this effect. The model was based upon the integrated rate equation expressing the thickness dependence of the average charge in terms of average ionization and capture cross sections with an additional term to represent the thickness dependence of post-foil charge multiplication by Auger decay. The predictions of this model agreed quite well with the measurements and also accounted for the fact that the average charge was higher when the thinner foil was first in line.

The numerous projects completed in previous years under this grant are well documented in past progress reports and in the publications listed in Section IV of this report.

III. STUDENTS AND POSTDOCTORAL ASSOCIATES

A. Ph. D STUDENTS

<u>Name</u>	<u>Ph.D Dissertation Title</u>
Gabriel Sampoll-Ramirez	<i>Dissociation of Multicharged Molecular Ions Produced in Collisions with 96 MeV Ar¹⁴⁺ (1991)</i>
Richard J. Maurer	<i>Ionization and Fragmentation of Molecular Gases in Collisions with MeV/amu Heavy Ions (1988)</i>
Bryan B. Bandong	<i>K X-ray Decay of Multiple-Vacancy States Produced in Various Oxygen Compounds by Energetic, Heavy-ion Collisions (1988)</i>
John A. Demarest	<i>Extreme Ultraviolet Beam-Foil Spectroscopy of Highly Ionized Neon and Argon (1985)</i>
Todd L. Hardt	<i>Inner-shell Ionization of Intermediate- and High-Z Elements with Fast Heavy Charged Particles (1975)</i>
Tien Keh Li	<i>Energy Shifts and Relative Intensities of K X-rays Produced in Fast Heavy Charged Particle Collisions (1973)</i>

B. MASTERS STUDENTS

<u>Name</u>	<u>Masters Thesis Title</u>
Richard J. Maurer	<i>Energy Shifts and Collisional Broadening of 2p-1s Transitions in 2-MeV/amu H- and He-like Ne, Mg, and S Ions traveling in Solids (1983)</i>
Blake I. Sonobe	<i>Projectile Energy Dependence of Aluminum and Silicon K Alpha X-ray Satellites (1978)</i>
John A. Demarest	<i>Comparison of Heavy Ion-Induced K X-ray Satellite Spectra from Gases and Solids (1977)</i>

C. POSTDOCTORAL ASSOCIATES

<u>Name</u>	<u>Year</u>
Vladimir Horvat	1989 - present
Ramakrishnan Parameswaran	1992-94
Marin Chabot	1990-91
Karine Wohrer	1990-91
Bryan Bandong	1988-90
Oded Heber	1987-89
Gui-Ju Yu	1986-88
Cunet Can	1985-87
Jozsef Pálinskás	1983-85
Greg J. Pedrazzini	1982-85
K. Parthasaradhi	1981-83
Oswald Benka	1980-82
Arnold Langenberg	1978-80

IV. PUBLICATIONS

J. A. Demarest and R. L. Watson, "Ion-Excited K X-ray Satellite Spectra of Si, S, Cl and Ar in the Gas Phase", Phys. Rev. A17, 1302-1313 (1978).

R. L. Watson, J. R. White and F. E. Jenson, "Yield Ratios for $K\alpha$ Satellite and Hypersatellite X-ray Emission from 64 MeV Sulfur Ions Penetrating Thick Solid Targets", Phys Lett. 67A, 269- 271 (1978).

R. L. Watson, A. Langenberg, F. E. Jenson and R. M. Hedges, "Environmental Effects on Multiplet Structure of Mg K X-ray Satellites", Jap. J. Appl. Phys. 17-2, 93-96 (1978).

M. K. Bahl, R. L. Watson and K. J. Irgolic, "Post-Collision Interaction in the Selenium $L_2M_{45}M_{45}$ Auger Spectrum Following Photoionization", Phys. Rev. Lett. 42, 165-168 (1979).

R. L. Watson, B. I. Sonobe, J. A. Demarest and A. Langenberg, "Systematics of the Average L-Shell Ionization Probability in K- Shell Ionizing Collisions by Light Ions", Phys. Rev. A19, 1529-1537 (1979).

R. L. Watson, J. A. Demarest, A. Langenberg, F. E. Jenson, J. R. White and C. C. Bahr, Heavy Ion-Induced X-ray Spectrometry for Chemical Analysis", IEEE Trans. Nucl. Sci. NS-26, 1352-1357 (1980).

M. K. Bahl, R. L. Watson and K. J. Irgolic, "LMM Auger Spectra of Selenium and Some of Its Compounds," J. Chem. Phys. 72, 406-4077 (1980).

R. L. Watson, J. R. White, A. Langenberg, R. A. Kenefick, and C. C. Bahr, "Spectra of $K\alpha$ X-rays from 64-MeV Sulfur Ions Traveling in Solids", Phys. Rev. A22, 582-590 (1980).

A. Langenberg, R. L. Watson, and J. R. White, "Foil Excited K X-ray Transitions in Few-Electron Sulfur Ions", J. Phys. B: Atom. Molec. Phys. 13, 4193-4204 (1980).

A. Langenberg and R. L. Watson, "Study of Mg $K\alpha$ X-ray Multiplet Structure Observed in Ion-Atom Collisions", Phys. Rev. A23, 1177-1187 (1981).

R. L. Watson, A. Langenberg, J. R. White, R. A. Kenefick and C. C. Bahr, "Environmental Influences on K X-rays from Highly Stripped Sulfur Ions Traveling in Solids", IEEE Trans. on Nucl. Sci. NS-28, 1036-1038 (1981).

R. L. Watson, A. Langenberg, R. A. Kenefick, C. C. Bahr and J. R. White, "Energy Shifts of $K\alpha$ X-rays from Highly Stripped Sulfur Ions Traveling in Solids", Phys. Rev. A23, 2471-2478 (1981).

J. B. Natowitz, M. N. Namboodiri, L. Adler, R. P. Schmitt, R. L. Watson, S. Simon, M. Berlanger, and R. Choudhury, "Particle Emission at a ^{20}Ne Projectile Velocity Comparable to the Fermi Velocity", Phys. Rev. Lett. 47, 1114-1116 (1981).

O. Benka, R. L. Watson, and R. A. Kenefick, "Resonant Electron Transfer in Ionic Fluorine Compounds Following 1s2p Ionization", Phys. Rev. Lett. 47, 1202-1205 (1981).

D. W. Wang, R. L. Watson, R. A. Kenefick, and D. A. Church, "High Resolution K X-ray Angular Distribution Measurements", Nucl. Instr. and Meth. 202, 355-360 (1982).

R. J. Maurer, R. L. Watson, O. Benka, J. M. Sanders, and D. M. Oldham, "Dynamic Screening Energy Shifts and Collision Broadening of 2p-1s Transitions in 2-MeV/amu H- and He-Like Ne, Mg and S Ions", *Nucl. Instr. and Meth.* **202**, 193-198 (1982).

D. A. Church, R. A. Kenefick, D. W. Wang, and R. L. Watson, "Alignment of the 2P State of 2 MeV/amu Helium-Like Sulfur", *Phys. Rev. A* **26**, 3093-3100 (1982).

O. Benka, R. L. Watson, K. Parthasaradhi, J. M. Sanders, and R. J. Maurer, "Electron Transfer in Ionic Fluorine Compounds Following Multiple Ionization by 22 MeV Carbon Ions", *Phys. Rev. A* **27**, 149-157 (1983).

R. L. Watson, O. Benka, K. Parthasaradhi, R. J. Maurer, and J. M. Sanders, "Spectra of Ne $K\alpha$ X-ray Satellites and Hypersatellites Excited by 1.2-1.4 MeV/amu He, C, Mg and Ar Ions", *J. Phys. B: Atom. Molec. Phys.* **16**, 835-851 (1983).

R. L. Watson, O. Benka, K. Parthasaradhi, R. A. Kenefick, R. J. Maurer, J. M. Sanders, B. Bandong, and T. Ritter, "Mechanisms for Rapid Electron Transfer in Ionic Solids Following Multiple Ionization by Heavy-Ion Impact", *IEEE Trans. on Nucl. Sci.*, NS-30, 919-922 (1983).

O. Benka and R. L. Watson, "Electron Transfer to the L-Shell Following Double K-Shell Ionization of Fluorine in Ionic Solids", *Phys. Lett.* **94A**, 143-146 (1983).

R. J. Maurer, R. L. Watson, and G. J. Pedrazzini, "Spectra of np-1s Transitions Excited During the Passage of 48 MeV Mg Ions Through Thin and Thick Carbon Targets", *Nucl. Instr. and Meth.* **214**, 117-122 (1983).

O. Benka, R. L. Watson, and B. Bandong, "K X-ray Spectra of Solid and Gaseous Fluorine Compounds Excited by 2 MeV/amu Ar and Mg Ions", *Phys. Rev. A* **28**, 3334-3339 (1983).

O. Benka, R. L. Watson, B. Bandong, and K. Parthasaradhi, "Electron Transfer to $n > 3$ States of Fluorine Following K-Plus L-Shell Ionization by Heavy Ions", *Phys. Rev. A* **29**, 123-131 (1984).

O. Benka and R. L. Watson, "Semiempirical Scaling Law for np-1s Transition Intensity Ratios of Multiply Ionized Atoms", *Phys. Rev. A* **29**, 2255-2257 (1984).

J. Pálinkás, G. J. Pedrazzini, D. A. Church, R. A. Kenefick, C. A. Fulton, R. L. Watson, and D.-W. Wang, "Alignment of He- and H-Like P-States of 48-MeV Foil-Excited Mg Ions", *Phys. Rev. A* **31**, 598-606 (1985).

R. L. Watson, B. B. Bandong, J. M. Sanders, and K. Parthasaradhi, "K X-ray Spectra of Sodium Excited by Heavy Charged Particles", *Physica Scripta* **31**, 184-192 (1985).

G. J. Pedrazzini, J. Pálinskás, R. L. Watson, D. A. Church, and R. A. Kenefick, "Design and Calibration of an X-ray Polarimeter for Ion-Atom Collision Studies", Nucl. Instr. and Meth. B10/11, 904-906 (1985).

J. Pálinskás, R. L. Watson, G. J. Pedrazzini, D. A. Church and R. A. Kenefick, "Alignment of He- and H-Like P-States of Heavy Ions Produced by Ion-Atom Collisions", Nucl. Instr. and Meth. A240, 498- 504 (1985).

J. Pálinskás and R. L. Watson, "Projectile Velocity Dependence of the Alignment of He-Like States of Foil Excited S Ions", Phys. Lett. 110A, 298-300 (1985).

J. Pálinskás, R. J. Maurer and R. L. Watson, "Delayed Emission of 2p-1s and 3p-1s X-rays from 40 MeV Neon Ions Following Beam-Foil Excitation", Phys. Rev. A 32, 2674-2677 (1985).

R. J. Maurer and R. L. Watson, "Dirac-Fock Energies for Multiple K- Plus L-Shell Vacancy States of Ions with Z = 9 to 18", Atomic And Nucl. Data Tables 34, 185-199 (1986).

R. L. Watson, J. Pálinskás, G. J. Pedrazzini, B. Bandong and C. Can, "Polarization and Pressure Dependence of 2p-1s Transitions in He- Like and Li-Like Neon Recoil Ions", Phys. Rev. A35, 1510 (1987).

J. A. Demarest and R. L. Watson, "Beam-Foil Spectroscopy in the EUV Employing a Position Sensitive Microchannel Plate", Nucl. Instr. and Meth. B24/25, 296 (1987).

C. Can, R. J. Maurer, B. Bandong and R. L. Watson, "Investigation of the Distribution of (n, ℓ) States Populated by Beam-Foil Excitation of 32 MeV Oxygen Ions", Phys. Rev. A35, 3244 (1987).

R. J. Maurer, C. Can and R. L. Watson, "Ionization and Fragmentation of Some Simple Molecules in Collisions With 40 MeV Ar¹³⁺ Ions", Nucl. Instr. and Meth. B27, 512-518 (1987).

R. L. Watson and R. J. Maurer, "Time-of-Flight Analysis of Dissociation Products from Collisions of 40 MeV Ar¹³⁺ with Molecular Oxygen", Nucl. Instr. and Meth. A262, 99-105 (1987).

R. L. Watson, R. J. Maurer, B. B. Bandong and C. Can, "Molecular Fragmentation in Heavy Ion Collisions", in High Energy Ion-Atom Collisions; Eds. D. Berenyi and G. Hock (Springer-Verlag, 1988) pp. 382-393.

B. B. Bandong, R. L. Watson, J. Pálinkás and C. Can, "K X-ray Spectra of Highly Charged Recoil Ions Produced by Heavy-Ion Impact on Oxygen", *J. Phys. B: At. Mol. Opt. Phys.* **21** 1325-1351 (1988).

J. A. Demarest and R. L. Watson, "Beam-Foil Study of Neon in the EUV with Foils of Carbon, Silver and Gold", *Physica Scripta* **38**, 670-676 (1988).

G.-J. Yu, R. L. Watson, B. B. Bandong, C. Can, G. Sampoll, E. Moler and R. J. Maurer, "Collisional Quenching of 2^3P and 2^4P States in 33 MeV Two- and Three-Electron Mg Ions", *Phys. Rev. A* **39**, 1041-1048 (1989)

B. B. Bandong and R. L. Watson, "Resonant Multi-Electron Transfer in Solid Oxides Following Double K-Shell Ionization by Heavy-Ion Impact", *Phys. Rev. A* **39**, 1714-1724, (1989).

G. Sampoll, O. Heber, R. J. Maurer, P. A. Scott and R. L. Watson, "Two-Fragment Coincidence Studies of Molecular Coulomb Explosions Induced by Heavy Ion Impact", *Nucl. Instr. and Meth.* **B40**, 308-312 (1989).

B. B. Bandong and R. L. Watson, "Resonant Multi-Electron Transfer to Double K-Vacancy States in Oxygen Compounds", *Nucl. Instr. and Meth.* **B40**, 170-173 (1989).

O. Heber, G. Sampoll, R. J. Maurer, B. B. Bandong and R. L. Watson, "Cross Sections for Ar Recoil Ion Production by 1 MeV/amu O^{q+} ($q=2$ through 8)", *Nucl. Instr. and Meth.* **B40**, 197-200 (1989).

O. Heber, G. Sampoll, B. B. Bandong, R. J. Maurer, E. Moler, R. L. Watson, I. Ben-Itzhak, J. L. Shinpaugh, J. M. Sanders, L. Hefner and P. Richard, "Charge Multiplication Via Auger Decay of L- Vacancies in the Production of Highly Charged Ar Ions by Collisions with 1 MeV/amu O^{q+} and F^{q+} ", rapid communication in *Phys. Rev. A* **39**, 4898-4901 (1989).

O. Heber, G. Sampoll, B. B. Bandong, and R. L. Watson, "Charge Distributions of Ar Recoil-Ions Produced in One- and Two-Electron Capture Collisions by 16 MeV O^{q+} Projectiles," *Phys. Rev. A* **40**, 5601-5604 (1989).

O. Heber, B. B. Bandong, G. Sampoll, and R. L. Watson, "Double and Single Ionization of Helium by High-Velocity N^{7+} Ions," *Phys. Rev. Lett.* **64**, 851-853 (1990).

O. Heber, R. L. Watson, G. Sampoll, and B. B. Bandong, "Three-Shell Model for Independent-Electron Processes in Heavy-Ion-Atom Collisions," *Phys. Rev. A* **42**, 6466-6470 (1990).

R. L. Watson, D. A. Church, R. E. Tribble, L. Yang, B. B. Bandong, and T. Lotze, "Atomic Physics with the Texas A&M ECR Ion Source," *Nucl. Instr. and Meth.* B56, 223-226 (1991).

O. Heber, R. L. Watson, and G. Sampoll, "Recoil-Ion Kinetic Energies for 96 MeV Ar Collisions," *Nucl. Instr. and Meth.* B56, 232-234 (1991).

O. Heber, R. L. Watson, G. Sampoll, V. Horvat, B. Hill, and T. Lotze, "Multiple Ionization of He, Ne, and Ar by High Velocity N^{7+} Ions," *Nucl. Instr. and Meth.* B56, 15-17 (1991).

V. Horvat, R. L. Watson, G. Sampoll, T. Lotze, and B. Hill, K- plus L-shell Ionization of 4th Row Elements by 30 MeV/amu Ar Ions," *Nucl. Instr. and Meth.* B56, 61-62 (1991).

G. Sampoll, R. L. Watson, O. Heber, V. Horvat, K. Wohrer, and M. Chabot, "Dissociation of Multicharged CO Molecular Ions Produced in Collisions with 97 MeV Ar^{14+} : Total Kinetic Energy Distributions," *Phys. Rev. A45*, 2903-2914 (1992).

V. Horvat, G. Sampoll, K. Wohrer, M. Chabot, and R. L. Watson, "K- Shell Ionization of Intermediate Z Elements by 30-MeV/amu H, N, Ne, and Ar Ions," *Phys. Rev. A46*, 2572-2580 (1992).

K. Wohrer, G. Sampoll, R. L. Watson, M. Chabot, O. Heber, and V. Horvat, "Dissociation of Multicharged CO Molecular Ions Produced in Collisions with 97 MeV Ar^{14+} : Dissociation Fractions and Branching Ratios," *Phys. Rev. A46*, 3929-3934 (1992).

B. M. Hill, R. L. Watson, K. Wohrer, B. B. Bandong, G. Sampoll, and V. Horvat, "Ionization of Noble Gas Atoms by Alpha Particles and Fission Fragments from the Decay of ^{252}Cf ," *Int. J. Mass Spect. and Ion Proc.* 126, 37-44 (1993).

K. Wohrer and R. L. Watson, "Model Calculations of Multielectron Ionization of O_2 Molecules by Fast-Heavy-Ion Impact," *Phys. Rev. A48*, 4784-4786 (1993).

K. Wohrer, M. Chabot, A. Touati, and R. L. Watson, "Model Calculations of Multi-Ionization Cross Sections in High Velocity Ion-Cluster Collisions," *Nucl. Instrum. and Meth.* B88, 174-179 (1994).

R. Parameswaran, R. L. Watson, V. Horvat, G. Sampoll, and D. A. Church, "Xenon Recoil-Ion Charge Distributions Produced in Electron Capture and Loss Collisions of 8 MeV/u Kr," *Z. Phys. D* (in press).

V. Horvat, R. L. Watson, and R. Parameswaran, "Spectra of L X-rays from Fast, Highly-charged Xe Ions Traveling in Solids," *Phys Rev. A* (submitted).

O. Heber, G. Sampoll, B. B. Bandong, R. J. Maurer, R. L. Watson, I. Ben-Itzhak, J. M. Sanders, J. L. Shinpaugh, and P. Richard, "Multiple Electron Ionization, Capture, and Loss by 19 MeV F^{q+} ($q=2-9$) + Ne and Ar Collisions," Phys. Rev. A (in preparation).