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I. Introduction

In this lecture I shall discuss a search for exact 1invariants for

Hamiltonians of the form

1

By exact invariant I mean any function I(q,p,t) whose total time derivative

vanishes,

=5+ [LH] . (1.2)

My principal collaborator in the work that I shall describe 1is Prof. P.
GC. L. Leach (La Trobe University: Department of Applied Mathematics:; Bundoora,
Victorja 3083; Australia). Dr. W. Sarlet (Rijksuniversiteit Gent; Instituut
voor Theoretisclie Mechanica; Gebouw S$9; Krijgslaan 271; E-9000 Gent; Belgium®
has worked with us on closely related studies and continues to do so. Some
persons whose work has contributed to the background nf what I si.all describe
are L. Y. Bahar, C. J. Eliezer, M. Lutzky, G. E. Prince, J. R, Ray and
J. L. Reld. Referonces to the work of these persons are cited in Refe. 1 und

2.

The purpose of our search for exact invariants 18 two-fold: we wish to
illuminate the undeilying atructure of dynamical systems and we wish to prouvide
a banis for applications to fields like plasma physics and quantum theory. I am
particularly interested in the possibility of application to plasma physics,
where {nvariants enter in finding solurtions to the highly non.inear
Vlasov=-Maxwell aystem of integro-partial differential equations. As an

illustrative example of the Vlasov-Maxwell equations, we can consider the
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special case in one spatial dimension of the Vlasov-Poisson equations for

phase-gpace distribution functions fa(q,p,t) and an electric scalar potential

¢(q,t),

af, M, 3f, AHg Af,

5% " 9p 99 9q Ip O (-3
22¢

- 2%, dp £.(q,p,t) . 1.4
2 in ) Qg [dp f4(q,p,t) (1.4)

The characteristic equations of (1.3) are the equations of motion associated

with the Hamiltonian

2
( - P_ . .
He{q,p,t) oW + Ogé(q,t) (1.5)

The subscript s denotes a particle species and the numbers Ms and Qg are,
respectively, the mass and charge of a particle of species s. The most general
solution of (1.3) as a functional of ¢(q,t) 1s an arbiirary differentiable
function of two independent invariants of the particle motion associated with

the Hamiltonian H_ (q,p.t).

Methods fcr finding exact invariants that have been used recently 1include
Noether’s theorem, the Lie theorvy of extended groups, FZErmakov’s method,
canonical transformations and direct methods. 1In this lenture J shall emphasize
a new application of the direct method that is due to P. G. L. Leach and
myself.1



I1. The Direct Method

e direct method for finding exact invariants consists simply in assuming
a funct'onal form for the invariant I(q,p,t) and substituting that form directly
into the defining equation for an invariant, (1.2). for example, Lewis and

Leach? assumed invariants with polynomial dependence on the momentum,

N
1(q,p,t) -n-E-O p"f_(q,t) . (2.1)

With this assumption, directly from (1.2), they were able to derive the
following result: For the Hamiltonian (1l.1), an invariant quadratic in p exists

if, and only if, the potential has the form

Ba

V(q,t) = (-5— = H)q = !

% q? + — ¢(==) , (2.2)

1
2 p2

where p(t), c(t), and G(ﬂgg) are arbitrary functions. For these potentials, the

invariants quadratic in p are

1
Iq,p,t) = — [p(p-a) - $(q-a)]? + G(Q_:‘.) . (2.3)

This result has now been found by other wovcthods as well. These quadratic
invariants have been apnrlied to the single-apecies Vlasov-Poiason equations by
Lewis and Symon.3 Interesting new solutions were found, although those rolutions
are still rather restrictive from a physical standpoint. The invariants of

degree higher than two have not been found.

The physical limitutions of the solutions of the Vlasov-Poisson equations
that are ansociated with the quadratic invariants and the fact that invariants
of higher degree have not beer found have motivated Leach and myself to study a

new ansatz for the direct method.! This ansatz, which is a reprepentation of the
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invariant in terms of simple poles in the complex momentum plane (called

resonances), 1s the subject of the remainder of my lecture.



III. Resonance Formulation

The ansatz that we make for the dependence of the invariant on the momentum
ie that the invariant be a rational function of the momentum with only simple
poles. Singularities of the rational function may occur at complex values of
the momentum, but of course the only physically realizable values of the
momentum &are real. The motivation for choosing rational functions, wi.n or
without the restriction to simple poles, is that rational functions are good
approximating functions that have singularities. The Padé approximants are good
examples of the use of rational functions for approximation. Having
singularities 1in the assumed form for the invariants is desirable because they
can correspond to the singularities that occur in the general solution of the
linearized Vlasov-Maxwell equations. (Recall that the solutions of the Vlasov
equation are invariants of the wunderlying aingle-particle motion.) Also,
singularities may correspond to the well-known existence of adiabatic invariants
that are valid in localized regions of the phase space. The restrictivn to
simple poles 1in the rational functior is not serious. Coneider p as a complex

variable,

p=~E£ + in (3.1

and write a particular r2tional fun:tion with simple pol-: as

R(p) = u(E,n) + 1v(E,n) . (3.2)

Now suppose that the singularities of R(p) coincide with those of some function
f(p), but allow the nature of the singularities of the two functions to differ.

Then, almost everywhere, f(p) can be written as

f(p) = g[R(p)] , (3.3)

where g 18 a nonsingular function. The reason 18 that the Cauchy-Riemann
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condition allows the Jacobian of the transformation from (E€,n) to (u,v) to be

written as

;{E—-:—% - (39)2 + (392 . (3.4)

The Jacobian is nonzero except where each of the first derivatives of u and v
with respect to £ and n vanish. Because any function of an invariant 1is an
invariant, we can study all invariants of the form f(p) by studying functions
R(p).

It is convenient to represent our rational function with only simple poles

in a canonical form in terms of resonance denominators,

1(q,p,t) (:)+£q A 3.5
qun c qi n-op—Tn(q.—t—)— . ( . )

This choice of representation has the advantage that the equations that c(q,t)
and the functions un(q,t) and vn(q.t) must satisfy only couple in a single
condition the functions associated with different subscripts n. The equations
that must be satisfied can be determined by substituting (3.5) into (1.2). The

result 1s of the form

Yn(q yt) 'tn(Q|t)
+

w (g,t) + pw ,t) + -0, 3.6
p(0,8) + py (a,t) + 1 | X le (3.6)
n
where X, is8 defined by
x, Ep = up(q.t) . (3.7)

Because (3.6) must hold for all values of p, the conditions to be satisfied are

that the functions Yo and w, must vanish and that the furctions y, and z, must
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vanish for each subscript n separatels. These conditions are necessary and
sufficient for 1I(q,p,t) given by (3.5) to be an invariant. A result of the
conditions is that c(q,t) must not be a function of q: c(q,t) * c(t). Taking

that into account, we can conveniently write the conditions explicitly as

v
“(t) + " eo s 3.8
c’(t) ,213q (3.8)
h“+a( ) = 0 (3.9
TS .a_q.unvn s .9)
Bun aun v
R e T T (3.10)

Equations (3.9) and (3.10) must be satisfied for each subscript n separately.
If one function un(q,t) is specified then 3V/9q can be calculated from (3.10).
If there are two or more functions u,(q,t), then they must yleld the same 3V/dq

according to (3.10).

Simple Harmonic Oscillator

In order to obtain a feeling for invariants written in this resonance form,
let us put some well-known 1invariants for the simple harmonic oscillator in

resonance form. Consider the Hamiltonian

H=_ (p2 +q%) . (3.11)

1
2
The solution of the equations of motion is

q = posin(t) + qocos(t) , P~ pocoa(t) - qosin(t) (3.12)

or, in ancther form,



q = Asin(t-¢) , p = A cos(t-9) . (3.13)

The constant:s <f integration are q, and p, or A and ¢. We can write 1/H, l/qo.
l/p0 and tan(¢) in resonance form:

-1 i
1 q q
ﬁ P - iq+ P+iq ’ (3-14)
- 1 1
_L_ - sin(t) _l_ - cos(t) (3.1%)
q, b - q os(t) ’ P, . g 8in() ’ =
sin(t) P cos(t)
q
%o sin(t) cosz(t)
tan(¢) = = ;;. - o5 (D) - " ~1n (5 (3.16)
P q cos(t)

Thus, H, 95+ P and ¢ can each be written as a function of a rational function

of p with simple poles.

Lagrangian Variables

Equations (3.9) and {3.10) are of the form of particle conservation and
momentum balance equations in fluid dynamics. The treatment of those equations
1s facilitated by a transformation to a set of Lagrangian wvariables. This s
discussed in Ref. 1 by Lewis and Leach. For each function u_ (q,t) we introduce

a Lagrangian mapping function Fn(q,t) that 18 relaced to u“(q,t) by

Tt—+un-5?n-0. (3-17)

Equation (3.9) can be solved in terms of F (q,t) and we view (3.10) as a formula
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for calculating dV/3q. The problem then is to determine a suitable set of
mapping functions, each of which corresponds to the same 3V/3q, s8uch that the
consistency condition (3.8) 1s satisfied. 1In the analysis it 1s convenilent to

introduce Lagrangian variables X, and inverse mappings J,(x,,t) dei.ned by

x, = F (q,t) - q = J (X,t) -« (3.18)

The functions Fn(q,t) and Jn(xn,t) satisfy the identity

q = Jn[Fn(q)t)nt] . (3.19)

Gewerally speaking, the mapping given by Fn(q,t) will be 1invertible only
lozally. For each wvalue of ¢t, it will be single-valued and thus invartibie
between each pair of adjacent extrema. The domaint in which the mapping 1is
single-valued can change with time. These domains may be associated with the
subdivision of the phase plane into more or less isolated regions that is often
observed i1in numerical solutions of equations of motion. Also, they may be
associated with the existence of adiabatic invariants that are only valid 1in

local:zed regions of the phase plamne.

In terms of the set of Lagraengian mapping functions, the consistency

condition (3.8) can be written as

2
22F,

e (t) + )

o, (3.20)
n 3q2

which can be integrated readily. The expression for 3V/3q obtained from (3.10)
is

2 52
32F_ 3F 92F 3F AF, LG Fn 3Fn .1 (2Fn

- - / 3. (3.21)
Corals TR 1 T TR (537 (5g)
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Slngle Resonance

If there 1s only one resonance in the invariant (only one Lagrangian
mapping function), then the consistency condition (3.20) requires that F . (q,t°
be quadratic in q,

F(q,t) = [a(t)q + B(t)]}2 + v(t) . (3.22)

Thevpotential generated from (3.2]1) by this mapping function is

r s 20'2 1 2 Yll Yla'
V(q,t) = (E—- - ) =— (aq + 8)2 + (= - I—)log(aq + B)
’ a? @3~ 2 202 ol
v2 1 g’° 28'a’ Ba’’ _ 28a‘2
- + - - + J(aq + B) + g(t) , (3.23)
8a?2 (aq + B)2 a? ald al al

where g(t) 1is an arbitrary function. An invariant for this potential has been
derived by Sarlet“ and, recently, by a canonical transformation technique.5
Sarlet used a generalization to time-dependent transformations of the techniques
in Ref. 6. Note that the potential (3.23) contains three arbitrary functions of
time. The invariant associated with (3.22) is

t
I,(4,p,t) = - [ a?(t’)dr’

+ a (ag + 8)

. (3.24)

’ ’

_(By, , @ Y
P (F 45 (e 8) + ey

There exists a two-parameter family of mappings different than (3.22), each
quadretic in q but with different functions of time, that give the same V{(q,t)
as  (3.23) but different functions ul(q,t). This means that the invariants are

different and wc can construct two independent invarianta for the potential
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(3.23). Thus, the dynamics has been solved completely for the potentials

corresponding to invariants with a single resonance.

Multiple Resonances

Suppose that we are given one mapping function for a particular 9V/dq and

that we have defined the Lagrangian variable X,

x, = F (q,t) - q = J (x;,t) . (3.25)

Suppose also that Fl(q't) is not quadratic in q, so that at least one other
mapping function is required in order to satisfy the consistency condition
(3.20). In such a case, how many mapping functions are required in order to be

able to satisfy the consistency condition and how can they be found?

We seek a different mapping function, Fz(q,t), that corresponds to the same
av/aq. 0f course, the function uz(q,t) produced by Fz(q,t) must be different
than the function ul(q,t) produced by Fl(q’t)' It the consistency condition can
be satisfied by wusing just these two mapping funcrions, then we shall have a
two-resonance example. Otherwise, one or more additional mapping functions must

be found. Let us define a Lagrangian variable x, associated with Fz(q,t),

2

x, = F,(q,t) - q = Jy(x,,t) . (3.26)

We want to find a constructive relation between the two mappings. For that

purpose it turnc out to be convenient to express x, in terms of X,

2

X, = Fz(q,t) . FZIJl(xl't)'t] - P(xl,t) , (3.27)

and to seek the relation between P(xl,t) and Jl(xl't)'



P

-1%-

In order to simplify the notation, I shall drop the subscript ) during the
remainder of this discussion. Pequiring that the two mapping functions give thz

same 9V/3q implies the following equation that must be satisfied by P(%x,t) and
J(x,t):

9P (3?)2 Eii -2 (32)2 oP 32J

EER P I Ll T

- [3%P (3P, 32p 3p 3P _ 32p (3P\p, 2J

It can be shown that the solution of this equation is

an/dx

?9J
- 7, (3.29)
= an/an) 2
where n is any solution of
9P an 2P 3n
-s?-rx-z's?-é—t-()- (3-30)

A result of this form of the solution of (3.28) is that there exists only one
J(x,t) for a given P(x,t).

A Two-Resonance Example

This formalism can be applied to give the potentials for which there exist
inveriants quadrdtic in the momentum and to give the quadratic invariants for

those potentials. The result can be obtained by taking F(q,c¢) in the form

F(q,t) = N(3 ; 2) - ftp'z(t')dt' , (3.31)



=14~
q-a
)

where N( ), a(t) and p(t; are arbitrary functions. Then Fz(q,t) is given by

q-a

t
F,(q,t) = - N( ) = [ p72(r")dr’ (3.32)

and the Hamiltonian 1s

H.1p2-§(%qu+up-w)-L__L__. (3.33)
p2 oN2(3 -2 ; %)

The potential in this Haw_ltonian is of the same form as (2.2), which 1s the

most general potential for which there exists an invariant quadratic in p.

General Two-Resonance Case

The general case in which there exists an invariant that can be written in
the form (3.5) with N = 2 can bhe formulated as follows. Let M(x,t) be =&
function such that n(x,t} = M(x,t) is a particular solution of (3.30). Define a

new independent variable §{ by

C = M(X,t) - X = N(C,t) » (3-310)

wi.ere N(f,t) is the inverse of M(x,t). Because (3.30) 48 a homogeneous,
first-ordrr partial differential equation for n(x,t), its general solution can

be written in terms of the single variable § as

nix,t) = v(g) , (3.35)

where v(¢) is mome function of a mingple argument. By virtue of (3.34), P(x,t)

can be expressed as some function Q(§,t),



P(x,t) = 0(g,t) . (3.36)

In principle we can express q as some functicn g(g,t),

q=g(,t), (3.37)

by inverting

g = M(x,t) = M{F(q,t),t] = f(q,t) . (3.38)

By substituting (3.38) into (3.34), we see that specifying N(g,t) 1s equivalent
to specifying F(q,t) in the form

X = F(q.t) - N[f(qlt)lt] . (3.39)

This form 18 a generalization of the ansatz (3.31). In (3.31), the function
f(q,t) is (q - a)/p.

A way of oproceeding to investigate two~resonance cases in detail is to
npecify various forms for the function N(§{,t) and to determine the allowable
functions 0Q(g,t) and g(¢,t). The conditione that these three functions must
satisfy are

aN 90 . 30 3N

which 1a (35.30) rewritten,

- aN/3% /e,

L ,
%" VO e (1.41)
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which 1s (3.29) rewritten, and

1
7 c’(t)g2(%,t) - b(t)g(g,t) - a(t) + N(&,t) + Q(L,t) = O , (3.42)

which is the consistency condition (3.20) and where a(t) and b(t) are arbitrary.
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IV. Conclusion

In the main part of this lecture, I have presented a resonance formulation
for exact invariants of Hamiltonian systems that describe the motion of a
particle in a one-dimensional potential. The formulation is due to Prof. P.
G. L. Leach and myself. We have obtained earlier results as simple
applications of the new formulation. I have presented a possible formulation
for studying the general two-resonance case. There is a possibilicy that the
resonance formulation for exact invariants will have applications in plasma

physics and quantum theory.
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