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Probability Distributions 
for Weapon System Effectiveness

Abstract

I derive the probability density functions and cumulative 

distribution functions describing the single shot probability of 

survival, SSPS, for a given weapon system and target, as a function of 

the underlying random variables weapon radius, WR, and circular 

error probable, CEP. I derive explicit analytical formulas when WR

and CEP are uniformly distributed and numerically compute results
2

when WR is unform and CEP is distributed as 5C . I illustrate some 

properties of the SSPS distributions and how these results can apply 

to weapon effectiveness studies.

1. Motivation

The single shot probability of survival, which I denote here by s, 

and its complement the single shot probability of kill, denoted here 

by p, are key measures of weapon system effectiveness, given by

(1)

.*p(u,v) = 1 - s(u,v) (2)
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Here u is the weapon radius, which expresses how close to the target 

the weapon must land to destroy the target and v is the circular 

error probable, which measures how accurately the weapon system 

delivers its weapon. Reference [1] gives more rigorous and precise 

definitions of these quantities. (Traditonally, s,p,u, and v are denoted 

SSPS, SSPK, WR and CEP respectively. Here and below we abbreviate 

the notation where necessary to clarify the presentation.) 

Calculations of u combine weapon effects phenomena with target 

characteristics while calculations of v involve delivery system 

characteristics, and the results for both often have unavoidable 

uncertainties. Due to the uncertainties, studies must consider s for a 

distribution of possible values of u and v and typically choose two 

from a handful of common probability distributions for computation. 

Hence s is a function of random variables and in principle is a 

random variable with a distribution of its own, derivable from the 

distributions of u and v.

Many studies require knowledge of the distribution of s 1) to 

understand the relationship between means, quantiles and variances 

of u and v and the means, quantiles, and variances of s (and p) 2) to 

test hypotheses and goodness of fit of models in cases where input 

data with considerable uncertainty has been used, and 3) to 

estimate effects of changes in value of underlying parameters. 

Treatments of this kind of problem range from Monte Carlo 

simulation [2] to structured sampling from discretized distributions 

[3]. Here we obtain cumulative distribution functions from 

knowledge of the underlying distributions of WR and CEP and focus 

on convenient estimates of confidence levels of the SSPS. By
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providing ready estimates of confidence levels, these results 

complement other approaches to SSPS estimation.

In Section 2 below I derive the probability density function (pdf) 

and the cumulative distribution function (cdf) of s(u,v) defined as a 

function of random variables u and v for the case in which u and v 

are both distributed uniformly. Section 3 treats the case in which v 

is distributed as chi-square and u is distributed uniformly. Section 4 

discusses the case in which v is distributed a chi-square and u 

follows a general, possibly quasi-empirical distribution.

2. Pdf and cdf for u and v uniform.

Let u and v be independent and uniformly distributed, with pdfs

given by
f U(u) = 1/ Ru 0<ul£u5uh>

- ^ — j ——-- — 7 • • •

Ru = (uh-ul) (3)
= 0

fv(v)= VRv
elsewhere

0 < vL< v < vH
»

>
IXII>

G
C

* (4)
= 0 elsewhere.

Here, the subscripts H and L on u and v indicate the upper and lower

limits (High and Low) of those variables. The cdf of s(u,v) is given

by integrating the joint pdf of u and v over the range of (u,v) such 2
(7)

that 0 -(2) -s namely [see 4 for a discussion of similar cases]

F(s) - JJf U(u)f V(v)dudv = Jduf U(u) Jfv(v)dv
1 (u/v)

(u,v):(-) ss
v: s(u,v)ss

(5)
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The integral over v can be rewritten as an integral over s by using 

the inverse relation
1/2

dv=____ y__u 2ln(1/2)

3/2
Inf1/2n ds 

I n(s) J s

and noting that the relation between s and v is well behaved 

everywhere. Then the integral for F(s) becomes

^s) = -F^kJduJ ufu(u)Uv(u’s,))[^]
•"3/2ds'

0 0 ln(1/2)J s'

The pdf for s is then given by

fjs) = ^ =- J uMf v(v(u,s))du

Since u is uniform this becomes

(7)

(8)

—3 / 2 ^ h

f.(s) = -25^KiS) 1 Uf V(v(u,s))du
(9),

1 1/ ln(s) \~3'2 2 |u(up',er limi"
4RuR„ln(V2)sVln(1/2)/ 1 u(|ow8r |imit| (10)

with the implicit definition
1/2

fv(v(u,s)) = 1/ Rv , vL<v(u,s) = u(^) <VH

= 0 elsewhere,
(11)

and the upper and lower limits are functions of s, depending on the
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non-null intersection of (3) and (11); the result is the following.

F(s) and f(s) are described completely by the four parameters, 

uh» ul, vh, and vl. In particular, they define four values of s on the 

interval [0,1]

S3 (12)

There are two cases to consider, depending on which of u or v is 

more uncertain:

Case (a): vl ul (13)

In this case the range of the v (CEP) distribution is less than that

of the u distribution, the most interesting case in practice. Here we 
have Si-S2-S3-S4 . Box 1 gives the pdf and cdf (fs(s) and F(s)) for

case (a). Elementary integration of the pdf provides the cdf. The 

median, mean, and variance can be calculated explicitly as well. The 

median is found by noting that (13) requires the median, S50 , to be 

in the interval S2- s^s3 . Setting the cdf F(s), Box 1, to 1/2 yields
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2 =r;s50) =
r . J/21

% ^

l
< ^ fO 1 < r

ro
__

__
l

!_% \In(1/2) J J 2RURV
+ F(s2)

solving for the median gives

(14)

s 50 (15)

where the bracketing denotes the mean. Thus for the special case of 

uniformly distributed u and v, the median of s is s evaluated at the 

medians or the means, since the median and mean of the uniform 

distribution are identical. The mean is found by integration,

(s)= Jsf5(s)ds (16)

where the pdf is given in Box 1. The result is given in Box 2. We 

obtain the second moment of s, (s2), by substituting s2 for s in (16), 

the result being similar in form to the expression for the mean. The 

result is included in Box 2. Finally, we can solve for an arbitrary q- 

quantile by setting F(s)=q and solving for s, being careful to assure 

the result is appropriate to the interval of s used. The results for q- 

quantiles is also in Box 2
v h %

Case (b): ^7 “ .

This case is less interesting and very similar, hence is not 

discussed at length here. I give the pdf and cdf for reference in Box 

3 as an appendix.
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BOX 1

Case (a):

f(s) = o

ln(1/2) J]

f(s) = qs)

f(s) = 0

1 flY|nfl/2)
4RuRvln(I/2)VsA ln(s)

R[s) = 0 0 < s < s

-2uuv, + v2R„R

2R„R

2R„R

F(s) = 1 s < s < 1
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BOX 2

Case (a):

1,2,3,4where

and the incomplete gamma function is defined as 
r(v,a1) =avJrv-1e-aldr a>0, t>0

s,<s <1

= {expression for (s) with a-»2a= 2|ln(1/2)| }
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Figures 1 and 2 show the pdf and cdf for case (a) for a range of 

possible distributions in which the mean and variance of the v 

distribution was kept constant, and the u distribution parameters 

were varied. The units are arbitrary since only the dimensionless 

ratios appear in the distributions. The plots in display how 

increasing the mean ( as well as the variance in this case) of the WR, 

u, affects the resulting distribution of s. Examination by the reader 

will confirm that the general features are intuitive, e.g. large WR 

results in low survivability, etc. The most probable values of s can 

be read off the peaks in Figure 1. Similarly, the quantiles may be 

read directly off the curves in Figure 2.

Figure 3 illustrates that one must take care when estimating 

performance based on point estimators of s (such as <SSPS>). In the 

figure, I have plotted various estimators of s for two distributions: 

one in which the variances of the u and v distributions are held 

constant and the means are varied and one in which the means are 

held constant and the variances are varied by widening the distance 

between upper and lower limits of the v distribution. The three 

plots labelled <SSPS>, SSPS(.75 quantile) and SSPS(.90 quantile) are 

the former case, the circles represent the latter. All are plotted 

against the median SSPS, which we saw above is simply the SSPS of 

the medians of u and v. The plot shows that the difference between 

the median and mean is particularly significant at low survivabilities. 

The circles plot the mean SSPS versus the median for a distribution 

with constant ratio of <u>/<v> but varying variance of u. The other 

two plots show the 75th and 90th percentiles for s, indicating how 

different the median is from levels with higher confidence.
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The results above can be applied immediately, simply by 

computing the quantities of interest. We give two examples, in 

generic form, focusing on WR and CEP in turn.

WR often scales as the cube root of the yield[5], and one 

frequently needs to determine the relationhip between yield and 

SSPK at a specific confidence level for a particular system. Figure 4 

shows SSPK as a function of normalized yield for a hypothetical 

system. Here the CEP had mean 1 and limits of ±0.2 and the mean 

WR was varied from 1 to v40 = 3.42 with limits of ±50%, thus 

representing a 40-fold range of yield. Four quantiles are shown, .5, 

.75, .90, .95, and .99. Suppose one wants the yield corresponding to 

SSPK = 0.9. If the .5 quantile is used, the "p50" plot indicates a yield 

of Y=6 is required to produce a median SSPK of .9. If one wants 90% 

confidence in 0.9 SSPK, one must use the "p90" curve, finding that a 

yield of about 28 is required, a factor of 4 larger. A 40-fold increase 

in yield is required for 0.95 confidence.

Generally a smaller CEP provides lower SSPS but requires more 

resources. Figure 5 shows how to pick a CEP that meets a specific 

level of confidence. The figure plots SSPK quantiles (0.5, 0.75, 0.90,

0.95, 0.99) versus CEP for a system characterized by <WR> = 1.0 

±50%, and <CEP> varying as shown with constant limits of ±0.20. For 

a median SSPK of 0.9 one sees that CEP is required to be about 0.55. 

Again, if 0.90 confidence of 0.90 SSPK is required, then a more 

stringent CEP of about 0.28 must be attained.

The point of the above examples is that one can be quantitative 

about confidence levels required for SSPK based on estimates of key 

system parameters.



The effect of uncertainty is shown in Figure 6, which plots the 

SSPK quantiles 0.5, 0.75, 0.90, 0.95 for constant <WR>=2, <CEP>=1, CEP 

range=±0.20, but with the range of WR varying from 0.4 to 3.8. The 

result shows a constant median at 1-(1/2) =0.94 but with widely 

varying quantiles.
Given an analytic form for the distribution of SSPK, one can 

calculate measures of how well the model reflects data from monte 

carlo or other first principle calculations. Several techniques are 

common, such as a chi-square test based on the observation that the 

difference between the actual and predicted SSPK values should be 

distributed as chi-square [e.g. 6] or examination of q-q plots [7]. We 

defer examples of these applications to specific treatments 

elsewhere.

3. Pdf and cdf for u uniform and v chi-squared.

Let u be distributed uniformly as in section 2 (eq. 3) but now let
2 cv be distributed as 5C . Then if we define the variable ^ by 

. S2(n - i) c2 _ y
S “--------- p------  ° = ^ n-1 - 2

g with i=i , then the pdf of ^ is given by (the % -

distribution)

(17) The

parameters and (n-1) are referred to as the standard deviation 

(actual) and the degrees of freedom respectively of the distribution
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and completely specify it. The quantity denoted by capital S,

/ Z(xr*)2 
S = J M n~1 , is the (maximum likelihood, unbiased) estimate of <*,

in which each value of xi represents the location of the i1 h

measurement of a weapon delivery system's impact point. The CEP

is then 1.17741 <*. Here we are interested in the distribution of
, C'* u2 1. (IJ774)2o2

s = a) with g(u'5)=b«> .

In this case, equation (5) for F becomes

Hs)= JJfu(u)fe©dud§

^ _ u2 ln(1/2)
bins , and equation (17) the cdf is

(19) Using

n-12

F(S) J/#1/n-i J q

2 n-1. UL Ru

( 2 1 > U ln(i) /
L bins' J v

u2 In(^)
- 1 ) 2bIns' 

I o • I®
2 r(Y) s'=0

the pdf is then a X probability integral

(20) and

f(s) =
1

22r(¥) Ru

- 1 Y b Ins
1

V

s Ins i |n(j)2/ 7

fP<UH>
J 2 P

P(UL)
2“1e‘pdp

(21)

= | .2 ln(1/2)
where P u 2b ins} yielding the result

f(s)« 1
r(V) Ru

1__ Y b_Y r Jn
\ I 2|ln(-)| L ^2* 2b Ins 7 \2 ’ 2blns

nsl A 2 ^.sllnsi yv ^ x (22) where the

incomplete gamma functions are defined in Box 2. We can now



13

conveniently calculate F(s) and moments of the pdf by numerically 

integrating equation (22).

For illustration, we compute some distributions, examine the 

nature of the quantiles, and examine the tradeoff between yield and 

confidence in a particular SSPK for a hypothetical case.

Figure 7 shows pdfs for 6 illustrative distributions. The pdfs 

have 14 degrees of freedom and <* = 1, with various values for ul 

and uh chosen to illustrate low, high, and medium survivability cases. 

As in the uniform-uniform case, the modes of these distributions 

conform to intuition regarding low and high survivablility cases: for

(WR/CEP) » 1 the most probable SSPS goes to 0 and for (WR/CEP) «

1 the most probable SSPS approaches 1. For intermediate cases 

(WR/CEP) near 1, the pdfs can be bimodal as in the pdf labelled 

"pdf8".

Cumulative distribution functions are shown in Figure 8. These 

were obtained by straightforward numerical integration (on a MacII) 

of the pdfs in Figure 7. The interval length between evaluation 

points of the pdf was reduced until F(l) = 1.00 within about 1%, the 

number of points required ranging from 50 to several hundred. 

Confidence levels such as medians, 0.9 quantiles, etc., can be read 

directly off Figure 8 ( or interpolated from the computed values) 

adequately for a 1% tolerance.

Figure 9 compares some of the quantiles to the median for the 

illustrative distributions. We also plot for comparison the average, 

<SSPS>, and the standard deviation of SSPS. There are large

differences between the median (as well as the average) and high 

confidence levels such as the 0.9 quantile. For example, in the case
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in which the median SSPS is about 0.1 ( the average SSPS is about 

0.25) the 0.9 quantile is about 0.78. In terms of SSPK, the median 

SSPK is about 0.9 the average is about 0.75, and we have a 0.90 

confidence that the SSPK is greater than only 0.22. The behavior is 

similar to the uniform-uniform case shown in Figure 3.

The relation between yield and SSPK is shown in Figure 10. CEP
2

is taken to have a 5C distribution with o = 1 and 14 degrees of 

freedom ( <CEP> = 1.17741). The yield Y = 1 case is assumed to have 

WR distributed uniformly between 0.84 and 0.28 (in units of <CEP>). 

The effect of increasing yield was incorporated by increasing the 

mean WR by a factor Y*/3 for Y = 2, 4, 5.6, 8, 10, 15, 20, 25, and 30 

while maintaining a WR range equal to the mean WR (i.e. a 50% 

variation). We can use the plots to determine the yield required to 

produce a given SSPK with a given confidence level. For example, if 

we want to increase the 50% confident SSPK from 0.2 to 0.5 we must 

increase the yield by a factor of about 8. To increase the 90% 

confident SSPK from 0.05 to 0.5 requires an increase of yield of about 

a factor 24.

4. Treating v chi-square and u general.

In some cases, the distribution of u is obtained quasi-empirically. 

For example analysis of the effects of an earth penetrator weapon 

(EPW) involves propagation of strong shocks and earth motion 

through the ground, structural response of very hard targets, and the 

effects of various kinds of geology [8]. Numerical modeling of the 

deepndency of an EPW on parameters such as depth of burst and
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yield therefore typically result in quasi-empirical distributions from 

simulation of the effects of underlying distributions. We can 

incorporate such quasi-empirical results into the approach described 

here fairly easily.

We use equation (19)

m= JJfu(u)ft©dud§
(u,«:e,l"'0<s (19) but

now equation (20) becomes simply

F(S)
1

n-1

2 2 r(^)

-1

s'lns'

ln(^)
bins'

dufu(u)

2 . , 1, u ln{-)
n-1 2b Ins'

U e

(23).

this case we can perform the double integration numerically, using 

the quasi empirical values for . For moments such as the

average, we can insert the appropriate power of s into the s integral 

in equation (23) before evaluation.

In
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BOX 3
VH UH

Case (b): vl ul

o
II

'in**—

s <s1

s1 <s < s
f(s) = qs)[u2H-v2L(T^)]

f(s) = Q(s)[u2H- u2J s3 < s <s

s2 < s ^ s

f(s) = 0 S4< s

Q(s)
1 nyinfi/an

4RuRvln(1/2)^sA ln(s) J

F(s) = 0

^ - 2RURv{^Fn^ifiy)

Rs) = Vln(s)VV2 ul’
r 2 2 1u - UH L---

1

X
>c\Tc _2RURV _

0 < s < s

-1/2 .1/21 

_ 2u v + v2f1 n(?).-hvl+vL(jn(1/2)
S^SSSj

+ F(s ) s <s<s

s2<s <s4 
s < s < 14Rs) = 1
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Figure 1

PROBABILITY DENSITY FUNCTION FOR SSPS 
FOR U & V UNIFORMLY DISTRIBUTED

| Pt*10

Alhave vh*12S vW75.

SSPS
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Figure 2

CUMULATIVE DISTRIBUTION FUNCTIONS 
FOR U AND V UNIFORMLY DISTRIBUTED

SSPS
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Figure 3

AVERAGES AND QUANTILES 
FOR U AND V UNIFORMLY DISTRIBUTED

SSPS<.90 quantile)

$SPS(.75 quantile)

<SSPS>

MEDIAN SSPS
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Figure 4

EXAMPLE: YIELD AND SSPK 
FOR U AND V UNIFORMLY DISTRIBUTED

NORMAUZED YIELD
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Figure 5

EXAMPLE: SSPK AND CEP 
FOR U AND V UNIFORMLY DISTRIBUTED

.... Quantile
(median)

0.75 Quantile

0.90 Quantilei
i0.95 Quantile 
0.99 Quantile

NORMALIZED <CEP>
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Figure 6

EXAMPLE: WR AND SSPK
FOR U AND V UNIFORMLY DISTR BUTED

!
•--- ~ ' i------------------------

(median)

i
-W.

0.75 Quantile

v ^

x
\x

I \ x
i

//

\ N •

i \ \0.90 Quantile

i \ x .......
; \ X
I X X
i X
i 0.95 Quantile 'SssX

' —

WR Range: [U(high) - U(low)]

(In units of <cep> = 1)
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Figure 7

PDFS FOR SSPS
FOR U UNIFORM AND V CHI-SQUARE

pdf 7 maximum > 800 at ssps < 1.25e*5. 
pdf 12 maximum > 20 at ssps < 2.500*5.

SSPS

uh ul

6.00 .50 pdf7
4.00 .50 pdf 12
3.00 .50 pdf8 
1.50 .50 pdf9
1.00 .50 pdflO 
.75 .25 pdfH

AH have <cep> = 1.1774, 
(i.e. sigmas 1.00), and 
n -1 = 14 degrees ol 
freedom.
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Figure 8

SSPS CDFS
FOR U UNIFORM AND V CHI-SQUARE

j_cdl12

edfio

..I____ L.0.1 • -cdfll

SSPS
6.00 .50 cdf7
4.00 .50 art 12
3.00 .50 cdfB 
1.50 .50 cdf9
1.00 .50 cdflO 
.75 .25 cdlll
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Figure 9

AVERAGES AND QUANTILES FOR 
U UNIFORM AND V CHI-SQUARE

.9S Quantil* ---f

.90 Quantil*

.75 Quantile

I Plotted values are from distributions 
j discussed in the text In all but one case, 
I the v distribution has 14 degrees of 
J* freedom and sigma * 1.0, and the uniform 
j distributions have ul - .50 and uh ranging 
1 from 1.0 to 6.0.

Standard Deviation

MEDIAN SSPS
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Figure 10

EXAMPLE: YIELD AND SSPK
FOR U UNIFORM & V CHI-SQUARE

0.25 Quantile

0.50 Quantile 
(median)

0.75 Quantile

0.90 Quantile

0.95 Quantile

NORMALIZED YIELD


