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In this lecture I shall discuss a mearch for exact Invariance for

Hamiltonians of the form

H.: pz +V(q,t) .
2

(1.1)

By exact invariant I mean any function I(qjp)t) whose tatal time derivative

vanishes,

“2+[I,H] . (1.2)

My principal collaborator in the work that I shall describe is Prof. J’.

G. L. Leach (b Trobe University; Department of Applied hlathematica;FJundoora,

Victorja 3083; Australia). Dr. W. Snrlet (Rijkeunivereiteit Cent; InBtituut

voor Theoretisclle Mechanica; Cebouw S9; Krijgslaan 271; E-9000 Gent; Belgium’

haa worked with U8 on closely rel,ated~tudiea and continuen to do 80. Some

per80ns whoge work has contributed to the background of what I elan deecril~e

are L. Y. Bahar, C. J. Eliezer, M. Lutzky, C. E. Prince, J. R. Ray and

1 Lo. . Reid. Refer~nce8 to the work of these persons are cited in RefE. 1 find

2.

l’h~purpoue of our uearch for exact invar~anta iEI two-fold: WC wish to

illuminate the undellyjnp,,qtructureof dynamical oyetems and wc wish to pr(~vide

a ha~is for application to fielda like plaema physic~ and quantum theory. I am

p~rtjculnrly lntere~t~d in the ponaibility of application to plaemn ph~~ic~,

where lrlvariants ●nter in finfling eolu:ion~ to the highly non”.~near

Vln~ov-M&xwell system of integro-pnrtial djfferentinl equationa. AB an

illu~trnt~ve exnmple of th~ Vlaaov-Maxwell ●quntion~, we cnn consider the
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epecial case in one 8patial dimen8ion of the Vlaaov-Pola60n equations for

phase-space distribution function6 f8(q,p,t) and an electric scalar potential

+(q,t),

(1.3)

(1.4)

The characteristic equations of (1.3) are the equations of motion associated

with the Hamiltonian

2
Hg(q,p,t) -~+ O#(q,t) .

6
(1.5)

The Eub6Cript s denotes a particle species and the numbers MS and ~~ are,

respectively, the mass and charRe of a particle of spectes s. The most general

solution of (1.3) as a functional of $(q,t) is an arbitrary differentiable

function of two independent Invarihnts of the particle motion associated with

the HamiltonIan HB(q,p,t).

Methode fLr finding exact Invariance that have been ?.!sedrecently include

Noether’g theorem, the Lie theor;~ of extended groups, Ermakov’s method,

canonical transformation and direct methods. In this lerture 1 shall emphnsize

a new application of the direct method that 18 due to P, C. L. Leach and

my~elf.~



-4-

11. The Direct Method.— —

Iedirect method for finding exact invariant~ coneiete eimply in aeauming

a functional form for the invariant I(q,p,t) and substituting that form directly

into the defining equation for an invariant, (1.2). ?or example, Lewis and

Leach2 assumed invariant~ with polynomial dependence on the momentum,

N

I(q,P,t) -n~o Pnfn(%t) = (2.1)

With this assumption, directly from (1.2), they were able to derive the

following result: For the HamiltonIan (1.1), an invariant quadratic In p existe

if, and only if, the potential has the form

1U2V(q,t) - (~- r!l)q-–-q +b(~),

P2
(2.2)

-awhere p(t), cc(t),and G(L) are arbitrary functions. For these potentials, the
P

invariant6 quadratic in p are

I(q,p,t) - ; [P(P~) - b(q-a)]z + c(~.) . (2.3)

This result has now been found by other ucthods as well. These quadratic

invariant have been applied to the eingle-species Vlaaov-Poisson equations by

Lewi6 and Symon.3 Interesting new solutions were found, althoo~h those solution6

are still rather restrictive from a physical standpoint. The Invariant of

degree higher than two hnve not been found.

The phyfiicallimitutione of the oolutions of the Vlaeov-Poisson equations

that are aaeociated with the quadratic invarlanta and the fact that Invfirlants

of hiRher deRree have not beer found have motivated Leach and mybelf to eturly a

new ansatz for the direct method.1 This ansatz, which in a representation of the
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Invariant in terms of simple poles in the complex momentum plane (called

resonances), IS the subject of the remainder of my lecture.
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111. Resonance Formulation

The aneatz that we make for the dependence of the invariant on the momentum

la that the invariant be a rational f~nction of the momentum with only simple

polee. Singularities of the rational function may occur at complex values of

the momentum, but of course the only physically realizable values of the

momentum are real. The motivation for choosing rational functione, kdLfl or

without the restriction to simple poles, IB that rational functions are Rood

approximating functionB that have aingularitiea. The Pad$ approximant6 are good

examples of the u8e of rational functions for approximation. Having

singularities in the a8sumed form for the Invariant 18 de8irable because they

can correspond to the singularities that occur in the general eolution of the

linearized Vlasov-Maxwell ●quations. (Recall that the solution8 of the Vlaeov

equation are invariance of the underlying single-particle motion.) Also,

singularities may correspond to the well-known existence of adiabatic invariant

that are valld in localized regions of the pha8e apace. The restriction to

simple poles in the rational functlor IS not serious. Con~.iderp a8 a complex

variable,

p-(+ill

and write a particular rs:ional fun:tion with simple pol~: as

R(p) - U(c,rl)+ iv(c*fl) ●

(3.1)

Now suppose that the singulariti~~ of R(P) coincide with tho~e of some ‘U1’ccion

f(p), but allow the nature of the 8ingularitiee of the two functions to differ.

Then, almost everywhere, f(p) can be written as

f(p) = g[R(p)] , (303)

where R fs n noneingular function. lhc reason IS that the Cnl]chy-Rjemann
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condition allows the Jacobian of the transformation from (C,q) to (u,v) to be

written as

(3.4)

The Jacobian is ntinzeroexcept where each of the first derivatives of u and v

with respect to ‘$ and n vanieh. Becau8e any function of an invariant ia an

invariant, we can 8tudy all invariance of the form f(p) by studying functions

R(p).

It is convenient

in s canonical form in

I(q,p,t) - c(q,t) +
n

to represent our rational function with only simple poles

terms of resonance denominators,

:
‘*(qIt)

.
:oP- Un(q,t)

(3.5)

This choice of representation has the advantage that che equations that c(q,t)

and the functions un(q,t) and vn(q,t) must satiefy only couple in a single

condition the functions associated with different subscripts n. The equations

that must be satisfied can be determined by substituting (3.5) into (1.2). The

result is of the form

Yn(q,t)
Wo(ll,t)+ Pwl(%t) + ~ [— + -].0,

‘n ~n2
(3.6)

where Xn ie defined by

xnEp- Un(qot) ●
(3.7)

Because (3,6) munt hold for all valuee of r, the condition to be ●atiefied are

that the functions WO and W1 must vanish ●nd that the furctiona yn and Zn must
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n separately. These conditions are necessary and

given by (3.5) to be an invariant. A result of the

must not be a function of q: C(q,t) + c(t). Taking

conveniently write the conditions explicitly as

(3.8)

(3.9;

(3.10)

Equations (3.9) and (3.10) must be satisfied for each subscript n separately.

If one function un(q,t) is specified then aV/aq can be calculated from (3.10).

If there are two or more functions un(q,t), then they must yield the same aV/aq

according to (3.10).

Simple Harmonic Oscillator,-

In order to obtain a feeling for invariant8 written in this resonance form,

let us put some well-known invariant6 for the simple harmonic oscillator in

resonance form. Consider the Hamiltonian

H=:(p2+q2).
2

The solution of the equations of motion is

q * posin(t) +qocos(t) , p = pocos(t) - qOsin(t)

(3.!1)

(3.12)

or, in ancther form,
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q = A ein(t~) , p = A cos(t-$) .

The constants ef integration

l/pO and tan($) in resonance

i 1
-—

1 ~ T
n-p-iq+ p+iq’

1= -&

~
P-q

Cos(t) ‘
m

(3.13)

are qO and PO or A and $. We can write ltH, llq~,

form:

1= &

< p + ~ sin(t) ‘
Cos(t)

a
q.

-

tan($) = -— =
sin(t) Cosz(t)
m“ -

Po p + q sin(t) ●

Cos(t)

(3.14)

(3.15)

(3.16)

Thu6, H, qo, PO and $ can each be written as a function of a rational function

of p with simple poles.

l.agrangianVariables

Equations (3.9) and (3.101 are of the form of particle conservation and

momentum bnlance equations in fluid dynamics. The treatment of those equation6

is facilita~ed by a transformation to a set of Lsgrangian variables. This is

discussed in Ref. 1 by Lewis and Leach. For each function un(q,t) we introduce

a Lsgrangian mapping function Fn(q,t) that is related to ull(q,t)bY

(3.17)

Equation (3.9) can be solved in terms of Fn(qtt) and we view (3”1~) as a ‘ormula
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The problem then ie to determine a suitable set of

which corresponds to the same a’J/aq, such that the

con8iatency condition (3.6) is satisfied. In the analysis it la convenient to

introduce Lagrangian variables ~ and inverse mappings Jn(xn,t) dei;ned by

‘n = Fn(q,t) - q - Jn(xn,t) . (3.18)

The functions Fn(q,t) and Jn(xn,t) satisfy the identity

q~ Jn[Fn(q,t),t] . (3.19)

Ge~.erallyspeaking, the mapping given by Fn(q,t) will be invertible only

locally. For each value of t, it will be 6ingle-valued and thu6 Invsrtibie

between each pair of adjacent extrema. The domains in which the ❑apping is

single-valued can change with time. The6e domains may be associated with the

subdivision of the phase plane into ❑ore or lese isolated reg~on6 that is often

observed in numerical SOlUti0n6 of equation6 of motion. Also, they may be

associated with the existence of adiabatic invariants that are only valid in

localized regions of the phase plane.

In terms of the set of Lagrangian mapping functions, the consistency

condition (3.8) can be written as

32Fn
c’(t)+! —=0, (3.20)

n aqz

which can be integrated readily. The expression for iiV/aqobtained from (3.10)

is

(3.21)
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Single Resonance

If there Ie only one resonance in the invariant (only one Lsgrangian

mapping function), then the consistency condition (3.20) requires that Fl(q,t’

be quadratic in q,

Fl(q,t) - [a(t)q +B(t)]2 i-y(t) . (3.22)

The potential generated from (3.21) by this mapping function is

2a*2
V(q,t) - (c-— ) + (aq + 8)2 + (L -~x)log(aq +B)

a2 a3 2a2 ~3

~~2 1 ,, 2B’a’ Ba’”
+(~-—-—

+ 2Ba’2
~)(aq + 0) + g(t) (3.23)

‘~ (aq +0)2 a2 a3 a3
B

where g(t) 1s an arbitrary function. An invariant for this potential has been

derived by Sarlet4 ~nd, recently, by s canonical transformation techniques

Sarlet used a generalization to time-dependent transformations of the techniques

in Ref. 6. Note that the potential (3.23) contains three arbitrary functions of

time. The invariant associated with (3.22) 1S

I1(%PS - . ~ta2(t’)dt’

+
a (aq +6)

p-[~)’+~(aq+ p)+ “ ●

~2 2a (aq + B)

(3.24)

There exist~ a two-parameter family of ❑appings different than (3.22), each

qtiadraticin q but with different functions of time, that give the same V(q,t)

as (3.23) but different functions ul(q,t). Thie meana thnt the invariant are

diffe~ent and wc can conatruc~ two independent invariant for the potential
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(3.23). Thu~, the dynamics has been

correapcmding to Invarlante with a single

solved completely for the potentials

reeonance.

Multiple Resonances

Suppose that we

that we have defined

‘1 = Fl(q,t) -

Suppose also that

are given one mapping function for a particular aviaq and

the Lagrangian variable xl,

q M Ji(xl,t) . (3.25)

F1(w) is not quadratic in q, ao that at Ieaet one other

mapping function is required in order to satisfy the consistency condition

(3.20). In such a case, how many mapping functions are required in order to be

able to satisfy the consistency condition and how can they be found?

We seek a different ❑apping function, F2(q,t), that corresponds to the same

3V/aq. Of course, the function u2(q,t) produced by F2(q,t) must be different

than t:lefunction ul(q,t) produced by Fl(q,t). It the consistency condition can

be satisfied by using just these two mapping functions, then we shall have a

two-resonance example. Otherwise, one or more add~tional mapping functions must

be found. Let us define a LaRrangian variablu X2 associated with F2(q,t),

‘2 M F2(q,t) - q = J2(xi,t) . (3.26)

We want to find a constructive relation between t?e two mappinRs. For that

purpose it turnG out to be convenient to express X2 in terms of xl,

‘2
= F2(q,t) - F2[Jl(x1,t),t] - P(xl,t) , (3.27)

and to seek the relation betwuen P(xI,t) and .ll(x1 ,t).
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In order to simplify the notation, I eltalldrop the subscript I during the

remainder of thie di~cueeion. Requiring that the two mapping function6 give chs

same ~V/aq implies the following equation that must be 8atimfied by P(x,t) and

J(x,t):

It can be shown that the solution of this equation is

where n is any solution of

(3.28)

(3.29)

(3.30)

A result of this form of the solution of (3.28) is that there exiets only one

J(x,t) for a given P(x,t).

A ‘lVo-ResonanceExample

Th~M formalism can be applied to give the potentials for which there exist

inv&.riante qundt~tic in the momentum and to Rive the quadratic invariant for

thoee potential. The result can be obtained by taking F(q,i) in the form

-+-=) -Jtmt’w ,F(q,t) - N(q (3.31)
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~), a(t) andp(tj are arbitrary functions. Then F2(q,t)l~ given bywhere N(q
P

+) ./tp-2 (t’)&F2(q, t) = - N(q

and the HamiltonIan IS

(3.32)

(3.33)

The potential in this Hah.ltonian is of the same form as (2.2), which is the

most general potential fov which there exieta an invariant quadratic in p.

General Two-Resonance Ca8e

The general case in which there exists an invariant that can be written in

the form (3.5) with N = 2 can he formulated as follows. Let M(x,t) be a

function such that n(x,t> = M(x,t) iR a particular solution of (3.30). Define a

new independent variable C by

c = M(x,t) - x = N(Cjt) t (3.34)

ui.ere N(C,t) is the inverse of M(x,t). Because (3.30) i~ a homogeneous,

firnt-ordnr partial diffc~ential ●quation for ~(x~t), it~ R@nernl solution can

be written in terms of the sin~le variable c a~

n(x,t) w v(c) ,

where V(G) in nome function of a nfnRl@ ~rR~lmQnt” By virtup of (3.34), P(x,t)

can be expresaecl an aomc function Q(C!t)~
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P(x,t) - O(r, t) ● (3.36)

In principle we can ●xpress q a6 some function g(c,t),

(5.37)

by inverting

C = M(x, t) = M[F(q, t), t] = ff, q,t) . (3.38)

By substituting (3.38) into (3.34), we see th~,t specifying N(C,t) is ●quivalent

to specifying F(q,t) in the form

(3.39)X = F(q,t) = N[f(q,t),t] ●

This form is a generalization of the aneatz (3.31). In (3.31), the function

f(q,t) is (q - a)/o.

A way of proceeding to investigate two-reoonancc caeee in detail in to

npecify various forme for the function N(C,t) nnd to determine the allowtble

f~lnction~ Q(c,t) and g(c,t)s The conditions that these three functions muut

eatisfy are

which in (3.30) rewritten,

(3.60)

(1.4!)
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which is (3.29) rewritten, and

1
; c’(t)g2(C,t) - b(t)g(c,t) - a(t) + N(C,t) + Q(C,t) = O , (3.42)

which is the consistency condition (3.20) and where a(c) and b(t) are arbitrary.
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IV. Conclusion

In the main part of this lecture, I have presented a resonance formulation

for exact Invariant of Hamiltonian syateme that deecribe the motion of a

particle in a one-dimensional potential. The formulation IS due to prof. p.

G. L. Leach and myself. We have obtained ●arlier results aa simple

applications of the new formulation. I have presented a posuible formulation

for 8tudying the general two-resonance case. There is a possibility that the

resonance formulation for ●xact invariant will have applications in plaama

phyaica and quantum theory.
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