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ABSTRACT 

A spherical torus is obtained by retaining only the indispensable components on the 

inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current 

to produce a toroidal magnetic field. The resulting device features an exceptionally small 

aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma 

cross section, and ramp-up of the plasma current primarily by noninductive means. As a 

result of the favorable dependence of the tokamak plasma behavior to decreasing aspect 

ratio, a spherical torus is projected to have small size, high beta, and modest field. Assum­

ing Mirnov confinement scaling, an ignition spherical torus at a Held of 2 T features a 

major radius of l.S m, a minor radius of 1.0 m, a plasma current cf '4 MA, comparable 

toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 

SO MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor 

radius of 0.S m, and a fusion power cf a few megawatts. 

v 



1. MOTIVATION 

So far, tokamak physics developments have outstripped other magnetic fusion approaches. 

The engineering embodiment of the tokamak has made significant progress but continues 

to be perceived as less than attractive to potential users. Serious design concept develop­

ment for a device to carry out ignition and burn physics and fusion engineering develop­

ment in magnetic fusion has been in progress for several years. Prominent concepts include 

the Engineering Tert. Facility (ETF),1 the International Tokamak Reactor (INTOR),2 the 

Fusion Engineering Device (FED),3 and the Toroidal Fusion Core Experiment (TFCX).4 

The estimated, direct total cost is about $1 billion or more with perceived high risk in 

achieving the stated performance goals. It appears that continued progress of fusion can be 

enhanced if concepts can be found with more favorable cost risk-to-benefit ratios3 (i.e., 

embodiments with small unit size and limited risk in reaching adequate plasma and fusion 

engineering performances). The spherical torus concept v hnroduced here with this in 

mind. 

Major factors that contribute to the larger size and higher cc.t of the aforementioned 

design studies can be traced to a combination of physics assumptions, engineering criteria, 

and conventional tokamak wisdom. The conventional wisdom of tokamak operation and 

prudent engineering suggests the inclusion of a solenoid for inductive current drive, nuclear 

shields inboard to the plasma for protection of inboard coils and insulators, and a separate 

first wall and vacuum boundary. These tend to increase the major radius and aspect ratio 

(major radius divided by minor radius), which, in turn, leads to modest values of average 

beta (the plasma pressure divided by magnetic field pressure, typically around 5% for 

aspect ratios of around 3). In the physics area, the assumed plasma energy confinement 

efficiency at reactor conditions leads to large plasma major and minor radii (around 3 m 

1 
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or more and 1 m or so, respectively) and plasma current (6 to 12 MA) when intermediate 

values of magnetic field (4 to 6 T) are employed. For ignition devices with significant 

burn, a typical design has about 100 m3 in plasma volume, has 100 MJ in plasma thermal 

energy content, and produces about 200-MW deuterium-tritium (D-T) fusion power. The 

latest cost estimate for such a device using copper toroidal field (TF) coils4 is around 

SI billion. 

In the spherical torus concept, only what is absolutely indispensable inboard to the 

plasma is retained. This includes the normal, cooled conductor that carries current to pro­

duce the toroklal magnetic field required by tokamak. plasmas. Other components, such as 

the solenoid, shield, and organic insulator, are eliminated. Inorganic insulators or separate 

first wall and vacuum boundary arrangements can a'so be eliminated by feasible 

approaches if favorable design trade-offs are indicated. The resulting plasma has an excep­

tionally small aspect ratio (less than 2 and typically around 1.5), appearing much like a 

sphere with a modest hole through the center, suggesting the name cf spherical torus 

(Fig. 1). This simplification in configuration, plus the plasma improvements due to 

decreasing aspect ratio suggested by our present understanding of tokamak physics, 

engenders the high potential of the spherical torus. Assuming that the scaling of plasma 

behavior toward very small aspect ratios is as expected, a typical ignition and burn spheri­

cal torus with a magnetic field of ¿ i at the plasma center will have a major radius of 

l.S m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable currents in the 

TF and poloidal fíeld (PF) coils, an average beta of 24%, a fusion power of 50 MW, and a 

plasma thermal energy content of 30 MJ. A spherical torus driven near <2 — 1 at a fusion 

power of a few megawatts and using a 2-T Held will have a plasma energy content of a 

few megajoules and major and minor radii about 0.8 m and 0.5 m, respectively. 
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Figure I The plasma configuration of a spherical torus, a tokamak plasma with very small aspect ratio and 

large elongation. 
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The major parameters for 3 spherical torus are dictated primarily by a combination of 

physics assumptions and engineering and geometric requirements. Simplified formulas are 

used here to reveal the domain of interest in parameter space. More detailed assessments 

will be necessary for the key engineering issues to ensure realistic approaches for the vari­

ous embodiments of the spherical torus concept. 

2. PHYSICS ASSUMPTIONS 

Plasma properties that determine the major parameters of a tokamak and its performance 

include plasma energy confinement time, plasma beta, and current drive. These, in turn, 

are strongly dependent on the shape of the plasma cross section and the magnitude of 

plasma current. The effects of a very small aspect ratio on these plasma properties for a 

spherical torus are highlighted in the following. 

2.1 Plasma Beta 

Recent calculations6 of experimental results of tokamak beta have suggested a scaling of 

the form 

0e = 0.27/c ,2(1.0 + IM)/Ai3qu , (1) 

where K is the plasma elongation (height io-width ratio of the plasma cross section), b is 

the triangularity (the inward shift of the apex divided by the plasma minor radius a), A is 

the aspect ratio, and q is the plasma safety factor at the boundary. More recent 

comparisons7 with magnetohydrodynamic (MHL) stability analysis have coalesced the 

influences of these plasma parameters into the plasma current, giving 
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Be = CfiIP(M\)/a(m)B(T) , 

where the latest assessment7 of the value Cp is about 0.033, //»is the plasma current, and B 

is the toroidal magnetic field at the plasma center. It is seen that beta either increases with 

increasing K and with decreasing Aq or increases with increasing If/aB. It is convenient 

here to use Eq. (2), although no diua are currently available at A near 1.5 to validate 

either scaling relation for our application. 

2.2 Plasma Current 

MHD equilibrium calculations are carried out to quantify tLr IP dependence on A for 

small A. We find 

IP (MA) = [5a (m) B (T)/q][C,t/(\ - ¿)2][U + K2)/2] , (3) 

where «is \/A and C¡ = 1.22 — 0.68c. The strong toroidicity introduced as A approaches 

1 permits large increases of lj> without reducing q to unacceptably low values. Figure 2 

shows an example of an equilibrium with A « 1.5, B ™ 2 T, plasma major radius R ~ 

1.34 m, a - 0.88 m, safety factor q = 2.4, B - 0.26, and //» - 14 MA. Note that the 

average beta value here is not inconsistent with earlier MHD stability calculations.8 

2.3 Plasma Elongation 

For tokamaks with A arourd 3, it is generally found that large shaping fields (quadrupole 

and hexapole fields) are needed to achieve an elongation of 1.6 with mild triangularity.9 

I* 

(2) 

i 
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Figure 2 Plasma flux surfaces and PF coil arrangement for a spherical torus at B — 2 T, R ~ 1.34 m, a — 

i.88 m, K - 2, A — 0. la, I, — 14 MA, and B - 27%. The currents in the PF coils in megamperes are also 

indicated. 

When the PF coils are external to the TF coil bore, the total coil current amounts to 

several times the plasma current. As A is reduced to around l.S, it is observed that the 

plasma elongates naturally without a significant shaping fíeld. As indicated in Fig. 3, only 

an external dipole vertical field is required to achieve an elongation of 2. Th.s translates to 

simple PF coils with relatively low currents. As shown in Fig. 2, the total ampere-turns in 

the PF coils amount to 10.6 MA. 

1 i I I I T 
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• 4.6 MA 
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Figure 3 (a) Poloidal flux surfaces of a spherical torus and (b) the external vertical magnetic field. 

2.4 Plasma Energy Confinement 

A consequence of compactness is a reduced confinement time if confinement indeed scales 

with the size of the plasma. Recent experimental indications, however, point to a strong 

scaling of plasma confinement with plasma current in plasmas with intense auxiliary heat­

ing. The Mirnov scaling10 employed as the reference scaling in the TFCX design studies4 

serves as an example in this case: 

T (s) - 0.39a (m) lF (MA) . (4) 
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The latest good confinement results in the so-called H-mode11 and continuous H-mode12 

also indicate positive scaling with I p. Although it is presently far from certain whether this 

scaling will indeed adequately describe energy confinement in TFCX or in an ignition 

spherical torus, it is used here to facilitate an objective comparison betwecr. the two. The 

impact of other major confinement scaling assumptions on ihe merits of the spherical torus 

will be a subject of near-term interest 

1 5 Current Drive 

Small major radii and aspect ratios lead to small plasma inductance and facilitate current 

drive by reducing the flux required through external sources. This can be seen in the fol­

lowing approximation to the plasma self-inductance: 

LP (H) = n>R[WSA/j;) - 2 + (fi,/2)] , (5) 

where R is the major radius and i¡ is the internal inductivity of the plasma, which in the 

case of a spherical torus with q — 2.4 is around 0.7. The plasma self-inductance of an 

ignition spherical torus with R — l.S m is then estimated to be less than 1 pH, roughly a 

quarter of that in the smallest conventional TFCX option. 

Whereas a small R will permit at most a modest solenoid inboard to the plasma, it is 

expected to help permit current ramp-up by noninductive means, such as the lower hybrid 

resonance frequency waves at modest plasma densities and temperatures.13 The steady-

state current maintenance power requirement, as suggested by several experiments at mod­

est plasma densities and temperatures, can be given approximately as 1 4 

PCD (MW) - [n (10 2 0 m - 3 ) R (m) IP (MA)/0.074r# (keV)] (6) 



In view of the relatively high current ramp-up efficiencies achieved in PLT 1 3 with densities 

up to 6 X 10 1 2 c m - 3 , this approximation is useful in estimating the current rarap-up 

power PjK/near thfc density and at 1 to 2 keV. 

The ability to maintain the plasma current by noninductive means at high densities 

during ignition and bum is not experimentally verified at the present time. If access of the 

rf wave into the plasma core can be accomplished in a spherical torus, the requirement of f 

current maintenance may be acceptable in view of the current profile shown in Fig. 4. It is 

seen that for a spherical torus of modest q and pokndal beta values, the self-consistent 

toroidal current density profile can be hollow. This is qualitatively consistent with the 

current profiles maintained by externally launched rf waves. 

In the event that current maintenance during bum at adequate densities remains un­

available, rf current ramp-up can still be applied periodically to recover full plasma current 

at low densities in nonignited plasmas. Each bum pulse will then be limited to the resistive 

plasma decay allowed by proper spherical torus operations. The plasma current will Hecay 

by 10% in about 100 s if classical resistance is assumed in an ignition spherical torus. 
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3. SCHEMATIC GEOMETRY 

A schematic of a typical D-T spherical torus device is given in Fig. S, which depicts key 

parameters. Variations to the various components in the figure will be investigated as part 

of a continued effort to clarify the potential of spherical tori. For example, the conductor 

arrangements that carry the return current from the center conductor post can be located 

at varying degrees of proximity to the plasma, including the possibility of being a part, or 

all, of the first wall arrangement. The distance between the plasma inboard edge ¿nd the 

surface of the center conductor post, A, can be increased to accommodate a separate first 

wall and vacuum boundary arrangement, at the expense of increasing the aspect ratio 

somewhat. The following relationships corresponding to the geometry of Fig. 5 are used in 

the scoping assessment that follows. 

The radius of the center conductor post, Ra can be determined by 

Rc~re + \r] + 2(a + A)r c ]^ , rc = B/^c , (7) 

where Jc is the current density over ihe entire cross section of the conductor post. The 

plasma volume VP is approximated by 

VP = iJRa1* , (8) 

and the plasma thermal energy content WP is approximated by 

WP (MJ) - 0.05/1 (10 2 0 m - 3 ) T (keV) VP (m3) , (9) 
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Figure 5 A schematic geometry of spherical torus, showing a typical example of the arrangement of the 

center conductor post, TF coil return legs (TFC), PF coils (PFC), the shield/first wall/blankei location, and 

the relative plasma location. 

where n and T are the average plasma density and temperature, respectively. The D-T 

fusion power POT >S estimated by 

PDT (MW) - 2.82[n (10" n T ' W <<rv> 

where (av) is the average D-T fusion cross 

average neutron wall load WL is roughly given 

(10- 2 2 m 3 / s )*>(m 3 ) , (10) 

section and is dependent primarily on T. The 

by 
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WL (MW/m2) = Q.ZPDT/4TR* , (11) 

where Rw = R + a + A, the radius of thr. first wall measured from the center of the 

spherical torus. Note that the average quantities used here tend to give pessimistic values 

of PDT. This tends to compensate for the optimism associated with the simplified plasma 

formulas (e.g., the omission of plasma impurities). With these, the required auxiliary 

P ° w e r P*u is roughly given by 

Paux = ¡Wrft ~ (^/>r/5) • (12) 

Finally, for comparison with TFCX, the plasma ignition parameter C % used in the TFCX 

studies, 

Cig = O.2950CT (s) B2 (T) , (13) 

is also used here. 

4. PARAMETER SPACE AND EXAMPLES OF D-T SPHERICAL TORI 

4.1 Parameter Space of Interest 

The parameter space of interest is assessed using the foregoing formulas. For a ran ire of B 

from 1 to 3 T and Clg from 0.5 to 1.5 and assuming q — 2.4, A = 0.1a, K — 2, and Jc — 

3 IcA/cm2, the domain in a, R, and /•> of interest for the spherical torus is shown in 

Fig. 6. It is seen that relatively modest values of R (from 0.9 to 1.7 m) and a (from 0.5 to 
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Figure 6 The parameter space of interest in a, R, uid Ir for spherical tori having B between 1 and 3 T, C^ 

between 0.5 and 1..S, q =» 2.4, A — 0.1 a. K - 2, and Je - 3 kA/cm1. 

1.2 m) are obtained with plasma current having ? range of 6 to 20 MA. For these spheri­

cal tori, the total current in the center conductor post has a range of 6 to 18 MA, similar 

to If in magnitude (Fig. 7). As seen from Figs. 8 and 9, the same range in If and Ie is 

indicated for average neutron wall load WL from 0.25 to 1.0 MW/m 2 and for D-T power 

/»/)7-from several to 100 MW. 
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Figure 9 The parameter space of interest in ir and Ic for spherical tori having B between 1 and 3 T, PDT 

between i J and 100 MW, and those parameters of Figure 6. 

It is of interest to compare a high-field "spherical torus" at B = 12 T with alterna­

tive high-field copper tokamaks at Cif = l.S and B — 12 T (e.g., a Riggatron-like15 igni­

tion device) to obtain an indication of the relative optimism in the spherical torus assump­

tions as a whole. As Fig. 10 indicates, such a spherical torus with Jc — 4.5 kA/cm2 would 

have a — 0.25 m, R = 0.9 m, and 7j> — 6 MA. This device is apparently similar to a 

Riggatron-like device. However, a more challenging TF coil technology is assumed for the 

Riggatron because of its simultaneous inclusion of an induction solenoid. The relationship 

between the two compact concepts can be further delineated with Fig. 11, which shows 

that an ignition spherical torus can be well characterized with modest size, magnetic field, 

and fusion power but with large plasma current and beta. 
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Figure 10 The dependences of R and a on lr for B ranging from 1 to 12 T, assuming q - 2.4, A — 0.1a, * 

- 2, and Jt - 4.5 kA/cm2. 

4.2 Typical Examples 

For ignition and burn, typical parameters of a spherical torus are listed in Table 1. Cases 

for two first w ' l concepts are shown. The more conventional approach of a separate first 

wall will lead tt ? - 1.53 m and L — 15.3 MA. Eliminating the separate first wall and, 
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Figure 11 The dependences of /»«-, R, a, and 0 on B for C^ — 1.5, q — 2.4, A - 0.1a, * - 2, and / c — 

4.S kA/cm2, depicting the contrast between spherical tori and Riggatron-like devices. 

hence, saving 8 cm between the plasma and the center conductor post wiil introduce a 

reduction of nearly 0.2 m in R and nearly 2 MA in /«, but it will require a more advanced 

approach to the first wall and vacuum boundary arrangement. 

For the high neutron production and wall load useful in technology development, 

Table 2 illustrates a case with B - 3 T and WL - 1.0 MW/m2, requiring R - 1.13 m 

and ¡e = 16.9 MA. If a modest fusion-power-driven system is desired as a low-cost proto­

type to a more significant fusion device, a 2-T system of interest is included in Table 2. 

SPHERICAL 
TORUS 

RIGGATRON-
LIKE 

(MW) 

R (cm) 

a (cm) 
\ fi (%) 
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Table 1. Par—«ten of spherical tari far ¡gaMoa 

aad ban (C% - IS) with B - 2 T, 

/ , - 3 kA/CB2,« - 2, T - 28 keV 

With separate 

Advanced first wall 

tf(ni) 1.34 !.53 

a i m ) 0.88 0.97 

Rc(m) 0.38 0.40 

/ , (MA) 13.4 15.3 

/i-(MA) 14.0 14.1 

F m ( M W ) 52 60 

IK t (MW/m ! ) 0.62 0.54 

IW(MW) 8.4 8.6 

A(m) 0.09 0.16 

n i l O ^ m - 3 ) 0.66 0.59 

I» 0.26 0.24 

This midget fusion spherical torus has R = 0.8 m, a = 0.46 m, Ie - 7.9 MA, and IP = 

5 1 MA, requiring Paux = 2.5 MW based on Mirnov scaling and producing PQT = 

4 MW and WL - 0.15 MW/m2. 

An example of a spherical torus reactor at B — 5 T is also included in Table 2. It is 

seen that a device with R — 2.06 m, a — 1.2 m, and Ip ** 34.4 MA would produce fusion 

power at the 3000-MW level and a neutron wall load at the 17-MW/m2 level. Assuming 

an H-mode scaling based on twice the confinement time of the Goldston-Kaye scaling,16 
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TaUt 2. Panatttenaf spherical tori wltk A - f.1 a, 

Q ™ 1 Neutron production 

midfet tod ««II knd Reactor 

«(T) 2 3 5 

JW(MW) 4.0 53 3000 

W£(MW/m2) 0.15 1.0 17 

»>(MJ) 3.0 18.1 350 

K(m) 0.79 1.13 2.06 

fl(m) 0.46 0.64 1.20 

/Mm) 0.29 0.42 0.74 

/e(MA) 7.9 16.9 51.6 

/f(MA) 5.1 10.3 34.4 

c* 0.20 1.2 22 

«(lO2 0!!!-3) 0.46 1.0 2.9 

8 0.18 0.18 0.19 

the igr.ition parameter of this reactor, according to Eq. (13), gives Qt — 1.3. If Mirnov 

scaling is used instead, Clg is calculated to be over 20. 

4.3 Configurations 

Feasible configurations for the two examples shown in Table 1 are depicted in Figs. 12 

and 13, although these are not necessarily unique to the spherical torus concept. The 
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Figure 12 (a) Elevation view and (b) plan view of an ignition spherical torus with separate rust wall arrangement, internal PF coils, and demountable 

TFcoil return legs. 
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Figure 13 (a) Elevation view and (b) plan view of an ignition spherical toras with an advanced concept of combined first wall and the toroidal 

field conductor. 
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former represents a relatively conventional embodiment that includes a first wall arrange­

ment separate from the center conductor post and the spherical nuclear shield, with 

demountable TF coil return legs external to the shield and the PF coils. This configuration 

permits access to the plasma to a degree similar to that in TFCX designs. 

The latter configuration represents a relatively advanced embodiment that combines 

the first wall with the inductor required to carry the return current from the center con­

ductor post In comparison to the former case, this case permits more flexibility in the 

arrangement of the shields, is more compact, but permits access to the plasma only in 

relatively small openings in the first wall-conductor arrangement in order to avoid 

unacceptable field ripples at the plasma. Several other types of spherical torus embodi­

ments, including a possible combined shield-conductor-first wall arrangement, are also 

being explored. 

In these ignition spherical tori, the center conductor post intercepts less than 5% of 

the fusion neutrons. 

5. DISCUSSION 

5.1 Physics Data Base 

It is important to point out that there a essentially no data base available at the present 

time for tokamaks with A below 2, although significant ^-dependences hav¿ been revealed 

through existing tokamak experiments with A ranging from 3 to 5. The Joint European 

Torus (JET) and the big D in Doublet III (Dili) have A as low as 2.37 and 2.49, respec­

tively. These devices will afford further indications of low-,4 effects in the next few years. 

Before an adequate data base for the spherical torus becomes available, shortfalls in 

plasma confinement, beta, and current drive cannot be ruled out. A confinement shortfall 
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would lead primarily to an increase in auxiliary heating pover and, hence, to driven sys­

tems; a beta shortfall, to reduced fusion power and neutron wall load; and a current drive 

shortfall, to short burn pulses. However, because of its small unit size, a spherical torus 

appears to introduce only modest risk compared to a conventional tokamak in generating 

copious neutrons for use in fusion development. 

5.2 Key Engineering Issues 

The high potential and low cost of D-T spherical tori rely on the successful resolution of a 

few key engineering issues. These include the fabrication of the center conductor; the 

approach of low-voltage, high-current power supplies; and the toroidal field system struc­

ture. Various options have been identified: 

• For the center conductor, the options range from casting to explosive bonding of the 

single conductor post and to bonding cf ceramic insulator to multiturn plate conductor 

that could comprise the post. 

• For the power supplies, the options range from steady-state homopolar generators to 

transformer rectifiers for high-duty-cycle operations and to high current lead-based 

batteries for low-duty-cycle operations. 

• For the toroidal Field system structure, the options range from demountable external 

return legs to combined first wall and conductor (and shield-blanket) arrangements. 

The examples of Table 1 show the sensitivity of the unit size of an ignition spherical 

torus to the presence of a separate first wall arrangement in that it substantially increases 

the plasma major radius and aspect ratio. A similar degree of sensitivity is expected to the 

variations of the current density over the cross section of the center conductor post. Fig­

ure 14 shows that as Jc is increased from 3.0 to 6.0 kA/cm2, R decreases from >1.3 m to 
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Figure 14 The dependences of lh R, In a, and ? m on / , in spherical tori with q — 2.4, B - 2 T, «r - 2, 

and A — 0.1a. 
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<1.0 m and Ic from >13 MA to <10 MA. The fusion power also decreases from 

. MW to <40 MW. The accompanying reduction in unit size is dramatic in view of 

the expectation that the unit weight scales between A 2 and A 3 , suggesting that doubling Je 

would roughly halve the weight of an ignition spherical torus device. The technology of 

high-temperature copper alloy with pressurized water coolant is therefore one of the key 

issues of a compact, high-performance D-T spherical torus. 

5.3 Comparison With High-Performance TFCX 

Table 3 contains key parameters for an ignition spherical torus and the high-performance 

copper version of TFCX. Dramatic reductions in the device size, fusion power, and the 

externally applied currents in the TF and PF coils are indicated for the spherical torus. 

These are expected to translate directly to dramatic reductions in the cost of the fusion 

device (the load module), although significant cost reductions are also expected in its sup­

port systems and facilities. A more detailed conceptual design is needed to quantify these 

potential cost benefits of an ignition spherical torus. 

These potential cost reductions are accompanied by changes in risk in the physics and 

engineering performance of the spherical torus. The pulse length indicated in Table 3 for 

the spherical torus refers to the time scale of resistive decay of 10% for the plasma current 

at an electron temperature of 20 keV. Thus, in the absence of inductive current drive or 

successful noninductive current maintenance schemes, the spherical torus risks having short 

burn pulse lengths relative to TFCX. In the event that the plasma energy confinement 

scales much like the plasma volume, such as in the case of neo-Alcator scaling, the spheri­

cal torus as presently sized will have an ignition parameter more than an order of 

magnitude less than TFCX and will require undesirable levels of auxiliary heating power. 
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TaUe3. Cofufaii fccftrw — ifriti— spherical torn M Í 

Mgt-ptrfam—r> cfperTPCX. (Nate that the PF 

«meat dM far TFCX does not k W e the sokaoM.) 

Parameter Spherical torus TFCX 

Major radios (m) 1.53 2.60 

Minor radius (m) 0.97 1.04 

Aspect ratio 1.S8 2.49 

Plasma current (MA) 14.1 10.4 

Field oo-axis (T) 2.0 4.5 

Average toroidal beta (%) 24.0 6.0 

Fusion power (MW) 60 200 

Wall load (MW/m 2) 0.6 1.2 

Pulse length ($) 100 300 

TF current (MA) 15.3 58.5 

PF current (MA) 10.0 39.7 

C<r(Mirnov) 1.5 1.5 

C j f(INTOR) 1.6 1.9 

C(f(neo-Alcator) 0.1 2.5 

These increases in risk are mitigated by some of the intrinsic features of the spherical 

torus. These include, in the physics area, the high potential for average beta above 20% 

and high plasma current, the ease of high plasma elongation, ZPA the substantially reduced 

plasma inductance relative to TFCX. 

In the engineering area, the use of modest magnetic field relieves the need for 

advanced materials and engineering approaches, although such approaches, when applied 
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to critical components of the spherical torus (e.g., the center conductor post), should 

further its cost-effectiveness. The relatively simple configuration of a spherical torus seems 

to lend itself to conventional engineering approaches for construction and opens new ave­

nues for design innovation. A D-T spherical torus retains only the center conductor post 

and, if desired, the ceramic insulator and a separate first wall In doing so, it also retains 

the potential of high tolerance to neutron fluence in a compact device relative to more con­

ventional compact fusion tokamak designs. The modest size and cost of the load module of 

a spherical toius make it cost-effective to replace and to improve the load module, given 

the support systems and facilities. In the case of a Q = 1 driven D-T spherical torus 

(Table 2), the cost of the load module is expected to be a relatively small fraction of the 

support systems and facilities, making it an attractive approach to initiate integrated phy­

sics, engineering, and nuclear development of magnetic fusion. These potential risks and 

benefits can be delineated when a significant data base for a spherical torus becomes avail­

able. 

Although not discussed here, spherical tori with aspect ratios below 1.3 are also 

attainable and should be assessed as long as reactor-grade plasmas can be maintained with 

magnetic fields less than 1 T. If the plasm» scales with A in i fashion similar to that dis­

cussed here, then beta values approaching unity and Ip values significantly larger than Ic 

become available (Figs. 7 and 11). Similarly, a solenoid inboard to the plasma can be 

included to provide partial inductive current drive capability, while aspect ratios below 2 

can still be maintained by reducing B and increasing R of the spherical torus (Fig. IS). 

Coil sets can also be introduced inboard to the plasma to form a bean-shaped plasma cross 

section while still retaining the spherical torus configuration (Fig. 16). Finally, the spheri­

cal torus is expected to have attractive reactor embodiments because of its high beta, 

compact size, and moderate field. 
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Figure IS Plasma flux surfaces and PF coil configuration for an ignition spherical torus with an ohmic heat­

ing induction solenoid, R « 1.83 m, a - 1.11 m, K — 2, B - 2 T, q - 2.8, and 0 - 21%. 
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Figure 16 Plasma flux surfaces and PF coil configuration for an ignition spherical torus with inboard PF 

coils to form a bean-shaped plasma, R 1.77 m, a - 1.16 m, K - 2, B - 2 T, q - 4.4, and 0 - 18%. 
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