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ABSTRACT

In support of the DOE-sponsored Liquid Phase Methanol research and development program
(Contract No. DE-AC22-87PC90005), rate expressions for methanol synthesis from syngas in a
slurry reactor have been developed. These rate models, which express methanol rate as a function of
gas phase fugacities, were fit to the 250°C laboratory experimental data bases for two BASF
methanol synthesis catalysts, S3-85 and $3-86. In addition, the S3-86 experimental data base was
expanded by obtaining data on the Great Plains syngas feed. The best fit rate expressions identified
for each catalyst differ in mathematical form, but were both derived from a reaction mechanism that
assumes that CO and CO, are hydrogenated in parallel on separate sites on the surface of the
catalyst. Model S3-T2, the best model identified for S3-85, yielded an average prediction error per
experimental observation of 12.9%, while the average error for model XX14, the best model for S3-
86, was 15.3%. Agreement between experimentally observed trends and model predictions is
generally good, though some deficiencies of the models have been identified.
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INTRODUCTION

The Liquid Phase Methanol (LPMEOH) process is an efficient method of producing methanol from
coal-derived synthesis gas. In the LPMEOH reactor, the methanol synthesis catalyst, in a powder
form, is suspended in an inert liquid medium. Because of the superior heat transfer characteristics
of this slurry medium, the highly exothermic and equilibrium-limited methanol synthesis reaction
can be run under essentially isothermal conditions. This enables the use of unshifted feed gases
which contain high levels of CO and the achievement of a high per-pass conversion.

Successful application and optimization of the LPMEQOH process requires a method of predicting
methanol synthesis rate as a function of reaction conditions. A key requirement is the development
of an accurate kinetic model, i.e., a mathematical expression of the intrinsic methanol synthesis rate
as a function of pressure, temperature, and gas composition. A rate expression derived from
fundamental considerations of the elementary steps of the reaction mechanism is desirable, because
such an expression is likely to be applicable over a wide range of reaction conditions.

Historically, methanol synthesis from syngas has been one of the most studied reactions, as indicated
by the extensive literature. Numerous reaction schemes and rate expressions have been developed to
describe the methanol rate for a variety of reaction conditions. Most associated experimental
measurements of rate have involved synthesis in packed bed reactors with high H,/CO feed. Many
of the proposed rate expressions lack important features, such as the influence of CO, and the water-
gas shift reaction. Some of these rate models are also quite complicated and difficult to use.

The primary goal of this work was to develop a simple, fundamental rate model for slurry-phase
methanol synthesis from coal-derived syngas. Development of an accurate model will assist in
successful scale up and commercial implementation of the LPMEOH process.

OBJECTIVES

The objectives of the present work can be divided into three parts. The first objective was to
develop a best-fit model for the older methanol synthesis catalyst (BASF S3-85) data base. At the
time that this work commenced (June 1989), the BASF S3-85 data base contained many rate
measurements accumulated over a few years. The newer catalyst (BASF S3-86) data base, at that
time, contained only a few observations and did not include a broad range of conditions. Thus, a
second objective of this work was to expand the BASF S3-86 data base to include more rate
observations over a broader range of conditions. Finally, after expansion of the BASF $3-86 data
base, the third objective was to develop a rate expression to describe this data base. This would
include the application of rate expressions developed for the BASF $3-85 catalyst, as well as new
models.



SAFETY

The major safety concemns in the experimental part of this study were the flammability of H, and the
toxicity and flammability of CO, both of which are present in syngas. The primary measures taken
to minimize the consequences of an unexpected release of these gases were: the apparatus was
housed in a continuously ventilated walk-in hood, the atmosphere in the hood and the laboratory
area was continuously monitored by flammable gas and CO detectors, and the flammable gas and
CO detectors were interfaced to an automatic gas flow shutdown system.
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Gaul, B .L. Bhatt, T. H. Hsiung, and J. J. Lewnard.

EXPERIMENTAL

Materials:

The catalysts used for these experiments were BASF S3-85-44 and BASF S3-86-43 (previously
designated F21/0E75-44 and F21/0E75-43), respectively. Hereinafter, BASF S3-85-44 and BASF
$3-86-43 will be referred to as S3-85 and S3-86, respectively. Both catalysts are commercial Cu/
ZnO/AL0, methanol synthesis catalysts which differ in the relative proportions of Cu, ZnO, and
ALO,. S3-85 is the older catalyst; S3-86 replaced S3-85 as the preferred catalyst for the process
because it has shown a higher methanol synthesis rate for CO-rich syngas. The slurrying liquid used
was either Witco 70 or Penreco Drakeol 10, both of which are white mineral oils.

Premixed gases, supplied from cylinders or a tube trailer, were obtained from Air Products Specialty
Gases. Table A-1 of Appendix A shows the nominal compositions for the syngas mixtures. The
gas compositions were chosen to simulate the bulk syngas product from various coal gasifiers,
including Shell, Texaco, and Dow. In addition, two high H,/CO gas mixtures were used. One
mixture simulated the shifted syngas from the Great Plains gasification facility. The composition of
the other high H,/CO mixture, designated “balanced” gas, was such that H,/(CO+1.5CO,)=2,
thereby having hydrogen and carbon oxides present in stoichiometric proportions for methanol
synthesis from CO and CO,. Also, additional syngas mixtures were used, the compositions of which
simulated the removal or addition of CO, from the basic syngas matrices shown in Table A-1. In
some experiments using the S3-85 catalyst, H,O was added to the feed. The trace components
usually present in actual coal gasifier product streams, €.g. sulfur compounds, were not present in
these gas mixtures.

Experimental Apparatuses:

The data which comprise the data bases were obtained using three experimental apparatuses. A flow
schematic for a typical apparatus is shown in Figure 1. The reactors used were stirred autoclaves,
manufactured by Autoclave Engineers, with internal volumes of 50cc, 300cc, or 1000cc. Feed gas
from cylinders or a tube trailer was compressed by a gas booster pump. Gas flow rate to the reactor
was controlled by an electronic mass flow contoller. The vapor product stream was passed through
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a gas-liquid separator to remove entrained and vaporized oil from the reactor. The gas-liquid
separator, the heat-traced lines downstream of the reactor, and the line to the gas chromatograph

were maintained at a temperature sufficient to prevent the condensation of product CH,OH. Reactor N

pressure was regulated by means of a back pressure regulator and product gas flow rate was
measured using a wet test meter.

For some of the experiments, H,O was added to the feed as steam. This was done using a syringe
pump which injected liquid H,O to a feed preheater located immediately upstream of the reactor
inlet. The feed preheater, an electrically-heated vessel packed with brass machine screws, vaporized
the injected liquid H,O into the feed gas stream.

The influence of mass transfer on the measured methanol rate was shown to be negligible by
observing the effect of stirrer speed on the rate for each reactor. The results of these measurements
indicated that, for all three reactor sizes, mass transfer influence was negligible for stirrer speeds
greater than or equal to 1200 rpm. A stirrer speed of at least 1200 rpm was used for all of the data
in the data bases. Since mass transfer limitations are negligible, the autoclave reactors are regarded
as continuous stirred tank reactors (CSTRs). Thus, the gas phase composition in the reactor, which
is equal to the effluent gas composition, determines the rate of methanol synthesis. In fitting the
experimental data, the observed methanol rates were regressed on the reactor effluent fugacities
calculated from effluent concentrations.

Feed and product gas compositions were measured on-line by a GC equipped with thermal
conductivity detectors. Since the GC columns used did not perform well for H,O at low
concentrations, accurate quantitative analysis for H,O was not possible. Thus, reactor effluent water
concentrations are not, unfortunately, included in the data base. Water concentrations were
calculated by assuming that the water-gas shift reaction was at equilibrium, as will be discussed
later.

Data Bases:

Tables A-2 and A-3 of Appendix A are summaries of the laboratory autoclave Jata bases used in the
model dévelopment for the S3-85 and S3-86 catalysts, respectively. Brief study of the limited range
of reaction conditions in these data bases elucidates the fact that the experiments were not chosen for
the sole purpose of developing a rate model. In fact, most of the data wer= obtained using practical
conditions of temperature, pressure, flow rate, and gas composition. Practical conditions span a
somewhat limited range of conditions, making it more difficult to adequately test the validity of a
model. Of course, a model which accurately describes all practical conditions is obviously very
useful.

For the S3-85 catalyst, the majority of the experiments were done using the Texaco gas matrix.
Limited data for “balanced” gas and Shell eas are also included. The overwhelming majority of this
data was obtained using a reaction temperature of 250°C and reaction pressure of 52.02 atm

(750 psig). Thus, the S3-85 data base is somewhat limited in scope. Most of the Texaco gas data
was obtained during the study of the effects of CO, in Texaco gas, Subtask 3.2 of the current DOE
contract. Much of this data was obtained using a gas-hourly space velocity (GHSV) of 5,000 or
10,000 std.lit./kg-hr. The rightmost column of Table A-2 indicates the feed CO, and/or H,0O levels
for experiments in which these levels were varied from the basic syngas matrix. In total, the $3-85

AVA wivpwaaca TR

data base consists of 128 observations at 84 different conditions. The portion of the data base which
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Aincludes runs at 250°C consists of 112 observations at 69 different conditions of feed gas

composition and GHSV.

In contrast to the S3-85 data base, the S3-86 data base spans a considerably broader range of
conditions and is not as concentrated on the Texaco gas matrix. Table A-3 shows that the
experimental runs are fairly evenly divided among the Texaco, Dow, and Great Plains gas matrices.
Broader ranges of GHSV and pressure are also a feature of the S3-86 data base. The inclusion of
extensive runs on Great Plains gas, including the effect of feed CO,, enables the fitting and testing
of models at H,-rich feed conditions. However, in contrast to the $3-85 data base, the S3-86 data
base does not include any runs in which H,O was added to the feed, nor does it include any data on
the very CO-rich Shell gas. In total, the S3-86 data base consists of 85 observations at 57 different
conditions. The portion of the data base which includes runs at 250°C consists of 61 observations at
52 different conditions of feed gas composition, pressure, and GHSV.

Calculations:

To enable the developed rate models to be applicable over the broadest range of reaction conditions
possible, gas phase fugacities were used in the rate expressions instead of partial pressures. This
required the conversion of measured reactor effluent mole fractions and reactor total pressure to
fugacities for each experimental run. To do this for each data base, the relevant data were
assembled into a PC-based ASCII file. The necessary data for each run for this conversion to
fugacity included the temperature, total pressure, outlet mole fractions of H,, CO, CO,, CH,OH, and
inerts (CH,+N,), and methanol rate. These data were transferred serially to a file on the Air
Products mainframe computer. There the data were used by a Fortran program that calculated
normalized mole fractions, H,O concentration by water-gas shift equilibrium, and, finally, fugacity
coefficients and fugacities. The determination of fugacities was done using an Air Products
proprietary subroutine which uses the modified Redlich-Kwong equation of state with
experimentally determined parameter values. The resulting fugacities were serially downloaded
from the mainframe to an ASCII format file on the PC.

For each data base a file was assembled which contained, for each run, the observation number,
measured methanol rate, data weight factor, and fugacities of H,, CO, CO,, and CH,OH. The data
weight factor is an input to the non-linear regression package and was used to assign relative
importance to the square of the residual calculated for each observation. If the data weight factor is
1.0 for all observations, each is weighted equally. Assigning a value of less than 1.0 puts less
significance on that observation for the regression. Data weight factors of less than 1.0 were used in
the S3-85 data base for runs using Texaco gas at 250°C and 5,000 and 10,000 GHSYV, because these
conditions were repeated many times experimentally.

A non-linear, least squares regression routine in SAS was used for the data regressions. An example
SAS program listing is shown in Appendix B. SAS was run on a Compaq Deskpro 286 equipped
with a math coprocessor. The data files containing the fugacities for each data base were converted
into SAS datasets and used as input to the regression routine. Either the Marquardt or modi{ed
Gauss-Newton iterative methods were used in minimizing the residual sum of squares. The residual
sum of squares, or sum of the squares of the errors (SSE), is defined as:

SSE = % (predicted rate, - measured rate )%,

5



For each regression, specification of initial parameter estimates and the partial derivative of the rate
expression with respect to each parameter were required. The version of SAS used (version 6.03)

- was quite interactive and allowed for real-time observation of the convergence process. This way
the iterations could be stopped if the search was headed toward unrealistic values of the parameters
or got “bogged down”. Convergence time was a function of the quality of the initial parameter
estimates, but, for fairly good guesses, a typical 6-parameter rate expression required 5-10 minutes
to converge. The results of the regression were transferred to a spreadsheet where plots that
compare measured and predicted results were generated.

RESULTS AND DISCUSSION
I. Basis for Modeling:

In the development of rate expressions, emphasis was on those derived from assumed sequences of
elementary steps, rather than empirical mathematical expressions. The assumed reaction
mechanisms were meant to be consistent with published aspects of the chemisorption of the reacting
species, observations of surface intermediates, and isotopic tracer studies. Also, investigations of
the effect of reaction conditions on experimentally measured methanol rate from the published
literature and from work done in Air Products laboratory, was used as additional guidance in
developing rate expressions.

Previous published work provides some guidance in terms of probable reaction mechanisms.
However, much controversy exists in the literature regarding the source of carbon, whether CO or
CO,, in methanol synthesis from CO/CO,/H, mixtures. Some authors have speculated that methanol
is formed largely from CO, while the primary role of CO, is to maintain the catalyst in the most
active state "2, Other authors believe that the primary carbonaceous reactant is CO, ®9. For
example, workers at ICI have recently presented some rather compelling experimental evidence that
methanol is formed directly from CO, ©4), at least under the reaction conditions used in their studies.
Indeed, other investigators believe that both CO and CO, hydrogenation are kinetically important in
methanol synthesis ™'Y, Though universal agreement does not exist regarding the primary carbon
source, general agreement exists that the presence of some CO, is necessary to achieve high
methanol synthesis rate. In addition, the water-gas shift reaction is important under methanol
synthesis conditions and frequently complicates the interpretation of experimental results.

Noteworthy is the fact that many of the studies referred to above involved methanol synthesis from
H,-rich syngas, i.., syngas representative of that obtained from steam-methane reforming (SMR).
The syngas obtained from the gasification of coal is typically much richer in carbon oxides,
especially CO. Thus, the relztive importance of CO and CO, as carbon sources may be different for
coal-derived, CO-rich gas than that for SMR-derived syngas.

In view of the above, the present work is focused on rate expressions derived from reaction
mechanisms in which methanol is formed from both CO and CO, hydrogenation. This generality
will allow the data fit to decide which route allows for a better description of the experimental data.
However, a cautionary note is required here. The validation of a reaction mechanism by means of
best fit rate expressions is tenuous, at best. In other words, if a rate model fits the data best, this
alone does not provide sufficient evidence that th: model is accurate. This is true largely because



vastly different reaction mechanisms may yield very similar rate expressions. Other corroborating
experimental and, perhaps, theoretical evidence is required to adequately validate a reaction
mechanism. Lo

Assuming that methanol is produced from CO and CO, hydrogenation, the relevant stoichiometric
equations are:

CO + 2H, <====> CH,OH 1]

CO, + 3H, <====>CH,0H + H,0 [2]
Occurring along with these reactions is the water-gas shift (WGS) reaction:
CO+H,0<===>CO,+H, [3]

Note that only two of these three equations [1-3] are algebraically independent because each can be
written as a linear combination of the other two.

In the present work, the development of rate expressions from assumed sequences of surface
reaction steps has been done using standard Langmuir-Hinshelwood kinetics, probably the most
commonly used technique because of its relative simplicity. A number of simplifying assumptions
are intrinsic in analysis by the Langmuir-Hinshelwood method in order to make the derivation
mathematically tractable and produce an explicit, analytic expression for the rate. As a review,
some of the assumptions inherent in this technique are:

(D The reactants, intermediates, and products adsorb on discrete, energetically
homogeneous sites on the surface of the catalyst.

(2) Chemisorption is confined to a monolayer.

(3)  The fractional coverage by reaction intermediates is negligible relative to the coverage
by reactants and products.

4) One step in the reaction pathway is the rate-determining step (RDS).
5) Steps in the reaction pathway which are not rate limiting are at equilibrium.

The Langmuir-Hinshelwood treatment generally produces a fractional rate expression in terms of the
partial pressures or fugacities of the reactants and products. The numerator has a forward and a
reverse reaction term, while the denominator consists of a sum of adsorption terms for the reactants
and products. The assumption of a particular RDS influences the form of the numerator. The
denominator is dictated entirely by the chemisorption of the reactants and products and is not
influenced by the RDS, provided the adsorption of a reactant or desorption of a product is not the
RDS.




As mentioned earlier, the majority of the experimental observations in the S3-85 and S3-86 data
bases were done using a reaction temperature of 250°C. In fact, relatively few runs were done at
temperatures other than 250°C, especially for the S3-85 data base. In view of this, the work here
was confined to the development of rate expressions for methanol synthesis at 250°C. However, as
will be apparent in the derivation of the models, each parameter is typically a product of rate and
adsorption equilibrium constants, both of which are exponential functions of temperature. Thus, a
rate expression explicit in temperature would have twice the number of parameters as the isothermal
one. The determination of the additional parameters for the non-isothermal rate expressions had to
be left to future work.

Ranking of the quality of the rate expressions was done by considering two basic criteria. Firstly,
the sum of the squares of the residuals was used to judge the quality of the fit. Secondly, the rate
expressions were judged in their accuracy in describing experimentally observed trends, for
example, the effect on the methanol rate of gas-hourly space velocity (GHSV), feed CO, content,
etc.

The results will be presented in three parts. First, the development and testing of rate expressions
for the S3-85 data base will be discussed. Second, experimental results which expanded the data
base for S3-86, consisting largely of additional runs for the H,-rich Great Plains gas matrix, will be
presented. Third, and perhaps most importantly, modeling of the S3-86 data base will be discussed.
As mentioned previously, the S3-86 data base is distributed more equitably over a broader range of
gas composition, gas-hourly space velocity, and total pressure than the S3-85 data base. Thus, the
$3-86 data base provides a much more demanding test of a general model. In fact, rate expressions
which best fit the S3-85 data base are not the best for the S3-86 data base.

II. Modeling of S3-85 Catalyst Data Base:

Rate expressions were derived primarily by using variations of the basic reaction mechanism of
Graaf et al. ®. Graaf et al. have assumed that CO and CO, are hydrogenated in parallel on the
surface. Hydrogenation of each takes place by simple, stepwise addition of hydrogen atoms, formed
by the dissociative adsorption of H,, until gaseous product CH,OH is produced. Graaf et al. have
also assimmed that there are two types of sites: CO and CO, adsorb competitively on site 1 (denoted
s1), while H, and H,O adsorb competitively on site 2 (denoted s2). The adsorption of product
CH,OH is assumed to be negligible. So, the first steps in this mechanism are the adsorption of CO,
CO,, and H,:

CO(g) +s1 =CO-sl (4]
CO,(g) +s1 = CO,-sl [5]
Hy(g) + s2 = 2H-s2 (6]

Methanol is produced from CO by stepwise hydrogenation:

CO-s1 + H-s2 = HCO-s1 + s2 (7
HCO-s1 + H-s2 = H,CO-s1 +s2 (8]
H,CO-s1 + H-s2 = H;CO-sl + s2 (9]
H,CO-s1 + H-s2 = CH,OH(g) + s1 + s2 [10]



In parallel, methanol is also produced from CO2, by stepwise hydrogenation:
CO,-s1 + H-s2 = HCO,-s1 + 52 _ [11]
HCO,-s1 + H-s2 = H,CO,-s1 + s2 [12]
H,CO,-s1 + H-s2 = H,CO,-s1 + 52 [13]
H,CO2-s1 + H-s2 = H,CO-s1 + H,0-s2 [14]
H,CO-s1 + H-s2 = H,CO-s1 + 52 [15]
H,CO-s1 + H-s2 = CH,OH(g) + s1 + 52 [16]
H,0-s2 =H,0(g) + s2 [17)]

Graaf et al. have also considered the kinetics of the water-gas shift reaction. As mentioned earlier,
for the present work, lack of experimental measurements of exit water concentration made
regression on the rate of water formation impossible. Instead, the water-gas shift reaction was
assumed to be at equilibrium in the present work and the water concentration was calculated using
this assumption.

Graaf et al. derived Langmuir-Hinshelwood rate expressions for methanol synthesis from this
mechanism ®. The hydrogenation of CO and CO, were assumed to occur independently but in
parallel, even though some of the elementary reactions are the same. Thus, CO aud CO,
hydrogenation each yield a term in the rate expression, but share the same denominator. The
numerator terms, or “driving force” groups, for each term depend on the choice of RDS. The
assumed RDS and corresponding driving force group appearing in the numerator of the rate
expression for CO and CO, hydrogenation are:

CO Hydrogenation
RDS iving Force Gr
[7] fofir ' = fanod K £
t fofip - famon/Kyfi)
9] feofin™ - fanod K fix™®)
[10] fofis? - Fano/ Ky)-
€02 Hydrogenation
RDS Driving Force Group
[11] feoafin” - famonfiad Kofi™)
[12] froafin - Famonfine/ Kofig?)
[13] feoafin’” - fanonfind/ (Kofin™)
[14] feoafin” - faronfine/ (Kofi)




[15] fcozfmm/ fio - fano Kofip'?)

[16] fcozfms/ fmo - fc:mon/Kz
Here, K and K| are the equilibrium constants for reactions [1] and [2], respectively. The
denominator, or adsorption terms, for the rate expressions are (1+K of . +K,f,) for site s1 and
(14K, ", 24K, o f10) for site s2. These terms are a product in the denominator of the rate
expression since each possible RDS involves partic’zation of s1 and s2.

Rate expressions from the mechanism of Graaf et al. were fit to the S3-85 250°C data base. Before
fitting the data base, the expression f, =f.f../(Kcf.o) Was used to eliminate f_ | in the rate
expressions to reflect the assumption of equilibrium for the water-gas shift reaction. Use was also
made of the fact that K,=K /, s
The best fit for the Graaf et al. mechanism was obtained for the rate expression derived assuining
that step [9] for CO hydrogenation and step [12] for CO, hydrogenation are the RDSs for methanol
synthesis. In addition, the regressions showed that two parameters could be eliminated with
negligible effect on the data fit because K f o +Kepyfeo, >> 1 and K '2f 24K, 0 >> 1 in the
denominator, that is, vacant sites are negligible. Thus, the number of adjustable parameters in each
rate expression was reduced to four. This model, designated A3-C2, is shown in the first line of
Table 1. Model A3-C2, with the best-fit parameters shown in Table 1, has a residual sum of
squares of 1,170 gmol/kg-hr, which corresponds to an average absolute error of 13.8% per
observation. The absolute error for an observation is defined as the absolute value of
100%x(predicted rate - measured rate)/(measured rate).

Also shown in Table 1 is another model, S3-T2, which fits the data base slightly better than model
A3-C2. Model S3-T2 was derived from the same basic mechanism as A3-C2, with some important
differences. Instead of CO and CO, adsorbing on the same site, each adsorbs on separate sites. In
addition, H, adsorbs dissociatively on each of these sites. Stepwise hydrogenation occurs on each
site through the same intermediates as model A3-C2. Model S3-T2 yields a residual sum of squares
of 1,030 gmol/kg-hr, corresponding to an average absolute error of 12.9%.

For comparison, also shown in Table 1 is model W1, previously proposed as a viable rate
expression. As can be seen, model W1 results in a much worse data fit than either A3-C2 or S3-T2,
with a residual sum of squares of 5,697 gmol/kg-hr and average absolute error per observation of
31.2%. The lack of fit is not surprising since model W1 has no CO, dependence.

Model S3-T2 was the best model found for the S3-85 data base. A compilation of the reactor exit
concentrations and calculated fugacities of H,, CO, CO,, and CH,OH, the measured rate, the
predicted rate, the residual, and the prediction error is shown in Table B-1 of Appendix B.

The following are some comparisons between measured and predicted methanol rates for model S3-
T2. Note that the predicted rates are based on fugacities calculated from the measured reactor exit
gas composition and total pressure for each run. A parity plot for this model is shown in Figure 2.
Scatter about the 45° line is fairly uniform. Shown in Figures 3-10 are comparisons between
measured and predicted rate trends. Figures 3 and 4 show the effect of CO, concentration in the
Texaco gas matrix at 5,000 GHSV and 10,000 GHSV, respectively. Good agreement between
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PARITY PLOT

Catalyst: BASF S3—-85 Model: S3-T2 (250°C)
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. CH,0H Rate (gmol/kg—hr)

FIGURE 3

Rate vs. E)&it'CO2 Concentration

Texaco Gas, 5.27MPa, 5,000 GHSV
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EIGURE 4

Rate vs. Exit C02 Concentration

Texaco Gas, 5.27MPa, 10,000 GHSV
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measured and predicted is observed; as expected from the form of the rate e~ pression, the model
quite adequately predicts the trend. Figures 5 and 6 show measured and predicted rates for H,O
feed addition to Texaco gas with 0 mol% feed CO, at 5,000 GHSV and 10,000 GHSV, respectively.
At 5,000 GHSYV, it appears that the predicted increase in rate with H,O addition is steeper than that
measured. Figures 7 and 8 show measured and predicted rates for H,O addition to Texaco gas with
13 mol% CO,. At 10,000 GHSV, the model predicts a slight increase in rate with H,O addition,
while the experimental results indicate the opposite. Measured and predicted rates for H,O addition
to the Shell gas matrix at 5,000 GHSV and 10,000 GHSYV are shown in Figures 9 and 10,
respectively. Again, at 10,000 GHSYV, the medel predicts a steeper rise in rate with increased feed
H20 concentration. The rate is somewhat overpredicted at 5,000 GHSV across the range of feed
H20 concentration.

Some important points regarding characteristics of the data base which affect the quality of the fit
for model S3-T2 are worth mentioning. First, the approximate measurement accuracy and
reproducibility for a particular observation is approximately 5%. Thus, a model is not expected to
have a prediction accuracy greater than this. Second, the data base consists of data obtained for
various times on stream and reaction histories. Some deactivation of the catalyst was observed
during the typical time on stream (generally a few hundred hours). Typically, the catalyst would
deactivate by 5% before being taken off line. No attempt was made to correct the data for
deactivation, nor was there any attempt to account for deactivation in the model. Finally, the rate
expression $3-T2, because of its mathematical form, is particularly sensitive to errors in gas
composition measurements (fugacities). This can be understood by considering the “driving force”
terms in the numerator of the rate expression. Each driving force term consists of a forward and
reverse reaction term. For a large fraction of the different reaction conditions in the data base, the
methanol synthesis reaction is fairly close to equilibrium. Typically, the difference between the
forward and reverse terms is coinparable in magnitude to each of the terms. Thus, small gas
composition measurement error, particularly with H,, may cause larger amplitude errors in the rate
predictions.

With the above points taken into account, a large fraction of the average absolute prediction error of
12.9% for model $3-T2 can be attributed to the characteristics of the data base. However, itis
important to note that some trends, including the effect of feed H,O addition, are not accurately
predicted. This probably means that the model needs improvement and is an oversimplification of
reality. Certainly the basic Langmuir-Hinshelwood treatment is intrinsically a simplification.
Another possible deficiency of the model is the assumption of water-gas shift equilibrium. Though
the S3-85 methanol catalyst is very effective in catalyzing the water-gas shift reaction, the
possibility exists that even a small deviation from equilibrium may have a large effect on the
methanol rate. In fact, the lack of accuracy in predicting the effect of feed H,O addition may very
well be attributed to this. Further work in model development may yield a better rate expression for
methanol synthesis on S3-85.

III. Expansion of the Data Base for $3-86:
In order to expand the $3-86 data base, while also obtaining important data on simulated Great

Plains gas, the effect of GHSV on CH,OH rate was measured for the H,-rich Great Plains gas matrix
with 0.5 mol% and 5 mol% feed CO,. The intent was to scan as broad a range of GHSV as practical
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FIGURE S

Rate vs. Feed HZO‘Concentrotion

Texaco Gas with O mol%¥ Feed COZ. 5.27MPa, 5,000 GHSV
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EIGURE 6

Rate vs. Feed HZO Concentration

Texaco Gas with O mol¥ Feed COZ. 5.27MPa, 10,000 GHSV
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EIGURE 7

Rate vs. Feed H,0 Concentration

Texaco Gas with 13 mol% Feed CO,, 5.27MPa, 5,000 GHSV
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FIGURE 8

Rate vs. Feed HZO Concentration

Texaco Gas with 13 mol%¥ Feed COz. 5.27MPa, 10,000 GHSV
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FIGURE 9

Rate vs. Fee'd HZO Concentration

Shell Gas 5.27MPa, 5,000 GHSV

Catalyst: BASF S3-85 Model: S3-T2 (250°C)
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EIGURE 10

Rate vs. Feed HZO Con»centrot‘ion

Shell Gas 5.27MPa, 10,000 GHSV
Catalyst: BASF S3-85 Model: S3-T2 (250°C)
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in order to provide design data, while at the same time obtaining broad range data that would be a
critical test for a reaction model.

Figure 11 shows the effect of GHSV on methanol rate at 5.27 MPa and 250°C for Great Plains gas
with 0.5 mol% feed CO,, that is, no CO, addition or removal. The rate was measured at gas-hourly
space velocities ranging from 5,000 to 25,000 std. lit./kg-hr. The methanol rate increased from 18
to 38 gmol/kg-hr across this range of GHSV. Comparison with data obtained for Texaco gas at the
same conditions indicates that the methanol rate is approximately the same at 5,000 GHSV.
However, at higher GHSV, rates observed for Texaco gas are higher. At 10,000 GHSV, the rate for
Texaco gas is 32 gmol/kg-hr, while the corresponding rate for Great Plains gas is 25 gmol/kg-hr.
Figure 12 shows CH,OH rate at 5.27 MPa and 250°C as a function of GHSV for Great Plains gas
with CO, added to the feed at a level of 5 mol%. Comparison with data of Figure 11 for 0.5 mol%
feed CO, indicates that CO, addition dramatically increases the methanol rate across the GHSV
range. For example, at 10,0600 GHSV, the CH,0OH rate is 62% higher for 5 mol% feed CO,.

Figure 13 shows the effect of GHSV for the 5 mol% feed CO, Great Plains gas at a higher reaction
pressure, 7.34 MPa (1050 psig). Comparison with Figure 12 shows that higher reaction pressure
increases the CH,OH rate across the range of GHSV. At 10,000 GHSV, the measured CH,OH rate
at 7.34 MPa is 48.5 gmol/kg-hr compared to 38.2 gmol/kg-hr, an increase of 27%.

The effect of reaction temperature for the 5 mol% CO, Great Plains gas at 7.34 MPa was explored
using a GHSV of 10,000 std.lit./kg-hr. Figure 14 shows results obtained for 235°C and 255°C, in
addition to the 250°C data. The methanol rates measured at 235°C and 255°C are both lower than
that observed at 250°C.

The data from Figures 11-13 were entered into the S3-86 data base to be used in the model
development. The 235°C and 255°C data points were entered into the data base but were not used in
the model development since the data fits were confined to the 250°C data, as mentioned earlier.

IV. Modeling of S3-86 Catalyst Data Base:

Some of the more accurate rate expressions developed for the S3-85 data base were fit to the S3-86
data base. The best-fit parameters were determined using the same technique as that for the 53-85
data base. However, the rate expressions which provided the best fit for the S3-85 data base,
yielded poor fits for the $3-86 data base. For example, Models A3-C2 and S3-T2, previously
identified in Table 1 in the discussion of the results for S3-85, gave poor fits of the S3-86 data base.
The best-fit residual sums of squares for Models A3-C2 and S$3-T2 were 7,923 gmol/kg-hr and
6,603 gmol/kg-hr, respectively. Corresponding to these residual sums of squares are average
absolute errors per observation of 34.3% for model A3-C2 and 26.3% for model S3-T2. Recall that
models A3-C2 and S3-T2 yielded average errors per observation of 13.8% and 12.9%, respectively,
for the S3-85 data base. The reason for the poorer fit for the S3-86 data base is probably because
the breadth of the S3-86 data base provides a much more discriminating test of the general validity
of the model. These rate expressions may provide a good representation of a limited “CO-rich™ data
base, such as that of S$3-85, but are quite deficient for the broader S3-86 data base, which includes
extensive data for H,-rich Great Plains gas.

To find a better model, a variety of other derived rate expressions were investigated for the $3-86
data base. Many of these rate expressions were similar to those investigated for the S3-85 data base.
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CH,OH Rate vs. GHSV

Great Plains Gas (0.5 mol¥ CO,), 5.27MPa, 250°C
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CHSOH Rate vs. GHSV

Great Plains Gas (5.0 mol% CO,), 5.27MPa, 250°C
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EIGURE 13

CH,OH Rate vs. GHSV

Great Plains Gas (5.0 mol% CO,), 7.34MPa, 250°C
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CH,OH Rate vs. Temperature

Great Plains Gas (5.0 mol% COz), 7.34MPa, 10,000 GHSV
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For example, rate expressions were derived from the mechanism of Graaf et al. ®, like model A3-
C2, but with different RDSs and assumptions regarding the dominant adsorbed species. Also, rate
expressions derived assuming that CO and CO, are stepwise hydrogenated on separate sites (like
model S3-T2) were fit to the data, also with a variety of different assumptions regarding the RDSs
and adsorption characteristics. Noteworthy is the fact that, in general, rate expressions derived
assuming that CO and CO, are hydrogenated on separate sites fit the data base better than those
derived assuming that CO and CO, are hydrogenated on the same site. However, this fact by itself
does not provide sufficient evidence that the actual mechanism involves CO and CO, hydrogenation
on separate sites. The reason for the better fits may be purely a result of the particular mathematical
form of the rate expressions.

Another noteworthy reaction mechanism that was considered involves the formation of formate, a
species known to exist on operating methanol synthesis catalysts, from the surface reaction of
adsorbed CO and -OH. The formate intermediate then undergoes hydrogenation to CH,OH in a
series of steps. The -OH intermediate is either present on the ZnO surface or formed from the
hydrogenation of -O from CO, dissociation. Langmuir-Hinshelwood rate expressions derived from
this mechanism are quite similar in form to those obtained from the above mentioned mechanisms.
Rate expressions derived from this mechanism did not fit the data base as well as the best model
identified, which is discussed below.

The best model found in this work, designated XX14 and shown in Table 2, was derived from same
basic mechanism as that used in the derivation of model S3-T2 for S3-85. Recall that model S3-T2
was derived from a mechanism which assumes that CO and CO, are hydrogenated in parallel on
separate sites. However, model XX14 has different rate determining steps and different adsorption
characteristics than model S3-T2 for S3-85. The different RDSs result in different numerators in the
Langmuir-Hinshelwood rate expression, while the different adsorption characteristics result in
unique denominators. Specifically, for model XX14, the addition of the first hydrogen atom is the
RDS for CO hydrogenation and the addition of the fourth hydrogen atom is the RDS for CO,
hydrogenation. The adsorption is assumed to be such that the most abundant species on the site that
CO is hydrogenated are CH,OH, H,0, and vacancies, while the site on which CO, is hydrogenated is
assumed to be dominated by CH,OH, CO,, and vacancies. The result of these assumptions is the six
paramerer model shown in Table 2. The best-fit residual sum of squares is 2,083, corresponding to
an average absolute error per observation of 15.3%.

Also, shown in Table 2 for comparison are the results of fitting the S3-86 data base to rate
expressions from the literature. However, note that these rate expressions were cast in terms of
fugacities and the assumption of water-gas shift equilibrium was incorporated as required. The
parameters in these rate expressions were made adjustable and were determined by the fit. The three
rate expressions shown in Table 2 were selected from the literature because they specifically take
into account the effect of CO,. The model designated KL is an adaptation of that of Klier et al. @,
model DJ is due to Dybjaer 92, and model RK is from the recent work of Rinker et al Y. As can be
seen, none of these literature rate expressions fit the $3-86 data base as well as model XX14. Model
DJ, from Dybjaer et al, yielded the best fit from these rate expressions, with a residual sum of
squares of 4,583 gmol/kg-hr and an average absolute error per observation of 25%.

For model XX 14, a compilation of the reactor exit concentrations and calculated fugacities of H,,
CO, CO., and CH,OH, the measured rate, the predicted rate, the residual, and the prediction error is

FNYY N\TYY

shown in Table B-2 of Appendix B. Figure 15 shows a parity plot, predicted vs. measured CH,OH
27
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PARITY PLOT

Catalyst: BASF S3-—-86 Model: XX14 (250°C)
100 e T T T N
o - @) ]
-‘|: 90 ;

: O :

D sof .
> : :
o 70F e :
CE,, : o © :
~ 60 B
' ®) )

S sof ]
o : :
40} :
9 F o ©0o :
-+ - O n
e 30 o ]
B 20F :
o : 8 ]
10 F 3
....l....l...AlAA.l IL..Lll...l..All..LLl..Lj

0 10 20 30 40 S50 60 70 80 90 100
Measured Rate (gmol/kg—hr)

29




rate, for model XX14. The data are fairly evenly scattered about the 45° line. However, there is a
slight tendency for the model to overpredict the rate at low measured rates and underpredict the rate
at the high measured rates. This results from the fact that the model tends to predict a weaker
dependence of the rate on GHSYV for the CO-rich gas matrices than that measured. This will be
apparent in the discussion below of some of the other comparisons of measured and predicted rate.

Presented next are specific comparisons of measured trends and the corresponding predicted rates.
Again, the predicted rates are based on fugacities calculated from the measured reactor exit gas
composition and total pressure for each experimental observation.

Figure 16 shows, for model XX 14, the measured effect of GHSV on CH3OH rate and the
corresponding predicted rates for Texaco gas at 5.27 MPa. The measured effect of GHSV is much
steeper than that predicted by the model. Figure 17 shows the measured effect of GHSV and the
corresponding predicted rates for Texaco gas at 9.75 MPa. For this pressure, there is good
agreement between measured and predicted rate across the range of GHSV. The effect of GHSV on
measured rate for Dow gas at 5.27 MPa, along with the model predictions, are shown in Figure 18.
The predicted rates at low GHSV are generally slightly higher than the measured rates.

The effect of feed CO, concentration on the measured rate for the Great Plains gas matrix at

5.27 MPa, along with corresponding predictions of model XX 14, are shown in Figure 19. The
measured rate increases dramatically with increasing CO, concentration level at the low feed CO,
concentrations, but levels off at approximately 4-6 mol% feed CO,. There are some deviations
between measured and predicted rate, but the predicted trend is fairly accurate. Figure 20 shows the
variation in rate with GHSV, both measured and predicted, for Great Plains gas with 0.5 mol% feed
CO, at 5.27 MPa. Good agreement between measured and predicted rate exists across the range of
GHSV. Figures 21 and 22 show the measured and predicted effect of GHSV for Great Plains gas
with 5 mol% feed CO, at 5.27 MPa and 7.34 MPa, respectively. Generally good agreement in the
trend exists, but there are significant deviations between measured and predicted for some
observations. The model tends to underpredict the rate, for all observations, at the lower pressure of
5.27 MPa (Figure 22).

Some additional points regirding model XX 14 are worth mentioning. As indicated earlier, the
average absolute prediction error per observation for the entire 250°C S3-86 data base was
determined to be 15.3%. If the three runs with the highest error are not considered in calculating the
average error, the accuracy improves to yield an average absolute error per observation of 13.1%.
This is comparable to the accuracy for $3-T2, the model developed for $3-85, which had an average
absolute error per observation of 12.9%. This accuracy is quite good considering the effects of
experimental error, which were considered in the discussion of the S3-85 results. However, further
work would probably yield a more accurate rate expression for the S3-86 data base.

Also, an interesting point to consider is the relative kinetic contribution of CO hydrogenation
pathway and the CO, hydrogenation pathway to the observed CH;OH rates. This can be determined
by calculating the contnbunon of each term in the rate expression. Recall that rate expression XX14
is the sum of two terms (see Table 2). From the assumed reaction mechanism, the first term
represents the CH,OH formed from CO hydrogenation, while the second term represents CH,OH
formed from CO,. The magnitude of each of these terms was determined. For most of the
experimental condmons in the data base, these two terms are approximately the same magnitude.
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Rate vs. GHSV
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CH,OH Rate (gmol/kg—hr)

Rate vs. GHSV

Texoco Gas, 9.75 MPa
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Rate vs. GHSV
Dow Gas, 5.27MPa
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Rate vs. Feed CO2 Concentration

Great Plains Gas, 5.27 MPa
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EIGURE 20

Rate vs. GHSV
Great Plains Gas (0.5 mol% CO,), 5.27MPa
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CH,OH Rate (gmol/kg—hr)

Rate vs. GHSV

Great Plains Gas (5.0 mol% CO,), 5.27MPa
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Rate vs. GHSV
Great Plains Gas (5.0 mol%¥ CO,), 7.34MPa
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An exception to this is the runs on Great Plains gas with higher than 0.5 mol% feed CO,. For these
feed conditions, the CO, hydrogenation term dominates and is typically an order of magnitude
greater than the CO hydrogenation term.

A final point worth mentioning is that the application of model XX 14 to the S3-85 data base
unfortunately results in a very poor fit. The best fit of that data base yielded a residual sum of
squares of 2,708, corresponding to an average error per observation of 21.6%. Furthermore,
comparison of measured and predicted rate trends shows very poor agreement in general. The
reason why model XX14 does such a poor job in fitting the S3-85 data base is not immediately
clear.
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SUMMARY AND CONCLUSIONS

Fundamental rate expressions for methanol synthesis were developed to describe the BASF S3-85
and BASF S3-86 methanol catalyst experimental data bases. As part of this work, the BASF S3-86
experimental data base was also expanded with additional experimental measurements on the H,-
rich Great Plains gas matrix. The principal results and conclusions of this work are:

1.

Two data bases were constructed comprising all of the laboratory experimental measurements
on the S3-85 and S3-86 catalysts. The S3-85 data base is largely concentrated on CO-rich,
Texaco feed gas with very limited ranges of pressure and gas-hourly space velocity (GHSV).
By contrast, the S3-86 data base includes a much broader range of experimental conditions,
including wider ranges of GHSYV, pressure, and gas composition. Thus, the $3-86 data base is
a more challenging test of a general rate model for methanol synthesis. Neither data base
included extensive runs done at temperatures other than 250°C. Therefore, rate expressions
were developed for methanol synthesis at 250°C.

The data bases for each catalyst were recast in terms of calculated fugacities of H,, CG, CO,,
and CH,OH. The fugacity of product H,O was estimated by assuming water-gas shift
equilibrium. The resulting 250°C data base for S3-85 consisted of 112 observations at 69
different conditions, while the 250°C S3-86 data base consisted of 61 observations at 52
different conditions. PC SAS programs were developed to regress the observed methanol
rates on the product fugacities and the best-fit models were detenmined. Procedures were
developed to transfer the SAS data to a spreadsheet program where comparisons of predicted
and measured rate were generated.

A rate expression was developed for the S3-85 data base using an assumed sequence of steps
and Langmuir-Hinshelwood kinetics. This rate expression, designated model S3-T2, was
derived from a mechanism in which CO and CO, are hydrogenated in parallel on separate
surface sites by stepwise addition of dissociatively adsorbed hydrogen. The derivation of

- model S3-T2 assumes that the rate determining steps are the addition of the third hydrogen

atom to adsorbed CO and the addition of the second hydrogen atom to adsorbed CO,. The
resulting 4-parameter rate expression is:

4 . I'd
372 CH joH “cH_on'co
Ol feofu. 172 ble ¢ - — 1
2 K 1| o, w, Xt ¢

Y1 co'H
17 coH,

A

This model yields an average absolute error per observation of 12.5%.
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4. Arate expression was developed for the S3-86 data base. After screening a variety of
mechanisms and combinations of rate-determining steps and adsorption characteristics, a
model designated XX 14 emerged as the best fit. Like model S3-T2 for S3-85, XX 14 was
also derived assuming that CO and CG, are stepwise hydrogenated on separate surface sites.
However, the rate-determining steps and adsorption characteristics are different than those for
model S3-T2. The rate determining steps are the addition of the first hydrogen to adsorbed
CO and the addition of the fourth hydrogen to adsorbed CO,. The resulting 6-parameter rate
expression is:

172 CH,OH £ onlco
bO fCOtH’ - tl/? b ¢ !2 - _.c_’_—_-'-
CO H
1 N’ ! 1 K)tco /
r - 2 + 2
CH_OH
3 tCO'tH' (1 * b4tCOl * bSECH’ON)
1 + b ¢ + b
2 CH cH 3 tco

This model yields an average absolute error per observation of 15.3%.

5. Three rate expressions obtained from the literature were also fit to the S3-86 data base for
purposes of comparison. Model XX14 fit the data much better than any of these literature rate
expressions.

6.  The parameters in model XX14, the rate expression for S3-86, were made adjustable and the
model was fit to the S3-85 data base. The resulting fit was very poor, producing an average
absolute error per observation of 21.5%. The reason for the poor fit is not clear.

7. Investigations of various rate models for both data bases indicate that, in general, rate
expressions derived from a mechanism in which CO and CO, are hydrogenated in parallel on
separate sites fit the data better than those derived assuming that CO and CO, are
hydrogenated on the same site.

8.  Because of the mathematical form of rate expressions developed for each catalyst, the
prediction accuracy is strongly influenced by the experimental accuracy in measuring reactor
exit gas compositon. For example, small deviations in the measured H, concentration result
in much larger deviations in predicted rate. Thus, measurement error contributed significantly
to the calculated average prediction error.

9.  The S3-86 data base was expanded with experimental runs on the Great Plains gas matrix.
The effect of GHSV on the methanol rate was determined for Great Plains gas with 0.5 mol%
feed CO, at 250°C and 5.27 MPa (750 psig). In addition, methanol rate as a function of
GHSV was measured for 5 mol% feed CO, at 250°C and pressures of 5.27 MPa and
7.34 MPa. At fixed GHSV and 5.27 MPa, the methanol rate is much greater at the higher
feed CO, level. At fixed GHSV and 5 mol% feed CO,, the methanol rate is greater at the
higher pressure.
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TABLE A-1

Syngas Mixtures

Nominal Composition (mol%
Synaas Type H2 co cQ2
Texaco 35 51 13
Shell 30 66 3
Dow 44 38 16
Great Plains 64.5 19 0.5
*Balanced” 55 19 5
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Program listing for SAS non-linear regression

* %
;**{*****\psas\xx14comm'sas***********/
/**/
libname save ’‘\psas\’;
/* *****Call non-linear regression procedure**x*x/
proc nlin
data=save.s386_250
method=marquardt;
/***x%Initial parameter estimates****x*/

parms b0=0 to 1 by 0.5
bl=0 to 1 by 0.5
b2=0 to 1 by 0.5
b3=0 to 1 by 0.5
b4=0 to 1 by 0.5
b5=0 to 1 by 0.5;

/****Define model***x**x/

ka=0.001802;
tl=(fH2**.5)*fCO—fCH3OH/(ka*fH2**1.5):
t2=(fH2**2)*fCOZ-fCO2*fCH30H/(ka*fCO):
t3=1+b2*fCH30H+b3*£CO2*fH2/£CO;
t4=1+b4*£CO2+bS*£fCH3O0OH;
model Rate=bO*tl/t3**2.0+bl*t2/t4**2.0;
_weight_=Data_wt:;
/****Define parameter constraints***%/
bounds b0>=0.0,
bl1>=0.0,
b2>=0.0,
b3>=0.0,
b4>=0.0,
b5>=0.0;
/****Partial derivatives w.r.t. parameters****/
der.b0=t1/t3**2.0;
der.bl=t2/t4**2.0;
der.b2=-2*b0*t1*fCH3OH/t3**3.0;
der .b3==2%b0*t1*(fCO2*fH2/£fCO) /t3**3.C;
der .b4=-2*b1*t2*£C02/t4**3.0;
der .bS5==2#%bl*t2*£fCH30H/t4**3.0;
/**k*kSet up output*kkkxkxxk /
output out=save.xx146250 p=pred r=resid parms=b0 bl b2 b3 b4
sse=sumsgs;
run;
/*****kx*x*xPrint results to screen*kkkkkkx /
proc print data=save.xx146250;
title ’‘Model XX14 fit to All Data (S386_250)';
title2 ’ ’:
run;
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