

PPPL-2007

UC20-G

154
5-31-83 85 ①

~~5-9483~~

PPPL-2007

Dr. 1448-1

REDUCED EQUATIONS FOR INTERNAL KINKS IN TOKAMAKS

By

R. Izzo, D.A. Monticello, H.R. Strauss, W. Park
J. Manickam, R.C. Grimm, and J. DeLucia

MAY 1983

MASTER

PLASMA
PHYSICS
LABORATORY

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CD-3073.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

REDUCED EQUATIONS FOR INTERNAL KINKS IN TOKAMAKS

R. Izzo, D. A. Monticello, H. R. Strauss, W. Park

J. Manickam, R. C. Grimm, and J. DeLucia

Plasma Physics Laboratory, Princeton University

P.O. Box 451, Princeton, New Jersey 08544

PPPL--2007

DE83 012432

ABSTRACT

A reduced set of ideal MHD equations is derived for large aspect ratio, low β tokamaks that adequately describes the linear and nonlinear evolution of ideal internal kink modes in tokamaks.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SPREADSHEET OF THIS DOCUMENT IS UNCLASSIFIED

I. INTRODUCTION

Recently the PDX experiment at PPPL has observed large MHD types of oscillations during high power neutral beam injection.¹ The MHD activity evident on both the soft X-ray detectors and the Mirnov loops has been dubbed "fishbones." From the nature of these oscillations, it appears that the ideal internal kink may be their cause.² Evidence from linear eigenvalue codes indicates that $\epsilon \beta_p$ is becoming large enough to cause the internal kink to cross the ± 1 hold of stability with growth rates larger than the resistive kink growth rate. The nonlinear ideal bouncing of the internal kink could then account for the periodic nature of the oscillation and for the fact that reconnection, as occurs during a sawtooth, does not take place during fishbones.

To simulate the nonlinear evolution of the internal kink mode in tokamaks where $\beta \sim \epsilon^2$ (ϵ = the inverse aspect ratio) with a reduced set of MHD equations means that we must first carry out the expansion to high order in ϵ . The growth rate, γ_k , typical of free boundary kink modes is the time scale of the lowest order reduced equations. The internal kink is marginally stable in this order. Pressure and toroidal curvature are introduced in the next order. Instead of $\gamma^2 \sim \epsilon \gamma_k^2$ as one might expect, it is found that $\gamma^2 \sim \epsilon^2 \gamma_k^2$ because the bad and good curvature average to zero in leading order. We must, therefore, go to higher order in ϵ to find the growth rate of the internal kink accurately, i.e., $\gamma_{Ik}^2 \sim \epsilon^2 \gamma_k^2$.

II. HIGH ORDER REDUCED EQUATIONS

The equations of ideal MHD are

$$p \frac{d\vec{v}}{dt} = \vec{J} \times \vec{B} - \vec{\nabla}p ,$$

$$\vec{J} = \vec{\nabla} \times \vec{B} ,$$

$$\frac{dp}{dt} = -\Gamma p \vec{\nabla} \cdot \vec{v} ,$$

$$\frac{dp}{dt} = -\rho \vec{\nabla} \cdot \vec{v} ,$$

$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla}_x (\vec{v} \times \vec{B}) .$$

We use a cylindrical coordinate system R, z, ζ . The major radius of the device is denoted by R_o , the minor radius by a , and the ratio of specific heats by Γ .

The starting point of the procedure is to note that with $\beta \sim \epsilon^2$ ($\epsilon = a/R_o$) the energy principle shows that for modes to be unstable their growth rates must be of the order of or smaller than $\gamma_k = R/V_A$ (V_A is the Alfvén velocity and time dependence is $e^{\gamma_k t}$). The momentum equation then shows that the variation of the toroidal field from $1/R$ must be of the order of $\epsilon^2 R_o$. To lowest order in ϵ this unknown variation of the toroidal field can be eliminated from the problem by taking the curl of the momentum equation. The resulting equations are the standard low β tokamak reduced equations that describe free boundary kink modes.³

$$R_o^2 \frac{d\vec{\nabla}^2 u}{dt} = \vec{B} \cdot \vec{\nabla} (\vec{\nabla}_\perp^2 \psi) ,$$

$$\frac{\partial \psi}{\partial t} = R_o^2 \vec{B} \cdot \vec{\nabla} u ,$$

$$\vec{B} = \vec{\nabla} \psi \times \vec{\nabla} \zeta + I_o \vec{\nabla} \zeta ,$$

$$\vec{v} = R_o^2 \vec{v}_u \times \nabla \zeta ,$$

$$\nabla^2 \perp = \frac{\partial^2}{\partial R^2} + \frac{\partial^2}{\partial z^2} .$$

Here $I_o = B_o R_o$ and $\nabla \zeta = \vec{\zeta} / R_o$.

In this order the internal kink mode is stable and we need to go to higher order in inverse aspect ratio. One might assume at this point that to make progress it is necessary to go back to the momentum equation to find the variation of the toroidal field. But this is not the case. Instead, by first multiplying the momentum equation by R^2 and then taking the curl, the unknown variation of toroidal field can be eliminated to the next order as well. The resulting equations are

$$R_o^2 \frac{d \nabla^2 u}{dt} = \vec{B} \cdot \nabla (\Delta^* \psi) + 2 \nabla R \times \nabla p + \nabla \cdot ,$$

$$\frac{\partial \psi}{\partial t} = R^2 \vec{B} \cdot \vec{v}_u ,$$

$$\frac{dp}{dt} = 0 ,$$

$$\vec{B} = \nabla \psi \times \nabla \zeta + I_o \nabla \zeta ,$$

$$\vec{v} = R^2 \vec{v}_u \times \nabla \zeta ,$$

where $\nabla \zeta = \vec{\zeta} / R$ and we have taken $\rho \propto 1/R^2$ to satisfy the continuity equation trivially. With the inclusion of resistivity these equations have been successful in describing the effects of finite aspect ratio on $\beta = 0$ tearing

modes.⁴ However, as mentioned in the introduction these next order corrections lead to a growth or oscillation with $|\gamma|^2 \sim \epsilon^2 \gamma_k^2$. This means we must go still higher order in ϵ to find the correct growth rate or oscillation frequency of the internal kink mode. To do this we must now solve for the variation in the toroidal field. This is accomplished by going back to the momentum equation and making use of the fact that the growth rate is small to eliminate the leading order inertia terms. To proceed we use the following forms for \vec{v} and \vec{B} .

$$\vec{v} = R^2 \nabla u \times \nabla \zeta + v_\perp \mathbf{R} \nabla \zeta ,$$

$$\vec{B} = \vec{H} \times \nabla \zeta + I \nabla \zeta .$$

These are the most convenient forms, since they reduce to the results for the lower order equations. The expressions for both \vec{v} and \vec{B} are also completely general. The magnetic field components \vec{v} and I are related to the magnetic vector potential \vec{A} by

$$\vec{H} = \nabla \zeta - \frac{\partial \vec{A}_\perp}{\partial \zeta} ,$$

$$I = I_0 + R^2 \nabla_\perp \times \vec{A}_\perp \cdot \nabla \zeta ,$$

where

$$\vec{B} = \nabla \times \vec{A} + I_\zeta \nabla \zeta ,$$

$$\psi = R A_\zeta .$$

Although it is possible to justify a priori the ordering of the variables, we will for convenience set out the consistent ordering. With

$$B_0 = 1, \rho = 1, a = 1$$

we take

$$\rho \sim \epsilon^2, t \sim \frac{1}{\epsilon}, \psi \sim 1, v_\zeta \sim \epsilon^2$$

$$v_\perp \sim \epsilon, u \sim \epsilon, I \sim \frac{1}{\epsilon}, v_I \sim \epsilon$$

$$A_R \sim \epsilon^2, A_z \sim \epsilon^2, B_\perp \sim \epsilon .$$

This ordering differs from that of Strauss⁵ because we assume $\beta \sim \epsilon^2$ rather than ϵ . However, our resulting equations uniformly recover the equations in Ref. 5 when $\beta \sim \epsilon$.

We start the derivation by taking the curl of R^2 times the momentum equation, but now we keep all terms on the right-hand side and find,

$$R^2 \frac{d^2 v_\perp}{dt^2} = -RB \cdot \nabla (RJ_\zeta) + \frac{1}{R} \frac{\partial \vec{H}}{\partial \zeta} \cdot \nabla I - \frac{H_R}{R^2} \frac{\partial I}{\partial \zeta} + J_\zeta \frac{\partial I}{\partial \zeta} + 2R \nabla_R \times \nabla p + \nabla \zeta$$

where,

$$J_\zeta = -R \nabla \cdot \left(\frac{\vec{H}}{R^2} \right) .$$

We can see from this equation that we only need I correct to leading order. Ignoring inertia, the perpendicular component of the momentum equation

then gives

$$I_0 \nabla_{\perp} I = \vec{k} ,$$

where

$$\vec{k} = -R^2 \nabla_{\perp} p - \Delta^* \psi \nabla \psi - I_0 \frac{\partial \vec{B}_{\perp}}{\partial \zeta} .$$

At equilibrium this gives the Grad-Shafranov equation

$$I_0 I' + R^2 p' = -\Delta^* \psi .$$

We can solve for I by integrating the above, but it is easier if one takes the divergence of the equation for I and uses the line integral only for the boundary condition. Doing so we find

$$I_0 \nabla_{\perp}^2 I = \nabla^* \vec{k} ,$$

$$I_0 I_b = \int \vec{k} \cdot d\vec{l} + C(t) .$$

We previously used the ζ component of Faraday's law to show that the fluid was incompressible to leading order. We will now use this equation to evolve χ . We find

$$\frac{d\chi}{dt} = -I_0 \left(\nabla_{\perp}^2 \chi + \frac{1}{R} \frac{\partial v_{\zeta}}{\partial \zeta} \right) + R(\vec{B}^* \nabla) v_{\zeta} .$$

Next we proceed to find the magnetic field variables from Faraday's law

$$\frac{\partial \vec{A}}{\partial t} = \vec{v} \times \vec{B} + I_o \nabla u + \nabla \phi$$

where we have taken the potential $\bar{\phi} = I_o u + \phi$ for convenience ($\phi \sim \epsilon^3$). This yields

$$\frac{\partial \phi}{\partial t} = R^2 \nabla u \times \vec{H} \cdot \nabla \zeta + I_o \frac{\partial u}{\partial \zeta} - \vec{H} \cdot \nabla \chi + \frac{\partial \phi}{\partial \zeta} \quad .$$

All that remains is to choose the gauge to determine the evolution of the potential ϕ . A convenient choice is

$$\nabla_{\perp} \cdot \vec{A}_{\perp} = 0$$

with

$$\vec{A}_{\perp} = R \vec{v}_F \times \nabla \zeta \quad .$$

Faraday's law then gives

$$\nabla_{\perp} \cdot \left(\frac{\vec{v} \cdot \vec{H}}{R} \right) - \nabla_{\perp} \cdot \left[(I - I_o) \nabla_{\perp} u \right] + v_{\perp}^2 \phi = 0 \quad ,$$

and from the definition of I we have

$$v_{\perp F}^2 = - \frac{(I - I_o)}{R} \quad .$$

Collecting the results, and keeping terms only to the necessary order:

$$R_o^2 \frac{d^2 \vec{u}}{dt^2} = \vec{B} \cdot \nabla (\Delta^* \psi) + 2 \vec{v}_R \times \vec{v}_P \cdot \nabla \zeta - \frac{\Delta^* \psi}{R^2} \frac{\partial I}{\partial \zeta} + \frac{1}{R} \nabla \left(\frac{\partial \psi}{\partial \zeta} \right) \cdot \nabla I + \nabla \frac{\partial F}{\partial \zeta} \cdot \nabla \Delta^* \psi ,$$

$$\frac{\partial \psi}{\partial t} = R^2 \vec{B} \cdot \vec{v}_U - \nabla \psi \cdot \nabla \chi + R \vec{v}_U \cdot \nabla \frac{\partial F}{\partial \zeta} + \frac{\partial \phi}{\partial \zeta} + (I_o - I) \frac{\partial u}{\partial \zeta} ,$$

$$\frac{dp}{dt} = -\vec{v}_P \nabla \cdot \vec{v} ,$$

$$\rho \frac{\partial v_\zeta}{\partial t} - \rho R \vec{v}_U \times \nabla v_\zeta \cdot \hat{\zeta} = -\frac{1}{R} \frac{\partial p}{\partial \zeta} - \frac{1}{R^3} \nabla \left(\frac{\partial \psi}{\partial \zeta} \right) \cdot \nabla \psi - \frac{1}{R} \nabla I \times \nabla \zeta \cdot \nabla \psi ,$$

$$I_o \nabla^2 I = \nabla \cdot \vec{k} ,$$

$$\vec{k} = -R^2 \vec{v}_I - \Delta^* \psi \nabla \psi - I_o \frac{\partial \vec{B}_I}{\partial \zeta} ,$$

$$\nabla^2 \chi = -\frac{1}{I_o} \frac{dI}{dt} + \frac{R_o}{I_o} (\vec{B} \cdot \nabla) v_\zeta - \frac{\partial v_\zeta}{\partial \zeta} ,$$

$$\nabla^2 \phi = \nabla_I \cdot [(I - I_o) \nabla_I u] - \nabla_I \cdot \left(\frac{v_\zeta \nabla \psi}{R} \right) ,$$

$$\nabla^2 F = -\frac{(I - I_o)}{R} ,$$

$$\vec{v} = R^2 \vec{v}_U \times \nabla \zeta + \nabla \chi + v_\zeta R \nabla \zeta ,$$

$$\vec{B} = \nabla \psi \times \nabla \zeta + I \nabla \zeta .$$

The boundary conditions for these equations are a) $\vec{B} \cdot \hat{n}|_b = 0$,
 b) $v_r|_b = 0$, and c) $\vec{E} \times \hat{n}|_b = 0$. These imply that on b

$$a) \psi = 0 , \frac{\partial F}{\partial r} = h(t)$$

$$b) u = 0, \frac{\partial \chi}{\partial r} = 0$$

$$c) \phi = 0$$

where $h(t)$ is chosen to satisfy Gauss' theorem. There is also the boundary condition for τ

$$I_o I_b = \int \vec{k} \cdot d\vec{k} + C(t)$$

where $C(t)$ is chosen to keep

$$\int \frac{I}{R} dA = \text{constant}$$

which follows from the conservation of toroidal flux with $E \times n|_b = 0$.

III. RESULTS

The above set of reduced equations has been coded using a finite difference scheme in the radial direction and spectral analysis in the poloidal and toroidal direction. From the work of Bussac et al.⁶ we know that the toroidal case does not reduce to the cylindrical case for poloidal and toroidal mode numbers $m = 1$ and $n = 1$. Therefore a flag has been put into the code to null the toroidal terms and allow a check with a 1-D cylindrical solution obtained by quadrature. For the cylinder, the product of the parallel wave number and the minor radius, ka , plays the same role as the inverse aspect ratio, ϵ , for a torus. The results of this test are shown in the first figure. The results are good even for aspect ratios of 5. The toroidal version with the flag turned off can be checked against the

cylindrical case for $m = 1$, $n \gg 1$ as the results of Pussac *et al.* show. (However, ϵB_p must go like $1/n$ and nq must remain fixed.) The results of this test are also shown in Fig. 1.

To check the toroidal terms themselves we have carried out a comparison with the PEST⁷ code for a case with an aspect ratio of 10. The results are displayed in Fig. 2. The two codes are expected to agree within ϵ . Indeed in regions where Υ is not a strong function of $q(\phi)$ the agreement is quite good. In addition, the computed marginal points agree rather well. Both codes indicate that the $m = 1$ ideal, internal kink is linearly unstable for a particular window in $q(\phi)$. This window will depend upon the equilibrium tested.

ACKNOWLEDGMENTS

This work supported by U. S. Department of Energy Contract No. DE-AC02-76-CHO-3073.

REFERENCES

¹K. McGuire et al., Princeton Plasma Physics Laboratory Report No. PPPL-1946, 1982.

²D. Johnson et al., in Proceedings of the Ninth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore, MD (to be published).

³M. N. Rosenbluth, D. A. Monticello, H. R. Strauss, and R. B. White, Phys. Fluids 19, 1987-1996 (1976); H. R. Strauss, Phys. Fluids 19, 134-140 (1976).

⁴R. Izzo, D. A. Monticello, W. Park, J. Manickam, H. R. Strauss, R. C. Grimm, and K. McGuire, Princeton Plasma Physics Laboratory Report No. PPPL-1982 (1983).

⁵H. R. Strauss, Nucl. Fusion (in press).

⁶M. N. Bussac, B. Pellat, D. Edery, and J. L. Soule, Phys. Rev. Lett. 35, 1638-1641 (1975).

⁷R. C. Grimm, R. L. Dewar, and J. Manickam, J. Comp. Phys. 49, 94-116 (1983)

FIGURE CAPTIONS

FIG. 1. γ/ϵ^2 vs ϵ for $J_z = J_0 (1 - r^2/a^2)^2$
 $\rho = 1$, $B_z = 1$, $a = 1$. Dashed curve is from
Rosenbluth, Dagazian, Rutherford, Phys. Fluids 16,
1894 (1973). • are from quadrature. X are from
reduced equations. All the above are for $m = 1$,
 $n = 1$ cylinder. Δ is from reduced equations for
torus and $m = 1$, $n = 5$.

FIG. 2. Linear growth rate of $n = 1$ ideal mode vs $q(0)$ for $\epsilon_{\perp 0}^1 = 0.55$ and
 $q(a)/q(0) = 2.5$. Dashed curve is from reduced equations and solid
curve is from PEST.

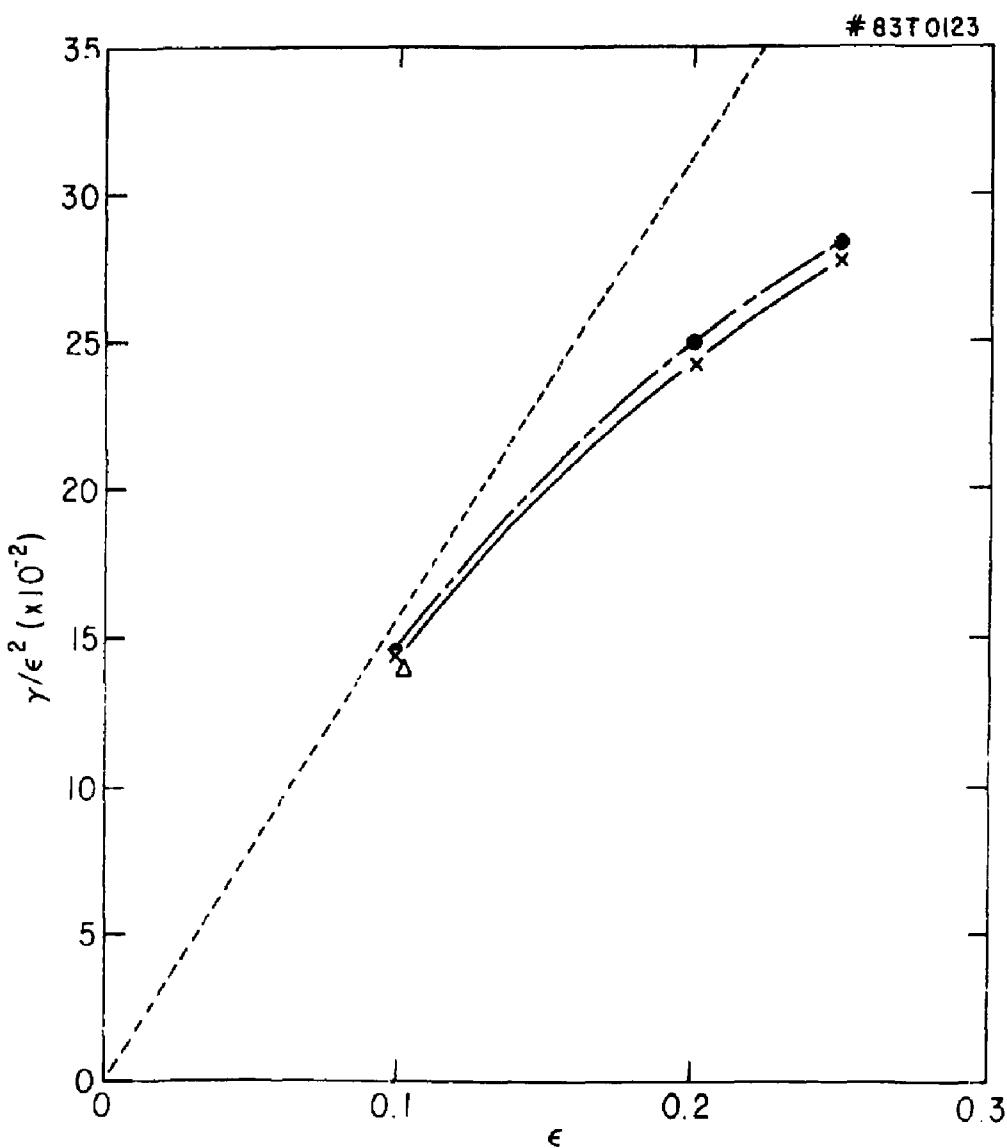


Fig. 1

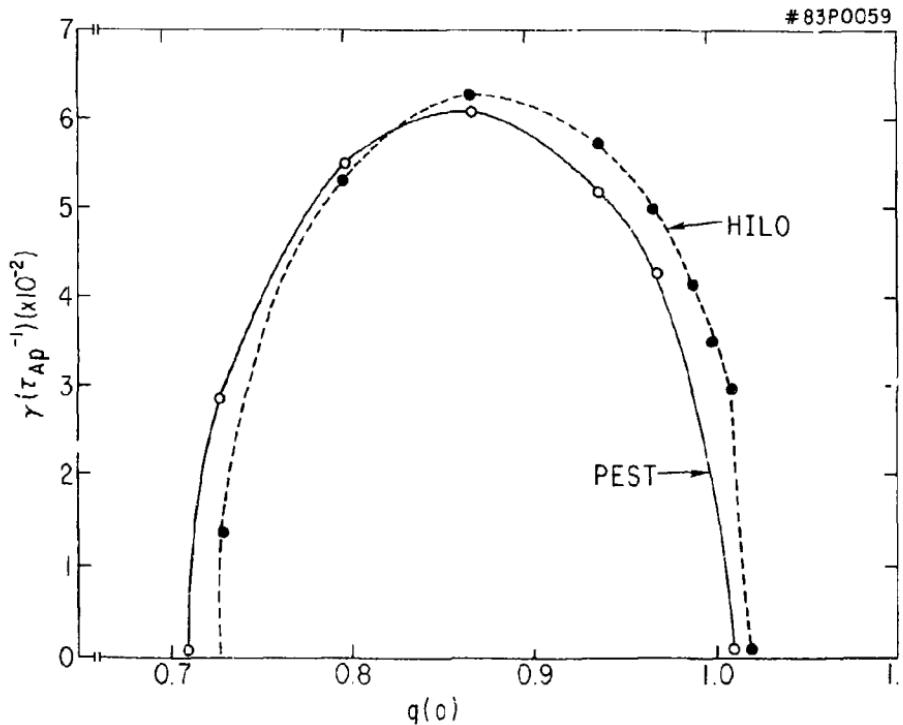


Fig. 2

EXTERNAL DISTRIBUTION IN ADDITION TO TIC UC-20

Plasma Res Lab, Austr Nat'l Univ, AUSTRALIA
Dr. Frank J. Paoloni, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ., AUSTRALIA
Prof. M.H. Brennen, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verhaest, Inst theoretische, BELGIUM
Dr. D. Palumbo, Dg XI: Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakakura, Univ Estadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teitenmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgaard, Univ of Saskatchewan, CANADA
Prof. J.R. Sreenivasan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Hennes Bernard, Univ British Columbia, CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Zhuangu Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, SW Inst Phys, CHINA
Dr. Peter Lukac, Komenskeho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Padet, CEN-BP6, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Mual, Academ BiblioGraphic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. A.K. Sundaram, Physical Research Lab, INDIA
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra Mohan Lal Das, Benares Hindu Univ, INDIA
Dr. L.K. Chavda, South Gujarat Univ, INDIA
Dr. R.K. Chhajlani, Vri Ruchi Marg, INDIA
B. Buti, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. J. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostaengl, Univ Di Padova, ITALY
Librarian, Istit Ctr Theo Phys, ITALY
Miss Clelia De Palo, Assoc EURATOM-CNEN, ITALY
Biblioteca, rel CNR EURATOM, ITALY
Dr. H. Tsuchi, Tohoku Res & Dev, JAPAN
Prof. M. Yoshikawa, JAERI, Tokai Res Est, JAPAN
Prof. T. Uchida, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Sigeru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Satoshi Itoh, Kyushu University, JAPAN
Tech Info Division, Korea Atomic Energy, KOREA
Dr. R. England, Ciudad Universitaria, MEXICO
Bibliotheek, Fam-Inst Voor Plasma, NETHERLANDS
Prof. B.S. Lilley, University of Hawke's Bay, NEW ZEALAND
Dr. Suresh C. Sharma, Univ of Calabar, NIGERIA
Prof. J.A.C. Cabral, Inst Superior Tech, PORTUGAL
Dr. Octavian Petrus, ALI CUZA University, ROMANIA
Dr. R. Jones, Nat'l Univ Singapore, SINGAPORE
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Atomic Energy Bd, SO AFRICA
Dr. J.A. Tagle, JEN, SPAIN
Prof. Hans Wilhelmsson, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Dr. Erik T. Karlsson, Uppsala Universitet, SWEDEN
Centre de Recherches, Ecole Polytech Fed, SWITZERLAND
Dr. W.L. Holts, Nat'l Bur Stand, USA
Dr. W.M. Stacey, Georg Inst Tech, USA
Dr. S.T. Wu, Univ Alabama, USA
Mr. Norman L. Olson, Univ S Florida, USA
Dr. Benjamin Ma, Iowa State Univ, USA
Magne Kristiansen, Texas Tech Univ, USA
Dr. Raymond Asker, Auburn Univ, USA
Dr. V.T. Tch, Khar'kov Phys Tech Inst, USSR
Dr. D.D. Ryutov, Siberian Acad Sci, USSR
Dr. M.S. Rablnovich, Lebedev Physical Inst, USSR
Dr. G.A. El'seev, Kurchatov Institute, USSR
Dr. V.A. Glukhikh, Inst Electro-Physical, USSR
Prof. T.J. Boyd, Univ College Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Estab, Juelich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Dr. H.J. Kaeppler, University Stuttgart, W. GERMANY
Bibliothek, Inst Plasmaforschung, W. GERMANY