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EVEN- AND ODD-PARITY FINITE-ELEMENT
TRANSPORT SOLUTIONS IN THE THICK DIFFUSION LIMIT

Marvin L. Adams
Lawrence Livermore National Laboratory, L-18
Livermore, CA 94550 ,(415) 422-0668

ABSTRACT

We analyze the behavior of odd-parity continuous finite-element methods (CFEMs) for problems
that contain diffusive regions. We find that each of these methods produces a solution that, to
leading order inside diffusive regions, satisfies a discretization of the diffusion equation. We find
further that these leading-order solutions satisfy boundary conditions that can lead to large errors in
the interior solution. We recognize, however, that we can combine an odd-parity CFEM solution
and an even-parity CFEM solution and obtain a solution that satisfies very accurate boundary
conditions. Our analysis holds in three-dimensional Cartesian geometry, with an arbitrary spatial
grid. We give numerical results from slab-geometry; these invariably agree with the predictions of
the analysis. Finally, we introduce a rapidly-convergent diffusion-synthetic acceleration scheme
for the odd-parity CFEMs, which we believe is new.

INTRODUCTION

Thermal-radiation transport problems of practical interest often contain optically thick, diffusive
regions. Practical considerations usually force the use of a spatial grid whose cells in such regions
are thick relative to a mean-free path. We are therefore interesied in the performance of numerical
transport methods in diffusive regions with optically thick spatial cells. A recent paper! details the
behavior of even-parity continuous finite-element methods (CFEMs) in such regions, pointing out
a class of diffusive problems for which these methods produce large errors. Ackroyd has
suggested that odd-parity CFEMs may produce equal and opposite errors in such problems.2
(This is based on observations by Ackroyd and Nanneh of a similar phenomenon in certain
neutron-transport calculations.?) If Ackroyd’s conjecture is correct, then the average of an even-
parity and an odd-parity CFEM solution will be much more accurate than either individual solution.
In this paper we find that this is the case.

We begin by studying the behavior of odd-parity CFEMs for problems containing optically thick,
diffusive re%ions with optically thick spatial cells. The first part of our study is an asymptotic
analysis,!#-® with which we address an entire family of odd-parity CFEMs in three dimensions
assuming an arbitrary spatial grid. The second part is numerical testing, with which we examine
the particular case of linear elements in slab geometry. We find that in thick, diffusive regions,
every odd-parity CFEM produces a solution that (to leading order) satisfies a discrete diffusion
equation. This is a highly desirable result, for we know that in the interior of such regions the
" exact transport solution (to leading order) satisfies a diffusion equation.?-10 Despite this, we find
that in general odd-parity CFEM solutions can be inaccurate in diffusive regions, because they
satisfies boundary conditions that in general are inaccurate. We recall the similar result that even-
parity CFEM solutions satisfy a discrete diffusion equation with boundary conditions that in
general are inaccurate.! However, we find that the average of the odd-parity and even-parity

MAST-

N
i

W,

h oy

F

H

’ %

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



boundary conditions is very accurate. Thus, Ackroyd’s conjecture appears to be correct: the
average of even- and odd-parity CFEM solutions is very accurate in diffusive regions even when
neither individual solution is accurate. This is the main result of this paper.

We also present a diffusion-synthetic acceleration (DSA) method for the iterative solution of our
odd-parity CFEM equations. DSA is a powerful iteration method that has been used extensively
with the first-order form of the transport equation,!1-14 and more recently with the even-parity
form.1.15.16 To our knowledge, however, this is the first DSA method developed for the odd-
parity form of the transport equation.

ASYMPTOTIC ANALYSIS

We begin with a brief review of the behavior of the exact transport solution in a diffusive region.
This material is taken from references [7-10]. We write the transport equation for a single energy,
assuming isotropic sources and scattering, as:

QVY¥+ o, lz"(r.',Q) = Zl;(o,—aa)cb(r) + al;Q(r) , reb, (1a)

Y(rQ)=FrQ) , re db, nQ<0, (1b)

where ¥'is the angular flux, @ is the scalar flux, F is the incident angalar flux, g, is the total cross
section, 0, is the absorption cross section, and Q is a given source. We consider the scaled®
transport problem:

Q-V ¥+ Zy(rQ) =;‘J’-r-(9£‘-—eaa)¢(r) +£00, reD, )

and ask how the solution behaves as the small parameter € tends toward zero. We find that in the
interior of the diffusive region D (i.e., more than a few mean-free paths from dD), the leading-
order angular flux is isotropic and satisfies a diffusion equation:

Y(rQ) = f;(b(r) +0() , rawayfromadD, (3a)
-v--sl(;-V¢+ o,d(r) =0 , (3b)

D(r) =2 f dQ W(n-Q|)F(r.Q) , roe oD . (3c)

n*QQ<0

We note that the boundary condition (3c) is a Dirichlet condition equal to a weighted integral of the
incoming intensity. The weight function W is defined in terms of Chandrasekhar’s H-function for
a purely scattering medium?7:

W =LuH) . @)



When interpreting the results of the asymptotic analysis of numerical transport methods, we use the
fact that W is approximately equal to a simple polynomial:

Wu) = 0.956u + 1.565u2 + 0.0035 ~ u+1.5u? . 5)

Derivation of Odd-Parity CFEMs

We turn now to the odd-parity CFEM eqﬁations. We begin with the odd-parity equation and its
boundary condition:

t—Ya 4
—QV[LQVY,,)+ 0, _sz-v(["-—;’ga—‘-‘ﬁ . (6
V.l +o®=[0-0]0+0 , (6b)
[ ST 1Q.v Yot Mﬁg— =F(r,Q) , r.e oD, nQ<0, (6¢)
(o 47[0" (r"n)

where

¥ Q) = %(‘l’(r,ﬂ)—- Y(r~Q)) ; Jir) = I dQQVY, Q) .
4

We obtained these equations by writing the first-order transport equation for +Q and -, adding
and subtracting, and then manipulating the resulting equations. (This formulation of the odd-parity
equations is used by Morel et. al.!6 Unlike many odd-parity formulations,3 it does not involve
explicit inversion of the scattering operator.) We note that the incoming angular flux, F, is defined
only for n*Q2<0; we extend its definition to all Q in such a way that it is an odd function of Q:

F(r,Q) =-F(r,-Q) for neQ>0 . )
This allows us to manipulate the boundary condition (6¢) into a more convenient form:

0,-0,|d+Q

n-Q) ég.wm-[ Q[ ¥y~ Floqy» €D, allQ. @)

47[0', (r“n)

We now define the family of CFEMs that we consider in this work. We define approximate
functions as expansions in a chosen set of linearly independent basis functions [bj]:

J
Voaa ) = W, r Q)= 2, w@br) |
j=1
)

J
o) =~ ¢n=Y, ulVbr| .

j=1



(The basis functions for the scalar flux are absolute values of gradients of the basis functions for
the angular flux.) We then choose J linearly independent weight functions {w,}, multiply the
transport equation (6a) by each w;, and integrate over the problem domain. We also multiply Eq.
(6b) by each IVw/ and integrate over the domain. We then insert the approximations (9), and
incorporate the boundary condition (8) “naturally” (see reference [1]). The result is a set of
equations for the unknowns {Wj} and {uj}:

[ drwinoivo-F)
oD

3 (0 . [o-c]o+Q
+ J;)d r(Q Vw‘.)gl‘(ﬂ v%dd_mm

+I &Erw,0,¥,40 = 0, (10a)
A 1

f &rlVw|[Vej+o,6-q] = 0 , (10b)
D

where

J
i = Y bin| deQw@) . (10c)
j=1 an

These equations define the family of odd-parity CFEMs that we consider in this paper.
Analysis of Odd-Parity CFEMs: Slab Geometry, Linear Elements
We now analyze the simplest method in the family of odd-parity CFEMs: piecewise linear basis

functions in slab geometry, with “mass-matrix lumping!”. When we apply this method to the
scaled problem (2), we have:

_ y2p| Y- Vine _ ¥ime=Vie| | Gt +0idy
Hie atjflej+1 O';l'ij + 2¢ V,.H"ll2
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2 (+/] f+1 O
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1 .
Cinig = Zfo dup iy (1) , 0sj<J . (14)

2
Cisiz = Cian _ (6'_6 G°)¢+Q <i |
£ 0, Ax; * ¢" —( Oy P l*jSJ ' (15)

where cell-center indices run from 1 to J and half-integers refer to cell edges. We assume an
asymptotic expansion for our unknowns:

Vinp) = ‘»",'[2]1/2(/") +E V’}H/z(“) + & V’j[filz(“) MR ’ (162)

9; = ¢}°’(u) + e¢j[” + 82¢,-[2] + .. , (16b)

We then require that Egs. (11)-(15) hold for each power of £ After some algebra, we find that:

o _
Vie2=0
MUY UG
- - Ax.0.= O.Ax. 1
[3(0‘,Ax),-¢,,2 Soanan| T CadNi%= %G a7
whcre
(0,4%);,1pp = (64X + 0, ;1 AX;,1) /2 , (18a)
1
pa =2 f dusp?F(u ) . (18b)
0
(0] 0
Py =2 f dp3u2F(x, M) . (18c)
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Thus, the leading-order scalar flux satisfies a standard cell-centered difference equation, which is a
reasonable approximation to the correct diffusion equation. However, the boundary condition
satisfied by the leading-order scalar flux is not always accurate, because 342 is not an accurate
approximation to W(u). This can produce large errors in the interior solution, as we show below.

Analysis of Odd-Parity CFEMs: General

The preceeding discussion considered linear elements in slab geometry. Here we discuss the
results of the analysis of the generic odd-parity CFEM (10), assuming three-dimensional Cartesian
geometry and an arbitrary spatial grid. After some algebra, we find the following:



--%-D TGyl + ARl = q—%D N T ‘ (19)

where
0y _1|,,[0] (o1}
u“—[ul e U ] ,

t=0f, . 5 f;= - dzrwj(r)'[“t dQ3Q

nQF(rQ) ,

Q“'[ql' e s qj]' . | qj.:f d3rwj(r)Q(r) ,
D

D = fDd?’rVW‘.(r) lVbj(r)‘ ,
G, = fD &rVw (r)| Vb(r)

These results define the leading-order coefficients {u;}; the scélar flux is defined in terms of {u;)
by Eq. (9b). We can show that if the incident angular flux F is azimuthally symmetric, then E/q.
(19) is a discretization of the diffusion equation (3b), with the following boundary condition:

¢ (rs)=2f - dQ3

n*Q<0

nQ’F(r,Q) , r.edD . 0)

Thus, every member of our family of odd-parity CFEMs satisfies a discrete diffusion equation in
the thick diffusion limit. The diffusion discretization may be unusual; this depends on the details
of the basis and weight functions {b.} and {w;}. Further, every odd-parity CFEM solution
satisfies a boundary condition §20) tht is not aiways an accurate approximation to the correct
boundary condition (3c), for 3u? is not an accurate approximation to W(g).

However, we recall that even-parity CFEM solutions in the thick diffusion limit satisfy boundary
conditions with a 21t weighting. The arithmatic average of scalar fluxes from an even- and an odd-
parity CFEM will therefore satisfy a boundary condition with weight function 2y + 3u2)/2, which
is a reasonably accurate approximation to W(u) [see Eq. (5)]. A more general average, given by

q)average = a¢from odd * (1-0) (bfrom even * Q1)

will satisfy a boundary condition with the weight function 2o + 3(1-a)u2. (These comments
strictly apply only if the incident flux F is azimuthally symmetric.) We are free to choose « so that
this weight function “best” approximates W(u). Our preliminary choice is o = 0.455; we have
used this value to generate the numerical results shown below.




If the incident angular flux F is not azimuthally symmetric, the boundary condition imbedded in
Eq. (19) is more difficult to describe. It can be less accurate than Eq. (20). Thus, in general the
average flux given by Eq. (21) may be less accurate than we would like. This depends on the
details of the weight functions, basis functions, and spatial grid. For the sake of brevity, we do
not discuss these details here.

DIFFUSION-SYNTHETIC ACCELERATION

In this section we consider the iterative problem posed by the analytic (not discretized) odd-parity
equations (6a,b). We propose a DSA scheme and analyze its performance on an idealized (slab-
geometry, infinite medium, constant cross section) model problem. We find that in this case, the
performance of our odd-parity DSA is identical to that of first-order DSA,12-14 with a spectral
radius less than 0.225 times the scattering ratio. We then describe our DSA scheme for the odd-
parity CFEM equations. '

Given an infinite homogeneous slab, the odd-parity equations are:

P 2 ) '
—p? ax;dd + ¥ (o) = -%ﬁccb + b‘,] : (22a)
| |
.I(X) = f dl" l“' qlodd(x’“) ’ (22b)
. -l '
4+ (1-000) = 0 | | | (22¢)

where ¢ = (0, - 0,)/0,. We propose the following DSA scheme, where (/) is the iteration index:

2 +1/2) 2
29 Todd @y u? g{ 0 g]
u Y + oG > dxc(b +G‘ , (23a)
1
T ) = f dpp gy Py (23b)
-1
+1/2)
d—J—dx—+ D3y = c V) + 0() (23¢)
2£(1+1) ‘
LA L (1o ¢ = c(q>(‘“’2’ - da"’) , (24a)
3 dx? ‘
D) = @HD(x) + fH () | (24b)

We apply a straightforward Fourier analysis!2 of this scheme to find the iteration eigenvalues ax
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This is exéctly the expression obtained by previous researchers using the first-order transport
equation.!2 The integral is bounded less than 0.2247 (reference [12]).

Previous research!!-16 has indicated that a successful DSA scheme for a given numerical transport
method must employ a discretization of the diffusion equation (24a) that is “consistent” with that
transport discretization. For odd-parity CFEMs, we propose the discretization that is satisfied by
the odd-parity CFEM solution in the diffusion limit. This is given by Egs. (19).

NUMERICAL RESULTS

In this section we consider three slab-geometry test problems, each of which contains a thick -
diffusive region. We solve each with an even-parity method and an odd-parity method. Each
method uses linear continuous finite elements; all calculations employ the S;¢ Gauss-Legendre
quadrature set. We note that the scalar flux from the even-parity method is piecewise linear and
continuous, while that from the odd-parity method is piecewise constant and discontinuous:

1

¢from even fl dUv,,., ;

| 1
o-a¢fr‘om odd = Q _ﬁzjl du p Vodd -

Thus, the scalar flux from the even-parity method has the same spatial shape as the even-parity flux
(i.e. linear and continuous), whereas the scalar flux from the odd-parity method has the shape of a
spatial derivative of the odd-parity flux (constant and discontinuous). The average of the two
scalar fluxes is therefore linear and discontinuous.

Qur first test problem is a source-free purely-scattering slab 1000 mean-free paths thick, subject to
an isotropic incoming flux at the left face and a vacuum at the right. We obtain a reference solution
by using a linear-discontinuous discretization of the first-order transport equation?, with a very fine
spatial mesh. We obtain even- and odd-parity solutions with a coarse spatial mesh (10 zones).
Results are given in Figure 1. (Wiggles in the reference solution are entirely an artifact of the
graphics software.) We see that both methods perform very well, as expected, because their
boundary conditions are correct when the incident flux is isotropic.

Our second test problem is identicai to the first except that the incoming flux on the left is a delta-
function in angle at 42 = 0.1. Results are given in Figure 2. The exact solution varies rapidly at the
boundary, the even-parity solution is too high in the interior, and the odd-parity solution is too
low. Our weighted average [see Eq. (21)] of the even- and odd-parity solutions is extremely
accurate, exactly in agreement with our asymptotic analysis.

Our final test problem is just the second problem with a thin (.001 mean-free path) pixrely-
absorbing region attached to the left face of the slab. (The incident flux must now penetrate the



thin absorber before reaching the diffusive region.) Results are shown in Figures 3a and 3b. The
solutions in the diffusive region behave as they did in our second test problem. In the thin region,
which we emphasize is well-resolved by the spatial mesh, the even- and odd-parity solutions are
very inaccurate. However, we see again that the average of the two is extremely accurate.

V. CONCLUSIONS

We have analyzed the behavior of continuous finite-element methods applied to the odd-parity form
of the transport equation, for problems that contain thick diffusive regions. We have found that
odd-parity CFEM solutions limit to a discretization of the correct diffusion equation, but that these
solutions satisfy boundary conditions that can be inaccurate. Recalling a recent study of even-
parity CFEM methods, we have recognized that the average of an even-parity and an odd-parity
CFEM solution will satisfy accurate boundary conditions. We therefore have proposed a method
whose solution is defined to be the average of an even-parity and an odd-parity CFEM solution.
We have tested this method in slab geometry on diffusive test problems, and we have observed
excellent results. These excellent results appear to hold in nor. diffusive regions that are adjacent to
diffusive regions, where the individual even- and odd-parity solutions both exhibit large errors.

~ We have also introduced a diffusion-synthetic acceleration (DSA) method for the iterative solution
of the odd-parity equations. We have analyzed this scheme for the continuous (not discretized)
odd-parity equations. We have found that it converges rapidly, with spectral radius less than
0.2247. We have proposed that given a CFEM discretization of the odd-parity equations, the
diffusion discretization used for acceleration should be that discretization satisfied by the odd-parity
CFEM solution in the thick diffusion limit. We have not analyzed our DSA method for such a
discrete problem, but we have observed excellent performance in our test problems.

An often-touted advantage of the even-parity or odd-parity method is that each requires a solution
on only half of the angular domain. Our proposal eliminates this advantage by computing two
such solutions. A natural question, then, is whether our proposed method has any advantages
over a first-order method. Let us temporarily confine the discussion to slab geometry. We note
that every first-order method that has been shown to behave well in the diffusion limit requires at
least two unknowns per spatial cell per angular unknown. We note further that the even-parity
linear CFEM requires approximately one unknown per spatial cell per angular unknown for half of
the angular domain, as does the odd-parity linear CFEM. Thus, the total unknown count for our
- proposed method is approximately half that of a well-behaved first-order method. If we shift the
discussion to two dimensions, the savings become greater; in three dimensions, the savings
become even greater. These comments apply only to the unknown count; computational effort per
unknown is an important issue that we do not address here. (See reference [16] for a discussion.)

Our analysis has taken place on transport equations with spatial discretization but no angular
discretization. This keeps the analysis simple, and serves to isolate errors that are due to the spatial
discretization scheme. It will hold for any reasonable angular discretization in the limit of fine
angular resolution. We note that recent work by Jin and Levermore!® shows that angular
discretizations can also introduce errors in the boundary condition satisfied by the leading-order
solution in diffusive regions. In the future we expect to address the behavior of transport methods
in which both the angular and spatial variables are discretized.

ACKNOWLEDGEMENTS

We note that it was R. T. Ackroyd’s conjecture that led to this work. This work was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract #W-7405-Eng-48.



10.

11.
12.
13.
14.

15.

16.

17.
18.

REFERENCES

M.L. Adams, “Even-Parity Finite-Element Transport Methods in the Diffusion Limit,”
Progress in Nuclear Energy, submitted (1990). ‘

R.T. Ackroyd, private communication (1990).

M.M. Nanneh and R.T. Ackroyd, “Hybrid Principle With Applications to Synthesis,”
Progress in Nuclear Energy, submitted (1990).

E.W. Larsen and J.E. Morel, “Asymptotic Solutions of Numerical Transport Problems in
Optically Thick, Diffusive Regimes I1,” J. Comput. Physics, 83, p. 212 (1989). [See also
the corrigendum to appear in J. Comput. Physics.)

C. Borgers, E.W. Larsen, and M.L. Adams, “The Asymptotic Diffusion Limit of a Linear
Discontinuous Discretization of a Two-Dimensional Transport Equation”, submitted to J.
Comput. Physics (1990). ’ ‘

M.L. Adams, “The Asymptotic Diffusion Limit of Discontinuous Finite-Element Transport
Methods on Arbitrary Grids in Three Dimensions”, in preparation (1990).

Larsen, E'W. and Kelier, J.B., “Asymptotic Solution of Neutron Transport Problems for
Small Mean Free Paths,” J. Math. Physics 15,75-81 (1974).

Habetlér, G.J. and Matkowsky, B.J., “Uniform Asymptotic Expansions in Transport
Theory with Small Mean Free Paths, and the Diffusion Approximation,” J. Math. Physics
16, 846-854 (1975). | :

Larsen, E.W., “Diffusion Theory as an Asymptotic Limit of Transport Theory for Nearly
Critical Systems with Small Mean Free Paths,” Annals of Nuclear Energy 7, 249-255
(1980).

F. Malgavi and G.C. Pomraning, “Initial and Boundary Conditions for Diffusive Linear
Transport Problems,” to appear in J. Math. Physics (1990).

R. E. Alcouffe, Nucl. Sci. Eng., 64, 344 (1977).
E. W. Larsen, Nucl. Sci. Eng., 82, 47 (1982).
H. Khalil, Nucl. Sci. Eng., 98, 226 (1988).

M. L. Adams and W. R. Martin, “Diffusion-Synthetic Acceleration of Discontinuous Finite-
Element Transport Iterations”, Nucl. Sci. Eng., submitted (1990).

W.F. Miller, Jr., “An Analysis of the Finite-Differenced, Even-Parity Discrete-Ordinates
Equations in Slab Geometry,” Nucl. Sci. Eng., submitted (1990).

J.E. Morel, and L.A. Olvey, G.W. Clayborn, and J.A. Iosef, “An Even-Parity/Odd-Parity
Formulation for Deterministic Transport Calculations on Massively Parallel Computers,”
Proc. The Next Free Lagrange Conf., Jackson Lake Lodge, Wyoming, June 3-7, 1990.

S. Chandrasekhar, Radiative Transfer, Dover, New York (1960).

S. Jin and C.D. Levermore, “The Discrete-Ordinate Method in Diffusive Regimes,”
submitted (1991). ‘



Figure 1. Results from Test Problem 1.
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Figure 3a. Results from Test Problem 3.
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