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ABSTRACT

A reduced set of ideal MHD equations is derived for large aspect ratio,

low 5 tokamaks that adequately describes the linear and nonlinear evolution nf

-t 1B

i =t

ideal internal kink modes in tokamaks.
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I. INTRODUCTION

Recently the PDY experiment at PPPL has observed large MHD types of
ogcillations during high power neutral beam injection.1 The MHD activity
evident on both the soft X-ray detectors and the Mirnov loops has heen dubbed
“"fishbones." FProm the nature of these oscillations, it appears *hat the ideal
internal kink may ke their causr-_-.2 Evidence from lirear elgenvalue codes
indicates that EBP is becoming large enough to cause the internal Xipk to
cross the tl. hold of stability with growth rates larger than the resistive
kink growth rate. The nonlinear ideal bouncing of the internai kink could
then account for the periodic nature cf the oscillation and for the fact that
reconnection, as occurs durinc a sawtooth, doea not take place during
fishbones.

To simuluate the nonlinear evolution of the internal kink mode in tokamaks
where B ~ € {€ 2 the 1inverse aspect ratio) with a reduced set of MHD
equaticns means that we must first carry out the expansion to high order
in &, The growth rate, Yk' typiczl of free boundary kink modes is the time
scale of the lowest order reduced eguations. The internal kink is marginally
stable in this order. Pressure and toroidal curvature are introduced in the
next order. Instead of Y2 ~ CYi @5 ona might expect, it is found that
YZ ~ EzYi because the bad and good curvature average to 2Zero in leading
order. We must, therefore, go to higher order in € to find the growth rate of
the internal kink accurately, i.e., Yik ~ ezvi.

IXI, HIGH ORDER REDUCED EQUATIONS

The equations of iceal MHD are

R
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We use a cylindrical coordinate system R, Z, C. The major radius of the
Gavice is denoted by Ro, the minor vadius by a, and the ratios of specific
heats by T.

The starting point of the procedure is to note that with § ~ e2ie - a/R.)
the energy principle shows that for modes to be unstable their growth rates

most be of the order of or smaller than ¥ = R/VA (VA is the Alfven velocity

k

; : t ;
and time dependence is ey +) + The momentum equation then shows that the

variation of the toroidal field from 1/R must be of the order of EzBO. To
lowest order 1in € this unpknown wvariation of the <toroidal Ffield can be
eliminated from the problem by taking the curl of the momentum equation. The
resulting equations are the standard low B tokamak -educed eguations that

describe free boundary kink modes.3
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Here I, = B,R, and Ve = E/Ro.

In this order the interral kink mode is stable and we need to go to
higher order in inverse aspect ratio. ©One might assume at this point that to
make progress it is necessary to go back to the momentum equation to find the
variation of the toroidal field. But this is not the casze. Instead, by first
multiplying the momentum eguation by Rz and then taking the curl, the unknown

variation of toroidal field can be eliminated to the next order as well. The

resulting equations are
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where Y = L/R and we have taken P @ ‘I/R2 to satisfy the continuity equation
trivially. With the inclusion of resistivity these equations have been

successful in describing the effects of finite aspect ratio on B = 0 tearing



modes.4 However, as mentioned in the introduction these next order
) . ; . 2., .22 )
corrections lead to a growth or oscillation with !YI E Yk' This means we

must go still higher arder in € to find the correct growth ra%e or oscillation
frequency of the internal kink mode. To do this we must now solve for the
variation in the toroidal field. This is accomplished by going back to the
monentum egquation and making uge of the fact that the growth rate is small to
eliminate the leading order inertia terms. To proceed we use the following

> >
forms for v and B.
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These are the most convenient forms, since they reduce to the results for the
lower order equations. The expressions for both 3 and 3 are also completely
general. The magnetic field components ; and I are related to the magnetic
vector potential R by

n
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: 5

where



Although it is possible to justify a priori the ordering of the

variables, we will for convenlence set out the consistent ordering. With

we take

This ordering differs from that of Strausss becanse we assume B ~ €2 rather

than £, However, our resulting equations uniformly recover the equations in
ref. 5 when B ~ £,
times the momentum

We start the derivation by taking the curl of rZ

equation, but now we keep all terms on the right-hand side and fingd,
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We can see from this equation that we only need I correct to leading

order. Ignoring inertia, the perpendicular component of the mcementum equation



then gives
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At equilibrium this gives the Grad-Shafranov equaticn
I I o+ RZP' = -a%¢ .
[e]

Wwe can solve for 1 by integrating the abave, but it is easier if one

takes the divergence of the eguation for I and uses the line integral only for

the boundary condition. Doing so we find

1 721 - vk .
oo+
L T
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L We previously used the G component of Faraday's law to show that the

fluid was incompressible to leading corder. We will now use this equation to

evolve X. We find

dv
= -IO[ViX S %-BCE) + R(E‘V)vc !
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Next we proceed to find the magnetic field variables from Faraday's law

e e L
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where we have taken the potential = Iou + % for convenience (¢ ~ E3) . This

yields
¢ 2 > o, o
-6;=RVu*HVC+I°~5C—HVx+R .

All that remains is to choose the gauge to determine the evolution of the

potential ®. A convenient choice is
i
v, o+ A "
L] -
hl = 0

1

with
+
A_L=RVF x Vg

Faraday's law then qives
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and from the definition c¢f I we have

Collecting the results, and keeping terms only tc the necessary nrder:
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The houndary conditiens for these equations are a) B‘n’b = 0,

, e
h} vr‘b =0, and e) Exn p = 0+ These imply that on b
|

2 =0, 55 hee)
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where h(t) is chosen to satisfy Gauss' theorem. There is also the boundary

condition for T

11 = Jkal+ ey
o b

where C{t) is chosen to keep

f %-dA = constant
which follows from the conservation of toroidal flux with E X n = 0.

b

III. RESULTS

The above set of reduced equations has been coded using a finite
difference scheme in the radial direction and spectral analysis in the
poloidal and toroidal direction. From the work of Bussac EE“EL'E we know that
the torcidal case does not reduce to the cylindrical case for poleidal and
toroidal mode numbers m = 1 and n = 1. Therefore a flag has been put into the
code to null the toroidal terms and allow a check with a 1-D cylindrical
solution obtained by quadrature. For the cylinder, the product of the
parallel wave number and the minor radius, ka, plays the same role as the
inverse aspect ratio, E, for a torus. The results of this test are shown in
the first figure. The results are good even for aspect ratios of 5. The

toroidal version with the flag turned off can be checked against the
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cylindrical case for m = 1, n >» 1 as the results of %ussac et al, shaw,
{However, Eﬁp must go like 7/n and nq must remain fixed.) The results of this
test are alse ghown in Pig. 1.

To check the toroidal terms themselves w2 have carried out » ..mparison
with the PEST7 code for a case with an aspect ratin of 10. The resulis are
displayved in Fig, 2., The two coces are expected to ac:ee within €, Indeed in
reqions where Y is no* a strong function of ql{o) the agreemen* is quite
good, In addition, the computed marginal points agree rather well, Both

codes indicate that the m

n

1t ideal, internal kink is linearly unstable for a
particular window in gq(o). This window will depend upon the equilibrium

tested,
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FIGURE CAPTIONS

FIG. 1. Y/€% ws € for 3, = I, (1 - r2/a2)?

t. Dashed curve is from

f

p=1,8 =1 2
Rosenbluth, Dagazian, Rutherford, Phys. Fluids 16,
1894 {1973). @ are from quadrature. X are from

reduce 3 eguations. All the above are for m = 1,

n = 1 cylinder. A is from reduced eguations for

torus and m = 1, n = 5.
FPIG. 2. Linear qrowth rate of n = 1 ideal mode vs g{0) for CJH = 0.5% and
q(al)/q{0) = 2.5. Dashed curve is from reduced equatiouns and solid

curve is from PEST.
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